WO2020082731A1 - 电子装置、证件识别方法及存储介质 - Google Patents
电子装置、证件识别方法及存储介质 Download PDFInfo
- Publication number
- WO2020082731A1 WO2020082731A1 PCT/CN2019/088632 CN2019088632W WO2020082731A1 WO 2020082731 A1 WO2020082731 A1 WO 2020082731A1 CN 2019088632 W CN2019088632 W CN 2019088632W WO 2020082731 A1 WO2020082731 A1 WO 2020082731A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- channel
- certificate
- edge
- photo
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/181—Segmentation; Edge detection involving edge growing; involving edge linking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30196—Human being; Person
- G06T2207/30201—Face
Definitions
- the present application relates to the field of certificate identification, in particular to an electronic device, a certificate identification method, and a storage medium.
- the present application proposes an electronic device, a certificate identification method, and a storage medium, which can quickly and accurately identify artificially synthesized ID photos, and improve the efficiency of ID photo identification.
- the present application proposes an electronic device, the electronic device includes a memory and a processor connected to the memory, the processor is used to execute a certificate identification program stored on the memory, the When the document identification program is executed by the processor, the following steps are implemented:
- A1 Obtain the user ID image to be identified, and preprocess the ID photo of the ID image to obtain a grayscale image of the ID photo;
- A3. Perform a face image filtering process on the first edge image, and retain the first background image corresponding to the first edge image;
- A4 according to the maximum stable extreme value region algorithm, extract candidate regions from the filtered first background image
- A5. Perform edge detection on the candidate area. If there are continuous edge traces in the candidate area, and the continuous edge traces form a closed figure, it is determined that the user certificate to be recognized is a synthetic certificate.
- the present application also proposes a document identification method, which includes the following steps:
- S5. Perform edge detection on the candidate area. If there is a continuous edge trace in the candidate area, and the continuous edge trace constructs a closed figure, it is determined that the user certificate to be recognized is a synthetic certificate.
- the present application also proposes a computer-readable storage medium that stores a certificate identification program, and the certificate identification program may be executed by at least one processor to enable the at least A processor executes the steps of the document identification method as described above.
- the electronic device, certificate identification method and storage medium proposed in this application obtain the grayscale image of the certificate photo by preprocessing the certificate photo of the certificate image by acquiring the user certificate image to be identified; Perform edge processing on the grayscale image to obtain the first edge image of the ID photo; perform face image filtering on the first edge image to retain the corresponding first background image; according to the maximum stable extreme value area algorithm from Extract the candidate area from the filtered first background image; perform edge detection on the candidate area, and if there is a continuous edge trace in the candidate area, and the continuous edge trace constructs a closed figure, the user ID to be identified is determined to be Synthetic documents. It can quickly and accurately identify the artificially synthesized ID photos, and improve the efficiency of ID photo identification.
- 1 is a schematic diagram of an optional hardware architecture of the electronic device proposed in this application.
- FIG. 2 is a schematic diagram of a program module of document identification in an embodiment of an electronic device of the present application
- FIG. 3 is an implementation flowchart of a preferred embodiment of the document identification method of the present application.
- FIG. 1 it is a schematic diagram of an optional hardware architecture of the electronic device proposed in this application.
- the electronic device 10 may include, but is not limited to, the memory 11, the processor 12, and the network interface 13 may be connected to each other through a communication bus 14.
- FIG. 1 only shows the electronic device 10 having the components 11-14, but it should be understood that it is not required to implement all the components shown, and more or fewer components may be implemented instead.
- the memory 11 includes at least one type of computer-readable storage medium.
- the computer-readable storage medium includes flash memory, a hard disk, a multimedia card, a card-type memory (for example, SD or DX memory, etc.), random access memory (RAM), static Random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), programmable read-only memory (PROM), magnetic memory, magnetic disk, optical disk, etc.
- the memory 11 may be an internal storage unit of the electronic device 10, such as a hard disk or a memory of the electronic device 10.
- the memory 11 may also be an outsourced storage device of the electronic device 10, such as a plug-in hard disk equipped on the electronic device 10, a smart memory card (Smart Media, Card, SMC), and secure digital (SD) ) Card, flash card (Flash Card), etc.
- the memory 11 may also include both the internal storage unit of the electronic device 10 and its outsourced storage device.
- the memory 11 is generally used to store an operating system and various application software installed on the electronic device 10, such as a certificate identification program.
- the memory 11 may also be used to temporarily store various types of data that have been output or will be output.
- the processor 12 may be a central processing unit (CPU), controller, microcontroller, microprocessor, or other data processing chip in some embodiments.
- the processor 12 is generally used to control the overall operation of the electronic device 10. In this embodiment, the processor 12 is used to run the program code stored in the memory 11 or process data, such as a running certificate identification program.
- the network interface 13 may include a wireless network interface or a wired network interface.
- the network interface 13 is generally used to establish a communication connection between the electronic device 10 and other electronic devices.
- the communication bus 14 is used to realize the communication connection between the components 11-13.
- FIG. 1 only shows the electronic device 10 with the components 11-14 and the identification of the document, but it should be understood that it is not required to implement all the components shown, and more or fewer components may be implemented instead.
- the electronic device 10 may further include a user interface (not shown in FIG. 1).
- the user interface may include a display, an input unit such as a keyboard, and the user interface may further include a standard wired interface, a wireless interface, and the like.
- the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED touch device, or the like.
- the display may also be referred to as a display screen or a display unit, which is used to display a user interface for processing information in the electronic device 10 and for displaying a visualization.
- the electronic device 10 may further include an audio unit (the audio unit is not shown in FIG. 1), and the audio unit may be in a call signal receiving mode, a call mode, a recording mode, and voice recognition when the electronic device 10 In the mode, broadcast receiving mode, etc., the received or stored audio data is converted into an audio signal; further, the electronic device 10 may further include an audio output unit, the audio output unit outputs the audio signal converted by the audio unit, and The audio output unit may also provide audio output related to specific functions performed by the electronic device 10 (eg, call signal reception sound, message reception sound, etc.), and the audio output unit may include a speaker, a buzzer, and the like.
- the audio unit may be in a call signal receiving mode, a call mode, a recording mode, and voice recognition when the electronic device 10 In the mode, broadcast receiving mode, etc., the received or stored audio data is converted into an audio signal
- the electronic device 10 may further include an audio output unit, the audio output unit outputs the audio signal converted by the audio unit, and
- the electronic device 10 may further include an alarm unit (not shown in the figure), and the alarm unit may provide an output to notify the electronic device 10 of the occurrence of the event.
- Typical events may include call reception, message reception, key signal input, touch input, and so on.
- the alarm unit can provide output in different ways to notify the occurrence of an event.
- the alarm unit may provide an output in the form of vibration, and when a call, message, or some other can put the electronic device 10 into the communication mode, the alarm unit may provide a tactile output (ie, vibration) to notify the user.
- A1 Obtain a user ID image to be identified, and preprocess the ID photo of the ID image to obtain a grayscale image of the ID photo;
- the step of preprocessing the ID photo of the ID image includes: scaling the ID image using bilinear interpolation to standardize the size of the ID image.
- the specific method is: Set the coordinates of the target pixel, and obtain the floating point coordinates (i + u, j + v) by inverse transformation, where i and j are the integer parts of the floating point coordinates, u and v are the decimal parts of the floating point coordinates, respectively.
- a floating point number in the range [0,1), then the value of this pixel is:
- f (i + u, j + v) (1-u) (1-v) f (i, j) + (1-u) vf (i, j + 1) + u (1-v) f ( i + 1, j) + uvf (i + 1, j + 1); where f (i, j) represents the pixel value at the source image (i, j);
- the specific method is: take the RGB channels of the image to calculate the average values of the three channels, avgR, avgG, avgB, and then calculate Degree average avgGray:
- the step of performing edge processing on the grayscale image of the ID photo to obtain the first edge image of the ID photo includes:
- the predetermined Gaussian filter is a two-dimensional Gaussian distribution, and the two-dimensional Gaussian distribution is:
- p and q are the horizontal and vertical coordinates of the smoothed image
- k is the kernel size of the Gaussian filter
- c is the offset of the center coordinate of the kernel
- m and n are the horizontal and vertical coordinates of the Gaussian template
- edges For each pixel, first determine whether the point exceeds the high threshold, then find the point that meets the low threshold among the neighboring points of the point, and then collect new points based on the point that exceeds the low threshold. Edges until the edges of the entire image are closed, and after searching for edges in the entire image, non-edge points are eliminated, that is, points whose gray value is set to 0 are eliminated to obtain the first edge image.
- A3 Perform a face image filtering process on the first edge image, and retain the first background image corresponding to the first edge image;
- A4 according to the maximum stable extreme value region algorithm, extract candidate regions from the filtered first background image
- the step of extracting the candidate area from the filtered first background image according to the maximum stable extreme value area algorithm includes:
- the threshold value is sequentially increased from 0 to 255.
- the area with the smallest connected area change is defined as the maximum stable extreme value area .
- the maximum stable extreme value region is:
- Q ⁇ represents the threshold
- the area of the connected domain corresponding to, ⁇ represents the small amount of change in the gray threshold, Indicates that the threshold is The rate of change in area at time, when When it is a local minimum, the area is considered as a candidate area.
- A5. Perform edge detection on the candidate area. If there are continuous edge traces in the candidate area, and the continuous edge traces form a closed figure, it is determined that the user certificate to be recognized is a synthetic certificate.
- the Canny edge detection method is used for edge detection for the candidate regions.
- the user certificate to be identified is a non-synthetic certificate picture, and image recognition is sent to a predetermined image recognition terminal instruction.
- the electronic device proposed in this application preprocesses the certificate photo of the certificate image by acquiring the user certificate image to be identified, to obtain a grayscale image of the certificate photo; Perform edge processing on the grayscale image to obtain the first edge image of the ID photo; perform a face image filtering process on the first edge image and retain the corresponding first background image; from the filtering based on the maximum stable extreme value area algorithm
- the candidate area is extracted from the first background image; after the candidate area is subjected to edge detection, if there are continuous edge traces in the candidate area, and the continuous edge trace constructs a closed figure, it is determined that the user certificate to be recognized is artificial Synthetic documents. It can quickly and accurately identify the artificially synthesized ID photos, and improve the efficiency of ID photo identification.
- FIG. 2 is a schematic diagram of a program module for document identification in an embodiment of an electronic device of the present application.
- the certificate identification can be divided into a pre-processing module 201, an edge processing module 202, a filtering module 203, an extraction module 204, and a determining module 205 according to the different functions implemented by its parts.
- the program module referred to in this application refers to a series of computer program instruction segments capable of performing specific functions, and is more suitable than the program for describing the execution process of the document identification program in the electronic device 10.
- the functions or operation steps implemented by the modules 201-205 are similar to the above, and will not be described in detail here, for example, for example:
- the preprocessing module 201 is used to obtain a user ID image to be identified, preprocess the ID photo of the ID image, and obtain a grayscale image of the ID photo;
- the edge processing module 202 is configured to perform edge processing on the grayscale image of the ID photo to obtain a first edge image of the ID photo;
- the filtering module 203 is configured to perform a face image filtering process on the first edge image, and retain the first background image corresponding to the first edge image;
- the extraction module 204 is used to extract candidate regions from the filtered first background image according to the maximum stable extreme value region algorithm
- the determining module 205 is used for edge detection of the candidate area. If there are continuous edge traces in the candidate area, and the continuous edge traces construct a closed figure, the user certificate to be identified is determined as a synthetic certificate.
- the document identification method includes the following steps:
- S301 Obtain a user ID image to be identified, and preprocess the ID photo of the ID image to obtain a grayscale image of the ID photo;
- the step of preprocessing the ID photo of the ID image includes: scaling the ID image using bilinear interpolation to standardize the size of the ID image.
- the specific method is: Set the coordinates of the target pixel, and obtain the floating point coordinates (i + u, j + v) by inverse transformation, where i and j are the integer parts of the floating point coordinates, u and v are the decimal parts of the floating point coordinates, respectively.
- a floating point number in the range [0,1), then the value of this pixel is:
- f (i + u, j + v) (1-u) (1-v) f (i, j) + (1-u) vf (i, j + 1) + u (1-v) f ( i + 1, j) + uvf (i + 1, j + 1); where f (i, j) represents the pixel value at the source image (i, j);
- the specific method is: take the RGB channels of the image to calculate the average value of each of the three channels avgR, avgG, avgB, and then calculate the gray Degree average avgGray:
- S302 Perform edge processing on the grayscale image of the ID photo to obtain a first edge image of the ID photo;
- the step of performing edge processing on the grayscale image of the ID photo to obtain the first edge image of the ID photo includes:
- the predetermined Gaussian filter is a two-dimensional Gaussian distribution, and the two-dimensional Gaussian distribution is:
- p and q are the horizontal and vertical coordinates of the smoothed image
- k is the kernel size of the Gaussian filter
- c is the offset of the center coordinate of the kernel
- m and n are the horizontal and vertical coordinates of the Gaussian template
- S303 Perform a face image filtering process on the first edge image, and retain the first background image corresponding to the first edge image;
- the step of extracting the candidate area from the filtered first background image according to the maximum stable extreme value area algorithm includes:
- the threshold value is sequentially increased from 0 to 255.
- the area with the smallest connected area change is defined as the maximum stable extreme value area .
- the maximum stable extreme value region is:
- Q ⁇ represents the threshold
- the area of the connected domain corresponding to, ⁇ represents the small amount of change in the gray threshold, Indicates that the threshold is The rate of change in area at time, when When it is a local minimum, the area is considered as a candidate area.
- S305 Perform edge detection on the candidate area. If there are continuous edge traces in the candidate area, and the continuous edge traces form a closed figure, it is determined that the user certificate to be recognized is a synthetic certificate.
- the Canny edge detection method is used for edge detection for the candidate regions.
- the user certificate to be identified is a non-synthetic certificate picture, and image recognition is sent to a predetermined image recognition terminal instruction.
- the document identification method proposed in this application obtains the grayscale image of the certificate photo by preprocessing the certificate photo of the certificate image by acquiring the user certificate image to be identified; Perform edge processing on the grayscale image to obtain the first edge image of the ID photo; perform face image filtering on the first edge image to retain the corresponding first background image; according to the maximum stable extreme value area algorithm from Extract the candidate area from the filtered first background image; perform edge detection on the candidate area, and if there is a continuous edge trace in the candidate area, and the continuous edge trace constructs a closed figure, the user ID to be identified is determined to be Synthetic documents. It can quickly and accurately identify the artificially synthesized ID photos, and improve the efficiency of ID photo identification.
- the present application also proposes a computer-readable storage medium on which a document identification program is stored.
- a document identification program is executed by a processor, the following operations are implemented:
- Edge detection is performed on the candidate area, and if there are continuous edge traces in the candidate area, and the continuous edge traces construct a closed figure, it is determined that the user certificate to be identified is a synthetic certificate.
- the specific implementation process of the computer-readable storage medium of the present application is similar to the specific implementation process of the electronic device and the image deletion method based on mixed binary codes, and will not be described here.
- the methods in the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware, but in many cases the former is better Implementation.
- the technical solutions of the present application can essentially be embodied in the form of software products that contribute to the existing technology, and the computer software products are stored in a storage medium (such as ROM / RAM, magnetic disk,
- the CD-ROM includes several instructions to enable a terminal device (which may be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in the embodiments of the present application.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
本申请涉及图像识别,提出了一种证件识别方法,包括:获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;对所述第一边缘图像进行人脸图像过滤处理,保留对应的第一背景图像;根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。本申请能够快速准确地识别出人工合成的证件照片,提高证件照片识别的效率。
Description
优先权申明
本申请基于巴黎公约申明享有2018年10月26日递交的申请号为CN201811256274.1、名称为“电子装置、证件识别方法及存储介质”中国专利申请的优先权,该中国专利申请的整体内容以参考的方式结合在本申请中。
本申请涉及证件识别领域,尤其涉及一种电子装置、证件识别方法及存储介质。
随着计算机技术的不断发展,在越来越多的行业,如通信行业、服务行业等,都需要对证件信息进行采集和登记,以进行实名制,而随着图像技术的不断发展,不法分子通常借助于人工合成的证件进行犯罪活动。目前,为了防止不法分子冒充他人进行非法活动,在很多业务场景中使用人脸识别技术,但是人脸识别技术需要投入大量的财力,对于中小企业以及小规模经营场所来说存在一定的经济压力。因此,在实名认证的过程中,如何快速准确地识别出证件的真假是亟待要解决的问题。
发明内容
有鉴于此,本申请提出一种电子装置、证件识别方法及存储介质,能够快速准确地识别出人工合成的证件照片,提高证件照片识别的效率。
首先,为实现上述目的,本申请提出一种电子装置,所述电子装置包括存储器、及与所述存储器连接的处理器,所述处理器用于执行所述存储器上存储的证件识别程序,所述证件识别程序被所述处理器执行时实现如下步骤:
A1、获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;
A2、对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;
A3、将所述第一边缘图像进行人脸图像过滤处理,保留所述第一边缘图像对应的第一背景图像;
A4,根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;
A5,对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。
此外,为了实现上述目的,本申请还提出一种证件识别方法,所述方法包括如下步骤:
S1、获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;
S2、对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;
S3、将所述第一边缘图像进行人脸图像过滤处理,保留所述第一边缘图像对应的第一背景图像;
S4、根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;
S5、对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。
此外,为实现上述目的,本申请还提出一种计算机可读存储介质,所述计算机可读存储介质存储有证件识别程序,所述证件识别程序可被至少一个处理器执行,以使所述至少一个处理器执行如上所述的证件识别方法的步骤。
本申请所提出的电子装置、证件识别方法及存储介质,通过获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;对所述第一边缘图像进行人脸图像过滤处理,保留对应的第一背景图像;根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。能够快速准确地识别出人工合成的证件照片,提高证件照片识别的效率。
图1是本申请提出的电子装置一可选的硬件架构的示意图;
图2是本申请电子装置一实施例中证件识别的程序模块示意图;
图3是本申请证件识别方法较佳实施例的实施流程图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实 现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
参阅图1所示,是本申请提出的电子装置一可选的硬件架构示意图。本实施例中,电子装置10可包括,但不仅限于,可通过通信总线14相互通信连接存储器11、处理器12、网络接口13。需要指出的是,图1仅示出了具有组件11-14的电子装置10,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。
其中,存储器11至少包括一种类型的计算机可读存储介质,计算机可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,存储器11可以是电子装置10的内部存储单元,例如电子装置10的硬盘或内存。在另一些实施例中,存储器11也可以是电子装置10的外包存储设备,例如电子装置10上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,存储器11还可以既包括电子装置10的内部存储单元也包括其外包存储设备。本实施例中,存储器11通常用于存储安装于电子装置10的操作系统和各类应用软件,例如证件识别程序等。此外,存储器11还可以用于暂时地存储已经输出或者将要输出的各类数据。
处理器12在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。处理器12通常用于控制电子装置10的总体操作。本实施例中,处理器12用于运行存储器11中存储的程序代码或者处理数据,例如运行的证件识别程序等。
网络接口13可包括无线网络接口或有线网络接口,网络接口13通常用于在电子装置10与其他电子设备之间建立通信连接。
通信总线14用于实现组件11-13之间的通信连接。
图1仅示出了具有组件11-14以及证件识别的电子装置10,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。
可选地,电子装置10还可以包括用户接口(图1中未示出),用户接口可以包括显示器、输入单元比如键盘,其中,用户接口还可以包括标准的有线接口、无线接口等。
可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED触摸器等。进一步地,显示器也可称为显示屏或显示单元,用于显示在电子装置10中处理信息以及用于显示可视化的用户界面。
可选地,在一些实施例中,电子装置10还可以包括音频单元(音频单元图1中未示出),音频单元可以在电子装置10处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将接收的或者存储的音频数据转换为音频信号;进一步地,电子装置10还可以包括音频输出单元,音频输出单元将音频单元转换的音频信号输出,而且音频输出单元还可以提供与电子装置10执行的特定功能相关的音频输出(例如呼叫信号接收声音、消息接收声音等等),音频输出单元可以包括扬声器、蜂鸣器等等。
可选地,在一些实施例中,电子装置10还可以包括警报单元(图中未示出),警报单元可以提供输出已将事件的发生通知给电子装置10。典型的事件可以包括呼叫接收、消息接收、键信号输入、触摸输入等等。除了音频或者视频输出之外,警报单元可以以不同的方式提供输出以通知事件的发生。例如,警报单元可以以震动的形式提供输出,当接收到呼叫、消息或一些其他可以使电子装置10进入通信模式时,警报单元可以提供触觉输出(即,振动)以将其通知给用户。
在一实施例中,存储器11中存储的证件识别程序被处理器12执行时,实现如下操作:
A1,获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;
具体地,在本实施例中,所述对所述证件图像的证件照进行预处理的步骤包括:使用双线性插值对证件图像进行缩放,使证件图像的尺寸标准化,具体方法为:对于一个目的像素设置坐标,通过反向变换得到浮点坐标(i+u,j+v),其中i、j分别为浮点坐标的整数部分,u、v分别为浮点坐标的小数部分,是取值[0,1)区间的浮点数,则这个像素的值为:
f(i+u,j+v)=(1-u)(1-v)f(i,j)+(1-u)vf(i,j+1)+u(1-v)f(i+1,j)+uvf(i+1,j+1);其中f(i,j)表示源图像(i,j)处的像素值;
对所述标准化之后的证件照使用灰度世界法进行自动白平衡处理,具体方法为:取图像的RGB通道分别计算出三通道各自的平均值avgR、avgG、avgB,然后通过下式计算得到灰度平均值avgGray:
通过下式计算三通道各自的增益系数Kr、Kg、Kb:
通过下式调整每个像素的RGB分量R’、G’、B’:
将三通道的RGB图转化为单通道的灰度图。
A2,对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;
具体地,在本实施例中,所述对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像的步骤包括:
对所述灰度图使用预先确定的高斯滤波器进行平滑处理,以得到平滑图像;具体地,所述预先确定的高斯滤波器为二维高斯分布,所述二维高斯分布为:
根据所述二维高斯分布算出归一化的高斯模版h,其中x0、y0分别为核中心坐标,σ为标准差,在对高斯模版进行归一化后使用以下公式进行卷积得到平滑图像:
其中p、q分别为平滑图像的横、纵坐标,k为高斯滤波器的核大小,c为核中心坐标偏移量,m、n为高斯模版的横、纵坐标;
使用一阶有限差分计算平滑图像的横坐标P以及纵坐标q的偏导数,得到两个阵列P与Q:
通过下式计算梯度幅值M和方位角θ:
在各方位角上的梯度幅值进行非极大值抑制,搜索局部极大值;
使用双阈值算法检测并连接边缘,对每个像素点首先判断该点是否超过高阈值,然后在该点的邻域点中寻找满足超过低阈值的点,再根据超过低阈值的点收集新的边缘,直到整个图像边缘闭合,在整个图像中查找完边缘后,将非边缘点剔除,即灰度值置为0的点剔除,得到所述第一边缘图像。
A3,将所述第一边缘图像进行人脸图像过滤处理,保留所述第一边缘图像对应的第一背景图像;
A4,根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;
具体地,所述根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域的步骤包括:
对所述第一背景图像取阈值,进行二值化处理,所取的阈值从0到255依次递增,在得到的所有二值图像中,将连通区域变化最小的区域定义为最大稳定极值区域,并将所述最大稳定极值区域用公式表示为:
A5,对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。
具体地,对候选区域采用Canny边缘检测方法进行边缘检测。
进一步地,若候选区域不存在连续边缘痕迹,或者存在的连续边缘痕迹无法构造出封闭图形,则确定所述待识别的用户证件为非人工合成证件图片,向预先确定的图像识别终端发送图像识别指令。
由上述事实施例可知,本申请提出的电子装置,通过获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;对所述第一边缘图像进行人脸图像过滤处理,保留对应的第一背景图像;根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。能够快速准确地识别出人工合成的证件照片,提高证件照片识别的效率。
此外,本申请的证件识别依据其各部分所实现的功能不同,可用具有相同功能的程序模块进行描述。请参阅图2所示,是本申请电子装置一实施例 中证件识别的程序模块示意图。本实施例中,证件识别依据其各部分所实现的功能的不同,可以被分割成预处理模块201、边缘处理模块202、过滤模块203、提取模块204以及确定模块205。由上面的描述可知,本申请所称的程序模块是指能够完成特定功能的一系列计算机程序指令段,比程序更适合于描述证件识别程序在电子装置10中的执行过程。所述模块201-205所实现的功能或操作步骤均与上文类似,此处不再详述,示例性地,例如其中:
预处理模块201用于获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;
边缘处理模块202用于对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;
过滤模块203用于将所述第一边缘图像进行人脸图像过滤处理,保留所述第一边缘图像对应的第一背景图像;
提取模块204用于根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;
确定模块205用于对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。
此外,本申请还提出一种证件识别方法,请参阅图3所示,所述证件识别方法包括如下步骤:
S301,获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;
具体地,在本实施例中,所述对所述证件图像的证件照进行预处理的步骤包括:使用双线性插值对证件图像进行缩放,使证件图像的尺寸标准化,具体方法为:对于一个目的像素设置坐标,通过反向变换得到浮点坐标(i+u,j+v),其中i、j分别为浮点坐标的整数部分,u、v分别为浮点坐标的小数部分,是取值[0,1)区间的浮点数,则这个像素的值为:
f(i+u,j+v)=(1-u)(1-v)f(i,j)+(1-u)vf(i,j+1)+u(1-v)f(i+1,j)+uvf(i+1,j+1);其中f(i,j)表示源图像(i,j)处的像素值;
对所述标准化之后的证件照使用灰度世界法进行自动白平衡处理,具体方法为:取图像的RGB通道分别计算出三通道各自的平均值avgR、avgG、avgB,然后通过下式计算得到灰度平均值avgGray:
通过下式计算三通道各自的增益系数Kr、Kg、Kb:
通过下式调整每个像素的RGB分量R’、G’、B’:
将三通道的RGB图转化为单通道的灰度图。
S302,对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;
具体地,在本实施例中,所述对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像的步骤包括:
对所述灰度图使用预先确定的高斯滤波器进行平滑处理,以得到平滑图像;具体地,所述预先确定的高斯滤波器为二维高斯分布,所述二维高斯分布为:
根据所述二维高斯分布算出归一化的高斯模版h,其中x0、y0分别为核中心坐标,σ为标准差,在对高斯模版进行归一化后使用以下公式进行卷积得到平滑图像:
其中p、q分别为平滑图像的横、纵坐标,k为高斯滤波器的核大小,c为核中心坐标偏移量,m、n为高斯模版的横、纵坐标;
使用一阶有限差分计算平滑图像的横坐标P以及纵坐标q的偏导数,得到两个阵列P与Q:
通过下式计算梯度幅值M和方位角θ:
在各方位角上的梯度幅值进行非极大值抑制,搜索局部极大值;
使用双阈值算法检测并连接边缘,对每个像素点首先判断该点是否超过高阈值,然后在该点的邻域点中寻找满足超过低阈值的点,再根据超过低阈值的点收集新的边缘,直到整个图像边缘闭合,在整个图像中查找完边缘后,将非边缘点剔除,即灰度值置为0的点剔除,得到所述第一边缘图像。
S303,将所述第一边缘图像进行人脸图像过滤处理,保留所述第一边缘图像对应的第一背景图像;
S304,根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;
具体地,所述根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域的步骤包括:
对所述第一背景图像取阈值,进行二值化处理,所取的阈值从0到255依次递增,在得到的所有二值图像中,将连通区域变化最小的区域定义为最大稳定极值区域,并将所述最大稳定极值区域用公式表示为:
S305,对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。
具体地,对候选区域采用Canny边缘检测方法进行边缘检测。
进一步地,若候选区域不存在连续边缘痕迹,或者存在的连续边缘痕迹无法构造出封闭图形,则确定所述待识别的用户证件为非人工合成证件图片,向预先确定的图像识别终端发送图像识别指令。
由上述事实施例可知,本申请提出的证件识别方法,通过获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;对所述第一边缘图像进行人脸图像过滤处理,保留对应的第一背景图像;根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。能够快速准确地识别出人工合成的证件照片,提高证件照片识别的效率。
此外,本申请还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有证件识别程序,所述证件识别程序被处理器执行时实现如下操作:
获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;
对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;
将所述第一边缘图像进行人脸图像过滤处理,保留所述第一边缘图像对应的第一背景图像;
根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;
对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。
本申请计算机可读存储介质的具体实施过程,与上述电子装置以及基于混肴二进制码的图片删除方法的具体实施过程类似,在此不再赘述。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
Claims (20)
- 一种电子装置,其特征在于,所述电子装置包括存储器、及与所述存储器连接的处理器,所述处理器用于执行所述存储器上存储的证件识别程序,所述证件识别程序被所述处理器执行时实现如下步骤:A1、获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;A2、对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;A3、将所述第一边缘图像进行人脸图像过滤处理,保留所述第一边缘图像对应的第一背景图像;A4,根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;A5,对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。
- 如权利要求1所述的电子装置,其特征在于,在所述步骤A1中,所述对所述证件图像的证件照进行预处理,得到所述证件照的灰度图的步骤包括:使用双线性插值对所述证件图像进行缩放,使证件图像的尺寸标准化;取标准化之后的证件图像的RGB通道,分别计算出R通道、G通道、B通道各自的平均值avgR、avgG、avgB;将所述avgR、avgG、avgB代入预定义的灰度平均值计算公式,计算得到R通道、G通道、B通道各自的增益系数Kr、Kg、Kb;分别用所述增益系数Kr、Kg、Kb乘以R通道、G通道、B通道中的每个像素点,将三通道的RGB图转化为单通道的灰度图。
- 如权利要求1所述的电子装置,其特征在于,所述证件识别程序被所述处理器执行时还实现如下步骤:若候选区域不存在连续边缘痕迹,或者存 在的连续边缘痕迹无法构造出封闭图形,则确定所述待识别的用户证件为非人工合成证件图片,向预先确定的图像识别终端发送图像识别指令。
- 如权利要求2所述的电子装置,其特征在于,所述证件识别程序被所述处理器执行时还实现如下步骤:若候选区域不存在连续边缘痕迹,或者存在的连续边缘痕迹无法构造出封闭图形,则确定所述待识别的用户证件为非人工合成证件图片,向预先确定的图像识别终端发送图像识别指令。
- 如权利要求3所述的电子装置,其特征在于,所述证件识别程序被所述处理器执行时还实现如下步骤:若候选区域不存在连续边缘痕迹,或者存在的连续边缘痕迹无法构造出封闭图形,则确定所述待识别的用户证件为非人工合成证件图片,向预先确定的图像识别终端发送图像识别指令。
- 如权利要求4所述的电子装置,其特征在于,所述证件识别程序被所述处理器执行时还实现如下步骤:若候选区域不存在连续边缘痕迹,或者存在的连续边缘痕迹无法构造出封闭图形,则确定所述待识别的用户证件为非人工合成证件图片,向预先确定的图像识别终端发送图像识别指令。
- 一种证件识别方法,其特征在于,所述方法包括如下步骤:S1、获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;S2、对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;S3、将所述第一边缘图像进行人脸图像过滤处理,保留所述第一边缘图像对应的第一背景图像;S4、根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;S5、对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。
- 如权利要求9所述的证件识别方法,其特征在于,在所述步骤S1中,所述对所述证件图像的证件照进行预处理,得到所述证件照的灰度图的步骤包括:使用双线性插值对所述证件图像进行缩放,使证件图像的尺寸标准化;取标准化之后的证件图像的RGB通道,分别计算出R通道、G通道、B通道各自的平均值avgR、avgG、avgB;将所述avgR、avgG、avgB代入预定义的灰度平均值计算公式,计算得到R通道、G通道、B通道各自的增益系数Kr、Kg、Kb;分别用所述增益系数Kr、Kg、Kb乘以R通道、G通道、B通道中的每个像素点,将三通道的RGB图转化为单通道的灰度图。
- 如权利要求9所述的证件识别方法,其特征在于,所述证件识别方法还包括如下步骤:若候选区域不存在连续边缘痕迹,或者存在的连续边缘痕迹无法构造出封闭图形,则确定所述待识别的用户证件为非人工合成证件图片,向预先确定的图像识别终端发送图像识别指令。
- 如权利要求10所述的证件识别方法,其特征在于,所述证件识别方法还包括如下步骤:若候选区域不存在连续边缘痕迹,或者存在的连续边缘痕迹无法构造出封闭图形,则确定所述待识别的用户证件为非人工合成证件图片,向预先确定的图像识别终端发送图像识别指令。
- 如权利要求11所述的证件识别方法,其特征在于,所述证件识别方法还包括如下步骤:若候选区域不存在连续边缘痕迹,或者存在的连续边缘痕迹无法构造出封闭图形,则确定所述待识别的用户证件为非人工合成证件图片,向预先确定的图像识别终端发送图像识别指令。
- 如权利要求12所述的证件识别方法,其特征在于,所述证件识别方法还包括如下步骤:若候选区域不存在连续边缘痕迹,或者存在的连续边缘痕迹无法构造出封闭图形,则确定所述待识别的用户证件为非人工合成证件图片,向预先确定的图像识别终端发送图像识别指令。
- 一种计算机可读存储介质,所述计算机可读存储介质存储有证件识别程序,所述证件识别程序可被至少一个处理器执行,以使所述至少一个处理器执行步骤:A1、获取待识别的用户证件图像,对所述证件图像的证件照进行预处理,得到所述证件照的灰度图;A2、对所述证件照的灰度图进行边缘处理,获得所述证件照的第一边缘图像;A3、将所述第一边缘图像进行人脸图像过滤处理,保留所述第一边缘图像对应的第一背景图像;A4,根据最大稳定极值区域算法从过滤后的第一背景图像中提取出候选区域;A5,对候选区域进行边缘检测,若有候选区域存在连续边缘痕迹,且所述连续边缘痕迹构造出封闭图形,则确定所述待识别的用户证件为人工合成的证件。
- 如权利要求17所述的计算机可读存储介质,其特征在于,在所述步骤A1中,所述对所述证件图像的证件照进行预处理,得到所述证件照的灰度图的步骤包括:使用双线性插值对所述证件图像进行缩放,使证件图像的尺寸标准化;取标准化之后的证件图像的RGB通道,分别计算出R通道、G通道、B通道各自的平均值avgR、avgG、avgB;将所述avgR、avgG、avgB代入预定义的灰度平均值计算公式,计算得到R通道、G通道、B通道各自的增益系数Kr、Kg、Kb;分别用所述增益系数Kr、Kg、Kb乘以R通道、G通道、B通道中的每个像素点,将三通道的RGB图转化为单通道的灰度图。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811256274.1A CN109583299B (zh) | 2018-10-26 | 2018-10-26 | 电子装置、证件识别方法及存储介质 |
CN201811256274.1 | 2018-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020082731A1 true WO2020082731A1 (zh) | 2020-04-30 |
Family
ID=65920555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/088632 WO2020082731A1 (zh) | 2018-10-26 | 2019-05-27 | 电子装置、证件识别方法及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109583299B (zh) |
WO (1) | WO2020082731A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111767845A (zh) * | 2020-06-29 | 2020-10-13 | 京东数字科技控股有限公司 | 证件识别方法及装置 |
CN113947549A (zh) * | 2021-10-22 | 2022-01-18 | 深圳国邦信息技术有限公司 | 自拍视频修饰道具边缘处理方法及相关产品 |
CN117676038A (zh) * | 2024-01-30 | 2024-03-08 | 北京点聚信息技术有限公司 | 一种电子证照数据安全共享方法及系统 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109583299B (zh) * | 2018-10-26 | 2024-06-28 | 平安科技(深圳)有限公司 | 电子装置、证件识别方法及存储介质 |
CN110111648A (zh) * | 2019-04-17 | 2019-08-09 | 吉林大学珠海学院 | 一种编程训练系统及方法 |
CN110516649B (zh) * | 2019-09-02 | 2023-08-22 | 南京微小宝信息技术有限公司 | 基于人脸识别的校友认证方法及系统 |
CN111967469B (zh) * | 2020-08-13 | 2023-12-15 | 上海明略人工智能(集团)有限公司 | 一种畸形文本矫正方法、系统及文字识别方法 |
CN112435168B (zh) * | 2020-12-01 | 2024-01-19 | 清华大学深圳国际研究生院 | 一种参考块缩放方法及计算机可读存储介质 |
CN112991470B (zh) * | 2021-02-08 | 2023-12-26 | 上海通办信息服务有限公司 | 一种复杂背景下的证件寸照背景颜色检查方法及其系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107123088A (zh) * | 2017-04-21 | 2017-09-01 | 山东大学 | 一种自动更换证件照背景颜色的方法 |
CN107563377A (zh) * | 2017-08-30 | 2018-01-09 | 江苏实达迪美数据处理有限公司 | 一种利用边缘和文字区域的证件关键区域检测定位方法 |
CN107872614A (zh) * | 2016-09-27 | 2018-04-03 | 中兴通讯股份有限公司 | 一种拍摄方法及拍摄装置 |
CN109583299A (zh) * | 2018-10-26 | 2019-04-05 | 平安科技(深圳)有限公司 | 电子装置、证件识别方法及存储介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100565251C (zh) * | 2007-07-20 | 2009-12-02 | 苏州苏大维格光电科技股份有限公司 | 一种用于卡证的防伪结构及其识别方法 |
CN102156996B (zh) * | 2011-04-01 | 2013-08-07 | 上海海事大学 | 一种图像边缘检测的方法 |
US10198645B2 (en) * | 2014-11-13 | 2019-02-05 | Intel Corporation | Preventing face-based authentication spoofing |
CN105678242B (zh) * | 2015-12-30 | 2019-05-07 | 小米科技有限责任公司 | 手持证件模式下的对焦方法和装置 |
US10089521B2 (en) * | 2016-09-02 | 2018-10-02 | VeriHelp, Inc. | Identity verification via validated facial recognition and graph database |
-
2018
- 2018-10-26 CN CN201811256274.1A patent/CN109583299B/zh active Active
-
2019
- 2019-05-27 WO PCT/CN2019/088632 patent/WO2020082731A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107872614A (zh) * | 2016-09-27 | 2018-04-03 | 中兴通讯股份有限公司 | 一种拍摄方法及拍摄装置 |
CN107123088A (zh) * | 2017-04-21 | 2017-09-01 | 山东大学 | 一种自动更换证件照背景颜色的方法 |
CN107563377A (zh) * | 2017-08-30 | 2018-01-09 | 江苏实达迪美数据处理有限公司 | 一种利用边缘和文字区域的证件关键区域检测定位方法 |
CN109583299A (zh) * | 2018-10-26 | 2019-04-05 | 平安科技(深圳)有限公司 | 电子装置、证件识别方法及存储介质 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111767845A (zh) * | 2020-06-29 | 2020-10-13 | 京东数字科技控股有限公司 | 证件识别方法及装置 |
CN111767845B (zh) * | 2020-06-29 | 2024-03-05 | 京东科技控股股份有限公司 | 证件识别方法及装置 |
CN113947549A (zh) * | 2021-10-22 | 2022-01-18 | 深圳国邦信息技术有限公司 | 自拍视频修饰道具边缘处理方法及相关产品 |
CN113947549B (zh) * | 2021-10-22 | 2022-10-25 | 深圳国邦信息技术有限公司 | 自拍视频修饰道具边缘处理方法及相关产品 |
CN117676038A (zh) * | 2024-01-30 | 2024-03-08 | 北京点聚信息技术有限公司 | 一种电子证照数据安全共享方法及系统 |
CN117676038B (zh) * | 2024-01-30 | 2024-04-05 | 北京点聚信息技术有限公司 | 一种电子证照数据安全共享方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109583299B (zh) | 2024-06-28 |
CN109583299A (zh) | 2019-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020082731A1 (zh) | 电子装置、证件识别方法及存储介质 | |
WO2022161286A1 (zh) | 图像检测方法、模型训练方法、设备、介质及程序产品 | |
US9754164B2 (en) | Systems and methods for classifying objects in digital images captured using mobile devices | |
WO2017124940A1 (zh) | 识别规格图片中是否包含水印的方法及装置 | |
US11367310B2 (en) | Method and apparatus for identity verification, electronic device, computer program, and storage medium | |
US20110311100A1 (en) | Method, Apparatus and Computer Program Product for Providing Object Tracking Using Template Switching and Feature Adaptation | |
CN108830133B (zh) | 合同影像图片的识别方法、电子装置及可读存储介质 | |
CN108491866B (zh) | 色情图片鉴定方法、电子装置及可读存储介质 | |
CN112651953B (zh) | 图片相似度计算方法、装置、计算机设备及存储介质 | |
EP2660753A2 (en) | Image processing method and apparatus | |
CN109635633B (zh) | 电子装置、票据识别方法及存储介质 | |
CN113627428A (zh) | 文档图像矫正方法、装置、存储介质及智能终端设备 | |
CN111899270A (zh) | 卡片边框检测方法、装置、设备及可读存储介质 | |
CN112330331A (zh) | 基于人脸识别的身份验证方法、装置、设备及存储介质 | |
CN111047496A (zh) | 阈值确定方法、水印检测方法、装置和电子设备 | |
CN112581344A (zh) | 一种图像处理方法、装置、计算机设备及存储介质 | |
CN111898610A (zh) | 卡片缺角检测方法、装置、计算机设备及存储介质 | |
CN113158773B (zh) | 一种活体检测模型的训练方法及训练装置 | |
CN112396050B (zh) | 图像的处理方法、设备以及存储介质 | |
WO2019196298A1 (zh) | 电子装置、基于证件图片的身份识别方法及存储介质 | |
CN114494751A (zh) | 证照信息识别方法、装置、设备及介质 | |
WO2021051580A1 (zh) | 基于分组批量的图片检测方法、装置及存储介质 | |
CN107239776B (zh) | 倾斜图像校正的方法和装置 | |
CN111402168B (zh) | 图像目标矫正方法及装置、终端、存储介质 | |
CN113936286A (zh) | 图像文本识别方法、装置、计算机设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19874794 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19874794 Country of ref document: EP Kind code of ref document: A1 |