WO2020085204A1 - 光学素子および光学装置 - Google Patents
光学素子および光学装置 Download PDFInfo
- Publication number
- WO2020085204A1 WO2020085204A1 PCT/JP2019/040939 JP2019040939W WO2020085204A1 WO 2020085204 A1 WO2020085204 A1 WO 2020085204A1 JP 2019040939 W JP2019040939 W JP 2019040939W WO 2020085204 A1 WO2020085204 A1 WO 2020085204A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- optical element
- phosphor layer
- phosphor
- wheel
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/40—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
- F21V9/45—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/321—Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S45/00—Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
- F21S45/40—Cooling of lighting devices
- F21S45/47—Passive cooling, e.g. using fins, thermal conductive elements or openings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V13/00—Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
- F21V13/02—Combinations of only two kinds of elements
- F21V13/08—Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/30—Elements containing photoluminescent material distinct from or spaced from the light source
- F21V9/32—Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/007—Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
- G02B26/008—Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/16—Laser light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/176—Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
- G03B21/204—LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
Definitions
- the present invention relates to an optical device.
- the present application claims priority based on Japanese Patent Application No. 2018-198686 filed on Oct. 22, 2018 in Japan, the contents of which are incorporated herein by reference.
- Patent Document 1 describes a phosphor wheel including a base material and a phosphor layer formed on the base material.
- the phosphor layer has phosphor particles and a binder material that holds the phosphor particles, and is covered with a low refractive index layer composed of a light-transmitting material having a lower refractive index than the phosphor particles.
- One aspect of the present invention is to achieve improvement in durability while having adhesiveness with a substrate.
- the optical element a phosphor layer disposed facing the lower layer, and an adhesion layer that adheres the phosphor layer to the lower layer
- the phosphor layer includes an inorganic binder and phosphor particles dispersed in the inorganic binder
- the adhesion layer includes an organic binder
- the phosphor layer has a first surface facing the lower layer. Surface, a second surface that faces the first surface, and a side surface that connects the first surface and the second surface, and the adhesion layer has the second surface. And connecting the side surface to the surface of the lower layer to bring the phosphor layer into close contact with the lower layer.
- FIG. 3 is a perspective view showing the configuration of the optical element according to the first embodiment of the present invention.
- FIG. 3 is a cross-sectional view taken along the line A-A ′ showing the configuration of the optical element according to the first exemplary embodiment of the present invention.
- FIG. 9 is a B-B ′ cross-sectional view showing the configuration of the optical element according to the second embodiment of the present invention. It is sectional drawing which shows the structure of the modification of the optical element which concerns on Embodiment 2 of this invention.
- FIG. 1 shows the configuration of a general optical element 10.
- the structure in which the phosphor layer 12 is arranged facing the substrate 11 is general.
- the phosphor layer 12 is irradiated with the excitation light 14 emitted from the light source 13, and the phosphor layer 12 emits fluorescence.
- the phosphor layer 12 is generally composed of phosphor particles and an organic binder. Although the organic binder has high adhesion, it has a low thermal conductivity. Therefore, when the fluorescent substance is made to emit light by a blue laser or the like, there is a problem that the fluorescent substance is burned by heat and a desired fluorescence emission intensity cannot be obtained. That is, it is necessary to study the temperature dependence of the luminous efficiency of the phosphor.
- Q A ⁇ ⁇ ⁇ ⁇ (T A ⁇ 4-T B ⁇ 4)
- Q is the amount of radiant heat
- A is the area of the radiating part
- ⁇ is the emissivity
- ⁇ is the Stefan-Boltzmann constant
- T A is the temperature of the radiating part
- T B is the ambient temperature.
- the luminous efficiency of the phosphor is affected by the temperature of the phosphor, and as shown in FIG. 2, the luminous efficiency decreases as the temperature increases.
- the temperature characteristic of the phosphor changes depending on the concentration of the emission center element (Ce in this embodiment).
- Ce concentration of the YAG Ce phosphor that is generally commercially available, a concentration having a high luminous efficiency at room temperature (for example, about 1.4 to 1.5 mol%) is often used. This is because the YAG phosphor having a low Ce concentration has a high internal quantum efficiency, but since the absorptance of excitation light is low, the external quantum efficiency important as a wavelength conversion element has an optimum value near a Ce concentration of 1.5 mol%. This is because In the case where the temperature of the phosphor of the irradiation spot exceeds 250 ° C.
- the luminous efficiency of the general YAG: Ce phosphor decreases. (See FIG. 2).
- the YAG: Ce phosphor having a low Ce concentration has a small temperature dependence of the light emission efficiency, and the light emission efficiency is reversed to that of a high concentration light emitter as compared with the low temperature.
- the low temperature region 50 ° C. to 100 ° C.
- the high temperature region 250 ° C. to 350 ° C.
- Excitation with laser light increases the excitation energy density and raises the temperature, so it is desirable to use an oxynitride-based or nitride-based phosphor with high heat resistance. It is more desirable that the phosphor has excellent temperature dependence of luminous efficiency. Further, since the light is used as a light source device, the fluorescence may be other than white light such as blue, green and red.
- CaAlSiN 3 : Eu 2+ can be used as a phosphor that converts near-ultraviolet light into red light.
- a phosphor that converts near-ultraviolet light into yellow light for example, Ca- ⁇ -SiAlON: Eu 2+ can be used.
- a phosphor that converts near-ultraviolet light into green light for example, ⁇ -SiAlON: Eu 2+ or Lu 3 Al 5 O 12 : Ce 3+ (LuAG: Ce) can be used.
- a phosphor that converts near-ultraviolet light to blue light for example (Sr, Ca, Ba, Mg ) 10 (PO 4) 6 C 12: Eu or BaMgAl 10 O 17: Eu 2+, (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ can be used.
- the fluorescent member may be formed so as to include two types of fluorescent substances that convert excitation light of near-ultraviolet light into yellow light and blue light.
- the pseudo white light is obtained by mixing the yellow light and the blue light emitted from the fluorescent member.
- Embodiments 1 to 8 an optical element according to an embodiment of the present invention will be described as Embodiments 1 to 8 by taking an optical element and a fluorescent wheel provided on a substrate as an example.
- FIG. 3A is a perspective view showing the configuration of the optical element 101a according to the first embodiment of the present invention.
- the coordinate axes are defined with the main surface of the substrate 11 as the xy plane.
- FIG. 3B is an AA ′ cross-sectional view (xz plane) showing the configuration of the optical element 101a according to the first embodiment of the present invention.
- the optical element 101a according to the present embodiment unlike the configuration of the general optical element 10 shown in FIG. 1, further includes an adhesion layer.
- the optical element 101a includes a phosphor layer 31a arranged to face the substrate 11, and an adhesion layer 32a for adhering the phosphor layer 31a to the substrate 11.
- An aluminum substrate can be used as the substrate 11.
- a highly reflective film such as silver is coated on the aluminum substrate.
- highly reflective alumina substrates, white scattering reflective substrates, etc. may be used.
- the material of the substrate 11 is preferably a material such as metal having a higher thermal conductivity than the phosphor layer 31a and the adhesion layer 32a, and is not particularly limited to the above-mentioned materials.
- the lower layer is preferably composed of one or more layers including the substrate.
- the layer other than the lower layer substrate include a scattering layer and the like.
- the scattering layer preferably contains titanium oxide as a main component.
- the lower layer is not limited to the plate-shaped one, and may be any base material having a shape on which the phosphor layer 31a can be arranged.
- the phosphor layer 31a includes a first binder (inorganic binder) containing an inorganic compound, and phosphor particles dispersed in the first binder.
- the phosphor layer 31a has a first surface facing the substrate 11, a second surface facing the first surface, and a side surface connecting the first surface and the second surface. There is.
- the phosphor layer 31a When the phosphor layer 31a is irradiated with the excitation light 14 emitted from the light source 13 including, for example, a laser or an LED, the phosphor particles emit fluorescence and emit heat.
- the thermal conductivity of the phosphor layer 31a becomes high. Since the thermal conductivity of the phosphor layer 31a is high, the efficiency of conducting the heat emitted from the phosphor particles to the substrate 11 can be increased, and therefore, the phosphor layer 31a can be prevented from being burned by heat.
- the inorganic binder (first binder) is a binder whose main component is an inorganic compound.
- the skeleton of the inorganic binder is preferably made of an inorganic material.
- the inorganic binder can be composed of, for example, a sintered body of inorganic particles.
- the inorganic binder is preferably composed of a sintered body of a translucent inorganic material such as alumina or silica.
- the first binder may or may not include voids.
- the ratio of the phosphor particles in the phosphor layer 31a is preferably about 50% by volume to 75% by volume with respect to the phosphor layer 31a.
- the average particle diameter D 50 of the phosphor particles is preferably about 10 ⁇ m to 30 ⁇ m.
- the phosphor particles are preferably Ce-doped YAG phosphors.
- the thickness of the phosphor layer 31a is preferably 20 ⁇ m to 100 ⁇ m.
- the adhesion layer 32a is composed of a second binder containing an organic compound.
- the adhesion layer 32a connects the second surface of the phosphor layer 31a and the surface of the substrate 11 to bring the phosphor layer 31a into close contact with the substrate 11, which is a lower layer. From the viewpoint of further enhancing the adhesion to the substrate 11, it is preferable that the adhesion layer 32a covers the phosphor layer 31a so as to face the entire region of the second surface and the entire region of the side surface.
- the organic binder (second binder) is a binder whose main component is an organic compound.
- the skeleton of the organic binder is preferably made of an organic material.
- the organic binder preferably contains, for example, a resin forming a skeleton.
- the organic compound contained in the second binder (organic binder) is preferably a transparent organic compound such as a silicone resin.
- the distance in the thickness direction of the uppermost part of the adhesive layer 32a from the second surface of the phosphor layer 31a is preferably 1 ⁇ m to 10 ⁇ m.
- the distance from the contact point between the side surface of the phosphor layer 31a and the substrate 11 to the outermost end of the adhesive layer 32a is preferably 10 ⁇ m to 20 ⁇ m. Accordingly, the phosphor layer 31a can be sufficiently adhered to the substrate 11.
- FIG. 4A is a perspective view showing the configuration of the optical element 101b according to the second embodiment of the present invention.
- FIG. 4B is a BB ′ cross-sectional view (xz plane) showing the configuration of the optical element 101b according to the second embodiment of the present invention.
- 4C to 4E are cross-sectional views (xz plane) showing configurations of optical elements 101c to 101e according to a modification of the optical element according to the second embodiment of the present invention.
- FIG. 4F is a perspective view showing a configuration of an optical element 101f according to a modified example of the optical element according to the second exemplary embodiment of the present invention.
- the wavelength conversion section 30b of the optical element 101b according to the present embodiment is different from the adhesion layer 32a of the wavelength conversion section 30a of the optical element 101a according to the first embodiment of the present invention in the substrate 11 (lower layer) and the adhesion layer 32b.
- the shape of the outer surface that is not in close contact with the phosphor layer 31a is different, and the outer surface has a convex curved surface shape. With this configuration, the excitation light incident from the outer surface of the adhesion layer 32b is condensed on the phosphor layer 31a. Therefore, when the width of the excitation light is the same, the outer surface of the adhesion layer 32b is flat. The irradiation spot can be made smaller than that of.
- the emission brightness can be improved as compared with the case where the outer surface of the adhesion layer 32b is flat. Further, compared with the case where the outer surface of the adhesion layer 32b is flat, the light totally reflected on the outer surface of the adhesion layer 32b can be reduced. Thereby, the fluorescence emitted to the outside of the optical element 101b can be increased. Further, when the fluorescence emitted by the phosphor layer 31a is emitted from the adhesion layer 32b of the wavelength conversion unit 30b, the fluorescence is refracted in a direction in which the angle with respect to the z-axis direction becomes smaller. The light emission brightness of is improved.
- a cross section (xz plane) is a semi-elliptical arc like the adhesive layer 32b of the wavelength conversion unit 30b shown in FIG. 4B, or a semi-ellipse like the adhesive layer 32c of the wavelength conversion unit 30c shown in FIG. 4C.
- the shape may be a convex curve. Further, it may have a convex curved surface shape having in-plane anisotropy like the adhesive layer 32f of the wavelength conversion section 30f shown in FIG. 4F.
- the raw material of the adhesion layer 32b preferably has a viscosity that allows the outer surface of the adhesion layer 32b to have a convex curved surface shape.
- the viscosity of the raw material of the adhesion layer 32b is preferably 1000 mPa ⁇ s to 10000 Pa ⁇ s at 23 ° C.
- FIG. 5A is a plan view showing the configuration of the optical element according to the third embodiment of the present invention.
- 5B to 5D are plan views showing the configuration of the modification according to the third embodiment of the present invention.
- the wavelength conversion parts 40a to 40d of the high-power optical elements 101g to 101j according to the present embodiment are different from the wavelength conversion part 30b of the optical element 101b according to the second embodiment of the present invention in the phosphor layer 31a and the adhesion layer 32b.
- low refractive index bodies 33a to 33d are further provided.
- the wavelength converters 40a to 40d include low refractive index bodies 33a to 33d having a lower refractive index than the adhesion layer 32b.
- the “excitation light irradiation spot” means the surface of the outer surface of the adhesion layer 32b which is irradiated with the excitation light 14.
- the “excitation light irradiation region” means a region in the adhesion layer 32b to which the excitation light 14 is irradiated. That is, the “excitation light irradiation region” means the region from the excitation light irradiation spot to the surface of the contact surface between the adhesion layer 32b and the phosphor layer 31a which is irradiated with the excitation light 14.
- the wavelength conversion section includes a low refractive index body arranged in place of the phosphor layer and the adhesion layer in at least a part of the thickness direction. Further, it is more preferable that the height of the low refractive index body arranged in place of the phosphor layer and the adhesion layer is lower than the height of the laminated layer with the substitute phosphor layer and the adhesion layer.
- the shape of the low refractive index body when the optical element is viewed from the z-axis direction for example, a dot shape shown in FIG. 5A, a slit shape shown in FIG. 5B, and a shape surrounding the outer circumference of the phosphor layer 31a shown in FIG. 5C.
- the low refractive index bodies 33a to 33d are preferably made of air. With this structure, a high-power optical element can be manufactured at a lower cost.
- FIG. 6A is a perspective view showing the configuration of an optical element 101k according to Embodiment 4 of the present invention.
- the coordinate axes are defined with the main surface of the substrate 11 as the xy plane.
- FIG. 6B is a CC ′ cross-sectional view (xz plane) showing the configuration of the optical element 101k according to the fourth embodiment of the present invention.
- the optical element 101k according to this embodiment differs from the optical element 101a shown in FIG. 3 in the configuration of the adhesion layer.
- the optical element 101k includes a phosphor layer 31a arranged to face the substrate 11, and an adhesion layer 32g that adheres the phosphor layer 31a to the substrate 11.
- the wavelength conversion unit 50a including The adhesion layer 32g connects the second surface of the phosphor layer 31a, the side surface of the phosphor layer 31a, and the surface of the substrate 11 to bring the phosphor layer 31a into close contact with the substrate 11. And in this embodiment, a part of 2nd surface is exposed from 32 g of adhesion layers.
- the organic binder since the second surface of the phosphor layer 31a is partially exposed, the organic binder does not exist in the region irradiated with the excitation light 14, that is, the heating portion of the phosphor layer 31a. Since the organic binder is separated from the organic binder, even when the wavelength conversion unit 50a is irradiated with the excitation light 14 having a high energy density and a high intensity from the light source 13 including, for example, a laser or an LED, the phosphor layer 31a is burned by heat. Can be prevented more reliably.
- the light emitted from the phosphor layer 31a does not go out through the organic binder and is not guided in the organic binder, it is possible to obtain the effect of suppressing the luminance decrease due to the expansion of the light emission spot size.
- FIG. 7A is a plan view (xy plane) showing the configuration of the fluorescent wheel 102a as the optical element according to the fifth embodiment of the present invention.
- FIG. 7B is a side view (xz plane) showing the configuration of the fluorescent wheel 102a according to the fifth embodiment of the present invention.
- the lower layer of the wavelength conversion unit 148a is the wheel 141a.
- the wavelength conversion unit 148a is configured to include the phosphor layer 31b and the adhesion layer 32h.
- the fluorescent wheel 102a is fixed to a rotating shaft 147 of a driving device (not shown) by a wheel fixing member 146.
- the outer surface in the radial cross section of the fluorescent wheel 102a is the z-axis direction like the adhesion layers 32b to 30f in the optical element 101b according to the second embodiment (see FIGS. 4A and 4B).
- the adhesive layer 32h having a convex curved surface shape is provided on the outer surface of the optical element 101a according to the first embodiment (see FIGS. 3A and 3B) instead of the adhesive layer 32h. It may have a non-shaped adhesion layer. Further, both an adhesive layer having an outer surface which is not curved and an adhesive layer having an outer surface having a convex curved surface may be provided. The same applies to Embodiments 7 to 12 described later.
- the wavelength conversion unit 148a may be arranged at least at a part of the surface of the wheel 141a in the circumferential direction through which the excitation light emitted from the light source passes, and as shown in FIG.
- the 148a is preferably arranged concentrically on the wheel 141a.
- FIG. 8A is a plan view (xy plane) showing a configuration of a fluorescent wheel 102b as an optical element according to Embodiment 6 of the present invention.
- FIG. 8B is a side view (xz plane) showing the configuration of the fluorescent wheel 102b according to the sixth embodiment of the present invention.
- the wavelength conversion unit 148b is configured to include the fluorescent material layer 31c and the adhesion layer 32i.
- the fluorescent wheel 102b according to the present embodiment is similar to the adhesive layer 32g in the optical element 101k (see FIGS. 6A and 6B) according to the fourth embodiment in the radial cross section of the fluorescent wheel 102b. Part of the surface 2 is exposed from the adhesion layer 32i.
- FIG. 9A is a plan view (xy plane) showing a configuration of a fluorescent wheel 102c as an optical element according to a seventh embodiment of the present invention.
- FIG. 9B is a side view (xz plane) showing the configuration of the fluorescent wheel 102c according to the seventh embodiment of the present invention.
- FIG. 9C is a side view of the substrate 141 and the phosphor layer 31d for explaining the stress applied to the substrate (metal substrate) 141 that constitutes the wheel 141a of the fluorescent wheel 102c according to the seventh embodiment of the present invention.
- the phosphor layer 31d is applied to the substrate 141 and then baked to be formed into an arbitrary shape. Since the volume of the phosphor layer 31d shrinks and solidifies in the direction of arrow C during firing, stress is generated on the substrate 141 in the direction of arrow S where the surface side on which the phosphor layer 31d is formed is concave. Since the phosphor layer 31d is formed in a substantially circular shape, it is easily peeled from the inside (center side of the substrate 141) due to the stress.
- the wavelength conversion portion 148c includes a substantially circular phosphor layer 31d, a side surface inside the phosphor layer 31d (on the center side of the wheel 141a) and a second side.
- the contact layer 32j is provided so as to cover only the end portion of the surface of.
- the weight of the adhesion layer 32j is reduced, it is possible to reduce the balance deviation when the fluorescent wheel 102c is rotated, and to apply the rotation mechanism including the wheel fixture 146, the rotation shaft 147, the drive device, and the like.
- the burden can be reduced.
- FIG. 10A is a plan view (xy plane) showing a configuration of a fluorescent wheel 102d as an optical element according to Embodiment 8 of the present invention.
- FIG. 10B is a DD ′ cross-sectional view (yz plane) showing the structure of the fluorescent wheel according to the eighth embodiment of the present invention.
- FIG. 10C is a plan view (xy plane) showing a configuration of a fluorescent wheel 102e according to a modified example of the eighth embodiment of the present invention.
- the low refractive index body 33e is a member having a lower refractive index than the adhesion layer 32k, and can reflect fluorescence. Specifically, in the fluorescent wheel 102d, instead of the phosphor layer 31e and the adhesion layer 32k that configure the wavelength conversion unit 148d, in a part of the region where the wavelength conversion unit 148d is arranged in the circumferential direction of the surface of the wheel 141a. The low refractive index body 33e is arranged. The fluorescent wheel 102d has wavelength conversion units 148d at regular intervals over the entire circumference of the surface of the wheel 141a.
- the wavelength conversion section 148d exists in at least a part in the radial direction of the wheel 141a in a region where the wavelength conversion section 148d is arranged in the circumferential direction of the surface of the wheel 141a.
- the wavelength conversion section 148e including the fluorescent layer 31f and the adhesion layer 32l is arranged in the circumferential direction of the surface of the wheel 141a, and the wavelength conversion section 148e is arranged in the area where the wavelength conversion section 148e is arranged.
- a dot-shaped low refractive index body 33f is arranged in part instead of the phosphor layer 31f and the adhesion layer 32l.
- any argument wavelength converter 148d in theta, 148e is placed most proximal point (r min, theta) most distal point from the (r max, ⁇ ) of at least the wavelength conversion portion 148d in a portion between the 148e are present.
- the low-refractive-index body may have a slit shape like the low-refractive-index body 33e shown in FIG. 10A or a dot shape like the low-refractive-index body 33f shown in FIG. 10C. Good.
- the low refractive index body 33e arranged in place of the phosphor layer 31e and the adhesion layer 32k has a high lamination layer of the replaced phosphor layer 31e and the adhesion layer 32k. It is preferable to have the same height as. With this structure, the above-mentioned effects can be further enhanced.
- the wavelength conversion unit 148d is continuously replaced with the low refractive index body 33e from the most proximal point (r min , ⁇ 1 ) to the most distal point (r max , ⁇ 2 ) as the ⁇ changes, It is preferable that ⁇ changes continuously from ⁇ 1 to ⁇ 2 ( ⁇ 1 ⁇ ⁇ 2 ). With this structure, the above-mentioned effects can be further enhanced.
- the low refractive index body 33e is preferably made of air. With this configuration, the fluorescent wheel can be manufactured at a lower cost.
- the configuration in which the low refractive index body is arranged in place of a part of the region in which the phosphor layer and the adhesion layer of the present embodiment are arranged is the same as that of the fluorescent wheel 102b (see FIGS. 8A and 8B) of the sixth embodiment. It is also applicable to the fluorescent wheel 102c of the form 7 (see FIGS. 9A and 9B).
- Embodiments 9 to 12 using a light source device, a vehicle headlamp and a projection device as examples.
- FIG. 11A is a schematic diagram showing a configuration of a light source device as an optical device according to a ninth embodiment of the present invention.
- FIG. 1B is a side view (xz plane) showing the configuration of the light source module of the light source device according to the ninth embodiment of the present invention.
- FIG. 11C is a side view (xz plane) showing another configuration of the light source module of the light source device according to the ninth embodiment of the present invention.
- the light source device 140 includes a fluorescent wheel 102a (see FIGS. 7A and 7B), a drive device 142 that rotates the fluorescent wheel 102a, and a light source 13 that irradiates the wavelength conversion unit 148a with the excitation light 14.
- the light source device 140 emits fluorescence 117 when the excitation light 14 is incident on the phosphor layer 31b of the wavelength conversion unit 148a arranged at least in the circumferential direction of the surface of the fluorescence wheel 102a as the fluorescence wheel 102a rotates. .
- the light source device 140 is preferably used in a projector or the like.
- the light source 13 is preferably a blue laser light source that emits the excitation light 14 having a wavelength that excites the phosphor layer 31 of the wavelength conversion unit 148a.
- a blue laser diode that excites a fluorescent material such as YAG or LuAG is used.
- the excitation light 14 that irradiates the phosphor layer 31 of the wavelength conversion unit 148a can pass through the lenses 144a, 144b, 144c on the optical path.
- the mirror 145 may be arranged on the optical path of the excitation light 14.
- the mirror 145 is preferably a dichroic mirror.
- the fluorescent wheel 102 a is fixed to the rotation shaft 147 of the drive device 142 by the wheel fixing tool 146.
- the driving device 142 is preferably a motor, and the fluorescent wheel 102a fixed by a wheel fixing member 146 to a rotating shaft 147 which is a rotating shaft of the motor rotates as the motor rotates.
- the wavelength conversion unit 148a arranged in the peripheral portion on the surface of the fluorescent wheel 102a receives the excitation light, emits the fluorescence 117, passes through the mirror 145, and emits the fluorescence. Since the wavelength conversion unit 148a rotates with the rotation of the fluorescent wheel 102a, the wavelength conversion unit 148a rotates at any time and emits the fluorescent light 117.
- the light source module may be configured by using a fluorescent wheel 102b (see FIGS. 8A and 8B) as shown in FIG. 11C instead of the fluorescent wheel 102a in the light source module shown in FIG. 11B.
- FIGS. 12A to 12D are plan views (xy planes) showing configurations of modified examples 102f to 102i of the fluorescent wheel of the light source device 140 according to the ninth embodiment of the present invention.
- the wheel can be a wheel 141b provided with a transmissive portion 143 through which a part of the segment transmits the excitation light 14.
- the transmission part 143 is preferably made of glass. With such a segment structure, the excitation light 14 can be converted into a plurality of wavelengths by one fluorescent wheel. As shown in FIG.
- a segment including a conventional phosphor layer 12a that emits a wavelength corresponding to green and a segment including a phosphor layer 31g that emits a wavelength corresponding to yellow and an adhesive layer 32m are provided.
- the divided fluorescent wheel 102f may be used.
- the fluorescent wheel 102g divided into and may be used. Further, as shown in FIG.
- the phosphor layer 31h that emits fluorescent light having a wavelength corresponding to green and the phosphor layer 31g that emits fluorescent light having a wavelength corresponding to yellow are divided into a phosphor layer 31g and a phosphor layer.
- the fluorescent wheel 102h may be provided with an adhesion layer 32n that adheres 31h.
- a phosphor layer 31h that emits fluorescent light having a wavelength corresponding to green, a phosphor layer 31g that emits fluorescent light having a wavelength corresponding to yellow, and a phosphor that emits fluorescent light having a wavelength corresponding to red are shown in FIG. 12D.
- the fluorescent wheel 102i may be divided into a layer 31i and a phosphor layer 31g, a phosphor layer 31h, and an adhesion layer 32o that adheres the phosphor layer 31i. It is possible to maintain the external quantum yield at a high level by dividing the fluorescent wheel into a plurality of segments in the circumferential direction and coating the fluorescent substance for each segment. This makes it possible to create various colors while maintaining brightness.
- the configurations of the phosphor layer and the adhesion layer in each of the fluorescence wheels 102ef to 102i shown in FIGS. 12A to 12D are the same as those of the phosphor layer and the adhesion layer shown in FIG. 11B. It may be configured.
- FIG. 13 is a schematic diagram showing the configuration of a light source device 80 as an optical device according to the tenth embodiment of the present invention.
- the light source device 80 includes an optical element 81 including a phosphor layer and an adhesion layer, a light source 13 that irradiates the optical element 81 with the excitation light 14, and a reflector 111 that has a reflection surface that reflects the fluorescence 117 emitted from the optical element 81. It has and.
- the reflecting surface of the reflector 111 has a shape that reflects incident light so as to be emitted in parallel to a certain direction.
- the light source device 80 is preferably a reflective vehicle headlamp (laser headlight).
- the light source 13 is preferably a blue laser light source that emits the excitation light 14 having a wavelength that excites the phosphor layer of the optical element 81.
- the reflector 111 preferably comprises a semi-parabolic mirror. It is preferable that the paraboloid is divided into upper and lower parts in parallel with the xy plane to form a semi-parabola, and the inner surface thereof is a mirror.
- the reflector 111 has a through hole through which the excitation light 14 passes.
- the optical element 81 is excited by the blue excitation light 14 and emits fluorescence 117 in the long wavelength region (yellow wavelength) of visible light.
- the excitation light 14 is also reflected by the surface of the optical element 81 and also becomes diffuse reflection light 118.
- the optical element 81 is arranged at the focus position of the paraboloid. Since the optical element 81 is located at the focal point of the parabolic mirror, the fluorescence 117 and the diffuse reflection light 118 emitted from the optical element 81 are directed to the reflector 111, and when reflected by the surface of the reflector 111, the emission surface 112 is uniformly formed. Go straight to. White light in which the fluorescent light 117 and the diffuse reflection light 118 are mixed is emitted from the emission surface 112 as parallel light.
- the optical elements 101a to 101k of the first to fourth embodiments can be adopted.
- FIG. 14 is a schematic diagram showing the configuration of a light source device 90 as an optical device according to the eleventh embodiment of the present invention.
- the light source device 90 includes an optical element 92 and a light source 13 that irradiates the optical element 92 with the excitation light 14.
- the light source 13 irradiates the first surface with the excitation light 14 through the transparent substrate 91.
- the phosphor layer emits fluorescence from the second surface.
- the light reflected by the reflector 111 exits from the exit surface 112 as parallel rays.
- the transparent substrate 91 has a heat sink structure.
- the transparent substrate 91 may also be cooled by making fixed contact with a transparent heat sink (not shown).
- the light source device 90 is preferably mounted on a transmissive laser headlight (vehicle headlight) (Patent Document 2 (International Publication No. 2014/203484)).
- a transmissive laser headlight vehicle headlight
- Patent Document 2 International Publication No. 2014/203484
- Japanese Unexamined Patent Application Publication No. 2012-119193 when a fluorescent film is deposited on a transparent heat sink substrate, when excitation light enters from the heat sink side, the heat sink side has heat dissipation. It is known to be expensive.
- the optical elements 101a to 101k of the above first to fourth embodiments can be adopted.
- FIG. 15 is a schematic diagram showing the structure of a projection device as an optical device according to a twelfth embodiment of the present invention.
- the projection apparatus 100 includes a light source device, a rotational position sensor 103 that acquires the rotational position of the fluorescent wheel, a light source control unit 104 that controls the light source 13 based on output information from the rotational position sensor 103, a display element 107, and A light source side optical system 106 that guides the light from the light source device to the display element 107 and a projection side optical system 108 that projects the projection light from the display element 107 onto the screen are provided.
- the projection device 100 controls the output of the light source 13 based on the information on the rotational position of the fluorescent wheel acquired by the rotational position sensor 103.
- the light source device may be provided with a fluorescent wheel in which an optical element is divided into a plurality of segments in the circumferential direction and arranged at least in a part of the circumferential direction through which the excitation light emitted from the light source 13 passes. It may be the device 140.
- the excitation light 14 of blue emission transmits through the fluorescent wheel 102i via the transmissive part 143.
- the excitation light 14 applied to the wavelength conversion unit 148i can pass through the mirrors 109a to 109c and the light source side optical system 106 on the optical path.
- the light source side optical system 106 is preferably a dichroic mirror.
- a preferred dichroic mirror is capable of reflecting blue light incident at 45 degrees and transmitting red and green light.
- the blue light by the excitation light 14 incident on the dichroic mirror is reflected and directed to the fluorescent wheel 102i.
- blue light is transmitted through the fluorescent wheel 102i via the transmissive portion 143.
- the excitation light 14 applied to the segments other than the transmissive part 143 by the timing of rotation of the fluorescent wheel 102i irradiates the wavelength conversion part 148i and causes the phosphor layers 31g to 31i to emit fluorescent light.
- the phosphor layer 31h emits fluorescence in the green wavelength band
- the phosphor layer 31g emits fluorescence in the yellow wavelength band
- the phosphor layer 31i emits fluorescence in the red wavelength band.
- the fluorescently emitted green, yellow, and red lights pass through the dichroic mirror and enter the display element 107.
- the blue light transmitted through the transmissive portion 143 again enters the dichroic mirror via the mirrors 109a to 109c, is reflected again by the dichroic mirror, and enters the display element 107.
- the projector can include a light source module 101, a display element 107, a light source side optical system 106 (dichroic mirror), and a projection side optical system 108.
- the optical module 101 for example, a light source module including the fluorescent wheel 102a and the driving device 142 shown in FIG. 10B or a light source module including the fluorescent wheel 102b and the driving device 142 shown in FIG. 10C is used.
- the light source side optical system 106 (dichroic mirror) guides the light from the light source module 101 to the display element 107, and the projection side optical system 108 can project the projection light from the display element 107 on a screen or the like. it can.
- the display element 107 is preferably a DMD (Digital Mirror Device).
- the projection side optical system 108 preferably comprises a combination of projection lens.
- the phosphor layer (31a to 31k) arranged facing the lower layer (11) and the phosphor layer (31a to 31i) are formed in the lower layer (11).
- the phosphor layer (31a to 31k) includes a first surface facing the lower layer (11), a second surface facing the first surface, and a second surface facing the first surface.
- the adhesion layer (32a to 32o) connects the second surface, the side surface, and the surface of the lower layer.
- the phosphor layers (31a to 31i) are closely attached to the lower layer (11).
- the optical element according to aspect 2 of the present invention may be configured such that in the aspect 1, the lower layer (11) is composed of one or more layers including a substrate.
- the optical element according to the third aspect of the present invention may be configured such that, in the first or second aspect, the adhesion layers (32a to 32o) cover the entire area of the second surface.
- the optical element according to aspect 4 of the present invention is the optical element according to aspect 1 or 2, wherein the adhesion layer (32a to 32o) faces the entire area of the second surface and the entire area of the side surface.
- the body layers (31a to 31i) may be covered.
- the optical element according to aspect 5 of the present invention is the optical element according to any one of aspects 1 to 4, wherein the adhesion layer (32a to 32o) is in close contact with the lower layer (11) and the phosphor layer (31a to 31i).
- the adhesive layer (32a to 32o) may have an outer surface that is not formed, and the outer surface of the adhesive layer (32a to 32o) may be a convex curved surface.
- the optical element according to Aspect 6 of the present invention may be configured such that a part of the second surface is exposed from the adhesion layers (32a to 32o) in Aspect 1 or 2.
- the optical element according to aspect 7 of the present invention is the optical element according to any one of aspects 1 to 6 above, wherein the lower layer (11) is a wheel (141a, 141b), and excitation light emitted from a light source passes through the wheel.
- the phosphor layer and the adhesion layers (32a to 32o) may be arranged on at least a part of the surface in the circumferential direction.
- the optical element according to aspect 8 of the present invention is the optical element according to aspect 7, wherein the adhesion layers (32a to 32o) are provided only on the inner side surface of the phosphor layer (31a to 31i) and the end portions of the second surface. May be covered.
- the optical element according to aspect 9 of the present invention is the optical element according to aspect 7, wherein the phosphor layers (31a to 31i) and the adhesion layers (32a to 32o) are arranged in the circumferential direction of the surface of the wheel (141a, 141b).
- Low refractive index bodies (33a to 33f) having a lower refractive index than the adhesion layer are arranged in a part of the formed region, and the phosphor layer and the adhesion layer are arranged in the circumferential direction of the surface of the wheel.
- the phosphor layer and the adhesion layer may be present in at least a part of the wheel (141a, 141b) in the radial direction.
- the optical element according to aspect 10 of the present invention is the optical element according to aspect 9, wherein the low refractive index bodies (33a to 33f) are arranged in place of the phosphor layers (31a to 31i) and the adhesion layers (32a to 32o). ) May have the same height as the stacked height of the substitute phosphor layer and the adhesion layer.
- the optical element according to aspect 11 of the present invention is the optical element according to aspect 9 or 10, wherein the center of the wheel (141a, 141b) is the origin (0), the radial distance from the origin is r, and the deviation angle is ⁇ .
- the region where the optical element is arranged in the circumferential direction of the surface of the wheel (141a, 141b) is specified by the polar coordinate (r, ⁇ ), and the nearest point (rmin, ⁇ 1 )
- the phosphor layers (31a to 31i) and the adhesion layers (32a to 32o) are continuously replaced by the low refractive index bodies (33a to 33f), and ⁇ is
- the configuration may be such that ⁇ 1 continuously changes to ⁇ 2 ( ⁇ 1 ⁇ ⁇ 2).
- the optical element according to the twelfth aspect of the present invention may be configured such that, in any of the ninth to eleventh aspects, the low refractive index bodies (33a to 33f) are made of air.
- An optical device may also be configured to include the optical element according to any one of aspects 1 to 12 and a laser or an LED that irradiates the phosphor layers (31a to 31i) with excitation light. Good.
- An optical device is the optical element according to any one of aspects 7 to 12, a driving device (142) for rotating the wheel, and a light source (for illuminating the optical element with excitation light). 13) and, when the excitation light is incident on the phosphor layers (31a to 31i) of the optical element arranged at least in the circumferential direction of the surface of the wheel as the wheel rotates, fluorescence is generated. It may be configured to emit light.
- An optical device provides the optical element according to any one of aspects 1 to 6, a light source (13) for irradiating the optical element with excitation light, and a fluorescence emitted from the optical element.
- a reflector (111) having a reflecting surface for reflecting the light may be provided.
- An optical device is the optical element according to any one of aspects 1 to 6 above, wherein the lower layer (11) is a transparent substrate (91), and the optical element is irradiated with excitation light.
- An optical device is the light source device according to aspect 14 above, a display element (107), and a light source side that guides the fluorescence from the phosphor layer to the display element (107). It may be configured to include an optical system (106) and a projection side optical system that projects the projection light from the display element (107) onto a screen.
- the optical device according to aspect 18 of the present invention is the optical device according to aspect 14, wherein the excitation light emitted from the light source (13) passes through the phosphor layers (31a to 31i) and the adhesion layers (32a to 32o).
- a rotational position sensor (103) arranged to be divided into a plurality of segments in the circumferential direction on at least a part of the surface of the wheel in the circumferential direction to obtain a rotational position of the wheel, and a rotational position sensor (103)
- a light source controller (104) for controlling the light source (13) based on the output information, a display element (107), and a light source side optical system (106) for guiding light from the light source device to the display element (107).
- the information of the rotational position of the eel may be configured to control the output of the light source (13).
- the optical element according to aspect 19 of the present invention may be configured such that in any of aspects 1 to 6 above, a low refractive index body having a lower refractive index than the adhesion layer is further provided.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Astronomy & Astrophysics (AREA)
- Inorganic Chemistry (AREA)
- Signal Processing (AREA)
- Projection Apparatus (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Video Image Reproduction Devices For Color Tv Systems (AREA)
Abstract
基板(下位層)との密着性を有しつつ、耐久性の向上を実現する。光学素子は、下位層に面して配置された蛍光体層と、蛍光体層を下位層に密着させる密着層と、を備え、蛍光体層は、無機バインダと、無機バインダ内に分散した蛍光体粒子とを含み、密着層は、有機バインダを含み、蛍光体層は、下位層に面する第1の面と、第1の面と対向する第2の面と、第1の面と第2の面とを接続する側面と、を有し、密着層は、第2の面と、側面と、下位層の表面とを接続して蛍光体層を下位層に密着させる。
Description
本発明はおよび光学装置に関する。
本願は、2018年10月22日に日本に出願された特願2018-198686号に基づき優先権を主張し、その内容をここに援用する。
本願は、2018年10月22日に日本に出願された特願2018-198686号に基づき優先権を主張し、その内容をここに援用する。
青色レーザなどの励起光を蛍光体に照射した際に、蛍光体が蛍光を発光させることが従来技術として知られている。例えば、特許文献1には、基材と、基材上に形成された蛍光体層と、を備える蛍光体ホイールが記載されている。蛍光体層は、蛍光体粒子と、蛍光体粒子を保持するバインダ材料と、を有し、前記蛍光体粒子よりも屈折率の低い透光性材料から構成された低屈折率層により被覆されている。
しかしながら、高エネルギー密度励起光により高輝度に発光する蛍光体は、高温になり易く、蛍光体の量子効率の低下が懸念される。この点を解決するための光学素子として、熱伝導率の高い無機バインダによって蛍光体を封入した光学素子が知られているものの、無機バインダは基板との密着性が悪く、靱性が小さいという問題がある。
本発明の一態様は、基板との密着性を有しつつ、耐久性の向上を実現することを目的とする。
上記の課題を解決するために、本発明の一態様に係る光学素子は、下位層に面して配置された蛍光体層と、前記蛍光体層を前記下位層に密着させる密着層と、を備え、前記蛍光体層は、無機バインダと、前記無機バインダ内に分散した蛍光体粒子とを含み、前記密着層は、有機バインダを含み、前記蛍光体層は、前記下位層に面する第1の面と、前記第1の面と対向する第2の面と、前記第1の面と前記第2の面とを接続する側面と、を有し、前記密着層は、前記第2の面と、前記側面と、前記下位層の表面とを接続して前記蛍光体層を前記下位層に密着させる。
本発明の一態様によれば、基板との密着性を有しつつ、耐久性の向上に資することができる。
図1に一般的な光学素子10の構成を示す。基板11に面して蛍光体層12が配置された構成が一般的である。反射型の光学系では、蛍光体層12に光源13から発した励起光14が照射し、蛍光体層12は蛍光発光する。蛍光体層12は、一般的に蛍光体粒子と有機バインダとから構成される。有機バインダは、密着性が高いものの、熱伝導率が低いため、青色レーザなどにより蛍光体を発光させた場合、熱による焼損が起こり、所望の蛍光発光強度を得ることができないという問題がある。つまり蛍光体の発光効率の温度依存性を検討する必要がある。
〔発光効率の温度依存性〕
蛍光体の発光効率の温度依存性について、YAG:Ce(Y3Al5O12:Ce3+)蛍光体の外部量子効率に基づいて説明する。図2に示す通り、YAG(イットリウム・アルミニウム・ガーネット)にドーパントとしてCe(セリウム)をドープした蛍光体材料について、Ceのドープ濃度の違いにより発光効率の温度依存性が相違する様子が確認できる。本発明の一態様におけるCeドープ濃度(mol%)とは、ガーネット系蛍光体の一般式(M1-xREx)3Al5O12で示される物質において、x×100(mol%)で表される。上記一般式において、M、REは希土類元素群より選ばれる少なくとも一つの元素を含むものが用いられる。一般的に、Mは、Sc、Y、Gd、Lu、REは、Ce、Eu、Tbのうち、少なくとも一種の元素が用いられる。
蛍光体の発光効率の温度依存性について、YAG:Ce(Y3Al5O12:Ce3+)蛍光体の外部量子効率に基づいて説明する。図2に示す通り、YAG(イットリウム・アルミニウム・ガーネット)にドーパントとしてCe(セリウム)をドープした蛍光体材料について、Ceのドープ濃度の違いにより発光効率の温度依存性が相違する様子が確認できる。本発明の一態様におけるCeドープ濃度(mol%)とは、ガーネット系蛍光体の一般式(M1-xREx)3Al5O12で示される物質において、x×100(mol%)で表される。上記一般式において、M、REは希土類元素群より選ばれる少なくとも一つの元素を含むものが用いられる。一般的に、Mは、Sc、Y、Gd、Lu、REは、Ce、Eu、Tbのうち、少なくとも一種の元素が用いられる。
蛍光体に励起光を照射した場合、蛍光発光が得られると同時に、励起光の一部は熱エネルギーに変換されるため、蛍光体の照射スポット部は高温になる。熱放射については、一般的に下記の式で説明することができる。
Q=A・ε・σ・(TA^4-TB^4)
ここで、Qは放射熱量、Aは放射部面積、εは放射率、σはステファン・ボルツマン定数、TAは放射部の温度、TBは周囲の温度を示す。
ここで、Qは放射熱量、Aは放射部面積、εは放射率、σはステファン・ボルツマン定数、TAは放射部の温度、TBは周囲の温度を示す。
蛍光体の発光効率は蛍光体の温度による影響を受け、図2に示すように、温度が増加するに従って発光効率が低下することが知られている。より強い(明るい)蛍光発光を得るためには励起光14の照射強度を強める必要があり、この場合、冷却状況によっては蛍光体層12の温度上昇抑制が十分に行えなくなる場合がある。
また、蛍光体の温度特性は発光中心元素(本実施形態ではCe)の濃度により変化することが知られている。一般的に市販されているYAG:Ce蛍光体のCe濃度は、常温使用時の発光効率が高い濃度(例えば1.4~1.5mol%程度)が用いられることが多い。これはCeの濃度が低いYAG蛍光体では、内部量子効率は高くなるが、励起光の吸収率が低いため、波長変換素子として重要な外部量子効率は、Ce濃度1.5mol%付近が最適値となるためである。高エネルギー密度、高強度の励起光照射によって照射スポットの蛍光体温度が250℃を超える領域になるような場合、一般的なYAG:Ce蛍光体(Ce濃度1.4mol%)では発光効率が低下する(図2参照)。しかし、Ce濃度が低いYAG:Ce蛍光体(例えば0.3~1.0mol%程度)は発光効率の温度依存性が小さく、低温時と比較して高濃度の発光体と発光効率が逆転する場合もある。例えば、図2のグラフにおいて低温領域(50℃~100℃)と高温領域(250℃~350℃)とを比較する。低温領域では、YAG:Ce蛍光体のCe濃度が高い方が高発光効率となるが、高温領域ではCe濃度が低い方が高発光効率となる傾向がある。かかる傾向に鑑みて本願発明を実施形態ごとに説明する。
レーザ光による励起では励起エネルギー密度が高くなり高温となるため、耐熱性の高い酸窒化物系や窒化物系の蛍光体を用いることが望ましい。蛍光体として発光効率の温度依存性が優れている方がより望ましい。また、光源装置として利用するため、蛍光を青色、緑色、赤色等の白色光以外としてもよい。
近紫外光を赤色光に変換する蛍光体として、例えばCaAlSiN3:Eu2+を用いることができる。近紫外光を黄色光に変換する蛍光体として、例えばCa-α-SiAlON:Eu2+を用いることができる。近紫外光を緑色光に変換する蛍光体として、例えばβ-SiAlON:Eu2+やLu3Al5O12:Ce3+(LuAG:Ce)を用いることができる。近紫外光を青色光に変換する蛍光体として、例えば(Sr,Ca,Ba,Mg)10(PO4)6C12:EuやBaMgAl10O17:Eu2+、(Sr,Ba)3MgSi2O8:Eu2+を用いることができる。
また、近紫外光の励起光を黄色光及び青色光に変換する2種類の蛍光体を含むように蛍光部材を形成してもよい。これにより、蛍光部材から出射される黄色光及び青色光の蛍光を混色して擬似白色光が得られる。
以下では、好ましい実施形態としてYAG:Ce蛍光体の一例について、本願発明を実施形態ごとに説明する。
まず、本発明の実施形態による光学素子につき、基板上に設けられた光学素子および蛍光ホイールを例に、実施形態1~8として説明する。
〔実施形態1〕
〔光学素子101aの構成〕
以下、本発明の一実施形態について、詳細に説明する。図3Aは、本発明の実施形態1に係る光学素子101aの構成を示す斜視図である。本実施形態では、基板11の主面をxy平面として座標軸を定義した。図3Bは、本発明の実施形態1に係る光学素子101aの構成を示すA-A’断面図(xz平面)である。本実施形態に係る光学素子101aは、図1に示した一般的な光学素子10の構成と異なり、密着層をさらに備えている。
〔光学素子101aの構成〕
以下、本発明の一実施形態について、詳細に説明する。図3Aは、本発明の実施形態1に係る光学素子101aの構成を示す斜視図である。本実施形態では、基板11の主面をxy平面として座標軸を定義した。図3Bは、本発明の実施形態1に係る光学素子101aの構成を示すA-A’断面図(xz平面)である。本実施形態に係る光学素子101aは、図1に示した一般的な光学素子10の構成と異なり、密着層をさらに備えている。
本実施形態に係る光学素子101aは、図3A,図3Bに示すように、基板11に面して配置された蛍光体層31aと、蛍光体層31aを基板11に密着させる密着層32aと、を含む波長変換部30aを備えている。本実施形態において、蛍光体層31aは、下位層である基板11に面して配置されている。
(基板(下位層))
基板11はアルミニウム基板を用いることができる。蛍光発光強度を高める為に、アルミニウム基板上には銀などの高反射膜がコーティングされているのが好ましい。他の実施形態では、高反射のアルミナ基板、白色散乱反射基板などを用いてもよい。基板11の材質は金属など蛍光体層31aおよび密着層32aよりも熱伝導率の高いものが好ましく、特に上述した材料に限定されない。
基板11はアルミニウム基板を用いることができる。蛍光発光強度を高める為に、アルミニウム基板上には銀などの高反射膜がコーティングされているのが好ましい。他の実施形態では、高反射のアルミナ基板、白色散乱反射基板などを用いてもよい。基板11の材質は金属など蛍光体層31aおよび密着層32aよりも熱伝導率の高いものが好ましく、特に上述した材料に限定されない。
下位層は、基板を含む1以上の層から構成されることが好ましい。下位層の基板以外の層としては、例えば、散乱層等が挙げられる。散乱層は、酸化チタンを主成分とするのが好ましい。また、下位層は、板状のものに限られず、その上に蛍光体層31aを配置することが可能な形状の基材であればよい。
(蛍光体層)
蛍光体層31aは、無機化合物を含む第1のバインダ(無機バインダ)と、前記第1のバインダ内に分散した蛍光体粒子とを含む。蛍光体層31aは、基板11に面する第1の面と、第1の面と対向する第2の面と、第1の面と第2の面とを接続する側面と、を有している。
蛍光体層31aは、無機化合物を含む第1のバインダ(無機バインダ)と、前記第1のバインダ内に分散した蛍光体粒子とを含む。蛍光体層31aは、基板11に面する第1の面と、第1の面と対向する第2の面と、第1の面と第2の面とを接続する側面と、を有している。
蛍光体層31aに、例えば、レーザやLEDからなる光源13から発した励起光14が照射されると、蛍光体粒子は、蛍光を発光すると共に、熱を放出する。
第1のバインダが熱伝導率の高い無機化合物を含んでいることにより、蛍光体層31aの熱伝導率が高くなる。蛍光体層31aの熱伝導率が高いことにより、蛍光体粒子から放出された熱を基板11へ伝導する効率を高めることができるため、蛍光体層31aの熱による焼損を防止することができる。
無機バインダ(第1のバインダ)は、無機化合物を主材とするバインダである。無機バインダは、骨格が無機材料により構成されていることが好ましい。無機バインダは、例えば、無機粒子の焼結体により構成することができる。無機バインダは、例えば、アルミナ、シリカ等からなる透光性無機材の焼結体により構成されていることが好ましい。
第1のバインダは、空隙を包んでいてもよいし、空隙を含んでいなくてもよい。
蛍光体層31aに占める蛍光体粒子の割合は、蛍光体層31aに対して50体積%~75体積%程度であるのが好ましい。
蛍光体粒子の平均粒径D50は、10μm~30μm程度であるのが好ましい。蛍光体粒子は、CeがドープされたYAG蛍光体であることが好ましい。
蛍光体層31aの厚さは、20μm~100μmであるのが好ましい。
(密着層)
前記密着層32aは、有機化合物を含む第2のバインダからなる。密着層32aは、蛍光体層31aの第2の面と、と、基板11の表面とを接続して蛍光体層31aを下位層である基板11に密着させる。より基板11への密着性を高める観点から、密着層32aが、第2の面の全領域および側面の全領域と面するように蛍光体層31aを被覆していることが好ましい。
前記密着層32aは、有機化合物を含む第2のバインダからなる。密着層32aは、蛍光体層31aの第2の面と、と、基板11の表面とを接続して蛍光体層31aを下位層である基板11に密着させる。より基板11への密着性を高める観点から、密着層32aが、第2の面の全領域および側面の全領域と面するように蛍光体層31aを被覆していることが好ましい。
有機バインダ(第2のバインダ)は、有機化合物を主材とするバインダである。有機バインダは、骨格が有機材料により構成されていることが好ましい。有機バインダは、例えば、骨格を形成する樹脂を含んでいることが好ましい。第2のバインダ(有機バインダ)に含まれる有機化合物は、例えば、シリコーン樹脂等の透明な有機化合物であることが好ましい。
蛍光体層31aの第2の面から密着層32aの最上部の厚さ方向の距離は、1μm~10μmであるのが好ましい。また、蛍光体層31aの側面と基板11との接触点から密着層の32aの最側端部までの距離は、10μm~20μmであるのが好ましい。これにより、蛍光体層31aを基板11に十分に密着させることができる。
〔実施形態2〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔光学素子101b~101fの構成〕
図4Aは、本発明の実施形態2に係る光学素子101bの構成を示す斜視図である。図4Bは、本発明の実施形態2に係る光学素子101bの構成を示すB-B’断面図(xz平面)である。図4C~図4Eは、本発明の実施形態2に係る光学素子の変形例による光学素子101c~101eの構成を示す断面図である(xz平面)。図4Fは、本発明の実施形態2に係る光学素子の変形例による光学素子101fの構成を示す斜視図である。本実施形態に係る光学素子101bの波長変換部30bは、本発明の実施形態1に係る光学素子101aの波長変換部30aの密着層32aと比べて、密着層32bの基板11(下位層)および蛍光体層31aと密着していない外面の形状が異なり、当該外面が、凸状の曲面形状である。当該構成であることにより、密着層32bの外面から入射した励起光が蛍光体層31aに集光されるため、励起光の幅が同一であるとき、密着層32bの外面が平坦状である場合に比べて、照射スポットを小さくすることができる。これにより、密着層32bの外面が平坦状である場合に比べて、発光輝度を向上させることができる。また、密着層32bの外面が平坦状である場合に比べて、密着層32bの外面において全反射する光を低減することができる。これにより、光学素子101bの外へ出射する蛍光を増加させることができる。また、蛍光体層31aが発した蛍光が波長変換部30bの密着層32bから出射する際に、蛍光は、z軸方向に対する角度がより小さくなる方向に屈折するため、z軸方向から見た際の発光輝度が向上する。
図4Aは、本発明の実施形態2に係る光学素子101bの構成を示す斜視図である。図4Bは、本発明の実施形態2に係る光学素子101bの構成を示すB-B’断面図(xz平面)である。図4C~図4Eは、本発明の実施形態2に係る光学素子の変形例による光学素子101c~101eの構成を示す断面図である(xz平面)。図4Fは、本発明の実施形態2に係る光学素子の変形例による光学素子101fの構成を示す斜視図である。本実施形態に係る光学素子101bの波長変換部30bは、本発明の実施形態1に係る光学素子101aの波長変換部30aの密着層32aと比べて、密着層32bの基板11(下位層)および蛍光体層31aと密着していない外面の形状が異なり、当該外面が、凸状の曲面形状である。当該構成であることにより、密着層32bの外面から入射した励起光が蛍光体層31aに集光されるため、励起光の幅が同一であるとき、密着層32bの外面が平坦状である場合に比べて、照射スポットを小さくすることができる。これにより、密着層32bの外面が平坦状である場合に比べて、発光輝度を向上させることができる。また、密着層32bの外面が平坦状である場合に比べて、密着層32bの外面において全反射する光を低減することができる。これにより、光学素子101bの外へ出射する蛍光を増加させることができる。また、蛍光体層31aが発した蛍光が波長変換部30bの密着層32bから出射する際に、蛍光は、z軸方向に対する角度がより小さくなる方向に屈折するため、z軸方向から見た際の発光輝度が向上する。
凸状の曲面形状としては、断面(xz平面)が図4Bに示す波長変換部30bの密着層32bのような半楕円の弧、図4Cに示す波長変換部30cの密着層32cのような半円の弧、図4Dに示す波長変換部30dの密着層32dのような半楕円の弧の一部、図4Eに示す波長変換部30eの密着層32eのような半楕円の弧の一部等の、凸状の曲線になるような形状が挙げられる。また、図4Fに示す波長変換部30fの密着層32fのような面内異方性を有する凸状の曲面形状であってもよい。
密着層32bの原料は、密着層32bの外面を凸状の曲面形状にすることができる粘性を有することが好ましい。具体的には、密着層32bの原料の粘度は、23℃において、1000mPa・s~10000Pa・sであることが好ましい。当該粘性を有する原料を定量吐出装置を用いて蛍光体層を覆うように塗布することにより、外面が凸状の曲面形状である密着層32bを形成することができる。
〔実施形態3〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔高出力光学素子101g~101jの構成〕
図5Aは、本発明の実施形態3に係る光学素子の構成を示す平面図である。図5B~図5Dは、本発明の実施形態3に係る変形例の構成を示す平面図である。本実施形態に係る高出力光学素子101g~101jの波長変換部40a~40dは、本発明の実施形態2に係る光学素子101bの波長変換部30bと比べて、蛍光体層31a及び密着層32bに加えて、低屈折率体33a~33dをさらに備えている。
図5Aは、本発明の実施形態3に係る光学素子の構成を示す平面図である。図5B~図5Dは、本発明の実施形態3に係る変形例の構成を示す平面図である。本実施形態に係る高出力光学素子101g~101jの波長変換部40a~40dは、本発明の実施形態2に係る光学素子101bの波長変換部30bと比べて、蛍光体層31a及び密着層32bに加えて、低屈折率体33a~33dをさらに備えている。
波長変換部40a~40dは、密着層32bよりも屈折率が低い低屈折率体33a~33dを備えている。当該構成であることにより、高出力光学素子101g~101jの励起光照射領域外に導光する蛍光が低屈折率体33a~33dによって反射されるため、励起光照射スポットの近傍でのみ蛍光を取り出すことができる。結果的に多くの光が同一の領域で出射されるため、z軸方向において、より高輝度の光学素子を得ることができる。
ここで、「励起光照射スポット」とは、密着層32bの外面における励起光14が照射される面を意図する。また、「励起光照射領域」とは、励起光14が照射される、密着層32bにおける領域を意図する。つまり、「励起光照射領域」とは、励起光照射スポットから、密着層32bと蛍光体層31aとの接触面における励起光14が照射される面までの領域を意図する。
波長変換部は、厚さ方向の少なくとも一部に蛍光体層および密着層に代えて配置された低屈折率体を備えていることが好ましい。また、蛍光体層および密着層に代えて配置された前記低屈折率体の高さが、代替された蛍光体層および密着層との積層の高さよりも低い高さを有することがより好ましい。当該構成であることにより、密着性を有しつつ、上述した効果を奏することができる。
光学素子をz軸方向から見たときの低屈折率体の形状としては、例えば、図5Aに示すドット状、図5Bに示すスリット状、図5Cに示す蛍光体層31aの外周を取り囲んだ形状、図5Dに示す密着層32bの外周を取り囲んだ形状等が挙げられる。
低屈折率体33a~33dは、空気からなることが好ましい。当該構成であることにより、より安価に高出力光学素子を製造することができる。
〔実施形態4〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔光学素子101kの構成〕
図6Aは、本発明の実施形態4に係る光学素子101kの構成を示す斜視図である。本実施形態では、基板11の主面をxy平面として座標軸を定義した。図6Bは、本発明の実施形態4に係る光学素子101kの構成を示すC-C’断面図(xz平面)である。本実施形態に係る光学素子101kは、図3に示した光学素子101aに対し、密着層の構成が異なっている。
図6Aは、本発明の実施形態4に係る光学素子101kの構成を示す斜視図である。本実施形態では、基板11の主面をxy平面として座標軸を定義した。図6Bは、本発明の実施形態4に係る光学素子101kの構成を示すC-C’断面図(xz平面)である。本実施形態に係る光学素子101kは、図3に示した光学素子101aに対し、密着層の構成が異なっている。
本実施形態に係る光学素子101kは、図6A,図6Bに示すように、基板11に面して配置された蛍光体層31aと、蛍光体層31aを基板11に密着させる密着層32gと、を含む波長変換部50aを備えている。密着層32gは、蛍光体層31aの第2の面と、蛍光体層31aの側面と、基板11の表面とを接続して蛍光体層31aを基板11に密着させている。そして、本実施形態では、第2の面の一部が密着層32gから露出している。
本実施形態によれば、蛍光体層31aの第2の面の一部が露出していることから、励起光14が照射される領域に有機バインダが存在しない、すなわち蛍光体層31aの発熱部と有機バインダとが分離されているため、例えばレーザやLEDからなる光源13から特に高エネルギー密度、高強度の励起光14を波長変換部50aに照射した場合でも、蛍光体層31aの熱による焼損をより確実に防止することが可能となる。
また、蛍光体層31aからの発光が有機バインダを介さずに出射し、有機バインダ内を導光することが無いため、発光スポットサイズの拡大による輝度低下を抑制できるという効果も得られる。
〔実施形態5〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔蛍光ホイール102aの構成〕
図7Aは、本発明の実施形態5に係る光学素子としての蛍光ホイール102aの構成を示す平面図(xy平面)である。図7Bは、本発明の実施形態5に係る蛍光ホイール102aの構成を示す側面図(xz平面)である。本実施形態に係る蛍光ホイール102aは、波長変換部148aの下位層がホイール141aである。波長変換部148aは、蛍光体層31bと密着層32hとを含んで構成されている。蛍光ホイール102aは、ホイール固定具146によって、図示せぬ駆動装置の回転軸147に固定されている。本実施形態に係る蛍光ホイール102aは、実施形態2に係る光学素子101b(図4A、図4B参照)における密着層32b~30fのように、蛍光ホイール102aの半径方向の断面における外面がz軸方向に凸状の曲面形状である密着層32hを備えているが、密着層32hの代わりに実施形態1に係る光学素子101a(図3A、図3B参照)のにおける密着層32aのように外面が曲面形状でない密着層を備えていてもよい。また、外面が曲面形状でない密着層と外面が凸状の曲面形状である密着層とを両方備えていてもよい。なお、後述の実施形態7~12に関しても同様である。
図7Aは、本発明の実施形態5に係る光学素子としての蛍光ホイール102aの構成を示す平面図(xy平面)である。図7Bは、本発明の実施形態5に係る蛍光ホイール102aの構成を示す側面図(xz平面)である。本実施形態に係る蛍光ホイール102aは、波長変換部148aの下位層がホイール141aである。波長変換部148aは、蛍光体層31bと密着層32hとを含んで構成されている。蛍光ホイール102aは、ホイール固定具146によって、図示せぬ駆動装置の回転軸147に固定されている。本実施形態に係る蛍光ホイール102aは、実施形態2に係る光学素子101b(図4A、図4B参照)における密着層32b~30fのように、蛍光ホイール102aの半径方向の断面における外面がz軸方向に凸状の曲面形状である密着層32hを備えているが、密着層32hの代わりに実施形態1に係る光学素子101a(図3A、図3B参照)のにおける密着層32aのように外面が曲面形状でない密着層を備えていてもよい。また、外面が曲面形状でない密着層と外面が凸状の曲面形状である密着層とを両方備えていてもよい。なお、後述の実施形態7~12に関しても同様である。
蛍光ホイール102aは、光源から出射された励起光が通過するホイール141aの表面の周方向の少なくとも一部に、波長変換部148aが配置されていればよく、図7Aに示すように、波長変換部148aは、同心円状にホイール141a上に配置されていることが好ましい。
〔実施形態6〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔蛍光ホイール102bの構成〕
図8Aは、本発明の実施形態6に係る光学素子としての蛍光ホイール102bの構成を示す平面図(xy平面)である。図8Bは、本発明の実施形態6に係る蛍光ホイール102bの構成を示す側面図(xz平面)である。本実施形態に係る蛍光ホイール102bにおいては、波長変換部148bが蛍光体層31cと密着層32iとを含んで構成されている。本実施形態に係る蛍光ホイール102bは、実施形態4に係る光学素子101k(図6A、図6B参照)における密着層32gと同様に、蛍光ホイール102bの半径方向の断面において、蛍光体層31cの第2の面の一部が密着層32iから露出している。
図8Aは、本発明の実施形態6に係る光学素子としての蛍光ホイール102bの構成を示す平面図(xy平面)である。図8Bは、本発明の実施形態6に係る蛍光ホイール102bの構成を示す側面図(xz平面)である。本実施形態に係る蛍光ホイール102bにおいては、波長変換部148bが蛍光体層31cと密着層32iとを含んで構成されている。本実施形態に係る蛍光ホイール102bは、実施形態4に係る光学素子101k(図6A、図6B参照)における密着層32gと同様に、蛍光ホイール102bの半径方向の断面において、蛍光体層31cの第2の面の一部が密着層32iから露出している。
〔実施形態7〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔蛍光ホイール102cの構成〕
図9Aは、本発明の実施形態7に係る光学素子としての蛍光ホイール102cの構成を示す平面図(xy平面)である。図9Bは、本発明の実施形態7に係る蛍光ホイール102cの構成を示す側面図(xz平面)である。図9Cは、本発明の実施形態7に係る蛍光ホイール102cのホイール141aを構成する基板(金属基板)141にかかる応力を説明するための基板141および蛍光体層31dの側面図である。
図9Aは、本発明の実施形態7に係る光学素子としての蛍光ホイール102cの構成を示す平面図(xy平面)である。図9Bは、本発明の実施形態7に係る蛍光ホイール102cの構成を示す側面図(xz平面)である。図9Cは、本発明の実施形態7に係る蛍光ホイール102cのホイール141aを構成する基板(金属基板)141にかかる応力を説明するための基板141および蛍光体層31dの側面図である。
図9Cに示すように、蛍光体層31dは、基板141に塗布された後、焼成されることにより任意の形状に形成される。焼成時に蛍光体層31dの体積が矢印Cの方向に収縮して固化するため、基板141には、蛍光体層31dが形成された面側が凹型となる矢印Sの方向に応力が生じる。蛍光体層31dは、略円形に形成されているため、上記応力によって、その内側(基板141の中心側)から剥離しやすくなる。
そこで、本実施形態では、図9A、図9Bに示すように、波長変換部148cを、略円形の蛍光体層31dと、蛍光体層31dの内側(ホイール141aの中心側)の側面および第2の面の端部のみを被覆するように設けられた密着層32jとにより構成している。
本実施形態によれば、密着層32jの重量が減るため、蛍光ホイール102cの回転時のバランス偏移を小さくでき、また、ホイール固定具146、回転軸147、駆動装置等からなる回転機構への負担を小さくできる。
〔実施形態8〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔蛍光ホイール102d,102eの構成〕
図10Aは、本発明の実施形態8に係る光学素子としての蛍光ホイール102dの構成を示す平面図(xy平面)である。図10Bは、本発明の実施形態8に係る蛍光ホイールの構成を示すD-D’断面図(yz平面)である。図10Cは、本発明の実施形態8に係る変形例による蛍光ホイール102eの構成を示す平面図(xy平面)である。
図10Aは、本発明の実施形態8に係る光学素子としての蛍光ホイール102dの構成を示す平面図(xy平面)である。図10Bは、本発明の実施形態8に係る蛍光ホイールの構成を示すD-D’断面図(yz平面)である。図10Cは、本発明の実施形態8に係る変形例による蛍光ホイール102eの構成を示す平面図(xy平面)である。
低屈折率体33eは、密着層32kよりも屈折率が低い部材であり、蛍光を反射することができる。具体的には、蛍光ホイール102dにおいて、ホイール141aの表面の周方向に波長変換部148dが配置された領域の一部に、波長変換部148dを構成する蛍光体層31eおよび密着層32kに代えて低屈折率体33eが配置されている。蛍光ホイール102dは、ホイール141aの表面の全周に亘って一定間隔隔て波長変換部148dが存している。好ましい実施形態では、蛍光ホイール102dは、ホイール141aの表面の周方向に波長変換部148dが配置された領域において、ホイール141aの半径方向にわたって少なくとも一部に波長変換部148dが存している。また、図10Cに示す蛍光ホイール102eにおいては、ホイール141aの表面の周方向に蛍光体層31fおよび密着層32lを含む波長変換部148eが配置されており、波長変換部148eが配置された領域の一部に、蛍光体層31fおよび密着層32lに代えてドット状の低屈折率体33fが配置されている。
極座標を用いて換言すると、以下の通りである。ホイール141aの中心を原点(0)とし、当該原点から半径方向の距離をrとし、偏角をθとすることにより、ホイール141aの表面の周方向に波長変換部148d、148eが配置された領域を(r,θ)という極座標により特定する。このとき、任意の偏角θにおいて波長変換部148d、148eが配置された最近位点(rmin,θ)から最遠位点(rmax,θ)の間の一部に少なくとも波長変換部148d、148eが存している。当該構成を満たしていれば、低屈折率体は、図10Aに示す低屈折率体33eのようなスリット状であっても、図10Cに示す低屈折率体33fのようなドット状であってもよい。
当該構成であることにより、ホイール141aの励起光照射領域外に導光する蛍光が低屈折率体33e、33fによって反射されるため、励起光照射スポットの近傍でのみ蛍光を取り出すことができる。結果的に多くの光が同一の領域で出射されるため、照射スポット近傍で高輝度の蛍光ホイールを得ることができる。
蛍光ホイール102dにおいては、図10Bに示すように、蛍光体層31eおよび密着層32kに代えて配置された低屈折率体33eが、代替された蛍光体層31eと密着層32kとの積層の高さと同じ高さを有することが好ましい。当該構成であることにより、上述した効果をより高めることができる。
蛍光ホイール102dは、θの変化に伴い最近位点(rmin,θ1)から最遠位点(rmax,θ2)にわたって連続的に波長変換部148dが低屈折率体33eに代替され、θがθ1からθ2に連続的に変化する(θ1≠θ2)ことが好ましい。当該構成であることにより、上述した効果をより高めることができる。
低屈折率体33eは、空気からなることが好ましい。当該構成であることにより、より安価に蛍光ホイールを製造することができる。
なお、本実施形態の蛍光体層および密着層が配置された領域の一部に代えて低屈折率体を配置する構成は、実施形態6の蛍光ホイール102b(図8A、図8B参照)や実施形態7の蛍光ホイール102c(図9A、図9B参照)にも適用可能である。
次に、本発明の実施形態による光学装置につき、光源装置、車両用前照灯具および投影装置を例に、実施形態9~12として説明する。
〔実施形態9〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔光源装置140の構成〕
図11Aは、本発明の実施形態9に係る光学装置としての光源装置の構成を示す概略図である。図1Bは、本発明の実施形態9に係る光源装置の光源モジュールの構成を示す側面図(xz平面)である。図11Cは、本発明の実施形態9に係る光源装置の光源モジュールの別の構成を示す側面図(xz平面)である。
図11Aは、本発明の実施形態9に係る光学装置としての光源装置の構成を示す概略図である。図1Bは、本発明の実施形態9に係る光源装置の光源モジュールの構成を示す側面図(xz平面)である。図11Cは、本発明の実施形態9に係る光源装置の光源モジュールの別の構成を示す側面図(xz平面)である。
光源装置140は、蛍光ホイール102a(図7A、図7B参照)と、蛍光ホイール102aを回転させる駆動装置142と、波長変換部148aに励起光14を照射する光源13とを備えている。光源装置140は、蛍光ホイール102aの回転に伴い、少なくとも蛍光ホイール102aの表面の周方向に配置された波長変換部148aの蛍光体層31bに励起光14が入射した際に、蛍光117を出射する。
光源装置140は、好ましくはプロジェクターなどに用いられる。光源装置140では、光源13は、波長変換部148aの蛍光体層31を励起する波長の励起光14を出射する青色レーザ光源であるのが好ましい。好ましい実施形態では、YAG、LuAG等の蛍光体を励起する青色レーザダイオードが用いられる。波長変換部148aの蛍光体層31を照射する励起光14は、光路上にてレンズ144a、144b、144cを通過することができる。励起光14の光路上にミラー145が配置されてもよい。ミラー145はダイクロイックミラーであるのが好ましい。
図11Bに示すように、蛍光ホイール102aはホイール固定具146によって、駆動装置142の回転軸147に固定される。駆動装置142は好ましくはモータであり、モータの回転シャフトである回転軸147にホイール固定具146によって固定された蛍光ホイール102aがモータの回転に伴い回転する。
蛍光ホイール102aの表面上の周辺部に配置された波長変換部148aが、励起光を受けて蛍光117を出射し、ミラー145を透過して蛍光を出射する。波長変換部148aは、蛍光ホイール102aの回転に伴い回転するため随時回転しながら、蛍光117を出射する。
光源モジュールは、図11Bに示す光源モジュールにおける蛍光ホイール102aの代わりに、図11Cに示すように、蛍光ホイール102b(図8A、図8B参照)を用いて構成することも可能である。
図12A~図12Dは、本発明の実施形態9に係る光源装置140の蛍光ホイールの変形例102f~102iの構成を示す平面図(xy平面)である。図12A,図12C,図12Dに示すように、ホイールは、セグメントの一部を励起光14が透過する透過部143を備えたホイール141bとすることができる。好ましい実施形態では、透過部143はガラスからなることが好ましい。かかるセグメント構成とすることにより、励起光14を1つの蛍光ホイールで複数の波長に変換させることが可能となる。図12Aに示すように、緑色に相当する波長を蛍光発光する従来の蛍光体層12aを備えるセグメントと、黄色に相当する波長を蛍光発光する蛍光体層31gと密着層32mとを備えるセグメントとに分割した蛍光ホイール102fとしてもよい。また、図12Bに示すように、緑色に相当する波長を蛍光発光する蛍光体層31hと密着層32mとを備えるセグメントと、黄色に相当する波長を蛍光発光する従来の蛍光体層12bを備えるセグメントとに分割した蛍光ホイール102gとしてもよい。また、図12Cに示すように、緑色に相当する波長を蛍光発光する蛍光体層31hと、黄色に相当する波長を蛍光発光する蛍光体層31gとに分割し、蛍光体層31g及び蛍光体層31hを密着させる密着層32nを備える蛍光ホイール102hとしてもよい。また、図12Dに示すように、緑色に相当する波長を蛍光発光する蛍光体層31hと、黄色に相当する波長を蛍光発光する蛍光体層31gと、赤色に相当する波長を蛍光発光する蛍光体層31iとに分割し、蛍光体層31g、蛍光体層31h、および蛍光体層31iを密着させる密着層32oを備える蛍光ホイール102iとしてもよい。蛍光ホイールを周方向に複数のセグメントに分割し、蛍光体をセグメント毎に塗り分けることにより、外部量子収率を高い水準に維持することが可能となる。これにより、明るさを維持しつつ様々な色を作り出すことができる。
図12A~図12Dに示す蛍光ホイール102ef~102iそれぞれにおける蛍光体層および密着層の構成は、図11Bに示す蛍光体層および密着層の構成としても、図11Cに示す蛍光体層および密着層の構成としてもよい。
〔実施形態10〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔光源装置80の構成〕
図13は、本発明の実施形態10に係る光学装置としての光源装置80の構成を示す概略図である。光源装置80は、蛍光体層と密着層とを含む光学素子81と、光学素子81に励起光14を照射する光源13と、光学素子81から出射した蛍光117を反射させる反射面を有するリフレクタ111とを備えている。リフレクタ111の反射面は、入射した光を一定方向に平行に出射するように反射させる形状を有している。
図13は、本発明の実施形態10に係る光学装置としての光源装置80の構成を示す概略図である。光源装置80は、蛍光体層と密着層とを含む光学素子81と、光学素子81に励起光14を照射する光源13と、光学素子81から出射した蛍光117を反射させる反射面を有するリフレクタ111とを備えている。リフレクタ111の反射面は、入射した光を一定方向に平行に出射するように反射させる形状を有している。
光源装置80は好ましくは反射型車両用前照灯具(レーザヘッドライト)である。光源13は、光学素子81の蛍光体層を励起する波長の励起光14を出射する青色レーザ光源であるのが好ましい。リフレクタ111は、半放物面ミラーから構成されるのが好ましい。放物面をxy平面に平行に上下に2分割して半放物面とし、その内面はミラーになっているのが好ましい。リフレクタ111には励起光14が通過する透孔がある。光学素子81は、青色の励起光14によって励起され、可視光の長波長域(黄色波長)の蛍光117を発する。また、励起光14は、光学素子81の表面にて反射され、拡散反射光118ともなる。光学素子81は、放物面の焦点の位置に配置される。光学素子81が、放物面ミラーの焦点の位置にあるので、光学素子81から出射された蛍光117、拡散反射光118はリフレクタ111へ向い、その表面にて反射すると、一様に出射面112に直進する。蛍光117と拡散反射光118とが混ざり合った白色光が平行光として出射面112から出射する。
実施形態10では、光学素子81として、上記実施形態1~4の光学素子101a~101kを採用することができる。
〔実施形態11〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔光源装置90の構成〕
図14は、本発明の実施形態11に係る光学装置としての光源装置90の構成を示す概略図である。光源装置90は、光学素子92と、光学素子92に励起光14を照射する光源13とを備えている。光源13は、透過性基板91を介して第1の面に励起光14を照射する。蛍光体層は、第2の面から蛍光を出射する。リフレクタ111で反射された光は平行光線として出射面112から出射する。
図14は、本発明の実施形態11に係る光学装置としての光源装置90の構成を示す概略図である。光源装置90は、光学素子92と、光学素子92に励起光14を照射する光源13とを備えている。光源13は、透過性基板91を介して第1の面に励起光14を照射する。蛍光体層は、第2の面から蛍光を出射する。リフレクタ111で反射された光は平行光線として出射面112から出射する。
本発明の実施形態11では、透過性基板91をヒートシンク構造とすることが好ましい。別の好ましい実施形態では、透過性基板91を透過性ヒートシンク(図示せず)と固定接触させることで冷却することもできる。
かかる光源装置90は、透過型レーザヘッドライト(車両用前照灯)への実装が好ましい(特許文献2(国際公開第2014/203484号))。特許文献3(特開2012-119193号公報)に開示されているように、透過性のヒートシンク基板に蛍光膜が堆積している場合、ヒートシンク側から励起光が入射すると、ヒートシンク側は放熱性が高いとことが知られている。
実施形態11では、光学素子92として、上記実施形態1~4の光学素子101a~101kを採用することができる。
〔実施形態10〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
〔投影装置の構成〕
図15は、本発明の実施形態12に係る光学装置としての投影装置の構成を示す概略図である。投影装置100は、光源装置と、蛍光ホイールの回転位置を取得する回転位置センサ103と、回転位置センサ103からの出力情報に基づいて光源13を制御する光源制御部104と、表示素子107と、光源装置からの光を表示素子107まで導光する光源側光学系106と、表示素子107からの投影光をスクリーンに投影する投影側光学系108とを備えている。投影装置100は、回転位置センサ103により取得された蛍光ホイールの回転位置の情報により光源13の出力を制御する。光源装置は、光源13から出射された励起光が通過する周方向の少なくとも一部に、光学素子が周方向に複数セグメントに分割されて配置された蛍光ホイールを備えていればよく、上述した光源装置140であってもよい。
図15は、本発明の実施形態12に係る光学装置としての投影装置の構成を示す概略図である。投影装置100は、光源装置と、蛍光ホイールの回転位置を取得する回転位置センサ103と、回転位置センサ103からの出力情報に基づいて光源13を制御する光源制御部104と、表示素子107と、光源装置からの光を表示素子107まで導光する光源側光学系106と、表示素子107からの投影光をスクリーンに投影する投影側光学系108とを備えている。投影装置100は、回転位置センサ103により取得された蛍光ホイールの回転位置の情報により光源13の出力を制御する。光源装置は、光源13から出射された励起光が通過する周方向の少なくとも一部に、光学素子が周方向に複数セグメントに分割されて配置された蛍光ホイールを備えていればよく、上述した光源装置140であってもよい。
例えば、図12Dのように蛍光ホイール102iのセグメントの一部に透過部143を設けた場合、青色発光の励起光14は透過部143を介して蛍光ホイール102iを透過する。波長変換部148iに照射した励起光14は、光路上にてミラー109a~109cおよび光源側光学系106を経由することができる。光源側光学系106はダイクロイックミラーであるのが好ましい。好ましいダイクロイックミラーは、45度で入射した青色の光は反射させ、赤色および緑色の光は透過させることができる。
より詳細に検討すると、上記光学特性を備えたダイクロイックミラーを光源側光学系106に採用することにより、ダイクロイックミラーに入射する励起光14による青色の光は反射されて蛍光ホイール102iに向けられる。蛍光ホイール102iの回転のタイミングにより、青色の光は透過部143を介して蛍光ホイール102iを透過する。蛍光ホイール102iの回転のタイミングにより、透過部143以外のセグメントに照射された励起光14は、波長変換部148iを照射し、蛍光体層31g~31iを蛍光発光させる。セグメント毎に蛍光体層31hでは緑色波長帯域の蛍光が発光され、蛍光体層31gでは黄色波長帯域の蛍光が発光され、蛍光体層31iでは赤色波長帯域の蛍光が発光される。蛍光発光された緑色、黄色および赤色の光は、ダイクロイックミラーを透過して表示素子107に入射する。透過部143を透過した青色の光は、ミラー109a~109cを介して再度ダイクロイックミラーに入射し、ダイクロイックミラーで再度反射されて表示素子107に入射する。
好ましい実施形態では、プロジェクタ(投影装置100)は、光源モジュール101と、表示素子107と、光源側光学系106(ダイクロイックミラー)と、投影側光学系108と、を備えることができる。ここで、光学モジュール101としては、例えば、図10Bに示した蛍光ホイール102aと駆動装置142とを含む光源モジュールや、図10Cに示した蛍光ホイール102bと駆動装置142とを含む光源モジュールを用いることができる。光源側光学系106(ダイクロイックミラー)は、光源モジュール101からの光を上記表示素子107まで導光し、投影側光学系108は、上記表示素子107からの投影光をスクリーン等に投影することができる。好ましい実施形態では、表示素子107はDMD(デジタルミラーデバイス)であるのが好ましい。投影側光学系108は投影部レンズの組み合わせからなるのが好ましい。
〔まとめ〕
本発明の態様1に係る光学素子は、下位層(11)に面して配置された蛍光体層(31a~31k)と、前記蛍光体層(31a~31i)を前記下位層(11)に密着させる密着層(32a~32o)と、を備え、前記蛍光体層(31a~31i)は、無機バインダと、前記無機バインダ内に分散した蛍光体粒子とを含み、前記密着層(32a~32o)は、有機バインダを含み、前記蛍光体層(31a~31k)は、前記下位層(11)に面する第1の面と、前記第1の面と対向する第2の面と、前記第1の面と前記第2の面とを接続する側面と、を有し、前記密着層(32a~32o)は、前記第2の面と、前記側面と、前記下位層の表面とを接続して前記蛍光体層(31a~31i)を前記下位層(11)に密着させる構成である。
本発明の態様1に係る光学素子は、下位層(11)に面して配置された蛍光体層(31a~31k)と、前記蛍光体層(31a~31i)を前記下位層(11)に密着させる密着層(32a~32o)と、を備え、前記蛍光体層(31a~31i)は、無機バインダと、前記無機バインダ内に分散した蛍光体粒子とを含み、前記密着層(32a~32o)は、有機バインダを含み、前記蛍光体層(31a~31k)は、前記下位層(11)に面する第1の面と、前記第1の面と対向する第2の面と、前記第1の面と前記第2の面とを接続する側面と、を有し、前記密着層(32a~32o)は、前記第2の面と、前記側面と、前記下位層の表面とを接続して前記蛍光体層(31a~31i)を前記下位層(11)に密着させる構成である。
本発明の態様2に係る光学素子は、上記の態様1において、前記下位層(11)が、基板を含む1以上の層から構成される構成としてもよい。
本発明の態様3に係る光学素子は、上記の態様1または2において、前記密着層(32a~32o)が、前記第2の面の全領域を被覆している構成としてもよい。
本発明の態様4に係る光学素子は、上記の態様1または2において、前記密着層(32a~32o)が、前記第2の面の全領域および前記側面の全領域と面するように前記蛍光体層(31a~31i)を被覆している構成としてもよい。
本発明の態様5に係る光学素子は、上記の態様1~4の何れかにおいて、前記密着層(32a~32o)が、前記下位層(11)および前記蛍光体層(31a~31i)と密着していない外面を有し、前記密着層(32a~32o)の外面が、凸状の曲面形状である構成としてもよい。
本発明の態様6に係る光学素子は、上記の態様1または2において、前記第2の面の一部が前記密着層(32a~32o)から露出している構成としてもよい。
本発明の態様7に係る光学素子は、上記の態様1~6の何れかにおいて、前記下位層(11)がホイール(141a、141b)であり、光源から出射された励起光が通過する前記ホイールの表面の周方向の少なくとも一部に、前記蛍光体層および前記密着層(32a~32o)が配置されている構成としてもよい。
本発明の態様8に係る光学素子は、上記の態様7において、前記密着層(32a~32o)が、前記蛍光体層(31a~31i)の内側の側面および前記第2の面の端部のみを被覆している構成としてもよい。
本発明の態様9に係る光学素子は、上記の態様7において、前記ホイール(141a、141b)の表面の周方向に前記蛍光体層(31a~31i)および前記密着層(32a~32o)が配置された領域の一部に、前記密着層よりも屈折率が低い低屈折率体(33a~33f)が配置され、前記ホイールの表面の周方向に前記蛍光体層および前記密着層が配置された領域において、前記ホイール(141a、141b)の半径方向にわたって少なくとも一部に前記蛍光体層および前記密着層が存する構成としてもよい。
本発明の態様10に係る光学素子は、上記の態様9において、前記蛍光体層(31a~31i)および前記密着層(32a~32o)に代えて配置された前記低屈折率体(33a~33f)が、代替された蛍光体層と前記密着層との積層の高さと同じ高さを有する構成としてもよい。
本発明の態様11に係る光学素子は、上記の態様9または10において、前記ホイール(141a、141b)の中心を原点(0)とし、当該原点から半径方向の距離をrとし、偏角をθとすることにより、前記ホイール(141a、141b)の表面の周方向に前記光学素子が配置された領域を(r,θ)という極座標により特定し、θの変化に伴い最近位点(rmin,θ1)から最遠位点(rmax,θ2)にわたって連続的に前記蛍光体層(31a~31i)および前記密着層(32a~32o)が前記低屈折率体(33a~33f)に代替され、θがθ1からθ2に連続的に変化する(θ1≠θ2)構成としてもよい。
本発明の態様12に係る光学素子は、上記の態様9~11の何れかにおいて、前記低屈折率体(33a~33f)が空気からなる構成としてもよい。
本発明の態様13に係る光学装置は、上記の態様1~12の何れかに記載の光学素子と、前記蛍光体層(31a~31i)に励起光を照射するレーザまたはLEDを備える構成としてもよい。
本発明の態様14に係る光学装置は、上記の態様7~12の何れかに記載の光学素子と、前記ホイールを回転させる駆動装置(142)と、前記光学素子に励起光を照射する光源(13)と、を備え、前記ホイールの回転に伴い、少なくとも前記ホイールの表面の周方向に配置された前記光学素子の前記蛍光体層(31a~31i)に励起光が入射した際に、蛍光を出射する構成としてもよい。
本発明の態様15に係る光学装置は、上記の態様1~6の何れかに記載の光学素子と、前記光学素子に励起光を照射する光源(13)と、前記光学素子から出射した蛍光を反射させる反射面を有するリフレクタ(111)と、を備えた構成としてもよい。
本発明の態様16に係る光学装置は、前記下位層(11)が透過性基板(91)である上記の態様1~6の何れかに記載の光学素子と、前記光学素子に励起光を照射する光源(13)と、を備え、前記光源(13)が、前記透過性基板(91)を介して前記第1の面に励起光を照射し、前記蛍光体層(31a~31i)が、前記第2の面から蛍光を出射する構成としてもよい。
本発明の態様17に係る光学装置は、上記の態様14に記載の光源装置と、表示素子(107)と、前記蛍光体層からの前記蛍光を前記表示素子(107)まで導光する光源側光学系(106)と、前記表示素子(107)からの投影光をスクリーンに投影する投影側光学系と、を備える構成としてもよい。
本発明の態様18に係る光学装置は、上記の態様14において、前記蛍光体層(31a~31i)および前記密着層(32a~32o)が、光源(13)から出射された励起光が通過する前記ホイールの表面の周方向の少なくとも一部に、周方向に複数セグメントに分割されて配置され、前記ホイールの回転位置を取得する回転位置センサ(103)と、前記回転位置センサ(103)からの出力情報に基づいて光源(13)を制御する光源制御部(104)と、表示素子(107)と、前記光源装置からの光を前記表示素子(107)まで導光する光源側光学系(106)と、前記表示素子(107)からの投影光をスクリーンに投影する投影側光学系(108)と、をさらに備え、前記回転位置センサ(103)により取得された前記ホイールの回転位置の情報により光源(13)の出力を制御する構成としてもよい。
本発明の態様19に係る光学素子は、上記の態様1~6の何れかにおいて、前記密着層よりも屈折率が低い低屈折率体をさらに備える構成としてもよい。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
Claims (18)
- 下位層に面して配置された蛍光体層と、前記蛍光体層を前記下位層に密着させる密着層と、を備え、
前記蛍光体層は、無機バインダと、前記無機バインダ内に分散した蛍光体粒子とを含み、
前記密着層は、有機バインダを含み、
前記蛍光体層は、前記下位層に面する第1の面と、前記第1の面と対向する第2の面と、前記第1の面と前記第2の面とを接続する側面と、を有し、
前記密着層は、前記第2の面と、前記側面と、前記下位層の表面とを接続して前記蛍光体層を前記下位層に密着させることを特徴とする光学素子。 - 前記下位層が、基板を含む1以上の層から構成されることを特徴とする請求項1に記載の光学素子。
- 前記密着層が、前記第2の面の全領域を被覆していることを特徴とする請求項1または2に記載の光学素子。
- 前記密着層が、前記第2の面の全領域および前記側面の全領域と面するように前記蛍光体層を被覆していることを特徴とする請求項1または2に記載の光学素子。
- 前記密着層が、前記下位層および前記蛍光体層と密着していない外面を有し、
前記密着層の外面が、凸状の曲面形状であることを特徴とする請求項1~4の何れか一項に記載の光学素子。 - 前記第2の面の一部が前記密着層から露出していることを特徴とする請求項1または2に記載の光学素子。
- 前記下位層がホイールであり、
光源から出射された励起光が通過する前記ホイールの表面の周方向の少なくとも一部に、前記蛍光体層および前記密着層が配置されていることを特徴とする請求項1~6の何れか一項に記載の光学素子。 - 前記密着層が、前記蛍光体層の内側の側面および前記第2の面の端部のみを被覆していることを特徴とする請求項7に記載の光学素子。
- 前記ホイールの表面の周方向に前記蛍光体層および前記密着層が配置された領域の一部に、前記密着層よりも屈折率が低い低屈折率体が配置され、
前記ホイールの表面の周方向に前記蛍光体層および前記密着層が配置された領域において、前記ホイールの半径方向にわたって少なくとも一部に前記蛍光体層および前記密着層が存することを特徴とする請求項7に記載の光学素子。 - 前記蛍光体層および前記密着層に代えて配置された前記低屈折率体が、代替された蛍光体層と前記密着層との積層の高さと同じ高さを有することを特徴とする請求項9に記載の光学素子。
- 前記ホイールの中心を原点(0)とし、当該原点から半径方向の距離をrとし、偏角をθとすることにより、前記ホイールの表面の周方向に前記光学素子が配置された領域を(r,θ)という極座標により特定し、
θの変化に伴い最近位点(rmin,θ1)から最遠位点(rmax,θ2)にわたって連続的に前記蛍光体層および前記密着層が前記低屈折率体に代替され、θがθ1からθ2に連続的に変化する(θ1≠θ2)ことを特徴とする請求項9または10に記載の光学素子。 - 前記低屈折率体が空気からなることを特徴とする請求項9~11の何れか一項に記載の光学素子。
- 請求項1~12の何れか一項に記載の光学素子と、
前記蛍光体層に励起光を照射するレーザまたはLEDを備えることを特徴とする光学装置。 - 請求項7~12の何れか一項に記載の光学素子と、
前記ホイールを回転させる駆動装置と、
前記光学素子に励起光を照射する光源と、
を備え、
前記ホイールの回転に伴い、少なくとも前記ホイールの表面の周方向に配置された前記光学素子の前記蛍光体層に励起光が入射した際に、蛍光を出射することを特徴とする光学装置。 - 請求項1~6の何れか一項に記載の光学素子と、
前記光学素子に励起光を照射する光源と、
前記光学素子から出射した蛍光を反射させる反射面を有するリフレクタと、
を備え、
前記リフレクタの反射面が、入射した光を一定方向に平行に出射するように反射させる形状を有することを特徴とする光学装置。 - 前記下位層が透過性基板である請求項1~6の何れか一項に記載の光学素子と、
前記光学素子に励起光を照射する光源と、
を備え、
前記光源が、前記透過性基板を介して前記第1の面に励起光を照射し、
前記蛍光体層が、前記第2の面から蛍光を出射することを特徴とする光学装置。 - 表示素子と、
前記蛍光体層からの前記蛍光を前記表示素子まで導光する光源側光学系と、
前記表示素子からの投影光をスクリーンに投影する投影側光学系と、
を備えることを特徴とする請求項14に記載の光学装置。 - 前記蛍光体層および前記密着層が、光源から出射された励起光が通過する前記ホイールの表面の周方向の少なくとも一部に、周方向に複数セグメントに分割されて配置され、
前記ホイールの回転位置を取得する回転位置センサと、
前記回転位置センサからの出力情報に基づいて光源を制御する光源制御部と、
表示素子と、
前記光源装置からの光を前記表示素子まで導光する光源側光学系と、
前記表示素子からの投影光をスクリーンに投影する投影側光学系と、
をさらに備え、
前記回転位置センサにより取得された前記ホイールの回転位置の情報により光源の出力を制御することを特徴とする請求項14に記載の光学装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980069899.3A CN112955818A (zh) | 2018-10-22 | 2019-10-17 | 光学元件以及光学装置 |
US17/287,963 US11506360B2 (en) | 2018-10-22 | 2019-10-17 | Optical element and optical device |
JP2020553298A JPWO2020085204A1 (ja) | 2018-10-22 | 2019-10-17 | 光学素子および光学装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-198686 | 2018-10-22 | ||
JP2018198686 | 2018-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085204A1 true WO2020085204A1 (ja) | 2020-04-30 |
Family
ID=70332077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/040939 WO2020085204A1 (ja) | 2018-10-22 | 2019-10-17 | 光学素子および光学装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11506360B2 (ja) |
JP (1) | JPWO2020085204A1 (ja) |
CN (1) | CN112955818A (ja) |
WO (1) | WO2020085204A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024043010A1 (ja) * | 2022-08-23 | 2024-02-29 | パナソニックIpマネジメント株式会社 | 蛍光体ホイール、光源装置、投写型映像表示装置及び蛍光体ホイールの製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115210888A (zh) * | 2020-03-18 | 2022-10-18 | 夏普株式会社 | 波长转换元件以及光学设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013016268A (ja) * | 2011-06-30 | 2013-01-24 | Sharp Corp | 発光装置 |
JP2013120713A (ja) * | 2011-12-08 | 2013-06-17 | Stanley Electric Co Ltd | 発光板、光源装置、照明装置、発光板の製造方法 |
JP2013149421A (ja) * | 2012-01-18 | 2013-08-01 | Olympus Corp | 照明装置 |
JP2014157698A (ja) * | 2013-02-15 | 2014-08-28 | Ushio Inc | 蛍光光源装置 |
JP2016012116A (ja) * | 2014-06-02 | 2016-01-21 | カシオ計算機株式会社 | 光源装置及び投影装置 |
JP2016186850A (ja) * | 2015-03-27 | 2016-10-27 | セイコーエプソン株式会社 | 波長変換素子、光源装置及びプロジェクター |
JP2017083581A (ja) * | 2015-10-26 | 2017-05-18 | セイコーエプソン株式会社 | 波長変換装置、照明装置およびプロジェクター |
JP2017173370A (ja) * | 2016-03-18 | 2017-09-28 | セイコーエプソン株式会社 | 波長変換素子、照明装置およびプロジェクター |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4898332B2 (ja) * | 2005-09-15 | 2012-03-14 | セイコーインスツル株式会社 | 表示装置 |
JP5418762B2 (ja) * | 2008-04-25 | 2014-02-19 | ソニー株式会社 | 発光装置および表示装置 |
JP2011124002A (ja) * | 2009-12-08 | 2011-06-23 | Stanley Electric Co Ltd | 光源装置および照明装置 |
JP5703531B2 (ja) * | 2011-03-23 | 2015-04-22 | スタンレー電気株式会社 | 車両用灯具 |
JP5935067B2 (ja) * | 2013-10-10 | 2016-06-15 | パナソニックIpマネジメント株式会社 | 波長変換板、およびそれを用いた照明装置 |
US10824065B2 (en) * | 2014-11-12 | 2020-11-03 | Sony Corporation | Light source apparatus, image display apparatus, and optical unit |
WO2016121721A1 (ja) * | 2015-01-28 | 2016-08-04 | コニカミノルタ株式会社 | 波長変換部材及び画像形成装置 |
JP6775176B2 (ja) | 2015-03-13 | 2020-10-28 | パナソニックIpマネジメント株式会社 | 蛍光体ホイール及びそれを用いた光源装置並びに光投影装置 |
US10047929B2 (en) * | 2015-09-16 | 2018-08-14 | James Redpath | System and method of generating perceived white light |
US10146114B2 (en) * | 2016-06-13 | 2018-12-04 | Panasonic Intellectual Property Management Co., Ltd. | Projection display apparatus |
EP3282000A1 (en) * | 2016-08-11 | 2018-02-14 | Avantama AG | Solid polymer composition |
DE102016116744A1 (de) * | 2016-09-07 | 2018-03-08 | Osram Opto Semiconductors Gmbh | Strahlungsemittierendes Bauelement |
US10288992B2 (en) * | 2017-02-16 | 2019-05-14 | Delta Electronics, Inc. | Laser light source for projector and laser projection device |
EP3940038B1 (en) * | 2019-06-17 | 2024-01-31 | Avantama AG | Luminescent component |
-
2019
- 2019-10-17 JP JP2020553298A patent/JPWO2020085204A1/ja active Pending
- 2019-10-17 WO PCT/JP2019/040939 patent/WO2020085204A1/ja active Application Filing
- 2019-10-17 US US17/287,963 patent/US11506360B2/en active Active
- 2019-10-17 CN CN201980069899.3A patent/CN112955818A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013016268A (ja) * | 2011-06-30 | 2013-01-24 | Sharp Corp | 発光装置 |
JP2013120713A (ja) * | 2011-12-08 | 2013-06-17 | Stanley Electric Co Ltd | 発光板、光源装置、照明装置、発光板の製造方法 |
JP2013149421A (ja) * | 2012-01-18 | 2013-08-01 | Olympus Corp | 照明装置 |
JP2014157698A (ja) * | 2013-02-15 | 2014-08-28 | Ushio Inc | 蛍光光源装置 |
JP2016012116A (ja) * | 2014-06-02 | 2016-01-21 | カシオ計算機株式会社 | 光源装置及び投影装置 |
JP2016186850A (ja) * | 2015-03-27 | 2016-10-27 | セイコーエプソン株式会社 | 波長変換素子、光源装置及びプロジェクター |
JP2017083581A (ja) * | 2015-10-26 | 2017-05-18 | セイコーエプソン株式会社 | 波長変換装置、照明装置およびプロジェクター |
JP2017173370A (ja) * | 2016-03-18 | 2017-09-28 | セイコーエプソン株式会社 | 波長変換素子、照明装置およびプロジェクター |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024043010A1 (ja) * | 2022-08-23 | 2024-02-29 | パナソニックIpマネジメント株式会社 | 蛍光体ホイール、光源装置、投写型映像表示装置及び蛍光体ホイールの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210372593A1 (en) | 2021-12-02 |
US11506360B2 (en) | 2022-11-22 |
JPWO2020085204A1 (ja) | 2021-10-07 |
CN112955818A (zh) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8919976B2 (en) | Light source device and lighting device | |
JP5818778B2 (ja) | リモートルミネセンス材料を用いた照明デバイス | |
KR101639788B1 (ko) | 컬러 조절 장치 | |
JP6883783B2 (ja) | 蛍光体ホイール、及び、照明装置 | |
US9885813B2 (en) | Projection apparatus | |
JP5285038B2 (ja) | 投光構造体および照明装置 | |
JP6271216B2 (ja) | 発光ユニットおよび照明装置 | |
JP7235944B2 (ja) | 発光装置及び発光装置の製造方法 | |
JP6777077B2 (ja) | 光源装置および投射型表示装置 | |
JP2018206819A (ja) | 発光装置及びその製造方法 | |
JPWO2017077739A1 (ja) | 発光体、発光装置、照明装置、および発光体の製造方法 | |
JP2021530727A (ja) | 蛍光体照明システムのための反射色補正 | |
WO2020085204A1 (ja) | 光学素子および光学装置 | |
KR101917703B1 (ko) | 형광체 모듈 | |
JP5797045B2 (ja) | 発光装置、車両用前照灯および照明装置 | |
WO2020162357A1 (ja) | 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置 | |
WO2019230935A1 (ja) | 波長変換素子、光源装置、車両用前照灯具、表示装置、光源モジュール、投影装置 | |
JP2017025167A (ja) | 発光体、光源装置および照明装置 | |
JP2013171623A (ja) | 光源装置および照明装置 | |
WO2022118558A1 (ja) | 蛍光発光モジュール及び発光装置 | |
WO2020090663A1 (ja) | 光学素子、蛍光ホイール、光源装置、車両用前照灯具、および投影装置 | |
JP6266796B2 (ja) | 発光装置、照明装置、スポットライト、車両用前照灯、および内視鏡 | |
JP6818149B2 (ja) | 蛍光ホイール、光源装置、および投影装置 | |
JP6072447B2 (ja) | 照明装置及び車両用前照灯 | |
JP2022089745A (ja) | 蛍光発光モジュール及び発光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19876524 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020553298 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19876524 Country of ref document: EP Kind code of ref document: A1 |