WO2020085656A1 - Antenna for radar - Google Patents
Antenna for radar Download PDFInfo
- Publication number
- WO2020085656A1 WO2020085656A1 PCT/KR2019/012186 KR2019012186W WO2020085656A1 WO 2020085656 A1 WO2020085656 A1 WO 2020085656A1 KR 2019012186 W KR2019012186 W KR 2019012186W WO 2020085656 A1 WO2020085656 A1 WO 2020085656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiators
- array
- radar
- antenna
- lines
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/44—Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
- H01Q1/46—Electric supply lines or communication lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
Definitions
- the present invention relates to an antenna for a radar, and more particularly, to a radar antenna for transmitting a radar signal and receiving a radar signal reflected from a surrounding obstacle.
- the radar sensor is a sensing means that transmits radio waves using microwaves and receives distance, velocity, and angle information by receiving some reflection signals reflected from the target.
- radar sensors include Pulsed Doppler Radar, Frequency Modulated Continuous Wave (hereinafter referred to as 'FMCW'), and Stepped-Frequency Continuous Wave (hereinafter referred to as 'SFCW'), frequency Target information is measured using various radar waveforms such as shift shift keying (hereinafter referred to as 'FSK').
- 'FMCW' Frequency Modulated Continuous Wave
- 'SFCW' Stepped-Frequency Continuous Wave
- 'FSK' shift shift keying
- the vehicle radar is classified into a long-range radar device (Long Range Radar, LRR) and a medium-range radar device (Middle Range Radar, MRR) and a short-range radar device (Short Range Radar (SRR) or Blind Spot Detection (BSD)).
- LRR Long Range Radar
- MRR Medium-range radar device
- SRR Short Range Radar
- BSD Blind Spot Detection
- the LRR and MRR for detecting the front of a vehicle mainly use a frequency of 77 GHz band
- the SRR or BSD for detecting the rear side of a vehicle uses a frequency of 24 GHz band.
- the antenna applied to the vehicle radar sensor is used to obtain special characteristics, and when complex structures such as chebyshov, binomial, and taylor are applied to the array antenna, for the feeding of each radiating element, Complex feeding circuits are required. Therefore, there is a disadvantage in that the development period of designing and optimizing the performance of an array antenna having a complicated power supply circuit is prolonged.
- the patch array antenna for the 24GHz or 77GHz band is designed to uniformly input the magnitude and phase of the current to each patch in order to solve the above problems due to design complexity.
- the array antenna having a uniform size and phase of the current input to the patch shows a high side lobe level characteristic, there is a problem in that the sensing area is very non-uniform.
- the detection area of the radar detector is very narrow, the side lobe level of the beam generated from the array antenna is high, and thus it is difficult to generate a narrow and uniform width beam using only the radar algorithm.
- Patent Document 3 a patent application for a radar antenna technology having high gain and low side lobe level characteristics
- the frequency of the 79 kHz band which replaces the 24 kHz frequency band, is mainly used in SRR or BSD.
- the 79 GHz band has a bandwidth of 4 ⁇ wider than the 24 GHz band having a bandwidth of 250 MHz, it has excellent distance resolution (or range resolution) performance, and enables precise target detection at a short distance.
- the SRR using the 79GHz band with such a wide beam width is used as a radar for the front and rear of the vehicle, and can detect short-range targets in a wide range when driving at intersections, and has high distance resolution due to the use of a wide bandwidth. There are characteristics.
- the distance resolution refers to a minimum distance difference that can be identified even when two targets in the same direction are approached from the radar.
- the distance resolution can be calculated by Equation 1.
- ⁇ R is the distance resolution and BW is the bandwidth.
- Figure 1 is a graph showing a radiation pattern of a radar antenna according to the prior art using a frequency band of 79 kHz.
- the elevation antenna pattern error should be small.
- the antenna design for a radar having a wide wide-angle characteristic should be designed with a wide left and right beam width, and a left-right symmetric characteristic based on 0 degrees as an azimuth axis.
- a wide-angle antenna using a frequency of 77 kHz is commercially available, but the frequency bandwidth is only a maximum of 1 kHz, and no antenna considering the above-mentioned 77 kHz to 81 kHz broadband characteristics exists.
- the 77 GHz band SRR radar sensor applied for the front and rear sides detects a wide area in all directions around the vehicle. In order to do this, up to eight vehicles must be installed.
- Patent Document 1 Korean Patent Registration No. 10-1513878 (announced on April 22, 2015)
- Patent Document 2 Korean Patent Registration No. 10-1505044 (announced on March 24, 2015)
- Patent Document 3 Korean Patent Registration No. 10-1841685 (announced on March 27, 2018)
- An object of the present invention is to solve the above problems, to provide a radar antenna having a wide bandwidth of 4 kHz in the frequency band of the central frequency 79 kHz, and can improve the distance resolution.
- Another object of the present invention is to provide an antenna for a radar capable of preventing the occurrence of left and right deviations of elevation beamwidth due to a change in the center frequency in order to use a wide band in a radar antenna using a center frequency band of 79 GHz. will be.
- Another object of the present invention is to provide an antenna for a radar capable of maintaining symmetrical left and right when a wide azimuth beam width is designed to expand a radar detection area.
- Another object of the present invention is to provide an antenna for a radar capable of minimizing the number of radars installed in a vehicle.
- the antenna for radar includes a first array that radiates a signal in one direction, a second array that radiates a signal in a direction opposite to the first array, and the first and It includes a power supply for supplying a signal to the second array, the first array and the second array each includes a plurality of first radiators and second radiators that are cross-installed to radiate signals toward opposite directions, respectively.
- parasitic elements resonating at frequencies adjacent to the first and second radiators are arranged to implement broadband.
- the radar antenna according to the present invention the effect of having a wide bandwidth of 4 kHz in the frequency band of the central frequency of 79 kHz and improving the distance resolution is obtained.
- a multi-array antenna is designed in a radar antenna using a center frequency band of 79 kHz, and an effect that a high angle beam width can be minimized is obtained.
- the effect of preventing the occurrence of left and right deviations of the high angle beam width according to the change in the center frequency for using the broadband can be obtained.
- the present invention by designing a wide-band and wide-angle antenna, it is possible to detect a target for an omnidirectional (360-degree) area of a vehicle using a small number of radars, thereby minimizing the number of radars installed in the vehicle. The effect that can be obtained.
- 1 is a graph showing a radiation pattern of a radar antenna according to the prior art
- FIG. 2 is a plan view of a radar antenna according to a preferred embodiment of the present invention
- FIG. 3 is a partially enlarged view of the antenna for radar shown in FIG. 2,
- FIG. 2 is a plan view of a radar antenna according to a preferred embodiment of the present invention
- FIG. 3 is a partially enlarged view of the radar antenna shown in FIG. 2.
- the first array 20 that radiates a signal in one direction, the first array 20 and the signal toward the opposite direction It includes a second array 30 to radiate and a power supply unit 40 to supply signals to the first and second arrays 20 and 30.
- the first array 20 and the second array 30 each include a plurality of first radiators 21 and second radiators 31, and the first and second radiators 21 and 31 are in opposite directions to each other. It can be cross-installed along a row to emit a signal towards.
- the first array 20 includes a plurality of first radiators 21 disposed on one straight line
- the second array 30 is disposed between the plurality of first radiators 21. It includes a plurality of second radiators (31).
- first radiator 21 and the second radiator 31 may be symmetrically arranged to radiate signals toward opposite directions, respectively.
- a second radiator 31 is disposed between each of the first radiators 21, and the first and second radiators 21 and 31 may be provided in the same number, respectively.
- the plurality of first and second radiators 21 and 31 form a radiation pattern of the radar antenna 10.
- the first and second feeding lines Signals are supplied from (41,42) to each radiator (21,31).
- the plurality of emitters may be made of a conductive material including at least one of silver (Ag), palladium (Pd), platinum (Pt), copper (Gu), gold (Au), and nickel (Ni).
- the parasitic element 50 is formed in an approximately square pattern in the space between the first radiator 21 and the second radiator 31, and resonates at frequencies adjacent to the first and second radiators 21 and 31 to widen the band. It functions to implement.
- only one parasitic element 50 is disposed between the first and second radiators 21 and 31, as shown in FIG. 3.
- the first and second radiators 21 and 31 share one parasitic element 50 disposed therebetween.
- the present invention can arrange one parasitic element between the first and second radiators and share them with each other, thereby minimizing the length of the radar antenna and reducing manufacturing cost.
- the limited space for designing the radar antenna can be effectively utilized to minimize the overall length of the antenna.
- the antenna 10 for the radar is preferably set to 79 kHz as the performance deviation or performance deterioration occurs in a high frequency band.
- the width of the main radiator and the parasitic element is designed to be smaller than the length of each element.
- the widths of the first and second emitters 21 and 31 are smaller than the lengths of the first and second emitters 21 and 31, but designed as wide as possible, as shown in FIG. 3 to implement wide-angle characteristics. Can be.
- the width of the parasitic element 50 may be designed to be slightly larger than the length of the parasitic element 50.
- first and second radiators (21,31) and the resonant frequencies of the parasitic element (50) are designed to be located in the vicinity for realizing broadband characteristics, and the first and second radiators (21,31) fed directly.
- the length of the parasitic element 50 to which electromagnetic coupling (coupling) is fed can all be designed to be about 0.5 ⁇ .
- the resonant length of the patch is 0.5 ⁇ , and the lengths of the two elements can be designed in the range of 0.4 ⁇ to 0.6 ⁇ .
- the power supply unit 40 includes a plurality of first power supply lines 41 and second arrays 30 that supply signals to a plurality of first radiators 21 provided in the first array 20.
- the first and second feeding lines 41 and 42 are connected to one end of the second feeding line 42 and the first and second feeding lines 41 and 42 for supplying a signal to the second radiator 31. It may include a feed point 43 for supplying a signal.
- the first feed line 41 is disposed on one side of the first array 20, as shown in FIG. 1, and each first radiator 21 of the first array 20 is a first connection line 44, respectively. It can be connected to the first feed line 41 through.
- the second feed line 42 is disposed on one side of the second array 30, as shown in FIG. 1, and each second radiator 31 of the second array 30 is respectively a second connection line 45. It can be connected to the second feed line 42 through.
- the radiation pattern in the wide-angle direction, that is, the azimuth direction, of the single antenna is asymmetric.
- the first and second feeding lines 41 and 42 are arranged on both sides of the first and second radiators 21 and 31, and the zigzag is provided through the first and second connecting lines 44 and 45. Implement the power supply circuit.
- the present invention can eliminate the asymmetry of the beam pattern in the radial direction by applying the structures feeding from the left and right sides of the first and second arrays having asymmetric structures.
- first and second stubs 46 and 47 may be formed to extend upward at the upper ends of the first feed line 41 and the second feed line 42, respectively.
- the first and second stubs 46 and 47 may provide an effect of suppressing side lobes by reducing power supplied to the first and second arrays 20 and 30.
- first and second stubs 46, 47 can help regulate the power ratio supplied to the first and second arrays 2, 30.
- the lengths of the first and second stubs 46 and 47 can be designed to be 0.25 ⁇ of the center frequency.
- the feeding circuit is designed in a zigzag manner for wide-angle lateral symmetry of the radial beam width, and the phases of signals fed to each patch must be the same, the lengths of the first and second feeding lines 41 and 42 are It can be designed in multiples of ⁇ .
- feed points 43 and the first and second feed lines 41 and 42 may be connected by first and second branch lines 48 and 49.
- the first and second branch lines 48 and 49 may be provided in a diagonal structure that is inclined toward the lower ends of the first and second feed lines 41 and 42 with respect to the feed points 43, respectively.
- the horizontal area at the bottom of the feeding part is minimized, so that the center of the beam in the elevation direction, that is, the vertical direction, can be vertically aligned.
- the peak can be adjusted to 0 degrees and the side lobe level of the broadband signal can be minimized.
- the center frequency is selected as 79 kHz and designed, and the center frequency is varied and verified from 77 kHz to 81 kHz through simulation.
- FIG. 4 to 7 is a graph showing the radiation pattern of the radar antenna shown in Figure 2
- Figure 8 is a graph showing the return loss of the radar antenna.
- 4 to 7 show antenna gain graphs according to power and angles at 77 Hz to 80 Hz, respectively.
- the radar antenna 10 suppresses the level of the side lobe to less than -10 dB in all bands of 77 Hz to 80 Hz, thereby reducing the level of the main lobe and the side lobe. It can be seen that the difference is maintained at about 20 dB or more.
- the present invention has a wide bandwidth of 4 kHz in the frequency band of the central frequency of 79 kHz and can improve the distance resolution.
- the present invention can design a multi-array antenna in a radar antenna using a center frequency band of 79 GHz and minimize a high angle beam width.
- the present invention can prevent the occurrence of left and right deviation of the elevation beam width according to the change in the center frequency for using the broadband.
- the present invention can maintain left and right symmetry when a wide azimuth beam width is designed to expand a radar detection area.
- the number of radars installed in the vehicle can be minimized by designing a wide-band and wide-angle antenna and detecting targets in an omnidirectional (360-degree) area of the vehicle using a small number of radars. .
- the present invention is applied to antenna technology for radar having wide bandwidth and wide angle characteristics with a wide bandwidth.
Landscapes
- Radar Systems Or Details Thereof (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
The present invention relates to an antenna for radar, comprising: a first array for radiating a signal in one direction; a second array for radiating a signal in the opposite direction as the first array; and a feed part for supplying a signal to the first array and the second array, wherein the first array and the second array comprise a plurality of first emitters and second emitters alternately provided to radiate a signal in a direction opposite to each other, and, in a direction in which the first and second emitters do not radiate, a parasitic element for broadening a band by resonating at a frequency near the first and second emitters is disposed, so that a wide bandwidth of 4 ㎓ exists at the center frequency of 79 ㎓, and a range resolution can be improved.
Description
본 발명은 레이더용 안테나에 관한 것으로, 더욱 상세하게는 레이더 신호를 송신하고, 주변의 장애물에서 반사되는 레이더 신호를 수신하는 레이더용 안테나에 관한 것이다. The present invention relates to an antenna for a radar, and more particularly, to a radar antenna for transmitting a radar signal and receiving a radar signal reflected from a surrounding obstacle.
레이더 센서는 마이크로파(microwave)를 이용하여 전파를 송신하고 표적에서 반사된 일부 반사(reflection) 신호를 수신하여 거리, 속도, 각도 정보를 측정하는 감지수단이다. The radar sensor is a sensing means that transmits radio waves using microwaves and receives distance, velocity, and angle information by receiving some reflection signals reflected from the target.
이러한 레이더 센서는 펄스 도플러 레이더(Pulsed Doppler Radar), 주파수 변조 연속파(Frequency Modulated Continuous Wave, 이하 'FMCW'라 함), 계단형 주파수 연속파(Stepped-Frequency Continuous Wave, 이하 'SFCW'라 함), 주파수 편이 방식(Frequency Shift Keying, 이하 'FSK'라 함) 레이더 등의 다양한 레이더 파형(Radar Waveform)을 사용하여 표적정보를 측정한다. These radar sensors include Pulsed Doppler Radar, Frequency Modulated Continuous Wave (hereinafter referred to as 'FMCW'), and Stepped-Frequency Continuous Wave (hereinafter referred to as 'SFCW'), frequency Target information is measured using various radar waveforms such as shift shift keying (hereinafter referred to as 'FSK').
본 출원인은 하기의 특허문헌 1 및 특허문헌 2 등 다수에 레이더 센서 기술을 개시해서 특허 출원하여 등록받은 바 있다. The present applicant has registered and applied for a patent by initiating a radar sensor technology in a number of patent documents 1 and 2 below.
한편, 차량용 레이더는 장거리용 레이더 장치(Long Range Radar, LRR)와 중거리용 레이더 장치(Middle Range Radar, MRR) 및 근거리용 레이더 장치(Short Range Radar(SRR) 또는 Blind Spot Detection(BSD))로 분류될 수 있다.Meanwhile, the vehicle radar is classified into a long-range radar device (Long Range Radar, LRR) and a medium-range radar device (Middle Range Radar, MRR) and a short-range radar device (Short Range Radar (SRR) or Blind Spot Detection (BSD)). Can be.
그 중에서 차량의 전방을 감지하는 상기 LRR과 MRR은 77㎓ 대역의 주파수를 주로 사용하고, 차량의 후측방을 감지하는 상기 SRR 또는 BSD는 24㎓ 대역의 주파수를 사용하고 있다.Among them, the LRR and MRR for detecting the front of a vehicle mainly use a frequency of 77 ㎓ band, and the SRR or BSD for detecting the rear side of a vehicle uses a frequency of 24 ㎓ band.
차량용 레이더 센서에 적용되는 안테나는 특별한 특성을 얻기 위해, 체비쇼프(chebyshov), 바이노미얼(binomial), 테일러(taylor) 등 복잡한 구조가 배열 안테나에 적용되는 경우, 각 방사소자에 대한 급전을 위해 복잡한 급전 회로가 필요하다. 그래서 복잡한 급전 회로를 가진 배열 안테나의 설계 및 성능 최적화 등의 개발 기간이 길어지는 단점이 있다.The antenna applied to the vehicle radar sensor is used to obtain special characteristics, and when complex structures such as chebyshov, binomial, and taylor are applied to the array antenna, for the feeding of each radiating element, Complex feeding circuits are required. Therefore, there is a disadvantage in that the development period of designing and optimizing the performance of an array antenna having a complicated power supply circuit is prolonged.
따라서 24㎓ 또는 77㎓ 대역용 패치 배열 안테나는 설계의 복잡성으로 인한 위와 같은 문제점을 해결하기 위하여, 전류의 크기 및 위상이 각 패치로 균일하게 입력되도록 설계되고 있다. Therefore, the patch array antenna for the 24㎓ or 77㎓ band is designed to uniformly input the magnitude and phase of the current to each patch in order to solve the above problems due to design complexity.
그러나 패치로 입력되는 전류의 크기 및 위상이 균일한 배열 안테나는 높은 사이드 로브 레벨 특성을 보임에 따라, 감지 영역이 매우 불균일한 문제점이 있었다. However, since the array antenna having a uniform size and phase of the current input to the patch shows a high side lobe level characteristic, there is a problem in that the sensing area is very non-uniform.
또한, 레이더 감지기의 감지 영역이 매우 좁은 경우, 배열 안테나에서 생성되는 빔의 사이드 로브 레벨이 높아서 레이더 알고리즘만으로 좁고 균일한 폭의 빔을 생성하기 어려운 문제점이 있었다.In addition, when the detection area of the radar detector is very narrow, the side lobe level of the beam generated from the array antenna is high, and thus it is difficult to generate a narrow and uniform width beam using only the radar algorithm.
이에 따라, 출원인은 하기의 특허문헌 3에 고이득 및 낮은 사이드 로브 레벨 특성을 갖는 레이더용 안테나 기술을 개시해서 특허 출원하여 등록받은 바 있다.Accordingly, the applicant has filed and registered a patent application for a radar antenna technology having high gain and low side lobe level characteristics in Patent Document 3 below.
그러나 최근 SRR 또는 BSD는 24㎓의 주파수 대역을 대체하는 79㎓ 대역의 주파수가 주로 사용되고 있다. However, in recent years, the frequency of the 79 kHz band, which replaces the 24 kHz frequency band, is mainly used in SRR or BSD.
상기 79㎓ 대역은 대역폭이 250㎒인 24㎓ 대역보다 넓은 4㎓의 대역폭을 가짐에 따라, 거리 해상도(또는 거리 분해능, range resolution) 성능이 우수하여 근거리에서 정밀한 표적 탐지가 가능하다. Since the 79 ㎓ band has a bandwidth of 4 넓은 wider than the 24 ㎓ band having a bandwidth of 250 MHz, it has excellent distance resolution (or range resolution) performance, and enables precise target detection at a short distance.
그리고 79㎓ 대역을 사용하는 SRR의 경우, 근거리에서 방위각(Azimuth) 방향으로 넓은 범위를 탐지함에 따라, 광각 특성을 갖는다.And in the case of SRR using the 79㎓ band, it has a wide-angle characteristic by detecting a wide range in the azimuth direction at a short distance.
이와 같이 넓은 빔폭을 갖는 79㎓ 대역을 사용하는 SRR은 차량의 전측방 및 후측방용 레이더로 활용되고, 교차로 주행시 근거리 표적을 넓은 범위에서 탐지할 수 있으며, 넓은 대역폭 사용으로 인해 높은 거리 해상도를 갖는 특성이 있다.The SRR using the 79㎓ band with such a wide beam width is used as a radar for the front and rear of the vehicle, and can detect short-range targets in a wide range when driving at intersections, and has high distance resolution due to the use of a wide bandwidth. There are characteristics.
상기 거리 해상도는 레이더에서 동일 방향에 있는 2개의 목표물이 접근되어 있어도 구별하여 확인할 수 있는 최소 거리 차를 말한다. The distance resolution refers to a minimum distance difference that can be identified even when two targets in the same direction are approached from the radar.
이러한 거리 해상도는 수학식 1에 의해 산출할 수 있다. The distance resolution can be calculated by Equation 1.
[수학식 1][Equation 1]
여기서, ΔR는 거리 해상도이고, BW는 대역폭이다. Where ΔR is the distance resolution and BW is the bandwidth.
수학식 1에서 알 수 있듯이, 대역폭이 커지면 거리해상도가 작아져서 정밀한 거리 측정이 가능하다.As can be seen from Equation 1, as the bandwidth increases, the distance resolution decreases, thereby enabling precise distance measurement.
한편, 도 1은 79㎓의 주파수 대역을 사용하는 종래기술에 따른 레이더용 안테나의 방사 패턴을 도시한 그래프이다. On the other hand, Figure 1 is a graph showing a radiation pattern of a radar antenna according to the prior art using a frequency band of 79 kHz.
상기한 4㎓의 넓은 대역폭을 갖는 79㎓의 주파수 대역을 사용하는 경우, 도 1에 도시된 바와 같이, 77㎓ 내지 81㎓까지 중심 주파수가 변경됨에 따라, 안테나 빔의 고각 빔 특성이 0도에 고정되지 않고 좌우 방향으로 흔들리면서 편차가 발생하는 문제점이 있었다. When using the 79 kHz frequency band having a wide bandwidth of 4 kHz, as shown in FIG. 1, as the center frequency is changed from 77 kHz to 81 kHz, the elevation beam characteristic of the antenna beam is at 0 degrees. There was a problem in that a deviation occurred while shaking in the left and right directions without being fixed.
이와 같이, 넓은 대역폭을 사용하는 경우, 고각 안테나 패턴 오차가 작아야 한다. 또한, 넓은 광각 특성을 갖는 레이더용 안테나 설계는 좌우 빔폭이 넓게 설계되어야 하며, 방위각 축으로 0도를 기준으로 좌우 대칭인 특성이 필요하다. As such, when using a wide bandwidth, the elevation antenna pattern error should be small. In addition, the antenna design for a radar having a wide wide-angle characteristic should be designed with a wide left and right beam width, and a left-right symmetric characteristic based on 0 degrees as an azimuth axis.
그러나 현재 77㎓ 주파수를 사용하는 광각 안테나는 상용화되어 있으나, 주파수 대역폭이 최대 1㎓ 대역에 불과하고, 상기한 77㎓ 내지 81㎓의 광대역 특성까지 고려한 안테나는 존재하지 않았다.However, a wide-angle antenna using a frequency of 77 kHz is commercially available, but the frequency bandwidth is only a maximum of 1 kHz, and no antenna considering the above-mentioned 77 kHz to 81 kHz broadband characteristics exists.
이로 인해, 자율주행 자동차에 적용되는 첨단 운전자 지원 시스템(Advanced Driver Assistance Systems, ADAS) 중 전측방 및 후측방용으로 적용되는 77㎓ 대역의 SRR 레이더 센서는 차량 주변을 전방위적으로 넓은 영역을 탐지하기 위해, 차량에 최대 8개까지 설치해야 한다. As a result, among the advanced driver assistance systems (ADAS) applied to autonomous vehicles, the 77 ㎓ band SRR radar sensor applied for the front and rear sides detects a wide area in all directions around the vehicle. In order to do this, up to eight vehicles must be installed.
[선행기술문헌][Advanced technical literature]
(특허문헌 1) 대한민국 특허 등록번호 제10-1513878호(2015년 4월 22일 공고)(Patent Document 1) Korean Patent Registration No. 10-1513878 (announced on April 22, 2015)
(특허문헌 2) 대한민국 특허 등록번호 제10-1505044호(2015년 3월 24일 공고)(Patent Document 2) Korean Patent Registration No. 10-1505044 (announced on March 24, 2015)
(특허문헌 3) 대한민국 특허 등록번호 제10-1841685호(2018년 3월 27일 공고)(Patent Document 3) Korean Patent Registration No. 10-1841685 (announced on March 27, 2018)
본 발명의 목적은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 중심 주파수 79㎓의 주파수 대역에서 4㎓의 넓은 대역폭을 갖고, 거리 해상도를 향상시킬 수 있는 레이더용 안테나를 제공하는 것이다. An object of the present invention is to solve the above problems, to provide a radar antenna having a wide bandwidth of 4 kHz in the frequency band of the central frequency 79 kHz, and can improve the distance resolution.
본 발명의 다른 목적은 79㎓의 중심 주파수 대역을 사용하는 레이더용 안테나에서 광대역을 사용하기 위해 중심 주파수 변화에 따른 고각 빔폭(elevation beamwidth)의 좌우 편차 발생을 방지할 수 있는 레이더용 안테나를 제공하는 것이다. Another object of the present invention is to provide an antenna for a radar capable of preventing the occurrence of left and right deviations of elevation beamwidth due to a change in the center frequency in order to use a wide band in a radar antenna using a center frequency band of 79 GHz. will be.
본 발명의 또 다른 목적은 레이더 탐지 영역을 확장하기 위해 넓은 방위각 빔폭을 설계하는 경우 좌우 대칭성을 유지할 수 있는 레이더용 안테나를 제공하는 것이다.Another object of the present invention is to provide an antenna for a radar capable of maintaining symmetrical left and right when a wide azimuth beam width is designed to expand a radar detection area.
본 발명의 또 다른 목적은 차량에 설치되는 레이더의 개수를 최소화할 수 있는 레이더용 안테나를 제공하는 것이다. Another object of the present invention is to provide an antenna for a radar capable of minimizing the number of radars installed in a vehicle.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 레이더용 안테나는 일측 방향으로 신호를 방사하는 제1 어레이, 상기 제1 어레이와 반대 방향을 향해 신호를 방사하는 제2 어레이 그리고 상기 제1 및 제2 어레이에 신호를 공급하는 급전부를 포함하고, 상기 제1 어레이와 제2 어레이는 각각 서로 반대 방향을 향해 신호를 방사하도록 교차 설치되는 복수의 제1 방사체와 제2 방사체를 포함하며, 상기 제1 및 제2 방사체 비방사 방향에는 상기 제1 및 제2 방사체와 인접한 주파수에서 공진하여 광대역화를 구현하는 기생소자가 배치되는 것을 특징으로 한다.In order to achieve the above object, the antenna for radar according to the present invention includes a first array that radiates a signal in one direction, a second array that radiates a signal in a direction opposite to the first array, and the first and It includes a power supply for supplying a signal to the second array, the first array and the second array each includes a plurality of first radiators and second radiators that are cross-installed to radiate signals toward opposite directions, respectively. In the non-radiating directions of the first and second radiators, parasitic elements resonating at frequencies adjacent to the first and second radiators are arranged to implement broadband.
상술한 바와 같이, 본 발명에 따른 레이더용 안테나에 의하면, 중심 주파수 79㎓의 주파수 대역에서 4㎓의 넓은 대역폭을 갖고, 거리 해상도를 향상시킬 수 있다는 효과가 얻어진다.As described above, according to the radar antenna according to the present invention, the effect of having a wide bandwidth of 4 kHz in the frequency band of the central frequency of 79 kHz and improving the distance resolution is obtained.
그리고 본 발명에 의하면, 79㎓의 중심 주파수 대역을 사용하는 레이더용 안테나에서 다중 어레이 안테나를 설계하고, 고각 빔폭을 최소화할 수 있다는 효과가 얻어진다.In addition, according to the present invention, a multi-array antenna is designed in a radar antenna using a center frequency band of 79 kHz, and an effect that a high angle beam width can be minimized is obtained.
또, 본 발명에 의하면, 광대역을 사용하기 위한 중심 주파수 변화에 따른 고각 빔폭의 좌우 편차 발생을 방지할 수 있다는 효과가 얻어진다. In addition, according to the present invention, the effect of preventing the occurrence of left and right deviations of the high angle beam width according to the change in the center frequency for using the broadband can be obtained.
또한, 본 발명에 의하면, 레이더 탐지 영역을 확장하기 위해 넓은 방위각 빔폭을 설계하는 경우 좌우 대칭성을 유지할 수 있다는 효과가 얻어진다. In addition, according to the present invention, when designing a wide azimuth beam width to expand the radar detection area, an effect that the symmetry can be maintained can be obtained.
결과적으로, 본 발명에 의하면, 광대역 및 광각 안테나를 설계해서 적은 개수의 레이더를 이용하여 차량의 전방위(360도) 영역에 대한 표적의 탐지가 가능함에 따라, 차량에 설치되는 레이더의 개수를 최소화할 수 있다는 효과가 얻어진다.As a result, according to the present invention, by designing a wide-band and wide-angle antenna, it is possible to detect a target for an omnidirectional (360-degree) area of a vehicle using a small number of radars, thereby minimizing the number of radars installed in the vehicle. The effect that can be obtained.
도 1은 종래기술에 따른 레이더용 안테나의 방사 패턴을 도시한 그래프,1 is a graph showing a radiation pattern of a radar antenna according to the prior art,
도 2는 본 발명의 바람직한 실시 예에 따른 레이더용 안테나의 평면도, 2 is a plan view of a radar antenna according to a preferred embodiment of the present invention,
도 3은 도 2에 도시된 레이더용 안테나의 부분 확대도,3 is a partially enlarged view of the antenna for radar shown in FIG. 2,
도 4 내지 도 7은 도 2에 도시된 레이더용 안테나의 방사 패턴을 도시한 그래프, 4 to 7 is a graph showing the radiation pattern of the radar antenna shown in Figure 2,
도 8은 레이더용 안테나의 반사 손실을 도시한 그래프. 8 is a graph showing the return loss of the radar antenna.
이하 본 발명의 바람직한 실시 예에 따른 레이더용 안테나를 첨부된 도면을 참조하여 상세하게 설명한다. Hereinafter, a radar antenna according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 바람직한 실시 예에 따른 레이더용 안테나의 평면도이고, 도 3은 도 2에 도시된 레이더용 안테나의 부분 확대도이다.2 is a plan view of a radar antenna according to a preferred embodiment of the present invention, and FIG. 3 is a partially enlarged view of the radar antenna shown in FIG. 2.
이하에서는 '좌측', '우측', '전방', '후방', '상방' 및 '하방'과 같은 방향을 지시하는 용어들은 각 도면에 도시된 상태를 기준으로 각각의 방향을 지시하는 것으로 정의한다. Hereinafter, terms indicating directions such as 'left', 'right', 'front', 'rear', 'upper' and 'downward' are defined to indicate each direction based on the state illustrated in each drawing. do.
본 발명의 바람직한 실시 예에 따른 레이더용 안테나(10)는 도 2에 도시된 바와 같이, 일측 방향으로 신호를 방사하는 제1 어레이(20), 제1 어레이(20)와 반대 방향을 향해 신호를 방사하는 제2 어레이(30) 그리고 제1 및 제2 어레이(20,30)에 신호를 공급하는 급전부(40)를 포함한다. Radar antenna 10 according to a preferred embodiment of the present invention, as shown in Figure 2, the first array 20 that radiates a signal in one direction, the first array 20 and the signal toward the opposite direction It includes a second array 30 to radiate and a power supply unit 40 to supply signals to the first and second arrays 20 and 30.
제1 어레이(20)와 제2 어레이(30)는 각각 복수의 제1 방사체(21)와 제2 방사체(31)를 포함하고, 제1 및 제2 방사체(21,31)는 서로 반대 방향을 향해 신호를 방사하도록 하나의 열을 따라 교차 설치될 수 있다. The first array 20 and the second array 30 each include a plurality of first radiators 21 and second radiators 31, and the first and second radiators 21 and 31 are in opposite directions to each other. It can be cross-installed along a row to emit a signal towards.
상세하게 설명하면, 제1 어레이(20)는 하나의 직선 상에 배치되는 복수의 제1 방사체(21)를 포함하고, 제2 어레이(30)는 복수의 제1 방사체(21) 사이에 배치되는 복수의 제2 방사체(31)를 포함한다. In detail, the first array 20 includes a plurality of first radiators 21 disposed on one straight line, and the second array 30 is disposed between the plurality of first radiators 21. It includes a plurality of second radiators (31).
여기서, 제1 방사체(21)와 제2 방사체(31)는 각각 서로 반대 방향을 향해 신호를 방사하도록 대칭되게 배치될 수 있다. Here, the first radiator 21 and the second radiator 31 may be symmetrically arranged to radiate signals toward opposite directions, respectively.
그리고 각 제1 방사체(21) 사이에는 각각 제2 방사체(31)가 배치되고, 제1 및 제2 방사체(21,31)는 각각 동일한 개수로 마련될 수 있다. In addition, a second radiator 31 is disposed between each of the first radiators 21, and the first and second radiators 21 and 31 may be provided in the same number, respectively.
한편, 복수의 제1 및 제2 방사체(21,31)는 레이더용 안테나(10)의 방사 패턴(radiation pattern)을 형성한다. Meanwhile, the plurality of first and second radiators 21 and 31 form a radiation pattern of the radar antenna 10.
이러한 복수의 제1 및 제2 방사체(21,31)는 아래에서 설명할 급전부(40)의 제1 및 제2 급전선로(41,42)를 따라 배열됨에 따라, 제1 및 제2 급전선로(41,42)로부터 각 방사체(21,31)에 신호가 공급된다. As the plurality of first and second radiators 21 and 31 are arranged along the first and second feeding lines 41 and 42 of the feeding part 40 to be described below, the first and second feeding lines Signals are supplied from (41,42) to each radiator (21,31).
여기서, 복수의 방사체들은 은(Ag), 팔라듐(Pd), 백금(Pt), 구리(Gu), 금(Au), 니켈(Ni) 중 적어도 어느 하나를 포함하는 도전성 물질로 이루어질 수 있다. Here, the plurality of emitters may be made of a conductive material including at least one of silver (Ag), palladium (Pd), platinum (Pt), copper (Gu), gold (Au), and nickel (Ni).
한편, 제1 및 제2 방사체(21,31) 사이에는 도 2 및 도 3에 도시된 바와 같이, 레이더용 안테나(10)의 광대역화를 위해, 비방사 슬롯 방향, 즉 상방과 하방에 각각 기생소자(50)가 설치될 수 있다.On the other hand, between the first and second radiators 21 and 31, as shown in Figs. 2 and 3, for widebanding the antenna 10 for radar, parasitic in the non-radiating slot direction, that is, above and below, respectively. Element 50 may be installed.
기생소자(50)는 제1 방사체(21)와 제2 방사체(31) 사이 공간에 대략 사각 형상의 패턴으로 형성되고, 제1 및 제2 방사체(21,31)와 인접한 주파수에서 공진하여 광대역화를 구현하는 기능을 한다. The parasitic element 50 is formed in an approximately square pattern in the space between the first radiator 21 and the second radiator 31, and resonates at frequencies adjacent to the first and second radiators 21 and 31 to widen the band. It functions to implement.
그러나 비방사 슬롯 방향마다 기생소자를 설치하는 경우, 레이더용 안테나의 길이가 불필요하게 길어지고, 제조 비용이 증가한다. However, when parasitic elements are installed in each non-radiative slot direction, the length of the radar antenna is unnecessarily long, and manufacturing cost increases.
따라서, 본 실시 예에서 기생소자(50)는 도 3에 도시된 바와 같이, 제1 및 제2 방사체(21,31) 사이에 하나만 배치된다. Therefore, in this embodiment, only one parasitic element 50 is disposed between the first and second radiators 21 and 31, as shown in FIG. 3.
따라서 제1 및 제2 방사체(21,31)는 그 사이에 배치된 하나의 기생소자(50)를 공유한다.Therefore, the first and second radiators 21 and 31 share one parasitic element 50 disposed therebetween.
이로 인해, 본 발명은 제1 및 제2 방사체 사이에 하나의 기생소자를 배치해서 서로 공유함으로써, 레이더용 안테나의 길이를 최소화하고, 제조 비용을 절감할 수 있다. For this reason, the present invention can arrange one parasitic element between the first and second radiators and share them with each other, thereby minimizing the length of the radar antenna and reducing manufacturing cost.
이와 같이, 본 발명은 제1 및 제2 방사체 사이에 배치된 기생소자를 공유하는 방식으로 배치함에 따라, 레이더용 안테나를 설계하는 제한된 공간을 효율적으로 활용해서 안테나의 전체 길이를 최소화할 수 있다. As described above, according to the present invention, as the parasitic elements disposed between the first and second radiators are arranged in a shared manner, the limited space for designing the radar antenna can be effectively utilized to minimize the overall length of the antenna.
이러한 레이더용 안테나(10)는 높은 주파수 대역에서 성능 편차 또는 성능 열화가 발생함에 따라, 중심주파수는 79㎓로 설정되는 것이 바람직하다. The antenna 10 for the radar is preferably set to 79 kHz as the performance deviation or performance deterioration occurs in a high frequency band.
한편, 일반적으로 주 방사체와 기생소자의 가로 폭은 각 소자의 세로 길이보다 작게 설계된다. On the other hand, in general, the width of the main radiator and the parasitic element is designed to be smaller than the length of each element.
본 실시 예에서 제1 및 제2 방사체(21,31)의 폭은 광각 특성 구현을 위해 도 3에 도시된 바와 같이, 제1 및 제2 방사체(21,31)의 길이보다 작으나, 최대한 넓게 설계될 수 있다. In this embodiment, the widths of the first and second emitters 21 and 31 are smaller than the lengths of the first and second emitters 21 and 31, but designed as wide as possible, as shown in FIG. 3 to implement wide-angle characteristics. Can be.
그리고 기생소자(50)의 폭은 기생소자(50)의 길이보다 약간 크게 설계될 수 있다.Further, the width of the parasitic element 50 may be designed to be slightly larger than the length of the parasitic element 50.
또한, 광대역 특성 구현을 위해 제1 및 제2 방사체(21,31)와 기생소자(50)의 공진 주파수를 인근에 위치하도록 설계하고, 직접 급전되는 제1 및 제2 방사체(21,31)와 전자기 결합(커플링) 급전되는 기생소자(50)의 길이는 모두 약 0.5λ로 설계될 수 있다. In addition, the first and second radiators (21,31) and the resonant frequencies of the parasitic element (50) are designed to be located in the vicinity for realizing broadband characteristics, and the first and second radiators (21,31) fed directly. The length of the parasitic element 50 to which electromagnetic coupling (coupling) is fed can all be designed to be about 0.5λ.
그리고 두 소자의 공진 주파수를 이격시키기 위해, 두 소자의 길이에 차이를 주도록 설계된다. In addition, in order to separate the resonant frequencies of the two elements, it is designed to give a difference to the lengths of the two elements.
일반적으로, 패치의 공진 길이는 0.5λ이고, 두 소자의 길이는 0.4λ 내지 0.6 λ의 범위 내에서 설계될 수 있다.In general, the resonant length of the patch is 0.5λ, and the lengths of the two elements can be designed in the range of 0.4λ to 0.6λ.
다시 도 2에서, 급전부(40)는 제1 어레이(20)에 마련된 복수의 제1 방사체(21)에 신호를 공급하는 제1 급전선로(41), 제2 어레이(30)에 마련된 복수의 제2 방사체(31)에 신호를 공급하는 제2 급전선로(42) 그리고 제1 및 제2 급전선로(41,42)의 일단부와 연결되어 제1 및 제2 급전선로(41,42)에 신호를 공급하는 급전점(43)을 포함할 수 있다. In FIG. 2 again, the power supply unit 40 includes a plurality of first power supply lines 41 and second arrays 30 that supply signals to a plurality of first radiators 21 provided in the first array 20. The first and second feeding lines 41 and 42 are connected to one end of the second feeding line 42 and the first and second feeding lines 41 and 42 for supplying a signal to the second radiator 31. It may include a feed point 43 for supplying a signal.
제1 급전선로(41)는 제1 어레이(20)의 일측, 도 1에서 보았을 때 좌측에 배치되고, 제1 어레이(20)의 각 제1 방사체(21)는 각각 제1 연결라인(44)을 통해 제1 급전선로(41)와 연결될 수 있다. The first feed line 41 is disposed on one side of the first array 20, as shown in FIG. 1, and each first radiator 21 of the first array 20 is a first connection line 44, respectively. It can be connected to the first feed line 41 through.
제2 급전선로(42)는 제2 어레이(30)의 일측, 도 1에서 보았을 때 우측에 배치되고, 제2 어레이(30)의 각 제2 방사체(31)는 각각 제2 연결라인(45)을 통해 제2 급전선로(42)와 연결될 수 있다. The second feed line 42 is disposed on one side of the second array 30, as shown in FIG. 1, and each second radiator 31 of the second array 30 is respectively a second connection line 45. It can be connected to the second feed line 42 through.
한편, 본 실시 예에 따른 레이더용 안테나(10)는 제1 및 제2 방사체(21,31)를 교차 배치함에 따라, 단일 안테나에서의 광각 방향, 즉 방위각 방향으로의 방사 패턴이 비대칭이다.On the other hand, in the radar antenna 10 according to the present embodiment, as the first and second radiators 21 and 31 are alternately disposed, the radiation pattern in the wide-angle direction, that is, the azimuth direction, of the single antenna is asymmetric.
즉, 제1 및 제2 방사체(21,31)를 기준으로 일측에 급전선로가 배치되는 경우에는 방위각 빔폭이 0도를 기준으로 비대칭이 발생한다.That is, when a feed line is arranged on one side based on the first and second radiators 21 and 31, asymmetry occurs based on the azimuth beam width of 0 degrees.
그래서 본 실시 예에서는 제1 및 제2 방사체(21,31)의 양측에 제1 및 제2 급전선로(41,42)를 배치하고, 제1 및 제2 연결라인(44,45)을 통해 지그재그 급전회로를 구현한다. So, in this embodiment, the first and second feeding lines 41 and 42 are arranged on both sides of the first and second radiators 21 and 31, and the zigzag is provided through the first and second connecting lines 44 and 45. Implement the power supply circuit.
이와 같이, 본 발명은 비대칭 구조를 갖는 제1 및 제2 어레이의 좌우측에서 급전하는 구조를 적용함에 따라, 방사각 방향 빔패턴의 비대칭을 제거할 수 있다. As described above, the present invention can eliminate the asymmetry of the beam pattern in the radial direction by applying the structures feeding from the left and right sides of the first and second arrays having asymmetric structures.
그리고 제1 급전선로(41)와 제2 급전선로(42)의 상단에는 각각 제1 및 제2 스터브(46,47)가 상방으로 연장 형성될 수 있다. In addition, first and second stubs 46 and 47 may be formed to extend upward at the upper ends of the first feed line 41 and the second feed line 42, respectively.
제1 및 제2 스터브(46,47)는 제1 및 제2 어레이(20,30)에 공급되는 전력을 감소시켜 사이드 로브를 억제하는 효과를 제공할 수 있다. The first and second stubs 46 and 47 may provide an effect of suppressing side lobes by reducing power supplied to the first and second arrays 20 and 30.
이와 함께, 제1 및 제2 스터브(46,47)는 제1 및 제2 어레이(2,30)에 공급되는 전력비를 조절하는데 도움을 줄 수 있다. Along with this, the first and second stubs 46, 47 can help regulate the power ratio supplied to the first and second arrays 2, 30.
예를 들어, 제1 및 제2 스터브(46,47)의 길이는 중심 주파수의 0.25λ로 설계될 수 있다. For example, the lengths of the first and second stubs 46 and 47 can be designed to be 0.25λ of the center frequency.
그리고 본 실시 예에서 방사각 빔폭의 광각 좌우 대칭을 위해 지그재그로 급전 회로를 설계하고, 각 패치에 급전되는 신호의 위상이 같아야 하기 때문에, 제1 및 제2 급전선로(41,42)의 길이는 λ의 배수로 설계될 수 있다. And in this embodiment, since the feeding circuit is designed in a zigzag manner for wide-angle lateral symmetry of the radial beam width, and the phases of signals fed to each patch must be the same, the lengths of the first and second feeding lines 41 and 42 are It can be designed in multiples of λ.
한편, 급전점(43)과 제1 및 제2 급전선로(41,42)는 제1 및 제2 분기라인(48,49)에 의해 연결될 수 있다. Meanwhile, the feed points 43 and the first and second feed lines 41 and 42 may be connected by first and second branch lines 48 and 49.
제1 및 제2 분기라인(48,49)은 각각 급전점(43)을 중심으로 제1 및 제2 급전선로(41,42) 하단을 향해 경사지게 배치되는 사선 구조로 마련될 수 있다. The first and second branch lines 48 and 49 may be provided in a diagonal structure that is inclined toward the lower ends of the first and second feed lines 41 and 42 with respect to the feed points 43, respectively.
이와 같이, 본 발명은 제1 및 제2 분기라인을 사선 구조로 배치함에 따라, 급전부 하단의 가로 영역을 최소화하여 고각 방향, 즉 상하 방향의 빔 중심을 수직으로 맞출 수 있게 하며, 고각 빔의 피크를 0도로 조절하고, 광대역 신호의 사이드 로브 레벨을 최소화할 수 있다. As described above, according to the present invention, as the first and second branch lines are arranged in a diagonal structure, the horizontal area at the bottom of the feeding part is minimized, so that the center of the beam in the elevation direction, that is, the vertical direction, can be vertically aligned. The peak can be adjusted to 0 degrees and the side lobe level of the broadband signal can be minimized.
한편, 일반적으로 안테나 설계시에는 특정 중심 주파수를 선택해서 설계한다. Meanwhile, when designing an antenna, a specific center frequency is selected and designed.
그래서 본 실시 예에서 설명하는 79㎓ 대역과 같이 광대역인 경우, 중심 주파수를 79㎓로 선정하여 설계하고, 시뮬레이션을 통해 77㎓ 내지 81㎓까지 중심주파수를 가변하여 검증한다. Therefore, in the case of a wide band such as the 79 kHz band described in this embodiment, the center frequency is selected as 79 kHz and designed, and the center frequency is varied and verified from 77 kHz to 81 kHz through simulation.
도 4 내지 도 8을 참조하여 본 발명의 바람직한 실시 예에 따른 레이더용 안테나의 시뮬레이션 점검 결과를 설명한다. The simulation check results of the radar antenna according to the preferred embodiment of the present invention will be described with reference to FIGS. 4 to 8.
도 4 내지 도 7은 도 2에 도시된 레이더용 안테나의 방사 패턴을 도시한 그래프이고, 도 8는 레이더용 안테나의 반사 손실을 도시한 그래프이다. 4 to 7 is a graph showing the radiation pattern of the radar antenna shown in Figure 2, Figure 8 is a graph showing the return loss of the radar antenna.
도 4 내지 도 7에는 각각 77㎓ 내지 80㎓에서의 전력과 각도에 따른 안테나 이득 그래프가 도시되어 있다. 4 to 7 show antenna gain graphs according to power and angles at 77 Hz to 80 Hz, respectively.
도 4 내지 도 7에 도시된 바와 같이, 본 실시 예에 따른 레이더용 안테나(10)는 77㎓ 내지 80㎓의 전 대역에서 사이드 로브의 레벨을 -10dB 이하로 억제해서 메인 로브와 사이드 로브의 레벨 차를 약 20dB 이상으로 유지함을 확인할 수 있다. 4 to 7, the radar antenna 10 according to the present embodiment suppresses the level of the side lobe to less than -10 dB in all bands of 77 Hz to 80 Hz, thereby reducing the level of the main lobe and the side lobe. It can be seen that the difference is maintained at about 20 dB or more.
그리고 본 실시 예에 따른 레이더용 안테나(10)는 도 8에 도시된 바와 같이, 급전선로의 영향으로 77㎓ 내지 81㎓의 전 대역에서 S11= -10dB 이하를 만족함을 확인할 수 있다. And it can be seen that the radar antenna 10 according to the present embodiment satisfies S11 = -10 dB or less in all bands of 77 ㎓ to 81 으로 due to the influence of the power supply line, as shown in FIG. 8.
따라서 본 발명은 77㎓ 내지 81㎓의 넓은 대역폭에 대해 S11= -10dB 이하를 만족시켜 송신 안테나를 통해 송신 신호를 효과적으로 전파할 수 있다. Therefore, the present invention can effectively propagate a transmission signal through a transmission antenna by satisfying S11 = -10 dB or less for a wide bandwidth of 77 kHz to 81 kHz.
상기한 바와 같은 과정을 통하여, 본 발명은 중심 주파수 79㎓의 주파수 대역에서 4㎓의 넓은 대역폭을 갖고, 거리 해상도를 향상시킬 수 있다.Through the above-described process, the present invention has a wide bandwidth of 4 kHz in the frequency band of the central frequency of 79 kHz and can improve the distance resolution.
그리고 본 발명은 79㎓의 중심 주파수 대역을 사용하는 레이더용 안테나에서 다중 어레이 안테나를 설계하고, 고각 빔폭을 최소화할 수 있다. In addition, the present invention can design a multi-array antenna in a radar antenna using a center frequency band of 79 GHz and minimize a high angle beam width.
또, 본 발명은 광대역을 사용하기 위한 중심 주파수 변화에 따른 고각 빔폭의 좌우 편차 발생을 방지할 수 있다. In addition, the present invention can prevent the occurrence of left and right deviation of the elevation beam width according to the change in the center frequency for using the broadband.
또한, 본 발명은 레이더 탐지 영역을 확장하기 위해 넓은 방위각 빔폭을 설계하는 경우 좌우 대칭성을 유지할 수 있다. In addition, the present invention can maintain left and right symmetry when a wide azimuth beam width is designed to expand a radar detection area.
이와 같이, 본 발명은 광대역 및 광각 안테나를 설계해서 적은 개수의 레이더를 이용하여 차량의 전방위(360도) 영역에 대한 표적의 탐지가 가능함에 따라, 차량에 설치되는 레이더의 개수를 최소화할 수 있다.As described above, according to the present invention, the number of radars installed in the vehicle can be minimized by designing a wide-band and wide-angle antenna and detecting targets in an omnidirectional (360-degree) area of the vehicle using a small number of radars. .
이상 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고, 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다.Although the invention made by the present inventors has been described in detail according to the above-described embodiments, the present invention is not limited to the above-described embodiments, and it is needless to say that the invention can be changed in various ways without departing from its gist.
본 발명은 넓은 대역폭을 갖는 광대역 및 광각 특성을 갖는 레이더용 안테나 기술에 적용된다.The present invention is applied to antenna technology for radar having wide bandwidth and wide angle characteristics with a wide bandwidth.
Claims (2)
- 일측 방향으로 신호를 방사하는 복수의 제1 방사체를 포함하는 제1 어레이, A first array including a plurality of first radiators that emit a signal in one direction,상기 제1 어레이와 반대 방향을 향해 신호를 방사하는 복수의 제2 방사체를 포함하는 제2 어레이, A second array comprising a plurality of second radiators that emit a signal in a direction opposite to the first array,상기 제1 및 제2 어레이에 신호를 공급하는 급전부 및 A power supply for supplying signals to the first and second arrays, and상기 제1 및 제2 방사체의 비방사 방향에 배치되는 기생소자를 포함하고, And parasitic elements disposed in non-radiating directions of the first and second radiators,상기 제1 및 제1 방사체는 각각 서로 반대 방향을 향해 신호를 방사하도록 하나의 열을 따라 교차 설치되며,The first and the first radiators are cross-installed along a row to radiate signals in opposite directions, respectively,상기 기생소자는 상기 제1 및 제2 방사체와 인접한 주파수에서 공진하여 광대역화를 구현하고, 상기 제1 및 제2 방사체가 공유하도록, 상기 제1 및 제2 방사체 사이에 하나씩 배치되며,The parasitic elements resonate at frequencies adjacent to the first and second radiators to implement broadband, and are disposed one by one between the first and second radiators so that the first and second radiators are shared,상기 급전부는 상기 제1 어레이에 마련된 복수의 제1 방사체에 신호를 공급하는 제1 급전선로, The feeding unit is a first feeding line for supplying a signal to a plurality of first radiators provided in the first array,상기 제2 어레이에 마련된 복수의 제2 방사체에 신호를 공급하는 제2 급전선로 그리고 A second feed line for supplying signals to a plurality of second radiators provided in the second array, and상기 제1 및 제2 급전선로의 일단부와 연결되어 상기 제1 및 제2 급전선로에 신호를 공급하는 급전점을 포함하고,And a feeding point connected to one end of the first and second feeding lines to supply signals to the first and second feeding lines,상기 제1 및 제2 방사체는 각각 상기 제1 및 제2 급전선로로부터 제1 및 제2 연결라인을 통해 연결되는 지그재그 급전 구조를 통해 신호를 공급받으며,The first and second radiators receive signals from the first and second feeding lines through a zigzag feeding structure connected through first and second connecting lines, respectively.상기 제1 및 제2 급전선로의 상단에는 각각 상기 제1 및 제2 어레이에 공급되는 전력을 감소시켜 사이드 로브를 억제하는 제1 및 제2 스터브가 연장 형성되는 것을 특징으로 하는 레이더용 안테나.Radar antenna, characterized in that the first and second stubs to reduce the power supplied to the first and second array to suppress the side lobes, respectively, are formed at the upper ends of the first and second feed lines.
- 제1항에 있어서, According to claim 1,상기 급전점과 제1 및 제2 급전선로는 제1 및 제2 분기라인에 의해 연결되고, The feed point and the first and second feed lines are connected by first and second branch lines,상기 제1 및 제2 분기라인은 각각 상기 급전점을 중심으로 상기 제1 및 제2 급전선로 하단을 향해 경사지게 배치되는 사선 구조로 마련되는 것을 특징으로 하는 레이더용 안테나.Each of the first and second branch lines is a radar antenna, characterized in that it is provided with a diagonal structure that is inclined toward the bottom of the first and second feeder lines with respect to the feed point, respectively.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0128436 | 2018-10-25 | ||
KR1020180128436A KR101963384B1 (en) | 2018-10-25 | 2018-10-25 | Antenna for radar |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085656A1 true WO2020085656A1 (en) | 2020-04-30 |
Family
ID=67511978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/012186 WO2020085656A1 (en) | 2018-10-25 | 2019-09-20 | Antenna for radar |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101963384B1 (en) |
WO (1) | WO2020085656A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101963384B1 (en) * | 2018-10-25 | 2019-07-19 | (주)디지탈엣지 | Antenna for radar |
CN113517560B (en) * | 2021-03-25 | 2023-05-23 | 西安电子科技大学 | Millimeter wave array antenna capable of scanning at wide angle |
KR20230141352A (en) * | 2022-03-31 | 2023-10-10 | 엘지이노텍 주식회사 | Radar module, radar device and detecting system for vehicle |
KR102722676B1 (en) * | 2022-12-21 | 2024-10-25 | 포항공과대학교 산학협력단 | Multi-band radiator module |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006109425A (en) * | 2004-09-08 | 2006-04-20 | Nagoya Institute Of Technology | Microstrip array antenna |
JP3782278B2 (en) * | 2000-03-06 | 2006-06-07 | 独立行政法人科学技術振興機構 | Beam width control method of dual-polarized antenna |
US20160013549A1 (en) * | 2013-01-09 | 2016-01-14 | Hrl Laboratories Llc | Reconfigurable electromagnetic surface of pixelated metal patches |
KR20160084880A (en) * | 2015-01-06 | 2016-07-15 | 블루웨이브텔(주) | Microstrip patch array radar antenna for heavy equipment vehicle |
KR20170094741A (en) * | 2016-02-11 | 2017-08-21 | (주)탑중앙연구소 | Patch antenna for narrow band antenna module and narrow band antenna module comprising the same |
KR101963384B1 (en) * | 2018-10-25 | 2019-07-19 | (주)디지탈엣지 | Antenna for radar |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101505044B1 (en) | 2014-02-28 | 2015-03-24 | (주)디지탈엣지 | Radar apparatus and blind zone rejection method thereof |
KR101513878B1 (en) | 2014-03-19 | 2015-04-22 | (주)디지탈엣지 | Radar apparatus, collision avoidance and accident recode method thereof |
KR101841685B1 (en) | 2017-10-23 | 2018-03-27 | 최수호 | Antenna for radar |
-
2018
- 2018-10-25 KR KR1020180128436A patent/KR101963384B1/en active
-
2019
- 2019-09-20 WO PCT/KR2019/012186 patent/WO2020085656A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3782278B2 (en) * | 2000-03-06 | 2006-06-07 | 独立行政法人科学技術振興機構 | Beam width control method of dual-polarized antenna |
JP2006109425A (en) * | 2004-09-08 | 2006-04-20 | Nagoya Institute Of Technology | Microstrip array antenna |
US20160013549A1 (en) * | 2013-01-09 | 2016-01-14 | Hrl Laboratories Llc | Reconfigurable electromagnetic surface of pixelated metal patches |
KR20160084880A (en) * | 2015-01-06 | 2016-07-15 | 블루웨이브텔(주) | Microstrip patch array radar antenna for heavy equipment vehicle |
KR20170094741A (en) * | 2016-02-11 | 2017-08-21 | (주)탑중앙연구소 | Patch antenna for narrow band antenna module and narrow band antenna module comprising the same |
KR101963384B1 (en) * | 2018-10-25 | 2019-07-19 | (주)디지탈엣지 | Antenna for radar |
Also Published As
Publication number | Publication date |
---|---|
KR101963384B1 (en) | 2019-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020085656A1 (en) | Antenna for radar | |
EP0565051B1 (en) | Wideband arrayable planar radiator | |
US20170201024A1 (en) | Radar array antenna | |
WO2012161512A2 (en) | Radar array antenna using open stubs | |
CN111755819B (en) | Inverted microstrip traveling wave patch array antenna system | |
WO2014080951A1 (en) | Array antenna device | |
JP3467990B2 (en) | Millimeter wave planar antenna | |
CN101103491A (en) | Linearly polarized antenna and radar apparatus using the same | |
KR20170036350A (en) | Antenna apparatus and automotive radar apparatus having the same | |
JPH08181537A (en) | Microwave antenna | |
US5017931A (en) | Interleaved center and edge-fed comb arrays | |
CN110224224B (en) | Wide-beam 77GHz millimeter wave vehicle-mounted radar antenna | |
CN113823891B (en) | Antenna module, millimeter wave radar and vehicle | |
CN111755832A (en) | Integrated cavity-backed slot array antenna system | |
WO2019039517A1 (en) | Radar device | |
CN212934860U (en) | Array antenna for millimeter wave radar sensor | |
US4485385A (en) | Broadband diamond-shaped antenna | |
WO2023138110A1 (en) | Antenna, radar, and antenna adjustment method | |
JPH09162626A (en) | Plane array antenna and monopulse radar equipment | |
CN214477884U (en) | Dual-polarized antenna, dual-polarized array antenna and radar system | |
CN212366213U (en) | High-gain millimeter wave high-sensitivity array antenna | |
EP0542447B1 (en) | Flat plate antenna | |
CN113725600A (en) | MIMO array antenna for millimeter wave automobile radar | |
CN112103667A (en) | Array antenna for automobile radar sensor | |
WO2021072630A1 (en) | Antenna array, radar, and movable platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19875827 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19875827 Country of ref document: EP Kind code of ref document: A1 |