WO2020087351A1 - 数据传输方法、装置、网络设备以及存储介质 - Google Patents
数据传输方法、装置、网络设备以及存储介质 Download PDFInfo
- Publication number
- WO2020087351A1 WO2020087351A1 PCT/CN2018/113032 CN2018113032W WO2020087351A1 WO 2020087351 A1 WO2020087351 A1 WO 2020087351A1 CN 2018113032 W CN2018113032 W CN 2018113032W WO 2020087351 A1 WO2020087351 A1 WO 2020087351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- mcs
- user equipment
- spectral efficiency
- index value
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000003595 spectral effect Effects 0.000 claims abstract description 84
- 238000013507 mapping Methods 0.000 claims abstract description 66
- 239000000969 carrier Substances 0.000 claims description 50
- 238000001228 spectrum Methods 0.000 claims description 45
- 230000015654 memory Effects 0.000 claims description 10
- 238000004891 communication Methods 0.000 abstract description 12
- 238000013468 resource allocation Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 125000002306 tributylsilyl group Chemical group C(CCC)[Si](CCCC)(CCCC)* 0.000 description 3
- 101100545229 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ZDS2 gene Proteins 0.000 description 2
- 101100167209 Ustilago maydis (strain 521 / FGSC 9021) CHS8 gene Proteins 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
Definitions
- the present disclosure relates to the field of communication technology, and in particular, to a data transmission method, device, network device, and storage medium.
- each discrete frequency point provided by the base station is small, and user equipment can only be accessed at a lower rate to meet high-speed data.
- discrete narrowband communication systems are often used to aggregate multiple discrete frequency points.
- the base station When performing data transmission in a discrete narrow-band communication system, the base station provides communication services for at least one cell.
- the base station selects an appropriate modulation and coding method (MCS) according to the buffer status of the user equipment and the channel quality of the link, and
- MCS modulation and coding method
- the number of resource units (RU) is determined according to the transport block size (TBS) table, based on the number of resource units, the maximum carrier aggregation number of the user equipment is determined, and then the user equipment is determined according to the maximum carrier aggregation number To allocate resources for data transmission.
- MCS modulation and coding method
- TBS transport block size
- each user equipment within the coverage of the base station cannot reach the peak rate during data transmission, that is, the data transmission within the coverage of the base station cannot be achieved.
- the maximum cell rate that can be reached is still insufficient for the utilization of discrete frequency points within the coverage of the base station.
- Embodiments of the present disclosure provide a data transmission method, apparatus, network equipment, and storage medium, which can solve the problems that user equipment cannot reach the peak rate during data transmission and the insufficient utilization of discrete frequency points within the coverage of the base station.
- the technical solution is as follows:
- a data transmission method includes:
- the number of resource units corresponding to the target spectral efficiency is obtained from the target mapping relationship.
- the target spectral efficiency is the highest in the spectral efficiency corresponding to the index value of the MCS.
- the target mapping relationship is used to indicate the index The relationship between value, resource unit number and spectrum efficiency;
- the user equipment is allocated resources for data transmission according to the target carrier number.
- obtaining the number of resource units corresponding to the target spectrum efficiency from the target mapping relationship includes:
- the index value of the MCS determines at least one spectral efficiency corresponding to the index value of the MCS
- the number of resource units corresponding to the target spectral efficiency is obtained.
- determining at least one spectrum efficiency corresponding to the index value of the MCS from the target mapping relationship according to the index value of the MCS includes:
- the target mapping relationship which corresponds to the MCS
- determining the target spectral efficiency includes:
- the at least one spectral efficiency is sorted in descending order, and the maximum value of the at least one spectral efficiency is determined as the target spectral efficiency.
- the target mapping relationship is preset; or,
- the target mapping relationship is generated based on the relationship between the index value, the number of resource units, and TBS.
- the method before determining the MCS of the user equipment according to the channel quality of the user equipment, the method further includes:
- the user equipment is not allocated resources for data transmission
- the step of determining the MCS of the user equipment according to the channel quality of the user equipment is performed.
- acquiring the target carrier number includes:
- a data transmission device for performing the above data transmission method.
- the data transmission device includes a function module for executing the data transmission method provided in the first aspect or any optional manner of the first aspect.
- a network device in a third aspect, includes a transceiver, a processor, and a memory, where at least one instruction is stored in the memory, and the instruction is loaded and executed by the processor to implement any of the foregoing first aspects.
- a computer-readable storage medium in which at least one instruction is stored in the storage medium, and the instruction is loaded and executed by a processor to implement the operation performed by any one of the data transmission methods of the first aspect .
- the data transmission method provided by the embodiment of the present disclosure determines the modulation and coding mode MCS through the channel quality of the user equipment, and then obtains the number of resource units corresponding to the target spectrum efficiency based on the target mapping relationship based on the index value of the MCS, and based on the number Obtain the target carrier number, so as to allocate resources according to the target carrier number, so that the base station signal of the base station is converted into a modulated signal suitable for channel transmission by MCS, thereby obtaining the target carrier number with the maximum spectrum efficiency, and increasing the discrete frequency points within the coverage of the base station Utilization rate, thereby increasing the peak rate of base station coverage.
- FIG. 1 is a schematic diagram of a data transmission system according to an exemplary embodiment of the present disclosure
- FIG. 2 is a schematic structural diagram of a network device according to an exemplary embodiment of the present disclosure
- FIG. 3 is a flowchart of a data transmission method according to an exemplary embodiment of the present disclosure
- FIG. 4 is a schematic structural diagram of a data transmission device according to an exemplary embodiment of the present disclosure.
- FIG. 1 is a schematic diagram of a data transmission system according to an exemplary embodiment of the present disclosure.
- the data transmission system is used to perform any data transmission method in the present disclosure. It should be noted that the following is only an exemplary description of the data transmission system. In practical applications, those skilled in the art should understand that the data transmission system is not limited to the architecture and functions precisely indicated in the following description and drawings.
- the data transmission system includes: a network device 101 and at least one user device 102.
- the network device 101 is a site that performs data interaction with user equipment in a certain radio coverage area.
- the network device 101 may include a receiver, a transmitter, and a processor.
- the network device 101 is specifically an evolved network device (evolved node B, eNB) or other types of base stations, and is used for data interaction with the user equipment 102 to perform any data transmission in the present disclosure method.
- eNB evolved network device
- the user equipment (UE) is a device with a wireless function.
- the user equipment 102 is used for data interaction with the network device 101, so as to execute any data transmission method in the present disclosure.
- the data transmission system may also include other network element entities, such as a serving gateway device (serving gateway, SGW), a public data gateway (public data gateway, PND-GW), etc.
- serving gateway serving gateway
- PND-GW public data gateway
- FIG. 2 is a schematic structural diagram of a network device according to an exemplary embodiment of the present disclosure.
- the network device 200 may have a relatively large difference due to different configurations or performance, and may include one or more processors (central processing units). , CPU) 201, one or more memories 202, one or more transceivers 203, wherein the memory 202 stores at least one instruction, the at least one instruction is loaded and executed by the processor 201 to achieve the following The method executed by the network device side in the method embodiment.
- the transceiver may be a wired or wireless network interface, a keyboard, an input-output interface, and other components for input and output.
- the network device may also include other components for implementing device functions, and details are not described herein.
- a computer-readable storage medium such as a memory including instructions, which can be executed by a processor in a network device to complete the data transmission method in the following embodiments.
- the computer-readable storage medium may be a read-only memory image (read only memory (image), ROM), random access memory (random access memory (RAM), read-only disc (compact disc read-only memory, CD-ROM) , Magnetic tapes, floppy disks, and optical data storage devices.
- FIG. 3 is a flowchart of a data transmission method according to an exemplary embodiment of the present disclosure. This embodiment can be performed based on the implementation environment shown in FIG. 1 and taking a network device as a base station for example. Referring to FIG. 3, this embodiment includes:
- the base station may maintain a user equipment queue based on current data transmission requirements.
- the user equipment in the user equipment queue may be user equipment that is required by uplink data or downlink data.
- the base station when the base station acquires the user equipment from the user equipment queue, it may proceed according to a preset rule, which may acquire the user equipment with the highest channel quality, or may acquire the user with the largest amount of data to be transmitted Device, the embodiment of the present disclosure does not specifically limit the preset rule.
- the embodiments of the present disclosure only use user equipment to continuously transmit large data packets as an example for illustration. This data transmission method makes the amount of data to be transmitted by the user greater than or equal to the maximum buffer report under the protocol constraint, and obtains the peak coverage of the base station. rate.
- the embodiment of the present disclosure takes a certain resource allocation in the process of resource allocation of the base station as an example for description.
- the disclosed embodiment can be executed
- the base station obtains the current available carrier number N_available, where the available carrier number N_available is the number of idle carriers that can currently be provided within the coverage of the base station.
- This step 302 is actually a process in which the base station obtains the currently available idle carriers within the coverage of the base station according to the current communication resource allocation, and determines the number of all idle carriers as the number of available carriers.
- N_available When the number of available carriers N_available is 0, it means that there is no idle carrier in the coverage area of the base station, and it can continue to detect until a carrier is in an idle state before continuing to perform the method provided by the embodiment of the present disclosure; when the number of available carriers When N_available is not 0, perform the following steps 303-310.
- the base station determines the modulation and coding scheme (MCS) of the user equipment according to the channel quality of the user equipment.
- MCS modulation and coding scheme
- the channel quality is used to indicate the quality of the uplink or downlink communication between the user equipment and the base station.
- the channel quality can be measured by the signal to interference plus noise ratio (SINR) It indicates that, for example, the SINR may occupy 4 bits of data.
- SINR signal to interference plus noise ratio
- the base station may acquire the channel quality based on the channel quality indicator (CQI) of the user equipment.
- CQI channel quality indicator
- the embodiment of the present disclosure does not specifically limit the manner of acquiring the channel quality.
- the MCS is used to indicate a method for converting a baseband signal sent by a base station into a modulated signal suitable for channel transmission, for example, quadrature phase shift Key control (quadrature phase shift keyin, QPSK), quadrature amplitude modulation (quadrature amplitude modulation, 16QAM), 64QAM, etc.
- quadrature phase shift Key control quadrature phase shift keyin, QPSK
- quadrature amplitude modulation quadrature amplitude modulation
- 16QAM quadrature amplitude modulation
- 64QAM 64QAM
- the above step 303 is actually a process in which the base station determines the MCS of the user equipment according to the correspondence between the channel quality and the MCS. For example, when the SINR of the user equipment is 1, according to the correspondence between the channel quality and the MCS, the The user equipment selects the QPSK modulation method.
- the base station determines the target mapping relationship from the multiple mapping relationships according to the MCS, and the target mapping relationship corresponds to the MCS.
- Each MCS corresponds to a mapping relationship, and each mapping relationship is used to indicate the relationship between the index value, the number of resource units Nru, and the spectral efficiency Fff_ru_m.
- the above multiple mapping relationships may be stored in the form of a spectrum efficiency table, where each row of the spectrum efficiency table corresponds to an MCS index value, each column corresponds to a resource unit number Nru, and each pair of MCS index values and resources
- the number of units Nru corresponds to a spectrum efficiency Fff_ru_m; optionally, under the target mapping relationship, each row of the spectrum efficiency table may also correspond to a number of resource units Nru, and correspondingly, each column corresponds to an MCS index value
- the spectrum efficiency table may be as shown in Table 1:
- the multiple mapping relationships may be preset, that is, the multiple mapping relationships are predetermined by the spectrum efficiency table stored by the base station; or, the multiple mapping relationships are based on the index value, the number of resource units Nru, and TBS The relationship between them is generated in real time.
- the relationship between the index value, the number of resource units Nru and the TBS may also be pre-stored in the base station in the form of a TBS table.
- each row of the TBS table corresponds to an MCS index Value
- each column corresponds to one resource unit number Nru
- each pair of MCS index value and resource unit number Nru corresponds to one TBS
- each row of the TBS table may also correspond to one resource unit number Nru, accordingly
- Each column corresponds to an MCS index value.
- the TBS table may be as shown in Table 2:
- Nru 1
- Nru 2
- Nru m
- MCS0 TBS 01 TBS 02
- MCS1 TBS 11 TBS 12
- the base station determines the at least one spectral efficiency Eff_ru_m corresponding to the index value of the MCS from the target mapping relationship.
- the index value of the MCS is acquired by the base station based on the channel quality of the user equipment. Different manufacturers may have different algorithms for acquiring the index value of the MCS. In a possible implementation manner, when acquiring the index value, This can be achieved by converting the 4-bit data SINR value into 5-bit data MCS index value.
- the steps 304 to 305 are a way for the base station to determine at least one spectral efficiency Eff_ru_m corresponding to the index value of the MCS from the target mapping relationship according to the index value of the MCS.
- the step 305 can also use the following Alternative ways one to three are implemented, for example:
- Method 1 The base station accesses a pre-stored first target spectrum efficiency table according to the target mapping relationship, the first target spectrum efficiency table is used to indicate the target mapping relationship; according to the MCS index value, the first target spectrum efficiency table Obtain the at least one spectral efficiency Eff_ru_m corresponding to the MCS index value.
- the base station sorts the at least one spectral efficiency Eff_ru_m in descending order, and determines the maximum value of the at least one spectral efficiency as the target spectral efficiency.
- This step 306 is a process for the base station to determine the target spectral efficiency in the at least one spectral efficiency Eff_ru_m.
- this step 306 may be implemented in the following manner: access each of the at least one spectral efficiency Eff_ru_m Spectral efficiency.
- the maximum value is assigned to the spectral efficiency of the current access until all the spectral efficiencies in the at least one spectral efficiency Eff_ru_m are traversed and accessed
- the maximum value in at least one spectral efficiency Eff_ru_m determines the maximum value as the target spectral efficiency.
- the embodiment of the present disclosure does not specifically limit the method for acquiring the target spectral efficiency.
- the base station obtains the number of resource units corresponding to the target spectrum efficiency from the target mapping relationship.
- each spectral efficiency has a corresponding number of resource units and an MCS index value. Therefore, based on the target spectral efficiency, the number of resource units corresponding to the target spectral efficiency can be determined.
- the resource unit is used to indicate the smallest resource unit in the communication mode. For example, the resource unit may be used to indicate the resource on every 7 waveform symbols in the time domain for every 12 subcarriers in the frequency domain.
- the number of resource units is the number of resource units allocated to the user equipment when the base station reaches the target spectrum efficiency.
- the target spectral efficiency is the most efficient among the spectral efficiencies corresponding to the index value of the MCS.
- the resource unit determined by this process can enable the user equipment to reach the peak rate in data transmission and improve the use of discrete frequency points rate.
- the base station acquires the carrier number Nru / 1 when the number of resource units corresponding to the target spectrum efficiency is 1 frame.
- the base station acquires all the resource units indicated by the number of resource units, and the number of carriers that can be allocated to the user equipment when the number of frames in the time domain is 1 frame.
- the base station obtains the minimum value of the carrier number and the available carrier number N_available, and uses the minimum value as the target carrier number.
- the number of carriers obtained in step 308 By comparing the number of carriers obtained in step 308 with the number of available carriers of the base station, it can be avoided that the number of carriers exceeds the number of available carriers. For example, when the number of carriers obtained in step 308 is less than the number of available carriers, the obtained The number of carriers is regarded as the target number of carriers, and when the number of acquired carriers is greater than the number of available carriers, the number of available carriers is used as the number of target carriers, thereby ensuring the highest possible spectrum efficiency while ensuring that the allocation can be achieved.
- the base station allocates resources for data transmission to the user equipment according to the target carrier number.
- the user equipment may be allocated a carrier corresponding to the target carrier number from available carriers for data transmission. For example, the base station may send resource allocation information to the user equipment, and the resource allocation The information carries time-frequency resource information including information of carriers corresponding to the target carrier number, and when the user equipment receives the resource allocation information, it can parse the resource allocation information, obtain the time-frequency resource information, and based on the time-frequency resource Information, sending uplink data or receiving downlink data.
- the data transmission method provided by the embodiment of the present disclosure uses the channel quality of the user equipment to determine the MCS for the user equipment, and then obtains the number of resource units corresponding to the target spectrum efficiency based on the target mapping relationship according to the index value of the MCS, based on The number of resource units obtains the number of target carriers, so that resources are allocated according to the number of target carriers, so that the baseband signal of the base station is converted into a modulated signal suitable for channel transmission through the MCS, thereby obtaining the target carrier number with the maximum spectrum efficiency and improving the coverage of the base station
- the utilization of discrete frequency points within the range thereby increasing the peak rate of the coverage of the base station.
- a target mapping relationship is determined, and based on a preset spectrum efficiency table corresponding to the target mapping relationship, at least one spectral efficiency corresponding to the index value of the MCS is acquired, and the maximum of the at least one spectral efficiency The value is obtained as the target spectrum efficiency, saving the cost of obtaining the target spectrum efficiency; further, when the available user equipment within the coverage of the base station is not 0, the current number of available carriers is obtained, when the number of available carriers is 0, it is not The user equipment allocates resources.
- the minimum value of the number of available carriers and the number of carriers corresponding to the target spectral efficiency is the target carrier number, which ensures that the target carrier number allocated to the user equipment is the available carrier of the base station Within the range of the number, and has the maximum spectrum efficiency, the data transmission mechanism of the base station is further improved.
- FIG. 4 is a schematic structural diagram of a data transmission device according to an exemplary embodiment of the present disclosure.
- the device includes a determination module 401, a first acquisition module 402, a second acquisition module 403, and an allocation module 404.
- the determining module 401 is used to determine the MCS of the user equipment according to the channel quality of the user equipment;
- the first obtaining module 402 is configured to obtain the number of resource units corresponding to the target spectral efficiency from the target mapping relationship according to the index value of the MCS, and the target spectral efficiency is the most efficient among the spectral efficiency corresponding to the index value of the MCS,
- the target mapping relationship is used to indicate the relationship between the index value, the number of resource units and the spectral efficiency;
- the second obtaining module 403 is configured to obtain the target carrier number according to the number of resource units corresponding to the target spectrum efficiency
- the allocation module 404 is configured to allocate resources for data transmission to the user equipment according to the target carrier number.
- the data transmission device determines the modulation and coding mode MCS according to the channel quality of the user equipment, and then obtains the number of resource units corresponding to the target spectrum efficiency based on the target mapping relationship based on the index value of the MCS, based on the number of resource units Obtain the target carrier number, so as to allocate resources according to the target carrier number, so that the base station signal of the base station is converted into a modulated signal suitable for channel transmission by MCS, thereby obtaining the target carrier number with the maximum spectrum efficiency, and increasing the discrete frequency points within the coverage of the base station Utilization rate, thereby increasing the peak rate of base station coverage.
- the first obtaining module 402 includes:
- a first determining unit configured to determine at least one spectrum efficiency corresponding to the index value of the MCS from the target mapping relationship according to the index value of the MCS;
- a second determining unit configured to determine the target spectral efficiency in the at least one spectral efficiency
- the obtaining unit is configured to obtain the number of resource units corresponding to the target spectral efficiency from the target mapping relationship.
- the first determining unit is used to perform the above steps 304-305 and the alternative manner of steps 304-305.
- the second determining unit is used to perform the above step 306 and the optional implementation manner of step 306.
- the target mapping relationship is preset; or, the target mapping relationship is generated based on the relationship between the index value, the number of resource units, and the TBS, see step 304.
- the device further includes:
- a third obtaining module configured to perform the above step 301 and the optional implementation manner of step 301;
- the fourth obtaining module is configured to perform the above step 302 and the optional implementation manner of step 302.
- the second obtaining module 403 is used to perform the above steps 308-309.
- the data transmission device when the data transmission device provided in the above embodiments performs data transmission, only the above-mentioned division of each functional module is used as an example for illustration. In actual applications, the above-mentioned functions may be allocated by different functional modules according to needs. That is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
- the data transmission device and the data transmission method embodiment provided in the above embodiments belong to the same concept. For the specific implementation process, refer to the method embodiments, and details are not described here.
- mapping relationships means two or more, for example, multiple mapping relationships refer to two or more mapping relationships.
- first and second in the present disclosure are used to distinguish the same or similar items whose functions and functions are basically the same. Those skilled in the art can understand that the words “first” and “second” are not correct And the order of execution.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种数据传输方法、装置、网络设备以及存储介质,属于通信技术领域。该方法包括:根据用户设备的信道质量,确定该用户设备的MCS;根据该MCS的索引值,从目标映射关系中,获取目标频谱效率对应的资源单元数,该目标频谱效率在与该MCS的索引值对应的频谱效率中效率最高,该目标映射关系用于指示索引值、资源单元数与频谱效率之间的关系;根据该目标频谱效率对应的资源单元数,获取目标载波数;根据该目标载波数为该用户设备分配用于进行数据传输的资源。本公开通过获得具有最大频谱效率的目标载波数,提高了基站覆盖范围内离散频点的利用率,从而提高了基站覆盖范围的峰值速率。
Description
本公开涉及通信技术领域,特别涉及一种数据传输方法、装置、网络设备以及存储介质。
随着通信技术的不断发展,部分国家和地区存在无线通信的可用频谱不连续的情况,基站提供的各个离散频点的带宽较小,用户设备只能以较低速率接入,为满足高速数据业务的通信需求,常采用离散窄带通信系统,将多个离散频点聚合使用。
在离散窄带通信系统中进行数据传输时,基站为至少一个小区提供通信服务,基站根据用户设备的缓存状态和链路的信道质量,选择合适的调制编码方式(modulation and coding scheme,MCS),并根据传输块大小(transport block size,TBS)表格,来确定资源单元(resource unit,RU)数,基于该资源单元数,确定用户设备的最大载波聚合数,进而根据该最大载波聚合数为用户设备进行资源分配,用以进行数据传输。
然而在上述离散窄带通信系统中,为用户设备分配最大载波聚合数时,基站覆盖范围内各用户设备在数据传输中不能达到峰值速率,也即是,不能达到基站覆盖范围内在进行数据传输时的所能达到的最大信元速率,基站覆盖范围内离散频点的利用率仍有不足。
发明内容
本公开实施例提供了一种数据传输方法、装置、网络设备以及存储介质,能够解决用户设备在数据传输中不能达到峰值速率,基站覆盖范围内离散频点利用率不足的问题。该技术方案如下:
第一方面,提供了一种数据传输方法,该方法包括:
根据用户设备的信道质量,确定该用户设备的MCS;
根据该MCS的索引值,从目标映射关系中,获取目标频谱效率对应的资源单元数,该目标频谱效率在与该MCS的索引值对应的频谱效率中效率最高,该目标映射关系用于指示索引值、资源单元数与频谱效率之间的关系;
根据该目标频谱效率对应的资源单元数,获取目标载波数;
根据该目标载波数为该用户设备分配用于进行数据传输的资源。
在一种可能实施方式中,根据该MCS的索引值,从目标映射关系中,获取目标频谱效率对应的资源单元数包括:
根据该MCS的索引值,从该目标映射关系中,确定该MCS的索引值对应的至少一个频谱效率;
在该至少一个频谱效率中,确定该目标频谱效率;
从该目标映射关系中,获取该目标频谱效率对应的资源单元数。
在一种可能实施方式中,根据该MCS的索引值,从该目标映射关系中,确定该MCS的索引值对应的至少一个频谱效率包括:
根据该MCS,从多个映射关系中,确定该目标映射关系,该目标映射关系与该MCS对应;
从该目标映射关系中,确定该MCS的索引值对应的该至少一个频谱效率。
在一种可能实施方式中,在该至少一个频谱效率中,确定该目标频谱效率包括:
将该至少一个频谱效率按照从大到小排序,将该至少一个频谱效率的最大值确定为该目标频谱效率。
在一种可能实施方式中,该目标映射关系为预先设置;或,
该目标映射关系基于索引值、资源单元数与TBS之间的关系生成。
在一种可能实施方式中,根据用户设备的信道质量,确定该用户设备的MCS之前,该方法还包括:
从待传输数据的用户设备队列中获取该用户设备,该用户设备队列的用户设备数大于等于1;
获取当前的可用载波数,该可用载波数为小区内当前能够提供的空闲载波数;
当该可用载波数为0时,不给该用户设备分配用于进行数据传输的资源;
当该可用载波数不为0时,执行该根据用户设备的信道质量,确定该用户设备的MCS的步骤。
在一种可能实施方式中,根据该目标频谱效率对应的资源单元数,获取目标载波数包括:
获取该目标频谱效率对应的资源单元数在帧数为1帧时的载波数;
获取该载波数和该可用载波数的最小值,将该最小值作为该目标载波数。
第二方面,提供了一种数据传输装置,用于执行上述数据传输方法。具体地,该数据传输装置包括用于执行上述第一方面或上述第一方面的任一种可选方式提供的数据传输方法的功能模块。
第三方面,提供了一种网络设备,该网络设备包括收发器、处理器和存储器,该存储器中存储有至少一条指令,该指令由该处理器加载并执行以实现如上述第一方面中任一项数据传输方法所执行的操作。
第四方面,提供了一种计算机可读存储介质,该存储介质中存储有至少一条指令,该指令由处理器加载并执行以实现如上述第一方面中任一项数据传输方法所执行的操作。
本公开实施例提供的技术方案带来的有益效果是:
本公开实施例提供的数据传输方法,通过用户设备的信道质量,确定调制编码方式MCS,再根据该MCS的索引值,基于目标映射关系获取目标频谱效率对应的资源单元数,基于该资源单元数获取目标载波数,从而根据该目标载波数分配资源,使得基站的基带信号通过MCS转换成适合信道传输的调制信号,从而获得具有最大频谱效率的目标载波数,提高了基站覆盖范围内离散频点的利用率,从而提高了基站覆盖范围的峰值速率。
图1是本公开根据一示例性实施例提供的一种数据传输系统的示意图;
图2是本公开根据一示例性实施例提供的一种网络设备的结构示意图;
图3是本公开根据一示例性实施例提供的一种数据传输方法的流程图;
图4是本公开根据一示例性实施例提供的一种数据传输装置的结构示意图。
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本公开根据一示例性实施例提供的一种数据传输系统的示意图,该数据传输系统用于执行本公开中任一数据传输方法。需要说明的是,以下仅为对该数据传输系统示例性的描述,在实际应用中,本领域技术人应当理解该数据传输系统不限于以下描述及附图所精确指出的架构及功能。如图1所示,该数据传输系统包括:网络设备101以及至少一个用户设备102。
网络设备101,该网络设备为在一定的无线电覆盖区中,与用户设备进行数据交互的站点。该网络设备101可以包括接收机、发射机及处理器部分。在本公开实施例中,该网络设备101具体为演进型网络设备(evolved node B,eNB)或其他类型的基站,用于与用户设备102进行数据交互,从而执行本公开中任一种数据传输方法。
用户设备102,该用户设备(user equipment,UE)为具有无线功能的设备。在本公开实施例中,该用户设备102用于与网络设备101进行数据交互,从而执行本公开中任一种数据传输方法。
需要说明的是,在实际应用中,该数据传输系统还可以括其他网元实体,例如,服务网关设备(serving gateway,SGW)、公共数据网关(public data network gateway,PND-GW)等,本公开对数据传输系统包括的其他部分不作具体限定。
图2是本公开根据一示例性实施例提供的一种网络设备的结构示意图,该网络设备200可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(central processing units,CPU)201,一个或一个以上的存储器202、一个或一个以上收发器203,其中,该存储器202中存储有至少一条指令,该至少一条指令由该处理器201加载并执行以实现下述各个方法实施例中网络设备侧所执行的方法。该收发器可以为有线或无线网络接口、键盘以及输入输出接口等部件,以便进行输入输出,该网络设备还可以包括其他用于实现设备功能的部件,在此不做赘述。
在示例性实施例中,还提供了一种计算机可读存储介质,例如包括指令的存储器,上述指令可由网络设备中的处理器执行以完成下述实施例中数据传输方法。例如,该计算机可读存储介质可以是只读存储器镜像(read only memory image,ROM)、随机存取存储器(random access memory,RAM)、只读光盘(compact disc read-only memory,CD-ROM)、磁带、软盘和光数据存储设备等。
图3是本公开根据一示例性实施例提供的一种数据传输方法的流程图,该实施例可以基于图1所示的实施环境进行,且以网络设备为基站为例进行说明。参见图3,该实施例包括:
301、基站从待传输数据的用户设备队列u=(u1,u2,…,un)中获取用户设备u(i),该用户设备队列u=(u1,u2,…,un)的用户设备数n大于等于1。
在本公开实施例中,基站可以基于当前的数据传输需求,来维护用户设备队列,该用户设备队列中的用户设备可以是由上行数据需求或下行数据需求的用户设备。在 下述实施例中,以该用户设备队列为u=(u1,u2,…,un)来表示,以u(i)来表示用户设备队列中的第i个用户设备。
在一种实施方式中,基站在从用户设备队列中获取用户设备时,可以按照预设规则进行,该预设规则可以获取信道质量最高的用户设备,还可以是获取待传数据量最大的用户设备,本公开实施例不对该预设规则进行具体限定。本公开实施例仅以用户设备持续传输较大的数据包为例进行说明,这种数据传输方式使得用户的待传数据量大于等于协议约束下的最大缓存报告,并且获取该基站覆盖范围的峰值速率。
本公开实施例是以基站在资源分配的过程中的某一次资源分配为例进行说明,对于基站来说,当为第i-1个用户设备进行完资源分配后,则可以执行该公开实施例所提供的步骤301以及后续步骤,而当对用户设备u(i)的资源分配完成后,可以继续对用户设备队列中第i+1个用户设备进行本公开实施例的步骤。
302、基站获取当前的可用载波数N_available,该可用载波数N_available为基站覆盖范围内当前能够提供的空闲载波数。
该步骤302实际上是基站根据当前的通信资源分配情况,获取该基站覆盖范围内当前能够提供的空闲载波,并且将该所有空闲载波的数量确定为该可用载波数的过程。
其中,当该可用载波数N_available为0时,说明该基站覆盖范围内无空闲载波,则可以持续检测直到有载波处于空闲状态后再继续执行本公开实施例所提供的方法;当该可用载波数N_available不为0时,执行下述步骤303-310。
303、当该可用载波数N_available不为0时,基站根据用户设备的信道质量,确定该用户设备的调制编码方式(modulation and coding scheme,MCS)。
其中,该信道质量用于表示用户设备和基站之间的上行链路或下行链路的通信质量好坏,该信道质量可以通过信号与干扰加噪声比(signal to interference plus noise ratio,SINR)进行指示,例如,该SINR可以占4位数据。在一些可能实施方式中,基站可以基于用户设备的信道质量指示符(channel quality indication,CQI)来获取信道质量,本公开实施例不对该信道质量的获取方式进行具体限定。
需要说明的是,不同信道质量的用户设备,可以对应于不同的调制编码方式MCS,该MCS用于指示将基站发送的基带信号转换成适合信道传输的调制信号的方法,例如,正交相移键控(quadrature phase shift keyin,QPSK)、正交幅度调制(quadrature amplitude modulation,16QAM)以及64QAM等。
上述步骤303实际上是基站根据该信道质量和MCS的对应关系,确定该用户设备的MCS的过程,例如,当用户设备的SINR值为1时,根据该信道质量和MCS的对应关系,为该用户设备选择QPSK调制方法。
304、基站根据该MCS,从多个映射关系中,确定该目标映射关系,该目标映射关系与该MCS对应。
其中,每个MCS对应于一个映射关系,每个映射关系用于指示索引值、资源单元数Nru与频谱效率Fff_ru_m之间的关系。
可选地,上述多个映射关系可以采用频谱效率表的形式存储,该频谱效率表的每一行对应于一个MCS索引值,每一列对应于一个资源单元数Nru,每一对MCS索引值和资源单元数Nru对应于一个频谱效率Fff_ru_m;可选地,在该目标映射关系下, 该频谱效率表的每一行还可以对应于一个资源单元数Nru,相应地,每一列对应于一个MCS索引值,本公开实施例不对该频谱效率表的具体表达形式进行具体限定。例如,该频谱效率表可以如表1所示:
表1
索引值 | Nru=1 | Nru=2 | … | Nru=m |
MCS0 | Eff 01 | Eff 02 | … | Eff 0m |
MCS1 | Eff 11 | Eff 12 | … | Eff 1m |
… | … | … | … | … |
MCSn | Eff n1 | Eff n2 | … | Eff nm |
可选地,该多个映射关系可以为预先设置,也即是,该多个映射关系由基站存储的频谱效率表预先确定;或,该多个映射关系基于索引值、资源单元数Nru与TBS之间的关系实时生成。
在一种可能实施方式中,该索引值、资源单元数Nru与TBS之间的关系也可以采用TBS表的形式预先存储在基站内,可选地,该TBS表的每一行对应于一个MCS索引值,每一列对应于一个资源单元数Nru,每一对MCS索引值和资源单元数Nru对应于一个TBS;可选地,该TBS表的每一行还可以对应于一个资源单元数Nru,相应地,每一列对应于一个MCS索引值,本公开实施例不对该TBS表的具体表达形式进行限定。例如,该TBS表可以如表2所示:
表2
索引值 | Nru=1 | Nru=2 | … | Nru=m |
MCS0 | TBS 01 | TBS 02 | … | TBS 0m |
MCS1 | TBS 11 | TBS 12 | … | TBS 1m |
… | … | … | … | … |
MCSn | TBS n1 | TBS n2 | … | TBS nm |
305、基站从该目标映射关系中,确定该MCS的索引值对应的该至少一个频谱效率Eff_ru_m。
其中,该MCS的索引值是基站基于该用户设备的信道质量进行获取的,不同的厂商可以具有不同的获取该MCS的索引值的算法,在一种可能实施方式中,在获取索引值时,可以通过将4位数据的SINR值转换成5位数据的MCS索引值实现。
该步骤304至305是一种基站根据该MCS的索引值,从该目标映射关系中,确定该MCS的索引值对应的至少一个频谱效率Eff_ru_m的方式,实际上,该步骤305还可以用下述替换方式一至三进行实现,例如:
方式一:基站根据该目标映射关系,访问预先存储的第一目标频谱效率表,该第一目标频谱效率表用于指示该目标映射关系;根据该MCS索引值,在该第一目标频谱效率表中获取该MCS索引值对应的该至少一个频谱效率Eff_ru_m。
方式二:基站根据该MCS,访问预先存储的目标TBS表,该目标TBS表与该目标映射关系对应;根据该目标TBS表,计算每个TBS的频谱效率,每个频谱效率为 每个TBS除以该TBS对应的资源单元数得到的数值,也即是Eff_ru_m=TBSnm/Nru(m);根据每个TBS的频谱效率,生成第二目标频谱效率表;根据该MCS索引值,在该第二目标频谱效率表中获取该MCS索引值对应的该至少一个频谱效率Eff_ru_m。
方式三:基站根据该MCS,访问预先存储的目标TBS表,该目标TBS表该目标映射关系对应;根据该MCS索引值,在该目标TBS表中获取该MCS索引值对应的多个TBS;根据该多个TBS,计算该多个TBS中每个TBS的频谱效率,得到该至少一个频谱效率Eff_ru_m;其中,每个频谱效率为每个TBS除以该TBS对应的资源单元数得到的数值,也即是,Eff_ru_m=TBSnm/Nru(m)。
306、基站将该至少一个频谱效率Eff_ru_m按照从大到小排序,将该至少一个频谱效率的最大值确定为该目标频谱效率。
该步骤306是基站在该至少一个频谱效率Eff_ru_m中,确定该目标频谱效率的过程,在一种可能实施方式中,该步骤306可以采用下述方式实现:访问该至少一个频谱效率Eff_ru_m中的每个频谱效率,当当前访问的频谱效率比上一个频谱效率的数值大时,将最大值赋值为当前访问的频谱效率,直到该至少一个频谱效率Eff_ru_m中的全部频谱效率都被遍历访问,得到该至少一个频谱效率Eff_ru_m中的最大值,将该最大值确定为该目标频谱效率,本公开实施例不对获取该目标频谱效率的方法进行具体限定。
307、基站从该目标映射关系中,获取该目标频谱效率对应的资源单元数。
由于该目标映射关系中,每个频谱效率都有对应的资源单元数和MCS索引值,因此,基于该目标频谱效率,可以确定与该目标频谱效率对应的资源单元数。其中,资源单元用于指示通信模式下的最小资源单位,例如,资源单元可与用于指示频域上每12个子载波在时域上每7个波形符号上的资源。资源单元数为基站在达到该目标频谱效率时为用户设备分配的资源单元的数量。
由上述步骤可知,该目标频谱效率在与该MCS的索引值对应的频谱效率中效率最高,由此过程所确定的资源单元可以使得用户设备在数据传输中达到峰值速率,提高离散频点的利用率。
308、基站获取该目标频谱效率对应的资源单元数在帧数为1帧时的载波数Nru/1。
上述步骤308是基站获取该资源单元数指示的所有资源单元,在时域上帧数为1帧时所能分配给用户设备的载波数。
309、基站获取该载波数和该可用载波数N_available中的最小值,将该最小值作为该目标载波数。
通过将步骤308所获取的载波数和基站的可用载波数进行比较,可以避免出现载波数超出可用载波数的情况,例如,当步骤308所获取的载波数小于可用载波数,则将所获取的载波数作为目标载波数,而当所获取的载波数大于可用载波数时,则将可用载波数作为目标载波数,从而能够在保证可实现分配的同时,也能够使得频谱效率最高。上述目标载波数的获取可以采用下述表达式表示:N_u(i)=min(N_available,Nru/1)。
310、基站根据该目标载波数为该用户设备分配用于进行数据传输的资源。
在基站确定了待分配的目标载波数后,则可以从可用载波中为用户设备分配该目 标载波数对应的载波,以进行数据传输,例如,基站可以向用户设备发送资源分配信息,该资源分配信息携带包括该目标载波数对应的载波的信息的时频资源信息,当用户设备接收到该资源分配信息时,则可以解析该资源分配信息,获取该时频资源信息,并基于该时频资源信息,进行上行数据的发送或者下行数据的接收。
本公开实施例提供的数据传输方法,通过用户设备的信道质量,为用户设备确定的调制编码方式MCS,再根据该MCS的索引值,基于目标映射关系获取目标频谱效率对应的资源单元数,基于该资源单元数获取目标载波数,从而根据该目标载波数分配资源,使得基站的基带信号通过该MCS转换成适合信道传输的调制信号,从而获得具有最大频谱效率的目标载波数,提高了基站覆盖范围内离散频点的利用率,从而提高了基站覆盖范围的峰值速率。进一步地,通过该MCS,确定目标映射关系,并基于与该目标映射关系对应的预先设置的频谱效率表,获取该MCS的索引值对应的至少一个频谱效率,将该至少一个频谱效率中的最大值获取为目标频谱效率,节约了获取该目标频谱效率的成本;进一步地,当基站覆盖范围内可用用户设备不为0时,获取当前的可用载波数,当可用载波数为0时,不为用户设备分配资源,当载波数不为0时,获取可用载波数和该目标频谱效率对应的载波数中的最小值为目标载波数,保证了为用户设备分配的目标载波数是基站的可用载波数范围内,且具有最大频谱效率,进一步完善了基站的数据传输机制。
图4是本公开根据一示例性实施例提供的一种数据传输装置的结构示意图,该装置包括:确定模块401、第一获取模块402、第二获取模块403以及分配模块404。
确定模块401,用于根据用户设备的信道质量,确定该用户设备的MCS;
第一获取模块402,用于根据该MCS的索引值,从目标映射关系中,获取目标频谱效率对应的资源单元数,该目标频谱效率在与该MCS的索引值对应的频谱效率中效率最高,该目标映射关系用于指示索引值、资源单元数与频谱效率之间的关系;
第二获取模块403,用于根据该目标频谱效率对应的资源单元数,获取目标载波数;
分配模块404,用于根据该目标载波数为该用户设备分配用于进行数据传输的资源。
本公开实施例提供的数据传输装置,通过用户设备的信道质量,确定调制编码方式MCS,再根据该MCS的索引值,基于目标映射关系获取目标频谱效率对应的资源单元数,基于该资源单元数获取目标载波数,从而根据该目标载波数分配资源,使得基站的基带信号通过MCS转换成适合信道传输的调制信号,从而获得具有最大频谱效率的目标载波数,提高了基站覆盖范围内离散频点的利用率,从而提高了基站覆盖范围的峰值速率。
可选地,基于图4的装置组成,该第一获取模块402包括:
第一确定单元,用于根据该MCS的索引值,从该目标映射关系中,确定该MCS的索引值对应的至少一个频谱效率;
第二确定单元,用于在该至少一个频谱效率中,确定该目标频谱效率;
获取单元,用于从该目标映射关系中,获取该目标频谱效率对应的资源单元数。
可选地,该第一确定单元用于执行上述步骤304-305以及步骤304-305的替换方 式。
可选地,该第二确定单元用于执行上述步骤306以及步骤306的可选实施方式。
可选地,该目标映射关系为预先设置;或,该目标映射关系基于索引值、资源单元数与TBS之间的关系生成,见步骤304。
可选地,基于图4的装置组成,该装置还包括:
第三获取模块,用于执行上述步骤301以及步骤301的可选实施方式;
第四获取模块,用于执行上述步骤302以及步骤302的可选实施方式。
可选地,基于图4的装置组成,该第二获取模块403用于执行上述步骤308-309。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。
需要说明的是:上述实施例提供的数据传输装置在进行数据传输时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的数据传输装置与数据传输方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本公开中术语“多个”的含义是指两个或两个以上,例如,多个映射关系是指两个或两个以上的映射关系。
本公开中术语“第一”“第二”等字样用于对作用和功能基本相同的相同项或相似项进行区分,本领域技术人员可以理解,“第一”“第二”等字样不对数量和执行顺序进行限定。
以上所述仅为本公开的可选实施例,并不用以限制本公开,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。
Claims (16)
- 一种数据传输方法,其特征在于,所述方法包括:根据用户设备的信道质量,确定所述用户设备的MCS;根据所述MCS的索引值,从目标映射关系中,获取目标频谱效率对应的资源单元数,所述目标频谱效率在与所述MCS的索引值对应的频谱效率中效率最高,所述目标映射关系用于指示索引值、资源单元数与频谱效率之间的关系;根据所述目标频谱效率对应的资源单元数,获取目标载波数;根据所述目标载波数为所述用户设备分配用于进行数据传输的资源。
- 根据权利要求1所述的方法,其特征在于,所述根据所述MCS的索引值,从目标映射关系中,获取目标频谱效率对应的资源单元数包括:根据所述MCS的索引值,从所述目标映射关系中,确定所述MCS的索引值对应的至少一个频谱效率;在所述至少一个频谱效率中,确定所述目标频谱效率;从所述目标映射关系中,获取所述目标频谱效率对应的资源单元数。
- 根据权利要求2所述的方法,其特征在于,所述根据所述MCS的索引值,从所述目标映射关系中,确定所述MCS的索引值对应的至少一个频谱效率包括:根据所述MCS,从多个映射关系中,确定所述目标映射关系,所述目标映射关系与所述MCS对应;从所述目标映射关系中,确定所述MCS的索引值对应的所述至少一个频谱效率。
- 根据权利要求2所述的方法,其特征在于,所述在所述至少一个频谱效率中,确定所述目标频谱效率包括:将所述至少一个频谱效率按照从大到小排序,将所述至少一个频谱效率的最大值确定为所述目标频谱效率。
- 根据权利要求1所述的方法,其特征在于,所述目标映射关系为预先设置;或,所述目标映射关系基于索引值、资源单元数与TBS之间的关系生成。
- 根据权利要求1所述的方法,其特征在于,所述根据用户设备的信道质量,确定所述用户设备的MCS之前,所述方法还包括:从待传输数据的用户设备队列中获取所述用户设备,所述用户设备队列的用户设备数大于等于1;获取当前的可用载波数,所述可用载波数为小区内当前能够提供的空闲载波数;当所述可用载波数为0时,不给所述用户设备分配用于进行数据传输的资源;当所述可用载波数不为0时,执行所述根据用户设备的信道质量,确定所述用户设备的MCS的步骤。
- 根据权利要求6所述的方法,其特征在于,所述根据所述目标频谱效率对应的资源单元数,获取目标载波数包括:获取所述目标频谱效率对应的资源单元数在帧数为1帧时的载波数;获取所述载波数和所述可用载波数的最小值,将所述最小值作为所述目标载波数。
- 一种数据传输装置,其特征在于,所述装置包括:确定模块,用于根据用户设备的信道质量,确定所述用户设备的MCS;第一获取模块,用于根据所述MCS的索引值,从目标映射关系中,获取目标频谱效率对应的资源单元数,所述目标频谱效率在与所述MCS的索引值对应的频谱效率中效率最高,所述目标映射关系用于指示索引值、资源单元数与频谱效率之间的关系;第二获取模块,用于根据所述目标频谱效率对应的资源单元数,获取目标载波数;分配模块,用于根据所述目标载波数为所述用户设备分配用于进行数据传输的资源。
- 根据权利要求8所述的装置,其特征在于,所述第一获取模块包括:第一确定单元,用于根据所述MCS的索引值,从所述目标映射关系中,确定所述MCS的索引值对应的至少一个频谱效率;第二确定单元,用于在所述至少一个频谱效率中,确定所述目标频谱效率;获取单元,用于从所述目标映射关系中,获取所述目标频谱效率对应的资源单元数。
- 根据权利要求9所述的装置,其特征在于,所述第一确定单元用于:根据所述MCS,从多个映射关系中,确定所述目标映射关系,所述目标映射关系与所述MCS对应;从所述目标映射关系中,确定所述MCS的索引值对应的所述至少一个频谱效率。
- 根据权利要求9所述的装置,其特征在于,所述第二确定单元用于:将所述至少一个频谱效率按照从大到小排序,将所述至少一个频谱效率的最大值确定为所述目标频谱效率。
- 根据权利要求8所述的装置,其特征在于,所述目标映射关系为预先设置;或,所述目标映射关系基于索引值、资源单元数与TBS之间的关系生成。
- 根据权利要求8所述的装置,其特征在于,所述装置还包括:第三获取模块,用于从待传输数据的用户设备队列中获取所述用户设备,所述用户设备队列的用户设备数大于等于1;第四获取模块,用于获取当前的可用载波数,所述可用载波数为小区内当前能够提供的空闲载波数;当所述可用载波数为0时,不给所述用户设备分配用于进行数据传输的资源;当所述可用载波数不为0时,执行所述根据用户设备的信道质量,确定所述用户设备的MCS的步骤。
- 根据权利要求13所述的装置,其特征在于,所述第二获取模块用于:获取所述目标频谱效率对应的资源单元数在帧数为1帧时的载波数;获取所述载波数和所述可用载波数的最小值,将所述最小值作为所述目标载波数。
- 一种网络设备,其特征在于,所述网络设备包括收发器、处理器和存储器,所述存储器中存储有至少一条指令,所述指令由所述处理器加载并执行以实现如权利要求1至权利要求7任一项所述的数据传输方法所执行的操作。
- 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求1至权利要求7任一项所述的数 据传输方法所执行的操作。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/113032 WO2020087351A1 (zh) | 2018-10-31 | 2018-10-31 | 数据传输方法、装置、网络设备以及存储介质 |
CN201880099156.6A CN112956269B (zh) | 2018-10-31 | 2018-10-31 | 数据传输方法、装置、网络设备以及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/113032 WO2020087351A1 (zh) | 2018-10-31 | 2018-10-31 | 数据传输方法、装置、网络设备以及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020087351A1 true WO2020087351A1 (zh) | 2020-05-07 |
Family
ID=70462086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/113032 WO2020087351A1 (zh) | 2018-10-31 | 2018-10-31 | 数据传输方法、装置、网络设备以及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112956269B (zh) |
WO (1) | WO2020087351A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103281168A (zh) * | 2008-10-28 | 2013-09-04 | 富士通株式会社 | 无线通信系统及其方法、无线通信终端装置和无线基站装置 |
CN103560866A (zh) * | 2008-01-04 | 2014-02-05 | 松下电器产业株式会社 | 无线通信装置、无线通信方法以及集成电路 |
CN105991273A (zh) * | 2015-02-13 | 2016-10-05 | 中兴通讯股份有限公司 | 一种待调度数据的分配方法和装置 |
CN106817206A (zh) * | 2015-11-27 | 2017-06-09 | 北京信威通信技术股份有限公司 | 用于多跳网络的干扰规避方法及系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100946923B1 (ko) * | 2004-03-12 | 2010-03-09 | 삼성전자주식회사 | 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서 채널 품질 정보의 송수신 장치 및 방법, 그리고 그에 따른 시스템 |
KR101341493B1 (ko) * | 2007-01-30 | 2013-12-16 | 엘지전자 주식회사 | 채널 환경에 따른 mcs 인덱스 선택 방법, 자원 할당방식 선택 방법 및 이를 위한 송신기 |
CN102170647B (zh) * | 2010-02-26 | 2013-11-20 | 电信科学技术研究院 | 上行数据信道资源复用类型的判断装置和方法 |
-
2018
- 2018-10-31 WO PCT/CN2018/113032 patent/WO2020087351A1/zh active Application Filing
- 2018-10-31 CN CN201880099156.6A patent/CN112956269B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103560866A (zh) * | 2008-01-04 | 2014-02-05 | 松下电器产业株式会社 | 无线通信装置、无线通信方法以及集成电路 |
CN103281168A (zh) * | 2008-10-28 | 2013-09-04 | 富士通株式会社 | 无线通信系统及其方法、无线通信终端装置和无线基站装置 |
CN105991273A (zh) * | 2015-02-13 | 2016-10-05 | 中兴通讯股份有限公司 | 一种待调度数据的分配方法和装置 |
CN106817206A (zh) * | 2015-11-27 | 2017-06-09 | 北京信威通信技术股份有限公司 | 用于多跳网络的干扰规避方法及系统 |
Non-Patent Citations (1)
Title |
---|
QUALCOMM INCORPORATED: "On Procedure to Determine CQI to MCS Mapping Table", 3GPP DRAFT R4-1703146, 7 April 2017 (2017-04-07), Spokane US, pages 1 - 4, XP051246354 * |
Also Published As
Publication number | Publication date |
---|---|
CN112956269A (zh) | 2021-06-11 |
CN112956269B (zh) | 2023-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10003445B2 (en) | Method and apparatus for scheduling a controlchannel in an orthogonal frequency division multiplexing communication system | |
CN102282896B (zh) | 用于调度多个载波上的数据传输的方法和装置 | |
US8355360B2 (en) | Method and apparatus for allocating downlink power in an orthogonal frequency division multiplexing communication system | |
JP5542159B2 (ja) | チャネル品質データを送信する方法、受信する方法、及び装置 | |
JP4991833B2 (ja) | マルチセル無線通信システムにおける動的リソース配分方法および装置 | |
CN103152754B (zh) | 一种lte系统中的链路自适应方法及装置 | |
US20080240216A1 (en) | Link adaptation method | |
JP2006211651A (ja) | マルチキャリア無線通信システムでチャネル品質情報を送信する方法、対応する移動端末および基地局 | |
EP4181599A1 (en) | Communication method and apparatus | |
WO2019154051A1 (zh) | 上行控制信息的发送方法及装置、存储介质、用户设备 | |
KR100932787B1 (ko) | 광대역 이동통신 시스템의 사용자 단말에서의 채널상태정보전송 방법과, 그에 따른 기지국에서의 무선자원 할당 방법 | |
WO2018196407A1 (zh) | 一种资源配置方法和基站 | |
WO2018137188A1 (zh) | 一种用于覆盖增强的资源配置方法及装置 | |
Yildiz et al. | A novel mobility aware downlink scheduling algorithm for LTE-A networks | |
CN101651516B (zh) | 编码调制方法和系统 | |
US10305710B2 (en) | Method and apparatus for operating multiple modulation schemes in wireless communication system | |
WO2019052370A1 (zh) | 用于进行数据传输的方法和装置 | |
CN102131300A (zh) | 队列调度方法和队列调度装置 | |
WO2020087351A1 (zh) | 数据传输方法、装置、网络设备以及存储介质 | |
CN106254053B (zh) | 一种基于cqi的lte-a载波聚合成分载波分配方法 | |
CN115276908B (zh) | 一种无线通信方法及设备、存储介质 | |
CN117201369A (zh) | 网络速率确定方法、装置、电子设备及存储介质 | |
WO2016161616A1 (zh) | 一种分配网络资源的方法、装置和基站 | |
JP2012508480A (ja) | 無線システムにおいてチャネル品質データを送信する技術 | |
Chao et al. | Cooperative spectrum sharing and scheduling in self-organizing femtocell networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18938273 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18938273 Country of ref document: EP Kind code of ref document: A1 |