[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020084871A1 - Electrical machine - Google Patents

Electrical machine Download PDF

Info

Publication number
WO2020084871A1
WO2020084871A1 PCT/JP2019/031193 JP2019031193W WO2020084871A1 WO 2020084871 A1 WO2020084871 A1 WO 2020084871A1 JP 2019031193 W JP2019031193 W JP 2019031193W WO 2020084871 A1 WO2020084871 A1 WO 2020084871A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
permanent magnet
armature
magnetic
iron core
Prior art date
Application number
PCT/JP2019/031193
Other languages
French (fr)
Japanese (ja)
Inventor
俊大 加嶋
広大 岡崎
信一 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2020084871A1 publication Critical patent/WO2020084871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to an electric machine having a field magnet in which a permanent magnet is embedded.
  • a conventional electric machine has a stator, which is an armature, a permanent magnet having a plurality of magnetic poles, and a field iron core, and faces the stator through a gap and moves relative to the stator. It has a mover that is a field.
  • a technique that achieves both a reduction in the number of permanent magnets and a reduction in manufacturing cost due to a reduction in the number of manufacturing steps of permanent magnets, and an improvement in torque (see, for example, Patent Document 1).
  • a permanent magnet is embedded in a field iron core of a rotor that is a mover of a rotating electric machine.
  • the permanent magnets are inserted into magnet insertion holes formed in the field core.
  • This rotating electric machine is called an embedded permanent magnet rotating electric machine. Even when the permanent magnet is damaged, it is possible to prevent the fragments of the permanent magnet from staying in the magnet insertion hole of the field core and moving to the gap between the rotor and the stator.
  • two magnetic poles having different poles on the stator side are adjacent to each other in the moving direction in one permanent magnet.
  • a flux barrier is provided at a position along the adjacent surface of adjacent magnetic poles in the field core on the stator side of the permanent magnet, and the outer peripheral portion of the field core on the stator side of the permanent magnet is connected. ing. With this configuration, the magnetic flux that short-circuits the magnetic poles becomes difficult to pass, and the torque generated by the rotating electric machine increases.
  • the outer circumference of the field core located closer to the stator than the permanent magnet may not be magnetically saturated, depending on the magnitude of the current supplied to the stator.
  • the outer circumference of the field iron core is not magnetically saturated, the magnetic flux between adjacent magnetic poles is short-circuited through the outer circumference of the field iron core, which causes a problem that torque ripple, which is a pulsation of torque, increases.
  • the present invention has been made to solve the above-mentioned problems, and in the case where two magnetic poles having different poles on the armature side are adjacent to each other in the moving direction in the permanent magnet embedded in the field core. Another object of the present invention is to obtain an electric machine that reduces torque ripple more than when the outer circumference of a field iron core on the armature side of the permanent magnet is connected.
  • the electric machine according to the present invention is With an armature, A magnetic field facing the armature via a gap so as to be movable relative to the armature, and magnetic poles having different poles on the armature side are formed adjacent to each other in the moving direction.
  • a magnet and a field having a field iron core in which a permanent magnet is embedded When the surface away from the armature at a distance equal to the minimum length of the air gap toward the field core is a virtual surface, In the armature-side field iron core portion, which is the field iron core located closer to the armature than the permanent magnet, the hole that is recessed from the virtual surface toward the permanent magnet is the position of the adjacent surface including the surface where the magnetic poles are adjacent to each other. It is formed in.
  • the armature side is closer to the permanent magnet than the permanent magnet.
  • the torque ripple can be reduced as compared with the case where the outer circumference of the field iron core in FIG.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1 of the electric machine in the first embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view of the electric machine according to the first embodiment of the present invention. It is a figure which shows the waveform of the magnetic flux density of the air gap of the electric machine in Embodiment 1 of this invention.
  • FIG. 6 is a partial cross-sectional view of a first comparative example of the electric machine according to the first embodiment of the present invention. It is a figure which shows the waveform of the magnetic flux density of the air gap in the 1st comparative example of the electric machine in Embodiment 1 of this invention.
  • FIG. 1 shows the waveform of the magnetic flux density of the air gap in the 1st comparative example of the electric machine in Embodiment 1 of this invention.
  • FIG. 6 is a diagram showing a 6f component of torque ripple in the electric machine according to the first embodiment of the present invention and the electric machine according to the first comparative example.
  • FIG. 7 is a partial cross-sectional view of a first modified example of the electric machine according to the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view taken along the line AA of FIG. 1 in a rotor of a second modified example of the electric machine according to Embodiment 2 of the present invention. It is a fragmentary sectional view of the 2nd modification of the electric machine in Embodiment 2 of this invention. It is a partial cross section figure of the 3rd modification of the electric machine in Embodiment 3 of this invention.
  • FIG. 20 is a sectional view taken along line GG of FIG.
  • FIG 17 showing a ninth modification of the electric machine according to the sixth embodiment of the present invention. It is a perspective view of the rotor of the 10th modification of the electric machine in Embodiment 6 of this invention. It is a partial cross section figure of the 11th modification of the electric machine in Embodiment 7 of this invention. It is a partial cross section figure of the 12th modification of the electric machine in Embodiment 7 of this invention.
  • FIG. 1 is a diagram of a drive system according to a first embodiment for carrying out the present invention.
  • a drive system 500 includes a rotating electric machine 200 that is an electric machine and an inverter 100.
  • the rotary electric machine 200 and the inverter 100 are electrically connected to each other, and a three-phase alternating current is supplied from the inverter 100 to the rotary electric machine 200.
  • the diagram of the rotary electric machine 200 in FIG. 1 is shown in a side sectional view which is a cross-sectional view in a plane including the rotation axis of the rotary electric machine 200.
  • the rotation axis will be referred to as the axis.
  • a rotating electric machine 200 includes a stator 3 that is an armature and a rotor 2 that is a field.
  • the rotor 2 is fixed to the outer peripheral surface of the support shaft 4.
  • Two bearings 5 are fitted to the outer peripheral surfaces of both ends of the support shaft 4 in the axial direction and both ends of the rotor 2 in the axial direction.
  • Outer peripheral surfaces of the two bearings 5 are fitted to the inner peripheral surface of the housing 9 and are held by the housing 9.
  • the outer peripheral surface of the stator 3 is fitted and fixed to the inner peripheral surface of the housing 9.
  • FIG. 2 is a sectional view of the electric machine taken along the line AA in FIG. 1 according to the present embodiment.
  • the cross-sectional view is a cross-sectional view in a plane orthogonal to the rotation axis of the rotating electric machine 200 that is an electric machine.
  • the stator 3 includes a stator core 16 which is an armature core, twelve windings 6, and twelve insulators 8.
  • the stator core 16 has an annular core back portion 17 and twelve teeth portions 18 protruding from the core back portion 17 to the rotor 2 side and arranged at equal intervals in a rotation direction which is a moving direction, that is, a circumferential direction. .
  • the stator core 16 is formed by stacking a plurality of sheet-shaped stator core sheets 16-1 punched in the same shape from an electromagnetic steel sheet in a predetermined length in the axial direction for the purpose of reducing eddy currents. There is.
  • the teeth portion 18 of the stator core 16 is arranged so as to face the rotor 2 with the gap 1 interposed therebetween. Twelve slots 21 are formed between the teeth portions 18 that are adjacent to each other in the circumferential direction.
  • the twelve windings 6 are wound around the teeth portion 18 via the insulator 8 and are respectively housed in the twelve slots 21.
  • the winding 6 is composed of four windings 6 per phase and a total of 12 windings 6 for three phases.
  • phase winding groups 6 per phase are connected in series to form a phase winding group, and the phase winding groups for three phases are Y-connected.
  • the inverter 100 which is a power converter
  • a phase difference of 120 ° between the phases a rotating magnetic field rotating in the circumferential direction is generated.
  • 3 is generated in the air gap 1 and torque is generated in the rotor 2.
  • the method of connecting the three-phase phase winding group is not limited to Y connection and may be ⁇ connection.
  • the rotor 2 has four permanent magnets 50 and a rotor core 15 which is a field core in which the four permanent magnets 50 are embedded.
  • the rotor core 15 is configured by laminating a plurality of sheet-shaped rotor core sheets 15-1 punched in the same shape from electromagnetic steel sheets in a predetermined length in the axial direction.
  • the rotor core 15 is provided with four magnet insertion holes 19 into which the permanent magnets 50 are inserted, the same number as the permanent magnets 50, at equal intervals in the circumferential direction.
  • One permanent magnet 50 is inserted into each of the four magnet insertion holes 19.
  • flux barriers 7 which are holes penetrating in the axial direction and suppressing a short circuit of magnetic flux between the permanent magnets 50 inserted in the magnet insertion holes 19 adjacent to each other in the circumferential direction are provided. It is provided. A non-magnetic material such as resin may be inserted in the flux barrier 7.
  • magnetic poles 51 and 52 having different poles on the side of the stator 3 which is an armature are formed adjacent to each other in the rotational direction which is the moving direction, that is, the circumferential direction. That is, in FIG. 1, the magnetic pole 51 is magnetized so that it has an N-pole on the surface on the side of the stator 3 and the magnetic pole 52 has an S-pole on the surface on the side of the stator 3.
  • the N pole of the magnetic pole 51 is formed on the surface on the side of the stator 3 on one side in the circumferential direction from the center of the permanent magnet 50, that is, the surface on the outer side in the radial direction.
  • the S pole of the magnetic pole 52 is formed on the surface on the side of the stator 3 on the other side in the circumferential direction from the center of the permanent magnet 50, that is, the surface on the outer side in the radial direction.
  • the surface where the magnetic poles 51 and 52 are adjacent to each other in the circumferential direction is the magnetic pole boundary 10.
  • the rotary electric machine 200 is a rotary electric machine having eight magnetic poles 51 and 52 and twelve slots 21. There is.
  • the permanent magnet 50 has a flat plate shape. That is, the permanent magnet 50 has two flat surfaces facing each other, and the surface of the permanent magnet 50 on the side of the stator 3 where the magnetic poles 51 and 52 are formed is one flat surface.
  • the cross-sectional shape of the permanent magnet 50 in the cross section including the radial direction, which is the direction from the permanent magnet 50 toward the stator 3, and the circumferential direction is a rectangle.
  • the cross section including the radial direction and the circumferential direction is a cross section orthogonal to the axial direction.
  • the permanent magnets 50 extend in the axial direction with a sectional shape orthogonal to the same axial direction.
  • the axial length of the permanent magnet 50 is equal to the axial length of the rotor core 15.
  • the axial length of the permanent magnet 50 may be different from the axial length of the rotor core 15. Since the permanent magnet 50 has a flat plate shape, it is possible to reduce the number of man-hours required to shape the permanent magnet 50, as compared with the case where the permanent magnet has a curved surface shape.
  • the magnetic poles 51 and 52 may be configured as separate segment magnets, that is, magnetic bodies that are separate permanent magnet pieces. That is, the permanent magnet 50 may be composed of a plurality of magnetic bodies divided into magnetic poles 51 and 52. In the case of FIG. 2, the permanent magnet 50 may be composed of two magnetic bodies divided into magnetic poles 51 and 52. With this configuration, it is possible to magnetize each magnetic body of the permanent magnet pieces and form a magnetic pole for each magnetic body. Therefore, it is possible to improve the magnetization ratio, which is the ratio of the magnetic flux generated by the magnetized permanent magnet piece to the magnetic flux generated by the permanent magnet piece in the completely magnetized state.
  • magnetic poles 51 and 52 having different poles on the side of the stator 3 of the permanent magnet 50 are circumferentially arranged. It may be formed adjacently. That is, the permanent magnet 50 may be composed of one magnetic body having a plurality of magnetic poles 51 and 52. With this configuration, it is possible to reduce costs related to the number of control points of the permanent magnet 50, the number of processing steps, and the number of magnetizing steps.
  • the magnetic pole boundary 10 has two magnetic bodies adjacent to each other in the circumferential direction. It becomes a face.
  • the magnetic pole boundary 10 is located at a circumferential position where the pole is switched from the N pole to the S pole or from the S pole to the N pole, that is, the circumference without the pole. It becomes the surface of the direction position.
  • a region having no pole exists in the circumferential direction at the circumferential ends of the magnetic poles 51, 52 on the side where the magnetic poles 51, 52 are circumferentially adjacent to each other.
  • the magnetic pole boundary 10 is a surface located at the center position of the circumferential range of the region having no pole.
  • the permanent magnet 50 may be magnetized with an arbitrary number of magnetic poles 51 and 52 having two or more poles. That is, the number of magnetic poles 51 and 52 in the permanent magnet 50 may be three or more.
  • FIG. 3 is a partial cross-sectional view of the electric machine according to this embodiment.
  • the rotor core 15 positioned closer to the stator 3 than the permanent magnet 50 is referred to as an armature side field core portion 22.
  • a surface that is separated from the stator 3 in the direction toward the rotor core 15 with a distance equal to the minimum length g of the gap 1 is defined as a virtual surface 90.
  • a surface including the magnetic pole boundary 10 which is a surface where the magnetic poles 51 and 52 are adjacent to each other is referred to as an adjacent surface 24.
  • a hole portion 11 recessed from the virtual surface 90 toward the permanent magnet 50 is formed at the position of the adjacent surface 24.
  • the minimum length g of the gap 1 represents the minimum radial distance between the teeth portion 18 of the stator core 16 and the rotor core 15.
  • the boundary of the armature side field core portion 22 is a portion of the rotor core 15 that is the minimum width tb in the direction from the circumferential end of the permanent magnet 50 toward the stator 3.
  • the virtual surface 90 is a cylindrical surface that is separated from the stator 3 in the direction toward the rotor core 15 with the minimum length g of the gap 1.
  • the hole 11 is formed in the armature side field iron core portion 22 so as to straddle the adjacent surface 24 in the circumferential direction.
  • the cross-sectional shape of the hole 11 in the cross section perpendicular to the axial direction is a wedge shape in which the width in the moving direction becomes narrower in the direction from the virtual surface 90 toward the permanent magnet 50 side and becomes convex.
  • the opening width which is the length of the straight line connecting to and, is Wh1, and is the width in the moving direction that is the direction perpendicular to the magnetizing direction corresponding to one pole of the magnetic pole 51 or the magnetic pole 52 of the permanent magnet 50, that is, the width in the circumferential direction.
  • the magnetic pole width is Wmag.
  • the opening width Wh1 is preferably set to be smaller than the magnetic pole width Wmag and larger than the minimum length g of the gap 1. That is, it is desirable that g ⁇ Wh1 ⁇ Wmag.
  • the range in which the opening width Wh1 overlaps the magnetic poles 51 and 52 in the circumferential direction becomes smaller than the magnetic pole width Wmag, and the magnetic flux 20 of the magnetic poles 51 and 52 passes in the circumferential range of the hole 11. It is possible to suppress the length of the void 1 from expanding beyond the minimum length g. Due to this dimensional relationship, the magnetic flux density in the gap 1 between the rotor 2 and the stator 3 can be efficiently increased, and the torque can be further increased.
  • the radial width of the armature-side field core portion 22 in the direction of the adjacent surface 24 from the permanent magnet 50 to the stator 3 is th1, and the armature-side field core portion 22 has a width of th1.
  • the minimum width in the direction from the circumferential end of the permanent magnet 50 toward the stator 3 is tb.
  • the portion of the rotor core 15 in the same range as the circumferential range of the hole 11 including the portion having the width th1 in the armature side field core portion 22 is the first bridge portion, that is, the thin portion 13, and th1 is It is the width of the thin portion 13.
  • stator 3 side than the flux barrier 7 from the portion having the minimum width tb at the boundary of the armature side field iron core portion 22 to the minimum width tb at the boundary of the armature side field iron core portions 22 adjacent in the circumferential direction.
  • the portion of the rotor core 15 located at is the second bridge portion 26.
  • the 2nd bridge part 26 straddles the position of the central surface 25 which is a surface located in the center of the circumferential direction between the permanent magnets 50 adjacent to each other in the circumferential direction.
  • the width th1 of the thin portion 13 is preferably tb ⁇ th1 ⁇ Wh1 / 2 with respect to the minimum width tb and the opening width Wh1. This is because the lower limit value of the width th1 of the thin portion 13 is set to the minimum width tb that has the strength to hold the centrifugal force generated in the permanent magnet 50 due to the rotation of the rotor, or the minimum width tb of the size that allows the electromagnetic steel plate to be punched. This is because it is necessary.
  • the amount of magnetic flux that passes through the width th1 of the thin portion 13 among the magnetic flux 20 that flows through the magnetic poles 51 and 52 is greater than the amount of magnetic flux that flows from the opening width Wh1 into the air gap 1. Is also smaller. Due to this dimensional relationship, magnetic saturation easily occurs in the thin portion 13 due to the magnetic flux 20 generated by the permanent magnet 50 or the magnetic flux generated by the stator 3. When the thin portion 13 is magnetically saturated, the relative permeability of the thin portion 13 is close to that of air. Therefore, the torque generated by the rotary electric machine 200 can be further increased.
  • g ⁇ Wh1 ⁇ Wmag and tb ⁇ th1 ⁇ Wh1 / 2 are dimensions that can be set individually, and the effect of increasing torque is also achieved. Further, if g ⁇ Wh1 ⁇ Wmag and tb ⁇ th1 ⁇ Wh1 / 2, the torque is increased as compared with the case of setting by any dimensional relationship.
  • the width th1 of the thin portion 13 is equal to or less than that of two electromagnetic steel plates, preferably equal to or less than that of one electromagnetic steel plate.
  • FIG. 4 is a diagram showing a waveform of the magnetic flux density in the air gap of the electric machine according to the present embodiment.
  • the horizontal axis represents the position of the rotor of the rotary electric machine 200 in the circumferential direction, that is, the rotation angle of the rotor is represented by an electrical angle [deg]
  • the vertical axis represents the magnetic flux density in the void 1 in the void 1 in FIG. It is expressed as a value standardized by the maximum value of the magnetic flux density in.
  • the waveform of the magnetic flux density in the air gap 1 of the rotary electric machine 200 that is the electric machine according to the present embodiment has a sinusoidal shape. Further, in FIG.
  • the position where the magnetic flux density is 0 is the circumferential position between the magnetic poles having different poles, that is, the position of the electrical angle 180 [deg] which is the circumferential position of the adjacent surface 24, and the field iron core 15. It is the position in the circumferential direction between the flux barriers 7 that are adjacent to each other, that is, the position of the electrical angle 0 [deg] or 360 [deg] that is the position of the center plane 25.
  • FIG. 5 is a partial cross-sectional view of a first comparative example of the electric machine according to the present embodiment.
  • a rotating electric machine 300 which is a first comparative example of the electric machine according to the present embodiment, has a stator 303 that is the same as the stator 3 shown in FIG. 2 and an embedded permanent magnet 350 embedded in a rotor core 315. And a rotor 302 of the embedded magnet type.
  • the rotor 302 of the rotary electric machine 300 of FIG. 5 differs from the rotary electric machine 200 of FIG. 3 in that a recess 312 is formed instead of the hole 11.
  • Other configurations of the rotary electric machine 300 are similar to those of the rotary electric machine 200 of FIG.
  • one permanent magnet 350 in the rotating electric machine 300 has magnetic poles 351 and 352 having different poles on the stator 303 side in the moving direction. It is formed by being magnetized adjacent to a certain circumferential direction.
  • the armature side field iron core portion 322 which is the rotor iron core 315 located closer to the stator 300 than the permanent magnet 350 in the rotor 302, the concave portion 312 that is recessed from the magnet insertion hole 319 toward the stator 300 side
  • the magnetic poles 351 and 352 are formed at the position of the adjacent surface 324 including the magnetic pole boundary 310 which is a surface where the magnetic poles 351 and 352 are adjacent to each other. That is, in the rotary electric machine 300, the outer peripheral portion of the rotor core 315 located closer to the stator 300 than the permanent magnet 350 is connected by the thin portion 313.
  • FIG. 6 is a diagram showing a waveform of the magnetic flux density of the air gap in the first comparative example of the electric machine according to the present embodiment.
  • the horizontal axis represents the position of the rotor of the rotary electric machine 300 in the circumferential direction, that is, the rotation angle of the rotor in electrical degrees [deg]
  • the vertical axis represents the air gap 301 of the rotary electric machine 300 of the first comparative example.
  • the magnetic flux density at is represented by a value normalized by the maximum value of the magnetic flux density in the void 301 in FIG.
  • the waveform of the magnetic flux density in the air gap 301 of the rotary electric machine 300 of the first comparative example of the electric machine according to the present embodiment is larger in the air gap 1 than in the air gap 1 of the rotary electric machine 200 in FIG. It has a trapezoidal waveform that contains many harmonic components in the circumferential space.
  • the harmonic component in the space in the circumferential direction is a harmonic component when the waveform of two poles of the magnetic pole 51 and the magnetic pole 52, that is, one electrical angle period is subjected to frequency analysis.
  • the outer peripheral portion of the armature side field iron core portion 322, which is the rotor iron core 315 on the stator 300 side of the permanent magnet 350, is connected by the thin portion 313. Therefore, in the rotary electric machine 300 of FIG. 5, the magnetic flux 320 of the permanent magnet 350 flows through the thin portion 313 connected at the outer peripheral portion of the armature side field iron core portion 322.
  • the hole portion 11 recessed from the virtual surface 90 toward the permanent magnet 50 is formed at the position of the adjacent surface 24. Therefore, the magnetic flux 20 of the permanent magnet 50 is connected to the armature side field iron core portion 22 at a portion closer to the permanent magnet 50 side than the outer peripheral portion of the armature side field iron core portion 22. Flowing through. Therefore, the magnetic flux density of the air gap 1 in the adjacent surface 24 located between the magnetic poles 51 and 52 of the rotating electric machine 200 is the air gap 301 at the magnetic pole boundary 310 located between the magnetic poles 351 and 352 of the rotating electric machine 300 of the first comparative example. Lower than the magnetic flux density of. Therefore, as shown in FIG. 6, the harmonic component of the magnetic flux density in the air gap 1 of the rotary electric machine 200 is smaller than the harmonic component of the magnetic flux density in the air gap 301 of the rotary electric machine 300.
  • the torque ripple of the rotary electric machine 200 of the present embodiment in FIG. 3 is reduced as compared with the torque ripple of the rotary electric machine 300 of the first comparative example. That is, when two magnetic poles 51 and 52 having different poles on the side of the stator 3 in one permanent magnet 50 embedded in the rotor core 15 are adjacent to each other in the moving direction, the rotating electric machine of the present embodiment In the case of 200, the torque ripple can be reduced as compared with the case where the outer peripheral portion of the armature side field iron core portion 322 on the stator 300 side of the permanent magnet 350 is connected.
  • FIG. 7 is a diagram showing a 6f component of torque ripple in the electric machine according to the present embodiment and the electric machine according to the first comparative example.
  • the horizontal axis represents the rotating electrical machine 300 of the first comparative example of FIG. 5 and the rotating electrical machine 200 of FIG. 3
  • the vertical axis represents the 6f component of the torque ripple of the first comparative example as 100. It represents the 6f component of the torque ripple.
  • the 6f component of the torque ripple is the amplitude value of the torque ripple of 6 peaks per one electrical angle cycle when a predetermined current is applied to the stator, and is the main component of the torque ripple.
  • the torque ripple of rotary electric machine 200 of the present embodiment in FIG. 3 can be reduced as compared to the torque ripple of rotary electric machine 300 of the first comparative example.
  • the cross-sectional shape of the hole portion 11 is not limited to the shape symmetrical in the circumferential direction with respect to the adjacent surface 24, and if the shape is recessed from the virtual surface 90 toward the permanent magnet 50, the hole 11 has a circumferential shape with respect to the adjacent surface 24.
  • the shape may be asymmetric in the direction. Even if the cross-sectional shape of the hole 11 is asymmetrical in the circumferential direction with respect to the adjacent surface 24, the harmonic component of the magnetic flux density in the air gap 1 of the rotary electric machine 200 is the harmonic component of the magnetic flux density in the air gap 301 of the rotary electric machine 300.
  • the torque ripple of the rotary electric machine 200 can be reduced more than that of the rotary electric machine 300 of the first comparative example.
  • the rotary electric machine 200 of the present embodiment is different from the rotary electric machine of the second comparative example in which the hole 11 of the rotary electric machine 200 of the present embodiment is not provided in the rotor iron core, in the armature side field core.
  • the magnetic resistance of the armature side field core portion 22 is increased by the hole portion 11 provided in the portion 22.
  • the magnetic flux 20 passes through the path B of the magnetic flux 20 that short-circuits between the magnetic pole 51 and the magnetic pole 52. It is provided to prevent flow. Due to this hole portion 11, the cross-sectional area of the thin portion 13 of the armature side field iron core portion 22 due to the cross section of the adjacent surface 24 becomes smaller than that of the rotating electric machine of the second comparative example. Therefore, the magnetic resistance in the path B of the magnetic flux 20 that short-circuits the magnetic pole 51 and the magnetic pole 52 in the rotary electric machine 200 according to the present embodiment is the same as that in the second comparative example in which the hole 11 is not provided in the rotor core. It is larger than that of the rotating electric machine.
  • the magnetic flux 20 that short-circuits the adjacent magnetic poles 51 and 52 is suppressed more than in the case of the rotating electrical machine of the second comparative example.
  • the torque generated by the rotary electric machine 200 of FIG. 3 can be made larger than the torque generated by the rotary electric machine of the second comparative example.
  • the effect of manufacturability on the permanent magnet 50 in the rotary electric machine 200 of the present embodiment will be described. If the total number of magnetic poles of the rotating electric machine of the third comparative example is eight, which is the same as the total number of magnetic poles 51 and 52 of FIG. 2 in the present embodiment, in the rotating electric machine of the third comparative example, the magnet insertion formed in the rotor is inserted.
  • the number of holes and the number of permanent magnets are eight, which is the same as the total number of magnetic poles.
  • the number of magnet insertion holes or permanent magnets of the rotating electrical machine of the third comparative example is eight, which is twice the number of four in the present embodiment.
  • one magnetic pole having an N-pole or an S-pole is formed on the stator-side surface of one permanent magnet embedded in the rotor. Has been done. Therefore, in the rotating electrical machine of the third comparative example, the man-hours for shaping the permanent magnets, the man-hours for magnetizing the permanent magnets, and the man-hours for inserting the permanent magnets into the magnet insertion holes depend on the total number of magnetic poles. There is a problem in that the manufacturing cost is increased.
  • the number of magnet insertion holes 19 or permanent magnets 50 is four, which is half that of the rotating electrical machine of the third comparative example. Therefore, the number of man-hours for shaping the permanent magnet 50 of the rotary electric machine 200 of the present embodiment is half that of the rotary electric machine of the third comparative example.
  • the permanent magnets 50 are magnetized before inserting the permanent magnets 50 into the magnet insertion holes 19, since one permanent magnet 50 is magnetized once, the rotation of the present embodiment is performed.
  • the number of magnetizing steps in the electric machine 200 is half that of the rotating electric machine of the third comparative example. Further, the number of steps for inserting the permanent magnet 50 of the rotary electric machine 200 of the present embodiment into the magnet insertion hole 19 is also half that of the rotary electric machine of the third comparative example.
  • the manufacturing cost of the rotary electric machine 200 of the present embodiment can be reduced as compared with the rotary electric machine of the third comparative example.
  • FIG. 8 is a partial cross-sectional view of a first modification 200a of the electric machine according to the present embodiment.
  • the cutout portion 23 is provided between the adjacent permanent magnets 50 on the outer peripheral portion of the rotor core 15a. Is provided. That is, the notch 23 recessed from the virtual surface 90 in the direction from the stator 3 to the rotor core 15a is located at the center of the rotor core 15a in the circumferential direction between the permanent magnets 50 adjacent to each other in the circumferential direction. It is formed at the position of the central surface 25 which is the surface to be formed.
  • the first permanent magnet When the permanent magnets 50-1 and 50-2 adjacent to each other in the circumferential direction with the cutout portion 23 interposed therebetween are the first permanent magnet 50-1 and the second permanent magnet 50-2, the first permanent magnet The armature side field core at the position of the adjacent surface 24-1 which is the surface including the magnetic pole boundary 10-1 which is one end surface in the circumferential direction of the first magnetic pole 51-1 closest to the cutout portion 23 in 50-1.
  • a first hole 11-1 is formed in the portion 22.
  • the first magnetic pole 51-1 having the first magnetic pole 51-1 formed between the first hole portion 11-1 and the cutout portion 23 protrudes from the permanent magnet 50-1 toward the stator 3.
  • One protruding portion 30a-1 is formed.
  • a second hole portion 11-2 is formed in the magnetic core portion 22-2. Then, in the rotor core 15a, between the second hole portion 11-2 and the notch portion 23, the second protruding portion 30a ⁇ protruding from the second permanent magnet 50-2 toward the stator 3 is formed. 2 is formed.
  • the cutout portion 23 and the flux barrier 7 By combining the cutout portion 23 and the flux barrier 7 between the first protruding portion 30a-1 and the second protruding portion 30a-2, the short circuit of the magnetic flux 20 between the adjacent permanent magnets 50 is suppressed. can do. Therefore, the torque of the rotary electric machine 200a in FIG. 8 is larger than the torque of the rotary electric machine 200 in FIG. Even if the flux barrier 7 is not provided, the cutout 23 alone can suppress the short circuit of the magnetic flux 20 between the adjacent permanent magnets 50, compared to the case where the cutout 23 is not provided.
  • the gap 1 between the magnetic pole 51-1 and the magnetic pole 52-2 which is between the adjacent permanent magnets 50-1 and 50-2, is formed by the first protrusion 30a-1 and the second protrusion 30a-2.
  • the magnetic flux density can be reduced. Therefore, it is possible to ensure the symmetry of the magnetic flux density of the air gap 1 with reference to the center plane 25 between the magnetic poles 51-1 and 52-2 of the rotor core 15a. That is, the waveform of the magnetic flux density of the air gap 1 approaches antisymmetry with respect to the center plane 25 between the magnetic pole 51-1 and the magnetic pole 52-2. Therefore, the first modification 200a of the rotary electric machine can reduce the torque ripple more than the rotary electric machine 200 of FIG.
  • the number of magnetic poles 51, 52 appearing in the gap 1 by the permanent magnet 50 is eight, that is, eight magnetic poles and the number of slots 21 is twelve, but the rotating electric machines 200, 200a are used.
  • the number of slots and the number of slots 21 may be any combination that satisfies the desired characteristics of the rotary electric machine.
  • the rotors 2 and 2a are housed in the inner diameter side of the stator 3 and face the inner diameter side of the stator 3, but the inner rotor type rotary electric machines 200 and 200a have the structure.
  • the same effect can be obtained as the structure of the outer rotor type rotating electric machine in which the rotors 2 and 2a are arranged to face the outer diameter side of the rotor 3.
  • the inner rotor type it is possible to make the cross-sectional area perpendicular to the axial direction of the slots 21 in the stator core 16 larger than the cross-sectional area of the outer rotor type slots. Therefore, the copper loss of the stator 3 can be reduced. Further, in the case of the outer rotor type, centrifugal force does not act on the thin portion of the rotor core, so the thickness of the thin portion of the rotor core should be smaller than the thickness of the thin portion 13 of the inner rotor type rotor core 15. You can
  • FIG. 9 is a sectional view taken along line AA of FIG. 1 showing a rotor of a second modified example of the electric machine according to the second exemplary embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional view of a second modified example of the electric machine according to the present embodiment. 9 and 10, the second modification 200b of the rotary electric machine that is an electric machine is different from the first modification 200a of the rotary electric machine according to the first embodiment in the following points.
  • the first protrusion 30b-1 has a circular arc-shaped cross section perpendicular to the axial direction
  • the second protrusion 30b-2 has a circular cross-sectional shape perpendicular to the axial direction. It has an arc shape.
  • the radius of curvature of the first protrusion 30b-1 is r1
  • the radius of curvature of the second protrusion 30b-2 is r2
  • the radius of curvature r1 of the first protrusion 30b-1 and the radius of curvature r2 of the second protrusion 30b-2 are smaller than the radius R of curvature of the virtual surface 90, respectively.
  • the magnetic flux in the air gap 1 between the rotor 2b and the stator 3 is provided by providing the first projecting portion 30b-1 and the second projecting portion 30b-2 whose cross section perpendicular to the axial direction has an arc shape.
  • the density waveform can be approximated to a sine wave. Therefore, the torque ripple generated by the second modification 200b of the rotating electric machine can be reduced more than that by the first modification 200a of the rotating electric machine.
  • the radial distance from the permanent magnet 50 in the armature-side field core portion 22a-1 facing one of the magnetic poles 51-1 becomes the maximum.
  • the width of the opening is Wh2.
  • the definition of Wmag is the same as in FIG.
  • the opening width Wh2 is preferably set smaller than the magnetic pole width Wmag and larger than the minimum length g of the gap 1. That is, it is desirable to set the radius of curvature r1 of the first protrusion 30b-1 and the radius of curvature r2 of the second protrusion 30b-2 so that g ⁇ Wh2 ⁇ Wmag. This is because, in FIG.
  • the width in the radial direction that is the direction from the permanent magnet 50-1 to the stator 3 at the position of the adjacent surface 24 in the armature side field iron core portion 22a-1 is th2
  • the armature side field magnet is In the iron core portion 22a-1
  • the minimum width in the direction from the circumferential end of the permanent magnet 50-1 toward the stator 3 is tb.
  • the portion of the rotor core 15b in the same range as the circumferential range of the hole 11a, including the portion having the width th2 in the armature side field core portion 22a-1, is the first bridge portion, that is, the thin portion 13a, Let th2 be the width of the thin portion 13a.
  • the portion of the rotor core 15b located on the stator 3 side is referred to as the second bridge portion 26a.
  • the width th2 of the thin portion 13a is preferably tb ⁇ th2 ⁇ Wh2 / 2 with respect to the minimum width tb and the opening width Wh2. This is because the lower limit value of the width th2 of the thin portion 13a is set to the minimum width tb having the strength required to hold the centrifugal force generated in the permanent magnet 50-1 by the rotation of the rotor 2b, or the size that allows the electromagnetic steel plate to be punched. This is because it is necessary to set the minimum width tb.
  • g ⁇ Wh2 ⁇ Wmag and tb ⁇ th2 ⁇ Wh2 / 2 are dimensions that can be set individually, and the effect of increasing torque is also achieved. Further, if g ⁇ Wh2 ⁇ Wmag and tb ⁇ th2 ⁇ Wh2 / 2, the torque generated by the second modification 200b of the rotating electric machine is increased as compared with the case of setting in any dimensional relationship.
  • the virtual surface 90 may be filled with the rotor core 15b.
  • the hole 11a recessed from the virtual surface 90 toward the permanent magnets 50-1 and 50-2 is formed in the armature side magnetic field core 22a-1, the armature side field in which the hole 11a is formed is formed.
  • the shape of the cross section perpendicular to the axial direction of the magnetic core portion 22a-1 is a shape in which two arcs are continuous in the circumferential direction.
  • the harmonic component of the magnetic flux density waveform of the air gap 1 in the circumferential range of the hole 11a between the rotor 2b and the stator 3 can be reduced, and the magnetic flux density waveform of the air gap 1 can be approximated to a sine wave. . Therefore, the second modification 200b of the rotating electric machine can reduce the torque ripple more than the rotating electric machine 200 of FIG.
  • Embodiment 3 As an example in which the shape of the hole 11 of FIG. 3 is different, four modified examples of the rotary electric machine according to Embodiment 3 of the present invention will be described.
  • FIG. 11 is a partial cross-sectional view of a third modified example of the electric machine according to the third embodiment for carrying out the present invention.
  • a third modification 200c of the rotary electric machine that is an electric machine is different from the rotary electric machine 200 according to the first embodiment in the following points.
  • the shape of the cross section perpendicular to the axial direction of the hole 11 of FIG. 3 is a wedge shape, while the shape of the hole 11b of the third modification 200c of the rotating electric machine that is an electric machine is perpendicular to the axial direction.
  • the shape of the cross section is a trapezoidal shape in which one apex portion of the triangular shape is cut by the virtual surface 90.
  • the triangular vertex which is the cross-sectional shape of the hole 11b, is in the void 1 at the position of the adjacent surface 24 of the rotor core 15c. Therefore, the outer circumference of the rotor core 15c on the adjacent surface 24 is opened toward the stator 3 by the opening width Wh3 in the circumferential direction.
  • the radial distance from the permanent magnet 50 in the armature side field core portion 22 b facing the one magnetic pole 51 is the maximum, and the one magnetic pole 51.
  • the opening width which is the length of the straight line connecting the point in the armature side field iron core portion 22b facing the other magnetic pole 52 adjacent to, at the maximum radial distance from the permanent magnet 50, is Wh3.
  • a thin portion 13b which is a first bridge portion and is disposed so as to extend over the position of the adjacent surface 24 in the circumferential direction.
  • the thin portion 13b which is the first bridge portion, is a portion of the rotor core 15c in the same range as the circumferential range of the hole 11b, including the portion having the width th3 in the armature side field core portion 22b.
  • the width th3 of the thin portion 13b in the direction from the permanent magnet 50 to the stator 3 is constant in the circumferential direction in the range of Whm3. In FIG. 11, Wh3 ⁇ Whm3.
  • the width th3 of the thin portion 13b When the opening width Wh1 and the opening width Wh3 of the hole portion 11 of FIG. 3 are the same length and the width th1 of the thin portion 13 and the width th3 of the thin portion 13b are the same length, the width th3 of the thin portion 13b. Is constant in the circumferential direction within the circumferential width Whm3 of the thin portion 13b, the length of the path D of the magnetic flux 20 is longer than the length of the path B of the magnetic flux 20 in FIG. Therefore, the magnetic resistance of the path D of the magnetic flux 20 becomes larger than the magnetic resistance of the path B of the magnetic flux 20 of FIG.
  • the magnetic flux density increases on the outer peripheral side of the rotor core 15c and magnetic saturation easily occurs, so that the short circuit of the magnetic flux 20 in the thin portion 13b is suppressed. Therefore, the torque of the third modification 200c of the rotary electric machine of FIG. 11 is increased as compared with the case of the rotary electric machine 200 of FIG.
  • FIG. 12 is a partial cross-sectional view of a fourth modified example of the electric machine according to the present embodiment.
  • a fourth modification 200d of the rotary electric machine that is an electric machine is different from the third modification 200c of the rotary electric machine according to the present embodiment in the following points.
  • the opening width Wh4 of the hole portion 11c and the circumferential width Whm4 of the thin portion 13c are equal. That is, the shape of the cross section perpendicular to the axial direction of the hole 11c in the fourth modification 200d of the rotating electric machine is a rectangular shape, that is, a rectangular shape.
  • the opening width Wh4 is the opening width of the third modification 200c of the rotating electric machine. It becomes larger than Wh3.
  • the magnetic resistance that the magnetic flux 20 passes through the opening width Wh4 is the same as the opening width Wh3 of the third modification 200c of the rotating electric machine. It increases more than the reluctance it passes through. Therefore, in the fourth modification 200d of the rotating electric machine, the magnetic flux 20 flowing from the armature side field core portion 22c of the rotor core 15d to the stator 3 leaks to the opening width Wh4 in the third modification example of the rotating electric machine. It can be suppressed more than in the case of 200c. Therefore, the torque generated by the fourth modification 200d of the rotating electric machine is larger than that in the case of the third modification 200c of the rotating electric machine of FIG. 11.
  • the magnetic flux density waveform generated in the gap 1 becomes a waveform closer to a sine wave shape than in the case of the hole 11b of FIG.
  • the magnetic flux 20 flowing from the armature side field iron core portion 22c to the stator 3 leaks to the opening width Wh4 more than in the case of the third modification 200c of the rotating electric machine.
  • the harmonic component of the magnetic flux density waveform of the void 1 in the circumferential range of the hole 11c becomes smaller than that in the case of the hole 11b in FIG. Therefore, the torque ripple generated by the fourth modification 200d of the rotating electric machine is reduced as compared with the case of the third modification 200c of the rotating electric machine.
  • FIG. 13 is a partial cross-sectional view of a fifth modified example of the electric machine according to the present embodiment.
  • a fifth modification 200e of the rotary electric machine that is an electric machine is different from the fourth modification 200d of the rotary electric machine according to the present embodiment in the following points.
  • 13 in the armature-side field core portion 22d of the rotor core 15e a recess 12 that is recessed from the magnet insertion hole 19 toward the stator 3 is formed at the position of the adjacent surface 24.
  • the circumferential width Whm5 of the thin portion 13d which is the first bridge portion between the recess 12 and the hole 11d, is equal to the opening width Wh5 and the circumferential opening width Wo1 of the recess 12.
  • the thin portion 13d is separated from the permanent magnet 50 with a predetermined length Do1 in the radial direction.
  • the shape of the cross section perpendicular to the axial direction of the recess 12 in the fifth modification 200e of the rotating electric machine is a rectangular shape, that is, a rectangular shape.
  • the length of the path E of the magnetic flux 20 passing through the thin portion 13d is the fourth modification of the rotating electric machine. It becomes larger than the length of the path D of the magnetic flux 20 of 200d. Therefore, the magnetic resistance in the thin portion 13d is higher than the magnetic resistance in the thin portion 13d of the fourth modification 200d of the rotating electric machine. Therefore, in the fifth modification 200e of the rotating electric machine, the magnetic flux 20 flowing from the armature side field iron core portion 22d to the stator 3 leaks to the thin portion 13d more than in the fourth modification 200d of the rotating electric machine. Can be suppressed. Therefore, the torque generated by the fifth modification 200e of the rotating electric machine is larger than that in the case of the fourth modification 200d of the rotating electric machine.
  • FIG. 14 is a partial cross-sectional view of a sixth modified example of the electric machine according to the present embodiment.
  • a sixth modification 200f of the rotary electric machine that is an electric machine is different from the fourth modification 200d of the rotary electric machine according to the present embodiment in the following points.
  • the hole 11 e penetrates from the void 1 to the magnet insertion hole 19.
  • the opening width of the hole 11e is Wh6
  • the hole 11e penetrates from the void 1 to the magnet insertion hole 19 with a width of the opening width Wh6.
  • the hole 11e has a shape obtained by removing the thin portion 13c from the hole 11c of the fourth modification 200d of the rotary electric machine.
  • the magnetic resistance through which the magnetic flux 20 passes through the opening width Wh6 is the fourth modification of the rotating electric machine. It is larger than the magnetic resistance in the thin portion 13c of Example 200d. Therefore, in the sixth modified example of the rotating electric machine, the magnetic flux 20 flowing from the armature-side field core portion 22e of the rotor core 15f to the stator 3 leaks to the opening width Wh6 in the fourth modified example of the rotating electric machine. This can be suppressed more than in the case of leakage to the thin portion 13c at 200d. Therefore, the torque generated by the sixth modification 200f of the rotating electric machine is higher than that in the case of the fourth modification 200d of the rotating electric machine.
  • the magnetic flux density waveform generated in the void 1 has a waveform closer to a sine wave shape than in the case of the hole 11c of FIG. This is because in the sixth modification 200f of the rotating electric machine, the magnetic flux 20 flowing from the armature side field iron core portion 22e to the stator 3 leaks to the opening width Wh6 more than in the case of the fourth modification 200d of the rotating electric machine. This is because it can be suppressed. For this reason, the harmonic component of the magnetic flux density waveform of the void 1 in the circumferential range of the hole 11e becomes smaller than that in the case of the hole 11c in FIG. Therefore, the torque ripple generated by the sixth modification 200f of the rotating electric machine is reduced as compared with the case of the fourth modification 200d of the rotating electric machine.
  • FIG. 15 is a partial cross-sectional view of a seventh modified example of the electric machine according to the fourth embodiment for carrying out the present invention.
  • a seventh modification 200g of the rotating electric machine is different from the rotating electric machine 200 according to the first embodiment in the following points.
  • magnetic poles 51a and 52a having different poles on the side of the stator 3 are adjacent to each other in the circumferential direction, and four different poles are alternately arranged side by side in the circumferential direction. That is, in FIG. 15, the magnetic pole 51a is magnetized so that it has an N-pole on the surface on the side of the stator 3, and the magnetic pole 52a has an S-pole on the surface on the side of the stator 3. Therefore, in FIG. 15, on the surface of the permanent magnet 50a-1 on the side of the stator 3, the N pole of the magnetic pole 51a extends from the left end that is one end in the circumferential direction to the right end that is the other end in the circumferential direction.
  • the S pole of the magnetic pole 52a It is formed in parallel with the pole, the S pole of the magnetic pole 52a, the N pole of the magnetic pole 51a, and the S pole of the magnetic pole 52a. Further, also in the permanent magnet 50a-2 circumferentially adjacent to the permanent magnet 50a-1, the N pole of the magnetic pole 51a and the S pole of the magnetic pole 52a from the one end in the circumferential direction to the other end in the circumferential direction. , The N pole of the magnetic pole 51a and the S pole of the magnetic pole 52a.
  • the magnetic pole boundaries 10a-1 and 10a-2 are directed from the left end which is one end in the circumferential direction to the right end which is the other end in the circumferential direction in FIG. 10a-3.
  • the permanent magnets 50a-3 (not shown) are adjacent to each other in the circumferential direction of the permanent magnet 50a-2, and the permanent magnets 50a-4 are adjacent to each other in the circumferential direction of the permanent magnet 50a-3.
  • the rotary electric machine 200g is a rotary electric machine having 16 magnetic poles and 12 slots 21.
  • the surfaces including the magnetic pole boundaries 10a-1, 10a-2, and 10a-3 which are the surfaces where the magnetic poles 51a and 52a are adjacent to each other, are referred to as adjacent surfaces 24a-1, 24a-2, and 24a-3, respectively.
  • adjacent surfaces 24a-1, 24a-2, and 24a-3 are referred to as adjacent surfaces 24a-1, 24a-2, and 24a-3, respectively.
  • the hole portions 11f-1, 11f-2, 11f-3 recessed from the virtual surface 90 toward the permanent magnet 50a-1 are respectively formed on the adjacent surface 24a-1. , 24a-2, 24a-3.
  • one of the permanent magnets 50a-1 to 50a-4 is provided with four magnetic poles 51a and 52a, which are a plurality of magnetic poles.
  • the total number of magnetic poles of the rotor is 16, which is the same as the total number of magnetic poles 51a and 52a in the present embodiment
  • the number of magnet insertion holes formed in the rotor and the number of permanent magnets are the same as those of magnetic poles 51a and 52a.
  • the rotating electrical machine of the fourth comparative example is 16 which is the same as the total number. Except for the number of magnet insertion holes and the number of permanent magnets, the rotating electrical machine of the third comparative example has the same configuration.
  • the number of magnet insertion holes 19 or permanent magnets 50a-1 to 50a-4 is 16 which is the number of permanent magnets of the rotating electric machine of the fourth comparative example.
  • the number of the magnetic poles 51a and 52a formed in one of the permanent magnets 50a-1 to 50a-4 is four, which is the number divided by four. Therefore, the number of man-hours required to shape the permanent magnets 50 of the rotary electric machine 200 of the present embodiment is 1 ⁇ 4 that of the rotary electric machine of the fourth comparative example.
  • the man-hours for magnetizing the seventh modification 200g of the rotating electric machine and the man-hours for inserting the permanent magnets 50a-1 to 50a-4 into the magnet insertion holes 19 are also 1/4 of those of the rotating electric machine of the fourth comparative example. become. Therefore, the manufacturing cost of the seventh modification 200g of the rotating electric machine can be reduced as compared with the rotating electric machine of the fourth comparative example. Further, the manufacturing cost of the seventh modified example 200g of the rotating electric machine can be reduced as compared with the rotating electric machine 200 of FIG.
  • the number of magnetic poles 51a and 52a formed on one permanent magnet 50a-1 to 50a-4 is not limited to four poles, and may be an odd number of magnetic poles such as three poles and five poles.
  • the number of magnetic poles 51a and 52a in one permanent magnet 50a-1 to 50a-4 may be three or more.
  • FIG. 16 is a partial cross-sectional view of an eighth modified example of the electric machine according to the fifth embodiment for carrying out the present invention.
  • an eighth modification 200h of the rotary electric machine differs from rotary electric machine 200 according to Embodiment 1 in the following points.
  • the permanent magnet 50b has two cylindrical surfaces 53-1 and 53-2 that are opposed to each other in the radial direction.
  • the cylindrical surfaces 53-1 and 53-2 are arranged in a direction including the direction from the permanent magnet 50b toward the stator 3 and a circumferential direction, that is, in a cross section perpendicular to the axial direction, in the direction from the permanent magnet 50b toward the stator 3, respectively. It is convex.
  • the surface of the permanent magnet 50b on which the poles of the magnetic poles 51 and 52 are formed is one cylindrical surface 53-1 on the outer diameter side, that is, the stator 3 side.
  • the radial width of the permanent magnet 50b in FIG. 16 is constant in the circumferential direction. Therefore, the radius of curvature of the outer diameter side cylindrical surface 53-1 is larger than the radius of curvature of the inner diameter side cylindrical surface 53-2 by the radial width of the permanent magnet 50b.
  • the harmonic components of the magnetic flux density waveform of the air gap 1 can be reduced.
  • the magnetic flux density waveform of the air gap 1 can be approximated to a sine wave. Therefore, the eighth modification 200h of the rotating electric machine can reduce the torque ripple more than the rotating electric machine 200.
  • the permanent magnet 50b in the eighth modified example 200h of the rotating electric machine has two cylindrical surfaces 53-1 and 53-2 that face each other in the radial direction, there is a gap with the cylindrical surface 53-1 on the stator 3 side.
  • the radial distance to 1 is shortened.
  • the radial width of the armature side field core portion 22g of the rotor core 15h can be reduced. Therefore, the magnetic resistance of the path F of the magnetic flux 20 is higher than the magnetic resistance of the path B of the magnetic flux 20 of the rotary electric machine 200. Therefore, the short circuit of the magnetic flux 20 flowing through the path F can be suppressed more than in the case of the rotary electric machine 200 in FIG. Therefore, the eighth modification 200h of the rotary electric machine according to the present embodiment can obtain a larger torque than that of the rotary electric machine 200.
  • the hole portions 11, 11b to 11e in FIGS. 3, 10 to 16, the cutout portions 23 and 23a in FIGS. 8 and 10 and the permanent magnets in FIGS. 50, 50a-1 to 50a-4, 50b may be arbitrarily combined.
  • the torque ripple generated by the rotary electric machine is connected to the outer peripheral portion of the armature-side field core portion on the stator side. Is less than.
  • the magnetic pole width which is the width in the circumferential direction perpendicular to the magnetizing direction corresponding to one pole of the magnetic poles 51 and 52
  • Wmag the width in the circumferential direction perpendicular to the magnetizing direction corresponding to one pole of the magnetic poles 51 and 52
  • one end of the magnetic poles 51 and 52 are adjacent to each other.
  • the magnetic pole width which is the distance from the surface 24 to the other ends of the magnetic poles 51 and 52
  • Wmag if g ⁇ Wh1 ⁇ Wmag or tb ⁇ th1 ⁇ Wh1 / 2 is satisfied as in the first embodiment, the present embodiment is performed.
  • the torque also increases in the eighth modification 200h of the rotating electric machine of the form.
  • FIG. 17 is a perspective view of a rotor of a ninth modification of the electric machine according to the sixth embodiment for carrying out the present invention.
  • FIG. 18 is a GG sectional view of FIG. 17 of the ninth modification of the electric machine according to the present embodiment. Since the stator of the ninth modification 200i of the rotating electric machine that is the electric machine in the present embodiment is the same as the stator 3 of the rotating electric machine 200 according to the first embodiment, the rotation shown in FIGS. The stator of the ninth modification 200i of the electric machine is not shown for convenience. 17 and 18, a ninth modification 200i of the rotary electric machine differs from rotary electric machine 200 according to Embodiment 1 in the following points.
  • the rotor core 15i in the ninth modification 200i of the rotating electric machine is arranged in a direction perpendicular to the direction from the permanent magnet 50 to the stator 3 and the circumferential direction, that is, in a partial range in the axial direction. It has the 1st field 40 and the 2nd field 41 arranged in the range of the direction of an axis different from the range of the 1st field 40.
  • the hole 11e shown in FIG. 14 of the third embodiment is arranged in the first region 40. In the second region 41, the rotor iron core 15i exists from the magnet insertion hole 19 to the virtual surface 90 at the position of the adjacent surface of the armature side field iron core portion 22h-2.
  • the second region 41 no hole is formed in the armature side field iron core portion 22h-2, and the magnet insertion hole 19 to the virtual surface 90 are connected by the magnetic steel plate which is a magnetic body.
  • one second region 41 is arranged at each of both ends in the axial direction, and the first region is provided at the center of the rotor 2i between the two second regions 41 in the axial direction. 40 is connected to the second region 41 to form the rotor 2i.
  • the total axial length of the two second regions 41 is equal to the axial length of the first region 40.
  • the cross section perpendicular to the axial direction of the first region 40 is the cross section shown in FIG.
  • the cross section perpendicular to the axial direction of the second region 41 is the cross section shown in FIG. 18.
  • an electromagnetic steel plate which is a magnetic body exists at the position of the adjacent surface 24 corresponding to the hole 11e of FIG. That is, the armature side field core portion 22h-2 corresponding to the hole 11e is filled with the electromagnetic steel plate. Therefore, in the armature side field iron core portion 22h-2, the magnetic flux 20 is short-circuited through the path H of the magnetic flux 20 between the magnetic pole 51 and the magnetic pole 52. Therefore, the magnetic resistance that short-circuits between the magnetic pole 51 and the magnetic pole 52 in the first region 40 due to the hole 11e in the first region 40 is higher than that in the second region 41.
  • both axial ends of the first region 40 can be fixed, and the rotor can be fixed.
  • the strength against the centrifugal force of 2i can be improved as compared with the case of only the first region 40.
  • the first region 40 in which the hole 11e is formed is provided at only one position in the axial direction, but the present invention is not limited to this, and the first region 40 and the second region 41 are alternately connected in the axial direction. Then, the rotor core 15i may be configured. In that case, each of the first region 40 and the second region 41 may be formed by laminating several electromagnetic steel plates. Further, the sum of the axial lengths of the two second regions 41 and the axial length of the first region 40 may be different depending on the required strength against the centrifugal force.
  • FIG. 19 is a perspective view of a rotor of a tenth modified example of the electric machine according to the present embodiment.
  • a tenth modification 200j of the rotary electric machine is different from the ninth modification 200i of the rotary electric machine according to the present embodiment in the following points.
  • a cross section of the first region 40a perpendicular to the axial direction is the cross section shown in FIG. 5 of the first embodiment. That is, the concave portion 312 shown in FIG. 5 of the first embodiment is arranged in the first region 40a.
  • the concave portion 312 is formed in the armature side field core portion 22i-1 of the rotor core 15j.
  • the cross section perpendicular to the axial direction of the second region 41a is the cross section shown in FIG. 3 of the first embodiment. That is, the hole 11 shown in FIG. 3 of the first embodiment is arranged in the second region 41a.
  • the hole 11 is formed in the armature side field core 22i-2 of the rotor core 15j.
  • the first region 40a in which the concave portion 312 is arranged and the second region 41a in which the hole 11 is arranged are axially connected to each other, so that the rotor 2j as a whole is It is possible to suppress an increase in torque ripple in the first region 40a in the second region 41a while suppressing a decrease in the strength of the rotor 2j with respect to the centrifugal force due to the concave portion 312 in the first region 40a in the second region 41a.
  • the second regions 41a at both ends in the axial direction in which the strength of the rotor 2j against the centrifugal force is larger than that in the first region 40a, the radial direction due to the centrifugal force at both axial ends of the first region 40a. Can be suppressed, and the strength of the rotor 2j against the centrifugal force can be improved as compared with the case of only the first region 40a.
  • the first region 40a in which the hole portion 11 is formed is only one position in the axial direction, but the present invention is not limited to this, and the first region 40 and the second region 41a are alternately connected in the axial direction.
  • the rotor core 15j may be configured.
  • each of the first region 40a and the second region 41a may be formed by laminating several electromagnetic steel plates.
  • the sum of the axial lengths of the two second regions 41a and the axial length of the first region 40a may be different depending on the required strength against the centrifugal force.
  • the cross sections perpendicular to the axial direction of the first regions 40, 40a and the second regions 41, 41a are not limited to the cross sections shown in FIGS. 3, 5, 14, and 18, but the hole portion 11 in FIGS. , 11b to 11e, the cutout portions 23 and 23a in FIGS. 8 and 10 and the permanent magnets 50, 50a-1 to 50a-4 and 50b in FIGS. Good.
  • the strength of the rotor against centrifugal force can be improved.
  • FIG. 20 is a partial cross-sectional view of an eleventh modified example of the electric machine according to the seventh embodiment for carrying out the present invention.
  • a direct acting machine 200k that is an eleventh modified example of the electric machine according to the present embodiment is different from the rotary electric machine 200 according to the first embodiment in the following points.
  • the cross-sectional view is a cross-sectional view on a plane including the X direction that is along the linear movement direction of the linear motor 200k and the Y direction that is along the direction from the field to the armature.
  • the direction perpendicular to the paper surface is the Z direction.
  • a linear motor 200k has a structure in which the rotary electric machine 200 of FIG. 2 is linearly expanded in the X direction.
  • the linear motor 200k includes a mover 103 that is an armature and a stator 102 that is a field.
  • the mover 103 is supported by a linear guide (not shown) so as to be linearly movable.
  • the bottom surface of the stator 102 which is the surface of the stator 102 opposite to the movable element 103 side, is fixed to the upper surface of the base 109. With these configurations, the mover 103 moves linearly along the linear guide.
  • stator 102 which is a field, faces the mover 103 via the air gap 101 and is movable in the X direction relative to the mover 103, that is, in the X direction relative to the mover 103. It is arranged so that it can move linearly.
  • the mover 103 includes a mover core 116, which is an armature core, and six windings 106.
  • the mover iron core 116 includes a linear core back portion 117 and six teeth portions 118 protruding from the core back portion 117 toward the stator 102 and arranged at equal intervals in the linear movement direction, that is, the X direction.
  • the mover iron core 116 has a plurality of sheet-like mover iron core sheets 116-1 punched in the same shape from an electromagnetic steel sheet in a predetermined Z direction perpendicular to the X and Y directions. It is constructed by stacking the lengths.
  • the teeth portion 118 of the mover iron core 116 is arranged so as to face the stator 102 via the gap 101.
  • Six slots 121 are formed between the teeth portions 118 adjacent to each other in the X direction.
  • the six windings 106 are wound around the teeth 118 via the insulators 108, and are housed in the six slots 121, respectively.
  • the winding 106 is composed of two windings 106 for each phase and a total of six windings 106 for three phases. Two windings 106 for each phase are connected in series to form a phase winding group, and the phase winding group for three phases is Y-connected.
  • each phase winding group having the winding 106 from the inverter 100 which is a power converter (not shown), with a phase difference of 120 ° between the phases, a magnetic field that linearly moves in the X direction is generated.
  • the mover 103 generates the air gap 101, and the stator 102 generates thrust in the X direction.
  • the method of connecting the three-phase phase winding group is not limited to Y connection and may be ⁇ connection.
  • the stator 102 has a plurality of permanent magnets 150 and a stator core 115 which is a field core in which the plurality of permanent magnets 150 are embedded.
  • the stator core 115 is configured by stacking a plurality of sheet-shaped stator core sheets 115-1 punched from an electromagnetic steel plate in the same shape in a predetermined length in the Z direction.
  • magnet insertion holes 119 into which the permanent magnets 150 are inserted are formed in the same number as the permanent magnets 150 at equal intervals in the X direction.
  • One permanent magnet 150 is inserted into each of the plurality of magnet insertion holes 119. In FIG.
  • two permanent magnets 150 and two magnet insertion holes 119 are shown, but two or more permanent magnets 150 are arranged side by side, and the length of the stator 102 in the X direction is equal.
  • the stroke length is the length of the movable range required by the mover 103.
  • magnetic poles 151 and 152 having different poles are formed adjacent to each other in the X direction on the side of the mover 103, which is an armature. That is, in FIG. 1, the magnetic pole 151 is magnetized so as to have an N-pole on the surface on the mover 103 side and the magnetic pole 152 to have an S-pole on the surface on the mover 103 side.
  • the N pole of the magnetic pole 151 is formed on the surface on the side of the mover 103 on the one side in the X direction from the center of the permanent magnet 150.
  • the S pole of the magnetic pole 152 is formed on the surface on the side of the mover 103 on the other side in the X direction from the center of the permanent magnet 150.
  • a surface where the magnetic poles 151 and 152 are adjacent to each other in the X direction is a magnetic pole boundary 110.
  • the definition of the magnetic pole boundary 110 is the same except that the circumferential direction in the first embodiment is replaced with the X direction.
  • the permanent magnet 150 has the same flat plate shape as the permanent magnet 1 of FIG. 3 of the first embodiment.
  • a direct drive machine 200k is a direct drive machine having two or more magnetic poles 151 and 152 and six slots 121. Further, the number of magnetic poles 151 and 152 facing the X direction range of the mover 103 of the linear motor 200k is four.
  • the stator core 115 located closer to the mover 103 than the permanent magnet 150 is the armature side field core 122.
  • a surface separated from the mover 103 in the direction toward the stator core 115 with a distance equal to the minimum length g of the gap 101 is defined as a virtual surface 190.
  • a virtual surface 190 is a surface including the magnetic pole boundary 110, which is a surface where the magnetic poles 151 and 152 are adjacent to each other, and is referred to as an adjacent surface 124.
  • a hole portion 111 that is recessed from the virtual surface 190 toward the permanent magnet 150 is formed at the position of the adjacent surface 124.
  • the minimum length g of the gap 101 represents the minimum distance in the Y direction between the teeth portion 118 of the mover core 116 and the stator core 115.
  • the boundary of the armature side field iron core portion 122 is a portion of the stator iron core 115 that is the minimum width tb in the direction from the end of the permanent magnet 150 in the X direction toward the mover 103.
  • an imaginary plane 190 is a plane separated from the mover 103 toward the stator core 115 with a minimum length g of the gap 101.
  • the virtual surface 190 coincides with the surface of the stator core 115 on the mover 103 side.
  • the hole portion 111 is formed in the armature side field iron core portion 122, straddling the adjacent surface 124 in the X direction.
  • the cross-sectional shape of the hole 111 in the cross section perpendicular to the Z direction is a wedge shape in which the width in the X direction is narrowed in the Y direction from the virtual surface 190 toward the permanent magnet 150 side to be convex.
  • the thrust ripple of the linear motor 200k according to the present embodiment in FIG. 20 is generated by the outer peripheral portion of the armature side field core portion on the mover side. Is less than when connected.
  • a cutout portion 123 is also provided between the adjacent permanent magnets 150 on the outer peripheral portion of the stator core 115. That is, the notch 123 recessed from the virtual surface 190 in the direction from the mover 103 to the stator core 115 is located at the center of the stator core 115 in the X direction between the permanent magnets 150 adjacent to each other in the X direction. It is formed at the position of the central surface 125 which is the surface to be formed.
  • the permanent magnet in the armature side field iron core 122 facing the one magnetic pole 151 is permanent.
  • the point in which the Y-direction distance from the magnet 150 is maximum, and the distance in the Y-direction from the permanent magnet 150 in the armature side field core portion 122 facing the other magnetic pole 152 adjacent to the one magnetic pole 151 is maximum.
  • the opening width which is the length of the straight line connecting to the point, is Wh8, and the width in the moving direction, that is, the width in the X direction, which is the direction perpendicular to the magnetization direction corresponding to one pole of the magnetic pole 151 or the magnetic pole 152 of the permanent magnet 150.
  • the width of the magnetic pole is Wmag.
  • the opening width Wh8 is preferably set to be smaller than the magnetic pole width Wmag and larger than the minimum length g of the gap 101. That is, it is desirable that g ⁇ Wh8 ⁇ Wmag.
  • the width in the Y direction which is the direction from the permanent magnet 150 to the mover 103 at the position of the adjacent surface 124 is th6, and the armature side field iron core portion 122
  • the minimum width in the direction from the end of the permanent magnet 150 in the X direction toward the mover 103 is tb.
  • the portion of the stator core 115 in the same range as the X direction range of the hole 111 including the portion having the width th6 in the armature side field iron core portion 122 is the first bridge portion, that is, the thin portion 113, and th6 is The width of the thin portion 113 is set.
  • the portion of the stator core 115 located at is the second bridge portion 126.
  • the width th6 of the thin portion 113 is preferably tb ⁇ th6 ⁇ Wh8 / 2 with respect to the minimum width tb and the opening width Wh8. This is because it is necessary to set the lower limit value of the width th6 of the thin portion 113 to the minimum width tb of a dimension that allows the electromagnetic steel sheet to be punched.
  • the amount of magnetic flux passing through the width th6 of the thin portion 113 among the magnetic flux 120 flowing through the magnetic poles 151 and 152 is greater than the amount of magnetic flux flowing from the opening width Wh8 into the air gap 101. Is also smaller. Due to this dimensional relationship, magnetic saturation easily occurs in the thin portion 113 due to the magnetic flux 120 generated by the permanent magnet 150 or the magnetic flux generated by the mover 103. When the magnetic saturation occurs in the thin portion 113, the relative permeability of the thin portion 113 is close to that of air. Therefore, the thrust generated by the linear motor 200k can be further increased.
  • g ⁇ Wh8 ⁇ Wmag and tb ⁇ th6 ⁇ Wh8 / 2 are dimensions that can be set individually, and the effect of increasing thrust is also achieved. Further, if g ⁇ Wh8 ⁇ Wmag and tb ⁇ th6 ⁇ Wh8 / 2, the thrust is increased as compared with the case of setting either of the dimensional relationships.
  • FIG. 21 is a partial cross-sectional view of a twelfth modified example of the electric machine according to the present embodiment.
  • a linear motor 200m that is a twelfth modified example of the electric machine according to the present embodiment is different from the linear motor 200k according to the present embodiment in the following points.
  • the hole portion 111a penetrates from the void 101 to the magnet insertion hole 119.
  • the opening width of the hole portion 111a is Wh9
  • the hole portion 111 penetrates from the gap 101 to the magnet insertion hole 119 with a width of the opening width Wh9.
  • the magnetic resistance of the magnetic flux 120 passing through the opening width Wh9 is smaller than that of the thin portion 113 of the linear motor 200k. Also increases. Therefore, in the linear motor 200m, the magnetic flux 120 flowing from the armature-side field core portion 122a of the stator core 115a to the mover 103 leaks to the opening width Wh9 more than to the thin wall portion 113 of the linear motor 200k. Can be suppressed. Therefore, as in the case of the third embodiment, the thrust generated by the linear motor 200m is increased as compared with the case of the linear motor 200k.
  • the movable wire 103 is a linear motor having a permanent magnet 150 as a field, which is a linear motor.
  • the movable wire 103 is a stator, and the stators 102 and 102a are stators. It may be a magnet-movable linear motor that is a mover that moves with respect to. Further, the winding 106 may be arranged not on the mover 103 but on the stators 102 and 102a.
  • the cross-sectional shape of the hole 111 in the cross section perpendicular to the Z direction is not limited to the cross-section shown in FIGS. 20 and 21, and the hole 11 and 11b to 11e in FIGS. It may be a cross section in which the notch portions 23, 23a and the permanent magnets 50, 50a-1 to 50a-4, 50b in FIGS. 3, 15 and 16 are arbitrarily combined.
  • the thrust ripple is greater than that in the case where the outer peripheral portion of the armature-side field core portion on the mover side is connected. Will be reduced.
  • cross sections of the stator cores 122, 122a in the linear motors 200k, 200m of the present embodiment perpendicular to the Z direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

An electrical machine (200) is provided with an armature (3) and a magnetic field (2), the magnetic field (2) being disposed so as to face the armature (3) across a gap (1) and to be movable in relation to the armature (3), and including a permanent magnet (50), formed so that magnetic poles (51), (52) with different poles on the armature (3) side are adjacent in the direction of movement, and a field core (15) in which the permanent magnet (50) is embedded. In an armature-side field core section (22) that is located closer to the armature (3) than the permanent magnet (50), a hole section (11) is formed by being recessed toward the permanent magnet (50) from a virtual surface (90) that is separated from the armature (3) in the direction toward the field core (15) by a distance equal to the minimum length of the gap (1), the hole section being formed at a location on an adjacency plane (24) that includes the plane where the magnetic poles (51), (52) are adjacent.

Description

電気機械Electric machine
 この発明は、永久磁石が埋め込まれた界磁を備えた電気機械に関する。 The present invention relates to an electric machine having a field magnet in which a permanent magnet is embedded.
 従来の電気機械は、電機子である固定子と、複数の磁極が形成された永久磁石、および界磁鉄心を有し空隙を介して固定子に対向し固定子に対して相対的に移動する界磁である可動子とを備えている。この構成によって、永久磁石の数の低減、および永久磁石の製造に関する工数の低減による製造コストの削減と、トルクの向上とを両立する技術が知られている(例えば、特許文献1参照)。  A conventional electric machine has a stator, which is an armature, a permanent magnet having a plurality of magnetic poles, and a field iron core, and faces the stator through a gap and moves relative to the stator. It has a mover that is a field. With this configuration, there is known a technique that achieves both a reduction in the number of permanent magnets and a reduction in manufacturing cost due to a reduction in the number of manufacturing steps of permanent magnets, and an improvement in torque (see, for example, Patent Document 1).
特開2006―288183号公報JP, 2006-288183, A
 特許文献1では、回転電機の可動子である回転子における界磁鉄心に、永久磁石が埋め込まれている。永久磁石は、界磁鉄心に形成された磁石挿入穴にそれぞれ挿入されている。この回転電機は、埋込磁石型(Interior Permanent Magnet)回転電機と呼ばれる。永久磁石の破損が生じた場合でも、永久磁石の破片が界磁鉄心の磁石挿入穴にとどまって回転子と固定子との間の空隙に移動するのを抑制できる。
 また、1個の永久磁石には、固定子側に異なる極を有する2個の磁極同士が移動方向に隣接している。永久磁石よりも固定子側にある界磁鉄心において隣接する磁極同士の隣接面に沿う位置にフラックスバリアが設けられており、永久磁石よりも固定子側にある界磁鉄心の外周部が連結されている。この構成によって、磁極同士を短絡する磁束が通りにくくなり、回転電機が発生するトルクが増大する。
In Patent Document 1, a permanent magnet is embedded in a field iron core of a rotor that is a mover of a rotating electric machine. The permanent magnets are inserted into magnet insertion holes formed in the field core. This rotating electric machine is called an embedded permanent magnet rotating electric machine. Even when the permanent magnet is damaged, it is possible to prevent the fragments of the permanent magnet from staying in the magnet insertion hole of the field core and moving to the gap between the rotor and the stator.
Moreover, two magnetic poles having different poles on the stator side are adjacent to each other in the moving direction in one permanent magnet. A flux barrier is provided at a position along the adjacent surface of adjacent magnetic poles in the field core on the stator side of the permanent magnet, and the outer peripheral portion of the field core on the stator side of the permanent magnet is connected. ing. With this configuration, the magnetic flux that short-circuits the magnetic poles becomes difficult to pass, and the torque generated by the rotating electric machine increases.
 しかしながら、固定子に通電される電流の大きさによっては、永久磁石よりも固定子側にある界磁鉄心の外周が磁気飽和しない場合がある。界磁鉄心の外周が磁気飽和しない場合、隣り合う磁極同士の磁束が界磁鉄心の外周を通って短絡するため、トルクの脈動であるトルクリップルが増大するという課題があった。 However, the outer circumference of the field core located closer to the stator than the permanent magnet may not be magnetically saturated, depending on the magnitude of the current supplied to the stator. When the outer circumference of the field iron core is not magnetically saturated, the magnetic flux between adjacent magnetic poles is short-circuited through the outer circumference of the field iron core, which causes a problem that torque ripple, which is a pulsation of torque, increases.
 この発明は、前述のような課題を解決するためになされたものであり、界磁鉄心に埋め込まれた永久磁石において電機子側に異なる極を有する2個の磁極同士が移動方向に隣接する場合に、永久磁石よりも電機子側にある界磁鉄心の外周が連結されている場合よりもトルクリップルを低減する電気機械を得ることを目的とする。 The present invention has been made to solve the above-mentioned problems, and in the case where two magnetic poles having different poles on the armature side are adjacent to each other in the moving direction in the permanent magnet embedded in the field core. Another object of the present invention is to obtain an electric machine that reduces torque ripple more than when the outer circumference of a field iron core on the armature side of the permanent magnet is connected.
 この発明に係る電気機械は、
 電機子と、
 空隙を介して電機子に対向し電機子に対して相対的に移動可能に配置された界磁であって、電機子側に異なる極を有する磁極同士が移動方向に隣接して形成された永久磁石、および永久磁石が埋め込まれた界磁鉄心を有する界磁と
 を備え、
 電機子から空隙の最小長さと等しい距離をおいて界磁鉄心に向かう方向に離れた面を仮想面としたとき、
 永久磁石よりも電機子側に位置する界磁鉄心である電機子側界磁鉄心部において、仮想面から永久磁石に向かって窪む穴部が、磁極同士が隣接する面を含む隣接面の位置に形成されているものである。
The electric machine according to the present invention is
With an armature,
A magnetic field facing the armature via a gap so as to be movable relative to the armature, and magnetic poles having different poles on the armature side are formed adjacent to each other in the moving direction. A magnet and a field having a field iron core in which a permanent magnet is embedded,
When the surface away from the armature at a distance equal to the minimum length of the air gap toward the field core is a virtual surface,
In the armature-side field iron core portion, which is the field iron core located closer to the armature than the permanent magnet, the hole that is recessed from the virtual surface toward the permanent magnet is the position of the adjacent surface including the surface where the magnetic poles are adjacent to each other. It is formed in.
 上記のように構成された電気機械において、界磁鉄心に埋め込まれた永久磁石において電機子側に異なる極を有する2個の磁極同士が移動方向に隣接する場合に、永久磁石よりも電機子側にある界磁鉄心の外周が連結されている場合よりもトルクリップルを低減できる。 In the electric machine configured as described above, in the permanent magnet embedded in the field iron core, when two magnetic poles having different poles on the armature side are adjacent to each other in the moving direction, the armature side is closer to the permanent magnet than the permanent magnet. The torque ripple can be reduced as compared with the case where the outer circumference of the field iron core in FIG.
この発明の実施の形態1における駆動システムの図である。It is a diagram of a drive system in the first embodiment of the present invention. この発明の実施の形態1における電気機械の図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1 of the electric machine in the first embodiment of the present invention. この発明の実施の形態1における電気機械の部分断面図である。FIG. 3 is a partial cross-sectional view of the electric machine according to the first embodiment of the present invention. この発明の実施の形態1における電気機械の空隙の磁束密度の波形を示す図である。It is a figure which shows the waveform of the magnetic flux density of the air gap of the electric machine in Embodiment 1 of this invention. この発明の実施の形態1における電気機械の第1比較例の部分断面図である。FIG. 6 is a partial cross-sectional view of a first comparative example of the electric machine according to the first embodiment of the present invention. この発明の実施の形態1における電気機械の第1比較例における空隙の磁束密度の波形を示す図である。It is a figure which shows the waveform of the magnetic flux density of the air gap in the 1st comparative example of the electric machine in Embodiment 1 of this invention. この発明の実施の形態1における電気機械、および第1比較例の電気機械におけるトルクリップルの6f成分を示す図である。FIG. 6 is a diagram showing a 6f component of torque ripple in the electric machine according to the first embodiment of the present invention and the electric machine according to the first comparative example. この発明の実施の形態1における電気機械の第1変形例の部分断面図である。FIG. 7 is a partial cross-sectional view of a first modified example of the electric machine according to the first embodiment of the present invention. この発明の実施の形態2における電気機械の第2変形例の回転子における図1のA-A断面図である。FIG. 13 is a cross-sectional view taken along the line AA of FIG. 1 in a rotor of a second modified example of the electric machine according to Embodiment 2 of the present invention. この発明の実施の形態2における電気機械の第2変形例の部分断面図である。It is a fragmentary sectional view of the 2nd modification of the electric machine in Embodiment 2 of this invention. この発明の実施の形態3における電気機械の第3変形例の部分断面図である。It is a partial cross section figure of the 3rd modification of the electric machine in Embodiment 3 of this invention. この発明の実施の形態3における電気機械の第4変形例の部分断面図である。It is a fragmentary sectional view of the 4th modification of the electric machine in Embodiment 3 of this invention. この発明の実施の形態3における電気機械の第5変形例の部分断面図である。It is a fragmentary sectional view of the 5th modification of the electric machine in Embodiment 3 of this invention. この発明の実施の形態3における電気機械の第6変形例の部分断面図である。It is a fragmentary sectional view of the 6th modification of the electric machine in Embodiment 3 of this invention. この発明の実施の形態4における電気機械の第7変形例の部分断面図である。It is a fragmentary sectional view of the 7th modification of the electric machine in Embodiment 4 of this invention. この発明の実施の形態5における電気機械の第8変形例の部分断面図である。It is a fragmentary sectional view of the 8th modification of the electric machine in Embodiment 5 of this invention. この発明の実施の形態6における電気機械の第9変形例の回転子の斜視図である。It is a perspective view of the rotor of the 9th modification of the electric machine in Embodiment 6 of this invention. この発明の実施の形態6における電気機械の第9変形例の図17のG-G断面図である。FIG. 20 is a sectional view taken along line GG of FIG. 17 showing a ninth modification of the electric machine according to the sixth embodiment of the present invention. この発明の実施の形態6における電気機械の第10変形例の回転子の斜視図である。It is a perspective view of the rotor of the 10th modification of the electric machine in Embodiment 6 of this invention. この発明の実施の形態7における電気機械の第11変形例の部分断面図である。It is a partial cross section figure of the 11th modification of the electric machine in Embodiment 7 of this invention. この発明の実施の形態7における電気機械の第12変形例の部分断面図である。It is a partial cross section figure of the 12th modification of the electric machine in Embodiment 7 of this invention.
 以下、この発明を実施するために好適な実施の形態について図面を用いて説明する。
実施の形態1.
 図1は、この発明を実施するための実施の形態1における駆動システムの図である。図1において、駆動システム500は、電気機械である回転電機200と、インバータ100とを備えている。回転電機200とインバータ100とは電気的に接続されており、インバータ100から回転電機200に、3相の交流電流が通電される。図1における回転電機200の図は、回転電機200の回転軸を含む平面における断面図である側断面図で示されている。以降では、回転軸を軸と呼ぶ。
Preferred embodiments for carrying out the present invention will be described below with reference to the drawings.
Embodiment 1.
FIG. 1 is a diagram of a drive system according to a first embodiment for carrying out the present invention. In FIG. 1, a drive system 500 includes a rotating electric machine 200 that is an electric machine and an inverter 100. The rotary electric machine 200 and the inverter 100 are electrically connected to each other, and a three-phase alternating current is supplied from the inverter 100 to the rotary electric machine 200. The diagram of the rotary electric machine 200 in FIG. 1 is shown in a side sectional view which is a cross-sectional view in a plane including the rotation axis of the rotary electric machine 200. Hereinafter, the rotation axis will be referred to as the axis.
 図1において、本実施の形態における回転電機200は、電機子である固定子3と、界磁である回転子2とを備えている。回転子2は、支軸4の外周面に固定されている。支軸4の軸方向の両端であって回転子2の軸方向の両端側の外周面には、2個のベアリング5がそれぞれ嵌め合わされている。2個のベアリング5は、それぞれ外周面がハウジング9の内周面に嵌め合わされてハウジング9に保持されている。固定子3の外周面は、ハウジング9の内周面に嵌め合わされて固定されている。これらの構成によって、回転子2は、支軸4の軸を中心に回転する。すなわち、回転子2は、空隙1を介して固定子3に対向し固定子3に対して相対的に移動可能、すなわち回転移動可能に配置されている。 In FIG. 1, a rotating electric machine 200 according to the present embodiment includes a stator 3 that is an armature and a rotor 2 that is a field. The rotor 2 is fixed to the outer peripheral surface of the support shaft 4. Two bearings 5 are fitted to the outer peripheral surfaces of both ends of the support shaft 4 in the axial direction and both ends of the rotor 2 in the axial direction. Outer peripheral surfaces of the two bearings 5 are fitted to the inner peripheral surface of the housing 9 and are held by the housing 9. The outer peripheral surface of the stator 3 is fitted and fixed to the inner peripheral surface of the housing 9. With these configurations, the rotor 2 rotates about the axis of the support shaft 4. That is, the rotor 2 is arranged so as to face the stator 3 through the gap 1 and to be movable relative to the stator 3, that is, to be rotatable.
 図2は、本実施の形態における電気機械の図1のA-A断面図である。なお、断面図とは、電気機械である回転電機200の回転軸に直交する平面における断面図である。図2において、固定子3は、電機子鉄心である固定子鉄心16と、12個の巻線6と、12個のインシュレータ8とを備えている。固定子鉄心16は、円環状のコアバック部17と、コアバック部17から回転子2側に突出し、移動方向である回転方向すなわち周方向に等間隔に並ぶ12個のティース部18とを有する。固定子鉄心16は、渦電流を低減する目的で、電磁鋼板から同一形状で打ち抜かれたシート状の複数の固定子鉄心シート16-1が軸方向に所定の長さで積層されて構成されている。固定子鉄心16のティース部18は、空隙1を介して回転子2と対向して配置されている。周方向に隣り合うティース部18同士の間には、スロット21が12個形成されている。12個の巻線6は、ティース部18にインシュレータ8を介してそれぞれ巻回されて、12個のスロット21にそれぞれ収められている。巻線6は、1相当たり4個の巻線6が3相分で計12個の巻線6で構成されている。1相当たり4個の巻線6が直列に接続されて相巻線群を構成し、3相分の相巻線群がY結線されている。電力変換器であるインバータ100から巻線6を有する各相巻線群に3相の交流電流がそれぞれ相間の位相が120°ずれて通電されることによって、周方向に回転する回転磁界が固定子3から空隙1に発生し、回転子2にトルクが発生する。なお、3相の相巻線群の結線方法は、Y結線に限らずΔ結線であってもよい。 FIG. 2 is a sectional view of the electric machine taken along the line AA in FIG. 1 according to the present embodiment. The cross-sectional view is a cross-sectional view in a plane orthogonal to the rotation axis of the rotating electric machine 200 that is an electric machine. In FIG. 2, the stator 3 includes a stator core 16 which is an armature core, twelve windings 6, and twelve insulators 8. The stator core 16 has an annular core back portion 17 and twelve teeth portions 18 protruding from the core back portion 17 to the rotor 2 side and arranged at equal intervals in a rotation direction which is a moving direction, that is, a circumferential direction. . The stator core 16 is formed by stacking a plurality of sheet-shaped stator core sheets 16-1 punched in the same shape from an electromagnetic steel sheet in a predetermined length in the axial direction for the purpose of reducing eddy currents. There is. The teeth portion 18 of the stator core 16 is arranged so as to face the rotor 2 with the gap 1 interposed therebetween. Twelve slots 21 are formed between the teeth portions 18 that are adjacent to each other in the circumferential direction. The twelve windings 6 are wound around the teeth portion 18 via the insulator 8 and are respectively housed in the twelve slots 21. The winding 6 is composed of four windings 6 per phase and a total of 12 windings 6 for three phases. Four windings 6 per phase are connected in series to form a phase winding group, and the phase winding groups for three phases are Y-connected. When a three-phase alternating current is applied to each phase winding group having the winding 6 from the inverter 100, which is a power converter, with a phase difference of 120 ° between the phases, a rotating magnetic field rotating in the circumferential direction is generated. 3 is generated in the air gap 1 and torque is generated in the rotor 2. The method of connecting the three-phase phase winding group is not limited to Y connection and may be Δ connection.
 回転子2は、4個の永久磁石50と、4個の永久磁石50が埋め込まれた界磁鉄心である回転子鉄心15とを有している。回転子鉄心15は、電磁鋼板から同一形状で打ち抜かれたシート状の複数の回転子鉄心シート15-1が軸方向に所定の長さで積層されて構成されている。回転子鉄心15には、永久磁石50が挿入される磁石挿入穴19が、永久磁石50と同じ数の4個、周方向に等間隔に形成されている。4個の磁石挿入穴19のそれぞれには、永久磁石50が1個ずつ挿入されている。 The rotor 2 has four permanent magnets 50 and a rotor core 15 which is a field core in which the four permanent magnets 50 are embedded. The rotor core 15 is configured by laminating a plurality of sheet-shaped rotor core sheets 15-1 punched in the same shape from electromagnetic steel sheets in a predetermined length in the axial direction. The rotor core 15 is provided with four magnet insertion holes 19 into which the permanent magnets 50 are inserted, the same number as the permanent magnets 50, at equal intervals in the circumferential direction. One permanent magnet 50 is inserted into each of the four magnet insertion holes 19.
 磁石挿入穴19の周方向の両端には、周方向に隣り合う磁石挿入穴19に挿入されている永久磁石50同士の磁束の短絡を抑制し、軸方向に貫通する穴であるフラックスバリア7が設けられている。フラックスバリア7には、例えば樹脂のような非磁性体が挿入されていてもよい。 At both ends of the magnet insertion hole 19 in the circumferential direction, flux barriers 7 which are holes penetrating in the axial direction and suppressing a short circuit of magnetic flux between the permanent magnets 50 inserted in the magnet insertion holes 19 adjacent to each other in the circumferential direction are provided. It is provided. A non-magnetic material such as resin may be inserted in the flux barrier 7.
 永久磁石50には、電機子である固定子3側に異なる極を有する磁極51、52同士が移動方向である回転方向すなわち周方向に隣接して形成されている。すなわち、図1において、磁極51は固定子3側の面にN極の極を有し、磁極52は固定子3側の面にS極の極を有するようにそれぞれ着磁されている。磁極51のN極の極は、永久磁石50の中央部から周方向一方側における固定子3側の面、すなわち径方向外側の面に形成されている。磁極52のS極の極は、永久磁石50の中央部から周方向他方側における固定子3側の面、すなわち径方向外側の面に形成されている。磁極51、52同士が周方向に隣接する面は磁極境界10となっている。
 図2において、回転電機200は、空隙1に現れる磁極51、52の総数が8個となるため、磁極51、52の数が8個、およびスロット21の数が12個の回転電機となっている。
On the permanent magnet 50, magnetic poles 51 and 52 having different poles on the side of the stator 3 which is an armature are formed adjacent to each other in the rotational direction which is the moving direction, that is, the circumferential direction. That is, in FIG. 1, the magnetic pole 51 is magnetized so that it has an N-pole on the surface on the side of the stator 3 and the magnetic pole 52 has an S-pole on the surface on the side of the stator 3. The N pole of the magnetic pole 51 is formed on the surface on the side of the stator 3 on one side in the circumferential direction from the center of the permanent magnet 50, that is, the surface on the outer side in the radial direction. The S pole of the magnetic pole 52 is formed on the surface on the side of the stator 3 on the other side in the circumferential direction from the center of the permanent magnet 50, that is, the surface on the outer side in the radial direction. The surface where the magnetic poles 51 and 52 are adjacent to each other in the circumferential direction is the magnetic pole boundary 10.
In FIG. 2, since the total number of the magnetic poles 51 and 52 appearing in the air gap 1 is eight, the rotary electric machine 200 is a rotary electric machine having eight magnetic poles 51 and 52 and twelve slots 21. There is.
 永久磁石50は、平板形状である。すなわち、永久磁石50は、互いに対向する2つの平面を有し、永久磁石50において磁極51、52が形成される固定子3側の面は、一方の平面である。図2においては、永久磁石50から固定子3に向かう方向である径方向と周方向とを含む断面における永久磁石50の断面形状は、長方形である。なお、径方向と周方向とを含む断面は、軸方向に直交する断面である。永久磁石50は、同じ軸方向に直交する断面形状で軸方向に延伸している。図2において、永久磁石50の軸方向長さは、回転子鉄心15の軸方向長さと等しい。なお、永久磁石50の軸方向長さは、回転子鉄心15の軸方向長さと異なっていてもよい。
 永久磁石50が平板形状であるため、永久磁石が曲面形状で構成される場合よりも、永久磁石50の形状加工の工数を低減することができる。
The permanent magnet 50 has a flat plate shape. That is, the permanent magnet 50 has two flat surfaces facing each other, and the surface of the permanent magnet 50 on the side of the stator 3 where the magnetic poles 51 and 52 are formed is one flat surface. In FIG. 2, the cross-sectional shape of the permanent magnet 50 in the cross section including the radial direction, which is the direction from the permanent magnet 50 toward the stator 3, and the circumferential direction is a rectangle. The cross section including the radial direction and the circumferential direction is a cross section orthogonal to the axial direction. The permanent magnets 50 extend in the axial direction with a sectional shape orthogonal to the same axial direction. In FIG. 2, the axial length of the permanent magnet 50 is equal to the axial length of the rotor core 15. The axial length of the permanent magnet 50 may be different from the axial length of the rotor core 15.
Since the permanent magnet 50 has a flat plate shape, it is possible to reduce the number of man-hours required to shape the permanent magnet 50, as compared with the case where the permanent magnet has a curved surface shape.
 磁極51および磁極52は、それぞれ別体のセグメント磁石、すなわち別体の永久磁石片である磁性体として構成してもよい。すなわち、永久磁石50は、磁極51、52ごとに分割された複数個の磁性体で構成されていてもよい。図2の場合、永久磁石50は、磁極51、52ごとに分割された2個の磁性体で構成されていてもよい。この構成によって、永久磁石片の磁性体ごとに着磁して、磁性体ごとに磁極を形成することができる。このため、完全に着磁した状態における永久磁石片が発生する磁束に対する着磁後の永久磁石片が発生する磁束の割合である着磁率を向上させることができる。 The magnetic poles 51 and 52 may be configured as separate segment magnets, that is, magnetic bodies that are separate permanent magnet pieces. That is, the permanent magnet 50 may be composed of a plurality of magnetic bodies divided into magnetic poles 51 and 52. In the case of FIG. 2, the permanent magnet 50 may be composed of two magnetic bodies divided into magnetic poles 51 and 52. With this configuration, it is possible to magnetize each magnetic body of the permanent magnet pieces and form a magnetic pole for each magnetic body. Therefore, it is possible to improve the magnetization ratio, which is the ratio of the magnetic flux generated by the magnetized permanent magnet piece to the magnetic flux generated by the permanent magnet piece in the completely magnetized state.
 また、一体のセグメント磁石である1個の永久磁石片である磁性体に対して着磁を行って、永久磁石50に固定子3側に異なる極を有する磁極51、52同士が、周方向に隣接して形成されていてもよい。すなわち、永久磁石50は、複数の磁極51、52を有する1個の磁性体で構成されていてもよい。この構成によって、永久磁石50の管理点数、加工工数、および着磁工数に関わるコストを削減できる。 Further, by magnetizing a magnetic body that is one permanent magnet piece that is an integral segment magnet, magnetic poles 51 and 52 having different poles on the side of the stator 3 of the permanent magnet 50 are circumferentially arranged. It may be formed adjacently. That is, the permanent magnet 50 may be composed of one magnetic body having a plurality of magnetic poles 51 and 52. With this configuration, it is possible to reduce costs related to the number of control points of the permanent magnet 50, the number of processing steps, and the number of magnetizing steps.
 なお、図2において、磁極51、52のそれぞれが形成された2個の磁性体から永久磁石50が構成される場合には、磁極境界10は、2個の磁性体同士が周方向に隣接する面となる。また、永久磁石50が1個の磁性体から構成される場合には、磁極境界10は、極がN極からS極に、またはS極からN極に切り替わる周方向位置、すなわち極がない周方向位置の面となる。さらに、永久磁石50が1個の磁性体から構成される場合において、磁極51、52同士が周方向に隣接する側の磁極51、52の周方向端部において極がない領域が周方向に存在する場合には、磁極境界10は、極がない領域の周方向範囲の中央位置にある面とする。 In FIG. 2, when the permanent magnet 50 is composed of two magnetic bodies in which the magnetic poles 51 and 52 are formed, the magnetic pole boundary 10 has two magnetic bodies adjacent to each other in the circumferential direction. It becomes a face. When the permanent magnet 50 is composed of one magnetic body, the magnetic pole boundary 10 is located at a circumferential position where the pole is switched from the N pole to the S pole or from the S pole to the N pole, that is, the circumference without the pole. It becomes the surface of the direction position. Further, in the case where the permanent magnet 50 is composed of one magnetic body, a region having no pole exists in the circumferential direction at the circumferential ends of the magnetic poles 51, 52 on the side where the magnetic poles 51, 52 are circumferentially adjacent to each other. In this case, the magnetic pole boundary 10 is a surface located at the center position of the circumferential range of the region having no pole.
 また、2極以上の任意の個数の磁極51、52が、永久磁石50に着磁された構成としてもよい。すなわち、永久磁石50における磁極51、52の数は、3個以上であってもよい。 Alternatively, the permanent magnet 50 may be magnetized with an arbitrary number of magnetic poles 51 and 52 having two or more poles. That is, the number of magnetic poles 51 and 52 in the permanent magnet 50 may be three or more.
 図3は、本実施の形態における電気機械の部分断面図である。図3において、永久磁石50よりも固定子3側に位置する回転子鉄心15を、電機子側界磁鉄心部22とする。空隙1の最小長さgと等しい距離をおいて、固定子3から回転子鉄心15に向かう方向に離れた面を、仮想面90とする。磁極51、52同士が隣接する面である磁極境界10を含む面を、隣接面24とする。電機子側界磁鉄心部22において、仮想面90から永久磁石50に向かって窪む穴部11が、隣接面24の位置に形成されている。ここで、空隙1の最小長さgは、固定子鉄心16のティース部18と回転子鉄心15との径方向における最小の距離を表している。電機子側界磁鉄心部22の境界は、回転子鉄心15において、永久磁石50の周方向の端部から固定子3に向かう方向の最小幅tbとなる部分とする。図3において、仮想面90は、空隙1の最小長さgをおいて固定子3から回転子鉄心15に向かう方向に離れた円筒面となっている。 FIG. 3 is a partial cross-sectional view of the electric machine according to this embodiment. In FIG. 3, the rotor core 15 positioned closer to the stator 3 than the permanent magnet 50 is referred to as an armature side field core portion 22. A surface that is separated from the stator 3 in the direction toward the rotor core 15 with a distance equal to the minimum length g of the gap 1 is defined as a virtual surface 90. A surface including the magnetic pole boundary 10 which is a surface where the magnetic poles 51 and 52 are adjacent to each other is referred to as an adjacent surface 24. In the armature side field iron core portion 22, a hole portion 11 recessed from the virtual surface 90 toward the permanent magnet 50 is formed at the position of the adjacent surface 24. Here, the minimum length g of the gap 1 represents the minimum radial distance between the teeth portion 18 of the stator core 16 and the rotor core 15. The boundary of the armature side field core portion 22 is a portion of the rotor core 15 that is the minimum width tb in the direction from the circumferential end of the permanent magnet 50 toward the stator 3. In FIG. 3, the virtual surface 90 is a cylindrical surface that is separated from the stator 3 in the direction toward the rotor core 15 with the minimum length g of the gap 1.
 穴部11は、電機子側界磁鉄心部22において、隣接面24を周方向に跨って形成されている。軸方向に垂直な断面における穴部11の断面形状は、仮想面90から永久磁石50側に向かう方向に移動方向の幅が狭くなって凸となる楔形形状となっている。 The hole 11 is formed in the armature side field iron core portion 22 so as to straddle the adjacent surface 24 in the circumferential direction. The cross-sectional shape of the hole 11 in the cross section perpendicular to the axial direction is a wedge shape in which the width in the moving direction becomes narrower in the direction from the virtual surface 90 toward the permanent magnet 50 side and becomes convex.
 図3において、穴部11が占める周方向の範囲において、永久磁石50から固定子3に向かう方向である径方向における、一方の磁極51に対向する電機子側界磁鉄心部22における永久磁石50からの径方向の距離が最大となる点と、一方の磁極51に隣接する他方の磁極52に対向する電機子側界磁鉄心部22における永久磁石50からの径方向の距離が最大となる点とを結ぶ直線の長さである開口幅をWh1とし、永久磁石50の磁極51または磁極52の1極分に相当する着磁方向に垂直な方向である移動方向、すなわち周方向の幅である磁極幅をWmagとする。このとき、開口幅Wh1は、磁極幅Wmagよりも小さく、空隙1の最小長さgより大きく設定されることが望ましい。すなわち、g<Wh1<Wmagとなることが望ましい。 In FIG. 3, in the circumferential range occupied by the hole 11, the permanent magnet 50 in the armature side field iron core portion 22 facing the one magnetic pole 51 in the radial direction from the permanent magnet 50 to the stator 3. From the permanent magnet 50 in the armature side field core portion 22 facing the other magnetic pole 52 adjacent to the one magnetic pole 51, and the maximum radial distance from the permanent magnet 50. The opening width, which is the length of the straight line connecting to and, is Wh1, and is the width in the moving direction that is the direction perpendicular to the magnetizing direction corresponding to one pole of the magnetic pole 51 or the magnetic pole 52 of the permanent magnet 50, that is, the width in the circumferential direction. The magnetic pole width is Wmag. At this time, the opening width Wh1 is preferably set to be smaller than the magnetic pole width Wmag and larger than the minimum length g of the gap 1. That is, it is desirable that g <Wh1 <Wmag.
 なぜなら、図3において、穴部11の寸法が、磁極51と磁極52との間を短絡する磁束20の経路Bを磁束20が流れるのを抑制するのに十分ではない寸法の場合、すなわち磁極境界10の延長上を跨る磁束20の経路Bの磁気抵抗が低い場合、磁極51からの磁束20が磁束20の経路Bを通過して隣の磁極52へ短絡してしまい、トルクが低減するおそれがあるためである。g<Wh1の場合には、磁極51と磁極52とを流れる磁束20が、開口幅Wh1よりも空隙1を通りやすくなる。また、Wh1<Wmagの場合には、開口幅Wh1が磁極51および52の周方向に重なる範囲が磁極幅Wmagよりも小さくなり、穴部11の周方向範囲において磁極51、52の磁束20が通る空隙1の長さが、最小長さgよりも拡大するのを抑えることができる。この寸法関係によって、回転子2と固定子3との間の空隙1における磁束密度を効率的に増大させることができ、トルクを更に増大させることが可能となる。 This is because, in FIG. 3, when the size of the hole 11 is not enough to suppress the magnetic flux 20 from flowing through the path B of the magnetic flux 20 that short-circuits the magnetic pole 51 and the magnetic pole 52, that is, the magnetic pole boundary. When the magnetic resistance of the path B of the magnetic flux 20 extending over the extension of 10 is low, the magnetic flux 20 from the magnetic pole 51 passes through the path B of the magnetic flux 20 and is short-circuited to the adjacent magnetic pole 52, which may reduce the torque. Because there is. When g <Wh1, the magnetic flux 20 flowing through the magnetic poles 51 and 52 passes through the gap 1 more easily than the opening width Wh1. When Wh1 <Wmag, the range in which the opening width Wh1 overlaps the magnetic poles 51 and 52 in the circumferential direction becomes smaller than the magnetic pole width Wmag, and the magnetic flux 20 of the magnetic poles 51 and 52 passes in the circumferential range of the hole 11. It is possible to suppress the length of the void 1 from expanding beyond the minimum length g. Due to this dimensional relationship, the magnetic flux density in the gap 1 between the rotor 2 and the stator 3 can be efficiently increased, and the torque can be further increased.
 さらに、図3において、電機子側界磁鉄心部22において隣接面24の位置における永久磁石50から固定子3に向かう方向である径方向の幅をth1とし、電機子側界磁鉄心部22において永久磁石50の周方向の端部から固定子3に向かう方向の最小幅をtbとする。また、電機子側界磁鉄心部22において幅th1となる部分を含み、穴部11の周方向範囲と同じ範囲における回転子鉄心15の部分を第1ブリッジ部、すなわち薄肉部13とし、th1を薄肉部13の幅とする。また、電機子側界磁鉄心部22の境界における最小幅tbとなる部分から周方向に隣り合う電機子側界磁鉄心部22の境界の最小幅tbまでのフラックスバリア7よりも固定子3側に位置する回転子鉄心15の部分を第2ブリッジ部26とする。第2ブリッジ部26は、周方向に隣り合う永久磁石50同士の間の周方向の中央に位置する面である中央面25の位置を跨っている。 Further, in FIG. 3, the radial width of the armature-side field core portion 22 in the direction of the adjacent surface 24 from the permanent magnet 50 to the stator 3 is th1, and the armature-side field core portion 22 has a width of th1. The minimum width in the direction from the circumferential end of the permanent magnet 50 toward the stator 3 is tb. In addition, the portion of the rotor core 15 in the same range as the circumferential range of the hole 11 including the portion having the width th1 in the armature side field core portion 22 is the first bridge portion, that is, the thin portion 13, and th1 is It is the width of the thin portion 13. Further, the stator 3 side than the flux barrier 7 from the portion having the minimum width tb at the boundary of the armature side field iron core portion 22 to the minimum width tb at the boundary of the armature side field iron core portions 22 adjacent in the circumferential direction. The portion of the rotor core 15 located at is the second bridge portion 26. The 2nd bridge part 26 straddles the position of the central surface 25 which is a surface located in the center of the circumferential direction between the permanent magnets 50 adjacent to each other in the circumferential direction.
 薄肉部13において磁気飽和を生じさせるために、薄肉部13の幅th1を可能な限り小さく設定するのが望ましい。すなわち、薄肉部13の幅th1は、最小幅tbと開口幅Wh1とに対して、tb≦th1<Wh1/2とするのが望ましい。なぜなら、薄肉部13の幅th1の下限値を、回転子の回転によって永久磁石50に発生する遠心力を保持する強度を有する最小幅tb、または電磁鋼板を打ち抜き加工できる寸法の最小幅tbとする必要があるためである。また、th1<Wh1/2の場合には、磁極51と磁極52とを流れる磁束20のうち、薄肉部13の幅th1を通る磁束の量が、開口幅Wh1から空隙1に流れる磁束の量よりも小さくなるためである。この寸法関係により、永久磁石50が発生する磁束20、または固定子3が発生する磁束によって、薄肉部13に磁気飽和が生じやすくなる。薄肉部13に磁気飽和が生じている場合には、薄肉部13の比透磁率が空気と近い比透磁率となる。このため、回転電機200が発生するトルクを更に増大させることができる。 In order to cause magnetic saturation in the thin portion 13, it is desirable to set the width th1 of the thin portion 13 as small as possible. That is, the width th1 of the thin portion 13 is preferably tb ≦ th1 <Wh1 / 2 with respect to the minimum width tb and the opening width Wh1. This is because the lower limit value of the width th1 of the thin portion 13 is set to the minimum width tb that has the strength to hold the centrifugal force generated in the permanent magnet 50 due to the rotation of the rotor, or the minimum width tb of the size that allows the electromagnetic steel plate to be punched. This is because it is necessary. When th1 <Wh1 / 2, the amount of magnetic flux that passes through the width th1 of the thin portion 13 among the magnetic flux 20 that flows through the magnetic poles 51 and 52 is greater than the amount of magnetic flux that flows from the opening width Wh1 into the air gap 1. Is also smaller. Due to this dimensional relationship, magnetic saturation easily occurs in the thin portion 13 due to the magnetic flux 20 generated by the permanent magnet 50 or the magnetic flux generated by the stator 3. When the thin portion 13 is magnetically saturated, the relative permeability of the thin portion 13 is close to that of air. Therefore, the torque generated by the rotary electric machine 200 can be further increased.
 なお、g<Wh1<Wmagとtb≦th1<Wh1/2とは個別に設定可能な寸法であり、トルク増大の効果もそれぞれで奏する。さらに、g<Wh1<Wmagかつtb≦th1<Wh1/2とすれば、いずれかの寸法関係で設定する場合よりもトルクが増大する。 Note that g <Wh1 <Wmag and tb ≦ th1 <Wh1 / 2 are dimensions that can be set individually, and the effect of increasing torque is also achieved. Further, if g <Wh1 <Wmag and tb ≦ th1 <Wh1 / 2, the torque is increased as compared with the case of setting by any dimensional relationship.
 また、一般的に回転子鉄心15に用いる電磁鋼板を打ち抜き加工で製造する場合、打ち抜かれた形状の輪郭から電磁鋼板の板厚分程度の範囲で、打ち抜き加工による加工劣化の影響で磁気抵抗が増大し、この範囲で磁気飽和が生じやすくなる。このため、薄肉部13の幅th1は、電磁鋼板の2枚分以下、好ましくは電磁鋼板の1枚分以下にすることが望ましい。 In general, when the electromagnetic steel sheet used for the rotor core 15 is manufactured by punching, the magnetic resistance is reduced due to the deterioration of processing due to the punching in the range of the thickness of the electromagnetic steel sheet from the contour of the punched shape. Increase, and magnetic saturation easily occurs in this range. Therefore, it is desirable that the width th1 of the thin portion 13 is equal to or less than that of two electromagnetic steel plates, preferably equal to or less than that of one electromagnetic steel plate.
 次に、本実施の形態の回転電機200におけるトルクリップルの効果について説明する。
 図4は、本実施の形態における電気機械の空隙の磁束密度の波形を示す図である。図4において、横軸は、回転電機200の回転子の周方向における位置、すなわち回転子の回転角度を電気角[deg]で表し、縦軸は、空隙1における磁束密度を図3の空隙1における磁束密度の最大値で規格化した値で表す。図4において、本実施の形態における電気機械である回転電機200の空隙1における磁束密度の波形は、正弦波形状となっている。また、図4において磁束密度が0となる位置は、異なる極を有する磁極間の周方向位置、すなわち隣接面24の周方向位置である電気角180[deg]の位置、および界磁鉄心15を挟んで隣り合うフラックスバリア7間の周方向位置、すなわち中央面25の位置である電気角0[deg]または360[deg]の位置である。
Next, the effect of torque ripple in rotary electric machine 200 of the present embodiment will be described.
FIG. 4 is a diagram showing a waveform of the magnetic flux density in the air gap of the electric machine according to the present embodiment. 4, the horizontal axis represents the position of the rotor of the rotary electric machine 200 in the circumferential direction, that is, the rotation angle of the rotor is represented by an electrical angle [deg], and the vertical axis represents the magnetic flux density in the void 1 in the void 1 in FIG. It is expressed as a value standardized by the maximum value of the magnetic flux density in. In FIG. 4, the waveform of the magnetic flux density in the air gap 1 of the rotary electric machine 200 that is the electric machine according to the present embodiment has a sinusoidal shape. Further, in FIG. 4, the position where the magnetic flux density is 0 is the circumferential position between the magnetic poles having different poles, that is, the position of the electrical angle 180 [deg] which is the circumferential position of the adjacent surface 24, and the field iron core 15. It is the position in the circumferential direction between the flux barriers 7 that are adjacent to each other, that is, the position of the electrical angle 0 [deg] or 360 [deg] that is the position of the center plane 25.
 図5は、本実施の形態における電気機械の第1比較例の部分断面図である。
 図5において、本実施の形態における電気機械の第1比較例である回転電機300は、図2に示す固定子3と同じ固定子303と、永久磁石350が回転子鉄心315に埋め込まれた埋込磁石型の回転子302とを有している。図5の回転電機300の回転子302には、図3の回転電機200に対して、穴部11に変えて凹部312が形成されている点で異なる。回転電機300における他の構成は、図3の回転電機200と同様である。
FIG. 5 is a partial cross-sectional view of a first comparative example of the electric machine according to the present embodiment.
In FIG. 5, a rotating electric machine 300, which is a first comparative example of the electric machine according to the present embodiment, has a stator 303 that is the same as the stator 3 shown in FIG. 2 and an embedded permanent magnet 350 embedded in a rotor core 315. And a rotor 302 of the embedded magnet type. The rotor 302 of the rotary electric machine 300 of FIG. 5 differs from the rotary electric machine 200 of FIG. 3 in that a recess 312 is formed instead of the hole 11. Other configurations of the rotary electric machine 300 are similar to those of the rotary electric machine 200 of FIG.
 図5において、図3の本実施の形態の回転電機200と同様に、回転電機300における1個の永久磁石350には、固定子303側に異なる極を有する磁極351、352同士が移動方向である周方向に隣接して着磁されて形成されている。回転子302における永久磁石350よりも固定子300側に位置する回転子鉄心315である電機子側界磁鉄心部322において、磁石挿入穴319から固定子300側に向かって窪む凹部312が、磁極351、352同士が隣接する面である磁極境界310を含む隣接面324の位置に形成されている。すなわち、回転電機300において、永久磁石350よりも固定子300側にある回転子鉄心315の外周部が薄肉部313によって連結されている。 In FIG. 5, similarly to the rotating electric machine 200 of the present embodiment of FIG. 3, one permanent magnet 350 in the rotating electric machine 300 has magnetic poles 351 and 352 having different poles on the stator 303 side in the moving direction. It is formed by being magnetized adjacent to a certain circumferential direction. In the armature side field iron core portion 322, which is the rotor iron core 315 located closer to the stator 300 than the permanent magnet 350 in the rotor 302, the concave portion 312 that is recessed from the magnet insertion hole 319 toward the stator 300 side, The magnetic poles 351 and 352 are formed at the position of the adjacent surface 324 including the magnetic pole boundary 310 which is a surface where the magnetic poles 351 and 352 are adjacent to each other. That is, in the rotary electric machine 300, the outer peripheral portion of the rotor core 315 located closer to the stator 300 than the permanent magnet 350 is connected by the thin portion 313.
 図6は、本実施の形態における電気機械の第1比較例における空隙の磁束密度の波形を示す図である。図6において、横軸は、回転電機300の回転子の周方向における位置、すなわち回転子の回転角度を電気角[deg]で表し、縦軸は、第1比較例の回転電機300の空隙301における磁束密度を図5の空隙301における磁束密度の最大値で規格化した値で表す。図6において、本実施の形態における電気機械の第1比較例の回転電機300の空隙301における磁束密度の波形は、図4の回転電機200の空隙1における磁束密度の波形よりも、空隙1における周方向の空間の高調波成分を多く含む台形形状の波形となっている。ここで周方向の空間の高調波成分とは、磁極51および磁極52の2極分、すなわち電気角1周期分の波形を周波数解析したときの高調波成分である。 FIG. 6 is a diagram showing a waveform of the magnetic flux density of the air gap in the first comparative example of the electric machine according to the present embodiment. 6, the horizontal axis represents the position of the rotor of the rotary electric machine 300 in the circumferential direction, that is, the rotation angle of the rotor in electrical degrees [deg], and the vertical axis represents the air gap 301 of the rotary electric machine 300 of the first comparative example. The magnetic flux density at is represented by a value normalized by the maximum value of the magnetic flux density in the void 301 in FIG. 6, the waveform of the magnetic flux density in the air gap 301 of the rotary electric machine 300 of the first comparative example of the electric machine according to the present embodiment is larger in the air gap 1 than in the air gap 1 of the rotary electric machine 200 in FIG. It has a trapezoidal waveform that contains many harmonic components in the circumferential space. Here, the harmonic component in the space in the circumferential direction is a harmonic component when the waveform of two poles of the magnetic pole 51 and the magnetic pole 52, that is, one electrical angle period is subjected to frequency analysis.
 図5の回転電機300において、永久磁石350よりも固定子300側にある回転子鉄心315である電機子側界磁鉄心部322の外周部が薄肉部313によって連結されている。このため、図5の回転電機300では、電機子側界磁鉄心部322の外周部で連結された薄肉部313を永久磁石350の磁束320が流れる。 In the rotating electric machine 300 of FIG. 5, the outer peripheral portion of the armature side field iron core portion 322, which is the rotor iron core 315 on the stator 300 side of the permanent magnet 350, is connected by the thin portion 313. Therefore, in the rotary electric machine 300 of FIG. 5, the magnetic flux 320 of the permanent magnet 350 flows through the thin portion 313 connected at the outer peripheral portion of the armature side field iron core portion 322.
 一方、図3の本実施の形態の回転電機200では、仮想面90から永久磁石50に向かって窪む穴部11が、隣接面24の位置に形成されている。このため、永久磁石50の磁束20は、電機子側界磁鉄心部22の外周部の部分よりも、永久磁石50側に近い部分で連結された電機子側界磁鉄心部22の薄肉部13を流れる。
 よって、回転電機200における磁極51、52の間に位置する隣接面24における空隙1の磁束密度が、第1比較例の回転電機300における磁極351、352の間に位置する磁極境界310における空隙301の磁束密度よりも低下する。したがって、図6に示すように、回転電機200の空隙1における磁束密度の高調波成分は、回転電機300の空隙301の磁束密度の高調波成分よりも小さくなる。
On the other hand, in the rotary electric machine 200 of the present embodiment of FIG. 3, the hole portion 11 recessed from the virtual surface 90 toward the permanent magnet 50 is formed at the position of the adjacent surface 24. Therefore, the magnetic flux 20 of the permanent magnet 50 is connected to the armature side field iron core portion 22 at a portion closer to the permanent magnet 50 side than the outer peripheral portion of the armature side field iron core portion 22. Flowing through.
Therefore, the magnetic flux density of the air gap 1 in the adjacent surface 24 located between the magnetic poles 51 and 52 of the rotating electric machine 200 is the air gap 301 at the magnetic pole boundary 310 located between the magnetic poles 351 and 352 of the rotating electric machine 300 of the first comparative example. Lower than the magnetic flux density of. Therefore, as shown in FIG. 6, the harmonic component of the magnetic flux density in the air gap 1 of the rotary electric machine 200 is smaller than the harmonic component of the magnetic flux density in the air gap 301 of the rotary electric machine 300.
 この結果、図3の本実施の形態の回転電機200のトルクリップルは、第1比較例の回転電機300のトルクリップルよりも低減される。すなわち、回転子鉄心15に埋め込まれた1個の永久磁石50において固定子3側に異なる極を有する2個の磁極51、52同士が移動方向に隣接する場合に、本実施の形態の回転電機200は、永久磁石350よりも固定子300側にある電機子側界磁鉄心部322の外周部が連結されている場合よりもトルクリップルを低減できる。 As a result, the torque ripple of the rotary electric machine 200 of the present embodiment in FIG. 3 is reduced as compared with the torque ripple of the rotary electric machine 300 of the first comparative example. That is, when two magnetic poles 51 and 52 having different poles on the side of the stator 3 in one permanent magnet 50 embedded in the rotor core 15 are adjacent to each other in the moving direction, the rotating electric machine of the present embodiment In the case of 200, the torque ripple can be reduced as compared with the case where the outer peripheral portion of the armature side field iron core portion 322 on the stator 300 side of the permanent magnet 350 is connected.
 図7は、本実施の形態における電気機械、および第1比較例の電気機械におけるトルクリップルの6f成分を示す図である。図7において、横軸は、図5の第1比較例の回転電機300、および図3の回転電機200を表し、縦軸は、第1比較例のトルクリップルの6f成分を100としたときのトルクリップルの6f成分を表す。ここで、トルクリップルの6f成分は、所定の電流を固定子に通電したときの電気角1周期当たり6山のトルクリップルの振幅値であり、トルクリップルの主成分となる。電磁界解析の結果、図3の回転電機200のトルクリップルの6f成分は、第1比較例の回転電機300のトルクリップルの6f成分よりも12%低下している。これは、図3の回転電機200の穴部11によって、回転電機200の空隙1における磁束密度の高調波成分を、回転電機300の空隙301における磁束密度の高調波成分よりも低減できるためである。したがって、図3の本実施の形態の回転電機200のトルクリップルを、第1比較例の回転電機300のトルクリップルよりも低減できる。 FIG. 7 is a diagram showing a 6f component of torque ripple in the electric machine according to the present embodiment and the electric machine according to the first comparative example. 7, the horizontal axis represents the rotating electrical machine 300 of the first comparative example of FIG. 5 and the rotating electrical machine 200 of FIG. 3, and the vertical axis represents the 6f component of the torque ripple of the first comparative example as 100. It represents the 6f component of the torque ripple. Here, the 6f component of the torque ripple is the amplitude value of the torque ripple of 6 peaks per one electrical angle cycle when a predetermined current is applied to the stator, and is the main component of the torque ripple. As a result of the electromagnetic field analysis, the 6f component of the torque ripple of the rotary electric machine 200 in FIG. 3 is 12% lower than the 6f component of the torque ripple of the rotary electric machine 300 of the first comparative example. This is because the hole portion 11 of the rotary electric machine 200 in FIG. 3 can reduce the harmonic component of the magnetic flux density in the air gap 1 of the rotary electric machine 200 to a higher level than the harmonic component of the magnetic flux density in the air gap 301 of the rotary electric machine 300. . Therefore, the torque ripple of rotary electric machine 200 of the present embodiment in FIG. 3 can be reduced as compared to the torque ripple of rotary electric machine 300 of the first comparative example.
 なお、穴部11の断面形状は、隣接面24に対して周方向に対称な形状に限らず、仮想面90から永久磁石50に向かって窪む形状であれば、隣接面24に対して周方向に非対称な形状であってもよい。穴部11の断面形状が隣接面24に対して周方向に非対称な形状によっても、回転電機200の空隙1における磁束密度の高調波成分を、回転電機300の空隙301における磁束密度の高調波成分よりも低減でき回転電機200のトルクリップルを、第1比較例の回転電機300のトルクリップルよりも低減できる。 The cross-sectional shape of the hole portion 11 is not limited to the shape symmetrical in the circumferential direction with respect to the adjacent surface 24, and if the shape is recessed from the virtual surface 90 toward the permanent magnet 50, the hole 11 has a circumferential shape with respect to the adjacent surface 24. The shape may be asymmetric in the direction. Even if the cross-sectional shape of the hole 11 is asymmetrical in the circumferential direction with respect to the adjacent surface 24, the harmonic component of the magnetic flux density in the air gap 1 of the rotary electric machine 200 is the harmonic component of the magnetic flux density in the air gap 301 of the rotary electric machine 300. The torque ripple of the rotary electric machine 200 can be reduced more than that of the rotary electric machine 300 of the first comparative example.
 次に、本実施の形態の回転電機200のトルクの効果について説明する。
 本実施の形態の回転電機200では、本実施の形態の回転電機200の穴部11が回転子鉄心に設けられていない場合の第2比較例の回転電機に対して、電機子側界磁鉄心部22に設けられた穴部11によって、電機子側界磁鉄心部22の磁気抵抗を増加させている。
Next, the effect of the torque of rotary electric machine 200 of the present embodiment will be described.
The rotary electric machine 200 of the present embodiment is different from the rotary electric machine of the second comparative example in which the hole 11 of the rotary electric machine 200 of the present embodiment is not provided in the rotor iron core, in the armature side field core. The magnetic resistance of the armature side field core portion 22 is increased by the hole portion 11 provided in the portion 22.
 具体的には、図3において、穴部11は、電機子側界磁鉄心部22の隣接面24の位置において、磁極51と磁極52との間を短絡する磁束20の経路Bを磁束20が流れるのを妨げるように設けられている。この穴部11によって、電機子側界磁鉄心部22の薄肉部13における隣接面24の断面による断面積が、第2比較例の回転電機よりも小さくなる。このため、本実施の形態における回転電機200における磁極51と磁極52との間を短絡する磁束20の経路Bにおける磁気抵抗は、穴部11が回転子鉄心に設けられていない第2比較例の回転電機の場合よりも増大する。 Specifically, in FIG. 3, in the hole portion 11, at the position of the adjacent surface 24 of the armature side field iron core portion 22, the magnetic flux 20 passes through the path B of the magnetic flux 20 that short-circuits between the magnetic pole 51 and the magnetic pole 52. It is provided to prevent flow. Due to this hole portion 11, the cross-sectional area of the thin portion 13 of the armature side field iron core portion 22 due to the cross section of the adjacent surface 24 becomes smaller than that of the rotating electric machine of the second comparative example. Therefore, the magnetic resistance in the path B of the magnetic flux 20 that short-circuits the magnetic pole 51 and the magnetic pole 52 in the rotary electric machine 200 according to the present embodiment is the same as that in the second comparative example in which the hole 11 is not provided in the rotor core. It is larger than that of the rotating electric machine.
 したがって、隣り合う磁極51と磁極52とを短絡する磁束20が、第2比較例の回転電機の場合よりも抑制される。この結果、図3の回転電機200が発生するトルクを、第2比較例の回転電機が発生するトルクよりも増大させることができる。 Therefore, the magnetic flux 20 that short-circuits the adjacent magnetic poles 51 and 52 is suppressed more than in the case of the rotating electrical machine of the second comparative example. As a result, the torque generated by the rotary electric machine 200 of FIG. 3 can be made larger than the torque generated by the rotary electric machine of the second comparative example.
 次に、本実施の形態の回転電機200における永久磁石50に関する製造性の効果について説明する。
 第3比較例の回転電機を磁極の総数を本実施の形態における図2の磁極51、52の総数と同じ8個とすると、第3比較例の回転電機では、回転子に形成された磁石挿入穴の数、および永久磁石の数が、磁極の総数と同じ8個としている。この場合、第3比較例の回転電機の磁石挿入穴または永久磁石の数は、本実施の形態における4個に対して2倍の8個になっている。第3比較例の回転電機においては、回転子に埋め込まれた1個の永久磁石の固定子側の面には、N極の極を有する磁極、またはS極の極を有する磁極が1個形成されている。
 このため、第3比較例の回転電機においては、永久磁石の形状加工の工数、永久磁石の着磁の工数、および磁石挿入穴への永久磁石の挿入作業の工数が、磁極の総数に応じて増大し、製造コストが増大するという問題があった。
Next, the effect of manufacturability on the permanent magnet 50 in the rotary electric machine 200 of the present embodiment will be described.
If the total number of magnetic poles of the rotating electric machine of the third comparative example is eight, which is the same as the total number of magnetic poles 51 and 52 of FIG. 2 in the present embodiment, in the rotating electric machine of the third comparative example, the magnet insertion formed in the rotor is inserted. The number of holes and the number of permanent magnets are eight, which is the same as the total number of magnetic poles. In this case, the number of magnet insertion holes or permanent magnets of the rotating electrical machine of the third comparative example is eight, which is twice the number of four in the present embodiment. In the rotating electrical machine of the third comparative example, one magnetic pole having an N-pole or an S-pole is formed on the stator-side surface of one permanent magnet embedded in the rotor. Has been done.
Therefore, in the rotating electrical machine of the third comparative example, the man-hours for shaping the permanent magnets, the man-hours for magnetizing the permanent magnets, and the man-hours for inserting the permanent magnets into the magnet insertion holes depend on the total number of magnetic poles. There is a problem in that the manufacturing cost is increased.
 一方、本実施の形態の回転電機200において、1個の平板形状の永久磁石50には、2個の磁極51、52が着磁されて形成されている。また、磁石挿入穴19または永久磁石50の数は、第3比較例の回転電機に対して半分の4個になる。このため、本実施の形態の回転電機200の永久磁石50の形状加工の工数は、第3比較例の回転電機に対して半分になる。
 また、永久磁石50を磁石挿入穴19に挿入する前に永久磁石50の着磁を実施する場合、1個の永久磁石50に対して1回の着磁を行うため、本実施の形態の回転電機200における着磁の工数は、第3比較例の回転電機に対して半分になる。
 さらに、本実施の形態の回転電機200の永久磁石50を磁石挿入穴19に挿入する工数も、第3比較例の回転電機に対して半分になる。
On the other hand, in the rotary electric machine 200 of the present embodiment, two magnetic poles 51 and 52 are magnetized and formed in one flat permanent magnet 50. Further, the number of magnet insertion holes 19 or permanent magnets 50 is four, which is half that of the rotating electrical machine of the third comparative example. Therefore, the number of man-hours for shaping the permanent magnet 50 of the rotary electric machine 200 of the present embodiment is half that of the rotary electric machine of the third comparative example.
Further, when the permanent magnets 50 are magnetized before inserting the permanent magnets 50 into the magnet insertion holes 19, since one permanent magnet 50 is magnetized once, the rotation of the present embodiment is performed. The number of magnetizing steps in the electric machine 200 is half that of the rotating electric machine of the third comparative example.
Further, the number of steps for inserting the permanent magnet 50 of the rotary electric machine 200 of the present embodiment into the magnet insertion hole 19 is also half that of the rotary electric machine of the third comparative example.
 したがって、回転電機200において、永久磁石50の形状加工の工数、磁極51、52を発生させる永久磁石50の着磁の工数、および磁石挿入穴19への永久磁石50の挿入作業の工数を低減できる。よって、本実施の形態の回転電機200の製造コストを第3比較例の回転電機よりも低減できる。  Therefore, in the rotary electric machine 200, it is possible to reduce man-hours for shaping the permanent magnet 50, man-hours for magnetizing the permanent magnet 50 for generating the magnetic poles 51 and 52, and man-hours for inserting the permanent magnet 50 into the magnet insertion hole 19. . Therefore, the manufacturing cost of the rotary electric machine 200 of the present embodiment can be reduced as compared with the rotary electric machine of the third comparative example.
 次に、本実施の形態の回転電機の第1変形例200aについて説明する。
 図8は、本実施の形態における電気機械の第1変形例200aの部分断面図である。図8において、図3に示す回転電機200における隣接面24の位置に形成された穴部11に加えて、回転子鉄心15aの外周部の隣り合う永久磁石50同士の間においても切り欠き部23が設けられている。すなわち、固定子3から回転子鉄心15aに向かう方向に仮想面90から窪む切り欠き部23が、回転子鉄心15aにおいて、周方向に隣り合う永久磁石50同士の間の周方向の中央に位置する面である中央面25の位置に形成されている。
Next, a first modification 200a of the rotary electric machine according to the present embodiment will be described.
FIG. 8 is a partial cross-sectional view of a first modification 200a of the electric machine according to the present embodiment. 8, in addition to the hole portion 11 formed at the position of the adjacent surface 24 in the rotary electric machine 200 shown in FIG. 3, the cutout portion 23 is provided between the adjacent permanent magnets 50 on the outer peripheral portion of the rotor core 15a. Is provided. That is, the notch 23 recessed from the virtual surface 90 in the direction from the stator 3 to the rotor core 15a is located at the center of the rotor core 15a in the circumferential direction between the permanent magnets 50 adjacent to each other in the circumferential direction. It is formed at the position of the central surface 25 which is the surface to be formed.
 また、切り欠き部23を挟んで周方向に隣り合う永久磁石50-1、50-2を第1の永久磁石50-1および第2の永久磁石50-2とするとき、第1の永久磁石50-1において切り欠き部23に最も近い第1の磁極51-1における周方向の一端面である磁極境界10-1を含む面である隣接面24-1の位置の電機子側界磁鉄心部22に、第1の穴部11-1が形成されている。回転子鉄心15aにおいて、第1の穴部11-1と切り欠き部23との間に、第1の磁極51-1が形成された永久磁石50-1から固定子3に向かって突出する第1の突出部30a-1が形成されている。第2の永久磁石50-2において切り欠き部23に最も近い第2の磁極52-2の周方向の一端面である磁極境界10-2を含む隣接面24-2の位置の電機子側界磁鉄心部22-2に、第2の穴部11-2が形成されている。そして、回転子鉄心15aにおいて、第2の穴部11-2と切り欠き部23との間に、第2の永久磁石50-2から固定子3に向かって突出する第2の突出部30a-2が形成されている。 When the permanent magnets 50-1 and 50-2 adjacent to each other in the circumferential direction with the cutout portion 23 interposed therebetween are the first permanent magnet 50-1 and the second permanent magnet 50-2, the first permanent magnet The armature side field core at the position of the adjacent surface 24-1 which is the surface including the magnetic pole boundary 10-1 which is one end surface in the circumferential direction of the first magnetic pole 51-1 closest to the cutout portion 23 in 50-1. A first hole 11-1 is formed in the portion 22. In the rotor iron core 15a, the first magnetic pole 51-1 having the first magnetic pole 51-1 formed between the first hole portion 11-1 and the cutout portion 23 protrudes from the permanent magnet 50-1 toward the stator 3. One protruding portion 30a-1 is formed. In the second permanent magnet 50-2, the armature side field at the position of the adjacent surface 24-2 including the magnetic pole boundary 10-2 which is one circumferential end surface of the second magnetic pole 52-2 closest to the cutout portion 23. A second hole portion 11-2 is formed in the magnetic core portion 22-2. Then, in the rotor core 15a, between the second hole portion 11-2 and the notch portion 23, the second protruding portion 30a− protruding from the second permanent magnet 50-2 toward the stator 3 is formed. 2 is formed.
 第1の突出部30a-1および第2の突出部30a-2の間にある切り欠き部23およびフラックスバリア7を組み合わせることによって、隣り合う永久磁石50同士の間での磁束20の短絡を抑制することができる。このため、図8の回転電機200aのトルクは、図2の回転電機200のトルクよりも増大する。なお、フラックスバリア7がない場合でも、切り欠き部23だけによって、隣り合う永久磁石50同士の間での磁束20の短絡を切り欠き部23がない場合よりも抑制できる。 By combining the cutout portion 23 and the flux barrier 7 between the first protruding portion 30a-1 and the second protruding portion 30a-2, the short circuit of the magnetic flux 20 between the adjacent permanent magnets 50 is suppressed. can do. Therefore, the torque of the rotary electric machine 200a in FIG. 8 is larger than the torque of the rotary electric machine 200 in FIG. Even if the flux barrier 7 is not provided, the cutout 23 alone can suppress the short circuit of the magnetic flux 20 between the adjacent permanent magnets 50, compared to the case where the cutout 23 is not provided.
 さらに、第1の突出部30a-1および第2の突出部30a-2によって、隣り合う永久磁石50-1、50-2間である磁極51-1と磁極52-2との間における空隙1の磁束密度を低下させることができる。よって、回転子鉄心15aの磁極51-1と磁極52-2との間の中央面25を基準とする空隙1の磁束密度の対称性を確保することができる。すなわち、空隙1の磁束密度の波形が、磁極51-1と磁極52-2との間の中央面25を基準として反対称に近づく。このため、回転電機の第1変形例200aは、図2の回転電機200よりもトルクリップルを低減できる。 Further, the gap 1 between the magnetic pole 51-1 and the magnetic pole 52-2, which is between the adjacent permanent magnets 50-1 and 50-2, is formed by the first protrusion 30a-1 and the second protrusion 30a-2. The magnetic flux density can be reduced. Therefore, it is possible to ensure the symmetry of the magnetic flux density of the air gap 1 with reference to the center plane 25 between the magnetic poles 51-1 and 52-2 of the rotor core 15a. That is, the waveform of the magnetic flux density of the air gap 1 approaches antisymmetry with respect to the center plane 25 between the magnetic pole 51-1 and the magnetic pole 52-2. Therefore, the first modification 200a of the rotary electric machine can reduce the torque ripple more than the rotary electric machine 200 of FIG.
 なお、本実施の形態では、永久磁石50により空隙1に現れる磁極51、52の数が8個すなわち8極、スロット21の数が12個の回転電機200、200aとしているが、磁極51、52の数とスロット21の数との組合せは、回転電機の所望の特性を満たす任意の組み合わせとしてもよい。  In the present embodiment, the number of magnetic poles 51, 52 appearing in the gap 1 by the permanent magnet 50 is eight, that is, eight magnetic poles and the number of slots 21 is twelve, but the rotating electric machines 200, 200a are used. The number of slots and the number of slots 21 may be any combination that satisfies the desired characteristics of the rotary electric machine.
 本実施の形態では、回転子2、2aが固定子3の内径側に収められて固定子3の内径側と対向しているインナーロータ型の回転電機200、200aの構造であるが、固定子3の外径側に回転子2、2aを対向させて配置するアウターロータ型の回転電機の構造としても同じ効果を得ることができる。 In the present embodiment, the rotors 2 and 2a are housed in the inner diameter side of the stator 3 and face the inner diameter side of the stator 3, but the inner rotor type rotary electric machines 200 and 200a have the structure. The same effect can be obtained as the structure of the outer rotor type rotating electric machine in which the rotors 2 and 2a are arranged to face the outer diameter side of the rotor 3.
 インナーロータ型の場合、固定子鉄心16におけるスロット21の軸方向に垂直な断面積をアウターロータ型のスロットの断面積よりも大きく取ることが可能である。このため、固定子3の銅損を低減させることができる。
 また、アウターロータ型の場合、遠心力が回転子鉄心の薄肉部に作用しないため、回転子鉄心の薄肉部の厚みをインナーロータ型の回転子鉄心15の薄肉部13の厚みよりも小さくすることができる。
In the case of the inner rotor type, it is possible to make the cross-sectional area perpendicular to the axial direction of the slots 21 in the stator core 16 larger than the cross-sectional area of the outer rotor type slots. Therefore, the copper loss of the stator 3 can be reduced.
Further, in the case of the outer rotor type, centrifugal force does not act on the thin portion of the rotor core, so the thickness of the thin portion of the rotor core should be smaller than the thickness of the thin portion 13 of the inner rotor type rotor core 15. You can
実施の形態2. 
 図9は、この発明を実施するための実施の形態2における電気機械の第2変形例の回転子における図1のA-A断面図である。図10は、本実施の形態における電気機械の第2変形例の部分断面図である。図9および図10において、電気機械である回転電機の第2変形例200bは、実施の形態1に係る回転電機の第1変形例200aと以下に述べる点で異なる。
Embodiment 2.
FIG. 9 is a sectional view taken along line AA of FIG. 1 showing a rotor of a second modified example of the electric machine according to the second exemplary embodiment of the present invention. FIG. 10 is a partial cross-sectional view of a second modified example of the electric machine according to the present embodiment. 9 and 10, the second modification 200b of the rotary electric machine that is an electric machine is different from the first modification 200a of the rotary electric machine according to the first embodiment in the following points.
 図9において、第1の突出部30b-1において、軸方向に垂直な断面の形状が円弧状となっており、第2の突出部30b-2において、軸方向に垂直な断面の形状が円弧状となっている。第1の突出部30b-1の曲率半径をr1とし、第2の突出部30b-2の曲率半径をr2とし、図10に示す仮想面90における軸方向に垂直な断面の曲率半径をRとする。このとき、第1の突出部30b-1の曲率半径r1および第2の突出部30b-2の曲率半径r2は、それぞれ仮想面90の曲率半径Rよりも小さくなっている。すなわち、r1<R、かつr2<Rとなっている。図9および図10において、第1の突出部30b-1の曲率半径r1と第2の突出部30b-2の曲率半径r2とは、等しくなっている。すなわち、r1=r2としている。また、軸方向に垂直な断面において、第1の突出部30b-1と第2の突出部30b-2とは、それぞれ仮想面90に内接している。なお、r1≠r2となっていてもよい。 In FIG. 9, the first protrusion 30b-1 has a circular arc-shaped cross section perpendicular to the axial direction, and the second protrusion 30b-2 has a circular cross-sectional shape perpendicular to the axial direction. It has an arc shape. The radius of curvature of the first protrusion 30b-1 is r1, the radius of curvature of the second protrusion 30b-2 is r2, and the radius of curvature of the cross section of the virtual surface 90 shown in FIG. To do. At this time, the radius of curvature r1 of the first protrusion 30b-1 and the radius of curvature r2 of the second protrusion 30b-2 are smaller than the radius R of curvature of the virtual surface 90, respectively. That is, r1 <R and r2 <R. 9 and 10, the radius of curvature r1 of the first protrusion 30b-1 and the radius of curvature r2 of the second protrusion 30b-2 are equal. That is, r1 = r2. Further, in the cross section perpendicular to the axial direction, the first protrusion 30b-1 and the second protrusion 30b-2 are inscribed in the virtual surface 90, respectively. Note that r1 ≠ r2 may be satisfied.
 軸方向に垂直な断面の形状が円弧状となる第1の突出部30b-1および第2の突出部30b-2を設けることによって、回転子2bと固定子3との間の空隙1における磁束密度波形を正弦波に近づけることができる。このため、回転電機の第2変形例200bが発生するトルクリップルを回転電機の第1変形例200aよりも低減することできる。  The magnetic flux in the air gap 1 between the rotor 2b and the stator 3 is provided by providing the first projecting portion 30b-1 and the second projecting portion 30b-2 whose cross section perpendicular to the axial direction has an arc shape. The density waveform can be approximated to a sine wave. Therefore, the torque ripple generated by the second modification 200b of the rotating electric machine can be reduced more than that by the first modification 200a of the rotating electric machine.
 図10において、穴部11aが占める周方向の範囲において、一方の磁極51-1に対向する電機子側界磁鉄心部22a-1における永久磁石50からの径方向の距離が最大となる点と、一方の磁極51-1に隣接する他方の磁極52-1に対向する電機子側界磁鉄心部22a-1における永久磁石50からの径方向の距離が最大となる点とを結ぶ直線の長さである開口幅をWh2とする。Wmagの定義は、図3と同じである。 10, in the circumferential range occupied by the hole 11a, the radial distance from the permanent magnet 50 in the armature-side field core portion 22a-1 facing one of the magnetic poles 51-1 becomes the maximum. , The length of a straight line connecting the one magnetic pole 51-1 and the other magnetic pole 52-1 facing the other magnetic pole 52-1 and the point at which the radial distance from the permanent magnet 50 in the armature side field iron core portion 22a-1 is maximum. The width of the opening is Wh2. The definition of Wmag is the same as in FIG.
 このとき、開口幅Wh2は、磁極幅Wmagよりも小さく、空隙1の最小長さgより大きく設定されることが望ましい。すなわち、g<Wh2<Wmagとなるように、第1の突出部30b-1の曲率半径r1と第2の突出部30b-2の曲率半径r2とを設定することが望ましい。なぜなら、図10において、穴部11aが、磁極51-1と磁極52-1との間を短絡する磁束20の経路Cを磁束20が流れるのを妨げるには十分ではない寸法の場合、すなわち磁極境界10-1の延長上を跨る磁束20の経路Cの磁気抵抗が低い場合、磁極51-1からの磁束20が磁束20の経路Cを通過して隣の磁極52-1へ短絡してしまい、回転電機の第2変形例200bが発生するトルクが低減するおそれがあるためである。g<Wh2の場合には、磁極51-1と磁極52-1とを流れる磁束20が、開口幅Wh2よりも空隙1を通りやすくなる。また、Wh2<Wmagの場合には、開口幅Wh2と磁極51-1および52-1とが周方向に重なる範囲が磁極幅Wmagよりも小さくなる。このため、穴部11aの周方向範囲において磁極51-1、52-1の磁束20が通る空隙1の長さが、最小長さgよりも拡大するのを抑えることができる。よって、空隙1における磁気抵抗が増大して磁束20が固定子3に流れにくくなるのを抑制できる。この寸法関係によって、回転子2bと固定子3との間の空隙1における磁束密度を効率的に増大させることができ、回転電機の第2変形例200bが発生するトルクを更に増大させることが可能となる。 At this time, the opening width Wh2 is preferably set smaller than the magnetic pole width Wmag and larger than the minimum length g of the gap 1. That is, it is desirable to set the radius of curvature r1 of the first protrusion 30b-1 and the radius of curvature r2 of the second protrusion 30b-2 so that g <Wh2 <Wmag. This is because, in FIG. 10, when the hole 11a has a size that is not sufficient to prevent the magnetic flux 20 from flowing through the path C of the magnetic flux 20 that short-circuits the magnetic pole 51-1 and the magnetic pole 52-1, that is, the magnetic pole When the magnetic resistance of the path C of the magnetic flux 20 that crosses the extension of the boundary 10-1 is low, the magnetic flux 20 from the magnetic pole 51-1 passes through the path C of the magnetic flux 20 and is short-circuited to the adjacent magnetic pole 52-1. This is because the torque generated by the second modification 200b of the rotating electric machine may be reduced. When g <Wh2, the magnetic flux 20 flowing through the magnetic poles 51-1 and 52-1 is more likely to pass through the gap 1 than the opening width Wh2. When Wh2 <Wmag, the range in which the opening width Wh2 and the magnetic poles 51-1 and 52-1 overlap in the circumferential direction is smaller than the magnetic pole width Wmag. Therefore, it is possible to prevent the length of the air gap 1 through which the magnetic flux 20 of the magnetic poles 51-1 and 52-1 passes in the circumferential range of the hole 11a from expanding beyond the minimum length g. Therefore, it is possible to prevent the magnetic resistance in the air gap 1 from increasing and the magnetic flux 20 from becoming difficult to flow into the stator 3. Due to this dimensional relationship, the magnetic flux density in the gap 1 between the rotor 2b and the stator 3 can be efficiently increased, and the torque generated by the second modification 200b of the rotating electric machine can be further increased. Becomes
 さらに、図10において、電機子側界磁鉄心部22a-1において隣接面24の位置における永久磁石50-1から固定子3に向かう方向である径方向の幅をth2とし、電機子側界磁鉄心部22a-1において永久磁石50-1の周方向の端部から固定子3に向かう方向の最小幅をtbとする。また、電機子側界磁鉄心部22a-1において幅th2となる部分を含み、穴部11aの周方向範囲と同じ範囲における回転子鉄心15bの部分を第1ブリッジ部、すなわち薄肉部13aとし、th2を薄肉部13aの幅とする。また、電機子側界磁鉄心部22a-1の境界における最小幅tbとなる部分から、周方向に隣り合う電機子側界磁鉄心部22a-2の境界における最小幅tbまでのフラックスバリア7よりも固定子3側に位置する回転子鉄心15bの部分を第2ブリッジ部26aとする。 Further, in FIG. 10, the width in the radial direction that is the direction from the permanent magnet 50-1 to the stator 3 at the position of the adjacent surface 24 in the armature side field iron core portion 22a-1 is th2, and the armature side field magnet is In the iron core portion 22a-1, the minimum width in the direction from the circumferential end of the permanent magnet 50-1 toward the stator 3 is tb. Further, the portion of the rotor core 15b in the same range as the circumferential range of the hole 11a, including the portion having the width th2 in the armature side field core portion 22a-1, is the first bridge portion, that is, the thin portion 13a, Let th2 be the width of the thin portion 13a. Further, from the flux barrier 7 from the portion having the minimum width tb at the boundary of the armature side field iron core 22a-1 to the minimum width tb at the boundary of the armature side field iron core 22a-2 adjacent in the circumferential direction. Also, the portion of the rotor core 15b located on the stator 3 side is referred to as the second bridge portion 26a.
 薄肉部13aにおいて磁気飽和を生じさせるために、薄肉部13aの幅th2を可能な限り小さく設定するのが望ましい。すなわち、薄肉部13aの幅th2は、最小幅tbと開口幅Wh2とに対して、tb≦th2<Wh2/2とするのが望ましい。なぜなら、薄肉部13aの幅th2の下限値を、回転子2bの回転によって永久磁石50-1に発生する遠心力の保持に必要な強度を有する最小幅tb、または電磁鋼板を打ち抜き加工できる寸法の最小幅tbとする必要があるためである。また、th2<Wh2/2の場合には、磁極51-1と磁極52-1とを流れる磁束20のうち、薄肉部13aの幅th2を通る磁束の量が、開口幅Wh2から空隙1に流れる磁束の量よりも小さくなるためである。この寸法関係により、永久磁石50-1が発生する磁束20、または固定子3が発生する磁束によって、薄肉部13aに磁気飽和が生じやすくなる。薄肉部13aに磁気飽和が生じている場合には、薄肉部13aの比透磁率が空気と近い比透磁率となる。このため、回転電機の第2変形例200bが発生するトルクを更に増大させることができる。 In order to cause magnetic saturation in the thin portion 13a, it is desirable to set the width th2 of the thin portion 13a as small as possible. That is, the width th2 of the thin portion 13a is preferably tb ≦ th2 <Wh2 / 2 with respect to the minimum width tb and the opening width Wh2. This is because the lower limit value of the width th2 of the thin portion 13a is set to the minimum width tb having the strength required to hold the centrifugal force generated in the permanent magnet 50-1 by the rotation of the rotor 2b, or the size that allows the electromagnetic steel plate to be punched. This is because it is necessary to set the minimum width tb. When th2 <Wh2 / 2, of the magnetic flux 20 flowing through the magnetic poles 51-1 and 52-1, the amount of magnetic flux passing through the width th2 of the thin portion 13a flows from the opening width Wh2 into the gap 1. This is because it is smaller than the amount of magnetic flux. Due to this dimensional relationship, magnetic saturation easily occurs in the thin portion 13a due to the magnetic flux 20 generated by the permanent magnet 50-1 or the magnetic flux generated by the stator 3. When magnetic saturation occurs in the thin portion 13a, the relative permeability of the thin portion 13a is close to that of air. Therefore, the torque generated by the second modification 200b of the rotary electric machine can be further increased.
 なお、g<Wh2<Wmagとtb≦th2<Wh2/2とは個別に設定可能な寸法であり、トルク増大の効果もそれぞれで奏する。さらに、g<Wh2<Wmagかつtb≦th2<Wh2/2とすれば、いずれかの寸法関係で設定する場合よりも回転電機の第2変形例200bが発生するトルクが増大する。 Note that g <Wh2 <Wmag and tb ≦ th2 <Wh2 / 2 are dimensions that can be set individually, and the effect of increasing torque is also achieved. Further, if g <Wh2 <Wmag and tb ≦ th2 <Wh2 / 2, the torque generated by the second modification 200b of the rotating electric machine is increased as compared with the case of setting in any dimensional relationship.
 なお、図9において、周方向に隣り合う永久磁石50-1、50-2同士の間の周方向の中央に位置する面である中央面25の位置に形成されている切り欠き部23aが、仮想面90まで回転子鉄心15bで埋まっていてもよい。仮想面90から永久磁石50-1、50-2に向かって窪む穴部11aが電機子側界磁鉄心部22a-1に形成されている場合、穴部11aが形成された電機子側界磁鉄心部22a-1の軸方向に垂直な断面の形状が、2つの円弧が周方向に連なる形状となる。このため、回転子2bと固定子3との間の穴部11aの周方向範囲における空隙1の磁束密度波形の高調波成分を低減でき、空隙1の磁束密度波形を正弦波に近づけることができる。よって、回転電機の第2変形例200bは、図2の回転電機200よりもトルクリップルを低減できる。 In FIG. 9, the notch 23a formed at the position of the central surface 25, which is the surface located at the center in the circumferential direction between the permanent magnets 50-1 and 50-2 adjacent to each other in the circumferential direction, The virtual surface 90 may be filled with the rotor core 15b. When the hole 11a recessed from the virtual surface 90 toward the permanent magnets 50-1 and 50-2 is formed in the armature side magnetic field core 22a-1, the armature side field in which the hole 11a is formed is formed. The shape of the cross section perpendicular to the axial direction of the magnetic core portion 22a-1 is a shape in which two arcs are continuous in the circumferential direction. Therefore, the harmonic component of the magnetic flux density waveform of the air gap 1 in the circumferential range of the hole 11a between the rotor 2b and the stator 3 can be reduced, and the magnetic flux density waveform of the air gap 1 can be approximated to a sine wave. . Therefore, the second modification 200b of the rotating electric machine can reduce the torque ripple more than the rotating electric machine 200 of FIG.
実施の形態3. 
 図3の穴部11の形状が異なる例として、この発明を実施するための実施の形態3に係る回転電機の4つの変形例を説明する。
Embodiment 3.
As an example in which the shape of the hole 11 of FIG. 3 is different, four modified examples of the rotary electric machine according to Embodiment 3 of the present invention will be described.
 図11は、この発明を実施するための実施の形態3における電気機械の第3変形例の部分断面図である。図11において、電気機械である回転電機の第3変形例200cは、実施の形態1に係る回転電機200と以下に述べる点で異なる。
 図11において、図3の穴部11の軸方向に垂直な断面の形状が楔形形状であるのに対し、電気機械である回転電機の第3変形例200cにおける穴部11bの軸方向に垂直な断面の形状は、三角形形状の1つの頂点部分が仮想面90で切断された台形形状である。穴部11bの断面の形状である三角形の頂点が回転子鉄心15cの隣接面24の位置の空隙1にある。このため、隣接面24上における回転子鉄心15cの外周は、周方向に開口幅Wh3だけ固定子3に向かって開口している。ここでは、穴部11bが占める周方向の範囲において、一方の磁極51に対向する電機子側界磁鉄心部22bにおける永久磁石50からの径方向の距離が最大となる点と、一方の磁極51に隣接する他方の磁極52に対向する電機子側界磁鉄心部22bにおける永久磁石50からの径方向の距離が最大となる点とを結ぶ直線の長さである開口幅をWh3としている。また、電機子側界磁鉄心部22bにおいて、隣接面24の位置を周方向にまたがって配置された第1ブリッジ部である薄肉部13bが形成されている。第1ブリッジ部である薄肉部13bは、電機子側界磁鉄心部22bにおいて幅th3となる部分を含み、穴部11bの周方向範囲と同じ範囲における回転子鉄心15cの部分であり、周方向の幅がWhm3となっている。薄肉部13bにおける永久磁石50から固定子3に向かう方向の幅th3は、Whm3の範囲で周方向に一定となっている。図11において、Wh3<Whm3となっている。
FIG. 11 is a partial cross-sectional view of a third modified example of the electric machine according to the third embodiment for carrying out the present invention. 11, a third modification 200c of the rotary electric machine that is an electric machine is different from the rotary electric machine 200 according to the first embodiment in the following points.
11, the shape of the cross section perpendicular to the axial direction of the hole 11 of FIG. 3 is a wedge shape, while the shape of the hole 11b of the third modification 200c of the rotating electric machine that is an electric machine is perpendicular to the axial direction. The shape of the cross section is a trapezoidal shape in which one apex portion of the triangular shape is cut by the virtual surface 90. The triangular vertex, which is the cross-sectional shape of the hole 11b, is in the void 1 at the position of the adjacent surface 24 of the rotor core 15c. Therefore, the outer circumference of the rotor core 15c on the adjacent surface 24 is opened toward the stator 3 by the opening width Wh3 in the circumferential direction. Here, in the circumferential range occupied by the hole 11 b, the radial distance from the permanent magnet 50 in the armature side field core portion 22 b facing the one magnetic pole 51 is the maximum, and the one magnetic pole 51. The opening width, which is the length of the straight line connecting the point in the armature side field iron core portion 22b facing the other magnetic pole 52 adjacent to, at the maximum radial distance from the permanent magnet 50, is Wh3. Further, in the armature-side field core portion 22b, a thin portion 13b which is a first bridge portion and is disposed so as to extend over the position of the adjacent surface 24 in the circumferential direction. The thin portion 13b, which is the first bridge portion, is a portion of the rotor core 15c in the same range as the circumferential range of the hole 11b, including the portion having the width th3 in the armature side field core portion 22b. Has a width of Whm3. The width th3 of the thin portion 13b in the direction from the permanent magnet 50 to the stator 3 is constant in the circumferential direction in the range of Whm3. In FIG. 11, Wh3 <Whm3.
 図3の穴部11の開口幅Wh1と開口幅Wh3とが同じ長さであり、薄肉部13の幅th1と薄肉部13bの幅th3とが同じ長さである場合、薄肉部13bの幅th3が薄肉部13bの周方向の幅Whm3の範囲で周方向に一定となっているため、磁束20の経路Dの長さが図3の磁束20の経路Bの長さよりも大きくなる。よって、磁束20の経路Dの磁気抵抗が、図3の磁束20の経路Bの磁気抵抗よりも増大する。このため、回転子鉄心15cの外周側で磁束密度が増大して磁気飽和しやすくなることによって、薄肉部13bにおける磁束20の短絡が抑制される。よって、図11の回転電機の第3変形例200cは、図3の回転電機200の場合よりもトルクが増大する。 When the opening width Wh1 and the opening width Wh3 of the hole portion 11 of FIG. 3 are the same length and the width th1 of the thin portion 13 and the width th3 of the thin portion 13b are the same length, the width th3 of the thin portion 13b. Is constant in the circumferential direction within the circumferential width Whm3 of the thin portion 13b, the length of the path D of the magnetic flux 20 is longer than the length of the path B of the magnetic flux 20 in FIG. Therefore, the magnetic resistance of the path D of the magnetic flux 20 becomes larger than the magnetic resistance of the path B of the magnetic flux 20 of FIG. For this reason, the magnetic flux density increases on the outer peripheral side of the rotor core 15c and magnetic saturation easily occurs, so that the short circuit of the magnetic flux 20 in the thin portion 13b is suppressed. Therefore, the torque of the third modification 200c of the rotary electric machine of FIG. 11 is increased as compared with the case of the rotary electric machine 200 of FIG.
 図12は、本実施の形態における電気機械の第4変形例の部分断面図である。図12において、電気機械である回転電機の第4変形例200dは、本実施の形態に係る回転電機の第3変形例200cと以下に述べる点で異なる。
 図12において、穴部11cの開口幅Wh4と薄肉部13cの周方向の幅Whm4とが等しくなっている。すなわち、回転電機の第4変形例200dにおける穴部11cの軸方向に垂直な断面の形状は、矩形形状すなわち長方形形状である。また、薄肉部13cの周方向の幅Whm4と、図11の穴部11bの薄肉部13bの周方向の幅Whm3とが等しい場合、開口幅Wh4は、回転電機の第3変形例200cの開口幅Wh3よりも大きくなる。
FIG. 12 is a partial cross-sectional view of a fourth modified example of the electric machine according to the present embodiment. In FIG. 12, a fourth modification 200d of the rotary electric machine that is an electric machine is different from the third modification 200c of the rotary electric machine according to the present embodiment in the following points.
In FIG. 12, the opening width Wh4 of the hole portion 11c and the circumferential width Whm4 of the thin portion 13c are equal. That is, the shape of the cross section perpendicular to the axial direction of the hole 11c in the fourth modification 200d of the rotating electric machine is a rectangular shape, that is, a rectangular shape. When the circumferential width Whm4 of the thin portion 13c and the circumferential width Whm3 of the thin portion 13b of the hole 11b of FIG. 11 are equal, the opening width Wh4 is the opening width of the third modification 200c of the rotating electric machine. It becomes larger than Wh3.
 開口幅Wh4が回転電機の第3変形例200cの開口幅Wh3よりも大きいことによって、開口幅Wh4を磁束20が通る磁気抵抗が、回転電機の第3変形例200cの開口幅Wh3を磁束20が通る磁気抵抗よりも増大する。このため、回転電機の第4変形例200dにおいて、回転子鉄心15dの電機子側界磁鉄心部22cから固定子3に流れる磁束20が、開口幅Wh4に漏れるのを回転電機の第3変形例200cの場合よりも抑制できる。よって、回転電機の第4変形例200dが発生するトルクが、図11の回転電機の第3変形例200cの場合よりも増大する。 Since the opening width Wh4 is larger than the opening width Wh3 of the third modification 200c of the rotating electric machine, the magnetic resistance that the magnetic flux 20 passes through the opening width Wh4 is the same as the opening width Wh3 of the third modification 200c of the rotating electric machine. It increases more than the reluctance it passes through. Therefore, in the fourth modification 200d of the rotating electric machine, the magnetic flux 20 flowing from the armature side field core portion 22c of the rotor core 15d to the stator 3 leaks to the opening width Wh4 in the third modification example of the rotating electric machine. It can be suppressed more than in the case of 200c. Therefore, the torque generated by the fourth modification 200d of the rotating electric machine is larger than that in the case of the third modification 200c of the rotating electric machine of FIG. 11.
 また、薄肉部13cの周方向の幅Whm4と、図11の穴部11bの薄肉部13bの周方向の幅Whm3とが等しい場合、図10の穴部11bの断面の形状が三角形形状の場合と同様の理由で、回転電機の第4変形例200dが発生するトルクは、図3の回転電機200の場合よりも増大する。 When the circumferential width Whm4 of the thin portion 13c and the circumferential width Whm3 of the thin portion 13b of the hole 11b of FIG. 11 are equal, and when the sectional shape of the hole 11b of FIG. 10 is triangular. For the same reason, the torque generated by the fourth modification 200d of the rotating electric machine is higher than that of the rotating electric machine 200 of FIG.
 また、図12の穴部11cの場合、図11の穴部11bの場合よりも、空隙1に発生する磁束密度波形が正弦波形状に近い波形となる。これは、回転電機の第4変形例200dにおいて、電機子側界磁鉄心部22cから固定子3に流れる磁束20が、開口幅Wh4に漏れるのを回転電機の第3変形例200cの場合よりも抑制できるためである。このため、穴部11cの周方向の範囲における空隙1の磁束密度波形の高調波成分が、図11の穴部11bの場合よりも小さくなる。よって、回転電機の第4変形例200dが発生するトルクリップルが、回転電機の第3変形例200cの場合よりも低減される。 Further, in the case of the hole 11c of FIG. 12, the magnetic flux density waveform generated in the gap 1 becomes a waveform closer to a sine wave shape than in the case of the hole 11b of FIG. This is because in the fourth modification 200d of the rotating electric machine, the magnetic flux 20 flowing from the armature side field iron core portion 22c to the stator 3 leaks to the opening width Wh4 more than in the case of the third modification 200c of the rotating electric machine. This is because it can be suppressed. Therefore, the harmonic component of the magnetic flux density waveform of the void 1 in the circumferential range of the hole 11c becomes smaller than that in the case of the hole 11b in FIG. Therefore, the torque ripple generated by the fourth modification 200d of the rotating electric machine is reduced as compared with the case of the third modification 200c of the rotating electric machine.
 図13は、本実施の形態における電気機械の第5変形例の部分断面図である。図13において、電気機械である回転電機の第5変形例200eは、本実施の形態に係る回転電機の第4変形例200dと以下に述べる点で異なる。
 図13において、回転子鉄心15eの電機子側界磁鉄心部22dにおいて、磁石挿入穴19から固定子3側に向かって窪む凹部12が、隣接面24の位置に形成されている。この凹部12と穴部11dとの間の第1ブリッジ部である薄肉部13dの周方向の幅Whm5は、開口幅Wh5および凹部12の周方向の開口幅Wo1と等しくなっている。また、薄肉部13dは、永久磁石50から径方向に所定の長さDo1をおいて離間している。回転電機の第5変形例200eにおける凹部12の軸方向に垂直な断面の形状は、矩形形状すなわち長方形形状である。
FIG. 13 is a partial cross-sectional view of a fifth modified example of the electric machine according to the present embodiment. In FIG. 13, a fifth modification 200e of the rotary electric machine that is an electric machine is different from the fourth modification 200d of the rotary electric machine according to the present embodiment in the following points.
13, in the armature-side field core portion 22d of the rotor core 15e, a recess 12 that is recessed from the magnet insertion hole 19 toward the stator 3 is formed at the position of the adjacent surface 24. The circumferential width Whm5 of the thin portion 13d, which is the first bridge portion between the recess 12 and the hole 11d, is equal to the opening width Wh5 and the circumferential opening width Wo1 of the recess 12. Further, the thin portion 13d is separated from the permanent magnet 50 with a predetermined length Do1 in the radial direction. The shape of the cross section perpendicular to the axial direction of the recess 12 in the fifth modification 200e of the rotating electric machine is a rectangular shape, that is, a rectangular shape.
 凹部12が形成されて薄肉部13dが永久磁石50から径方向に長さDo1をおいて離間することによって、薄肉部13dを通る磁束20の経路Eの長さが、回転電機の第4変形例200dの磁束20の経路Dの長さよりも大きくなる。よって、薄肉部13dにおける磁気抵抗が、回転電機の第4変形例200dの薄肉部13dにおける磁気抵抗よりも増大する。このため、回転電機の第5変形例200eにおいて、電機子側界磁鉄心部22dから固定子3に流れる磁束20が、薄肉部13dに漏れるのを回転電機の第4変形例200dの場合よりも抑制できる。よって、回転電機の第5変形例200eが発生するトルクが、回転電機の第4変形例200dの場合よりも増大する。 Since the recess 12 is formed and the thin portion 13d is spaced apart from the permanent magnet 50 in the radial direction with a length Do1, the length of the path E of the magnetic flux 20 passing through the thin portion 13d is the fourth modification of the rotating electric machine. It becomes larger than the length of the path D of the magnetic flux 20 of 200d. Therefore, the magnetic resistance in the thin portion 13d is higher than the magnetic resistance in the thin portion 13d of the fourth modification 200d of the rotating electric machine. Therefore, in the fifth modification 200e of the rotating electric machine, the magnetic flux 20 flowing from the armature side field iron core portion 22d to the stator 3 leaks to the thin portion 13d more than in the fourth modification 200d of the rotating electric machine. Can be suppressed. Therefore, the torque generated by the fifth modification 200e of the rotating electric machine is larger than that in the case of the fourth modification 200d of the rotating electric machine.
 図14は、本実施の形態における電気機械の第6変形例の部分断面図である。図14において、電気機械である回転電機の第6変形例200fは、本実施の形態に係る回転電機の第4変形例200dと以下に述べる点で異なる。
 図14において、穴部11eは、空隙1から磁石挿入穴19まで貫通している。穴部11eの開口幅をWh6とすると、穴部11eは、開口幅Wh6の幅で空隙1から磁石挿入穴19まで貫通している。また、穴部11eは、回転電機の第4変形例200dの穴部11cから薄肉部13cを取り除いた形状になっている。
FIG. 14 is a partial cross-sectional view of a sixth modified example of the electric machine according to the present embodiment. In FIG. 14, a sixth modification 200f of the rotary electric machine that is an electric machine is different from the fourth modification 200d of the rotary electric machine according to the present embodiment in the following points.
In FIG. 14, the hole 11 e penetrates from the void 1 to the magnet insertion hole 19. When the opening width of the hole 11e is Wh6, the hole 11e penetrates from the void 1 to the magnet insertion hole 19 with a width of the opening width Wh6. The hole 11e has a shape obtained by removing the thin portion 13c from the hole 11c of the fourth modification 200d of the rotary electric machine.
 図14の穴部11eの開口幅Wh6が、回転電機の第4変形例200dの穴部11cの開口幅Wh4と等しい場合、開口幅Wh6を磁束20が通る磁気抵抗が、回転電機の第4変形例200dの薄肉部13cにおける磁気抵抗よりも増大する。このため、回転電機の第6変形例200fにおいて、回転子鉄心15fの電機子側界磁鉄心部22eから固定子3に流れる磁束20が開口幅Wh6に漏れるのを、回転電機の第4変形例200dにおいて薄肉部13cに漏れる場合よりも抑制できる。よって、回転電機の第6変形例200fが発生するトルクが、回転電機の第4変形例200dの場合よりも増大する。 When the opening width Wh6 of the hole 11e of FIG. 14 is equal to the opening width Wh4 of the hole 11c of the fourth modification 200d of the rotating electric machine, the magnetic resistance through which the magnetic flux 20 passes through the opening width Wh6 is the fourth modification of the rotating electric machine. It is larger than the magnetic resistance in the thin portion 13c of Example 200d. Therefore, in the sixth modified example of the rotating electric machine, the magnetic flux 20 flowing from the armature-side field core portion 22e of the rotor core 15f to the stator 3 leaks to the opening width Wh6 in the fourth modified example of the rotating electric machine. This can be suppressed more than in the case of leakage to the thin portion 13c at 200d. Therefore, the torque generated by the sixth modification 200f of the rotating electric machine is higher than that in the case of the fourth modification 200d of the rotating electric machine.
 また、穴部11eの場合、図12の穴部11cの場合よりも、空隙1に発生する磁束密度波形が正弦波形状に近い波形となる。これは、回転電機の第6変形例200fにおいて、電機子側界磁鉄心部22eから固定子3に流れる磁束20が、開口幅Wh6に漏れるのを回転電機の第4変形例200dの場合よりも抑制できるためである。このため、穴部11eの周方向の範囲における空隙1の磁束密度波形の高調波成分が、図12の穴部11cの場合よりも小さくなる。よって、回転電機の第6変形例200fが発生するトルクリップルが、回転電機の第4変形例200dの場合よりも低減される。 Further, in the case of the hole 11e, the magnetic flux density waveform generated in the void 1 has a waveform closer to a sine wave shape than in the case of the hole 11c of FIG. This is because in the sixth modification 200f of the rotating electric machine, the magnetic flux 20 flowing from the armature side field iron core portion 22e to the stator 3 leaks to the opening width Wh6 more than in the case of the fourth modification 200d of the rotating electric machine. This is because it can be suppressed. For this reason, the harmonic component of the magnetic flux density waveform of the void 1 in the circumferential range of the hole 11e becomes smaller than that in the case of the hole 11c in FIG. Therefore, the torque ripple generated by the sixth modification 200f of the rotating electric machine is reduced as compared with the case of the fourth modification 200d of the rotating electric machine.
実施の形態4. 
 図15は、この発明を実施するための実施の形態4における電気機械の第7変形例の部分断面図である。図15において、回転電機の第7変形例200gは、実施の形態1に係る回転電機200と以下に述べる点で異なる。
Fourth Embodiment
FIG. 15 is a partial cross-sectional view of a seventh modified example of the electric machine according to the fourth embodiment for carrying out the present invention. In FIG. 15, a seventh modification 200g of the rotating electric machine is different from the rotating electric machine 200 according to the first embodiment in the following points.
 図15において、永久磁石50a-1には、固定子3側に異なる極を有する磁極51a、52a同士が周方向に隣接し、交互に異なる極が4個周方向に並んで形成されている。すなわち、図15において、磁極51aは固定子3側の面にN極の極を有し、磁極52aは固定子3側の面にS極の極を有するようにそれぞれ着磁されている。このため、図15において、永久磁石50a-1の固定子3側の面には、周方向一端側である左端部から周方向他端側である右端部に向かって、磁極51aのN極の極、磁極52aのS極の極、磁極51aのN極の極、磁極52aのS極の極と並んで形成されている。また、永久磁石50a-1と周方向に隣り合う永久磁石50a-2においても、周方向一端側から周方向他端側に向かって、磁極51aのN極の極、磁極52aのS極の極、磁極51aのN極の極、磁極52aのS極の極と並んで形成されている。また、磁極51a、52a同士が周方向に隣接する面は、図15において周方向一端側である左端部から周方向他端側である右端部に向かって、磁極境界10a-1、10a-2、10a-3となっている。同様に、図示しない永久磁石50a-3が、永久磁石50a-2の周方向に隣り合っており、永久磁石50a-4が、永久磁石50a-3の周方向に隣り合っている。 15, in the permanent magnet 50a-1, magnetic poles 51a and 52a having different poles on the side of the stator 3 are adjacent to each other in the circumferential direction, and four different poles are alternately arranged side by side in the circumferential direction. That is, in FIG. 15, the magnetic pole 51a is magnetized so that it has an N-pole on the surface on the side of the stator 3, and the magnetic pole 52a has an S-pole on the surface on the side of the stator 3. Therefore, in FIG. 15, on the surface of the permanent magnet 50a-1 on the side of the stator 3, the N pole of the magnetic pole 51a extends from the left end that is one end in the circumferential direction to the right end that is the other end in the circumferential direction. It is formed in parallel with the pole, the S pole of the magnetic pole 52a, the N pole of the magnetic pole 51a, and the S pole of the magnetic pole 52a. Further, also in the permanent magnet 50a-2 circumferentially adjacent to the permanent magnet 50a-1, the N pole of the magnetic pole 51a and the S pole of the magnetic pole 52a from the one end in the circumferential direction to the other end in the circumferential direction. , The N pole of the magnetic pole 51a and the S pole of the magnetic pole 52a. Further, in the surface where the magnetic poles 51a and 52a are adjacent to each other in the circumferential direction, the magnetic pole boundaries 10a-1 and 10a-2 are directed from the left end which is one end in the circumferential direction to the right end which is the other end in the circumferential direction in FIG. 10a-3. Similarly, the permanent magnets 50a-3 (not shown) are adjacent to each other in the circumferential direction of the permanent magnet 50a-2, and the permanent magnets 50a-4 are adjacent to each other in the circumferential direction of the permanent magnet 50a-3.
 なお、図15において、永久磁石50a-1から50a-4の内1個当たりの磁極が4個あり、永久磁石50a-1から50a-4が4個あるため、回転電機の第7変形例200gの空隙1に現れる磁極51a、52aの総数が16個となる。このため、回転電機200gは、磁極の数が16個、およびスロット21の数が12個の回転電機となっている。 Note that in FIG. 15, there are four magnetic poles per one of the permanent magnets 50a-1 to 50a-4 and four permanent magnets 50a-1 to 50a-4. The total number of magnetic poles 51a and 52a appearing in the void 1 is 16. Therefore, the rotary electric machine 200g is a rotary electric machine having 16 magnetic poles and 12 slots 21.
 図15において、磁極51a、52a同士が隣接する面である磁極境界10a-1、10a-2、10a-3を含む面を、それぞれ隣接面24a-1、24a-2、24a-3とする。回転子鉄心15gの電機子側界磁鉄心部22fにおいて、仮想面90から永久磁石50a-1に向かって窪む穴部11f-1、11f-2、11f-3が、それぞれ隣接面24a-1、24a-2、24a-3の位置に形成されている。 In FIG. 15, the surfaces including the magnetic pole boundaries 10a-1, 10a-2, and 10a-3, which are the surfaces where the magnetic poles 51a and 52a are adjacent to each other, are referred to as adjacent surfaces 24a-1, 24a-2, and 24a-3, respectively. In the armature side field iron core portion 22f of the rotor iron core 15g, the hole portions 11f-1, 11f-2, 11f-3 recessed from the virtual surface 90 toward the permanent magnet 50a-1 are respectively formed on the adjacent surface 24a-1. , 24a-2, 24a-3.
 図15において、永久磁石50a-1から50a-4の1個に、複数の磁極である4個の磁極51a、52aが形成されている。回転子の磁極の総数を本実施の形態における磁極51a、52aの総数と同じ16個とする場合、回転子に形成された磁石挿入穴の数、および永久磁石の数が、磁極51a、52aの総数と同じ16個となる第4比較例の回転電機を仮定する。磁石挿入穴の数、および永久磁石の数以外は、第3比較例の回転電機と同じ構成とする。 In FIG. 15, one of the permanent magnets 50a-1 to 50a-4 is provided with four magnetic poles 51a and 52a, which are a plurality of magnetic poles. When the total number of magnetic poles of the rotor is 16, which is the same as the total number of magnetic poles 51a and 52a in the present embodiment, the number of magnet insertion holes formed in the rotor and the number of permanent magnets are the same as those of magnetic poles 51a and 52a. It is assumed that the rotating electrical machine of the fourth comparative example is 16 which is the same as the total number. Except for the number of magnet insertion holes and the number of permanent magnets, the rotating electrical machine of the third comparative example has the same configuration.
 本実施の形態の回転電機の第7変形例200gにおいて、磁石挿入穴19または永久磁石50a-1から50a-4の数は、第4比較例の回転電機の永久磁石の個数である16個を、永久磁石50a-1から50a-4の1個に形成された磁極51a、52aの個数である4個で割った数である4個になる。このため、本実施の形態の回転電機200の永久磁石50の形状加工の工数は、第4比較例の回転電機に対して1/4になる。同様に、回転電機の第7変形例200gの着磁の工数および永久磁石50a-1から50a-4を磁石挿入穴19に挿入する工数も、第4比較例の回転電機に対して1/4になる。よって、回転電機の第7変形例200gの製造コストを第4比較例の回転電機よりも低減できる。さらに、回転電機の第7変形例200gの製造コストを、図3の回転電機200よりも低減できる。 In the seventh modification 200g of the rotating electric machine of the present embodiment, the number of magnet insertion holes 19 or permanent magnets 50a-1 to 50a-4 is 16 which is the number of permanent magnets of the rotating electric machine of the fourth comparative example. , The number of the magnetic poles 51a and 52a formed in one of the permanent magnets 50a-1 to 50a-4 is four, which is the number divided by four. Therefore, the number of man-hours required to shape the permanent magnets 50 of the rotary electric machine 200 of the present embodiment is ¼ that of the rotary electric machine of the fourth comparative example. Similarly, the man-hours for magnetizing the seventh modification 200g of the rotating electric machine and the man-hours for inserting the permanent magnets 50a-1 to 50a-4 into the magnet insertion holes 19 are also 1/4 of those of the rotating electric machine of the fourth comparative example. become. Therefore, the manufacturing cost of the seventh modification 200g of the rotating electric machine can be reduced as compared with the rotating electric machine of the fourth comparative example. Further, the manufacturing cost of the seventh modified example 200g of the rotating electric machine can be reduced as compared with the rotating electric machine 200 of FIG.
 なお、図15において、1個の永久磁石50a-1から50a-4に形成された磁極51a、52aの数は4極に限らず、3極や5極などの奇数の磁極の数でもよい。また、1個の永久磁石50a-1から50a-4における磁極51a、52aの数は、3個以上であってもよい。 Note that, in FIG. 15, the number of magnetic poles 51a and 52a formed on one permanent magnet 50a-1 to 50a-4 is not limited to four poles, and may be an odd number of magnetic poles such as three poles and five poles. The number of magnetic poles 51a and 52a in one permanent magnet 50a-1 to 50a-4 may be three or more.
 また、隣接面24a-1から24a-3のいずれかに接する磁極51a、52aの磁極幅をWmagとした場合に、実施の形態1と同様にg<Wh1<Wmag、またはtb≦th1<Wh1/2を満たせば、本実施の形態の回転電機の第7変形例200gにおいてもトルクが増大する。 When the magnetic pole width of the magnetic poles 51a and 52a in contact with any of the adjacent surfaces 24a-1 to 24a-3 is Wmag, g <Wh1 <Wmag or tb ≦ th1 <Wh1 / as in the first embodiment. If 2 is satisfied, the torque increases even in the seventh modification 200g of the rotating electric machine of the present embodiment.
実施の形態5. 
 図16は、この発明を実施するための実施の形態5における電気機械の第8変形例の部分断面図である。図16において、回転電機の第8変形例200hは、実施の形態1に係る回転電機200と以下に述べる点で異なる。
Embodiment 5.
FIG. 16 is a partial cross-sectional view of an eighth modified example of the electric machine according to the fifth embodiment for carrying out the present invention. In FIG. 16, an eighth modification 200h of the rotary electric machine differs from rotary electric machine 200 according to Embodiment 1 in the following points.
 図16において、本実施の形態における回転電機の第8変形例200hでは、永久磁石50bは、径方向に互いに対向する2つの円筒面53-1、53-2を有している。円筒面53-1、53-2は、永久磁石50bから固定子3に向かう方向と周方向とを含む断面、すなわち軸方向に垂直な断面において、それぞれ永久磁石50bから固定子3に向かう方向に凸となっている。永久磁石50bにおいて磁極51、52の極が形成される面は、外径側すなわち固定子3側の一方の円筒面53-1である。図16における永久磁石50bの径方向の幅は、周方向に一定となっている。このため、外径側の円筒面53-1の曲率半径は、内径側の円筒面53-2の曲率半径よりも永久磁石50bの径方向の幅の分だけ大きくなっている。 In FIG. 16, in an eighth modification 200h of the rotary electric machine according to the present embodiment, the permanent magnet 50b has two cylindrical surfaces 53-1 and 53-2 that are opposed to each other in the radial direction. The cylindrical surfaces 53-1 and 53-2 are arranged in a direction including the direction from the permanent magnet 50b toward the stator 3 and a circumferential direction, that is, in a cross section perpendicular to the axial direction, in the direction from the permanent magnet 50b toward the stator 3, respectively. It is convex. The surface of the permanent magnet 50b on which the poles of the magnetic poles 51 and 52 are formed is one cylindrical surface 53-1 on the outer diameter side, that is, the stator 3 side. The radial width of the permanent magnet 50b in FIG. 16 is constant in the circumferential direction. Therefore, the radius of curvature of the outer diameter side cylindrical surface 53-1 is larger than the radius of curvature of the inner diameter side cylindrical surface 53-2 by the radial width of the permanent magnet 50b.
 円筒面53-1、53-2が、軸方向に垂直な断面においてそれぞれ永久磁石50bから固定子3に向かう方向に凸となっているため、空隙1の磁束密度波形の高調波成分を低減でき、空隙1の磁束密度波形を正弦波に近づけることができる。よって、回転電機の第8変形例200hは、回転電機200よりもトルクリップルを低減できる。 Since the cylindrical surfaces 53-1 and 53-2 are convex in the direction perpendicular to the axial direction from the permanent magnet 50b toward the stator 3, the harmonic components of the magnetic flux density waveform of the air gap 1 can be reduced. , The magnetic flux density waveform of the air gap 1 can be approximated to a sine wave. Therefore, the eighth modification 200h of the rotating electric machine can reduce the torque ripple more than the rotating electric machine 200.
 回転電機の第8変形例200hにおける永久磁石50bが、径方向に互いに対向する2つの円筒面53-1、53-2を有しているため、固定子3側の円筒面53-1と空隙1との間の径方向の距離が短縮される。そして、回転子鉄心15hの電機子側界磁鉄心部22gにおける径方向の幅を低減させることができる。よって、磁束20の経路Fの磁気抵抗が、回転電機200の磁束20の経路Bの磁気抵抗よりも増加する。このため、経路Fを流れる磁束20の短絡を図3の回転電機200の場合よりも抑えることができる。したがって、本実施の形態における回転電機の第8変形例200hは、回転電機200の場合よりも大きいトルクを得ることができる。  Since the permanent magnet 50b in the eighth modified example 200h of the rotating electric machine has two cylindrical surfaces 53-1 and 53-2 that face each other in the radial direction, there is a gap with the cylindrical surface 53-1 on the stator 3 side. The radial distance to 1 is shortened. Further, the radial width of the armature side field core portion 22g of the rotor core 15h can be reduced. Therefore, the magnetic resistance of the path F of the magnetic flux 20 is higher than the magnetic resistance of the path B of the magnetic flux 20 of the rotary electric machine 200. Therefore, the short circuit of the magnetic flux 20 flowing through the path F can be suppressed more than in the case of the rotary electric machine 200 in FIG. Therefore, the eighth modification 200h of the rotary electric machine according to the present embodiment can obtain a larger torque than that of the rotary electric machine 200.
 なお、この発明の回転電機の回転子において、図3、10から16における穴部11、11bから11eと、図8、10における切り欠き部23、23aと、図3、15、16における永久磁石50、50a-1から50a―4、50bとを任意に組合せてもよい。これらの構成によっても、実施の形態1の回転電機200の場合と同様に、回転電機が発生するトルクリップルが、固定子側にある電機子側界磁鉄心部の外周部が連結されている場合よりも低減される。 In the rotor of the rotating electric machine of the present invention, the hole portions 11, 11b to 11e in FIGS. 3, 10 to 16, the cutout portions 23 and 23a in FIGS. 8 and 10 and the permanent magnets in FIGS. 50, 50a-1 to 50a-4, 50b may be arbitrarily combined. With these configurations as well, similar to the case of the rotary electric machine 200 according to the first embodiment, the torque ripple generated by the rotary electric machine is connected to the outer peripheral portion of the armature-side field core portion on the stator side. Is less than.
 また、磁極51、52の1極分に相当する着磁方向に垂直な方向である周方向の幅である磁極幅をWmagとした場合、すなわち図16において、磁極51、52の一端が接する隣接面24から磁極51、52の他端までの距離である磁極幅をWmagとした場合、実施の形態1と同様にg<Wh1<Wmag、またはtb≦th1<Wh1/2を満たせば、本実施の形態の回転電機の第8変形例200hにおいてもトルクが増大する。 When the magnetic pole width, which is the width in the circumferential direction perpendicular to the magnetizing direction corresponding to one pole of the magnetic poles 51 and 52, is Wmag, that is, in FIG. 16, one end of the magnetic poles 51 and 52 are adjacent to each other. When the magnetic pole width, which is the distance from the surface 24 to the other ends of the magnetic poles 51 and 52, is Wmag, if g <Wh1 <Wmag or tb ≦ th1 <Wh1 / 2 is satisfied as in the first embodiment, the present embodiment is performed. The torque also increases in the eighth modification 200h of the rotating electric machine of the form.
実施の形態6. 
 図17は、この発明を実施するための実施の形態6における電気機械の第9変形例の回転子の斜視図である。図18は、本実施の形態における電気機械の第9変形例の図17のG-G断面図である。本実施の形態における電気機械である回転電機の第9変形例200iの固定子は、実施の形態1に係る回転電機200の固定子3と同じであるため、図17および図18には、回転電機の第9変形例200iの固定子は、便宜上、図示されていない。図17および図18において、回転電機の第9変形例200iは、実施の形態1に係る回転電機200と以下に述べる点で異なる。
Sixth Embodiment
FIG. 17 is a perspective view of a rotor of a ninth modification of the electric machine according to the sixth embodiment for carrying out the present invention. FIG. 18 is a GG sectional view of FIG. 17 of the ninth modification of the electric machine according to the present embodiment. Since the stator of the ninth modification 200i of the rotating electric machine that is the electric machine in the present embodiment is the same as the stator 3 of the rotating electric machine 200 according to the first embodiment, the rotation shown in FIGS. The stator of the ninth modification 200i of the electric machine is not shown for convenience. 17 and 18, a ninth modification 200i of the rotary electric machine differs from rotary electric machine 200 according to Embodiment 1 in the following points.
 図17において、回転電機の第9変形例200iにおける回転子鉄心15iは、永久磁石50から固定子3に向かう方向と周方向とに垂直な方向、すなわち軸方向の一部の範囲に配置された第1領域40と、第1領域40の範囲と異なる軸方向の範囲に配置された第2領域41とを有している。第1領域40には、実施の形態3の図14に示す穴部11eが配置されている。第2領域41には、電機子側界磁鉄心部22h-2における隣接面の位置において、磁石挿入穴19から仮想面90まで回転子鉄心15iが存在している。すなわち、第2領域41では、電機子側界磁鉄心部22h-2に穴部は形成されておらず、磁石挿入穴19から仮想面90まで磁性体である電磁鋼板で連結されている。図17の回転子鉄心15iでは、軸方向の両端部に第2領域41が1個ずつ配置され、2個の第2領域41の軸方向の間にある回転子2iの中央部に第1領域40が第2領域41と連結されて回転子2iを構成している。図17の回転子鉄心15iにおいて、2個の第2領域41の軸方向長さの総和と、第1領域40の軸方向長さとは等しくなっている。 In FIG. 17, the rotor core 15i in the ninth modification 200i of the rotating electric machine is arranged in a direction perpendicular to the direction from the permanent magnet 50 to the stator 3 and the circumferential direction, that is, in a partial range in the axial direction. It has the 1st field 40 and the 2nd field 41 arranged in the range of the direction of an axis different from the range of the 1st field 40. The hole 11e shown in FIG. 14 of the third embodiment is arranged in the first region 40. In the second region 41, the rotor iron core 15i exists from the magnet insertion hole 19 to the virtual surface 90 at the position of the adjacent surface of the armature side field iron core portion 22h-2. That is, in the second region 41, no hole is formed in the armature side field iron core portion 22h-2, and the magnet insertion hole 19 to the virtual surface 90 are connected by the magnetic steel plate which is a magnetic body. In the rotor core 15i of FIG. 17, one second region 41 is arranged at each of both ends in the axial direction, and the first region is provided at the center of the rotor 2i between the two second regions 41 in the axial direction. 40 is connected to the second region 41 to form the rotor 2i. In the rotor core 15i of FIG. 17, the total axial length of the two second regions 41 is equal to the axial length of the first region 40.
 第1領域40の軸方向に垂直な断面は、図14に示す断面となる。第2領域41の軸方向に垂直な断面は、図18に示す断面となる。図18において、第2領域41の電機子側界磁鉄心部22h-2には、図14の穴部11eに相当する隣接面24の位置に磁性体である電磁鋼板が存在している。すなわち、穴部11eに相当する部分の電機子側界磁鉄心部22h-2は、電磁鋼板で埋められている。このため、電機子側界磁鉄心部22h-2において、磁極51と磁極52との間の磁束20の経路Hを通って磁束20が短絡する。よって、第1領域40の穴部11eによって、第1領域40における磁極51と磁極52との間を短絡する磁気抵抗は、第2領域41の場合よりも増大する。 The cross section perpendicular to the axial direction of the first region 40 is the cross section shown in FIG. The cross section perpendicular to the axial direction of the second region 41 is the cross section shown in FIG. 18. 18, in the armature side field iron core portion 22h-2 of the second region 41, an electromagnetic steel plate which is a magnetic body exists at the position of the adjacent surface 24 corresponding to the hole 11e of FIG. That is, the armature side field core portion 22h-2 corresponding to the hole 11e is filled with the electromagnetic steel plate. Therefore, in the armature side field iron core portion 22h-2, the magnetic flux 20 is short-circuited through the path H of the magnetic flux 20 between the magnetic pole 51 and the magnetic pole 52. Therefore, the magnetic resistance that short-circuits between the magnetic pole 51 and the magnetic pole 52 in the first region 40 due to the hole 11e in the first region 40 is higher than that in the second region 41.
 回転電機の第9変形例200iでは、穴部11eが形成された電機子側界磁鉄心部22h-1を有する第1領域40と、穴部11eが形成されていない電機子側界磁鉄心部22h-2を有する第2領域41とを軸方向に連結する構造によって、回転子2i全体として、第1領域40における穴部11eによる遠心力に対する強度の低下を第2領域41で抑えつつ、第2領域41における磁極51と磁極52との間の磁束20の短絡を、第1領域40で軸方向にすべて第2領域41を用いる場合よりも抑えることができ、回転子2i全体としてトルクの低下を抑えることができる。また、軸方向の両端部に回転子2iの遠心力に対する強度が第1領域40の場合よりも大きい第2領域41を配置することによって、第1領域40の軸方向両端を固定でき、回転子2iの遠心力に対する強度を第1領域40のみの場合よりも向上することができる。 In the ninth modification 200i of the rotating electric machine, the first region 40 having the armature side field iron core portion 22h-1 in which the hole 11e is formed and the armature side field iron core portion in which the hole 11e is not formed. Due to the structure in which the second region 41 having 22h-2 is axially connected, the rotor 2i as a whole suppresses the decrease in strength against centrifugal force due to the hole 11e in the first region 40 in the second region 41. Short-circuiting of the magnetic flux 20 between the magnetic pole 51 and the magnetic pole 52 in the second region 41 can be suppressed more than in the case where the second region 41 is used in the first region 40 in the axial direction. Can be suppressed. Further, by disposing the second regions 41 in which the strength of the rotor 2i against the centrifugal force is larger than that in the first region 40 at both ends in the axial direction, both axial ends of the first region 40 can be fixed, and the rotor can be fixed. The strength against the centrifugal force of 2i can be improved as compared with the case of only the first region 40.
 なお、図18では、穴部11eが形成された第1領域40を軸方向の一箇所のみとしているが、これに限らず、第1領域40と第2領域41とを軸方向に交互に連結して回転子鉄心15iを構成しても良い。その場合、第1領域40および第2領域41は、それぞれ数枚の電磁鋼板が積層されたもので構成されてもよい。また、2個の第2領域41の軸方向長さの総和と、第1領域40の軸方向長さとは、遠心力に対する必要強度に応じて異なっていてもよい。 Note that, in FIG. 18, the first region 40 in which the hole 11e is formed is provided at only one position in the axial direction, but the present invention is not limited to this, and the first region 40 and the second region 41 are alternately connected in the axial direction. Then, the rotor core 15i may be configured. In that case, each of the first region 40 and the second region 41 may be formed by laminating several electromagnetic steel plates. Further, the sum of the axial lengths of the two second regions 41 and the axial length of the first region 40 may be different depending on the required strength against the centrifugal force.
 図19は、本実施の形態における電気機械の第10変形例の回転子の斜視図である。図19において、回転電機の第10変形例200jは、本実施の形態に係る回転電機の第9変形例200iと以下に述べる点で異なる。
 第1領域40aの軸方向に垂直な断面は、実施の形態1の図5に示す断面となる。すなわち、第1領域40aには、実施の形態1の図5に示す凹部312が配置されている。凹部312は、回転子鉄心15jの電機子側界磁鉄心部22i-1に形成されている。
 第2領域41aの軸方向に垂直な断面は、実施の形態1の図3に示す断面となる。すなわち、第2領域41aには、実施の形態1の図3に示す穴部11が配置されている。穴部11は、回転子鉄心15jの電機子側界磁鉄心部22i-2に形成されている。
FIG. 19 is a perspective view of a rotor of a tenth modified example of the electric machine according to the present embodiment. In FIG. 19, a tenth modification 200j of the rotary electric machine is different from the ninth modification 200i of the rotary electric machine according to the present embodiment in the following points.
A cross section of the first region 40a perpendicular to the axial direction is the cross section shown in FIG. 5 of the first embodiment. That is, the concave portion 312 shown in FIG. 5 of the first embodiment is arranged in the first region 40a. The concave portion 312 is formed in the armature side field core portion 22i-1 of the rotor core 15j.
The cross section perpendicular to the axial direction of the second region 41a is the cross section shown in FIG. 3 of the first embodiment. That is, the hole 11 shown in FIG. 3 of the first embodiment is arranged in the second region 41a. The hole 11 is formed in the armature side field core 22i-2 of the rotor core 15j.
 回転電機の第10変形例200jでは、凹部312が配置された第1領域40aと、穴部11が配置された第2領域41aとを軸方向に連結する構造によって、回転子2j全体として、第1領域40aにおける凹部312による回転子2jの遠心力に対する強度の低下を第2領域41aで抑えつつ、第1領域40aにおけるトルクリップルの増加を第2領域41aで抑えることができる。また、軸方向の両端部に回転子2jの遠心力に対する強度が第1領域40aの場合よりも大きい第2領域41aを配置することによって、第1領域40aの軸方向両端における遠心力による径方向の変位を抑えることができ、回転子2jの遠心力に対する強度を第1領域40aのみの場合よりも向上することができる。 In the tenth modified example 200j of the rotating electric machine, the first region 40a in which the concave portion 312 is arranged and the second region 41a in which the hole 11 is arranged are axially connected to each other, so that the rotor 2j as a whole is It is possible to suppress an increase in torque ripple in the first region 40a in the second region 41a while suppressing a decrease in the strength of the rotor 2j with respect to the centrifugal force due to the concave portion 312 in the first region 40a in the second region 41a. Further, by disposing the second regions 41a at both ends in the axial direction in which the strength of the rotor 2j against the centrifugal force is larger than that in the first region 40a, the radial direction due to the centrifugal force at both axial ends of the first region 40a. Can be suppressed, and the strength of the rotor 2j against the centrifugal force can be improved as compared with the case of only the first region 40a.
 なお、図19では、穴部11が形成された第1領域40aを軸方向の一箇所のみとしているが、これに限らず、第1領域40と第2領域41aとを軸方向に交互に連結して回転子鉄心15jを構成しても良い。その場合、第1領域40aおよび第2領域41aは、それぞれ数枚の電磁鋼板が積層されたもので構成されてもよい。また、2個の第2領域41aの軸方向長さの総和と、第1領域40aの軸方向長さとは、遠心力に対する必要強度に応じて異なっていてもよい。 Note that, in FIG. 19, the first region 40a in which the hole portion 11 is formed is only one position in the axial direction, but the present invention is not limited to this, and the first region 40 and the second region 41a are alternately connected in the axial direction. Then, the rotor core 15j may be configured. In that case, each of the first region 40a and the second region 41a may be formed by laminating several electromagnetic steel plates. In addition, the sum of the axial lengths of the two second regions 41a and the axial length of the first region 40a may be different depending on the required strength against the centrifugal force.
 なお、第1領域40、40a、および第2領域41、41aの軸方向に垂直な断面は、図3、5、14、18に示す断面に限らず、図3、10から16における穴部11、11bから11eと、図8、10における切り欠き部23、23aと、図3、15、16における永久磁石50、50a-1から50a―4、50bとを任意に組合せた断面であってもよい。これらの断面の組合せにおいて、例えば、図3、18などの遠心力に対する強度が大きい断面を軸方向の端部に配置すると、回転子の遠心力に対する強度を向上させることができる。 The cross sections perpendicular to the axial direction of the first regions 40, 40a and the second regions 41, 41a are not limited to the cross sections shown in FIGS. 3, 5, 14, and 18, but the hole portion 11 in FIGS. , 11b to 11e, the cutout portions 23 and 23a in FIGS. 8 and 10 and the permanent magnets 50, 50a-1 to 50a-4 and 50b in FIGS. Good. In the combination of these cross sections, for example, if a cross section having large strength against centrifugal force as shown in FIGS. 3 and 18 is arranged at the end portion in the axial direction, the strength of the rotor against centrifugal force can be improved.
実施の形態7. 
 図20は、この発明を実施するための実施の形態7における電気機械の第11変形例の部分断面図である。図20において、本実施の形態にかかる電気機械の第11変形例である直動機200kは、実施の形態1に係る回転電機200と以下に述べる点で異なる。なお、断面図とは、直動機200kの直線移動方向に沿う方向のX方向と、界磁から電機子に向かう方向に沿う方向であるY方向とを含む平面における断面図である。なお、図20において紙面に垂直な方向をZ方向とする。
Embodiment 7.
FIG. 20 is a partial cross-sectional view of an eleventh modified example of the electric machine according to the seventh embodiment for carrying out the present invention. 20, a direct acting machine 200k that is an eleventh modified example of the electric machine according to the present embodiment is different from the rotary electric machine 200 according to the first embodiment in the following points. The cross-sectional view is a cross-sectional view on a plane including the X direction that is along the linear movement direction of the linear motor 200k and the Y direction that is along the direction from the field to the armature. In FIG. 20, the direction perpendicular to the paper surface is the Z direction.
 図20において、本実施の形態における直動機200kは、図2の回転電機200をX方向に直線状に展開した構造となっている。具体的には、直動機200kは、電機子である可動子103と、界磁である固定子102とを備えている。可動子103は、図示しないリニアガイドに直動可能に支持されている。固定子102は、固定子102における可動子103側と反対側の面である底面は、土台109の上面に固定されている。これらの構成によって、可動子103は、リニアガイドに沿って直線移動する。すなわち、界磁である固定子102は、空隙101を介して可動子103に対向し、可動子103に対して相対的にX方向に移動可能、すなわち可動子103に対して相対的にX方向に直線移動可能に配置されている。 In FIG. 20, a linear motor 200k according to the present embodiment has a structure in which the rotary electric machine 200 of FIG. 2 is linearly expanded in the X direction. Specifically, the linear motor 200k includes a mover 103 that is an armature and a stator 102 that is a field. The mover 103 is supported by a linear guide (not shown) so as to be linearly movable. The bottom surface of the stator 102, which is the surface of the stator 102 opposite to the movable element 103 side, is fixed to the upper surface of the base 109. With these configurations, the mover 103 moves linearly along the linear guide. That is, the stator 102, which is a field, faces the mover 103 via the air gap 101 and is movable in the X direction relative to the mover 103, that is, in the X direction relative to the mover 103. It is arranged so that it can move linearly.
 図20において、可動子103は、電機子鉄心である可動子鉄心116と、6個の巻線106とを備えている。可動子鉄心116は、直線状のコアバック部117と、コアバック部117から固定子102側に突出し、移動方向である直線移動方向すなわちX方向に等間隔に並ぶ6個のティース部118とを有する。可動子鉄心116は、渦電流を低減する目的で、電磁鋼板から同一形状で打ち抜かれたシート状の複数の可動子鉄心シート116-1がX方向とY方向とに垂直なZ方向に所定の長さで積層されて構成されている。可動子鉄心116のティース部118は、空隙101を介して固定子102と対向して配置されている。X方向に隣り合うティース部118同士の間には、スロット121が6個形成されている。6個の巻線106は、ティース部118にインシュレータ108を介してそれぞれ巻回されて、6個のスロット121にそれぞれ収められている。巻線106は、1相当たり2個の巻線106が3相分で計6個の巻線106で構成されている。1相当たり2個の巻線106が直列に接続されて相巻線群となっており、3相分の相巻線群がY結線されている。図示しない電力変換器であるインバータ100から巻線106を有する各相巻線群に3相の交流電流が相間の位相がそれぞれ120°ずれて通電されることによって、X方向に直線移動する磁界が可動子103から空隙101に発生し、固定子102にX方向の推力が発生する。なお、3相の相巻線群の結線方法は、Y結線に限らずΔ結線であってもよい。 In FIG. 20, the mover 103 includes a mover core 116, which is an armature core, and six windings 106. The mover iron core 116 includes a linear core back portion 117 and six teeth portions 118 protruding from the core back portion 117 toward the stator 102 and arranged at equal intervals in the linear movement direction, that is, the X direction. Have. For the purpose of reducing the eddy current, the mover iron core 116 has a plurality of sheet-like mover iron core sheets 116-1 punched in the same shape from an electromagnetic steel sheet in a predetermined Z direction perpendicular to the X and Y directions. It is constructed by stacking the lengths. The teeth portion 118 of the mover iron core 116 is arranged so as to face the stator 102 via the gap 101. Six slots 121 are formed between the teeth portions 118 adjacent to each other in the X direction. The six windings 106 are wound around the teeth 118 via the insulators 108, and are housed in the six slots 121, respectively. The winding 106 is composed of two windings 106 for each phase and a total of six windings 106 for three phases. Two windings 106 for each phase are connected in series to form a phase winding group, and the phase winding group for three phases is Y-connected. When a three-phase AC current is applied to each phase winding group having the winding 106 from the inverter 100, which is a power converter (not shown), with a phase difference of 120 ° between the phases, a magnetic field that linearly moves in the X direction is generated. The mover 103 generates the air gap 101, and the stator 102 generates thrust in the X direction. The method of connecting the three-phase phase winding group is not limited to Y connection and may be Δ connection.
 固定子102は、複数個の永久磁石150と、複数個の永久磁石150が埋め込まれた界磁鉄心である固定子鉄心115とを有している。固定子鉄心115は、電磁鋼板から同一形状で打ち抜かれたシート状の複数の固定子鉄心シート115-1がZ方向に所定の長さで積層されて構成されている。固定子鉄心115には、永久磁石150が挿入される磁石挿入穴119が、永久磁石150と同じ数、X方向に等間隔に形成されている。複数の磁石挿入穴119のそれぞれには、永久磁石150が1個ずつ挿入されている。図20では、便宜上、永久磁石150と磁石挿入穴119とを、それぞれ2個ずつ表示しているが、永久磁石150の個数は2個以上並んでおり、固定子102のX方向の長さは、可動子103が必要とする可動範囲の長さであるストロークの長さとなっている。 The stator 102 has a plurality of permanent magnets 150 and a stator core 115 which is a field core in which the plurality of permanent magnets 150 are embedded. The stator core 115 is configured by stacking a plurality of sheet-shaped stator core sheets 115-1 punched from an electromagnetic steel plate in the same shape in a predetermined length in the Z direction. In the stator core 115, magnet insertion holes 119 into which the permanent magnets 150 are inserted are formed in the same number as the permanent magnets 150 at equal intervals in the X direction. One permanent magnet 150 is inserted into each of the plurality of magnet insertion holes 119. In FIG. 20, for convenience, two permanent magnets 150 and two magnet insertion holes 119 are shown, but two or more permanent magnets 150 are arranged side by side, and the length of the stator 102 in the X direction is equal. The stroke length is the length of the movable range required by the mover 103.
 磁石挿入穴119の直線移動方向の両端には、直線移動方向に隣り合う磁石挿入穴119に挿入されている永久磁石150同士の磁束の短絡を抑制し、Z方向に貫通する穴であるフラックスバリア107が設けられている。フラックスバリア107には、例えば樹脂のような非磁性体が挿入されていてもよい。 At both ends of the magnet insertion hole 119 in the linear movement direction, short-circuiting of magnetic flux between the permanent magnets 150 inserted in the magnet insertion holes 119 adjacent to each other in the linear movement direction is suppressed, and flux barriers are holes that penetrate in the Z direction. 107 is provided. A non-magnetic material such as resin may be inserted in the flux barrier 107.
 永久磁石150には、電機子である可動子103側に異なる極を有する磁極151、152同士がX方向に隣接して形成されている。すなわち、図1において、磁極151は可動子103側の面にN極の極を有し、磁極152は可動子103側の面にS極の極を有するようにそれぞれ着磁されている。磁極151のN極の極は、永久磁石150の中央部からX方向一方側における可動子103側の面に形成されている。磁極152のS極の極は、永久磁石150の中央部からX方向他方側における可動子103側の面に形成されている。磁極151、152同士がX方向に隣接する面は磁極境界110となっている。ここで、磁極境界110の定義は、実施の形態1における周方向をX方向と置き換える以外は同様である。また、永久磁石150は、実施の形態1の図3の永久磁石1と同じ平板形状である。
 図20において、直動機200kは、磁極151、152の数が2個以上、およびスロット121の数が6個の直動機となっている。また、直動機200kの可動子103のX方向範囲と対向する磁極151、152の数は4個となっている。
In the permanent magnet 150, magnetic poles 151 and 152 having different poles are formed adjacent to each other in the X direction on the side of the mover 103, which is an armature. That is, in FIG. 1, the magnetic pole 151 is magnetized so as to have an N-pole on the surface on the mover 103 side and the magnetic pole 152 to have an S-pole on the surface on the mover 103 side. The N pole of the magnetic pole 151 is formed on the surface on the side of the mover 103 on the one side in the X direction from the center of the permanent magnet 150. The S pole of the magnetic pole 152 is formed on the surface on the side of the mover 103 on the other side in the X direction from the center of the permanent magnet 150. A surface where the magnetic poles 151 and 152 are adjacent to each other in the X direction is a magnetic pole boundary 110. Here, the definition of the magnetic pole boundary 110 is the same except that the circumferential direction in the first embodiment is replaced with the X direction. Further, the permanent magnet 150 has the same flat plate shape as the permanent magnet 1 of FIG. 3 of the first embodiment.
In FIG. 20, a direct drive machine 200k is a direct drive machine having two or more magnetic poles 151 and 152 and six slots 121. Further, the number of magnetic poles 151 and 152 facing the X direction range of the mover 103 of the linear motor 200k is four.
 図20において、永久磁石150よりも可動子103側に位置する固定子鉄心115を、電機子側界磁鉄心部122とする。空隙101の最小長さgと等しい距離をおいて、可動子103から固定子鉄心115に向かう方向に離れた面を、仮想面190とする。図20において、仮想面190は、磁極151、152同士が隣接する面である磁極境界110を含む面を、隣接面124とする。電機子側界磁鉄心部122において、仮想面190から永久磁石150に向かって窪む穴部111が、隣接面124の位置に形成されている。ここで、空隙101の最小長さgは、可動子鉄心116のティース部118と固定子鉄心115とのY方向における最小の距離を表している。電機子側界磁鉄心部122の境界は、固定子鉄心115において、永久磁石150のX方向の端部から可動子103に向かう方向の最小幅tbとなる部分とする。図20において、仮想面190は、空隙101の最小長さgをおいて可動子103から固定子鉄心115に向かう方向に離れた平面となっている。図20では、仮想面190は、固定子鉄心115の可動子103側の面に一致している。 In FIG. 20, the stator core 115 located closer to the mover 103 than the permanent magnet 150 is the armature side field core 122. A surface separated from the mover 103 in the direction toward the stator core 115 with a distance equal to the minimum length g of the gap 101 is defined as a virtual surface 190. In FIG. 20, a virtual surface 190 is a surface including the magnetic pole boundary 110, which is a surface where the magnetic poles 151 and 152 are adjacent to each other, and is referred to as an adjacent surface 124. In the armature side field iron core portion 122, a hole portion 111 that is recessed from the virtual surface 190 toward the permanent magnet 150 is formed at the position of the adjacent surface 124. Here, the minimum length g of the gap 101 represents the minimum distance in the Y direction between the teeth portion 118 of the mover core 116 and the stator core 115. The boundary of the armature side field iron core portion 122 is a portion of the stator iron core 115 that is the minimum width tb in the direction from the end of the permanent magnet 150 in the X direction toward the mover 103. In FIG. 20, an imaginary plane 190 is a plane separated from the mover 103 toward the stator core 115 with a minimum length g of the gap 101. In FIG. 20, the virtual surface 190 coincides with the surface of the stator core 115 on the mover 103 side.
 穴部111は、電機子側界磁鉄心部122において、隣接面124をX方向に跨って形成されている。Z方向に垂直な断面における穴部111の断面形状は、仮想面190から永久磁石150側に向かうY方向にX方向の幅が狭くなって凸となる楔形形状となっている。 The hole portion 111 is formed in the armature side field iron core portion 122, straddling the adjacent surface 124 in the X direction. The cross-sectional shape of the hole 111 in the cross section perpendicular to the Z direction is a wedge shape in which the width in the X direction is narrowed in the Y direction from the virtual surface 190 toward the permanent magnet 150 side to be convex.
 これらの構成によって、実施の形態1の回転電機200の場合と同様に、図20の本実施の形態の直動機200kの推力リップルは、可動子側にある電機子側界磁鉄心部の外周部が連結されている場合よりも低減される。 With these configurations, as in the case of the rotary electric machine 200 according to the first embodiment, the thrust ripple of the linear motor 200k according to the present embodiment in FIG. 20 is generated by the outer peripheral portion of the armature side field core portion on the mover side. Is less than when connected.
 図20において、穴部111に加えて、固定子鉄心115の外周部の隣り合う永久磁石150同士の間においても切り欠き部123が設けられている。すなわち、可動子103から固定子鉄心115に向かう方向に仮想面190から窪む切り欠き部123が、固定子鉄心115において、X方向に隣り合う永久磁石150同士の間のX方向の中央に位置する面である中央面125の位置に形成されている。 20, in addition to the hole portion 111, a cutout portion 123 is also provided between the adjacent permanent magnets 150 on the outer peripheral portion of the stator core 115. That is, the notch 123 recessed from the virtual surface 190 in the direction from the mover 103 to the stator core 115 is located at the center of the stator core 115 in the X direction between the permanent magnets 150 adjacent to each other in the X direction. It is formed at the position of the central surface 125 which is the surface to be formed.
 また、図20において、穴部111が占めるX方向の範囲において、永久磁石150から可動子103に向かう方向であるY方向における、一方の磁極151に対向する電機子側界磁鉄心部122における永久磁石150からのY方向の距離が最大となる点と、一方の磁極151に隣接する他方の磁極152に対向する電機子側界磁鉄心部122における永久磁石150からのY方向の距離が最大となる点とを結ぶ直線の長さである開口幅をWh8とし、永久磁石150の磁極151または磁極152の1極分に相当する着磁方向に垂直な方向である移動方向、すなわちX方向の幅である磁極幅をWmagとする。このとき、開口幅Wh8は、磁極幅Wmagよりも小さく、空隙101の最小長さgより大きく設定されることが望ましい。すなわち、g<Wh8<Wmagとなることが望ましい。 Further, in FIG. 20, in the range of the X direction occupied by the hole 111, in the Y direction, which is the direction from the permanent magnet 150 to the mover 103, the permanent magnet in the armature side field iron core 122 facing the one magnetic pole 151 is permanent. The point in which the Y-direction distance from the magnet 150 is maximum, and the distance in the Y-direction from the permanent magnet 150 in the armature side field core portion 122 facing the other magnetic pole 152 adjacent to the one magnetic pole 151 is maximum. The opening width, which is the length of the straight line connecting to the point, is Wh8, and the width in the moving direction, that is, the width in the X direction, which is the direction perpendicular to the magnetization direction corresponding to one pole of the magnetic pole 151 or the magnetic pole 152 of the permanent magnet 150. The width of the magnetic pole is Wmag. At this time, the opening width Wh8 is preferably set to be smaller than the magnetic pole width Wmag and larger than the minimum length g of the gap 101. That is, it is desirable that g <Wh8 <Wmag.
 さらに、図20において、電機子側界磁鉄心部122において隣接面124の位置における永久磁石150から可動子103に向かう方向であるY方向の幅をth6とし、電機子側界磁鉄心部122において永久磁石150のX方向の端部から可動子103に向かう方向の最小幅をtbとする。また、電機子側界磁鉄心部122において幅th6となる部分を含み、穴部111のX方向範囲と同じ範囲における固定子鉄心115の部分を第1ブリッジ部、すなわち薄肉部113とし、th6を薄肉部113の幅とする。また、電機子側界磁鉄心部122の境界における最小幅tbとなる部分からX方向に隣り合う電機子側界磁鉄心部122の境界の最小幅tbまでのフラックスバリア107よりも可動子103側に位置する固定子鉄心115の部分を第2ブリッジ部126とする。 Further, in FIG. 20, in the armature side field iron core portion 122, the width in the Y direction which is the direction from the permanent magnet 150 to the mover 103 at the position of the adjacent surface 124 is th6, and the armature side field iron core portion 122 The minimum width in the direction from the end of the permanent magnet 150 in the X direction toward the mover 103 is tb. Further, the portion of the stator core 115 in the same range as the X direction range of the hole 111 including the portion having the width th6 in the armature side field iron core portion 122 is the first bridge portion, that is, the thin portion 113, and th6 is The width of the thin portion 113 is set. Further, the side closer to the mover 103 than the flux barrier 107 from the portion having the minimum width tb at the boundary of the armature side field iron core 122 to the minimum width tb at the boundary of the armature side field iron core 122 adjacent in the X direction. The portion of the stator core 115 located at is the second bridge portion 126.
 薄肉部113において磁気飽和を生じさせるために、薄肉部113の幅th6を可能な限り小さく設定するのが望ましい。すなわち、薄肉部113の幅th6は、最小幅tbと開口幅Wh8とに対して、tb≦th6<Wh8/2とするのが望ましい。なぜなら、薄肉部113の幅th6の下限値を、電磁鋼板を打ち抜き加工できる寸法の最小幅tbとする必要があるためである。また、th6<Wh8/2の場合には、磁極151と磁極152とを流れる磁束120のうち、薄肉部113の幅th6を通る磁束の量が、開口幅Wh8から空隙101に流れる磁束の量よりも小さくなるためである。この寸法関係により、永久磁石150が発生する磁束120、または可動子103が発生する磁束によって、薄肉部113に磁気飽和が生じやすくなる。薄肉部113に磁気飽和が生じている場合には、薄肉部113の比透磁率が空気と近い比透磁率となる。このため、直動機200kが発生する推力を更に増大させることができる。 In order to generate magnetic saturation in the thin portion 113, it is desirable to set the width th6 of the thin portion 113 as small as possible. That is, the width th6 of the thin portion 113 is preferably tb ≦ th6 <Wh8 / 2 with respect to the minimum width tb and the opening width Wh8. This is because it is necessary to set the lower limit value of the width th6 of the thin portion 113 to the minimum width tb of a dimension that allows the electromagnetic steel sheet to be punched. When th6 <Wh8 / 2, the amount of magnetic flux passing through the width th6 of the thin portion 113 among the magnetic flux 120 flowing through the magnetic poles 151 and 152 is greater than the amount of magnetic flux flowing from the opening width Wh8 into the air gap 101. Is also smaller. Due to this dimensional relationship, magnetic saturation easily occurs in the thin portion 113 due to the magnetic flux 120 generated by the permanent magnet 150 or the magnetic flux generated by the mover 103. When the magnetic saturation occurs in the thin portion 113, the relative permeability of the thin portion 113 is close to that of air. Therefore, the thrust generated by the linear motor 200k can be further increased.
 なお、g<Wh8<Wmagとtb≦th6<Wh8/2とは個別に設定可能な寸法であり、推力増大の効果もそれぞれで奏する。さらに、g<Wh8<Wmagかつtb≦th6<Wh8/2とすれば、いずれかの寸法関係で設定する場合よりも推力が増大する。 Note that g <Wh8 <Wmag and tb ≦ th6 <Wh8 / 2 are dimensions that can be set individually, and the effect of increasing thrust is also achieved. Further, if g <Wh8 <Wmag and tb ≦ th6 <Wh8 / 2, the thrust is increased as compared with the case of setting either of the dimensional relationships.
 図21は、本実施の形態における電気機械の第12変形例の部分断面図である。図21において、本実施の形態にかかる電気機械の第12変形例である直動機200mは、本実施の形態に係る直動機200kと以下に述べる点で異なる。
 図21において、穴部111aは、空隙101から磁石挿入穴119まで貫通している。穴部111aの開口幅をWh9とすると、穴部111は、開口幅Wh9の幅で空隙101から磁石挿入穴119まで貫通している。
FIG. 21 is a partial cross-sectional view of a twelfth modified example of the electric machine according to the present embodiment. In FIG. 21, a linear motor 200m that is a twelfth modified example of the electric machine according to the present embodiment is different from the linear motor 200k according to the present embodiment in the following points.
In FIG. 21, the hole portion 111a penetrates from the void 101 to the magnet insertion hole 119. When the opening width of the hole portion 111a is Wh9, the hole portion 111 penetrates from the gap 101 to the magnet insertion hole 119 with a width of the opening width Wh9.
 図21の穴部111aの開口幅Wh9が、直動機200kの穴部111の開口幅Wh8と同じ場合、開口幅Wh9を磁束120が通る磁気抵抗が、直動機200kの薄肉部113における磁気抵抗よりも増大する。このため、直動機200mにおいて、固定子鉄心115aの電機子側界磁鉄心部122aから可動子103に流れる磁束120が開口幅Wh9に漏れるのを、直動機200kにおいて薄肉部113に漏れる場合よりも抑制できる。よって、実施の形態3の場合と同様に、直動機200mが発生する推力が、直動機200kの場合よりも増大する。 When the opening width Wh9 of the hole portion 111a of FIG. 21 is the same as the opening width Wh8 of the hole portion 111 of the linear motor 200k, the magnetic resistance of the magnetic flux 120 passing through the opening width Wh9 is smaller than that of the thin portion 113 of the linear motor 200k. Also increases. Therefore, in the linear motor 200m, the magnetic flux 120 flowing from the armature-side field core portion 122a of the stator core 115a to the mover 103 leaks to the opening width Wh9 more than to the thin wall portion 113 of the linear motor 200k. Can be suppressed. Therefore, as in the case of the third embodiment, the thrust generated by the linear motor 200m is increased as compared with the case of the linear motor 200k.
 なお、本実施の形態では可動子103に永久磁石150を界磁とする直動機である巻線可動型リニアモータを示したが、可動子103を固定子とし、固定子102、102aを固定子に対して移動する可動子とする磁石可動型リニアモータとしてもよい。また、可動子103ではなく固定子102、102aに巻線106を配置してもよいとしてもよい。 In this embodiment, the movable wire 103 is a linear motor having a permanent magnet 150 as a field, which is a linear motor. However, the movable wire 103 is a stator, and the stators 102 and 102a are stators. It may be a magnet-movable linear motor that is a mover that moves with respect to. Further, the winding 106 may be arranged not on the mover 103 but on the stators 102 and 102a.
 なお、Z方向に垂直な断面における穴部111の断面形状は、図20、21に示す断面に限らず、図3、10から16における穴部11、11bから11eと、図8、10における切り欠き部23、23aと、図3、15、16における永久磁石50、50a-1から50a―4、50bとを任意に組合せた断面であってもよい。これらの構成によっても、図20の本実施の形態の直動機200kの場合と同様に、推力リップルは、可動子側にある電機子側界磁鉄心部の外周部が連結されている場合よりも低減される。 The cross-sectional shape of the hole 111 in the cross section perpendicular to the Z direction is not limited to the cross-section shown in FIGS. 20 and 21, and the hole 11 and 11b to 11e in FIGS. It may be a cross section in which the notch portions 23, 23a and the permanent magnets 50, 50a-1 to 50a-4, 50b in FIGS. 3, 15 and 16 are arbitrarily combined. With these configurations as well, as in the case of the linear motor 200k of the present embodiment of FIG. 20, the thrust ripple is greater than that in the case where the outer peripheral portion of the armature-side field core portion on the mover side is connected. Will be reduced.
 また、実施の形態6の回転電機の第9変形例200i、および第10変形例200jのように、本実施の形態の直動機200k、200mにおける固定子鉄心122、122aのZ方向に垂直な断面を、図3、4、8から13、15、16、18における穴部11から11gのいずれかが電機子側界磁鉄心部122、122aに形成された断面を、Z方向に2つ以上組合せて積層して構成してもよい。  Further, as in the ninth modified example 200i and the tenth modified example 200j of the rotating electrical machine of the sixth embodiment, cross sections of the stator cores 122, 122a in the linear motors 200k, 200m of the present embodiment perpendicular to the Z direction. The combination of two or more cross-sections in which any of the hole portions 11 to 11g in FIGS. 3, 4, 8 to 13, 15, 16, and 18 are formed in the armature side field core portions 122 and 122a in the Z direction. It may be configured by stacking.
1、101、301 空隙、 2、2a、2b、2c、2d、2e、2f、2g、2h、2i、2j、302 回転子(界磁)、 3、303 固定子(電機子)、 4 支軸、 5 ベアリング、 6、106、306 巻線、 7、107、307 フラックスバリア、 8、108、308 インシュレータ、 9 ハウジング、 10、10-1、10-2、10a-1、10a-2、10a-3、110、310 磁極境界、 11、11-1、11-2、11a、11b、11c、11d、11e、11f-1、11f-2、11f-3、11g、111、111a 穴部、貫通穴部(穴部)、 12、312 凹部、 13、13a、13b、13c、13d、113、313 薄肉部(第1ブリッジ部)、 15、15a、15b、15c、15d、15e、15f、15g、15h、15i、15j、315 回転子鉄心(界磁鉄心)、 15-1 回転子鉄心シート、 16、316 固定子鉄心(電機子鉄心)、 16-1 固定子鉄心シート、 17、117 コアバック部、 18、118、318 ティース部、 19、19a、119、319 磁石挿入穴、 20、120、320 磁束、 21、121 スロット、 22、22-1、22-2、22a-1、22a-2、22b、22c、22d、22e、22f、22g、22h-1、22h-2、22i-1、22i-2、122、122a、322 電機子側界磁鉄心部、 23、23a、123 切り欠き部、 24、124、24-1、24-2、24a-1、24a-2、24a-3、324 隣接面、 25、325 中央面、 26、26a、126、326 第2ブリッジ部、 30a-1、30a-2、30b-1、30b-2 突出部(第1の突出部、第2の突出部)、 40、40a 第1領域、 41、41a 第2領域、 50、50-1、50-2、50a-1、50a-2、50a-3、50a-4、50b、150、350 永久磁石、 51、51-1、51-2、51a、52、52-1、52-2、52a、151、152、351、352 磁極(第1の磁極、第2の磁極)、 53-1、53-2 円筒面、 90、190 仮想面、 100 インバータ(電力変換器)、 102、102a 固定子(界磁)、 103 可動子(電機子)、 109 土台、 115、115a 固定子鉄心(界磁鉄心)、 115-1、115a-1 固定子鉄心シート、 116 可動子鉄心(電機子鉄心)、 116-1 可動子鉄心シート、 200、200a、200b、200c、200d、200e、200f、200g、200h、200i、200j 回転電機(電気機械)、 200k、200m 直動機(電気機械)、 300 回転電機(電気機械)の第1比較例、 500 駆動システム。 1, 101, 301 air gap, 2, 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 302 rotor (field), 3,303 stator (armature), 4 support shaft , 5 bearings, 6, 106, 306 windings, 7, 107, 307 flux barrier, 8, 108, 308 insulators, 9 housing, 10, 10-1, 10-2, 10a-1, 10a-2, 10a- 3, 110, 310 magnetic pole boundary, 11, 11-1, 11-2, 11a, 11b, 11c, 11d, 11e, 11f-1, 11f-2, 11f-3, 11g, 111, 111a hole, through hole Parts (holes), 12, 312 recesses, 13, 13a, 13b, 13c, 13d, 113, 313 thin parts (first bridge part), 15, 15a, 5b, 15c, 15d, 15e, 15f, 15g, 15h, 15i, 15j, 315 rotor core (field core), 15-1 rotor core sheet, 16, 316 stator core (armature core), 16- 1 stator core sheet, 17, 117 core back part, 18, 118, 318 teeth part, 19, 19a, 119, 319 magnet insertion hole, 20, 120, 320 magnetic flux, 21, 121 slot, 22, 22-1, 22-2, 22a-1, 22a-2, 22b, 22c, 22d, 22e, 22f, 22g, 22h-1, 22h-2, 22i-1, 22i-2, 122, 122a, 322 Armature side magnetic field Iron core part, 23, 23a, 123 Notch part, 24, 124, 24-1, 24-2, 24a-1, 24a-2, 24 -3, 324 adjacent surface, 25, 325 central surface, 26, 26a, 126, 326 second bridge portion, 30a-1, 30a-2, 30b-1, 30b-2 protrusion (first protrusion, first 2 protrusions), 40, 40a first area, 41, 41a second area, 50, 50-1, 50-2, 50a-1, 50a-2, 50a-3, 50a-4, 50b, 150, 350 permanent magnets, 51, 51-1, 51-2, 51a, 52, 52-1, 52-2, 52a, 151, 152, 351, 352 magnetic poles (first magnetic pole, second magnetic pole), 53- 1, 53-2 cylindrical surface, 90, 190 virtual surface, 100 inverter (electric power converter), 102, 102a stator (field), 103 mover (armature), 109 base, 115, 115a Stator core (field core), 115-1, 115a-1, Stator core sheet, 116 Mover core (armature core), 116-1 Mover core sheet, 200, 200a, 200b, 200c, 200d, 200e , 200f, 200g, 200h, 200i, 200j Rotating electric machine (electric machine), 200k, 200m Direct acting machine (electric machine), 300 rotating electric machine (electric machine) 1st comparative example, 500 drive system.

Claims (17)

  1.  電機子と、
     空隙を介して前記電機子に対向し前記電機子に対して相対的に移動可能に配置された界磁であって、前記電機子側に異なる極を有する磁極同士が移動方向に隣接して形成された永久磁石、および前記永久磁石が埋め込まれた界磁鉄心を有する界磁と
     を備え、
     前記電機子から前記空隙の最小長さと等しい距離をおいて前記界磁鉄心に向かう方向に離れた面を仮想面としたとき、
     前記永久磁石よりも前記電機子側に位置する前記界磁鉄心である電機子側界磁鉄心部において、前記仮想面から前記永久磁石に向かって窪む穴部が、前記磁極同士が隣接する面を含む隣接面の位置に形成されている電気機械。
    With an armature,
    A field magnet, which is arranged so as to face the armature via a gap and is movable relative to the armature, and magnetic poles having different poles on the armature side are formed adjacent to each other in the moving direction. And a field magnet having a field iron core in which the permanent magnet is embedded,
    When a surface away from the armature at a distance equal to the minimum length of the air gap in the direction toward the field core is a virtual surface,
    In the armature-side field iron core portion, which is the field iron core located closer to the armature than the permanent magnet, a hole recessed from the virtual surface toward the permanent magnet is a surface where the magnetic poles are adjacent to each other. An electric machine formed at the position of the adjacent surface including.
  2.  前記界磁は、複数の前記永久磁石を有し、
     前記界磁鉄心において、前記電機子から前記界磁鉄心に向かう方向に前記仮想面から窪む切り欠き部が、前記移動方向に隣り合う前記永久磁石同士の間の前記移動方向の中央に位置する面の位置に形成されている請求項1に記載の電気機械。
    The field has a plurality of the permanent magnets,
    In the field iron core, a notch portion recessed from the virtual surface in a direction from the armature to the field iron core is located at a center of the moving direction between the permanent magnets adjacent to each other in the moving direction. The electric machine according to claim 1, wherein the electric machine is formed at a surface position.
  3.  前記切り欠き部を挟んで前記移動方向に隣り合う前記永久磁石を第1の前記永久磁石および第2の前記永久磁石とするとき、
     前記第1の永久磁石において前記切り欠き部に最も近い第1の前記磁極における周方向の一端面を含む前記隣接面の位置の前記電機子側界磁鉄心部に、第1の前記穴部が形成されており、
     前記界磁鉄心において、前記第1の穴部と前記切り欠き部との間に、前記第1の永久磁石から前記電機子に向かって突出する第1の突出部が形成されており、
     前記第2の永久磁石において前記切り欠き部に最も近い第2の前記磁極における周方向の一端面を含む前記隣接面の位置の前記電機子側界磁鉄心部に、第2の前記穴部が形成されており、
     前記界磁鉄心において、前記第2の穴部と前記切り欠き部との間に、前記第2の永久磁石から前記電機子に向かって突出する第2の突出部が形成されている請求項2に記載の電気機械。
    When the permanent magnets adjacent to each other in the moving direction with the cutout portion interposed therebetween are the first permanent magnets and the second permanent magnets,
    In the armature side field iron core portion at a position of the adjacent surface including one end surface in the circumferential direction of the first magnetic pole closest to the cutout portion in the first permanent magnet, the first hole portion is provided. Has been formed,
    In the field core, a first protrusion that protrudes from the first permanent magnet toward the armature is formed between the first hole and the notch,
    In the armature side field iron core portion at the position of the adjacent surface including the circumferential one end surface of the second magnetic pole closest to the cutout portion in the second permanent magnet, the second hole portion is provided. Has been formed,
    The said field iron core WHEREIN: The 2nd protrusion part which protrudes toward the said armature from the said 2nd permanent magnet is formed between the said 2nd hole part and the said notch part. The electric machine described in.
  4.  前記第1の突出部の曲率半径および前記第2の突出部の曲率半径は、それぞれ前記仮想面の曲率半径よりも小さい請求項3に記載の電気機械。 The electric machine according to claim 3, wherein a radius of curvature of the first protrusion and a radius of curvature of the second protrusion are smaller than a radius of curvature of the virtual surface.
  5.  前記電機子側界磁鉄心部において、前記隣接面の位置を前記移動方向にまたがって配置されたブリッジ部が形成され、
     前記ブリッジ部における前記永久磁石から前記電機子に向かう方向の幅は、前記移動方向に一定である請求項1から請求項4のいずれか1項に記載の電気機械。
    In the armature side field iron core portion, a bridge portion is formed which is arranged across the position of the adjacent surface in the movement direction,
    The electric machine according to any one of claims 1 to 4, wherein a width of the bridge portion in a direction from the permanent magnet to the armature is constant in the moving direction.
  6.  前記永久磁石の前記磁極の前記移動方向の幅である磁極幅をWmag、前記空隙の最小長さをg、前記穴部が占める前記移動方向の範囲における前記永久磁石から前記電機子に向かう方向において、一方の前記磁極に対向する前記電機子側界磁鉄心部における前記永久磁石からの距離が最大となる点と前記一方の磁極に隣接する他方の磁極に対向する前記電機子側界磁鉄心部における前記永久磁石からの距離が最大となる点とを結ぶ直線の長さである開口幅をWh、前記電機子側界磁鉄心部において前記隣接面の位置における前記永久磁石から前記電機子に向かう方向の幅をth、前記電機子側界磁鉄心部において前記永久磁石の前記移動方向の端部から前記電機子に向かう方向の最小幅をtbとした場合に、
     g<Wh<Wmag、またはtb≦th<Wh/2となる請求項1から請求項5のいずれか1項に記載の電気機械。
    In the direction from the permanent magnet to the armature in the range of the moving direction occupied by the hole, the magnetic pole width that is the width of the magnetic pole of the permanent magnet in the moving direction is Wmag, the minimum length of the air gap is g. A point at which the distance from the permanent magnet in the armature side field iron core portion facing one of the magnetic poles is maximum and the armature side field iron core portion facing the other magnetic pole adjacent to the one magnetic pole. The opening width, which is the length of a straight line connecting the point at which the distance from the permanent magnet is maximum in Wh, from the permanent magnet to the armature at the position of the adjacent surface in the armature side field core portion When the width in the direction is th and the minimum width in the direction from the end of the permanent magnet in the moving direction toward the armature in the armature side field core is tb,
    The electric machine according to any one of claims 1 to 5, wherein g <Wh <Wmag or tb ≦ th <Wh / 2.
  7.  前記界磁鉄心には、前記永久磁石が埋め込まれる磁石挿入穴が形成され、
     前記電機子側界磁鉄心部において、前記磁石挿入穴から前記電機子側に向かって窪む凹部が、前記隣接面の位置に形成されている請求項1から請求項5のいずれか1項に記載の電気機械。
    A magnet insertion hole in which the permanent magnet is embedded is formed in the field core,
    In the armature side field iron core part, a recessed portion that is recessed from the magnet insertion hole toward the armature side is formed at a position of the adjacent surface. The described electric machine.
  8.  前記界磁鉄心には、前記永久磁石が埋め込まれる磁石挿入穴が形成され、
     前記穴部は、前記空隙から前記磁石挿入穴まで貫通している請求項1から請求項4のいずれか1項に記載の電気機械。
    A magnet insertion hole in which the permanent magnet is embedded is formed in the field core,
    The electric machine according to any one of claims 1 to 4, wherein the hole penetrates from the gap to the magnet insertion hole.
  9.  前記永久磁石における前記磁極の数は、3個以上である請求項1から請求項8のいずれか1項に記載の電気機械。 The electric machine according to any one of claims 1 to 8, wherein the number of the magnetic poles in the permanent magnet is 3 or more.
  10.  前記永久磁石は、複数の前記磁極を有する1個の磁性体で構成されている請求項1から請求項9のいずれか1項に記載の電気機械。 The electric machine according to any one of claims 1 to 9, wherein the permanent magnet is composed of one magnetic body having a plurality of the magnetic poles.
  11.  前記永久磁石は、前記磁極ごとに分割された複数個の磁性体で構成されている請求項1から請求項9のいずれか1項に記載の電気機械。 The electric machine according to any one of claims 1 to 9, wherein the permanent magnet is composed of a plurality of magnetic bodies divided for each magnetic pole.
  12.  前記永久磁石は、互いに対向する2つの平面を有し、
     前記永久磁石において前記磁極の前記極が形成される面は、一方の前記平面である請求項1から請求項11のいずれか1項に記載の電気機械。
    The permanent magnet has two flat surfaces facing each other,
    The electric machine according to any one of claims 1 to 11, wherein a surface of the permanent magnet on which the pole is formed is one of the flat surfaces.
  13.  前記永久磁石は、互いに対向する2つの円筒面を有し、
     前記円筒面は、前記永久磁石から前記電機子に向かう方向と前記移動方向とを含む断面において、前記永久磁石から前記電機子に向かう方向に凸となり、
     前記永久磁石において前記磁極の前記極が形成される面は、一方の前記円筒面である請求項1から請求項11のいずれか1項に記載の電気機械。
    The permanent magnet has two cylindrical surfaces facing each other,
    The cylindrical surface is convex in a direction from the permanent magnet to the armature in a cross section including a direction from the permanent magnet to the armature and the moving direction,
    The electric machine according to any one of claims 1 to 11, wherein a surface of the permanent magnet on which the pole is formed is one of the cylindrical surfaces.
  14.  前記界磁鉄心は、前記永久磁石から前記電機子に向かう方向と前記移動方向とに垂直な方向において、一部の範囲に配置された第1領域と、前記第1領域の範囲と異なる範囲に配置された第2領域とを有し、
     前記第1領域には、前記穴部が配置され、
     前記第2領域には、前記凹部が配置されている請求項7に記載の電気機械。
    The field iron core has a first region arranged in a partial range in a direction perpendicular to the moving direction from the permanent magnet to the armature and a range different from the range of the first region. And a second region arranged,
    The hole is arranged in the first region,
    The electric machine according to claim 7, wherein the recess is arranged in the second region.
  15.  前記界磁鉄心は、前記永久磁石から前記電機子に向かう方向と前記移動方向とに垂直な方向において、一部の範囲に配置された第1領域と、前記第1領域の範囲と異なる範囲に配置された第2領域とを有し、
     前記第1領域には、前記穴部が配置され、
     前記第2領域には、前記電機子側界磁鉄心部における前記隣接面の位置において、前記磁石挿入穴から前記仮想面まで前記界磁鉄心が存在する請求項8に記載の電気機械。
    The field iron core has a first region arranged in a partial range in a direction perpendicular to the moving direction from the permanent magnet to the armature and a range different from the range of the first region. And a second region arranged,
    The hole is arranged in the first region,
    The electric machine according to claim 8, wherein the field iron core exists in the second region from the magnet insertion hole to the virtual surface at a position of the adjacent surface in the armature side field iron core portion.
  16.  前記界磁は、軸を中心として前記移動方向に前記電機子に対して相対的に回転移動する請求項1から請求項15のいずれか1項に記載の電気機械。 The electric machine according to any one of claims 1 to 15, wherein the field rotates relative to the armature in the movement direction about an axis.
  17.  前記界磁は、前記移動方向に前記電機子に対して相対的に直線移動する請求項1から請求項15のいずれか1項に記載の電気機械。 The electric machine according to any one of claims 1 to 15, wherein the field moves linearly relative to the armature in the movement direction.
PCT/JP2019/031193 2018-10-23 2019-08-07 Electrical machine WO2020084871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018198946A JP2022036348A (en) 2018-10-23 2018-10-23 Electric machine
JP2018-198946 2018-10-23

Publications (1)

Publication Number Publication Date
WO2020084871A1 true WO2020084871A1 (en) 2020-04-30

Family

ID=70330468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031193 WO2020084871A1 (en) 2018-10-23 2019-08-07 Electrical machine

Country Status (2)

Country Link
JP (1) JP2022036348A (en)
WO (1) WO2020084871A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134891A (en) * 1998-10-28 2000-05-12 Okuma Corp Synchronous motor and controller therefor
JP2007143331A (en) * 2005-11-21 2007-06-07 Matsushita Electric Ind Co Ltd Permanent-magnet-embedded rotor
JP2010246185A (en) * 2009-04-01 2010-10-28 Honda Motor Co Ltd Rotor and motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134891A (en) * 1998-10-28 2000-05-12 Okuma Corp Synchronous motor and controller therefor
JP2007143331A (en) * 2005-11-21 2007-06-07 Matsushita Electric Ind Co Ltd Permanent-magnet-embedded rotor
JP2010246185A (en) * 2009-04-01 2010-10-28 Honda Motor Co Ltd Rotor and motor

Also Published As

Publication number Publication date
JP2022036348A (en) 2022-03-08

Similar Documents

Publication Publication Date Title
US11456633B2 (en) Permanent magnet rotating electric machine
US8294322B2 (en) Rotating electrical machine
JP5930253B2 (en) Permanent magnet embedded rotary electric machine
JP5488625B2 (en) Double stator synchronous motor
CN103872869B (en) Multiple level formula electric rotating machine
US6211595B1 (en) Armature structure of toroidal winding type rotating electric machine
EP2980969A1 (en) Synchronous reluctance motor and rotor for synchronous reluctance motor
JPWO2019045017A1 (en) Electromagnetic device
WO2014115436A1 (en) Permanent-magnet-type rotating electric mechanism
US20180034332A1 (en) Rotary electric machine
US10693331B2 (en) Synchronous machine with magnetic rotating field reduction and flux concentration
JP6048191B2 (en) Multi-gap rotating electric machine
JP6196864B2 (en) Permanent magnet rotating electric machine
EP3540917B1 (en) Rotary electric machine
US20140252901A1 (en) Inductor type rotary motor
JP2006087283A (en) Permanent magnet type rotation motor
JP2005328679A (en) Permanent magnet reluctance type rotating electric machine
JP2008067561A (en) Permanent-magnet electromotor
CN111466066B (en) Rotating electrical machine
US20080290754A1 (en) AC Motor
JP2011055619A (en) Permanent magnet type dynamo-electric machine
JP5041415B2 (en) Axial gap type motor
KR102652587B1 (en) rotating electric machine
WO2020084871A1 (en) Electrical machine
JP2019161828A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP