WO2020085282A1 - Method for producing phenolic resin - Google Patents
Method for producing phenolic resin Download PDFInfo
- Publication number
- WO2020085282A1 WO2020085282A1 PCT/JP2019/041266 JP2019041266W WO2020085282A1 WO 2020085282 A1 WO2020085282 A1 WO 2020085282A1 JP 2019041266 W JP2019041266 W JP 2019041266W WO 2020085282 A1 WO2020085282 A1 WO 2020085282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- activated carbon
- resin
- nylon
- carbon adsorbent
- phenol
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/04—Condensation polymers of aldehydes or ketones with phenols only
- C08L61/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
Definitions
- the present invention relates to a method for producing a phenolic resin, and in particular, by improving the composition of the phenolic resin for producing an activated carbon adsorbent, carbonizing the phenolic resin to improve the performance of the activated carbon adsorbent obtained by activation. And a method for producing a phenol resin capable of
- activated carbon is highly hydrophobic and is not suitable for adsorbing low molecular weight ionic organic compounds such as indoxyl sulfate, DL- ⁇ -aminoisobutyric acid and tryptophan, which are represented by uremic causative substances and their precursors. The problem is included.
- an anti-nephrotic agent composed of activated carbon obtained by forming a spherical resin compound by using wood, petroleum-based or coal-based pitches etc. as a raw material Syndrome agents have been reported (see, for example, Patent Document 3).
- the above-mentioned activated carbon is prepared by carbonizing and activating the petroleum hydrocarbon (pitch) or the like as a raw material to have a relatively uniform particle size.
- an adsorbent for oral administration has been reported in which the particle size of activated carbon itself is made relatively uniform and the distribution of pore volume and the like in the activated carbon is attempted to be adjusted (see Patent Document 4).
- the medicinal activated carbon has a relatively uniform particle size, which improves the fluidity in the intestine, and at the same time, the pores are adjusted to improve the adsorption performance of the activated carbon. Therefore, it is taken in many patients with mild chronic renal failure.
- Medicinal activated carbon is required to adsorb substances that cause uremia and its precursors quickly and efficiently.
- the adjustment of the pores in the conventional medicinal activated carbon was not said to be good, and the adsorption performance was not stable. Therefore, the daily dose should be increased.
- chronic renal failure patients have limited water intake, swallowing with a small amount of water has been a great pain for patients.
- the gastrointestinal tract such as the stomach and small intestine, it is an environment in which various substances such as sugars, proteins and other compounds essential for physiological functions and enzymes secreted from the intestinal wall are mixed.
- a medicinal activated carbon adsorbent that rapidly adsorbs a toxic substance causing uremia and the like, particularly a nitrogen-containing compound, and excretes it out of the body with feces as it is has been desired.
- the inventor scrutinized the raw material of activated carbon adsorbent before carbonization and the development of pores.
- a phenol resin as a resin component that is a raw material of activated carbon and devising the composition of the resin, the pores of the activated carbon derived from resin carbide are suitably controlled, and the nitrogen-containing compound of low molecular weight can be quickly and We have found an activated carbon with a pore distribution suitable for efficient adsorption.
- the present invention has been made in view of the above points, in the phenol resin used for the production of the activated carbon adsorbent, by improving the composition of the phenol resin, to increase the proportion of macropores in the pores generated in the resin carbide.
- a method for producing a phenol resin for producing an activated carbon adsorbent capable of quickly and efficiently adsorbing a nitrogen-containing low molecular weight compound is provided.
- the first invention is a phenolic resin for activated carbon adsorbent production which is activated by carbonization to be an activated carbon adsorbent, and water-soluble nylon is added to phenol and melted to prepare a raw material.
- a phenol resin characterized by comprising a raw material preparing step and a resole adjusting step of preparing a nylon-containing resole resin containing nylon by heating while mixing formaldehyde, a basic catalyst and an emulsifier in the raw material. It relates to the manufacturing method.
- a second invention is a phenolic resin for producing an activated carbon adsorbent which is carbonized and activated to be an activated carbon adsorbent, wherein a raw material preparation step of adding nylon to phenol and melting it to prepare a raw material, Formaldehyde and a basic catalyst are added to a novolak resin synthesizing step of preparing a novolak resin component by heating formaldehyde, an acidic catalyst and an emulsifier while mixing the raw material, and formaldehyde and a basic catalyst in the solution obtained by the novolak resin synthesizing step. And a composite phenol resin adjusting step of adjusting the nylon-containing composite phenol resin also containing the novolak resin component by heating while mixing to synthesize a resol resin component, and a method for producing a phenol resin.
- a third invention relates to the method for producing a phenol resin according to the first or second invention, wherein the amount of the nylon added is 0.5 to 5 parts by weight with respect to 100 parts by weight of phenol.
- a fourth invention is an activated carbon adsorbent obtained from the nylon-containing resole resin of the first invention, which has a mercury pore volume (V1 M ) (g / mL) at 50 to 1000 nm represented by the following formula (i). ) mercury pore volume in the 7.5 ⁇ 1000nm (V2 M) ( g / mL) and the ratio of (R V) is, according to the activated carbon adsorbent, characterized in that 0.3 to 0.6.
- a fifth invention is a second activated carbon adsorbent obtained from the nylon-containing composite phenolic resin of the present invention, mercury pore volume (V1 M) in 50 ⁇ 1000 nm represented by the above formula (i) (g / (mL) and the mercury pore volume (V 2 M ) (g / mL) at 7.5 to 1000 nm (R V ) is 0.3 to 0.8. .
- a sixth invention is the oral method according to any one of the first to fifth inventions, wherein the activated carbon adsorbent is a therapeutic or prophylactic agent for orally administered renal disease or orally administered liver disease. It concerns adsorbents for administration.
- a phenol resin for producing an activated carbon adsorbent which is activated by carbonization to be an activated carbon adsorbent, wherein water-soluble nylon is applied to phenol and melted.
- a raw material preparing step of preparing a raw material and a resol adjusting step of preparing a nylon-containing resole resin containing nylon by heating while mixing the raw material with formaldehyde, a basic catalyst, and an emulsifier.
- the ratio of macropores in the pores generated in resin carbide can be increased by improving the resin composition in phenolic resin, and nitrogen-containing low molecular weight compounds can be quickly and efficiently prepared.
- a phenolic resin for producing an adsorbable activated carbon adsorbent can be obtained.
- a phenol resin for producing an activated carbon adsorbent which is activated by carbonization to be an activated carbon adsorbent.
- a novolak resin synthesis step of preparing a novolak resin component by heating formaldehyde to the raw material, while mixing an acidic catalyst and an emulsifier in the solution obtained by the novolak resin synthesis step, Formaldehyde and a basic catalyst are mixed and heated to synthesize a resole resin component and to have a composite phenol resin adjustment step of adjusting a nylon-containing composite phenol resin that also contains the novolac resin component.
- the carbonization of the resin is improved by improving the resin composition in the phenol resin. It is possible to increase the ratio of macropores in the pores occurring, nitrogen can be obtained phenolic resin to produce a rapidly adsorbable activated carbon adsorbent low molecular compound containing.
- the amount of the nylon added is 0.5 to 5 parts by weight with respect to 100 parts by weight of phenol.
- the resin is used as the activated carbon adsorbent, it is possible to prevent a decrease in packing density while increasing the ratio of macropores in the pores generated in the resin carbide.
- the activated carbon adsorbent obtained from the nylon-containing resole resin according to the first aspect of the invention has a mercury pore volume (50 to 1000 nm in formula (i)) V1 M) (g / mL) and the proportion of the mercury pore volume in the 7.5 ⁇ 1000nm (V2 M) ( g / mL) (R V) is from 0.3 to 0.6 nitrogen It is possible to make an activated carbon adsorbent capable of rapidly adsorbing a low molecular weight compound containing a.
- the activated carbon adsorbent obtained from the nylon-containing composite phenolic resin according to the second aspect has a mercury pore volume at 50 to 1000 nm represented by the formula (i). Since the ratio (R V ) of (V1 M ) (g / mL) and mercury pore volume (V2 M ) (g / mL) at 7.5 to 1000 nm is 0.3 to 0.8, A low-molecular compound containing nitrogen can be used as an activated carbon adsorbent capable of rapidly adsorbing.
- the adsorbent for activated carbon is a therapeutic or prophylactic agent for renal disease for oral administration or liver disease for oral administration. Therefore, it has a high effect of selectively adsorbing a causative substance of renal disease or liver disease, and is suitable as a therapeutic agent or preventive agent.
- the phenolic resin produced by the production method of the present invention is a phenolic resin used for producing an activated carbon adsorbent, and particularly a phenolic resin containing nylon.
- nylon By including nylon in the phenol resin, it is possible to obtain an activated carbon adsorbent capable of adsorbing nitrogen-containing low molecular weight compounds quickly and efficiently by increasing the ratio of macropores in the pores generated in resin carbide. .
- a process for synthesizing a phenol resin, particularly a resole resin, which is a starting material for an activated carbon adsorbent will be described with reference to the process chart of FIG.
- nylon is added to and mixed with phenol, which is the raw material for the phenolic resin, and dissolved in phenol to prepare it as the raw material (“raw material preparation process”).
- phenol resin to be subjected to the condensation reaction a novolac resin or a resole resin can be used, and it is preferable to use the resole resin from the viewpoint of moldability, hardness, and pore preparation.
- the resole resin has a higher packing density than the novolac resin, the use of an activated carbon adsorbent as a medicinal adsorbent reduces the dose volume and is useful because the burden on the patient can be reduced.
- a composite phenol resin in which a novolac resin and a resole resin are compounded is adopted.
- a composite phenol resin is useful because it improves the adsorption performance of the activated carbon adsorbent.
- nylon is preferably water-soluble nylon.
- the addition amount of nylon is preferably about 0.5 to 5 parts by weight with respect to 100 parts by weight of phenol.
- the carbonization step and the activation step if the amount is too small, the proportion of macropores in the pores generated in the resin carbide cannot be increased.
- an aromatic compound having a hydroxyl group is also used.
- aromatic compound having a hydroxyl group examples thereof include cresol (o-, m-, p-positions), p-phenylphenol, xylenol (2,5-, 3,5-), resorcinol and various bisphenols.
- aldehyde compounds are used instead of the formaldehyde used in the above process.
- examples include acetaldehyde, benzaldehyde, glyoxal, furfural and the like.
- An amine compound is used as the basic catalyst used in the synthesis of the resole resin.
- Amine compounds are often used in the synthesis of resole resin components and are suitable for obtaining a stable reaction.
- hexamethylenetetramine hexamine, 1,3,5,7-tetraazaadamantane
- triethylenetetramine N, N'-di (2-aminoethyl) ethylenediamine
- sodium hydroxide, magnesium hydroxide, sodium carbonate, ammonia and the like can be mentioned as the basic catalyst.
- the amount of basic catalyst added in the resol resin preparation step is 1 to 10% by weight based on the total amount charged in the step. The amount of addition depends on the type of basic catalyst.
- the activated carbon adsorbent adsorbs causative substances such as uremia while smoothly flowing in the oral cavity, esophagus, stomach, duodenum, small intestine and large intestine, and is excreted from the anus along with feces. Then, a particle size or spherical shape with less resistance is a desirable shape for the convenience of smooth flow in various digestive tracts. In view of this point, it is desirable that the resin is a granular material or a spherical material from the stage of resin before carbonization.
- an emulsifier is added in the resol resin preparation process.
- the resole resin prepared in the same step becomes a granular material or a spherical material due to dispersion by the action of the emulsifier.
- the emulsifier water-soluble polysaccharides such as hydroxyethyl cellulose and gum arabic (gum arabic) are used.
- the amount of the emulsifier added is 0.1 to 5% by weight based on the total amount charged in the resol resin preparation step. The amount may be adjusted depending on the type of emulsifier and the reaction conditions.
- emulsification progresses through heating and stirring during the resol resin preparation process, resulting in a granular or spherical resol (phenol) resin (phenol resin particles) in the reaction liquid. It is considered that the addition of the emulsifier increases the surface tension of the reaction liquid containing phenol and the like, and minute droplets are generated to promote spheroidization.
- the desired size of the phenolic resin is a granular or spherical material having an average particle diameter of 200 to 700 ⁇ m. The particle size in this range is a size that allows for the volume reduction associated with the firing of carbonization described below.
- the resulting activated carbon adsorbent has a size suitable for oral administration.
- the nylon-containing composite phenol resin is a composite phenol resin composed of a novolak resin containing nylon and a resole resin.
- nylon is applied to and mixed with granular phenol, which is a raw material of a phenol resin, and the nylon is dissolved in phenol to be prepared as a raw material (“raw material preparation step”). It is considered that the addition amount of nylon is preferably about 0.5 to 5 parts by weight with respect to 100 parts by weight of phenol as in the resol resin adjusting step according to FIG.
- nylon having water solubility was adopted, but the nylon in the raw material adjusting step for nylon-containing composite phenol resin shown in FIG. 2 was water-soluble nylon. Not limited to This is because nylon is dissolved in the generated novolac resin described later. Also in the prototype example described below, when normal (non-water-soluble) nylon was used, most of the nylon did not precipitate in the reaction medium water and the like, and the phenol resin contained nylon. .
- the phenols, alternative aromatic compounds, and alternative aldehyde compounds for formaldehyde used are the same as those described in the resole resin preparation step according to the process chart shown in FIG.
- An inorganic acid and an organic acid are used as the acidic catalyst.
- Oxalic acid was used in the prototype.
- Other examples of the acidic catalyst include carboxylic acids such as formic acid, dicarboxylic acids such as malonic acid, hydrochloric acid, sulfuric acid, phosphoric acid and the like.
- the phenol resin (nylon-containing resole resin and nylon-containing composite phenol resin) prepared from a series of steps becomes a resin carbide through the steps shown in the process chart of FIG. 3 after appropriate washing and drying.
- the phenol resin is stored in a firing furnace such as a cylindrical retort electric furnace, and the inside of the furnace is kept under an inert atmosphere of nitrogen, argon, helium or the like at 300 to 1000 ° C., preferably 450 to 700 ° C. for 1 to 20 hours.
- a firing furnace such as a cylindrical retort electric furnace
- nitrogen, argon, helium or the like at 300 to 1000 ° C., preferably 450 to 700 ° C. for 1 to 20 hours.
- carbonization step When it is carbonized, it becomes a resin carbide (“carbonization step”).
- the resin carbide is stored in a heating furnace such as a rotary type external heating furnace and steam activated at 750 to 1000 ° C., preferably 800 to 1000 ° C., and further 850 to 950 ° C. (“activation step”). )).
- the activation time is 0.5 to 50 hours, depending on the production scale, equipment, etc. Alternatively, activation of gas such as carbon dioxide is also used.
- the activated carbon adsorbent after activation is washed with dilute hydrochloric acid.
- the activated carbon adsorbent that has been washed with dilute hydrochloric acid is washed with water until the pH reaches 5 to 7, for example, by measuring the pH according to JIS K 1474 (2014).
- the activated carbon adsorbent After washing with dilute hydrochloric acid, the activated carbon adsorbent is heat-treated in a mixed gas of oxygen and nitrogen and washed with water, if necessary, to remove impurities such as ash. The residual hydrochloric acid and the like are removed by the heat treatment. Then, the amount of surface oxide of the activated carbon adsorbent is adjusted through each treatment. After the acid cleaning, the amount of surface oxides of the activated carbon adsorbent increases through the heat treatment of the activated resin carbide. The oxygen concentration during the treatment is 0.1 to 21% by volume. The heating temperature is 150 to 1000 ° C., preferably 400 to 800 ° C., and 15 minutes to 2 hours.
- the resin carbide (activated carbon adsorbent) after the activation treatment or after the heat treatment subsequent to the activation treatment is preferably selected by sieving into granular or spherical activated carbon having an average particle diameter of 150 to 500 ⁇ m.
- the adsorption rate of the activated carbon adsorbent can be made constant and the adsorption capacity can be stabilized.
- the range of particle diameter is not particularly limited, but if it is within the above range, swallowing by the patient (administrator) can be made smooth and the surface area of the activated carbon adsorbent can be secured.
- the particle diameters are made uniform, the adsorption performance in the digestive tract can be stabilized.
- the shape of the activated carbon of the adsorbent for oral administration is preferably spherical.
- granularity is also included because variations in sphericity due to manufacturing are also allowed.
- the phenol resin (resole resin) prepared through the raw material preparation step and the resole resin preparation step in the step shown in FIG. 1 contains nylon.
- Nylon is a thermoplastic resin and resol resin is a thermosetting resin. Therefore, when the phenol resin particles are exposed to the heating temperature in the carbonization step, the heat resistance, the melting temperature, the volatilization amount, etc. of the nylon and the resole resin in the phenol resin particles are different from each other. Then, it is considered that the carbonization of the phenol resin particles proceeds inhomogeneously rather than becoming uniform during the firing.
- the resin component is volatilized from the phenol resin particles by heating and baking during carbonization. It is expected that cracks, cracks, etc. will occur in the resin carbide through this volatilization. Therefore, it is considered that macropores (about 50 nm or more) relatively easily develop in the activated carbon adsorbent derived from the resin carbide of the phenol resin.
- the weight of volatile components is reduced, obviously. Therefore, the smaller the amount of volatile components, the more the amount of carbon in the activated carbon adsorbent increases, and more dense activated carbon can be obtained. Therefore, the volatile content of the nylon-containing phenol resin is suppressed to 50% or less.
- the nylon-containing composite phenol resin prepared through the novolak resin synthesis step and the composite phenol resin preparation step is combined with the phenol resin having different traits in both the novolac resin content and the resole resin content.
- the novolac resin is a thermoplastic resin and the resol resin is a thermosetting resin. Therefore, when the composite phenol resin particles are exposed to the heating temperature in the carbonization step, the novolac resin content, the resole resin content, and the nylon in the composite phenol resin particles differ from each other in heat resistance, melting temperature, volatilization amount, and the like.
- the ratio of the novolac resin component (former) and the resole resin component (latter) in the composite phenol resin (composite phenol resin particles) is 9: 1 to 5: 5.
- the proportion of macropores in the pores generated in the resin carbide can be increased. Further, by changing the ratio depending on the target substance to be adsorbed, it is possible to produce activated carbon having an arbitrary adsorption performance.
- the weight of the volatiles is reduced in the process of carbonization from the composite phenol resin (composite phenol resin particles) to a resin carbide, and further activation to the activated carbon adsorbent. Therefore, the smaller the amount of volatile components, the more the amount of carbon in the activated carbon adsorbent increases, and more dense activated carbon can be obtained. Therefore, the volatile content of the composite phenol resin (composite phenol resin particles) is suppressed to 60% or less.
- the nylon-containing resole resin and nylon-containing composite phenol resin have an aromatic ring structure in the molecule, so the carbonization rate increases. Furthermore, activation produces an activated carbon adsorbent having a large surface area.
- the activated carbon adsorbent after activation has a small pore size and a high packing density as compared with conventional activated carbon such as wood, coconut shell, and petroleum pitch. Therefore, it is suitable for adsorbing an ionic organic compound having a relatively small molecular weight (molecular weight in the range of several tens to several hundreds).
- both phenolic resins containing nylon have less ash content such as nitrogen, phosphorus, sodium, magnesium and the like, and a higher carbon ratio per unit mass than conventional activated carbon raw materials such as wood. Therefore, an activated carbon adsorbent containing few impurities can be obtained.
- the adsorption target can easily penetrate into the activated carbon adsorbent. Then, the adsorption target is captured by the mesopores and the micropores connected to the macropores, and the adsorption proceeds rapidly.
- the time taken for food to be decomposed by digestion and flow in the small intestine is considered to be about 3 to 5 hours. That is, it is necessary for the adsorbent for oral administration (activated carbon adsorbent) to adsorb the nitrogen-containing low molecule that is the target of adsorption while flowing in the small intestine. Therefore, in consideration of efficient adsorption in the intestinal tract, it can be said that adsorption in a short time is desirable. From this, it is meaningful to develop many macropores of the activated carbon adsorbent.
- the activated carbon adsorbent obtained from the above-mentioned production method should adsorb the causative agent of liver dysfunction and renal dysfunction listed in the prototypes described below as quickly as possible, and have sufficient adsorption performance with a relatively small dose. It is required to demonstrate.
- the activated carbon adsorbent is defined by the index of the volume ratio of the mercury pore volume value. Then, as is clear from the tendency of the prototype example described below, the suitable range value of each index is derived. The method of measuring the physical properties and the like of the activated carbon and various conditions described below will be described in detail in a prototype example.
- the activated carbon adsorbent is a granular or spherical substance, and its average particle size is not particularly specified, but it is preferably 150 to 400 ⁇ m.
- the size of the particles themselves is within the above range, pores such as macropores are appropriately developed, which is preferable in terms of selective adsorption. Further, since the surface area becomes appropriate, it is also preferable in terms of adsorption rate and strength.
- the average particle size of the activated carbon adsorbents in the present specification and prototype examples is the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
- Mercury pore volume (V M) is an index for evaluating the large pores of mesopores or macropores of the activated carbon. Therefore, we determined the so-called mesopores ⁇ macropores ranging mercury pore volume of a pore diameter range of 7.5 - 1000 nm and (V2 M). Further, it is considered that the range of the pore diameter of 50 to 1000 nm is the effective pore size when adsorbing the adsorption target, and therefore the mercury pore volume (V1 M ) in this range, so-called macropore range was also calculated.
- volume ratio (R V) the volume ratio in the activated carbon adsorbent consisting of nylon-containing resole resin represented by to equation (i) (R V) is defined to 0.3 to 0.6.
- the volume ratio (R V ) of the formula (i) is such that the nitrogen pore volume (V1 M ) in the pore diameter range of 50 to 1000 nm (macropore) is equivalent to the nitrogen pore volume range of 7.5 to 1000 nm (mesopore). Is the quotient divided by the mercury pore volume (V2 M ) of macropores.
- the volume ratio (R V ) is specified to be 0.3 to 0.8.
- the volume ratio (R V ) is an index showing that the ratio of macropores is high in the range of mesopores to macropores.
- an adsorbent such as activated carbon
- micropores, mesopores, and macropores are all present.
- the adsorption target and performance of the activated carbon adsorbent change depending on which range of pores is developed more.
- the activated carbon adsorbent desired in the present invention is assumed to adsorb nitrogen-containing low molecular weight ionic organic compounds such as indoxyl sulfate, aminoisobutyric acid and tryptophan, which are represented by uremia-causing substances and precursors thereof.
- the activated carbon adsorbent of the present invention is to adsorb the molecule to be adsorbed faster than the conventional activated carbon adsorbent.
- the adsorbent for oral administration contains nitrogen, which is the target of adsorption, in a short time. It is necessary to adsorb small molecules that do. From this, it is meaningful to develop many macropores of the activated carbon adsorbent. As disclosed in a prototype example described below, the adsorption rate increases as the numerical value of the volume ratio (R V ) increases.
- the packing density of activated carbon should be 0.3 to 0.6 g / mL. If the packing density is less than 0.3 g / mL, the dose increases and it becomes difficult to swallow upon oral administration. If the packing density exceeds 0.6 g / mL, there is a risk that selective adsorption as activated carbon derived from phenol resin may not be accompanied. Therefore, the packing density is preferably in the above range.
- Such an activated carbon adsorbent is a drug intended for oral administration and is a therapeutic or prophylactic agent for renal disease or liver disease.
- the causative substances of diseases and chronic symptoms are adsorbed and retained in the pores developed on the surface of the activated carbon adsorbent and discharged to the outside of the body, whereby the deterioration of symptoms is relieved and the pathological condition is improved.
- the in-vivo concentration of the causative substance of a disease or chronic symptom can be lowered by taking an activated carbon adsorbent in advance. Therefore, it may be taken as a preventive measure to prevent the deterioration of symptoms.
- renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritis syndrome, acute progressive nephritis syndrome, chronic nephritis syndrome, nephrotic syndrome, nephrosclerosis, interstitial nephritis.
- Renal tubular disease lipoid nephrosis, diabetic nephropathy, renovascular hypertension, hypertension syndrome, secondary renal diseases associated with the above-mentioned underlying diseases, and mild renal failure before dialysis.
- liver diseases include fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, liver cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver injury, primary biliary cirrhosis, and tremor (shinshin). ), Encephalopathy, metabolic disorders, and functional disorders.
- an activated carbon adsorbent as an adsorbent for oral administration, because it is affected by age, sex, physique, or medical condition. However, in general, when it is intended for humans, it is expected that 1 to 20 g of the activated carbon adsorbent will be taken 2 to 4 times a day.
- the adsorbent for oral administration of the activated carbon adsorbent is administered in the form or dosage form of powder, granules, tablets, dragees, capsules, suspensions, sticks, sachets, emulsions or the like.
- N6 Six types of nylon were used. ⁇ Toray Industries, Inc. AQ nylon "A-90” (water-soluble nylon) (Hereinafter, referred to as N1.) ⁇ Toray Industries, Inc. AQ nylon “P-70” (water-soluble nylon) (Hereinafter, referred to as N2.) ⁇ Ube Industries, Ltd. 6-nylon “1011FB” (Hereafter referred to as N3.) ⁇ Ube Industries, Ltd. 6-nylon “1022B” (Hereinafter referred to as N4.) ⁇ 6-Nylon “1030B” manufactured by Ube Industries, Ltd. (Hereinafter referred to as N5.) ⁇ Ube Industries, Ltd. polyamide elastomer "9040X1" (Hereinafter referred to as N6.)
- formalin formaldehyde
- 1.6 parts by weight of gum arabic as an emulsifier 21.6 parts by weight of triethylenetetramine as a basic catalyst
- 166 parts by weight of water were charged into a separable
- the amount of raw material is defined by the equivalence ratio (molar conversion amount).
- the relationship of the equivalent ratio (R1 1 ) between the equivalent of phenol (P1 R ) and the equivalent of formaldehyde (F1 R ) during the synthesis of the resole resin component was 1.3, which was derived from the formula (ii).
- the equivalent ratio (R1 1 ) is in the range of 1.1 to 1.8, and more preferably in the range of 1.1 to 1.6, the ratio between the amount of resole resin and the amount of novolac resin becomes preferable.
- the range of the equivalent ratio (R1 1 ) is a range in which suitable emulsion formation and the like are taken into consideration.
- the equivalence ratio (R1 1 ) of prototype 1 was 1.3.
- a nylon-containing resol resin of Prototype Example 3 was prepared in the same manner as in Prototype Example 2 except that the amount of nylon (N2) was 1.35 parts by weight.
- the equivalence ratio (R1 1 ) of Prototype Example 3 was 1.3.
- a nylon-containing resole resin of Prototype Example 4 was prepared in the same manner as in Prototype Example 2 except that the amount of nylon (N2) was 8.1 parts by weight.
- the equivalence ratio (R1 1 ) of Prototype Example 4 was 1.3.
- the raw material amount is also defined by the equivalence ratio (molar conversion amount) because of promotion of synthesis of the novolac resin component and reduction of unreacted substances.
- the relationship of the equivalent ratio (R2 1 ) between the equivalent of phenol (P2 N ) and the equivalent of formaldehyde (F2 N ) at the time of synthesis of the novolac resin component was derived from the formula (iii) and was 0.9 in the prototype example 6. Met.
- Equivalent ratio (R2 1) is conveniently in the synthesis of the novolak resin content be in the range of 0.9 to 0.5.
- the equivalent ratio (R2 1 ) range is also a range in which suitable emulsion formation and the like are taken into consideration as in the equivalent ratio (R1 1 ).
- the table below shows the types of phenolic resin, equivalent ratio (R1 1 ), equivalent ratio (R2 1 ), nylon type, and nylon content (%) in the nylon-containing resole resin and nylon-containing composite phenolic resin of each prototype and comparative example. 1 and Table 2.
- the nylon content represents the ratio of nylon amount to phenol resin amount.
- the pH was measured by the method described in JIS K 1474 (2014), and the adsorbent was washed with water until the pH was roughly 5 to 7.
- the activated carbon adsorbent after washing with water was heated in a nitrogen atmosphere in a nitrogen atmosphere at 600 ° C. for 1 hour to obtain an activated carbon adsorbent corresponding to the prototype.
- the yield (%) was obtained by measuring the weight of the resin stage before carbonization and the weight of the activated carbon adsorbent finally collected after carbonization, activation, washing and sieving to determine the amount of reduction. Then, the ratio from the initial resin weight was used.
- V M Mercury pore volume
- Mercury pore volume of the activated carbon adsorbent of each prototype example and comparative examples (V M) is manufactured by Shimadzu Corporation, using Autopore 9500, contact angle 130 °, surface tension 484 dynes /cm(4.84mN/m set), pore volume value by mercury porosimetry pore diameter 7.5 ⁇ 1000nm (V2 M) ( mL / g) and pore diameter 50 to pore volume value by mercury porosimetry of 1000 nm (V1 M ) (ML / g).
- the volume ratio (R V ) is, as shown in the above formula (i), the nitrogen pore volume (V1 M ) in the pore diameter range of 50 to 1000 nm (macropore), and the pore diameter of 7.5 to. The quotient was divided by the mercury pore volume (V2 M ) of 1000 nm.
- the average particle diameter ( ⁇ m) of the activated carbon adsorbents of the prototype and comparative examples was measured by using a laser light scattering particle size distribution measuring device (SALD3000S) manufactured by Shimadzu Corporation, and determined by a laser diffraction / scattering method.
- SALD3000S laser light scattering particle size distribution measuring device manufactured by Shimadzu Corporation.
- the particle size was defined as the particle size distribution with an integrated value of 50%.
- Nylon containing Prototype Examples 1-4 is activated carbon adsorbent consisting resole resin
- mercury porosimetry range comparison to mesopores ⁇ macropores in Comparative Example 1 is activated carbon adsorbent consisting resole resin volume (V2 M) Is large, and the mercury pore volume (V1 M ) in the macropore range is also large.
- V2 M resole resin volume
- V1 M mercury pore volume
- the volume ratio (R V ) also increased. That is, it was confirmed that many macropores were developed and the ratio was high. From the measurement of the nitrogen pore volume ( VH ), it was also confirmed that the micropores themselves also developed a lot.
- Nylon containing composite phenolic made of a resin activated carbon adsorbent Prototype Example 5-7 is, as compared to Comparative Example 2 is activated carbon adsorbent consisting composite phenolic resin, mercury pore volume (V1 M), (V2 M ) It was confirmed that they both increased, and it was also confirmed that the prototype example 8 was almost the same. As for the volume ratio (R V ) in all of Prototype Examples 5 to 8, it was confirmed that many macropores developed and the ratio increased. From the measurement of the nitrogen pore volume ( VH ), it was also confirmed that the micropores themselves also developed a lot.
- the activated carbon adsorbent made of the composite phenol resin of Comparative Example 2 had a large mercury pore volume (V1 M ) and (V2 M ) and a high volume ratio (R V ). It was shown that the ratio of macropores can be further increased by incorporating nylon into the composite phenolic resin, which is a raw material for the activated carbon adsorbent, as in Examples 1 to 8.
- macropores due to the thermal expansion (difference in expansion coefficient) of resin components, the difference in volatilization conditions, etc., which are compounded and overlapped during the carbonization and firing of the phenol resin, and the macropores are not limited to the pores on the surface of the activated carbon, It can be inferred that the cause is the formation of pores with a depth that penetrates into.
- the path leading to the micropores that have adsorption capacity is expanded, and it is considered that the toxin can be easily introduced into the micropores, so the toxin can be adsorbed quickly.
- each spherical activated carbon of each prototype and comparative example was added to 50 mL of a standard solution of indole acetic acid, and contact shaking was performed at a temperature of 37 ° C. for 3 hours. 0.01 g of each spherical activated carbon of each prototype and comparative example was added to 50 mL of a standard solution of indoxyl sulfuric acid, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
- the filtrate obtained after filtration after 3 hours and 24 hours was measured for absorbance at 279 nm by an absorptiometry method using a spectrophotometer (UVmini-1240, manufactured by Shimadzu Corporation).
- Tables 5 and 6 show the adsorption rates (%) of the above four kinds of substances as the adsorption performance experiment 1 after 3 hours and the indole as the adsorption performance experiment 2 for 3 hours for the activated carbon adsorbents of the prototypes and the comparative examples adsorption rate after (Ar 1) (%) and the adsorption ratio after 24 hours (Ar 2) (%), and the proportion of (Ar 1) adsorption rate after 3 hours divided by the (Ar 2) (As) (%)showed that.
- the activated carbon adsorbents made of the nylon-containing resole resins of Prototype Examples 1 to 4 were equal to or less than the activated carbon adsorbents made of the resole resin of Comparative Example 1 with respect to any of the four types of nitrogen-containing compounds of the toxic substances used for the adsorption performance evaluation.
- Exhibited high adsorption performance Regarding the ratio (As) of the adsorption rate after 3 hours obtained by dividing (Ar 1 ) by (Ar 2 ) as an index of the adsorption rate of indole, the activated carbon adsorbents of Prototype Examples 1 to 4 were compared with Comparative Example 1. Also demonstrated high performance.
- the activated carbon adsorbents made of the nylon-containing composite phenol resins of Prototype Examples 5 to 8 exhibited higher adsorption performance than the activated carbon adsorbents made of the composite phenol resin of Comparative Example 2.
- the adsorption rate of indole was equivalent or high. From this result, rapid and efficient adsorption proceeds even in the digestive tract after actual administration, and excretion to the outside of the body can be expected. Therefore, the activated carbon adsorbent made of the phenol resin produced according to the present invention can be an adsorbent for oral administration which is effective for the treatment and prevention of renal function, liver dysfunction and the like.
- the activated carbon adsorbent produced from the phenolic resin by the production method of the present invention reaches the digestive organs by oral administration, and can rapidly adsorb nitrogen-containing compounds that cause uremia, renal function, liver dysfunction, etc. , As a therapeutic or preventive agent. Further, in the method for producing a phenol resin for producing an activated carbon adsorbent of the present invention, macropores in the activated carbon adsorbent can be efficiently developed, so that an activated carbon adsorbent having a high toxic substance adsorption performance and a high adsorption rate can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Carbon And Carbon Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
[Problem] To provide a method for producing a phenolic resin, said phenolic resin being to be used for the formation of an activated carbon adsorbent, whereby the ratio of macropores in pores formed in a resin carbide is increased by improving the composition of the phenolic resin so as to form an activated carbon adsorbent which is capable of quickly and efficiently adsorbing a low molecular compound containing nitrogen. [Solution] A method for producing a phenolic resin for forming an activated carbon adsorbent, said phenolic resin being to be carbonized and activated to form an activated carbon adsorbent. This method comprises a starting material preparation step for blending phenol with a water-soluble nylon and melting to give a starting material, and a resol preparation step for mixing the starting material with formaldehyde, a basic catalyst and an emulsifier under heating to give a nylon-containing resol resin.
Description
本発明は、フェノール樹脂の製造方法に関し、特に、活性炭吸着剤生成用のフェノール樹脂の組成を改良することにより、該フェノール樹脂を炭化し、賦活して得た活性炭吸着剤の性能を向上させることができるフェノール樹脂の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a phenolic resin, and in particular, by improving the composition of the phenolic resin for producing an activated carbon adsorbent, carbonizing the phenolic resin to improve the performance of the activated carbon adsorbent obtained by activation. And a method for producing a phenol resin capable of
腎疾患又は肝疾患の患者は、血液中に毒性物質が蓄積し、その結果として尿毒症や意識障害等の脳症を引き起こす。これらの患者数は年々増加する傾向にある。近年では、これらの患者の治療に、経口により摂取し体内で毒性物質を吸着し、体外に排出する経口投与用吸着剤が開発されている(特許文献1、特許文献2等参照)。しかし、これらの吸着剤は、活性炭の吸着性能を利用した吸着剤であるため、除去すべき毒素の吸着容量や毒素の有用物質に対する選択吸着性が十分とはいえない。一般的に、活性炭の疎水性は高く、尿毒症の原因物質やその前駆物質に代表されるインドキシル硫酸、DL-β-アミノイソ酪酸、トリプトファン等の低分子量のイオン性有機化合物の吸着に適さないという問題点を内包している。
In patients with renal or liver diseases, toxic substances accumulate in the blood, resulting in encephalopathy such as uremia and disturbance of consciousness. The number of these patients tends to increase year by year. In recent years, for the treatment of these patients, an adsorbent for oral administration has been developed, which is orally ingested, adsorbs a toxic substance in the body, and excretes it out of the body (see Patent Documents 1 and 2). However, since these adsorbents are adsorbents that utilize the adsorption performance of activated carbon, they cannot be said to have sufficient adsorption capacity for toxins to be removed or selective adsorption of toxins for useful substances. Generally, activated carbon is highly hydrophobic and is not suitable for adsorbing low molecular weight ionic organic compounds such as indoxyl sulfate, DL-β-aminoisobutyric acid and tryptophan, which are represented by uremic causative substances and their precursors. The problem is included.
そこで、活性炭吸着剤の問題点を改善するべく、原料物質として木質、石油系もしくは石炭系の各種ピッチ類等を使用し球状等の樹脂化合物を形成し、これらを原料とした活性炭からなる抗ネフローゼ症候群剤が報告されている(例えば、特許文献3参照)。前出の活性炭は、石油系炭化水素(ピッチ)等を原料物質とし、比較的粒径を均一にして、炭化、賦活により調製される。また、活性炭自体の粒径を比較的均一化するとともに、当該活性炭における細孔容積等の分布について調整を試みた経口投与用吸着剤が報告されている(特許文献4参照)。このように、薬用活性炭は、比較的粒径を均一にすることに伴い、腸内の流動性の悪さを改善し、同時に細孔を調整することにより当該活性炭の吸着性能の向上を図った。そこで、多くの軽度の慢性腎不全患者に服用されている。
Therefore, in order to improve the problem of the activated carbon adsorbent, an anti-nephrotic agent composed of activated carbon obtained by forming a spherical resin compound by using wood, petroleum-based or coal-based pitches etc. as a raw material Syndrome agents have been reported (see, for example, Patent Document 3). The above-mentioned activated carbon is prepared by carbonizing and activating the petroleum hydrocarbon (pitch) or the like as a raw material to have a relatively uniform particle size. Further, an adsorbent for oral administration has been reported in which the particle size of activated carbon itself is made relatively uniform and the distribution of pore volume and the like in the activated carbon is attempted to be adjusted (see Patent Document 4). As described above, the medicinal activated carbon has a relatively uniform particle size, which improves the fluidity in the intestine, and at the same time, the pores are adjusted to improve the adsorption performance of the activated carbon. Therefore, it is taken in many patients with mild chronic renal failure.
薬用活性炭には、尿毒症の原因物質やその前駆物質に対する迅速かつ効率的な吸着が要求される。しかしながら、従来の薬用活性炭における細孔の調整は良好とはいえず、吸着性能も安定しなかった。そのため、一日当たりの服用量を多くしなければならない。特に、慢性腎不全患者は水分の摂取量を制限されていることから、少量の水分により嚥下することは患者にとって大変な苦痛となっていた。加えて、胃、小腸等の消化管においては、糖、タンパク質等の生理機能に不可欠な化合物及び腸壁より分泌される酵素等の種々物質の混在する環境である。その中において、尿毒症等の原因となる毒性物質、特には、窒素を含有する化合物を迅速に吸着し、そのまま便とともに体外に排泄する薬用の活性炭吸着剤が望まれていた。
ㆍ Medicinal activated carbon is required to adsorb substances that cause uremia and its precursors quickly and efficiently. However, the adjustment of the pores in the conventional medicinal activated carbon was not said to be good, and the adsorption performance was not stable. Therefore, the daily dose should be increased. In particular, since chronic renal failure patients have limited water intake, swallowing with a small amount of water has been a great pain for patients. In addition, in the gastrointestinal tract such as the stomach and small intestine, it is an environment in which various substances such as sugars, proteins and other compounds essential for physiological functions and enzymes secreted from the intestinal wall are mixed. Among them, a medicinal activated carbon adsorbent that rapidly adsorbs a toxic substance causing uremia and the like, particularly a nitrogen-containing compound, and excretes it out of the body with feces as it is has been desired.
発明者は活性炭吸着剤の炭化前の原料、細孔の発達について精査した。その結果、活性炭の原料となる樹脂成分にフェノール樹脂を採用するとともに樹脂の組成を工夫することにより、樹脂炭化物由来の活性炭の細孔を好適に制御して、低分子量の含窒素化合物の迅速かつ効率的な吸着に好適な細孔分布を備えた活性炭を見出すに至った。
The inventor scrutinized the raw material of activated carbon adsorbent before carbonization and the development of pores. As a result, by adopting a phenol resin as a resin component that is a raw material of activated carbon and devising the composition of the resin, the pores of the activated carbon derived from resin carbide are suitably controlled, and the nitrogen-containing compound of low molecular weight can be quickly and We have found an activated carbon with a pore distribution suitable for efficient adsorption.
本発明は、前記の点に鑑みなされたもので、活性炭吸着剤の生成に用いられるフェノール樹脂において、フェノール樹脂の組成を改良することにより、樹脂炭化物に生じる細孔中のマクロ孔の割合を高め、窒素を含有する低分子化合物を迅速かつ効率的に吸着可能とする活性炭吸着剤を生成するためのフェノール樹脂の製造方法を提供する。
The present invention has been made in view of the above points, in the phenol resin used for the production of the activated carbon adsorbent, by improving the composition of the phenol resin, to increase the proportion of macropores in the pores generated in the resin carbide. Provided is a method for producing a phenol resin for producing an activated carbon adsorbent capable of quickly and efficiently adsorbing a nitrogen-containing low molecular weight compound.
すなわち、第1の発明は、炭化して賦活されて活性炭吸着剤とされる活性炭吸着剤生成用のフェノール樹脂であって、フェノールに対し、水溶性のナイロンを付与し溶融して原料を調製する原料調製工程と、該原料にホルムアルデヒドと、塩基性触媒と、乳化剤とを混合しながら加熱してナイロンを含有するナイロン含有レゾール樹脂を調製するレゾール調整工程とを有することを特徴とするフェノール樹脂の製造方法に係る。
That is, the first invention is a phenolic resin for activated carbon adsorbent production which is activated by carbonization to be an activated carbon adsorbent, and water-soluble nylon is added to phenol and melted to prepare a raw material. A phenol resin characterized by comprising a raw material preparing step and a resole adjusting step of preparing a nylon-containing resole resin containing nylon by heating while mixing formaldehyde, a basic catalyst and an emulsifier in the raw material. It relates to the manufacturing method.
第2の発明は、炭化して賦活されて活性炭吸着剤とされる活性炭吸着剤生成用のフェノール樹脂であって、フェノールに対し、ナイロンを付与し溶融して原料を調製する原料調製工程と、該原料にホルムアルデヒドと、酸性触媒と乳化剤とを混合しながら加熱してノボラック樹脂分を調製するノボラック樹脂合成工程と、前記ノボラック樹脂合成工程により得た溶液中に、ホルムアルデヒドと、塩基性触媒とを混合しながら加熱してレゾール樹脂成分を合成するとともに前記ノボラック樹脂分も含有したナイロン含有複合フェノール樹脂を調整する複合フェノール樹脂調整工程とを有することを特徴とするフェノール樹脂の製造方法に係る。
A second invention is a phenolic resin for producing an activated carbon adsorbent which is carbonized and activated to be an activated carbon adsorbent, wherein a raw material preparation step of adding nylon to phenol and melting it to prepare a raw material, Formaldehyde and a basic catalyst are added to a novolak resin synthesizing step of preparing a novolak resin component by heating formaldehyde, an acidic catalyst and an emulsifier while mixing the raw material, and formaldehyde and a basic catalyst in the solution obtained by the novolak resin synthesizing step. And a composite phenol resin adjusting step of adjusting the nylon-containing composite phenol resin also containing the novolak resin component by heating while mixing to synthesize a resol resin component, and a method for producing a phenol resin.
第3の発明は、第1又は2の発明において、前記ナイロンが付与される量が、フェノール100重量部に対して0.5~5重量部であるフェノール樹脂の製造方法に係る。
A third invention relates to the method for producing a phenol resin according to the first or second invention, wherein the amount of the nylon added is 0.5 to 5 parts by weight with respect to 100 parts by weight of phenol.
第4の発明は、第1の発明の前記ナイロン含有レゾール樹脂より得た活性炭吸着剤であって、下記式(i)に示される50~1000nmにおける水銀細孔容積(V1M)(g/mL)と7.5~1000nmにおける水銀細孔容積(V2M)(g/mL)との割合(RV)が、0.3~0.6であることを特徴とする活性炭吸着剤に係る。
A fourth invention is an activated carbon adsorbent obtained from the nylon-containing resole resin of the first invention, which has a mercury pore volume (V1 M ) (g / mL) at 50 to 1000 nm represented by the following formula (i). ) mercury pore volume in the 7.5 ~ 1000nm (V2 M) ( g / mL) and the ratio of (R V) is, according to the activated carbon adsorbent, characterized in that 0.3 to 0.6.
第5の発明は、第2の発明の前記ナイロン含有複合フェノール樹脂より得た活性炭吸着剤であって、上記式(i)に示される50~1000nmにおける水銀細孔容積(V1M)(g/mL)と7.5~1000nmにおける水銀細孔容積(V2M)(g/mL)との割合(RV)が、0.3~0.8であることを特徴とする活性炭吸着剤に係る。
A fifth invention is a second activated carbon adsorbent obtained from the nylon-containing composite phenolic resin of the present invention, mercury pore volume (V1 M) in 50 ~ 1000 nm represented by the above formula (i) (g / (mL) and the mercury pore volume (V 2 M ) (g / mL) at 7.5 to 1000 nm (R V ) is 0.3 to 0.8. .
第6の発明は、第1ないし5の発明のいずれかにおいて、前記活性炭吸着剤が、経口投与用腎疾患又は経口投与用肝疾患のための治療剤又は予防剤であることを特徴とする経口投与用吸着剤に係る。
A sixth invention is the oral method according to any one of the first to fifth inventions, wherein the activated carbon adsorbent is a therapeutic or prophylactic agent for orally administered renal disease or orally administered liver disease. It concerns adsorbents for administration.
第1の発明に係るフェノール樹脂の製造方法によると、炭化して賦活されて活性炭吸着剤とされる活性炭吸着剤生成用のフェノール樹脂であって、フェノールに対し、水溶性のナイロンを付与し溶融して原料を調製する原料調製工程と、該原料にホルムアルデヒドと、塩基性触媒と、乳化剤とを混合しながら加熱してナイロンを含有するナイロン含有レゾール樹脂を調製するレゾール調整工程とを有するため、フェノール樹脂に由来する活性炭において、フェノール樹脂中の樹脂組成を改良することにより樹脂炭化物に生じる細孔中のマクロ孔の割合を高めることができ、窒素を含有する低分子化合物を迅速かつ効率的に吸着可能な活性炭吸着剤を生成するためのフェノール樹脂を得ることができる。
According to the method for producing a phenol resin according to the first aspect of the present invention, it is a phenol resin for producing an activated carbon adsorbent which is activated by carbonization to be an activated carbon adsorbent, wherein water-soluble nylon is applied to phenol and melted. In order to have a raw material preparing step of preparing a raw material, and a resol adjusting step of preparing a nylon-containing resole resin containing nylon by heating while mixing the raw material with formaldehyde, a basic catalyst, and an emulsifier. In activated carbon derived from phenolic resin, the ratio of macropores in the pores generated in resin carbide can be increased by improving the resin composition in phenolic resin, and nitrogen-containing low molecular weight compounds can be quickly and efficiently prepared. A phenolic resin for producing an adsorbable activated carbon adsorbent can be obtained.
第2の発明に係るフェノール樹脂の製造方法によると、炭化して賦活されて活性炭吸着剤とされる活性炭吸着剤生成用のフェノール樹脂であって、フェノールに対し、ナイロンを付与し溶融して原料を調製する原料調製工程と、該原料にホルムアルデヒドと、酸性触媒と乳化剤とを混合しながら加熱してノボラック樹脂分を調製するノボラック樹脂合成工程と、前記ノボラック樹脂合成工程により得た溶液中に、ホルムアルデヒドと、塩基性触媒とを混合しながら加熱してレゾール樹脂成分を合成するとともに前記ノボラック樹脂分も含有したナイロン含有複合フェノール樹脂を調整する複合フェノール樹脂調整工程とを有するため、フェノール樹脂に由来する活性炭において、フェノール樹脂中の樹脂組成を改良することにより樹脂炭化物に生じる細孔中のマクロ孔の割合を高めることができ、窒素を含有する低分子化合物を迅速に吸着可能な活性炭吸着剤を生成するためのフェノール樹脂を得ることができる。
According to the method for producing a phenol resin according to the second aspect of the present invention, there is provided a phenol resin for producing an activated carbon adsorbent which is activated by carbonization to be an activated carbon adsorbent. In the solution obtained by the raw material preparation step of preparing, a novolak resin synthesis step of preparing a novolak resin component by heating formaldehyde to the raw material, while mixing an acidic catalyst and an emulsifier, in the solution obtained by the novolak resin synthesis step, Formaldehyde and a basic catalyst are mixed and heated to synthesize a resole resin component and to have a composite phenol resin adjustment step of adjusting a nylon-containing composite phenol resin that also contains the novolac resin component. In the activated carbon, the carbonization of the resin is improved by improving the resin composition in the phenol resin. It is possible to increase the ratio of macropores in the pores occurring, nitrogen can be obtained phenolic resin to produce a rapidly adsorbable activated carbon adsorbent low molecular compound containing.
第3の発明に係るフェノール樹脂の製造方法によると、第1又は2の発明において、前記ナイロンが付与される量が、フェノール100重量部に対して0.5~5重量部であるため、フェノール樹脂を活性炭吸着剤としたときに、樹脂炭化物に生じる細孔中のマクロ孔の割合を高めつつ、充填密度の低下を防ぐことができる。
According to the method for producing a phenol resin according to the third invention, in the first or second invention, the amount of the nylon added is 0.5 to 5 parts by weight with respect to 100 parts by weight of phenol. When the resin is used as the activated carbon adsorbent, it is possible to prevent a decrease in packing density while increasing the ratio of macropores in the pores generated in the resin carbide.
第4の発明に係る活性炭吸着剤によると、第1の発明に記載の前記ナイロン含有レゾール樹脂より得た活性炭吸着剤であって、式(i)に示される50~1000nmにおける水銀細孔容積(V1M)(g/mL)と7.5~1000nmにおける水銀細孔容積(V2M)(g/mL)との割合(RV)が、0.3~0.6であることから、窒素を含有する低分子化合物を迅速に吸着可能な活性炭吸着剤とすることができる。
According to the activated carbon adsorbent according to a fourth aspect, the activated carbon adsorbent obtained from the nylon-containing resole resin according to the first aspect of the invention has a mercury pore volume (50 to 1000 nm in formula (i)) V1 M) (g / mL) and the proportion of the mercury pore volume in the 7.5 ~ 1000nm (V2 M) ( g / mL) (R V) is from 0.3 to 0.6 nitrogen It is possible to make an activated carbon adsorbent capable of rapidly adsorbing a low molecular weight compound containing a.
第5の発明に係る活性炭吸着剤によると、第2の発明に記載の前記ナイロン含有複合フェノール樹脂より得た活性炭吸着剤であって、式(i)に示される50~1000nmにおける水銀細孔容積(V1M)(g/mL)と7.5~1000nmにおける水銀細孔容積(V2M)(g/mL)との割合(RV)が、0.3~0.8であることから、窒素を含有する低分子化合物を迅速に吸着可能な活性炭吸着剤とすることができる。
According to the activated carbon adsorbent according to the fifth aspect, the activated carbon adsorbent obtained from the nylon-containing composite phenolic resin according to the second aspect has a mercury pore volume at 50 to 1000 nm represented by the formula (i). Since the ratio (R V ) of (V1 M ) (g / mL) and mercury pore volume (V2 M ) (g / mL) at 7.5 to 1000 nm is 0.3 to 0.8, A low-molecular compound containing nitrogen can be used as an activated carbon adsorbent capable of rapidly adsorbing.
第6の発明に係る経口投与用吸着剤によると、第1ないし5の発明のいずれかにおいて、前記活性炭吸着剤が、経口投与用腎疾患又は経口投与用肝疾患のための治療剤又は予防剤であるため、腎疾患又は肝疾患の原因物質を選択的に吸着する効果が高く、治療剤又は予防剤に相応しい。
According to the adsorbent for oral administration according to a sixth invention, in any one of the first to fifth inventions, the adsorbent for activated carbon is a therapeutic or prophylactic agent for renal disease for oral administration or liver disease for oral administration. Therefore, it has a high effect of selectively adsorbing a causative substance of renal disease or liver disease, and is suitable as a therapeutic agent or preventive agent.
本発明の製造方法により製造されるフェノール樹脂は、活性炭吸着剤生成に用いられるフェノール樹脂であって、特に、ナイロンを含有させたフェノール樹脂である。フェノール樹脂にナイロンを含有させることにより、樹脂炭化物に生じる細孔中のマクロ孔の割合を高め、窒素を含有する低分子化合物を迅速かつ効率的に吸着可能とする活性炭吸着剤を得ることができる。はじめに、図1の工程図を用い活性炭吸着剤の出発原料となるフェノール樹脂、特にレゾール樹脂の合成工程から説明する。
The phenolic resin produced by the production method of the present invention is a phenolic resin used for producing an activated carbon adsorbent, and particularly a phenolic resin containing nylon. By including nylon in the phenol resin, it is possible to obtain an activated carbon adsorbent capable of adsorbing nitrogen-containing low molecular weight compounds quickly and efficiently by increasing the ratio of macropores in the pores generated in resin carbide. . First, a process for synthesizing a phenol resin, particularly a resole resin, which is a starting material for an activated carbon adsorbent will be described with reference to the process chart of FIG.
はじめにフェノール樹脂の原料となるフェノールにナイロンが添加、混合され、フェノールに溶解し、原料として調製される(「原料調製工程」)。縮合反応させるフェノール樹脂は、ノボラック樹脂やレゾール樹脂を用いることができ、成形性、硬度、細孔調製の観点から、レゾール樹脂を用いるのが好ましい。特に、レゾール樹脂は、ノボラック樹脂と比較して充填密度が高いことから、医薬用吸着剤としての活性炭吸着剤とすると服用体積が減り、患者の負担を小さくすることができ有用である。また、後述する図2に示す工程図において製造された試作例においては、ノボラック樹脂とレゾール樹脂とを複合した複合フェノール樹脂を採用した。複合フェノール樹脂とすると、活性炭吸着剤の吸着性能が向上するため有用である。
First, nylon is added to and mixed with phenol, which is the raw material for the phenolic resin, and dissolved in phenol to prepare it as the raw material (“raw material preparation process”). As the phenol resin to be subjected to the condensation reaction, a novolac resin or a resole resin can be used, and it is preferable to use the resole resin from the viewpoint of moldability, hardness, and pore preparation. In particular, since the resole resin has a higher packing density than the novolac resin, the use of an activated carbon adsorbent as a medicinal adsorbent reduces the dose volume and is useful because the burden on the patient can be reduced. Further, in a prototype example manufactured in the process diagram shown in FIG. 2 described later, a composite phenol resin in which a novolac resin and a resole resin are compounded is adopted. A composite phenol resin is useful because it improves the adsorption performance of the activated carbon adsorbent.
図1に示す工程図にかかる製造方法においては、ナイロンは水溶性のナイロンとするのがよい。発明者の研究によれば、後述するレゾール樹脂合成工程において、原料調整工程においてナイロンがフェノールに完全に溶解していたとしても、水溶性でないナイロンは、反応媒体水等に析出してしまい、合成されたフェノール樹脂中にほとんど含有されないことが分かったためである。ナイロンの添加量は、フェノール100重量部に対して0.5~5重量部程度がよいと考えられる。炭化工程や賦活工程において、少なすぎると樹脂炭化物に生じる細孔中のマクロ孔の割合を高めることができない。また、多すぎると、ナイロンは熱により分解されて焼成物中に残存しないため、活性炭吸着剤の充填密度が低下してスカスカとなり、強度や吸着性能が低下するおそれがあると考えられる。
In the manufacturing method according to the process diagram shown in FIG. 1, nylon is preferably water-soluble nylon. According to the research conducted by the inventor, in the resole resin synthesis step described later, even if nylon was completely dissolved in phenol in the raw material preparation step, non-water-soluble nylon was precipitated in the reaction medium water, etc. This is because it was found that it was hardly contained in the prepared phenol resin. It is considered that the addition amount of nylon is preferably about 0.5 to 5 parts by weight with respect to 100 parts by weight of phenol. In the carbonization step and the activation step, if the amount is too small, the proportion of macropores in the pores generated in the resin carbide cannot be increased. On the other hand, if the amount is too large, nylon is decomposed by heat and does not remain in the fired product, so that it is considered that the packing density of the activated carbon adsorbent decreases and scatters, so that strength and adsorption performance may decrease.
次に、ホルムアルデヒド、乳化剤、反応媒体水が添加、混合され、両分子の架橋形成目的の塩基性触媒が添加される。これらは攪拌されながらの30ないし100℃の加熱により脱水縮合反応が進み、球状フェノール樹脂が合成される(「レゾール樹脂合成工程」)。なお、生成樹脂分は適宜洗浄される。
Next, formaldehyde, an emulsifier, and water as a reaction medium are added and mixed, and a basic catalyst for the purpose of forming crosslinks of both molecules is added. These are subjected to dehydration condensation reaction by heating at 30 to 100 ° C. while being stirred, and spherical phenol resin is synthesized (“resole resin synthesis step”). The generated resin component is appropriately washed.
前述の工程にて使用のフェノールに代えて、水酸基を有する芳香族化合物も用いられる。例えば、クレゾール(o-、m-、p-位)、p-フェニルフェノール、キシレノール(2,5-、3,5-)、レゾルシノール、各種ビスフェノール等が挙げられる。
-Instead of the phenol used in the above process, an aromatic compound having a hydroxyl group is also used. Examples thereof include cresol (o-, m-, p-positions), p-phenylphenol, xylenol (2,5-, 3,5-), resorcinol and various bisphenols.
前述の工程にて使用のホルムアルデヒドに代えて、次のアルデヒド化合物も用いられる。アセトアルデヒド、ベンズアルデヒド、グリオキサール、フルフラール等が挙げられる。
The following aldehyde compounds are used instead of the formaldehyde used in the above process. Examples include acetaldehyde, benzaldehyde, glyoxal, furfural and the like.
レゾール樹脂の合成に使用される塩基性触媒にはアミン化合物が使用される。アミン化合物はレゾール樹脂分の合成に多用され、安定した反応を得る上で好適である。試作例では、ヘキサメチレンテトラミン(ヘキサミン、1,3,5,7-テトラアザアダマンタン)、トリエチレンテトラミン(N,N’-ジ(2-アミノエチル)エチレンジアミン)が使用される。これらに加えて、水酸化ナトリウム、水酸化マグネシウム、炭酸ナトリウム、アンモニア等も塩基性触媒として挙げられる。レゾール樹脂調製工程にて添加される塩基性触媒の量は、当該工程中の総仕込量の1ないし10重量%である。添加量は塩基性触媒の種類等に依存する。
An amine compound is used as the basic catalyst used in the synthesis of the resole resin. Amine compounds are often used in the synthesis of resole resin components and are suitable for obtaining a stable reaction. In the prototype example, hexamethylenetetramine (hexamine, 1,3,5,7-tetraazaadamantane) and triethylenetetramine (N, N'-di (2-aminoethyl) ethylenediamine) are used. In addition to these, sodium hydroxide, magnesium hydroxide, sodium carbonate, ammonia and the like can be mentioned as the basic catalyst. The amount of basic catalyst added in the resol resin preparation step is 1 to 10% by weight based on the total amount charged in the step. The amount of addition depends on the type of basic catalyst.
フェノール樹脂は、炭化及び賦活を経て樹脂炭化物、最終的に経口投与用の活性炭吸着剤となる。それゆえ、活性炭吸着剤は、口腔、食道、胃、十二指腸、小腸、大腸と消化管内を円滑に流動しながら尿毒症等の原因物質を吸着して、便とともに肛門から排泄される。そうすると、抵抗の少ない粒径ないし球形は、各種の消化管内の円滑な流動の便宜から望ましい形状である。この点に鑑み、炭化前の樹脂の段階から粒状物ないし球状物であることが望ましい。
-Phenolic resin becomes carbonized resin after carbonization and activation, and finally becomes an activated carbon adsorbent for oral administration. Therefore, the activated carbon adsorbent adsorbs causative substances such as uremia while smoothly flowing in the oral cavity, esophagus, stomach, duodenum, small intestine and large intestine, and is excreted from the anus along with feces. Then, a particle size or spherical shape with less resistance is a desirable shape for the convenience of smooth flow in various digestive tracts. In view of this point, it is desirable that the resin is a granular material or a spherical material from the stage of resin before carbonization.
そこで、レゾール樹脂調製工程においては乳化剤が添加される。同工程にて調製されるレゾール樹脂は、乳化剤の作用による分散により粒状物ないし球状物になる。乳化剤として、ヒドロキシエチルセルロース、アラビアガム(アラビアゴム)等の水溶性の多糖類が使用される。乳化剤の添加量は、レゾール樹脂調製工程における総仕込量の0.1ないし5重量%である。乳化剤の種類、反応条件により適宜増減される。
Therefore, an emulsifier is added in the resol resin preparation process. The resole resin prepared in the same step becomes a granular material or a spherical material due to dispersion by the action of the emulsifier. As the emulsifier, water-soluble polysaccharides such as hydroxyethyl cellulose and gum arabic (gum arabic) are used. The amount of the emulsifier added is 0.1 to 5% by weight based on the total amount charged in the resol resin preparation step. The amount may be adjusted depending on the type of emulsifier and the reaction conditions.
乳化剤が添加されているため、レゾール樹脂調製工程中の加熱と攪拌を通じてエマルジョン化が進み、反応液中に粒状物ないし球状物となったレゾール(フェノール)樹脂(フェノール樹脂粒子)が生じる。乳化剤の添加によりフェノール等を含む反応液の表面張力は高まり、微小な液滴が生じて球状化は促進すると考えられる。当該フェノール樹脂の望ましい大きさは、平均粒径200ないし700μmの粒状物ないし球状物である。当該範囲の粒径は、次述の炭化の焼成に伴う体積減少を見越した大きさである。かつ、出来上がる活性炭吸着剤は経口投与の服用に適する大きさとなる。
Since an emulsifier is added, emulsification progresses through heating and stirring during the resol resin preparation process, resulting in a granular or spherical resol (phenol) resin (phenol resin particles) in the reaction liquid. It is considered that the addition of the emulsifier increases the surface tension of the reaction liquid containing phenol and the like, and minute droplets are generated to promote spheroidization. The desired size of the phenolic resin is a granular or spherical material having an average particle diameter of 200 to 700 μm. The particle size in this range is a size that allows for the volume reduction associated with the firing of carbonization described below. In addition, the resulting activated carbon adsorbent has a size suitable for oral administration.
次に、図2に示す工程図に係るナイロン含有複合フェノール樹脂調整工程について説明する。ナイロン含有複合フェノール樹脂は、ナイロンを含有したノボラック樹脂とレゾール樹脂よりなる複合フェノール樹脂である。はじめにフェノール樹脂の原料となる粒状フェノールにナイロンが付与、混合され、ナイロンはフェノールに溶解し、原料として調製される(「原料調製工程」)。ナイロンの添加量は、図1に係るレゾール樹脂調整工程と同様に、フェノール100重量部に対して0.5~5重量部程度がよいと考えられる。
Next, the nylon-containing composite phenolic resin preparation process according to the process diagram shown in FIG. 2 will be described. The nylon-containing composite phenol resin is a composite phenol resin composed of a novolak resin containing nylon and a resole resin. First, nylon is applied to and mixed with granular phenol, which is a raw material of a phenol resin, and the nylon is dissolved in phenol to be prepared as a raw material (“raw material preparation step”). It is considered that the addition amount of nylon is preferably about 0.5 to 5 parts by weight with respect to 100 parts by weight of phenol as in the resol resin adjusting step according to FIG.
なお、図1に示すナイロン含有レゾール樹脂における原料調整工程においては、ナイロンは水溶性を有するナイロンを採用したが、図2に示すナイロン含有複合フェノール樹脂の原料調整工程におけるナイロンは水溶性を有するナイロンに限られない。これは、後述する生成されたノボラック樹脂にナイロンが溶解するためである。後述の試作例においても、通常の(水溶性を有さない)ナイロンを採用したところ、反応媒体水等にほとんどのナイロンが析出するようなことはなく、フェノール樹脂中にナイロンが含有されていた。
In the raw material adjusting step for the nylon-containing resole resin shown in FIG. 1, nylon having water solubility was adopted, but the nylon in the raw material adjusting step for nylon-containing composite phenol resin shown in FIG. 2 was water-soluble nylon. Not limited to This is because nylon is dissolved in the generated novolac resin described later. Also in the prototype example described below, when normal (non-water-soluble) nylon was used, most of the nylon did not precipitate in the reaction medium water and the like, and the phenol resin contained nylon. .
そして、先だってノボラック樹脂を生成するためのホルムアルデヒドと酸性触媒と、粒状物ないし球状物とするための乳化剤が添加されて撹拌されながら30ないし100℃に加熱されてノボラック樹脂分が調製される(「ノボラック樹脂合成工程」)。なお、反応触媒水も適宜適切に添加される。その後、ナイロンが付与されたフェノールにホルムアルデヒド、酸触媒及び乳化剤が添加されてなる溶液中に、ホルムアルデヒドと塩基性触媒が添加される。該溶液は、先の工程により生じたノボラック樹脂と、未反応のフェノールが含まれている。溶液中に残存した未反応のフェノールと、追加されたホルムアルデヒド及び添加された塩基性触媒とは攪拌されながらの30ないし100℃の加熱により脱水縮合反応が進み、未反応のフェノールからレゾール樹脂分が合成される(「複合フェノール樹脂調整工程」)。そこで、当該工程にて合成されたレゾール樹脂分とともに、先の工程にて合成されたノボラック樹脂分も含有する複合フェノール樹脂が調製される。なお、生成樹脂分は適宜洗浄される。
Then, formaldehyde and an acid catalyst for forming a novolac resin and an emulsifier for forming a granular or spherical substance are added in advance and heated to 30 to 100 ° C. with stirring to prepare a novolac resin component (“ Novolac resin synthesis process "). In addition, reaction catalyst water is also appropriately added. Then, formaldehyde and a basic catalyst are added to a solution in which formaldehyde, an acid catalyst and an emulsifier are added to the phenol to which nylon is added. The solution contains the novolac resin produced in the previous step and unreacted phenol. The unreacted phenol remaining in the solution, the added formaldehyde and the added basic catalyst undergo a dehydration condensation reaction by heating at 30 to 100 ° C. while being stirred, and the unreacted phenol is converted into a resole resin component. Synthesized (“Composite Phenolic Resin Preparation Step”). Therefore, a composite phenol resin containing the resole resin component synthesized in the step and the novolac resin component synthesized in the previous step is prepared. The generated resin component is appropriately washed.
使用されるフェノールや代替の芳香族化合物や、ホルムアルデヒドの代替のアルデヒド化合物は、図1に示す工程図にかかるレゾール樹脂調整工程にて述べたものと同様である。そして、酸性触媒には、無機酸、有機酸が用いられる。試作例においてはシュウ酸を使用した。他にもギ酸等のカルボン酸、マロン酸等のジカルボン酸、塩酸、硫酸、リン酸等が酸性触媒として挙げられる。
The phenols, alternative aromatic compounds, and alternative aldehyde compounds for formaldehyde used are the same as those described in the resole resin preparation step according to the process chart shown in FIG. An inorganic acid and an organic acid are used as the acidic catalyst. Oxalic acid was used in the prototype. Other examples of the acidic catalyst include carboxylic acids such as formic acid, dicarboxylic acids such as malonic acid, hydrochloric acid, sulfuric acid, phosphoric acid and the like.
一連の工程から調製されたフェノール樹脂(ナイロン含有レゾール樹脂及びナイロン含有複合フェノール樹脂)は、適宜の洗浄と乾燥後、図3の工程図に示す工程を経て樹脂炭化物となる。フェノール樹脂は、円筒状レトルト電気炉等の焼成炉内に収容され、炉内を窒素、アルゴン、ヘリウム等の不活性雰囲気下とし、300ないし1000℃、好ましくは450ないし700℃において1ないし20時間かけて炭化され、樹脂炭化物となる(「炭化工程」)。
The phenol resin (nylon-containing resole resin and nylon-containing composite phenol resin) prepared from a series of steps becomes a resin carbide through the steps shown in the process chart of FIG. 3 after appropriate washing and drying. The phenol resin is stored in a firing furnace such as a cylindrical retort electric furnace, and the inside of the furnace is kept under an inert atmosphere of nitrogen, argon, helium or the like at 300 to 1000 ° C., preferably 450 to 700 ° C. for 1 to 20 hours. When it is carbonized, it becomes a resin carbide (“carbonization step”).
炭化工程の後、樹脂炭化物は、ロータリー式外熱炉等の加熱炉等に収容され、750ないし1000℃、好ましくは800ないし1000℃、さらには850ないし950℃において水蒸気賦活される(「賦活工程」)。賦活時間は生産規模、設備等によるものの、0.5ないし50時間である。あるいは、二酸化炭素等のガス賦活も用いられる。賦活後の活性炭吸着剤は、希塩酸によって洗浄される。希塩酸洗浄後の活性炭吸着剤は、例えば、JIS K 1474(2014)に準拠したpHの測定により、pH5ないし7になるまで水洗される。
After the carbonization step, the resin carbide is stored in a heating furnace such as a rotary type external heating furnace and steam activated at 750 to 1000 ° C., preferably 800 to 1000 ° C., and further 850 to 950 ° C. (“activation step”). )). The activation time is 0.5 to 50 hours, depending on the production scale, equipment, etc. Alternatively, activation of gas such as carbon dioxide is also used. The activated carbon adsorbent after activation is washed with dilute hydrochloric acid. The activated carbon adsorbent that has been washed with dilute hydrochloric acid is washed with water until the pH reaches 5 to 7, for example, by measuring the pH according to JIS K 1474 (2014).
希塩酸の洗浄後、必要により活性炭吸着剤は、酸素及び窒素の混合気体中において加熱処理、水洗浄され、灰分等の不純物が取り除かれる。加熱処理により残留する塩酸分等は取り除かれる。そして、各処理を経ることにより活性炭吸着剤の表面酸化物量は調整される。酸洗浄後、賦活済みの樹脂炭化物に対する加熱処理を通じて、活性炭吸着剤の表面酸化物量は増加する。当該処理時の酸素濃度は0.1ないし21体積%である。また、加熱温度は150ないし1000℃、好ましくは400ないし800℃であり、15分ないし2時間である。
After washing with dilute hydrochloric acid, the activated carbon adsorbent is heat-treated in a mixed gas of oxygen and nitrogen and washed with water, if necessary, to remove impurities such as ash. The residual hydrochloric acid and the like are removed by the heat treatment. Then, the amount of surface oxide of the activated carbon adsorbent is adjusted through each treatment. After the acid cleaning, the amount of surface oxides of the activated carbon adsorbent increases through the heat treatment of the activated resin carbide. The oxygen concentration during the treatment is 0.1 to 21% by volume. The heating temperature is 150 to 1000 ° C., preferably 400 to 800 ° C., and 15 minutes to 2 hours.
賦活処理後、又は賦活処理に続く加熱処理後の樹脂炭化物(活性炭吸着剤)は、篩別により平均粒子径150ないし500μmの粒状物ないし球状物の活性炭に選別されるのがよい。粒子径の調整及び分別により、活性炭吸着剤の吸着速度の一定化と吸着能力の安定化が図られる。粒子径の範囲特に限定されるものではないが、前記の範囲とすると、患者(服用者)の嚥下を円滑にするとともに活性炭吸着剤の表面積を確保することができる。また、粒子径が揃えられると、消化管内での吸着性能は安定することができる。しかも、粒子の硬さを維持して経口投与後(服用後)の消化管内でさらに粉化することも抑制される。ゆえに、経口投与用吸着剤の活性炭の形状は好ましくは球状物である。ただし、製造に起因する真球度のばらつき等も許容されるため、粒状物も含められる。
The resin carbide (activated carbon adsorbent) after the activation treatment or after the heat treatment subsequent to the activation treatment is preferably selected by sieving into granular or spherical activated carbon having an average particle diameter of 150 to 500 μm. By adjusting and fractionating the particle size, the adsorption rate of the activated carbon adsorbent can be made constant and the adsorption capacity can be stabilized. The range of particle diameter is not particularly limited, but if it is within the above range, swallowing by the patient (administrator) can be made smooth and the surface area of the activated carbon adsorbent can be secured. Moreover, if the particle diameters are made uniform, the adsorption performance in the digestive tract can be stabilized. Moreover, the hardness of the particles is maintained and further powdering in the digestive tract after oral administration (after taking) is suppressed. Therefore, the shape of the activated carbon of the adsorbent for oral administration is preferably spherical. However, granularity is also included because variations in sphericity due to manufacturing are also allowed.
既述のとおり、図1に示す工程において、原料調製工程及びレゾール樹脂調製工程を経て調製されたフェノール樹脂(レゾール樹脂)は、ナイロンを含有している。ナイロンは熱可塑性樹脂であり、レゾール樹脂は熱硬化性樹脂である。従って、炭化工程の加熱温度にフェノール樹脂粒子が曝露された際、当該フェノール樹脂粒子中のナイロンとレゾール樹脂では耐熱性、溶融温度、揮発量等が互いに相違する。そうすると、焼成に伴う炭化は一様となるよりも、むしろフェノール樹脂粒子の炭化は不均質に進行すると考えられる。炭化時の加熱焼成によりフェノール樹脂粒子中から樹脂成分は揮発する。この揮発を通じて樹脂炭化物に割れ目、亀裂等が生じると予想される。このため、フェノール樹脂の樹脂炭化物由来の活性炭吸着剤には相対的にマクロ孔(およそ50nm以上)が発達しやすくなると考えられる。
As described above, the phenol resin (resole resin) prepared through the raw material preparation step and the resole resin preparation step in the step shown in FIG. 1 contains nylon. Nylon is a thermoplastic resin and resol resin is a thermosetting resin. Therefore, when the phenol resin particles are exposed to the heating temperature in the carbonization step, the heat resistance, the melting temperature, the volatilization amount, etc. of the nylon and the resole resin in the phenol resin particles are different from each other. Then, it is considered that the carbonization of the phenol resin particles proceeds inhomogeneously rather than becoming uniform during the firing. The resin component is volatilized from the phenol resin particles by heating and baking during carbonization. It is expected that cracks, cracks, etc. will occur in the resin carbide through this volatilization. Therefore, it is considered that macropores (about 50 nm or more) relatively easily develop in the activated carbon adsorbent derived from the resin carbide of the phenol resin.
フェノール樹脂から炭化を経て樹脂炭化物となり、さらに賦活を経て活性炭吸着剤に至る過程において、自明ながら揮発分の重量は減少する。そのため、揮発分の量が少ないほど活性炭吸着剤中の炭素量は増加し、より緻密な活性炭を得ることができる。そこで、ナイロン含有フェノール樹脂の揮発分は、50%以下に抑制される。
In the process of carbonization from phenolic resin to carbonized carbon, and further activation to the activated carbon adsorbent, the weight of volatile components is reduced, obviously. Therefore, the smaller the amount of volatile components, the more the amount of carbon in the activated carbon adsorbent increases, and more dense activated carbon can be obtained. Therefore, the volatile content of the nylon-containing phenol resin is suppressed to 50% or less.
また、同様に、図2に示す工程において、ノボラック樹脂合成工程及び複合フェノール樹脂調製工程を経て調製されたナイロン含有複合フェノール樹脂は、ノボラック樹脂分とレゾール樹脂分の両方の異なる形質のフェノール樹脂とともにナイロンを含有している。フェノール樹脂の内、ノボラック樹脂は熱可塑性樹脂であり、レゾール樹脂は熱硬化性樹脂である。従って、炭化工程の加熱温度に複合フェノール樹脂粒子が曝露された際、当該複合フェノール樹脂粒子中のノボラック樹脂分とレゾール樹脂分及びナイロンでは耐熱性、溶融温度、揮発量等が互いに相違する。併せて、さらに耐熱性、溶融温度、揮発量等が異なるナイロンを含有することから、焼成に伴う炭化は一様となるよりも、むしろ複合フェノール樹脂粒子の炭化はさらに不均質に進行すると考えられる。炭化時の加熱焼成により複合フェノール樹脂粒子中から炭化分解ガスが揮発する。この揮発を通じて樹脂炭化物に割れ目、亀裂等が生じると予想される。このため、複合フェノール樹脂の樹脂炭化物由来の活性炭吸着剤には相対的にマクロ孔(およそ50nm以上)がさらに発達しやすくなると考えられる。
Similarly, in the step shown in FIG. 2, the nylon-containing composite phenol resin prepared through the novolak resin synthesis step and the composite phenol resin preparation step is combined with the phenol resin having different traits in both the novolac resin content and the resole resin content. Contains nylon. Among the phenolic resins, the novolac resin is a thermoplastic resin and the resol resin is a thermosetting resin. Therefore, when the composite phenol resin particles are exposed to the heating temperature in the carbonization step, the novolac resin content, the resole resin content, and the nylon in the composite phenol resin particles differ from each other in heat resistance, melting temperature, volatilization amount, and the like. At the same time, since it contains nylon having different heat resistance, melting temperature, volatilization amount, etc., it is considered that the carbonization of the composite phenol resin particles proceeds more heterogeneously rather than the carbonization accompanying the firing becomes uniform. . Carbonization decomposition gas volatilizes from the composite phenol resin particles by heating and firing during carbonization. It is expected that cracks, cracks, etc. will occur in the resin carbide through this volatilization. Therefore, it is considered that the activated carbon adsorbent derived from the resin carbide of the composite phenol resin is relatively likely to have macropores (about 50 nm or more).
そこで、複合フェノール樹脂(複合フェノール樹脂粒子)中に占めるノボラック樹脂分(前者)とレゾール樹脂分(後者)の割合は、9:1ないし5:5である。ノボラック樹脂分とレゾール樹脂分を含有することによって、樹脂炭化物に生じる細孔中のマクロ孔の割合を高めることができる。また、吸着する目的物によって、割合を変更することで、任意の吸着性能を有する活性炭を製造することができる。
Therefore, the ratio of the novolac resin component (former) and the resole resin component (latter) in the composite phenol resin (composite phenol resin particles) is 9: 1 to 5: 5. By containing the novolac resin component and the resol resin component, the proportion of macropores in the pores generated in the resin carbide can be increased. Further, by changing the ratio depending on the target substance to be adsorbed, it is possible to produce activated carbon having an arbitrary adsorption performance.
複合フェノール樹脂(複合フェノール樹脂粒子)から炭化を経て樹脂炭化物となり、さらに賦活を経て活性炭吸着剤に至る過程において、自明ながら揮発分の重量は減少する。そのため、揮発分の量が少ないほど活性炭吸着剤中の炭素量は増加し、より緻密な活性炭を得ることができる。そこで、複合フェノール樹脂(複合フェノール樹脂粒子)の揮発分は、60%以下に抑制される。
The weight of the volatiles is reduced in the process of carbonization from the composite phenol resin (composite phenol resin particles) to a resin carbide, and further activation to the activated carbon adsorbent. Therefore, the smaller the amount of volatile components, the more the amount of carbon in the activated carbon adsorbent increases, and more dense activated carbon can be obtained. Therefore, the volatile content of the composite phenol resin (composite phenol resin particles) is suppressed to 60% or less.
ナイロン含有レゾール樹脂及びナイロン含有複合フェノール樹脂は分子中に芳香環構造を有しているため、炭化率は高まる。さらに賦活により表面積の大きな活性炭吸着剤が生じる。賦活後の活性炭吸着剤は、従来の木質やヤシ殻、石油ピッチ等の活性炭と比較しても、細孔径は小さく充填密度は高い。そのため、比較的小さい分子量(分子量が数十ないし数百の範囲)のイオン性有機化合物の吸着に適する。また、ナイロンを含有する両フェノール樹脂は従来の活性炭原料の木質等と比較して窒素、リン、ナトリウム、マグネシウム等の灰分が少なく単位質量当たりの炭素の比率は高い。このため、不純物の少ない活性炭吸着剤を得ることができる。
The nylon-containing resole resin and nylon-containing composite phenol resin have an aromatic ring structure in the molecule, so the carbonization rate increases. Furthermore, activation produces an activated carbon adsorbent having a large surface area. The activated carbon adsorbent after activation has a small pore size and a high packing density as compared with conventional activated carbon such as wood, coconut shell, and petroleum pitch. Therefore, it is suitable for adsorbing an ionic organic compound having a relatively small molecular weight (molecular weight in the range of several tens to several hundreds). Further, both phenolic resins containing nylon have less ash content such as nitrogen, phosphorus, sodium, magnesium and the like, and a higher carbon ratio per unit mass than conventional activated carbon raw materials such as wood. Therefore, an activated carbon adsorbent containing few impurities can be obtained.
マクロ孔側の割合が相対的に高められることにより、吸着対象は活性炭吸着剤内部へ容易に侵入できる。そして、吸着対象はマクロ孔に接続したメソ孔さらにはミクロ孔に補足され、吸着は速く進む。通常、摂食から排泄までのうち、食物が消化により分解されて小腸内を流動する時間はおよそ3ないし5時間と考えられる。つまり、小腸内を流動する間に経口投与用吸着剤(活性炭吸着剤)が目的の吸着対象である窒素を含有する低分子を吸着する必要がある。そこで、腸管内における効率良い吸着を勘案すると、短時間の吸着が望ましいといえる。このことから、活性炭吸着剤のマクロ孔側の細孔を多く発達させることには意味がある。
ㆍ By relatively increasing the proportion of macropores, the adsorption target can easily penetrate into the activated carbon adsorbent. Then, the adsorption target is captured by the mesopores and the micropores connected to the macropores, and the adsorption proceeds rapidly. Usually, from eating to excretion, the time taken for food to be decomposed by digestion and flow in the small intestine is considered to be about 3 to 5 hours. That is, it is necessary for the adsorbent for oral administration (activated carbon adsorbent) to adsorb the nitrogen-containing low molecule that is the target of adsorption while flowing in the small intestine. Therefore, in consideration of efficient adsorption in the intestinal tract, it can be said that adsorption in a short time is desirable. From this, it is meaningful to develop many macropores of the activated carbon adsorbent.
前述の製造方法から得られた活性炭吸着剤には、後記する試作例に掲げる肝機能障害や腎機能障害の原因物質を極力速やかに吸着すること、また比較的少ない服用量で十分な吸着性能を発揮することが求められる。具備すべき性質の調和範囲を見いだすべく、活性炭吸着剤は、水銀細孔容積値の容積比の指標で規定した。そして、後記する試作例の傾向等から明らかなとおり、各指標の好適な範囲値が導出される。なお、以下に記載する前記活性炭の物性等の測定方法及び諸条件等は、試作例において詳述する。
The activated carbon adsorbent obtained from the above-mentioned production method should adsorb the causative agent of liver dysfunction and renal dysfunction listed in the prototypes described below as quickly as possible, and have sufficient adsorption performance with a relatively small dose. It is required to demonstrate. In order to find a harmonized range of properties to be provided, the activated carbon adsorbent is defined by the index of the volume ratio of the mercury pore volume value. Then, as is clear from the tendency of the prototype example described below, the suitable range value of each index is derived. The method of measuring the physical properties and the like of the activated carbon and various conditions described below will be described in detail in a prototype example.
そして、活性炭吸着剤は粒状物ないし球状物であり、その平均粒子径は特に規定されないが、150ないし400μmであることが望ましい。粒子自体の大きさが前記の範囲であると、マクロ孔等の細孔が適宜に発達し、選択吸着性の面から好ましい。また、表面積が適当となるため、吸着速度や強度の面からも好ましい。
The activated carbon adsorbent is a granular or spherical substance, and its average particle size is not particularly specified, but it is preferably 150 to 400 μm. When the size of the particles themselves is within the above range, pores such as macropores are appropriately developed, which is preferable in terms of selective adsorption. Further, since the surface area becomes appropriate, it is also preferable in terms of adsorption rate and strength.
本明細書及び試作例における活性炭吸着剤の平均粒子径はレーザー回折・散乱法によって求めた粒度分布における積算値50%における粒径とした。
The average particle size of the activated carbon adsorbents in the present specification and prototype examples is the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
水銀細孔容積(VM)は活性炭のメソ孔ないしマクロ孔の大きな細孔を評価する指標である。そこで、細孔直径7.5~1000nmの範囲のいわゆるメソ孔~マクロ孔の範囲の水銀細孔容積(V2M)を求めた。また、細孔直径50~1000nmの範囲が、吸着対象物の吸着に際し、有効な細孔の大きさであると考えられるため、該範囲、いわゆるマクロ孔の範囲の水銀細孔容積(V1M)を併せて求めた。
Mercury pore volume (V M) is an index for evaluating the large pores of mesopores or macropores of the activated carbon. Therefore, we determined the so-called mesopores ~ macropores ranging mercury pore volume of a pore diameter range of 7.5 - 1000 nm and (V2 M). Further, it is considered that the range of the pore diameter of 50 to 1000 nm is the effective pore size when adsorbing the adsorption target, and therefore the mercury pore volume (V1 M ) in this range, so-called macropore range Was also calculated.
容積比(RV)は、前掲の式(i)にて示されるナイロン含有レゾール樹脂よりなる活性炭吸着剤において容積比(RV)は、0.3~0.6と規定される。同式(i)の容積比(RV)は、細孔直径50~1000nmの範囲(マクロ孔)の窒素細孔容積(V1M)を、細孔直径7.5~1000nmの範囲(メソ孔~マクロ孔)の水銀細孔容積(V2M)により除した商である。
Volume ratio (R V), the volume ratio in the activated carbon adsorbent consisting of nylon-containing resole resin represented by to equation (i) (R V) is defined to 0.3 to 0.6. The volume ratio (R V ) of the formula (i) is such that the nitrogen pore volume (V1 M ) in the pore diameter range of 50 to 1000 nm (macropore) is equivalent to the nitrogen pore volume range of 7.5 to 1000 nm (mesopore). Is the quotient divided by the mercury pore volume (V2 M ) of macropores.
そして、ナイロン含有複合フェノール樹脂よりなる活性炭吸着剤において、容積比(RV)は、0.3~0.8と規定される。
In the activated carbon adsorbent made of nylon-containing composite phenol resin, the volume ratio (R V ) is specified to be 0.3 to 0.8.
容積比(RV)は、すなわち、メソ孔ないしマクロ孔の範囲においてマクロ孔の割合が高いことを示す指標である。活性炭のような吸着剤の場合、ミクロ孔、メソ孔、マクロ孔のいずれの細孔も存在している。その中で、いずれの範囲の細孔をより多く発達させるかにより、活性炭吸着剤の吸着対象、性能は変化する。本発明において所望される活性炭吸着剤は、尿毒症の原因物質やその前駆物質に代表されるインドキシル硫酸、アミノイソ酪酸、トリプトファン等の窒素を含有する低分子量のイオン性有機化合物の吸着を想定する。そして、本発明の活性炭吸着剤は、前記の吸着対象の分子を従前の活性炭吸着剤よりも速く吸着することである。
The volume ratio (R V ) is an index showing that the ratio of macropores is high in the range of mesopores to macropores. In the case of an adsorbent such as activated carbon, micropores, mesopores, and macropores are all present. Among these, the adsorption target and performance of the activated carbon adsorbent change depending on which range of pores is developed more. The activated carbon adsorbent desired in the present invention is assumed to adsorb nitrogen-containing low molecular weight ionic organic compounds such as indoxyl sulfate, aminoisobutyric acid and tryptophan, which are represented by uremia-causing substances and precursors thereof. . And the activated carbon adsorbent of the present invention is to adsorb the molecule to be adsorbed faster than the conventional activated carbon adsorbent.
先に述べたように、小腸内での活性炭吸着剤の滞在時間は3ないし5時間と考えられるため、短時間で経口投与用吸着剤(活性炭吸着剤)が目的の吸着対象である窒素を含有する低分子を吸着する必要がある。このことから、活性炭吸着剤のマクロ孔側の細孔を多く発達させることには意味がある。後記の試作例に開示するように、容積比(RV)の数値が高まるほど、吸着速度は速まる。
As described above, since the residence time of the activated carbon adsorbent in the small intestine is considered to be 3 to 5 hours, the adsorbent for oral administration (activated carbon adsorbent) contains nitrogen, which is the target of adsorption, in a short time. It is necessary to adsorb small molecules that do. From this, it is meaningful to develop many macropores of the activated carbon adsorbent. As disclosed in a prototype example described below, the adsorption rate increases as the numerical value of the volume ratio (R V ) increases.
また、活性炭の充填密度については、0.3ないし0.6g/mLとするのがよい。充填密度が0.3g/mL未満の場合、服用量が増加してしまい経口投与時に嚥下しづらくなる。充填密度が0.6g/mLを超える場合、フェノール樹脂由来の活性炭としての選択吸着性が伴わなくなるおそれがある。このようなことから、充填密度は前記の範囲が好適となる。
Also, the packing density of activated carbon should be 0.3 to 0.6 g / mL. If the packing density is less than 0.3 g / mL, the dose increases and it becomes difficult to swallow upon oral administration. If the packing density exceeds 0.6 g / mL, there is a risk that selective adsorption as activated carbon derived from phenol resin may not be accompanied. Therefore, the packing density is preferably in the above range.
このような活性炭吸着剤は、経口投与を目的とした薬剤であって、腎疾患又は肝疾患の治療剤又は予防剤となる。活性炭吸着剤の表面に発達した細孔内に疾患、慢性症状の原因物質が吸着、保持され、体外へ排出されることにより、症状悪化は緩和され、病態改善につながる。さらに、先天的あるいは後天的に代謝異常又はそのおそれのある場合、予め活性炭吸着剤を内服することにより、疾患、慢性症状の原因物質の体内濃度は下げられる。そこで、症状悪化を防ぐ予防としての服用も考えられる。
Such an activated carbon adsorbent is a drug intended for oral administration and is a therapeutic or prophylactic agent for renal disease or liver disease. The causative substances of diseases and chronic symptoms are adsorbed and retained in the pores developed on the surface of the activated carbon adsorbent and discharged to the outside of the body, whereby the deterioration of symptoms is relieved and the pathological condition is improved. Further, in the case where there is an inborn or acquired metabolic abnormality or the possibility of the abnormality, the in-vivo concentration of the causative substance of a disease or chronic symptom can be lowered by taking an activated carbon adsorbent in advance. Therefore, it may be taken as a preventive measure to prevent the deterioration of symptoms.
腎疾患として、例えば、慢性腎不全、急性腎不全、慢性腎盂腎炎、急性腎盂腎炎、慢性腎炎、急性腎炎症候群、急性進行型腎炎症候群、慢性腎炎症候群、ネフローゼ症候群、腎硬化症、間質性腎炎、細尿管症、リポイドネフローゼ、糖尿病性腎症、腎血管性高血圧、高血圧症候群、あるいは前記の原疾患に伴う続発性腎疾患、さらに、透析前の軽度腎不全を挙げることができる。肝疾患として、例えば、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、肝硬変、肝癌、自己免疫性肝炎、薬剤アレルギー性肝障害、原発性胆汁性肝硬変、振戦(しんせん)、脳症、代謝異常、機能異常を挙げることができる。
Examples of renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritis syndrome, acute progressive nephritis syndrome, chronic nephritis syndrome, nephrotic syndrome, nephrosclerosis, interstitial nephritis. , Renal tubular disease, lipoid nephrosis, diabetic nephropathy, renovascular hypertension, hypertension syndrome, secondary renal diseases associated with the above-mentioned underlying diseases, and mild renal failure before dialysis. Examples of liver diseases include fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, liver cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver injury, primary biliary cirrhosis, and tremor (shinshin). ), Encephalopathy, metabolic disorders, and functional disorders.
活性炭吸着剤を経口投与用吸着剤として使用する際の投与量は、年令、性別、体格又は病状等に影響されるため一律の規定は難しい。しかし、一般にヒトを対象とする場合、活性炭吸着剤の重量換算で1日当り1~20g、2~4回の服用が想定される。活性炭吸着剤の経口投与用吸着剤は、散剤、顆粒剤、錠剤、糖衣錠、カプセル剤、懸濁剤、スティック剤、分包包装体、又は乳剤等による形態、剤型で投与される。
It is difficult to specify a uniform dose when using an activated carbon adsorbent as an adsorbent for oral administration, because it is affected by age, sex, physique, or medical condition. However, in general, when it is intended for humans, it is expected that 1 to 20 g of the activated carbon adsorbent will be taken 2 to 4 times a day. The adsorbent for oral administration of the activated carbon adsorbent is administered in the form or dosage form of powder, granules, tablets, dragees, capsules, suspensions, sticks, sachets, emulsions or the like.
[試作例の合成]
試作例の活性炭吸着剤を調整するに際し、各試作例に対応するナイロン含有レゾール樹脂、ナイロン含有複合フェノール樹脂を合成した。そして、それぞれ合成した樹脂を炭化し、賦活して試作例の活性炭吸着剤を得た。 [Synthesis of prototype]
Nylon-containing resole resin and nylon-containing composite phenolic resin corresponding to each prototype were synthesized when preparing the activated carbon adsorbents of the prototype. Then, the respective synthesized resins were carbonized and activated to obtain a prototype activated carbon adsorbent.
試作例の活性炭吸着剤を調整するに際し、各試作例に対応するナイロン含有レゾール樹脂、ナイロン含有複合フェノール樹脂を合成した。そして、それぞれ合成した樹脂を炭化し、賦活して試作例の活性炭吸着剤を得た。 [Synthesis of prototype]
Nylon-containing resole resin and nylon-containing composite phenolic resin corresponding to each prototype were synthesized when preparing the activated carbon adsorbents of the prototype. Then, the respective synthesized resins were carbonized and activated to obtain a prototype activated carbon adsorbent.
ナイロンとして、6種類を使用した。
・東レ株式会社製AQナイロン「A-90」(水溶性ナイロン)
(以下、N1という。)
・東レ株式会社製AQナイロン「P-70」(水溶性ナイロン)
(以下、N2という。)
・宇部興産株式会社製6-ナイロン「1011FB」
(以下、N3という。)
・宇部興産株式会社製6-ナイロン「1022B」
(以下、N4という。)
・宇部興産株式会社製6-ナイロン「1030B」
(以下、N5という。)
・宇部興産株式会社製ポリアミドエラストマー「9040X1」
(以下、N6という。) Six types of nylon were used.
・ Toray Industries, Inc. AQ nylon "A-90" (water-soluble nylon)
(Hereinafter, referred to as N1.)
・ Toray Industries, Inc. AQ nylon "P-70" (water-soluble nylon)
(Hereinafter, referred to as N2.)
・ Ube Industries, Ltd. 6-nylon “1011FB”
(Hereafter referred to as N3.)
・ Ube Industries, Ltd. 6-nylon “1022B”
(Hereinafter referred to as N4.)
・ 6-Nylon “1030B” manufactured by Ube Industries, Ltd.
(Hereinafter referred to as N5.)
・ Ube Industries, Ltd. polyamide elastomer "9040X1"
(Hereinafter referred to as N6.)
・東レ株式会社製AQナイロン「A-90」(水溶性ナイロン)
(以下、N1という。)
・東レ株式会社製AQナイロン「P-70」(水溶性ナイロン)
(以下、N2という。)
・宇部興産株式会社製6-ナイロン「1011FB」
(以下、N3という。)
・宇部興産株式会社製6-ナイロン「1022B」
(以下、N4という。)
・宇部興産株式会社製6-ナイロン「1030B」
(以下、N5という。)
・宇部興産株式会社製ポリアミドエラストマー「9040X1」
(以下、N6という。) Six types of nylon were used.
・ Toray Industries, Inc. AQ nylon "A-90" (water-soluble nylon)
(Hereinafter, referred to as N1.)
・ Toray Industries, Inc. AQ nylon "P-70" (water-soluble nylon)
(Hereinafter, referred to as N2.)
・ Ube Industries, Ltd. 6-nylon “1011FB”
(Hereafter referred to as N3.)
・ Ube Industries, Ltd. 6-nylon “1022B”
(Hereinafter referred to as N4.)
・ 6-Nylon “1030B” manufactured by Ube Industries, Ltd.
(Hereinafter referred to as N5.)
・ Ube Industries, Ltd. polyamide elastomer "9040X1"
(Hereinafter referred to as N6.)
〈試作例1〉
90%フェノール300重量部にナイロン(N1)2.7重量部を攪拌機、還流冷却器を備えた1Lのセパラブルフラスコ内に投入して60ないし80℃で1時間加熱した。そして、37%ホルムアルデヒド(ホルマリン)303重量部、乳化剤としてのアラビアゴム1.6重量部、塩基性触媒としてのトリエチレンテトラミン21.6重量部、水166重量部をセパラブルフラスコ内に投入し60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流してナイロン含有レゾール樹脂を調製した。 <Prototype example 1>
2.7 parts by weight of nylon (N1) was added to 300 parts by weight of 90% phenol in a 1 L separable flask equipped with a stirrer and a reflux condenser and heated at 60 to 80 ° C. for 1 hour. Then, 303 parts by weight of 37% formaldehyde (formalin), 1.6 parts by weight of gum arabic as an emulsifier, 21.6 parts by weight of triethylenetetramine as a basic catalyst, and 166 parts by weight of water were charged into a separable flask. The reaction was proceeded by heating for 1 hour while maintaining the temperature. Then, it was heated to 95 ° C. or higher and refluxed for 4 hours to prepare a nylon-containing resole resin.
90%フェノール300重量部にナイロン(N1)2.7重量部を攪拌機、還流冷却器を備えた1Lのセパラブルフラスコ内に投入して60ないし80℃で1時間加熱した。そして、37%ホルムアルデヒド(ホルマリン)303重量部、乳化剤としてのアラビアゴム1.6重量部、塩基性触媒としてのトリエチレンテトラミン21.6重量部、水166重量部をセパラブルフラスコ内に投入し60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流してナイロン含有レゾール樹脂を調製した。 <Prototype example 1>
2.7 parts by weight of nylon (N1) was added to 300 parts by weight of 90% phenol in a 1 L separable flask equipped with a stirrer and a reflux condenser and heated at 60 to 80 ° C. for 1 hour. Then, 303 parts by weight of 37% formaldehyde (formalin), 1.6 parts by weight of gum arabic as an emulsifier, 21.6 parts by weight of triethylenetetramine as a basic catalyst, and 166 parts by weight of water were charged into a separable flask. The reaction was proceeded by heating for 1 hour while maintaining the temperature. Then, it was heated to 95 ° C. or higher and refluxed for 4 hours to prepare a nylon-containing resole resin.
なお、レゾール樹脂分の合成促進と、未反応物の低減から原料物質量は当量比(モル換算量)により規定される。レゾール樹脂分の合成時のフェノールの当量(P1R)とホルムアルデヒドの当量(F1R)との当量比(R11)の関係は、式(ii)より導かれ、1.3であった。当量比(R11)は、1.1ないし1.8の範囲、より好ましくは1.1ないし1.6の範囲であれば、レゾール樹脂分とノボラック樹脂分の量の割合は好ましくなる。当量比(R11)が1.1を下回る場合、フェノールの量が過少であり、同当量比(R11)が1.8を上回る場合、相対的にフェノールの量が過剰である。当該当量比(R11)の範囲は好適なエマルジョン形成等を加味した範囲である。試作例1の当量比(R11)は1.3であった。
From the viewpoint of promoting the synthesis of the resole resin component and reducing unreacted materials, the amount of raw material is defined by the equivalence ratio (molar conversion amount). The relationship of the equivalent ratio (R1 1 ) between the equivalent of phenol (P1 R ) and the equivalent of formaldehyde (F1 R ) during the synthesis of the resole resin component was 1.3, which was derived from the formula (ii). When the equivalent ratio (R1 1 ) is in the range of 1.1 to 1.8, and more preferably in the range of 1.1 to 1.6, the ratio between the amount of resole resin and the amount of novolac resin becomes preferable. When the equivalence ratio (R1 1 ) is less than 1.1, the amount of phenol is too small, and when the equivalence ratio (R1 1 ) is more than 1.8, the amount of phenol is relatively excessive. The range of the equivalent ratio (R1 1 ) is a range in which suitable emulsion formation and the like are taken into consideration. The equivalence ratio (R1 1 ) of prototype 1 was 1.3.
〈試作例2〉
ナイロンをナイロン(N2)とした以外は試作例1と同様とし、試作例2のナイロン含有レゾール樹脂を調製した。試作例2の当量比(R11)は1.3であった。 <Prototype example 2>
A nylon-containing resol resin of Prototype Example 2 was prepared in the same manner as in Prototype Example 1 except that nylon was nylon (N2). The equivalence ratio (R1 1 ) of prototype example 2 was 1.3.
ナイロンをナイロン(N2)とした以外は試作例1と同様とし、試作例2のナイロン含有レゾール樹脂を調製した。試作例2の当量比(R11)は1.3であった。 <Prototype example 2>
A nylon-containing resol resin of Prototype Example 2 was prepared in the same manner as in Prototype Example 1 except that nylon was nylon (N2). The equivalence ratio (R1 1 ) of prototype example 2 was 1.3.
〈試作例3〉
ナイロン(N2)を1.35重量部とした以外は試作例2と同様とし、試作例3のナイロン含有レゾール樹脂を調製した。試作例3の当量比(R11)は1.3であった。 <Prototype example 3>
A nylon-containing resol resin of Prototype Example 3 was prepared in the same manner as in Prototype Example 2 except that the amount of nylon (N2) was 1.35 parts by weight. The equivalence ratio (R1 1 ) of Prototype Example 3 was 1.3.
ナイロン(N2)を1.35重量部とした以外は試作例2と同様とし、試作例3のナイロン含有レゾール樹脂を調製した。試作例3の当量比(R11)は1.3であった。 <Prototype example 3>
A nylon-containing resol resin of Prototype Example 3 was prepared in the same manner as in Prototype Example 2 except that the amount of nylon (N2) was 1.35 parts by weight. The equivalence ratio (R1 1 ) of Prototype Example 3 was 1.3.
〈試作例4〉
ナイロン(N2)を8.1重量部とした以外は試作例2と同様とし、試作例4のナイロン含有レゾール樹脂を調製した。試作例4の当量比(R11)は1.3であった。 <Prototype example 4>
A nylon-containing resole resin of Prototype Example 4 was prepared in the same manner as in Prototype Example 2 except that the amount of nylon (N2) was 8.1 parts by weight. The equivalence ratio (R1 1 ) of Prototype Example 4 was 1.3.
ナイロン(N2)を8.1重量部とした以外は試作例2と同様とし、試作例4のナイロン含有レゾール樹脂を調製した。試作例4の当量比(R11)は1.3であった。 <Prototype example 4>
A nylon-containing resole resin of Prototype Example 4 was prepared in the same manner as in Prototype Example 2 except that the amount of nylon (N2) was 8.1 parts by weight. The equivalence ratio (R1 1 ) of Prototype Example 4 was 1.3.
〈比較例1〉
90%フェノール300重量部を攪拌機、還流冷却器を備えた1Lのセパラブルフラスコ内に投入して、37%ホルムアルデヒド(ホルマリン)303重量部、乳化剤としてのアラビアゴム1.6重量部、塩基性触媒としてのトリエチレンテトラミン21.6重量部、水163重量部をセパラブルフラスコ内に投入し60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流してレゾール樹脂を調製した。比較例1の当量比(R11)は1.3であった。 <Comparative Example 1>
300 parts by weight of 90% phenol is charged into a 1 L separable flask equipped with a stirrer and a reflux condenser, and 303 parts by weight of 37% formaldehyde (formalin), 1.6 parts by weight of gum arabic as an emulsifier, and a basic catalyst. 21.6 parts by weight of triethylenetetramine and 163 parts by weight of water were put into a separable flask and heated at 60 ° C. for 1 hour to proceed the reaction. Then, it heated at 95 degreeC or more, and refluxed for 4 hours, and prepared the resole resin. The equivalent ratio (R1 1 ) of Comparative Example 1 was 1.3.
90%フェノール300重量部を攪拌機、還流冷却器を備えた1Lのセパラブルフラスコ内に投入して、37%ホルムアルデヒド(ホルマリン)303重量部、乳化剤としてのアラビアゴム1.6重量部、塩基性触媒としてのトリエチレンテトラミン21.6重量部、水163重量部をセパラブルフラスコ内に投入し60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流してレゾール樹脂を調製した。比較例1の当量比(R11)は1.3であった。 <Comparative Example 1>
300 parts by weight of 90% phenol is charged into a 1 L separable flask equipped with a stirrer and a reflux condenser, and 303 parts by weight of 37% formaldehyde (formalin), 1.6 parts by weight of gum arabic as an emulsifier, and a basic catalyst. 21.6 parts by weight of triethylenetetramine and 163 parts by weight of water were put into a separable flask and heated at 60 ° C. for 1 hour to proceed the reaction. Then, it heated at 95 degreeC or more, and refluxed for 4 hours, and prepared the resole resin. The equivalent ratio (R1 1 ) of Comparative Example 1 was 1.3.
〈試作例5〉
次に、90%フェノール300重量部にナイロン(N3)2.7重量部を攪拌機、還流冷却器を備えた1Lのセパラブルフラスコ内に投入して60ないし80℃で1時間加熱した。そして、37%ホルムアルデヒド(ホルマリン)209.6重量部、酸性触媒としてのシュウ酸1.4重量部、乳化剤としてのアラビアゴム2.7重量部、水132.3重量部をさらに加えて90ないし100℃で2時間反応した。次に、37%ホルムアルデヒド(ホルマリン)93.2重量部、塩基性触媒としてのヘキサメチレンテトラミン18.9重量部とトリエチレンテトラミン8.1重量部、水40.5重量部を同セパラブルフラスコ内に投入し60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流して試作例5のナイロン含有複合フェノール樹脂を調製した。試作例5の当量比(R11)は1.3であった。 <Prototype example 5>
Next, 300 parts by weight of 90% phenol and 2.7 parts by weight of nylon (N3) were put into a 1 L separable flask equipped with a stirrer and a reflux condenser, and heated at 60 to 80 ° C. for 1 hour. Then, 209.6 parts by weight of 37% formaldehyde (formalin), 1.4 parts by weight of oxalic acid as an acid catalyst, 2.7 parts by weight of gum arabic as an emulsifier, and 132.3 parts by weight of water are further added to 90 to 100 parts. The reaction was carried out at ℃ for 2 hours. Next, 93.2 parts by weight of 37% formaldehyde (formalin), 18.9 parts by weight of hexamethylenetetramine as a basic catalyst and 8.1 parts by weight of triethylenetetramine, and 40.5 parts by weight of water were placed in the separable flask. The mixture was placed in a flask and heated at 60 ° C. for 1 hour to proceed the reaction. Then, the mixture was heated to 95 ° C. or higher and refluxed for 4 hours to prepare a nylon-containing composite phenol resin of Prototype Example 5. The equivalence ratio (R1 1 ) of Prototype Example 5 was 1.3.
次に、90%フェノール300重量部にナイロン(N3)2.7重量部を攪拌機、還流冷却器を備えた1Lのセパラブルフラスコ内に投入して60ないし80℃で1時間加熱した。そして、37%ホルムアルデヒド(ホルマリン)209.6重量部、酸性触媒としてのシュウ酸1.4重量部、乳化剤としてのアラビアゴム2.7重量部、水132.3重量部をさらに加えて90ないし100℃で2時間反応した。次に、37%ホルムアルデヒド(ホルマリン)93.2重量部、塩基性触媒としてのヘキサメチレンテトラミン18.9重量部とトリエチレンテトラミン8.1重量部、水40.5重量部を同セパラブルフラスコ内に投入し60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流して試作例5のナイロン含有複合フェノール樹脂を調製した。試作例5の当量比(R11)は1.3であった。 <Prototype example 5>
Next, 300 parts by weight of 90% phenol and 2.7 parts by weight of nylon (N3) were put into a 1 L separable flask equipped with a stirrer and a reflux condenser, and heated at 60 to 80 ° C. for 1 hour. Then, 209.6 parts by weight of 37% formaldehyde (formalin), 1.4 parts by weight of oxalic acid as an acid catalyst, 2.7 parts by weight of gum arabic as an emulsifier, and 132.3 parts by weight of water are further added to 90 to 100 parts. The reaction was carried out at ℃ for 2 hours. Next, 93.2 parts by weight of 37% formaldehyde (formalin), 18.9 parts by weight of hexamethylenetetramine as a basic catalyst and 8.1 parts by weight of triethylenetetramine, and 40.5 parts by weight of water were placed in the separable flask. The mixture was placed in a flask and heated at 60 ° C. for 1 hour to proceed the reaction. Then, the mixture was heated to 95 ° C. or higher and refluxed for 4 hours to prepare a nylon-containing composite phenol resin of Prototype Example 5. The equivalence ratio (R1 1 ) of Prototype Example 5 was 1.3.
ノボラック樹脂分の合成促進と、未反応物の低減から原料物質量も当量比(モル換算量)により規定される。ノボラック樹脂分の合成時のフェノールの当量(P2N)とホルムアルデヒドの当量(F2N)との当量比(R21)の関係は、式(iii)より導かれ、試作例6においては0.9であった。当量比(R21)は、0.5ないし0.9の範囲であればノボラック樹脂分の合成に都合よい。当量比(R21)が0.5を下回る場合、フェノールの量が過少であり、同当量比(R21)が0.9を上回る場合、相対的にフェノールの量が過剰である。当該当量比(R21)の範囲も、当量比(R11)と同様に好適なエマルジョン形成等を加味した範囲である。
The raw material amount is also defined by the equivalence ratio (molar conversion amount) because of promotion of synthesis of the novolac resin component and reduction of unreacted substances. The relationship of the equivalent ratio (R2 1 ) between the equivalent of phenol (P2 N ) and the equivalent of formaldehyde (F2 N ) at the time of synthesis of the novolac resin component was derived from the formula (iii) and was 0.9 in the prototype example 6. Met. Equivalent ratio (R2 1) is conveniently in the synthesis of the novolak resin content be in the range of 0.9 to 0.5. When the equivalence ratio (R2 1 ) is less than 0.5, the amount of phenol is too small, and when the equivalence ratio (R2 1 ) is more than 0.9, the amount of phenol is relatively excessive. The equivalent ratio (R2 1 ) range is also a range in which suitable emulsion formation and the like are taken into consideration as in the equivalent ratio (R1 1 ).
〈試作例6〉
ナイロンをナイロン(N4)とした以外は試作例5と同様とし、試作例6のナイロン含有複合フェノール樹脂を調製した。当量比(R11)は、1.3、当量比(R21)は0.9であった。 <Prototype example 6>
A nylon-containing composite phenol resin of Prototype Example 6 was prepared in the same manner as in Prototype Example 5 except that nylon (N4) was used. The equivalence ratio (R1 1 ) was 1.3, and the equivalence ratio (R2 1 ) was 0.9.
ナイロンをナイロン(N4)とした以外は試作例5と同様とし、試作例6のナイロン含有複合フェノール樹脂を調製した。当量比(R11)は、1.3、当量比(R21)は0.9であった。 <Prototype example 6>
A nylon-containing composite phenol resin of Prototype Example 6 was prepared in the same manner as in Prototype Example 5 except that nylon (N4) was used. The equivalence ratio (R1 1 ) was 1.3, and the equivalence ratio (R2 1 ) was 0.9.
〈試作例7〉
ナイロンをナイロン(N5)とした以外は試作例5と同様とし、試作例7のナイロン含有複合フェノール樹脂を調製した。当量比(R11)は、1.3、当量比(R21)は0.9であった。 <Prototype example 7>
The nylon-containing composite phenolic resin of Prototype Example 7 was prepared in the same manner as in Prototype Example 5 except that nylon (N5) was used. The equivalence ratio (R1 1 ) was 1.3, and the equivalence ratio (R2 1 ) was 0.9.
ナイロンをナイロン(N5)とした以外は試作例5と同様とし、試作例7のナイロン含有複合フェノール樹脂を調製した。当量比(R11)は、1.3、当量比(R21)は0.9であった。 <Prototype example 7>
The nylon-containing composite phenolic resin of Prototype Example 7 was prepared in the same manner as in Prototype Example 5 except that nylon (N5) was used. The equivalence ratio (R1 1 ) was 1.3, and the equivalence ratio (R2 1 ) was 0.9.
〈試作例8〉
ナイロンをナイロン(N6)とした以外は試作例5と同様とし、試作例8のナイロン含有複合フェノール樹脂を調製した。当量比(R11)は、1.3、当量比(R21)は0.9であった。 <Prototype example 8>
The nylon-containing composite phenol resin of Prototype Example 8 was prepared in the same manner as in Prototype Example 5 except that nylon (N6) was used. The equivalence ratio (R1 1 ) was 1.3, and the equivalence ratio (R2 1 ) was 0.9.
ナイロンをナイロン(N6)とした以外は試作例5と同様とし、試作例8のナイロン含有複合フェノール樹脂を調製した。当量比(R11)は、1.3、当量比(R21)は0.9であった。 <Prototype example 8>
The nylon-containing composite phenol resin of Prototype Example 8 was prepared in the same manner as in Prototype Example 5 except that nylon (N6) was used. The equivalence ratio (R1 1 ) was 1.3, and the equivalence ratio (R2 1 ) was 0.9.
〈比較例2〉
90%フェノール300重量部を攪拌機、還流冷却器を備えた1Lのセパラブルフラスコ内に投入し、37%ホルムアルデヒド(ホルマリン)209.6重量部、酸性触媒としてのシュウ酸1.4重量部、乳化剤としてのアラビアゴム3.2重量部、水158.8重量部をさらに加えて90ないし100℃で2時間反応した。次に、37%ホルムアルデヒド(ホルマリン)93.2重量部、塩基性触媒としてのヘキサメチレンテトラミン18.9重量部とトリエチレンテトラミン8.1重量部、水40.5重量部を同セパラブルフラスコ内に投入し60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流してナイロン含有複合フェノール樹脂を調製した。比較例2の当量比(R11)は、1.3、当量比(R21)は0.9であった。 <Comparative example 2>
300% by weight of 90% phenol was placed in a 1 L separable flask equipped with a stirrer and a reflux condenser, 209.6 parts by weight of 37% formaldehyde (formalin), 1.4 parts by weight of oxalic acid as an acidic catalyst, and an emulsifier. Further, 3.2 parts by weight of gum arabic and 158.8 parts by weight of water were further added, and the mixture was reacted at 90 to 100 ° C. for 2 hours. Next, 93.2 parts by weight of 37% formaldehyde (formalin), 18.9 parts by weight of hexamethylenetetramine as a basic catalyst and 8.1 parts by weight of triethylenetetramine, and 40.5 parts by weight of water were placed in the separable flask. The mixture was placed in a flask and heated at 60 ° C. for 1 hour to proceed the reaction. Then, it heated at 95 degreeC or more, and refluxed for 4 hours, and prepared the nylon containing composite phenol resin. The equivalence ratio (R1 1 ) of Comparative Example 2 was 1.3, and the equivalence ratio (R2 1 ) was 0.9.
90%フェノール300重量部を攪拌機、還流冷却器を備えた1Lのセパラブルフラスコ内に投入し、37%ホルムアルデヒド(ホルマリン)209.6重量部、酸性触媒としてのシュウ酸1.4重量部、乳化剤としてのアラビアゴム3.2重量部、水158.8重量部をさらに加えて90ないし100℃で2時間反応した。次に、37%ホルムアルデヒド(ホルマリン)93.2重量部、塩基性触媒としてのヘキサメチレンテトラミン18.9重量部とトリエチレンテトラミン8.1重量部、水40.5重量部を同セパラブルフラスコ内に投入し60℃を維持しながら1時間加熱して反応を進めた。その後、95℃以上に加熱し4時間還流してナイロン含有複合フェノール樹脂を調製した。比較例2の当量比(R11)は、1.3、当量比(R21)は0.9であった。 <Comparative example 2>
300% by weight of 90% phenol was placed in a 1 L separable flask equipped with a stirrer and a reflux condenser, 209.6 parts by weight of 37% formaldehyde (formalin), 1.4 parts by weight of oxalic acid as an acidic catalyst, and an emulsifier. Further, 3.2 parts by weight of gum arabic and 158.8 parts by weight of water were further added, and the mixture was reacted at 90 to 100 ° C. for 2 hours. Next, 93.2 parts by weight of 37% formaldehyde (formalin), 18.9 parts by weight of hexamethylenetetramine as a basic catalyst and 8.1 parts by weight of triethylenetetramine, and 40.5 parts by weight of water were placed in the separable flask. The mixture was placed in a flask and heated at 60 ° C. for 1 hour to proceed the reaction. Then, it heated at 95 degreeC or more, and refluxed for 4 hours, and prepared the nylon containing composite phenol resin. The equivalence ratio (R1 1 ) of Comparative Example 2 was 1.3, and the equivalence ratio (R2 1 ) was 0.9.
各試作例及び比較例のナイロン含有レゾール樹脂、ナイロン含有複合フェノール樹脂におけるフェノール樹脂の種類、当量比(R11)、当量比(R21)、ナイロンの種類、ナイロンの含有率(%)を表1及び表2に示す。なお、ナイロンの含有率は、フェノール樹脂量に対するナイロン量の比率を表す。
The table below shows the types of phenolic resin, equivalent ratio (R1 1 ), equivalent ratio (R2 1 ), nylon type, and nylon content (%) in the nylon-containing resole resin and nylon-containing composite phenolic resin of each prototype and comparative example. 1 and Table 2. The nylon content represents the ratio of nylon amount to phenol resin amount.
[活性炭吸着剤の調製]
試作例のナイロン含有レゾール樹脂、ナイロン含有複合フェノール樹脂及び各比較例について、それぞれを円筒状のレトルト電気炉に収容し炉内を窒素により充たした後、600℃まで100℃/1時間で昇温し、600℃を1時間維持して炉内のフェノール樹脂を炭化した。その後、フェノール樹脂の炭化物を900℃に加熱し炉内に水蒸気を注入して900℃で一定時間維持して賦活した。賦活後、0.1%塩酸水溶液で洗浄して各試作例及び比較例の活性炭吸着剤を得た。 [Preparation of activated carbon adsorbent]
About the nylon-containing resol resin, the nylon-containing composite phenolic resin of the prototype, and each comparative example, each was housed in a cylindrical retort electric furnace and filled with nitrogen, and then heated to 600 ° C at 100 ° C / 1 hour. Then, the temperature was maintained at 600 ° C. for 1 hour to carbonize the phenol resin in the furnace. Then, the carbide of the phenol resin was heated to 900 ° C., steam was injected into the furnace, and the furnace was maintained at 900 ° C. for a certain period of time for activation. After activation, the product was washed with a 0.1% hydrochloric acid aqueous solution to obtain activated carbon adsorbents for each prototype and comparative example.
試作例のナイロン含有レゾール樹脂、ナイロン含有複合フェノール樹脂及び各比較例について、それぞれを円筒状のレトルト電気炉に収容し炉内を窒素により充たした後、600℃まで100℃/1時間で昇温し、600℃を1時間維持して炉内のフェノール樹脂を炭化した。その後、フェノール樹脂の炭化物を900℃に加熱し炉内に水蒸気を注入して900℃で一定時間維持して賦活した。賦活後、0.1%塩酸水溶液で洗浄して各試作例及び比較例の活性炭吸着剤を得た。 [Preparation of activated carbon adsorbent]
About the nylon-containing resol resin, the nylon-containing composite phenolic resin of the prototype, and each comparative example, each was housed in a cylindrical retort electric furnace and filled with nitrogen, and then heated to 600 ° C at 100 ° C / 1 hour. Then, the temperature was maintained at 600 ° C. for 1 hour to carbonize the phenol resin in the furnace. Then, the carbide of the phenol resin was heated to 900 ° C., steam was injected into the furnace, and the furnace was maintained at 900 ° C. for a certain period of time for activation. After activation, the product was washed with a 0.1% hydrochloric acid aqueous solution to obtain activated carbon adsorbents for each prototype and comparative example.
洗浄後の活性炭吸着剤について、JIS K 1474(2014)に記載の方法でpHを測定し、おおむねpH5ないし7になるまで水洗した。水洗後の活性炭吸着剤をロータリー式外熱炉により窒素雰囲気中において600℃で1時間加熱して、試作例に対応する活性炭吸着剤を得た。
With respect to the activated carbon adsorbent after washing, the pH was measured by the method described in JIS K 1474 (2014), and the adsorbent was washed with water until the pH was roughly 5 to 7. The activated carbon adsorbent after washing with water was heated in a nitrogen atmosphere in a nitrogen atmosphere at 600 ° C. for 1 hour to obtain an activated carbon adsorbent corresponding to the prototype.
[測定項目・測定方法]
試作例の複合フェノール樹脂及び活性炭吸着剤に関し、収率(%)、7.5~1000nmの水銀細孔容積(V2M)(mL/g)、50~1000nmの水銀細孔容積(V1M)(mL/g)、容積比(RV)、窒素細孔容積(VH)、平均粒子径(μm)、充填密度(g/mL)を測定した。結果は表3及び表4である。 [Measurement item and method]
In the complex phenolic resin and activated carbon adsorbent prototype example, yield (%), the mercury pore volume of 7.5 ~ 1000nm (V2 M) ( mL / g), mercury pore volume of 50 ~ 1000 nm (V1 M) (ML / g), volume ratio (R V ), nitrogen pore volume (V H ), average particle diameter (μm), and packing density (g / mL) were measured. The results are Table 3 and Table 4.
試作例の複合フェノール樹脂及び活性炭吸着剤に関し、収率(%)、7.5~1000nmの水銀細孔容積(V2M)(mL/g)、50~1000nmの水銀細孔容積(V1M)(mL/g)、容積比(RV)、窒素細孔容積(VH)、平均粒子径(μm)、充填密度(g/mL)を測定した。結果は表3及び表4である。 [Measurement item and method]
In the complex phenolic resin and activated carbon adsorbent prototype example, yield (%), the mercury pore volume of 7.5 ~ 1000nm (V2 M) ( mL / g), mercury pore volume of 50 ~ 1000 nm (V1 M) (ML / g), volume ratio (R V ), nitrogen pore volume (V H ), average particle diameter (μm), and packing density (g / mL) were measured. The results are Table 3 and Table 4.
〔収率〕
収率(%)は、炭化前の樹脂段階の重量と、炭化、賦活、洗浄、篩別を終えて最終的に分取した活性炭吸着剤の重量を計測して減少量を求めた。そして、当初の樹脂重量からの割合とした。 〔yield〕
The yield (%) was obtained by measuring the weight of the resin stage before carbonization and the weight of the activated carbon adsorbent finally collected after carbonization, activation, washing and sieving to determine the amount of reduction. Then, the ratio from the initial resin weight was used.
収率(%)は、炭化前の樹脂段階の重量と、炭化、賦活、洗浄、篩別を終えて最終的に分取した活性炭吸着剤の重量を計測して減少量を求めた。そして、当初の樹脂重量からの割合とした。 〔yield〕
The yield (%) was obtained by measuring the weight of the resin stage before carbonization and the weight of the activated carbon adsorbent finally collected after carbonization, activation, washing and sieving to determine the amount of reduction. Then, the ratio from the initial resin weight was used.
〔水銀細孔容積(VM)〕
各試作例及び比較例の活性炭吸着剤の水銀細孔容積(VM)は、株式会社島津製作所製,オートポア9500を使用し、接触角130°、表面張力484ダイン/cm(4.84mN/m)に設定し、細孔直径7.5~1000nmの水銀圧入法による細孔容積値(V2M)(mL/g)及び細孔直径50~1000nmの水銀圧入法による細孔容積値(V1M)(mL/g)を求めた。 [Mercury pore volume (V M)]
Mercury pore volume of the activated carbon adsorbent of each prototype example and comparative examples (V M) is manufactured by Shimadzu Corporation, using Autopore 9500, contact angle 130 °, surface tension 484 dynes /cm(4.84mN/m set), pore volume value by mercury porosimetry pore diameter 7.5 ~ 1000nm (V2 M) ( mL / g) and pore diameter 50 to pore volume value by mercury porosimetry of 1000 nm (V1 M ) (ML / g).
各試作例及び比較例の活性炭吸着剤の水銀細孔容積(VM)は、株式会社島津製作所製,オートポア9500を使用し、接触角130°、表面張力484ダイン/cm(4.84mN/m)に設定し、細孔直径7.5~1000nmの水銀圧入法による細孔容積値(V2M)(mL/g)及び細孔直径50~1000nmの水銀圧入法による細孔容積値(V1M)(mL/g)を求めた。 [Mercury pore volume (V M)]
Mercury pore volume of the activated carbon adsorbent of each prototype example and comparative examples (V M) is manufactured by Shimadzu Corporation, using Autopore 9500, contact angle 130 °, surface tension 484 dynes /cm(4.84mN/m set), pore volume value by mercury porosimetry pore diameter 7.5 ~ 1000nm (V2 M) ( mL / g) and pore diameter 50 to pore volume value by mercury porosimetry of 1000 nm (V1 M ) (ML / g).
〔容積比(RV)〕
容積比(RV)は、前述の式(i)に示されるように、細孔直径50~1000nmの範囲(マクロ孔)の窒素細孔容積(V1M)を、細孔直径7.5~1000nmの水銀細孔容積(V2M)により除した商とした。 [Volume ratio (R V )]
The volume ratio (R V ) is, as shown in the above formula (i), the nitrogen pore volume (V1 M ) in the pore diameter range of 50 to 1000 nm (macropore), and the pore diameter of 7.5 to. The quotient was divided by the mercury pore volume (V2 M ) of 1000 nm.
容積比(RV)は、前述の式(i)に示されるように、細孔直径50~1000nmの範囲(マクロ孔)の窒素細孔容積(V1M)を、細孔直径7.5~1000nmの水銀細孔容積(V2M)により除した商とした。 [Volume ratio (R V )]
The volume ratio (R V ) is, as shown in the above formula (i), the nitrogen pore volume (V1 M ) in the pore diameter range of 50 to 1000 nm (macropore), and the pore diameter of 7.5 to. The quotient was divided by the mercury pore volume (V2 M ) of 1000 nm.
〔窒素細孔容積(VH)〕
各試作例及び比較例の活性炭吸着剤の窒素細孔容積(VH)は、Gurvitschの法則を適用し、日本ベル株式会社製BELSORPminiを使用し、相対圧0.953における液体窒素換算した窒素吸着量(Vads)を(iv)式から液体状態の窒素体積(VH)に換算して求めた。同方法は細孔直径0.7ないし2.0nmの範囲を対象とした。(iv)式において、Mgは吸着質の分子量(窒素:28.020)、ρg(g/cm3)は吸着質の密度(窒素:0.808)である。 [Nitrogen pore volume (V H )]
For the nitrogen pore volume (V H ) of the activated carbon adsorbents of each prototype and comparative example, the Gurvitsch's law was applied and BELSORPmini manufactured by Nippon Bell Co., Ltd. was used to convert the nitrogen adsorption into liquid nitrogen at a relative pressure of 0.953. The amount (V ads ) was converted to the liquid volume nitrogen volume (V H ) from the equation (iv). The method was targeted for a range of pore diameters of 0.7 to 2.0 nm. In the formula (iv), M g is the molecular weight of the adsorbate (nitrogen: 28.020), and ρ g (g / cm 3 ) is the density of the adsorbate (nitrogen: 0.808).
各試作例及び比較例の活性炭吸着剤の窒素細孔容積(VH)は、Gurvitschの法則を適用し、日本ベル株式会社製BELSORPminiを使用し、相対圧0.953における液体窒素換算した窒素吸着量(Vads)を(iv)式から液体状態の窒素体積(VH)に換算して求めた。同方法は細孔直径0.7ないし2.0nmの範囲を対象とした。(iv)式において、Mgは吸着質の分子量(窒素:28.020)、ρg(g/cm3)は吸着質の密度(窒素:0.808)である。 [Nitrogen pore volume (V H )]
For the nitrogen pore volume (V H ) of the activated carbon adsorbents of each prototype and comparative example, the Gurvitsch's law was applied and BELSORPmini manufactured by Nippon Bell Co., Ltd. was used to convert the nitrogen adsorption into liquid nitrogen at a relative pressure of 0.953. The amount (V ads ) was converted to the liquid volume nitrogen volume (V H ) from the equation (iv). The method was targeted for a range of pore diameters of 0.7 to 2.0 nm. In the formula (iv), M g is the molecular weight of the adsorbate (nitrogen: 28.020), and ρ g (g / cm 3 ) is the density of the adsorbate (nitrogen: 0.808).
〔平均粒径〕
試作例及び比較例の活性炭吸着剤の平均粒子径(μm)は、株式会社島津製作所製のレーザー光散乱式粒度分布測定装置(SALD3000S)を使用して測定し、レーザー回折・散乱法によって求めた粒度分布における積算値50%における粒径とした。 [Average particle size]
The average particle diameter (μm) of the activated carbon adsorbents of the prototype and comparative examples was measured by using a laser light scattering particle size distribution measuring device (SALD3000S) manufactured by Shimadzu Corporation, and determined by a laser diffraction / scattering method. The particle size was defined as the particle size distribution with an integrated value of 50%.
試作例及び比較例の活性炭吸着剤の平均粒子径(μm)は、株式会社島津製作所製のレーザー光散乱式粒度分布測定装置(SALD3000S)を使用して測定し、レーザー回折・散乱法によって求めた粒度分布における積算値50%における粒径とした。 [Average particle size]
The average particle diameter (μm) of the activated carbon adsorbents of the prototype and comparative examples was measured by using a laser light scattering particle size distribution measuring device (SALD3000S) manufactured by Shimadzu Corporation, and determined by a laser diffraction / scattering method. The particle size was defined as the particle size distribution with an integrated value of 50%.
〔充填密度〕
試作例及び比較例の活性炭吸着剤の充填密度(g/mL)は、JIS K 1474(2014)に準拠して測定した。 (Filling density)
The packing density (g / mL) of the activated carbon adsorbents of the prototype and comparative examples was measured according to JIS K 1474 (2014).
試作例及び比較例の活性炭吸着剤の充填密度(g/mL)は、JIS K 1474(2014)に準拠して測定した。 (Filling density)
The packing density (g / mL) of the activated carbon adsorbents of the prototype and comparative examples was measured according to JIS K 1474 (2014).
[物性値に関する考察]
ナイロン含有レゾール樹脂よりなる活性炭吸着剤である試作例1~4は、レゾール樹脂よりなる活性炭吸着剤である比較例1に比較してメソ孔~マクロ孔の範囲の水銀細孔容積(V2M)は大きく、マクロ孔の範囲の水銀細孔容積(V1M)も大きい。そして、同時に、容積比(RV)も大きくなった。すなわち、マクロ孔は多く発達し、その比率が高くなったことを確認できた。なお、ミクロ孔自体も窒素細孔容積(VH)の測定から、ミクロ孔についても多く発達したことも確認できた。 [Study on physical property values]
Nylon containing Prototype Examples 1-4 is activated carbon adsorbent consisting resole resin, mercury porosimetry range comparison to mesopores ~ macropores in Comparative Example 1 is activated carbon adsorbent consisting resole resin volume (V2 M) Is large, and the mercury pore volume (V1 M ) in the macropore range is also large. At the same time, the volume ratio (R V ) also increased. That is, it was confirmed that many macropores were developed and the ratio was high. From the measurement of the nitrogen pore volume ( VH ), it was also confirmed that the micropores themselves also developed a lot.
ナイロン含有レゾール樹脂よりなる活性炭吸着剤である試作例1~4は、レゾール樹脂よりなる活性炭吸着剤である比較例1に比較してメソ孔~マクロ孔の範囲の水銀細孔容積(V2M)は大きく、マクロ孔の範囲の水銀細孔容積(V1M)も大きい。そして、同時に、容積比(RV)も大きくなった。すなわち、マクロ孔は多く発達し、その比率が高くなったことを確認できた。なお、ミクロ孔自体も窒素細孔容積(VH)の測定から、ミクロ孔についても多く発達したことも確認できた。 [Study on physical property values]
Nylon containing Prototype Examples 1-4 is activated carbon adsorbent consisting resole resin, mercury porosimetry range comparison to mesopores ~ macropores in Comparative Example 1 is activated carbon adsorbent consisting resole resin volume (V2 M) Is large, and the mercury pore volume (V1 M ) in the macropore range is also large. At the same time, the volume ratio (R V ) also increased. That is, it was confirmed that many macropores were developed and the ratio was high. From the measurement of the nitrogen pore volume ( VH ), it was also confirmed that the micropores themselves also developed a lot.
ナイロン含有複合フェノール樹脂よりなる活性炭吸着剤である試作例5~7は、複合フェノール樹脂よりなる活性炭吸着剤である比較例2に比較して、水銀細孔容積(V1M)、(V2M)ともに大きくなったことが確認され、試作例8についてもおおよそ同等であることが確認された。そして、容積比(RV)については試作例5~8のいずれも大きくなったことから、マクロ孔は多く発達し、その比率が高くなったことを確認できた。なお、ミクロ孔自体も窒素細孔容積(VH)の測定から、ミクロ孔についても多く発達したことも確認できた。
Nylon containing composite phenolic made of a resin activated carbon adsorbent Prototype Example 5-7 is, as compared to Comparative Example 2 is activated carbon adsorbent consisting composite phenolic resin, mercury pore volume (V1 M), (V2 M ) It was confirmed that they both increased, and it was also confirmed that the prototype example 8 was almost the same. As for the volume ratio (R V ) in all of Prototype Examples 5 to 8, it was confirmed that many macropores developed and the ratio increased. From the measurement of the nitrogen pore volume ( VH ), it was also confirmed that the micropores themselves also developed a lot.
なお、比較例2の複合フェノール樹脂よりなる活性炭吸着剤は、そもそもの水銀細孔容積(V1M)、(V2M)ともに大きく、容積比(RV)も高い値を示すものの、試作例5~8のように活性炭吸着剤の原料となる複合フェノール樹脂にナイロンを含有させることで、さらにマクロ孔の割合を高めることができることが示された。
The activated carbon adsorbent made of the composite phenol resin of Comparative Example 2 had a large mercury pore volume (V1 M ) and (V2 M ) and a high volume ratio (R V ). It was shown that the ratio of macropores can be further increased by incorporating nylon into the composite phenolic resin, which is a raw material for the activated carbon adsorbent, as in Examples 1 to 8.
マクロ孔の発達は、フェノール樹脂に対する炭化焼成時において、樹脂成分の熱膨張(膨張率の相違)、揮発条件の相違等が複合的に重なり合い、活性炭表面の細孔に留まらず、活性炭の粒子内部に侵入する深さの細孔が生じたことが原因であると推察することができる。
The development of macropores is due to the thermal expansion (difference in expansion coefficient) of resin components, the difference in volatilization conditions, etc., which are compounded and overlapped during the carbonization and firing of the phenol resin, and the macropores are not limited to the pores on the surface of the activated carbon, It can be inferred that the cause is the formation of pores with a depth that penetrates into.
マクロ孔が発達した結果、吸着能力を有するミクロ孔に通ずる道筋が拡大され、毒素が容易にミクロ孔に導入されると考えられることから、毒素を迅速に吸着することができる。
As a result of the development of macropores, the path leading to the micropores that have adsorption capacity is expanded, and it is considered that the toxin can be easily introduced into the micropores, so the toxin can be adsorbed quickly.
[吸着性能評価]
前述のとおり、試作例のナイロン含有レゾール樹脂及びナイロン含有複合フェノール樹脂の炭化、賦活の工程を経て調製した活性炭吸着剤は比較例のレゾール樹脂及び複合フェノール樹脂よりなる活性炭吸着剤とそれぞれ比較してマクロ孔の相体割合が大きい。この点を踏まえ、発明者は、尿毒症等の原因となり得る窒素を含有する化合物に対する吸着性能の良否を検討した。 [Adsorption performance evaluation]
As described above, the activated carbon adsorbent prepared through the steps of carbonization and activation of the nylon-containing resole resin and the nylon-containing composite phenolic resin of the prototype example was compared with the activated carbon adsorbent composed of the resole resin and the composite phenolic resin of the comparative example, respectively. The proportion of macropores is large. Based on this point, the inventor examined whether or not the adsorption performance with respect to a nitrogen-containing compound that could cause uremia and the like was good.
前述のとおり、試作例のナイロン含有レゾール樹脂及びナイロン含有複合フェノール樹脂の炭化、賦活の工程を経て調製した活性炭吸着剤は比較例のレゾール樹脂及び複合フェノール樹脂よりなる活性炭吸着剤とそれぞれ比較してマクロ孔の相体割合が大きい。この点を踏まえ、発明者は、尿毒症等の原因となり得る窒素を含有する化合物に対する吸着性能の良否を検討した。 [Adsorption performance evaluation]
As described above, the activated carbon adsorbent prepared through the steps of carbonization and activation of the nylon-containing resole resin and the nylon-containing composite phenolic resin of the prototype example was compared with the activated carbon adsorbent composed of the resole resin and the composite phenolic resin of the comparative example, respectively. The proportion of macropores is large. Based on this point, the inventor examined whether or not the adsorption performance with respect to a nitrogen-containing compound that could cause uremia and the like was good.
〔吸着性能実験1〕
そこで、含窒素低分子化合物から毒性物質として「トリプトファン、インドール、インドール酢酸及びインドキシル硫酸」の4種類の物質を選択した。各試作例及び比較例の活性炭吸着剤について、振とうによる激しい攪拌条件下で、3時間後の当該4種の分子の吸着率(%)を測定した。 [Adsorption Performance Experiment 1]
Therefore, four types of substances, "tryptophan, indole, indole acetic acid and indoxyl sulfate" were selected as toxic substances from the nitrogen-containing low molecular weight compounds. With respect to the activated carbon adsorbents of each prototype example and comparative example, the adsorption rate (%) of the four kinds of molecules after 3 hours was measured under a vigorous stirring condition by shaking.
そこで、含窒素低分子化合物から毒性物質として「トリプトファン、インドール、インドール酢酸及びインドキシル硫酸」の4種類の物質を選択した。各試作例及び比較例の活性炭吸着剤について、振とうによる激しい攪拌条件下で、3時間後の当該4種の分子の吸着率(%)を測定した。 [Adsorption Performance Experiment 1]
Therefore, four types of substances, "tryptophan, indole, indole acetic acid and indoxyl sulfate" were selected as toxic substances from the nitrogen-containing low molecular weight compounds. With respect to the activated carbon adsorbents of each prototype example and comparative example, the adsorption rate (%) of the four kinds of molecules after 3 hours was measured under a vigorous stirring condition by shaking.
トリプトファン、インドール、インドール酢酸及びインドキシル硫酸の4種類の吸着率については、pH7.4のリン酸緩衝液に前記の物質をそれぞれ溶解して0.1g/Lの濃度の標準溶液を調製した。
トリプトファンの標準溶液50mLに各試作例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドールの標準溶液50mLに各試作例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドール酢酸の標準溶液50mLに各試作例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドキシル硫酸の標準溶液50mLに各試作例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。 Regarding four kinds of adsorption rates of tryptophan, indole, indoleacetic acid and indoxyl sulfate, the above substances were dissolved in phosphate buffer of pH 7.4 to prepare a standard solution having a concentration of 0.1 g / L.
0.01 g of the spherical activated carbons of each prototype and comparative example was added to 50 mL of a standard solution of tryptophan, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
0.01 g of each spherical activated carbon of each prototype and comparative example was added to 50 mL of a standard solution of indole, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
0.01 g of each spherical activated carbon of each prototype and comparative example was added to 50 mL of a standard solution of indole acetic acid, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
0.01 g of each spherical activated carbon of each prototype and comparative example was added to 50 mL of a standard solution of indoxyl sulfuric acid, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
トリプトファンの標準溶液50mLに各試作例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドールの標準溶液50mLに各試作例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドール酢酸の標準溶液50mLに各試作例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。
インドキシル硫酸の標準溶液50mLに各試作例、比較例の球状活性炭をそれぞれ0.01g添加し、37℃の温度で3時間接触振とうした。 Regarding four kinds of adsorption rates of tryptophan, indole, indoleacetic acid and indoxyl sulfate, the above substances were dissolved in phosphate buffer of pH 7.4 to prepare a standard solution having a concentration of 0.1 g / L.
0.01 g of the spherical activated carbons of each prototype and comparative example was added to 50 mL of a standard solution of tryptophan, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
0.01 g of each spherical activated carbon of each prototype and comparative example was added to 50 mL of a standard solution of indole, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
0.01 g of each spherical activated carbon of each prototype and comparative example was added to 50 mL of a standard solution of indole acetic acid, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
0.01 g of each spherical activated carbon of each prototype and comparative example was added to 50 mL of a standard solution of indoxyl sulfuric acid, and contact shaking was performed at a temperature of 37 ° C. for 3 hours.
その後、濾過して得た濾液について、全有機体炭素計(株式会社島津製作所製、TOC5000A)を用い、各濾液中のTOC濃度(mg/L)を測定し、各濾液中の被吸着物質の質量を算出した。各被吸着物質の吸着率(%)は(v)式より求めた。
Thereafter, the filtrate obtained by filtration was measured for TOC concentration (mg / L) in each filtrate using a total organic carbon meter (TOC5000A, manufactured by Shimadzu Corporation), and The mass was calculated. The adsorption rate (%) of each substance to be adsorbed was obtained from the equation (v).
〔吸着性能実験2〕
また、小腸内の流動時間がおおよそ3ないし5時間であることから、遠心パドルによる緩やかな攪拌条件下で、3時間後のインドールの吸着率(Ar1)と24時間後のインドールの吸着率(Ar2)を測定し、下記式(vi)に示される該3時間後のインドールの吸着率(Ar1)を24時間後のインドールの吸着率(Ar2)で除した割合(As)(%)を、毒性物質の吸着速度の指標として計測することとした。 [Adsorption Performance Experiment 2]
In addition, since the flow time in the small intestine is approximately 3 to 5 hours, the indole adsorption rate (Ar 1 ) after 3 hours and the indole adsorption rate after 24 hours (Ar 1 ) Ar 2) was measured and divided by the ratio (as) (% adsorption rate of indole after the 3 hours represented by the following formula (vi) (Ar 1) adsorption rate of indole after 24 hours (Ar 2) ) Was measured as an index of the adsorption rate of toxic substances.
また、小腸内の流動時間がおおよそ3ないし5時間であることから、遠心パドルによる緩やかな攪拌条件下で、3時間後のインドールの吸着率(Ar1)と24時間後のインドールの吸着率(Ar2)を測定し、下記式(vi)に示される該3時間後のインドールの吸着率(Ar1)を24時間後のインドールの吸着率(Ar2)で除した割合(As)(%)を、毒性物質の吸着速度の指標として計測することとした。 [Adsorption Performance Experiment 2]
In addition, since the flow time in the small intestine is approximately 3 to 5 hours, the indole adsorption rate (Ar 1 ) after 3 hours and the indole adsorption rate after 24 hours (Ar 1 ) Ar 2) was measured and divided by the ratio (as) (% adsorption rate of indole after the 3 hours represented by the following formula (vi) (Ar 1) adsorption rate of indole after 24 hours (Ar 2) ) Was measured as an index of the adsorption rate of toxic substances.
インドールの標準溶液を溶出試験機用ベッセルに500mLずつ入れ、加温して37℃の一定温度とした。温度が安定した後、各試作例及び比較例の球状活性炭をそれぞれ0.1g添加し、パドル法100rpmで攪拌した。
500 mL of the standard solution of indole was placed in a vessel for dissolution tester and heated to a constant temperature of 37 ° C. After the temperature became stable, 0.1 g of each spherical activated carbon of each prototype and comparative example was added, and the paddle method was stirred at 100 rpm.
3時間後及び24時間後に濾過して得た濾液について、分光光度計(株式会社島津製作所製、UVmini-1240)を用い、吸光光度法により279nmの吸光度を測定した。
The filtrate obtained after filtration after 3 hours and 24 hours was measured for absorbance at 279 nm by an absorptiometry method using a spectrophotometer (UVmini-1240, manufactured by Shimadzu Corporation).
表5及び6に、各試作例及び比較例の活性炭吸着剤について、吸着性能実験1としての上記4種類の物質の3時間後の吸着率(%)、吸着性能実験2としてのインドールの3時間後の吸着率(Ar1)(%)及び24時間後の吸着率(Ar2)(%)、そして(Ar1)を(Ar2)で除した3時間後の吸着率の割合(As)(%)を示した。
Tables 5 and 6 show the adsorption rates (%) of the above four kinds of substances as the adsorption performance experiment 1 after 3 hours and the indole as the adsorption performance experiment 2 for 3 hours for the activated carbon adsorbents of the prototypes and the comparative examples adsorption rate after (Ar 1) (%) and the adsorption ratio after 24 hours (Ar 2) (%), and the proportion of (Ar 1) adsorption rate after 3 hours divided by the (Ar 2) (As) (%)showed that.
[吸着性能の結果・考察]
試作例1~4のナイロン含有レゾール樹脂よりなる活性炭吸着剤は、吸着性能評価に供した毒性物質4種類の含窒素化合物のいずれについて、比較例1のレゾール樹脂よりなる活性炭吸着剤よりも同等ないしは高い吸着性能を発揮した。また、インドールの吸着速度の指標としての(Ar1)を(Ar2)で除した3時間後の吸着率の割合(As)に関しては、試作例1~4の活性炭吸着剤は比較例1よりも高い性能を発揮した。試作例5~8のナイロン含有複合フェノール樹脂よりなる活性炭吸着剤は、比較例2の複合フェノール樹脂よりなる活性炭吸着剤よりも高い吸着性能を発揮した。また、インドールの吸着速度に関しては同等ないしは高い性能を発揮した。この結果より、実際の投与後の消化管内においても迅速かつ効率的な吸着が進み、体外への排泄が期待できる。そこで、本発明により製造されたフェノール樹脂よりなる活性炭吸着剤は腎機能、肝機能障害等の治療、予防に有効な経口投与用吸着剤となり得る。 [Results and discussion of adsorption performance]
The activated carbon adsorbents made of the nylon-containing resole resins of Prototype Examples 1 to 4 were equal to or less than the activated carbon adsorbents made of the resole resin of Comparative Example 1 with respect to any of the four types of nitrogen-containing compounds of the toxic substances used for the adsorption performance evaluation. Exhibited high adsorption performance. Regarding the ratio (As) of the adsorption rate after 3 hours obtained by dividing (Ar 1 ) by (Ar 2 ) as an index of the adsorption rate of indole, the activated carbon adsorbents of Prototype Examples 1 to 4 were compared with Comparative Example 1. Also demonstrated high performance. The activated carbon adsorbents made of the nylon-containing composite phenol resins of Prototype Examples 5 to 8 exhibited higher adsorption performance than the activated carbon adsorbents made of the composite phenol resin of Comparative Example 2. In addition, the adsorption rate of indole was equivalent or high. From this result, rapid and efficient adsorption proceeds even in the digestive tract after actual administration, and excretion to the outside of the body can be expected. Therefore, the activated carbon adsorbent made of the phenol resin produced according to the present invention can be an adsorbent for oral administration which is effective for the treatment and prevention of renal function, liver dysfunction and the like.
試作例1~4のナイロン含有レゾール樹脂よりなる活性炭吸着剤は、吸着性能評価に供した毒性物質4種類の含窒素化合物のいずれについて、比較例1のレゾール樹脂よりなる活性炭吸着剤よりも同等ないしは高い吸着性能を発揮した。また、インドールの吸着速度の指標としての(Ar1)を(Ar2)で除した3時間後の吸着率の割合(As)に関しては、試作例1~4の活性炭吸着剤は比較例1よりも高い性能を発揮した。試作例5~8のナイロン含有複合フェノール樹脂よりなる活性炭吸着剤は、比較例2の複合フェノール樹脂よりなる活性炭吸着剤よりも高い吸着性能を発揮した。また、インドールの吸着速度に関しては同等ないしは高い性能を発揮した。この結果より、実際の投与後の消化管内においても迅速かつ効率的な吸着が進み、体外への排泄が期待できる。そこで、本発明により製造されたフェノール樹脂よりなる活性炭吸着剤は腎機能、肝機能障害等の治療、予防に有効な経口投与用吸着剤となり得る。 [Results and discussion of adsorption performance]
The activated carbon adsorbents made of the nylon-containing resole resins of Prototype Examples 1 to 4 were equal to or less than the activated carbon adsorbents made of the resole resin of Comparative Example 1 with respect to any of the four types of nitrogen-containing compounds of the toxic substances used for the adsorption performance evaluation. Exhibited high adsorption performance. Regarding the ratio (As) of the adsorption rate after 3 hours obtained by dividing (Ar 1 ) by (Ar 2 ) as an index of the adsorption rate of indole, the activated carbon adsorbents of Prototype Examples 1 to 4 were compared with Comparative Example 1. Also demonstrated high performance. The activated carbon adsorbents made of the nylon-containing composite phenol resins of Prototype Examples 5 to 8 exhibited higher adsorption performance than the activated carbon adsorbents made of the composite phenol resin of Comparative Example 2. In addition, the adsorption rate of indole was equivalent or high. From this result, rapid and efficient adsorption proceeds even in the digestive tract after actual administration, and excretion to the outside of the body can be expected. Therefore, the activated carbon adsorbent made of the phenol resin produced according to the present invention can be an adsorbent for oral administration which is effective for the treatment and prevention of renal function, liver dysfunction and the like.
本発明の製造方法によるフェノール樹脂から生成された活性炭吸着剤は、経口投与により消化器官に達し、尿毒症、腎機能、肝機能障害等の原因となる窒素を含有する化合物を迅速に吸着できることから、治療剤又は予防剤として有望である。また本発明の活性炭吸着剤生成用のフェノール樹脂の製造方法は、活性炭吸着剤におけるマクロ孔を効率良く発達できることから、毒性物質の吸着性能及び吸着速度の高い活性炭吸着剤を得ることができる。
The activated carbon adsorbent produced from the phenolic resin by the production method of the present invention reaches the digestive organs by oral administration, and can rapidly adsorb nitrogen-containing compounds that cause uremia, renal function, liver dysfunction, etc. , As a therapeutic or preventive agent. Further, in the method for producing a phenol resin for producing an activated carbon adsorbent of the present invention, macropores in the activated carbon adsorbent can be efficiently developed, so that an activated carbon adsorbent having a high toxic substance adsorption performance and a high adsorption rate can be obtained.
Claims (6)
- 炭化して賦活されて活性炭吸着剤とされる活性炭吸着剤生成用のフェノール樹脂であって、
フェノールに対し、水溶性のナイロンを付与し溶融して原料を調製する原料調製工程と、
該原料にホルムアルデヒドと、塩基性触媒と、乳化剤とを混合しながら加熱してナイロンを含有するナイロン含有レゾール樹脂を調製するレゾール調整工程とを有する
ことを特徴とするフェノール樹脂の製造方法。 A phenolic resin for producing an activated carbon adsorbent which is carbonized and activated to be an activated carbon adsorbent,
A raw material preparation step in which water-soluble nylon is added to phenol and melted to prepare a raw material,
A method for producing a phenol resin, comprising a step of adjusting a resole to prepare a nylon-containing resole resin containing nylon by heating formaldehyde, a basic catalyst, and an emulsifier while being mixed with the raw material. - 炭化して賦活されて活性炭吸着剤とされる活性炭吸着剤生成用のフェノール樹脂であって、
フェノールに対し、ナイロンを付与し溶融して原料を調製する原料調製工程と、
該原料にホルムアルデヒドと、酸性触媒と乳化剤とを混合しながら加熱してノボラック樹脂分を調製するノボラック樹脂合成工程と、
前記ノボラック樹脂合成工程により得た溶液中に、ホルムアルデヒドと、塩基性触媒とを混合しながら加熱してレゾール樹脂成分を合成するとともに前記ノボラック樹脂分も含有したナイロン含有複合フェノール樹脂を調整する複合フェノール樹脂調整工程とを有する
ことを特徴とするフェノール樹脂の製造方法。 A phenolic resin for producing an activated carbon adsorbent which is carbonized and activated to be an activated carbon adsorbent,
A raw material preparation step in which nylon is applied to phenol and melted to prepare a raw material,
Formaldehyde, a novolak resin synthesis step of preparing a novolac resin component by heating the raw material while mixing an acidic catalyst and an emulsifier,
In the solution obtained by the step of synthesizing the novolac resin, formaldehyde and a basic catalyst are mixed and heated to synthesize a resole resin component and to prepare a nylon-containing complex phenol resin also containing the novolac resin component. A method for producing a phenol resin, comprising a resin adjusting step. - 前記ナイロンが付与される量が、フェノール100重量部に対して0.5~5重量部である請求項1又は2に記載のフェノール樹脂の製造方法。 The method for producing a phenolic resin according to claim 1 or 2, wherein the amount of the nylon added is 0.5 to 5 parts by weight with respect to 100 parts by weight of phenol.
- 請求項1に記載の前記ナイロン含有レゾール樹脂より得た活性炭吸着剤であって、
下記式(i)に示される50~1000nmにおける水銀細孔容積(V1M)(g/mL)と7.5~1000nmにおける水銀細孔容積(V2M)(g/mL)との割合(RV)が、0.3~0.6であることを特徴とする活性炭吸着剤。
The ratio (R) of the mercury pore volume (V1 M ) (g / mL) at 50 to 1000 nm and the mercury pore volume (V2 M ) (g / mL) at 7.5 to 1000 nm shown in the following formula (i). V ) is 0.3 to 0.6, an activated carbon adsorbent characterized by the above-mentioned.
- 請求項2に記載の前記ナイロン含有複合フェノール樹脂より得た活性炭吸着剤であって、
上記式(i)に示される50~1000nmにおける水銀細孔容積(V1M)(g/mL)と7.5~1000nmにおける水銀細孔容積(V2M)(g/mL)との割合(RV)が、0.3~0.8であることを特徴とする活性炭吸着剤。 An activated carbon adsorbent obtained from the nylon-containing composite phenolic resin according to claim 2,
The ratio (R) of the mercury pore volume (V1 M ) (g / mL) at 50 to 1000 nm and the mercury pore volume (V2 M ) (g / mL) at 7.5 to 1000 nm shown in the above formula (i). V ) is 0.3 to 0.8, and an activated carbon adsorbent. - 前記活性炭吸着剤が、経口投与用腎疾患又は経口投与用肝疾患のための治療剤又は予防剤であることを特徴とする請求項1ないし5のいずれか1項に記載の経口投与用吸着剤。 The adsorbent for oral administration according to any one of claims 1 to 5, wherein the activated carbon adsorbent is a therapeutic or prophylactic agent for renal diseases for oral administration or liver diseases for oral administration. .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980070219.XA CN112867761B (en) | 2018-10-24 | 2019-10-21 | Method for producing phenolic resin |
KR1020217011989A KR20210080389A (en) | 2018-10-24 | 2019-10-21 | Method for producing phenolic resin |
PH12021550649A PH12021550649A1 (en) | 2018-10-24 | 2021-03-22 | Method for producing phenolic resin |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-200278 | 2018-10-24 | ||
JP2018200278 | 2018-10-24 | ||
JP2019-191035 | 2019-10-18 | ||
JP2019191035A JP7228498B2 (en) | 2018-10-24 | 2019-10-18 | Method for producing phenolic resin |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085282A1 true WO2020085282A1 (en) | 2020-04-30 |
Family
ID=70331343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/041266 WO2020085282A1 (en) | 2018-10-24 | 2019-10-21 | Method for producing phenolic resin |
Country Status (2)
Country | Link |
---|---|
PH (1) | PH12021550649A1 (en) |
WO (1) | WO2020085282A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021075593A (en) * | 2019-11-06 | 2021-05-20 | 住友ベークライト株式会社 | Cured product particle |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621748A (en) * | 1985-06-27 | 1987-01-07 | Unitika Ltd | Microspherical resin composition and production thereof |
JPH0649161A (en) * | 1992-08-04 | 1994-02-22 | Sumitomo Durez Co Ltd | Phenolic resin composition for carbon fiber reinforced composite material |
JPH06228256A (en) * | 1993-02-03 | 1994-08-16 | Sumitomo Bakelite Co Ltd | Phenolic resin composition and molding material |
JP2000302916A (en) * | 1999-04-20 | 2000-10-31 | Tomoegawa Paper Co Ltd | Resin composition and adhesion using the same |
JP2004506753A (en) * | 2000-08-09 | 2004-03-04 | マテリアルズ アンド セパレーションズ テクノロジー インターナショナル リミテッド | Porous carbon |
JP2004244414A (en) * | 2003-01-22 | 2004-09-02 | Meruku Hoei Kk | Medicamental adsorbent and method for producing the same |
JP2007197338A (en) * | 2006-01-24 | 2007-08-09 | Merck Seiyaku Kk | Medicinal adsorbent |
CN102677193A (en) * | 2012-05-03 | 2012-09-19 | 东华大学 | Preparation method of phenolic resin matrix nano activated carbon fiber material |
JP2013023616A (en) * | 2011-07-22 | 2013-02-04 | Lignyte Co Ltd | Method for producing phenol resin particle, and phenol resin particle |
US20130072845A1 (en) * | 2009-12-09 | 2013-03-21 | University Of Brighton | Carbon and its use in blood cleansing applications |
JP2015516373A (en) * | 2012-03-16 | 2015-06-11 | ユーシーエル ビジネス ピーエルシー | Porous carbon particles for use in the treatment and prevention of liver disease |
-
2019
- 2019-10-21 WO PCT/JP2019/041266 patent/WO2020085282A1/en active Application Filing
-
2021
- 2021-03-22 PH PH12021550649A patent/PH12021550649A1/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621748A (en) * | 1985-06-27 | 1987-01-07 | Unitika Ltd | Microspherical resin composition and production thereof |
JPH0649161A (en) * | 1992-08-04 | 1994-02-22 | Sumitomo Durez Co Ltd | Phenolic resin composition for carbon fiber reinforced composite material |
JPH06228256A (en) * | 1993-02-03 | 1994-08-16 | Sumitomo Bakelite Co Ltd | Phenolic resin composition and molding material |
JP2000302916A (en) * | 1999-04-20 | 2000-10-31 | Tomoegawa Paper Co Ltd | Resin composition and adhesion using the same |
JP2004506753A (en) * | 2000-08-09 | 2004-03-04 | マテリアルズ アンド セパレーションズ テクノロジー インターナショナル リミテッド | Porous carbon |
JP2004244414A (en) * | 2003-01-22 | 2004-09-02 | Meruku Hoei Kk | Medicamental adsorbent and method for producing the same |
JP2007197338A (en) * | 2006-01-24 | 2007-08-09 | Merck Seiyaku Kk | Medicinal adsorbent |
US20130072845A1 (en) * | 2009-12-09 | 2013-03-21 | University Of Brighton | Carbon and its use in blood cleansing applications |
JP2013023616A (en) * | 2011-07-22 | 2013-02-04 | Lignyte Co Ltd | Method for producing phenol resin particle, and phenol resin particle |
JP2015516373A (en) * | 2012-03-16 | 2015-06-11 | ユーシーエル ビジネス ピーエルシー | Porous carbon particles for use in the treatment and prevention of liver disease |
CN102677193A (en) * | 2012-05-03 | 2012-09-19 | 东华大学 | Preparation method of phenolic resin matrix nano activated carbon fiber material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021075593A (en) * | 2019-11-06 | 2021-05-20 | 住友ベークライト株式会社 | Cured product particle |
JP7413725B2 (en) | 2019-11-06 | 2024-01-16 | 住友ベークライト株式会社 | cured particles |
Also Published As
Publication number | Publication date |
---|---|
PH12021550649A1 (en) | 2022-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3585043B2 (en) | Pharmaceutical adsorbent and its production method | |
JP5124094B2 (en) | Pharmaceutical adsorbent | |
JP2010006843A (en) | Adsorbent for oral administration, remedy or preventive for renal disease, and remedy or preventive for hepatic disease | |
JP5984352B2 (en) | Method for producing pharmaceutical adsorbent for oral administration | |
US20130123095A1 (en) | Orally administered adsorbent, method of producing the same, and drug produced by using the same | |
JP7000108B2 (en) | Method for manufacturing adsorbent for oral administration | |
WO2020085282A1 (en) | Method for producing phenolic resin | |
JP5352378B2 (en) | Adsorbent for oral administration with excellent adsorption characteristics | |
JP7228498B2 (en) | Method for producing phenolic resin | |
WO2020213559A1 (en) | Method for producing activated carbon adsorbent | |
JP7061640B2 (en) | Method for manufacturing activated carbon adsorbent | |
WO2010086985A1 (en) | Adsorbent for oral administration | |
JP6637573B2 (en) | Adsorbent production method | |
JP7244617B2 (en) | Method for producing adsorbent for oral administration | |
RU2811471C2 (en) | Method of producing adsorbent based on activated carbon | |
JP5985027B2 (en) | Method for producing pharmaceutical adsorbent for oral administration | |
JP7438897B2 (en) | Tablet type adsorbent for oral administration | |
JP7499054B2 (en) | Oral tablet-type adsorbent | |
JP2006070047A (en) | Adsorbents for oral administration, remedies or prophylactic agent for kidney diseases and remedies or prophylactic agent for liver diseases | |
JP4471959B2 (en) | Oral adsorbent, renal disease treatment or prevention agent, and liver disease treatment or prevention agent | |
JP2006143736A (en) | Adsorbents for oral administration, remedies or preventives for kidney diseases and remedies or preventives for liver diseases | |
JP2006077028A (en) | Adsorbent for oral administration, and agent for treating or preventing renal or liver disease | |
JP2006328085A5 (en) | ||
JP2006096769A (en) | Adsorbent for oral administration, agent for treating or preventing renal failure, and agent for treating or preventing hepatic failure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19874893 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19874893 Country of ref document: EP Kind code of ref document: A1 |