[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020080326A1 - 耐寒性に優れる硬化性オルガノポリシロキサン組成物、パターン形成方法および電子部品等 - Google Patents

耐寒性に優れる硬化性オルガノポリシロキサン組成物、パターン形成方法および電子部品等 Download PDF

Info

Publication number
WO2020080326A1
WO2020080326A1 PCT/JP2019/040371 JP2019040371W WO2020080326A1 WO 2020080326 A1 WO2020080326 A1 WO 2020080326A1 JP 2019040371 W JP2019040371 W JP 2019040371W WO 2020080326 A1 WO2020080326 A1 WO 2020080326A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable organopolysiloxane
organopolysiloxane composition
group
component
viscosity
Prior art date
Application number
PCT/JP2019/040371
Other languages
English (en)
French (fr)
Inventor
能乃 戸田
須藤 学
Original Assignee
ダウ・東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社 filed Critical ダウ・東レ株式会社
Priority to JP2020553168A priority Critical patent/JP7432519B2/ja
Priority to CN201980064816.1A priority patent/CN112805335A/zh
Priority to KR1020217014471A priority patent/KR20210080433A/ko
Priority to US17/285,792 priority patent/US12122915B2/en
Priority to EP19874027.6A priority patent/EP3868833A4/en
Publication of WO2020080326A1 publication Critical patent/WO2020080326A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • B05D2518/12Ceramic precursors (polysiloxanes, polysilazanes)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5445Silicon-containing compounds containing nitrogen containing at least one Si-N bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention provides a curable organopolysiloxane composition having particularly excellent cold resistance of a cured product and rheological properties suitable for precision coating and fine pattern formation by a fine droplet coating device such as a jet dispenser, and pattern formation using the same.
  • the present invention relates to a method and an electronic component (including a MEMS device) or a precursor thereof including a curable organopolysiloxane composition or a cured product thereof applied by a fine droplet coating device such as a jet dispenser.
  • the curable organopolysiloxane composition is widely used as a protective agent or adhesive composition for electric / electronic parts, or for filling and sealing gaps in image display devices such as mobile phones and touch panels. It contributes to the improvement of durability and the durability.
  • a one-pack type curable organopolysiloxane composition that cures using a hydrosilylation reaction has excellent handling workability and curing speed, excellent heat resistance of the cured product, adhesiveness to a substrate, and cured product. It has an advantage over other materials in that the hardness can be controlled as desired.
  • a fine curable organopolysiloxane composition pattern is formed on a substrate such as an electronic material or an image display device. Electronic parts are required.
  • each application area is a substantially dot-like area having a diameter of 1 mm or less, or a linear area having a width of 1 mm or less.
  • a fine droplet coating device such as an inkjet system or a dispenser coating system for coating.
  • these existing curable organopolysiloxane compositions are liquid, and when applied using a fine droplet application device, for example, when a fine droplet application device equipped with fine nozzles of 1000 ⁇ m or less is used. Even in this case, scattering or spreading (outflow) occurs in a range exceeding the intended coating area, and it is difficult to form a fine pattern.
  • Patent Document 1 In order to solve such a problem, in Patent Document 1, two kinds of curable organopolysiloxanes that react by mixing are separately applied from two different nozzles and mixed on a base material to obtain a rapid curing property.
  • a simple pattern production method using an excellent curable polyorganosiloxane composition has been proposed.
  • this method requires a fine droplet coating device corresponding to a nozzle for two liquids, and multi-component coating and liquid separation coating substantially depending on physical contact of the two liquids on a substrate. Therefore, the work efficiency and precision coating properties are not sufficient, and in particular, regarding the curing properties, there may be cases where the curability or the properties of the cured product cannot be realized assuming the complete mixing of both liquids.
  • a curable organopolysiloxane suitable for precision coating and fine pattern formation by a one-component type fine droplet coating device such as a jet dispenser.
  • MEMS devices such as small and highly integrated sensors using the MEMS (microelectromechanical systems) technology have been widely used.
  • MEMS (microelectromechanical systems) devices are used at low temperature because they are used in a wide temperature range including low temperature of about -70 ° C to room temperature.
  • Patent Documents 2 to 5 are known as techniques for improving the cold resistance of a composition.
  • Patent Document 2 by using a combination of an organohydrogensilane compound and an organohydrogenpolysiloxane having a silicon atom-bonded hydrogen atom only at a molecular chain terminal in a gel-type hydrosilylation reaction cured product at a fixed ratio, -75 It has been proposed that it is possible to suppress the change in elastic modulus at temperatures between 25 ° C and 25 ° C.
  • the composition is in the form of gel, is not suitable for precision coating / formation of a fine pattern, and cannot achieve sufficient hardness as a die attach agent.
  • Patent Documents 3 and 4 cold resistance is realized by using a large amount of a resin-structured organopolysiloxane or branched organopolysiloxane, but cold resistance at -70 ° C. is unsatisfactory. In addition to being sufficient, there is a problem that it cannot be applied to precision coating and fine pattern formation.
  • Patent Document 5 proposes the use of an organopolysiloxane containing 1 mol% or more of phenyl groups for the purpose of improving the cold resistance of a silicone adhesive sheet, but the document is intended for sheet formation.
  • the problems relating to precision coating and fine pattern formation have not been described or suggested, and the compositions described in the examples and the like cannot be applied to precision coating and fine pattern formation.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to perform precision coating and fine pattern formation with a fine liquid droplet coating device such as a jet dispenser in a one-liquid system, and its curability and handling workability are excellent.
  • a fine liquid droplet coating device such as a jet dispenser
  • the present invention aims to provide an electronic component or a precursor thereof provided with the composition or a cured product thereof.
  • the present inventors have focused on the rheological properties of the composition, a curable organopolysiloxane composition whose viscosity and fluidity greatly change in a high shear region to a low shear region,
  • the inventors have found that the above problems can be solved by using a composition in which the content of silicon atom-bonded aromatic functional groups in the composition is within a certain range, and have reached the present invention. That is, when a composition is applied for ejection from a fine droplet application device or the like, the fluidity of the composition increases, and smooth ejection from a nozzle or the like is possible.
  • the object of the present invention is that the viscosity at a strain rate of 1,000 (1 / s) is 2.0 Pa ⁇ s or less, and the viscosity at a strain rate of 0.1 (1 / s) is The viscosity is 50.0 times or more of the viscosity at 000 (1 / s), and the content of the silicon atom-bonded aromatic functional group in the composition is 1.0 to 6.0% by mass.
  • a range of curable organopolysiloxane compositions solve the problem.
  • the viscosity at a strain rate of 1,000 (1 / s) is 1.5 Pa ⁇ s or less
  • the viscosity at a strain rate of 0.1 (1 / s) is 50 Pa ⁇ s or more.
  • the viscosity at a strain rate of 1,000 (1 / s) may be a value 75.0 times or more the viscosity at a strain rate of 0.1 (1 / s), or even 100.0 times or more.
  • the content range of the silicon atom-bonded aromatic functional group in the composition may be in the range of 1.5 to 5.0% by mass, preferably 2.0 to 4.0% by mass. It can be a range.
  • a known method can be used, and for example, the rheometer MCR-102 manufactured by Anton Paar can be used under the following measurement conditions.
  • the curable organopolysiloxane composition of the present invention is not limited in its curing system, it preferably contains at least a hydrosilylation-reactive organopolysiloxane, and (A) has a viscosity of 10 at 25 ° C.
  • Organohydrogenpolysiloxane An amount such that the silicon atom-bonded hydrogen atom in the component (B) is 0.2 to 5 mol with respect to 1 mol of the alkenyl group contained in the component (A), (C) a catalytic amount of a catalyst for hydrosilylation reaction, (D) 2.5 to 20.0 parts by mass of a functional filler having an average particle diameter of 0.01 to 10 ⁇ m measured by a laser diffraction / scattering method, Organo containing (E) one or more kinds of adhesion promoters and (F) hydrosilylation reaction inhibitor, and at least a part of the component (A) or the component (B) has a silicon atom-bonded aromatic functional group.
  • a part of the component (A) has a viscosity (A1) at 25 ° C. of 10 to 100,000 mPa ⁇ s and contains a silicon atom-bonded aromatic functional group in a range of 2.0 to 25.0 mass%.
  • the alkenyl group-containing organopolysiloxane is From the viewpoint of high viscosity and low fluidity in a low strain rate region, the component (D) is a reinforcing filler (D1) having an average primary particle diameter of 0.01 to 0.5 ⁇ m. You may have at least.
  • the component (F) is a mixture of (F1) an acetylene-based hydrosilylation reaction inhibitor and (F2) a cycloalkenylsiloxane-based hydrosilylation reaction inhibitor. Good.
  • the object of the present invention is preferably achieved by a one-pack type curable organopolysiloxane composition, and in particular, any one-pack type curable organopolysiloxane composition used for pattern formation applications.
  • the pattern is preferably a so-called fine pattern, and is a coating area of the curable organopolysiloxane composition, and its shape is a coating area or line width of 1000 ⁇ m that fits within a frame having a length and width of 1000 ⁇ m. It may be the following linear region or a combination thereof, and in particular, it is preferably a fine pattern formed by forming a plurality of substantially dot-shaped or linear coating regions.
  • the object of the present invention is preferably achieved by a one-pack type curable organopolysiloxane composition applied by a fine droplet coating device.
  • the fine droplet coating device may be of an inkjet coating type or a dispenser coating type, but is most preferably a jet dispenser.
  • the object of the present invention is achieved by a method for forming a pattern, characterized in that any one of the above-mentioned curable organopolysiloxane compositions is applied to a substrate by a fine droplet coating device.
  • the pattern is formed by applying the composition using a fine droplet coating device having a nozzle diameter of 1000 ⁇ m or less, a coating region that fits within a frame having a length and width of 1000 ⁇ m, or a linear shape having a line width of 1000 ⁇ m or less. It is preferable to include at least a region or a combination thereof, and it is preferable that the fine pattern has a plurality of substantially dot-shaped application regions. Further, in the above pattern forming method, it is particularly preferable to use a jet dispenser as the fine droplet coating device.
  • an electronic component or a precursor thereof which has a structure in which the above-mentioned curable organopolysiloxane composition or a cured product thereof is applied to at least a part of the region.
  • the region to which the above-mentioned curable organopolysiloxane composition or its cured product is applied is formed for one or more purposes selected from protection, sealing, sealing and coating of electronic components or their precursors.
  • protection, sealing, sealing and coating of electronic components or their precursors preferable.
  • semiconductor chips, protection of electrodes or wiring, sealing of semiconductor chips and electrodes, sealing of gaps and gaps of electronic parts, coating of these are specific applications, protection using the above fine pattern, Preference is given to sealing, sealing and coating.
  • the electronic component may be a semiconductor device, and in particular, the electronic component may be a MEMS device.
  • the present invention it is possible to perform precise coating and fine pattern formation by a single liquid system using a fine droplet coating device such as a jet dispenser, and its curability and handling workability are excellent, and particularly, the cured product has excellent cold resistance and a wide temperature range.
  • a curable organopolysiloxane composition that can be used in a region, and a pattern forming method using the same can be provided. Furthermore, it is possible to provide an electronic component or a precursor thereof provided with the composition or a cured product thereof.
  • the curable organopolysiloxane composition increases the fluidity of the composition when a shear is applied to it for ejection from a fine droplet coating device or the like, smooth ejection from a nozzle or the like is possible. Once ejected from a nozzle or the like and the composition is released from the share at the time of ejection, it has macroscopic rheological characteristics that the fluidity of the composition is significantly reduced and the composition becomes highly viscous. That is, the composition is capable of being smoothly discharged by a fine droplet coating device or the like, but suddenly loses fluidity from discharge to application to a base material and becomes a highly viscous droplet.
  • the curable organopolysiloxane composition according to the present invention contains a certain amount of silicon atom-bonded aromatic functional groups in the composition, different molecular arrangements derived from aromatic functional groups in the cured product are random. Will be introduced to. As a result, as compared with the case where a silicon atom-bonded aromatic functional group is scarcely contained or a large amount is contained, as compared with the case where the main molecular structure of the cured product is a silicon atom-bonded aromatic functional group, at a low temperature such as ⁇ 70 ° C. Also, changes in elastic modulus of the cured product are suppressed, cold resistance is improved, and reliability and low-temperature durability of the curable organopolysiloxane composition or an electronic component including the cured product are improved.
  • the viscosity of the curable organopolysiloxane composition according to the present invention changes depending on its strain rate (1 / s), and the viscosity at a strain rate of 1,000 (1 / s) is 2. It is 0 Pa ⁇ s or less, and the viscosity at a strain rate of 0.1 (1 / s) is 50.0 times or more the viscosity at a strain rate of 1,000 (1 / s). .
  • This large change in viscosity corresponds to a large change in fluidity from the high shear region to the low shear region of the composition, and preferably the viscosity at a strain rate of 1,000 (1 / s) is It is a value 75.0 times or more the viscosity at a strain rate of 0.1 (1 / s), and preferably 100.0 times or more.
  • the composition has a viscosity of 1.5 Pa ⁇ s or less at a strain rate of 1,000 (1 / s). It is preferable that the viscosity at a strain rate of 0.1 (1 / s) is 50 Pa ⁇ s or more. The smaller the viscosity at a strain rate of 1,000 (1 / s), the easier it is to discharge from a jet dispenser or the like and the problems such as nozzle clogging do not occur. Therefore, the viscosity at a strain rate of 1,000 (1 / s) is 0.
  • the viscosity is in the range of 50.0 to 500.0 Pa ⁇ s and 55.0 to 300.0 Pa ⁇ s on the assumption that the viscosity is 50 times or more the viscosity at the strain rate of 1,000 (1 / s). It may range, or range from 55.0 to 275.0.
  • the curable organopolysiloxane composition according to the present invention has thixotropic properties.
  • the viscosity in the high shear region of the composition can be designed mainly by selecting the polymer component (organopolysiloxane), and the viscosity in the low shear region of the composition is mainly selected by the filler. Allows its design.
  • the curable organopolysiloxane composition of the present invention is not particularly limited to the constituent components, the curing system, the organopolysiloxane and the filler thereof, as long as the above-mentioned characteristics are satisfied, and the cured product A desired composition can be designed according to the characteristics and purpose of use.
  • the curable organopolysiloxane composition according to the present invention is characterized in that the composition contains a certain amount of silicon atom-bonded aromatic functional groups.
  • the silicon atom-bonded aromatic functional group is randomly introduced into the siloxane molecular array at the time of curing, so that the silicon atom-bonded aromatic functional group is predominantly contained in the array mainly composed of the dimethylpolysiloxane group at a constant ratio.
  • a siloxane array containing is formed.
  • the molecular arrangement becomes moderately inhomogeneous, the change in elastic modulus of the cured product is suppressed even at a low temperature such as ⁇ 70 ° C., the cold resistance is improved, and the curable organopolysiloxane composition or The reliability and low temperature durability of the electronic component provided with the cured product are improved.
  • the content of the silicon atom-bonded aromatic functional group in the composition is in the range of 1.0 to 6.0% by mass, and a cured product of the curable organopolysiloxane composition excluding an organic solvent and the like.
  • the content of the silicon atom-bonded aromatic functional group is preferably in the range of 1.0 to 6.0 mass% with respect to the total amount of the forming components (components (A) to (F) described later), and the composition
  • the content of the silicon atom-bonded aromatic functional group therein is more preferably in the range of 1.5 to 5.0% by mass, and particularly preferably in the range of 2.0 to 4.0% by mass. If the content of the silicon atom-bonded aromatic functional group in the composition is less than the lower limit, the cold resistance of the cured product cannot be sufficiently improved, and the elasticity changes rapidly especially at low temperatures such as -70 ° C. This causes a decrease in reliability and low temperature durability of the electronic component using the cured product.
  • the silicon atom-bonded aromatic functional group is an aromatic functional group that is an aryl group or an aralkyl group bonded to a silicon atom, and is one or more aryl groups selected from a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. Is preferable, and from the viewpoint of industrial production, a phenyl group is particularly preferable.
  • means for introducing a silicon atom-bonded aromatic functional group is optional, but a part of the curing-reactive organopolysiloxane is preferably an organopolysiloxane having a silicon atom-bonded aromatic functional group, In that case, it is preferable to use a curing-reactive organopolysiloxane containing a silicon atom-bonded aromatic functional group in the range of 2.0 to 25.0% by mass.
  • the curable organopolysiloxane composition according to the present invention is not particularly limited in the curing system, and is a functional group having curing reactivity such as hydrosilylation reaction, condensation reaction, radical reaction, and high energy ray reaction. It is preferable to contain at least one or more kinds in the composition.
  • the composition has a hydrosilylation-reactive functional group, since handling workability and rapid curing are possible, and if desired, a condensation-reactive functional group or a high energy ray reactive May further have a functional group of, and may be used in combination with a radical reaction such as a peroxide.
  • the curable organopolysiloxane composition of the present invention comprises (A) 100 parts by mass of an alkenyl group-containing organopolysiloxane having a viscosity at 25 ° C. of 10 to 100,000 mPa ⁇ s, (B) Organohydrogenpolysiloxane: An amount such that the silicon atom-bonded hydrogen atom in the component (B) is 0.2 to 5 mol with respect to 1 mol of the alkenyl group contained in the component (A), (C) a catalytic amount of a catalyst for hydrosilylation reaction, (D) 2.5 to 20.0 parts by mass of a functional filler having an average particle diameter of 0.01 to 10 ⁇ m measured by a laser diffraction / scattering method, Organo containing (E) one or more kinds of adhesion promoters and (F) hydrosilylation reaction inhibitor, and at least a part of the component (A) or the component (B) has a silicon atom-bonded aromatic functional
  • the alkenyl group-containing organopolysiloxane which is the component (A), is the main ingredient of the present composition and has a viscosity at 25 ° C. of 10 to 100,000 mPa ⁇ s.
  • the “viscosity at 25 ° C.” is a kinematic viscosity measured by the component (A) alone with a rotary viscometer or the like.
  • at least a part of the component (A) has a viscosity of (A1) at 25 ° C. of 10 to 100,000 mPa ⁇ s and a silicon atom-bonded aromatic functional group of 2.0 to 25.0% by mass.
  • the contained alkenyl group-containing organopolysiloxane is preferable.
  • the viscosity of component (A) at 25 ° C. is preferably in the range of 10 to 100,000 mPa ⁇ s, and more preferably in the range of 10 to 10,000 mPa ⁇ s.
  • the viscosity of the component (A) is less than 10 mPa ⁇ s, the viscosity at a strain rate of 0.1 (1 / s) of the composition may excessively decrease, and the above rheological properties may not be realized.
  • the component (A) is composed of one or more alkenyl group-containing organopolysiloxanes.
  • the molecular structure of such an alkenyl group-containing organopolysiloxane is not particularly limited, and examples thereof include linear, branched, cyclic, three-dimensional network structures, and combinations thereof.
  • the component (A) may be composed only of a straight chain alkenyl group-containing organopolysiloxane, or may be composed only of a branched structure alkenyl group-containing organopolysiloxane, or may be composed of a straight chain organopolysiloxane.
  • It may be composed of a mixture of a polysiloxane and an alkenyl group-containing organopolysiloxane having a branched structure.
  • alkenyl group in the molecule include vinyl group, allyl group, butenyl group, hexenyl group and the like.
  • organic group other than the alkenyl group in the component (A) an alkyl group such as a methyl group, an ethyl group and a propyl group; an aryl group such as a phenyl group and a tolyl group; a 3,3,3-trifluoropropyl group, etc.
  • the monovalent hydrocarbon group excluding the alkenyl group such as the halogenated alkyl group of is exemplified.
  • At least a part of the component (A) has a silicon atom-bonded aromatic functional group in addition to the alkenyl group, and particularly one or more kinds selected from a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. It further has an aryl group.
  • the component (A) is a linear alkenyl group-containing organopolysiloxane.
  • the bonding site of the alkenyl group is not particularly limited, and may be at the end of the molecular chain or may be in the form of being bonded to the side chain via the silicon atom on the polysiloxane constituting the main chain.
  • an alkenyl group may be contained at both ends of the molecular chain, or an alkenyl group may be contained only at both ends of the molecular chain.
  • the component (A) is not particularly limited, but includes, for example, dimethylpolysiloxane endcapped with dimethylvinylsiloxy groups at both molecular chain ends, dimethylsiloxane-methylphenylsiloxane copolymer endcapped with dimethylvinylsiloxy groups at both molecular chain ends, and both molecular chain ends.
  • these alkenyl group-containing organopolysiloxanes have a low molecular weight siloxane oligomer (octamethyltetrasiloxane (D4), decamethylpentasiloxane (D5)) reduced or removed from the viewpoint of prevention of contact failures. Is preferred.
  • the organopolysiloxane having a silicon atom-bonded aromatic functional group which is the component (A1), may be added in an amount of 5 to 50% by mass based on the total amount of the component (A).
  • An alkenyl group-containing organopolysiloxane having a content of 2.0 to 25.0 mass%, more preferably 3.0 to 15.0 mass% is used as at least a part of the component (A1).
  • the component (A) of the present invention further comprises a general formula bonded to a silicon atom:
  • R 1 is the same or different monovalent hydrocarbon group having no aliphatic unsaturated bond
  • R 2 is an alkyl group
  • R 3 is the same or different alkylene group
  • a Is an integer of 0 to 2 and p is an integer of 1 to 50.
  • the organopolysiloxane having these functional groups suppresses the thickening of the composition in the uncured state and has an alkoxysilyl group in the molecule, and therefore functions also as a surface treatment agent for the component (D). For this reason, thickening and oil bleeding of the obtained composition may be suppressed, and there may be a benefit that handling workability is not impaired.
  • the component (A) may be added alone to the composition, or may be kneaded with the component (D) described below and added to the composition in the form of a masterbatch or the like. The same applies to the component (A1) which is a part of the component (A).
  • the component (B) is a main cross-linking agent of the composition of the present invention, and organohydrogenpolysiloxane having two or more silicon atom-bonded hydrogen atoms in the molecule can be preferably used without particular limitation. From the viewpoint of flexibility of a cured product obtained by curing the composition of the present invention, the structure of the organohydrogenpolysiloxane and the number (average value) of silicon atom-bonded hydrogen atoms in the molecule may be designed.
  • a straight-chain organoorganic compound having at least two in the molecular chain side chain may be used as a chain extender, and in order to obtain a cured product having high hardness, a large number of silicon atom-bonded hydrogen atom organohydrogen polysiloxanes may be used as a cross-linking agent in the side chain, You may use these together.
  • a part of the component (B) may be an organohydrogenpolysiloxane having two or more silicon atom-bonded hydrogen atoms in the molecule and a silicon atom-bonded aromatic functional group.
  • the curable organopolysiloxane composition of the present invention is a composition comprising the above components (A) to (F), and the component (A) does not contain sufficient silicon atom-bonded aromatic functional groups. In some cases, it is necessary for component (B) to have sufficient silicon atom-bonded aromatic functional groups in order to improve cold resistance. However, when the component (A) contains a sufficient amount of silicon atom-bonded aromatic functional group, the component (B) may be an organohydrogenpolysiloxane containing no silicon atom-bonded aromatic functional group.
  • the component (B) contains at least 0.2 to 50 mol of silicon-bonded hydrogen atoms in the component (B) with respect to 1 mol of the alkenyl group contained in the component (A). It may be in the range of 0.2 to 30 mol, and may be in the range of 0.2 to 10, 0.2 to 5 mol.
  • Such a component (B) is a methyl chain-terminated trimethylsiloxy group-blocked methylhydrogensiloxane / dimethylsiloxane copolymer, a molecular chain-terminated dimethylhydrogensiloxy group-blocked methylhydrogensiloxane / dimethylsiloxane copolymer, a molecule.
  • An example is hydrogen polysiloxane. Note that these examples are not limiting, and a part of the methyl group may be substituted with a C2 or higher alkyl group, a phenyl group, a hydroxyl group, an alkoxy group, a halogen atom-substituted alkyl group, or the like.
  • the viscosity of the component (B1) at 25 ° C. is not particularly limited, but it is preferably in the range of 1 to 500 mPa ⁇ s, and from the viewpoint of preventing contact failure, etc., a low molecular weight siloxane oligomer (octamethyltetrasiloxane ( D4) and decamethylpentasiloxane (D5)) are preferably reduced or removed.
  • Examples of the hydrosilylation reaction catalyst include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Platinum-based catalysts are preferable because they can significantly accelerate the curing of the composition. Examples of the platinum-based catalyst include fine platinum powder, chloroplatinic acid, alcohol solution of chloroplatinic acid, platinum-alkenylsiloxane complex, platinum-olefin complex, platinum-carbonyl complex, and these platinum-based catalysts in silicone resin, polycarbonate.
  • a catalyst dispersed or encapsulated in a thermoplastic resin such as a resin or an acrylic resin is exemplified, and a platinum-alkenylsiloxane complex is particularly preferable.
  • the alkenyl siloxane includes 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenylsiloxanes in which a part of the methyl groups of these alkenylsiloxanes are substituted with ethyl groups, phenyl groups and the like, and alkenylsiloxanes in which the vinyl groups of these alkenylsiloxanes are substituted with allyl groups, hexenyl groups and the like.
  • 1,3-divinyl-1,1,3,3-tetramethyldisiloxane is preferable because the platinum-alkenylsiloxane complex has good stability.
  • a fine particle platinum-containing hydrosilylation reaction catalyst dispersed or encapsulated with a thermoplastic resin may be used.
  • a non-platinum-based metal catalyst such as iron, ruthenium, or iron / cobalt may be used as the catalyst for promoting the hydrosilylation reaction.
  • the addition amount of the catalyst for hydrosilylation reaction is a catalytic amount, and the amount is such that the metal atom is within the range of 0.01 to 500 ppm and within the range of 0.01 to 100 ppm in mass unit with respect to the component (A). It is preferable that the amount be in the range of 0.01 to 50 ppm.
  • the curable organopolysiloxane composition according to the present invention preferably further contains (D) a functional filler.
  • the functional filler is preferably one or more selected from a reinforcing filler, a heat conductive filler and a conductive filler, and particularly when the composition of the present invention is used as a protective agent or an adhesive. It is preferable to contain a reinforcing filler.
  • the particle size of the fine powder of these functional fillers is not particularly limited, but is, for example, in the range of 0.01 ⁇ m to 10 ⁇ m in median size (hereinafter simply referred to as “average particle size”) measured by laser diffraction scattering particle size distribution measurement. It is preferably within.
  • the composition of the present invention is suitable for precision application in a region having a diameter of 1000 ⁇ m or less, it is preferable that the functional filler having a large particle size is not included.
  • the average particle size includes one of the concepts of the average primary particle size and the secondary particle size depending on the type of the functional filler, but particularly in the reinforcing filler, the average primary particle size is It is preferably within the above range.
  • the reinforcing filler is a component for imparting mechanical strength to the silicone rubber cured product obtained by curing the composition and improving the performance as a protective agent or an adhesive.
  • a reinforcing filler include fumed silica fine powder, precipitated silica fine powder, calcined silica fine powder, fumed titanium dioxide fine powder, quartz fine powder, calcium carbonate fine powder, diatomaceous earth fine powder, and oxidation.
  • Inorganic fillers such as aluminum fine powder, aluminum hydroxide fine powder, zinc oxide fine powder, zinc carbonate fine powder and carbon black can be mentioned. These inorganic fillers can be used as organoalkoxysilanes such as methyltrimethoxysilane and trimethyl.
  • Organohalosilanes such as chlorosilanes, organosilazanes such as hexamethyldisilazane, ⁇ , ⁇ -silanol group-blocked dimethylsiloxane oligomers, ⁇ , ⁇ -silanol group-blocked methylphenylsiloxane oligomers, ⁇ , ⁇ -silanol group-blocked methylvinylsiloxane oligomers Siloxane oligos, etc. It may contain surface-treated inorganic filler by treating agent such as chromatography.
  • a low degree of polymerization organopolysiloxane having silanol groups at both ends of the molecular chain preferably ⁇ , ⁇ -silanol group-capped dimethylpolysiloxane having no reactive functional group other than the terminal silanol groups in the molecule.
  • (D1) a reinforcing filler having an average primary particle diameter in the range of 0.01 to 0.5 ⁇ m, particularly organosilazane, which has been subjected to any of the above surface treatments. It is preferable to use fine silica powder that has been treated with, etc., and has an average primary particle diameter in the range of 0.01 to 0.30 ⁇ m.
  • the content of the reinforcing filler is not limited, but is preferably in the range of 0.1 to 20.0 parts by mass, and 1.0 to 15.0 parts by mass, relative to 100 parts by mass of the above-mentioned organopolysiloxane. Parts, and the range of 2.0 to 10.0 parts by mass is particularly preferable from the effect of improving the viscosity at a strain rate of 0.1 (1 / s). Further, from the viewpoint of the mixability of the component (D), a part or all of the component (D) is kneaded in advance with the above-mentioned component (A) to obtain the component (D), the component (A) and the component (D).
  • At least a part of the component (A) is preferably the organopolysiloxane having a silicon atom-bonded aromatic functional group, which is the component (A1).
  • the thermally conductive filler or the electrically conductive filler is a component that imparts thermal conductivity or electrical conductivity to the silicone rubber cured product obtained by curing the composition, if desired, and includes gold, silver, nickel and copper.
  • Fine powder of metal such as; fine powder of metal such as gold, silver, nickel, copper deposited or plated on the surface of fine powder of ceramic, glass, quartz, organic resin, etc .; metal compound such as aluminum oxide, aluminum nitride, zinc oxide , And mixtures of two or more thereof.
  • Particularly preferred is silver powder, aluminum powder, aluminum oxide powder, zinc oxide powder, aluminum nitride powder or graphite.
  • the composition is preferably a metal oxide powder or a metal nitride powder, and particularly, an aluminum oxide powder, a zinc oxide powder, or an aluminum nitride powder. Preferably there is.
  • the composition according to the present invention preferably contains (E) one or more kinds of adhesion promoters, and specifically, one or more kinds of adhesion promoters selected from the following component components (e1) to (e4). It is preferable to include. By containing these components, excellent initial adhesion to unwashed aluminum die cast and resin materials, even when used in a harsh environment, further improved adhesive durability and adhesive strength, This makes it possible to maintain the reliability and durability of electric and electronic parts for a long period of time.
  • (E1) A reaction mixture of an amino group-containing organoalkoxysilane and an epoxy group-containing organoalkoxysilane (e2) having at least two alkoxysilyl groups in one molecule and having a silicon-oxygen bond between the silyl groups.
  • An organic compound containing a bond of (E3) General formula: R a n Si (OR b ) 4-n (In the formula, R a is a monovalent epoxy group-containing organic group, and R b is an alkyl group having 1 to 6 carbon atoms or a hydrogen atom.
  • N is a number in the range of 1 to 3.
  • a partial hydrolysis-condensation product (e4) thereof containing a vinyl group-containing siloxane oligomer (including chain or cyclic structure) and an epoxy group-containing trialkoxysilane containing a vinyl group-containing siloxane oligomer (including chain or cyclic structure) and an epoxy group-containing trialkoxysilane.
  • Component (e1) is a reaction mixture of an amino group-containing organoalkoxysilane and an epoxy group-containing organoalkoxysilane.
  • component (e1) is a component for imparting initial adhesiveness to various base materials that are in contact with each other during curing, especially low-temperature adhesiveness to an unwashed adherend. Further, depending on the curing system of the curable composition containing the present adhesion promoter, it may also act as a crosslinking agent.
  • Such a reaction mixture is disclosed in JP-B-52-8854 and JP-A-10-195085.
  • alkoxysilane having an amino group-containing organic group which constitutes the component (e1) examples include aminomethyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane and 3-aminopropylmethyldimethoxy.
  • An example is 3-anilinopropyltriethoxysilane.
  • epoxy group-containing organoalkoxysilane 3-glycidoxyprolyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- ( An example is 3,4-epoxycyclohexyl) ethylmethyldimethoxysilane.
  • the molar ratio of the alkoxysilane having an amino group-containing organic group to the alkoxysilane having an epoxy group-containing organic group is preferably in the range of (1: 1.5) to (1: 5), It is particularly preferable that it is in the range of (1: 2) to (1: 4).
  • This component (e1) is easily synthesized by mixing the above-mentioned alkoxysilane having an amino group-containing organic group and an alkoxysilane having an epoxy group-containing organic group and reacting them at room temperature or under heating. be able to.
  • R 4 is an alkylene group or an alkyleneoxyalkylene group
  • R 5 is a monovalent hydrocarbon group
  • R 6 is an alkyl group
  • R 7 is an alkylene group
  • R 8 is an alkyl group
  • It is an alkenyl group or an acyl group
  • a is 0, 1, or 2.
  • Is a group selected from the group consisting of groups represented by and R 3 is the same or different hydrogen atom or alkyl group.
  • R 3 is the same or different hydrogen atom or alkyl group.
  • It is particularly preferable to contain a carbasilatrane derivative represented by An example of such a carbasilatrane derivative is a silatrane derivative having an alkenyl group and a silicon atom-bonded alkoxy group in one molecule represented by the following structure.
  • the component (e2) is an organic compound having at least two alkoxysilyl groups in one molecule and having a bond other than a silicon-oxygen bond between the silyl groups, and the component (e2) alone has initial adhesiveness. In addition to the improvement, it functions to improve the adhesion durability of the cured product containing the present adhesion promoter under severe conditions, especially when used in combination with the above-mentioned components (e1) and (e3).
  • component (e2) has the following general formula: (In the formula, R C is a substituted or unsubstituted alkylene group having 2 to 20 carbon atoms, R D is independently an alkyl group or an alkoxyalkyl group, and R E is independently a monovalent hydrocarbon group. And b is each independently 0 or 1.) is preferable.
  • component (e2) various compounds are commercially available as reagents and products, and if necessary, they can be synthesized by a known method such as a Grignard reaction or a hydrosilylation reaction. For example, it can be synthesized by a known method in which a disilyl is hydrosilylated with a trialkoxysilane or an organodialkoxysilane.
  • R E is an alkyl group such as a methyl group, an ethyl group and a propyl group; an alkenyl group such as a vinyl group and an allyl group; a monovalent hydrocarbon group exemplified by an aryl group such as a phenyl group, and a lower alkyl group. Is preferred.
  • R D is an alkyl group such as a methyl group, an ethyl group or a propyl group; an alkoxyalkyl group such as a methoxyethyl group, and preferably has 4 or less carbon atoms.
  • R C is a substituted or unsubstituted alkylene group, a linear or branched alkylene group is used without limitation, and a mixture thereof may be used. From the viewpoint of improving the adhesiveness, a straight chain and / or branched chain alkylene group having 2 to 20 carbon atoms is preferable, and a straight chain and / or branched chain alkylene group having 5 to 10 carbon atoms, particularly, the number of carbon atoms. Hexylene of 6 is preferred.
  • the unsubstituted alkylene group is a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group or a branched chain product thereof, and its hydrogen atom is a methyl group, an ethyl group, a propyl group, a butyl group. It may be substituted with a cyclopentyl group, a cyclohexyl group, a vinyl group, an allyl group, a 3,3,3-trifluoropropyl group or a 3-chloropropyl group.
  • component (e2) examples include bis (trimethoxysilyl) ethane, 1,2-bis (trimethoxysilyl) ethane, 1,2-bis (triethoxysilyl) ethane, 1,2-bis (methyldimethoxy).
  • 1,6-bis (trimethoxysilyl) hexane 1,6-bis (triethoxysilyl) hexane, 1,4-bis (trimethoxysilyl) hexane, 1,5-bis ( Trimethoxysilyl) hexane, 2,5-bis (trimethoxysilyl) hexane, 1-methyldimethoxysilyl-6-trimethoxysilylhexane, 1-phenyldiethoxysilyl-6-triethoxysilylhexane, 1,6-bis
  • An example is (methyldimethoxysilyl) hexane.
  • the component (e3) has the general formula: R a n Si (OR b ) 4-n (In the formula, R a is a monovalent epoxy group-containing organic group, and R b is an alkyl group having 1 to 6 carbon atoms or a hydrogen atom. N is a number in the range of 1 to 3.)
  • the epoxy group-containing silane represented by or a partial hydrolysis-condensation product thereof which improves the initial adhesiveness by itself, and in particular, is used in combination with the above-mentioned component (e1) and component (e2) to give the present adhesion promoter. It functions to improve the adhesion durability of the cured product containing it under severe conditions such as immersion in salt water.
  • the component (e3) is one of the constituents of the component (e1), it does not react with the component (e1) which is a reaction product (typically, a carbasilatrane derivative which is a cyclized reaction product). It is necessary for the mass ratio to be within a specific range from the viewpoint of the technical effect of the invention, and it is necessary to add it as a component separate from the component (e1).
  • Such epoxy group-containing silanes include 3-glycidoxyprolyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethylmethyldimethoxysilane.
  • the component (e4) is an adhesion promoter having an epoxysiloxy unit represented by R 1 SiO 3/2 (R1 is an epoxy group) and a vinylsiloxy unit in the molecule, and is described in JP-A No. 01-085224. It is an ingredient.
  • adhesion promoters include epoxy group-containing trialkoxysilanes such as 3-glycidoxyprolyltrimethoxysilane, and chain vinyl group-containing siloxane oligomers having hydroxyl groups (silanol groups) at both ends of the molecular chain or tetramethyltetravinyl. It can be obtained by subjecting a cyclic vinyl group-containing siloxane oligomer such as cyclotetrasiloxane to a hydrolysis reaction in the presence of an alkali compound (see the above patent document).
  • the compounding amount of the (E) adhesion promoter is not limited, but it is preferable that the mass of the (E) adhesion promoter, which is the sum of the above components (e1) to (e4), be the curable organopolysiloxane composition.
  • the content may be in the range of 0.1 to 20% by mass, preferably 0.3 to 10% by mass, and particularly preferably 0.5 to 5.0% by mass.
  • the composition of the present invention preferably further contains a hydrosilylation reaction inhibitor.
  • the hydrosilylation reaction inhibitor is a component for suppressing the hydrosilylation reaction of the curable organopolysiloxane composition of the present invention, and specifically, for example, an acetylene type such as ethynylcyclohexanol, an amine type, Examples thereof include carboxylic acid ester-based and phosphorous acid ester-based reaction inhibitors.
  • the addition amount of the reaction inhibitor is usually 0.001 to 5% by mass based on the whole silicone composition.
  • the curable organopolysiloxane composition according to the present invention is suitable for use in a form in which it is applied by precision coating from a nozzle having a diameter of 1000 ⁇ m or less by a fine droplet coating device such as a jet dispenser.
  • the component (F) is composed of (F1) an acetylene-based hydrosilylation reaction inhibitor and (F2) a cycloalkenylsiloxane-based hydrosilylation reaction.
  • It may be a mixture of inhibitors, especially ethynylcyclohexanol, and 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetra A combination of methyl-1,3,5,7-tetrahexenylcyclotetrasiloxane is preferred.
  • the composition of the present invention comprises the above-mentioned components (A) to (F), optionally other cross-linking agent and hydrosilylation reaction inhibitor, and is a curable organopolysiloxane composition and a cured product thereof. From the viewpoint of improving heat resistance, it is preferable to further contain (G) a heat resistance imparting agent.
  • the component (G) is not particularly limited as long as it can impart heat resistance to the composition of the present invention and a cured product thereof, and examples thereof include iron oxide, titanium oxide, cerium oxide, magnesium oxide, aluminum oxide and zinc oxide.
  • Examples thereof include metal oxides, metal hydroxides such as cerium hydroxide, phthalocyanine compounds, carbon black, cerium silanolates, cerium fatty acid salts, and reaction products of organopolysiloxanes and cerium carboxylates.
  • a phthalocyanine compound for example, an additive selected from the group consisting of a metal-free phthalocyanine compound and a metal-containing phthalocyanine compound disclosed in Japanese Patent Publication No. 2014-503680 is preferably used, and a metal-containing phthalocyanine is preferably used.
  • copper phthalocyanine compounds are particularly suitable.
  • One example of the most suitable and non-limiting heat resistance imparting agent is 29H, 31H-phthalocyaninato (2-)-N29, N30, N31, N32 copper.
  • Such phthalocyanine compounds are commercially available, for example, Stan-tone TM 40SP03 from PolyOne Corporation (Avon Lake, Ohio, USA).
  • the blending amount of such a component (G) may be in the range of 0.01 to 5.0% by mass of the entire composition, 0.05 to 0.2% by mass, 0.07 to 0% by mass. It may be in the range of 1% by mass.
  • the curable organopolysiloxane composition of the present invention may contain optional components as long as the object of the present invention is not impaired.
  • the optional component include trifunctional alkoxy such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, and phenyltrimethoxysilane as an optional crosslinking agent component.
  • Silanes tetrafunctional alkoxysilanes such as tetramethoxysilane and tetraethoxysilane; and partially hydrolyzed condensates thereof may be included.
  • the present composition is an organic solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, hexane and heptane; an organopolysiloxane containing no silicon atom-bonded hydrogen atoms and silicon atom-bonded alkenyl groups, a cold resistance imparting agent, Examples thereof include flame retardancy-imparting agents, pigments and dyes.
  • the curable organopolysiloxane composition of the present invention is, if desired, one kind of other known adhesiveness-imparting agents, cationic surfactants, anionic surfactants, nonionic surfactants and the like.
  • the above antistatic agent; dielectric filler; electrically conductive filler; releasable component; thixotropic agent; antifungal agent and the like can be included.
  • the curable organopolysiloxane composition of the present invention can be prepared by uniformly mixing the above-mentioned components. For example, a part of the component (A) and the component (D) are mixed in advance to form a masterbatch. After that, it can be prepared by mixing the other optional components such as the remaining components (A) to (C), component (E), component (F) and component (G). However, the order of addition during production of the composition is not limited to this.
  • the mixing method of each component may be a conventionally known method and is not particularly limited. However, since a uniform mixture is usually formed by simple stirring, mixing using a mixing device is preferable.
  • the mixing device is not particularly limited, and examples thereof include a single-screw or twin-screw continuous mixer, a twin roll, a Ross mixer, a Hobart mixer, a dental mixer, a planetary mixer, a kneader mixer, and a Henschel mixer.
  • the curable organopolysiloxane composition of the present invention is preferably used as a one-component type (including one-component type) composition.
  • Each component of the composition is put in a single storage container, and a jet dispenser or the like is used. It can be used by the fine droplet coating device.
  • these packages can be selected as desired according to a curing method, a coating means, and an application target described later, and are not particularly limited.
  • the pattern manufacturing method includes a step of preparing a base material.
  • the base material may be a substantially flat or solid substrate having undulations / irregularities associated with circuit arrangement, etc., and the material thereof is not particularly limited, but metal such as aluminum, iron, zinc, copper, magnesium alloy, epoxy resin, acrylic Examples thereof include resins, plastics such as ABS, PA, PBT, PC, PPS and SPS, and glass.
  • the thickness of the base material is not particularly limited, but may be 0.1 to 10 mm.
  • the method for applying the curable polyorganosiloxane composition is not particularly limited, but in order to utilize the advantages of the present invention, it is preferable to apply the curable polyorganosiloxane composition onto the above-mentioned substrate using a fine droplet coating device.
  • Examples of the fine droplet coating device that can be used in the present invention include an inkjet coating system and a dispenser coating system.
  • the curable polyorganosiloxane composition of the present invention is coated by a dispenser coating system.
  • the dispenser coating method includes an air type, a valve type, a screw type, a volume type, and a jet type dispenser, and the jet dispenser is preferable from the viewpoint of fine pattern coating.
  • the jet dispenser includes an air valve system, a solenoid system, and a piezo system, and the piezo system is preferable from the viewpoint of applying a fine pattern.
  • the size and weight of one-shot droplet of the curable polyorganosiloxane composition discharged by the fine droplet discharge device can be designed by selecting the fine droplet coating device and discharge conditions. Can be 50 ⁇ g or less, 30 ⁇ g or less, 25 ⁇ g or less, and depending on the device, even a droplet amount of 10 ⁇ g, which is a minute amount, can be designed.
  • the coating amount of the curable portion and the landing position of the droplets of the curable portion can be precisely controlled, and a high-density pattern (that is, the curable polyorganosiloxane composition). Cured product) can be formed.
  • these fine droplet applying devices are provided with a nozzle for ejecting the composition in a droplet form.
  • the diameter of the coating nozzle is not particularly limited, but for the purpose of performing precise dot coating, the nozzle diameter needs to be 1000 ⁇ m or less, preferably 50 to 200 ⁇ m, and preferably 100 to 150 ⁇ m. Is particularly preferable.
  • the curable polyorganosiloxane composition of the present invention has improved fluidity at high shear, if the coating nozzle diameter is 50 ⁇ m or more, stable droplet coating can be performed, and the coating nozzle diameter is If it is 200 ⁇ m or less, there is an advantage that a larger amount of liquid droplets can be applied in a short time, and the liquid droplets apparently have a sharp decrease in fluidity from the moment of ejection, and thus the viscosity increases, Enables precision coating.
  • the dispensing frequency is not particularly limited, but 1 ms / shot to 10 s / shot is preferable, and 1 ms / shot to 10 ms / shot is preferable.
  • the moving speed of the nozzle is not particularly limited, but is preferably 1 to 300 mm / sec, more preferably 50 to 100 mm / sec. However, the dispensing frequency and the moving speed of the nozzle can be appropriately set according to the device and the purpose.
  • the curable polyorganosiloxane composition of the present invention is applied onto a substrate using the above-mentioned fine droplet coating device to form a pattern including fine dot-like or linear application regions on the substrate. It is possible.
  • Each of the coating areas forming the pattern is a dot-like or linear shape, and is a fine area. Therefore, the coating area within the frame having a length and width of 1000 ⁇ m (particularly within a frame having a diameter of 1000 ⁇ m or less It is preferably a circular region) or a linear region having a line width of 1000 ⁇ m or less. Since the curable polyorganosiloxane composition of the present invention is particularly suitable for forming a precise pattern, each coating area falls within a frame having a diameter of 800 ⁇ m or less depending on the selection of a fine droplet coating device and discharge conditions.
  • the pattern may be a substantially circular area, a linear area having a line width of 800 ⁇ m or less, or a combination thereof.
  • the coating area can be designed to be a substantially circular area within a frame of 5 to 500 ⁇ m, a linear area having a line width of 5 to 500 ⁇ m, or a pattern composed of a combination thereof. is there.
  • the interval between the coating regions can be designed arbitrarily, but may be 5.0 mm or less, or may be designed to be in the range of 0.5 to 4.5 mm.
  • Each coating area forming the pattern is formed from droplets discharged from the fine droplet coating apparatus, and the thickness thereof is not particularly limited, and the type and application of the fine droplet coating apparatus such as a jet dispenser. It can be designed as appropriate.
  • the coating thickness per droplet (one shot) may be in the range of 1 to 1000 ⁇ m, more preferably 1 to 500 ⁇ m, particularly preferably 1 to 300 ⁇ m.
  • the curable polyorganosiloxane composition of the present invention apparently behaves as if the discharged droplets suddenly lose their fluidity and increase in viscosity, they can be precisely coated in multiple layers in the same coating area. Even if it does not scatter or flow out (spread), it has an advantage that the coating thickness of the composition can be easily adjusted by forming multiple layers. For example, it is possible to accurately form a portion where the curable organopolysiloxane is applied in multiple layers (appearing as a physically raised application area) by continuously performing shots on one application area. It is possible.
  • the present composition is useful for manufacturing electronic parts, image display devices and the like having the above patterns, and can be used, for example, in a method for forming a dam material in the manufacture of electronic parts and the like.
  • the dam material is used to form a frame in the display part or the protection part of the electronic component or the image display device, and by applying the sealant in the frame, the sealant may be projected from the display part or the like. Can be prevented.
  • the curable polyorganosiloxane composition of the present invention is a one-pack type composition, and a cured system containing a hydrosilylation reaction is selected to form a cured product easily in a short time. Therefore, there is an advantage that the yield and production efficiency in industrial production of these electronic parts, image display devices, etc. can be improved.
  • the curable organopolysiloxane composition applied to the above region is cured by a means such as heating to form a cured product.
  • the purpose of applying the curable organopolysiloxane composition or a cured product thereof is arbitrary, but in the case of semiconductor members, one or more purposes selected from protection, sealing, sealing and coating of electronic components or their precursors. Is preferably formed. For example, semiconductor chips, protection of electrodes or wiring, sealing of semiconductor chips and electrodes, sealing of gaps and gaps of electronic parts, coating of these are specific applications, protection using the above fine pattern, Preference is given to sealing, sealing and coating.
  • the fine pattern made of the cured product on the substrate can be widely used for industrial production of electronic parts, image display devices, MEMS devices and the like. Further, the cured product can be used in a wide temperature range of ⁇ 70 ° C. to room temperature, and even if it is used at a low temperature such as ⁇ 70 ° C., the elasticity of the cured product does not significantly change, so that it has excellent cold resistance. When used for these electronic parts and the like, there is an advantage that the reliability and low temperature durability can be further improved.
  • the curable organopolysiloxane composition according to the present invention is preferably cured by a hydrosilylation reaction to form an organopolysiloxane cured product.
  • the temperature condition for curing the hydrosilylation reaction-curable silicone composition is not particularly limited, but is usually in the range of 20 ° C to 200 ° C, and more preferably in the range of 20 to 180 ° C. If desired, it may be cured at a high temperature in a short time, and a cured product is easily formed in a short time, so that the yield and production efficiency in industrial production of these electronic parts, image display devices, MEMS devices, etc. can be improved. There are advantages. However, if desired, the composition may be cured at a low temperature such as room temperature for a long time (for example, several hours to several days), and is not particularly limited.
  • the curable organopolysiloxane composition of the present invention can form a fine pattern of the cured product on the substrate by forming the pattern on the substrate and then curing it under desired curing conditions. It can be widely used for industrial production of electronic parts, image display devices and the like.
  • the curable organopolysiloxane composition of the present invention can be applied to at least a partial region to provide an electronic component or a precursor thereof having a structure to which the composition or a cured product thereof is applied. That is, in the electronic component or the precursor thereof according to the present invention, it is sufficient that the curable polyorganosiloxane composition described above is applied to at least a part of the area, and the applied area forms the pattern. Is particularly preferable.
  • the electronic component or its precursor may be a known semiconductor device such as a diode, a transistor, a thyristor, a monolithic IC, a hybrid IC, an LSI, a VLSI or the like, or a precursor thereof, and in particular, a MEMS device or a precursor thereof.
  • the MEMS device is a generic term for semiconductor devices formed by using a semiconductor microfabrication technology generally called Micro Electro Mechanical Systems, and includes an inertial sensor such as an acceleration sensor or an angular velocity sensor equipped with a MEMS chip, or an image sensor. It may be a display device or the like.
  • a precursor of a semiconductor device or the like is a general term for unfinished electronic components before being completed as a semiconductor device by subsequent die bonding of a chip or the like by wiring, placement of chips, heating, etc. It is a concept that includes general electronic component members that are distributed and exported / imported in a state before finishing.
  • An electronic component or a precursor thereof according to the present invention is obtained by a method for producing an electronic component or a precursor thereof, which comprises at least a step of applying the above-mentioned curable organopolysiloxane composition using a fine droplet coating device.
  • the application conditions and application areas are as described above, and in particular, the area to which the curable organopolysiloxane is applied is a substantially circular area within a frame having a diameter of 500 ⁇ m or less, and a linear shape having a line width of 500 ⁇ m or less.
  • the pattern composition composed of regions or a combination thereof may be the above-mentioned pattern, and it is particularly preferable that the fine droplet coating device is a jet dispenser having a discharge port having a nozzle diameter of 50 to 200 ⁇ m.
  • the method for producing an electronic component or a precursor thereof of the present invention in addition to the above steps, if desired, a wafer protective film forming step or a wiring processing step to a semiconductor substrate, a chip and electrode connecting step, a polishing step. It goes without saying that the treatment step and a part or all of the sealing step may be included at desired timing.
  • the electronic component or the precursor thereof according to the present invention may be a known semiconductor device such as a diode, a transistor, a thyristor, a monolithic IC, a hybrid IC, an LSI or a VLSI or a precursor thereof, and in particular, a MEMS device or a precursor thereof.
  • the MEMS device is a general term for a semiconductor device formed by using a semiconductor microfabrication technique generally called Micro Electro Mechanical Systems, and includes an inertial sensor such as an acceleration sensor or an angular velocity sensor equipped with a MEMS chip, or a magnetic sensor.
  • Environmental sensors such as sensors, pressure sensors, microphones, gas, humidity, particles, image sensors, actuators using MEMS technology, such as optical system actuators such as auto focus and micro mirrors, wireless communication components, micro speakers, images It may be a display device or the like.
  • a precursor of a semiconductor device or the like is a general term for unfinished electronic components before being completed as a semiconductor device by subsequent die bonding of a chip or the like by wiring, placement of chips, heating, etc. It is a concept that includes general electronic component members that are distributed and exported / imported in a state before finishing.
  • the cured product obtained by curing the curable organopolysiloxane composition according to the present invention can be used in a wide temperature range from ⁇ 70 ° C.
  • A6 A dimethylvinylsiloxy group-capped dimethylpolysiloxane / methylphenylpolysiloxane copolymer having a molecular chain at both ends and having a viscosity of 2,000 mPas at 20 ° C.
  • B2 Methylhydrogensiloxane / dimethylsiloxane copolymer capped with trimethylsiloxy groups at both molecular chain terminals and having a viscosity of 30 mPas at 20 ° C.
  • C1 Platinum having a platinum concentration of 0.6% by mass and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex
  • D1 Master batch of 80% by mass of the above A3 component and 20% by mass of silazane-treated dry silica (average primary particle diameter measured by laser diffraction / scattering method: 0.1 to 0.2 ⁇ m)
  • D2 Master batch of 70% by mass of the above A6 component and 30% by mass of silazane-treated dry silica (average primary particle diameter measured by laser diffraction / scattering method: 0.1 to 0.2 ⁇ m)
  • E1 Condensation reaction product of methyl vinyl siloxane oligomer having a viscosity of 30 mPa ⁇ s with hydroxyl groups blocked at both ends of the molecular chain and 3-glycidoxypropyltrimethoxysilane in a mass ratio of 1: 1.
  • F1 e
  • the test regarding the technical effect of the present invention was conducted as follows.
  • [viscosity] The viscosity (Pa ⁇ s) of the composition at 25 ° C. was measured using a rheometer MCR-102 manufactured by Anton Paar. The geometry uses a 20 mm diameter, 2 degree cone type, pre-share: 10 (1 / s), 60 s, equilibration time (stop time after pre-share): 60 s, strain rate from 0.05 (1 / s) to 5000 (1 / s), the strain rate increase rate was increased at 120 s / decade and measured.
  • Hardness of cured product The hardness of the cured product of the composition was measured using a type A durometer specified in JIS K6253.
  • the compositions of Examples 1 and 2 meet the requirements of the invention. That is, the viscosity at a strain rate of 1,000 (1 / s) is sufficiently low at 2.0 Pa ⁇ s or less, and the viscosity at a strain rate of 0.1 (1 / s) is at a strain rate of 1,000 (1 / s).
  • the compositions of Examples 1 and 2 can be precisely coated in a range of an average coating diameter of 800 ⁇ m or less by using a jet dispenser which is a fine droplet coating device.
  • the composition had a content of silicon atom-bonded aromatic functional groups (phenyl groups) derived from the raw materials A6 and D1 components within the range specified by the present application, and the cured product had a G * at ⁇ 70 ° C. of 25. It is 10 times or less of G * at 0 ° C, that is, no rapid change in elastic modulus is observed from the ultralow temperature range to the room temperature. Therefore, the cured product has good cold resistance and can be used in a wide temperature range. It could be confirmed.
  • the content of the silicon atom-bonded aromatic functional group in the composition was 0% by mass, and when using the jet dispenser which is a fine droplet coating device, the average coating diameter was 800 ⁇ m or less.
  • the G * at -70 ° C of the cured product is 100 times or more than the G * at 25 ° C, and unlike Example 1 or Example 2, curing It was impossible to realize the cold resistance of the product.
  • the cured product of Comparative Example 1 showed a sharp change in G * at around -50 ° C. It was confirmed that the cold resistance at temperatures below °C was insufficient.
  • the composition of Comparative Example 2 had an excessive content of the silicon atom-bonded aromatic functional group (phenyl group) derived from the raw material A6 and D1 components, and was able to achieve a certain cold resistance.
  • the viscosity at a strain rate of 1,000 (1 / s) is 2.0 Pa ⁇ s or more, and the viscosity at a strain rate of 0.1 (1 / s) is the viscosity at a strain rate of 1,000 (1 / s). Since it was less than 50.0 times, stable jetting could not be performed and precise coating could not be performed when using a jet dispenser which is a fine droplet coating device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

[課題]ジェットディスペンサー等の微細液滴塗布装置による精密塗布および微細パターン形成に適したレオロジー特性を有する硬化性オルガノポリシロキサン組成物およびそれを用いたパターン形成方法を提供する。 [解決手段]好適には、ヒドロシリル化反応硬化性であり、ジェットディスペンサー等により精密塗布される、ひずみ速度1,000(1/s)における粘度が2.0Pa・s以下であり、かつ、ひずみ速度0.1(1/s)における粘度が、ひずみ速度1,000(1/s)における粘度の50.0倍以上の値となることを特徴とし、かつ、組成物中のケイ素原子結合芳香族官能基の含有量が1.0~6.0質量%の範囲である、硬化性オルガノポリシロキサン組成物、それを用いたパターン形成方法および電子部品等。

Description

耐寒性に優れる硬化性オルガノポリシロキサン組成物、パターン形成方法および電子部品等
本発明は、特に硬化物の耐寒性に優れ、ジェットディスペンサー等の微細液滴塗布装置による精密塗布および微細パターン形成に適したレオロジー特性を有する硬化性オルガノポリシロキサン組成物、それを用いたパターン形成方法およびジェットディスペンサー等の微細液滴塗布装置により適用された硬化性オルガノポリシロキサン組成物またはその硬化物を備えた電子部品(MEMSデバイスを含む)またはその前駆体に関する。
硬化性オルガノポリシロキサン組成物は、電気・電子部品の保護剤または接着剤組成物として、あるいは携帯電話やタッチパネル等の画像表示装置の間隙の充填とシーリング等に広く使用されており、その信頼性の向上および耐久性の改善等に貢献している。特に、ヒドロシリル化反応を用いて硬化する一液型の硬化性オルガノポリシロキサン組成物は、取扱作業性および硬化速度に優れ、硬化物の耐熱性に優れ、基材への接着性や硬化物の硬さを所望によりコントロールできる点で他の材料に比べて利点がある。
一方、近年の電気・電子部品等の小型化、高精密化を反映して、電子材料等の基板や画像表示装置等に、微細な硬化性オルガノポリシロキサン組成物のパターンを形成してなる、電子部品等が求められている。このようなパターンは、一つ一つの塗布領域が直径1mm以下の実質的に点状、あるいは幅が1mm以下の線状の領域であり、これらの塗布領域を無数かつ高精度で配置した設計を有することから、工業生産上、インクジェット方式やディスペンサー塗布方式等の微細液滴塗布装置を用いて塗布することが好ましい。
しかしながら、これらの既存の硬化性オルガノポリシロキサン組成物は液状であり、微細液滴塗布装置を用いて塗布した場合、例え、1000μm以下の微細なノズルを備えた微細液滴塗布装置を用いた場合であっても、目的とする塗布領域を超える範囲に飛散や広がり(流出)を生じてしまい、微細なパターンを形成することが困難である。一方、上記のような液滴の飛散防止または流動性低下による精密塗布を目的として、同組成物等の塗布対象が高粘度を呈するように設計することが可能であるが、液滴の飛散防止が可能な程度に高粘度の組成物を設計した場合、その粘度が高いためにノズル詰まりやドットあたりの塗布量増加を生じやすく、ジェットディスペンサー等の微細液滴塗布装置による塗布が困難になるという問題がある。また、ノズル内での硬化反応が進行しやすくなり、同じくノズル詰まりを生じやすいという問題がある。
かかる課題を解決すべく、特許文献1には、混合により反応する二種の硬化性オルガノポリシロキサンを、異なる二つのノズルから別々に塗布して基材上で混合することにより、速硬化性に優れた硬化性ポリオルガノシロキサン組成物を用いた、簡便なパターンの製造方法が提案されている。しかしながら、当該方法では、2液分のノズルに対応した微細液滴塗布装置が必要であるほか、実質的に基材上での2液の物理的接触に依存した多成分塗布、分液塗布となるため、作業効率や精密塗布性が十分ではなく、特に硬化特性について、両液の完全な混合を前提とした硬化性乃至硬化物の特性が実現できない場合があり、作業効率と精密塗布および硬化物の特性の見地から、一液型かつジェットディスペンサー等の微細液滴塗布装置による精密塗布および微細パターン形成に適した硬化性オルガノポリシロキサンが強く求められている。
これに加えて、近年、半導体装置の分野では、MEMS(micro electro mechanical systems)技術を用いて、小型かつ高集積されたセンサ等のMEMSデバイスの普及が進んできており、従来に比較して、半導体基材であるリードフレームの小型化、ダイシングにより得られた半導体チップの超小型化、軽量化が進んでおり、硬化性オルガノポリシロキサンまたはその硬化物により精密塗布および微細パターンを形成してなる電子部品またはその前駆体が強く求められているが、特に、MEMS(micro electro mechanical systems)デバイスは、-70℃程度の低温~室温を含む幅広い温度領域で利用されるため、低温で使用された場合であっても、硬化物の弾性率の変化等に起因して、デバイスの信頼性が低下しないことが強く求められる。すなわち、電子部品用途において、硬化性オルガノポリシロキサン組成物の精密塗布性および微細パターン形成性に加えて、塗布後の硬化物により高い耐寒性が求められている。
組成物の耐寒性を向上する技術として、特許文献2~5に記載の技術が知られている。特許文献2においては、ゲル型のヒドロシリル化反応硬化物においてオルガノハイドロジェンシラン化合物および分子鎖末端のみにケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンを一定の比率で併用することで、-75℃~25℃に於ける弾性率変化の抑制が可能であることを提案している。しかしながら、当該組成物はゲル状であり、精密塗布/微細パターンの形成に適さず、ダイアタッチ剤として十分な硬さを実現できない。一方、特許文献3および特許文献4においては、レジン構造のオルガノポリシロキサンまたは分岐状オルガノポリシロキサンを大量に使用することで、耐寒性を実現するものであるが、-70℃における耐寒性が不十分であることに加えて、精密塗布および微細パターン形成に適用できないという問題があった。
特許文献5には、シリコーン接着シートの耐寒性改善を目的として、フェニル基を1モル%以上含むオルガノポリシロキサンの使用が提案されているが、当該文献はシート形成を目的としたものであり、精密塗布および微細パターン形成に関する課題は記載も示唆もされておらず、当該実施例等に記載の組成物は精密塗布および微細パターン形成に適用できないものであった。
特開2015-091576号公報 特開2018-009127号公報 特開2001-002922号公報 国際特許公開WO2012/050105号公報 特開平10-012546号公報
本発明は、上記課題を解決すべくなされたものであり、一液系でジェットディスペンサー等の微細液滴塗布装置による精密塗布および微細パターン形成が可能であり、その硬化性および取扱作業性に優れ、特に硬化物の耐寒性に優れ、幅広い温度領域で使用可能な硬化性オルガノポリシロキサン組成物、およびそれを用いたパターン形成方法を提供することを目的とする。さらに、本発明は、当該組成物またはその硬化物を備えた電子部品またはその前駆体を提供することを目的とする。
鋭意検討の結果、本発明者らは、組成物のレオロジー特性に着目し、高シェア領域から低シェア領域で、その粘度および流動性が大きく変化する硬化性オルガノポリシロキサン組成物であって、その組成物中のケイ素原子結合芳香族官能基の含有量が一定の範囲内にある組成物を使用することで、上記課題を解決可能であることを見出し、本発明に到達した。すなわち、微細液滴塗布装置等からの吐出のためにシェアがかけられると組成物の流動性が上昇し、ノズル等からのスムーズな吐出が可能であるが、一旦ノズル等から吐出され、当該組成物が吐出時のシェアから開放されると、その流動性が大きく低下し、高粘度であり、ピンポイントの塗布領域からの飛散や広がり(流出)を生じない組成物であり、かつ、ケイ素原子結合芳香族官能基の含有量が一定の範囲内にある組成物中の設計することにより、上記課題を解決可能である。また、当該硬化性オルガノポリシロキサン組成物またはその硬化物により精密塗布および微細パターンを形成してなる電子部品またはその前駆体を得ることができ、上記課題を解決可能である。
すなわち、本発明の目的は、ひずみ速度1,000(1/s)における粘度が2.0Pa・s以下であり、かつ、ひずみ速度0.1(1/s)における粘度が、ひずみ速度1,000(1/s)における粘度の50.0倍以上の値となることを特徴とし、かつ、組成物中のケイ素原子結合芳香族官能基の含有量が1.0~6.0質量%の範囲である硬化性オルガノポリシロキサン組成物により解決される。当該組成物にあって、ひずみ速度1,000(1/s)における粘度が1.5Pa・s以下であり、かつ、ひずみ速度0.1(1/s)における粘度が、50Pa・s以上の値であることが好ましい。また、ひずみ速度1,000(1/s)における粘度が、ひずみ速度0.1(1/s)における粘度の75.0倍以上の値であってよく、100.0倍以上であってもよい。また、組成物中のケイ素原子結合芳香族官能基の含有量の範囲は、1.5~5.0質量%の範囲であってよく、好適には、2.0~4.0質量%の範囲であってよい。
ここで、各ひずみ速度における粘度の測定方法としては、公知の方法を用いることができ、例えばアントンパール社製レオメータMCR-102を用いて、以下のような測定条件で測定する事ができる。
ジオメトリ:直径20mm、2度コーン型
プレシェア:10 (1/s)、60s
温度:25℃一定
平衡化時間(プレシェア後停止時間):60s
ひずみ速度分散:0.05 (1/s)から5000 (1/s)まで
ひずみ速度増加率:120s/decade
また、本発明の硬化性オルガノポリシロキサン組成物は、その硬化系において限定されるものではないが、少なくともヒドロシリル化反応性のオルガノポリシロキサンを含むことが好ましく、 (A)25℃における粘度が10~100,000mPa・sであるアルケニル基含有オルガノポリシロキサン 100質量部、
 (B)オルガノハイドロジェンポリシロキサン:成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~5モルとなる量、
 (C)触媒量のヒドロシリル化反応用触媒、
(D)レーザー回折・散乱法により測定される平均粒子径が0.01~10μmの機能性充填剤 2.5~20.0質量部、
(E)1種類以上の接着促進剤、および
(F)ヒドロシリル化反応抑制剤
を含有してなり、(A)成分または(B)成分の少なくとも一部がケイ素原子結合芳香族官能基を有するオルガノポリシロキサンである硬化性オルガノポリシロキサン組成物であってよい。特に、(A)成分の一部が、(A1)25℃における粘度が10~100,000mPa・sであり、ケイ素原子結合芳香族官能基を2.0~25.0質量%の範囲で含有するアルケニル基含有オルガノポリシロキサンであることが好ましい。また、低ひずみ速度領域での高粘度および低い流動性の観点から、前記の成分(D)が、(D1)平均一次粒子径が0.01~0.5μmの範囲にある補強性充填剤を少なくとも有してもよい。また、特に、ノズル詰まりを防止する見地から、前記の成分(F)が、(F1)アセチレン系のヒドロシリル化反応抑制剤および(F2)シクロアルケニルシロキサン系のヒドロシリル化反応抑制剤の混合物であってもよい。
また、本発明の目的は、一液型の硬化性オルガノポリシロキサン組成物により好適に達成され、特に、パターン形成用途に用いられる、上記のいずれかの一液型の硬化性オルガノポリシロキサン組成物により好適に達成される。ここで、パターンは、いわゆる微細パターンであることが好ましく、硬化性オルガノポリシロキサン組成物の塗布領域であって、その形状が、縦横の長さが1000μmの枠内に収まる塗布領域または線幅1000μm以下の線状の領域、またはこれらの組み合わせであってよく、特に、これらの実質的に点状または線状の塗布領域が複数形成されてなる微細パターンであることが好ましい。
また、本発明の目的は、微細液滴塗布装置により適用される 一液型の硬化性オルガノポリシロキサン組成物により好適に達成される。ここで、微細液滴塗布装置は、インクジェット塗布方式や、ディスペンサー塗布方式によるものがあるが、最も好適には、ジェットディスペンサーである。
同様に、本発明の目的は、上記のいずれかの硬化性オルガノポリシロキサン組成物を、微細液滴塗布装置により基材上に適用することを特徴とする、パターンの形成方法により達成される。ここで、前記のパターンは、当該組成物を、ノズル径が1000μm以下の微細液滴塗布装置を用いて、縦横の長さが1000μmの枠内に収まる塗布領域または線幅1000μm以下の線状の領域、またはこれらの組み合わせを少なくとも含むことが好ましく、実質的に点状の塗布領域が複数形成されてなる微細パターンであることが好ましい。また、上記のパターン形成方法は、微細液滴塗布装置として、ジェットディスペンサーを用いることが特に好ましい。
また、本発明の目的は、少なくとも一部の領域に、上記の硬化性オルガノポリシロキサン組成物またはその硬化物が適用された構造を備える、電子部品またはその前駆体により解決される。上記の硬化性オルガノポリシロキサン組成物またはその硬化物が適用された領域は、電子部品またはその前駆体の保護、封止、シールおよび被覆から選ばれる1種類以上の目的で形成されていることが好ましい。例えば、半導体チップ、電極または配線の保護、半導体チップや電極の封止、電子部品の間隙やギャップのシール、これらの被覆等が具体的な用途であり、上記の細密なパターンを用いた保護、封止、シールおよび被覆を意図していることが好ましい。
上記の電子部品またはその前駆体は、電子部品が半導体装置であってよく、特に、電子部品がMEMSデバイスであってよい。
本発明により、一液系でジェットディスペンサー等の微細液滴塗布装置による精密塗布および微細パターン形成が可能であり、その硬化性および取扱作業性に優れ、特に硬化物の耐寒性に優れ、幅広い温度領域で使用可能な硬化性オルガノポリシロキサン組成物、およびそれを用いたパターン形成方法を提供することができる。さらに、当該組成物またはその硬化物を備えた電子部品またはその前駆体を提供することができる。
実施例1にかかる硬化性オルガノポリシロキサン組成物を20mm×20mmのシリコンチップにジェットディスペンサーで塗布した結果であり、少量かつ精密な塗布径を実現している。 実施例2にかかる硬化性オルガノポリシロキサン組成物を20mm×20mmのシリコンチップにジェットディスペンサーで塗布した結果であり、少量かつ精密な塗布径を実現している。 比較例1にかかる硬化性オルガノポリシロキサン組成物を20mm×20mmのシリコンチップにジェットディスペンサーで塗布した結果であり、少量かつ精密な塗布径を実現している。しかしながら、当該塗布物の硬化物は耐寒性が不十分である。
[硬化性オルガノポリシロキサン組成物]
本発明にかかる硬化性オルガノポリシロキサン組成物は、微細液滴塗布装置等からの吐出のためにシェアがかけられると組成物の流動性が上昇し、ノズル等からスムーズな吐出が可能であるが、一旦ノズル等から吐出され、当該組成物が吐出時のシェアから開放されると、その流動性が大きく低下し、高粘度になるという巨視的なレオロジー特性を有する。すなわち、本組成物は、微細液滴塗布装置等によるスムーズな吐出が可能でありながら、吐出から基材への適用までに流動性を急激に失って高粘度の液滴となり、目的とする点状の塗布領域から飛散ないし広がり(流出)が抑制されるものである。さらに、本発明にかかる硬化性オルガノポリシロキサン組成物は、組成物中にケイ素原子結合芳香族官能基を一定量含有するため、硬化物中に芳香族官能基に由来する異種の分子配列がランダムに導入される。この結果、ケイ素原子結合芳香族官能基をほとんど含まない場合や、大量に含む結果として、硬化物の主たる分子構造がケイ素原子結合芳香族官能基である場合に比べ、-70℃等の低温においても硬化物の弾性率の変化が抑制され、耐寒性が改善されるとともに、当該硬化性オルガノポリシロキサン組成物またはその硬化物を備える電子部品の信頼性および低温耐久性が改善される。
具体的には、本発明にかかる硬化性オルガノポリシロキサン組成物の粘度は、そのひずみ速度(1/s)に依存して変化し、ひずみ速度1,000(1/s)における粘度が2.0Pa・s以下であり、かつ、ひずみ速度0.1(1/s)における粘度が、ひずみ速度1,000(1/s)における粘度の50.0倍以上の値となることを特徴とする。この粘度変化が大きいことは、組成物の高シェア領域から低シェア領域における流動性の変化が大きいことに対応しており、好適には、ひずみ速度1,000(1/s)における粘度が、ひずみ速度0.1(1/s)における粘度の75.0倍以上の値であり、100.0倍以上であることが好ましい。
特に、ジェットディスペンサー等の微細液滴塗布装置等からの吐出性および精密塗布の見地から、当該組成物にあって、ひずみ速度1,000(1/s)における粘度が1.5Pa・s以下であり、かつ、ひずみ速度0.1(1/s)における粘度が、50Pa・s以上の値であることが好ましい。ひずみ速度1,000(1/s)における粘度が小さいほど、ジェットディスペンサー等から容易に吐出され、ノズル詰まり等の問題を生じないので、ひずみ速度1,000(1/s)における粘度は、0.30~1.50Pa・sの範囲、0.50~1.40Pa・sの範囲であってよい。一方、ひずみ速度0.1(1/s)における粘度が高いほど、目的とする点状の塗布領域から飛散ないし広がり(流出)が抑制されるので、ひずみ速度0.1(1/s)における粘度は、上記のひずみ速度1,000(1/s)における粘度の50倍以上であることを前提として、50.0~500.0Pa・sの範囲、55.0~300.0Pa・sの範囲、または55.0~275.0の範囲であってよい。
上記の性質は、本発明にかかる硬化性オルガノポリシロキサン組成物がチキソトロピー性を有することを反映している。なお、このような特性のうち、組成物の高シェア領域における粘度は、主としてポリマー成分(オルガノポリシロキサン)の選択により設計可能であり、組成物の低シェア領域における粘度は、主として充填剤の選択によりその設計が可能である。ただし、本発明の硬化性オルガノポリシロキサン組成物は、上記の特性を満たす限り、特にその構成成分、硬化系、オルガノポリシロキサンおよびその充填剤等の種類に制限されるものではなく、硬化物の特性や利用目的に応じ、所望の組成設計が可能である。
さらに、本発明にかかる硬化性オルガノポリシロキサン組成物は、組成物中に一定量のケイ素原子結合芳香族官能基を含有することを特徴とする。ケイ素原子結合芳香族官能基は、上記のとおり、硬化時にシロキサン分子配列にランダムに導入されることで、主としてジメチルポリシロキサン基等からなる配列中に一定の割合でケイ素原子結合芳香族官能基を含むシロキサン配列が形成される。このため、分子の配列が適度に不均質になり、-70℃等の低温においても硬化物の弾性率の変化が抑制され、耐寒性が改善されるとともに、当該硬化性オルガノポリシロキサン組成物またはその硬化物を備える電子部品の信頼性および低温耐久性が改善される。ここで、組成物中のケイ素原子結合芳香族官能基の含有量は1.0~6.0質量%の範囲であり、特に有機溶媒等を除いた、硬化性オルガノポリシロキサン組成物の硬化物形成成分(後述する(A)~(F)成分)の総量に対して、ケイ素原子結合芳香族官能基の含有量が1.0~6.0質量%の範囲であることが好ましく、組成物中のケイ素原子結合芳香族官能基の含有量が1.5~5.0質量%の範囲であることがより好ましく、2.0~4.0質量%の範囲が特に好ましい。組成物中のケイ素原子結合芳香族官能基の含有量が前記下限未満では、硬化物の耐寒性を十分に改善できず、特に-70℃等の低温下において、急激に弾性が変化し、当該硬化物を用いる電子部品の信頼性および低温耐久性が低下する原因となる。
ケイ素原子結合芳香族官能基は、ケイ素原子に結合したアリール基またはアラルキル基である芳香族官能基であって、フェニル基、トリル基、キシリル基、およびナフチル基から選ばれる1種類以上のアリール基であることが好ましく、工業生産上の見地から、フェニル基が特に好ましい。組成物中に、ケイ素原子結合芳香族官能基を導入する手段は任意であるが、硬化反応性オルガノポリシロキサンの一部がケイ素原子結合芳香族官能基を有するオルガノポリシロキサンであることが好ましく、その場合、ケイ素原子結合芳香族官能基を2.0~25.0質量%の範囲で含有する硬化反応性オルガノポリシロキサンを使用することが好ましい。
上記のとおり、本発明にかかる硬化性オルガノポリシロキサン組成物は、硬化系において特に制限されるものではなく、ヒドロシリル化反応、縮合反応、ラジカル反応、高エネルギー線反応等の硬化反応性の官能基を少なくとも1種類以上、組成物中に含有することが好ましい。ここで、取扱作業性および速やかな硬化が可能であることから、本組成物は、ヒドロシリル化反応性の官能基を有することが好ましく、所望により、縮合反応性の官能基や高エネルギー線反応性の官能基をさらに有してもよく、過酸化物等によるラジカル反応を併用してもよい。
好適には、本発明の硬化性オルガノポリシロキサン組成物は、
(A)25℃における粘度が10~100,000mPa・sであるアルケニル基含有オルガノポリシロキサン 100質量部、
 (B)オルガノハイドロジェンポリシロキサン:成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~5モルとなる量、
 (C)触媒量のヒドロシリル化反応用触媒、
(D)レーザー回折・散乱法により測定される平均粒子径が0.01~10μmの機能性充填剤 2.5~20.0質量部、
(E)1種類以上の接着促進剤、および
(F)ヒドロシリル化反応抑制剤
を含有してなり、(A)成分または(B)成分の少なくとも一部がケイ素原子結合芳香族官能基を有するオルガノポリシロキサンである硬化性オルガノポリシロキサン組成物である。当該組成物は、さらに、(G)耐熱性付与剤を含有してもよい
[(A)アルケニル基含有オルガノポリシロキサン]
成分(A)であるアルケニル基含有オルガノポリシロキサンは、本組成物の主剤であり、25℃における粘度が10~100,000mPa・sの範囲内である。ここで、「25℃における粘度」とは、回転粘時計等により成分(A)単独で測定される動粘度である。また、成分(A)の少なくとも一部は、(A1)25℃における粘度が10~100,000mPa・sであり、ケイ素原子結合芳香族官能基を2.0~25.0質量%の範囲で含有するアルケニル基含有オルガノポリシロキサンであることが好ましい。
成分(A)の25℃における粘度は、10~100,00mPa・sの範囲内であることが好ましく、10~10,000mPa・sの範囲内であることがより好ましい。成分(A)の粘度が10mPa・s未満であると、特に組成物のひずみ速度0.1(1/s)における粘度が過度に低下し、上記のレオロジー特性を実現できない場合がある。一方、成分(A)の25℃における粘度100,000mPa・sを超えると、ひずみ速度1,000(1/s)における粘度が2.0Pa・s以下の組成物を設計することが困難となり、また、取扱作業性およびギャップフィル性が低下する傾向がある。
成分(A)は、1種又は2種以上のアルケニル基含有オルガノポリシロキサンで構成される。こうしたアルケニル基含有オルガノポリシロキサンの分子構造は、特に限定されず、例えば、直鎖状、分枝鎖状、環状、三次元網状構造、並びにこれらの組み合わせが挙げられる。成分(A)は、直鎖状のアルケニル基含有オルガノポリシロキサンのみからなっていてもよく、分枝構造を有するアルケニル基含有オルガノポリシロキサンのみからなっていてもよく、または、直鎖状のオルガノポリシロキサンと分枝構造を有するアルケニル基含有オルガノポリシロキサンとの混合物からなっていてもよい。また、分子内のアルケニル基として、ビニル基、アリル基、ブテニル基、ヘキセニル基等が例示される。また、成分(A)中のアルケニル基以外の有機基として、メチル基、エチル基、プロピル基等のアルキル基;フェニル基、トリル基等のアリール基;3,3,3-トリフロロプロピル基等のハロゲン化アルキル基等のアルケニル基を除く一価炭化水素基が例示される。成分(A)の少なくとも一部は、アルケニル基に加えて、ケイ素原子結合芳香族官能基を有するものであり、特に、フェニル基、トリル基、キシリル基、およびナフチル基から選ばれる1種類以上のアリール基をさらに有する。
特に好適には、成分(A)は、直鎖状のアルケニル基含有オルガノポリシロキサンである。この場合、アルケニル基の結合部位は特に制限されず、分子鎖の末端でもよく、主鎖を構成するポリシロキサン上のケイ素原子を介してその側鎖に結合した形態であってもよい。また、分子鎖両末端にアルケニル基を含有してもよく、分子鎖両末端のみにアルケニル基を含有していてもよい。
こうした成分(A)としては、特に限定されないが、例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、これらの重合体のメチル基の一部がエチル基、プロピル基等のメチル基以外のアルキル基や3,3,3-トリフロロプロピル基等のハロゲン化アルキル基で置換された重合体、これらの重合体のビニル基がアリル基、ブテニル基、ヘキセニル基等のビニル基以外のアルケニル基で置換された重合体、およびこれらの重合体の2種以上の混合物が挙げられる。なお、これらのアルケニル基含有オルガノポリシロキサンは、接点障害防止等の見地から、低分子量のシロキサンオリゴマー(オクタメチルテトラシロキサン(D4)、デカメチルペンタシロキサン(D5))が低減ないし除去されていることが好ましい。
成分(A1)であるケイ素原子結合芳香族官能基を有するオルガノポリシロキサンは、成分(A)全体の5~50質量%の範囲内で配合してよく、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、および、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体から選ばれる1種類以上であって、分子内のケイ素原子結合フェニル基の含有量が2.0~25.0質量%の範囲、より好適には3.0~15.0質量%の範囲であるアルケニル基含有オルガノポリシロキサンを成分(A1)の少なくとも一部として使用することが好ましい。
本発明の成分(A)は、さらに、ケイ素原子に結合した一般式:
Figure JPOXMLDOC01-appb-C000001
(式中、Rは同じかまたは異なる、脂肪族不飽和結合を有さない一価炭化水素基であり、Rはアルキル基であり、Rは同じかまたは異なるアルキレン基であり、aは0~2の整数であり、pは1~50の整数である。)
で表されるアルコキシシリル含有基を有しても良い。これらの官能基を有するオルガノポリシロキサンは、未硬化状態における組成物の増粘を抑制し、かつ分子中にアルコキシシリル基を有するため、成分(D)の表面処理剤としても機能する。このため、得られる組成物の増粘やオイルブリードが抑制され、取扱作業性が損なわれないという恩恵を得られる場合がある。
成分(A)は、単独で組成物に配合してもよく、後述する成分(D)と共に混練し、マスターバッチ等の形態で組成物に配合してもよい。成分(A)の一部である成分(A1)についても、同様である。
[(B)オルガノハイドロジェンポリシロキサン]
成分(B)は、本発明の組成物の主たる架橋剤であり、好適には分子内に2個以上のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンが特に制限なく利用できる。なお、本発明組成物を硬化して得られる硬化物の柔軟性の見地から、オルガノハイドロジェンポリシロキサンの構造および分子中のケイ素原子結合水素原子の個数(平均値)を設計してよい。例えば、得られるオルガノポリシロキサン硬化物の柔軟性や部材からの剥離性に優れ、修繕・再利用等のリペア性を改善する見地から、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサンを鎖長延長剤として利用してもよく、硬度の高い硬化物を得る目的で、側鎖に多数のケイ素原子結合水素原子オルガノハイドロジェンポリシロキサンを架橋剤として用いてもよく、これらを併用してもよい。また、成分(B)の一部は、分子内に2個以上のケイ素原子結合水素原子を有し、かつ、ケイ素原子結合芳香族官能基を有するオルガノハイドロジェンポリシロキサンであってよい。特に、本発明の硬化性オルガノポリシロキサン組成物が上記の成分(A)~(F)からなる組成物であって、成分(A)中に十分なケイ素原子結合芳香族官能基が含まれない場合には、成分(B)が十分なケイ素原子結合芳香族官能基を有することが、耐寒性の改善のために必要になる。ただし、成分(A)中に十分なケイ素原子結合芳香族官能基を含む場合、成分(B)は、ケイ素原子結合芳香族官能基を含まないオルガノハイドロジェンポリシロキサンであってよい。
[組成物中のオルガノハイドロジェンポリシロキサン(架橋剤)の量]
本発明の組成物は、成分(B)について、少なくとも成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~50モルの範囲でよく、0.2~30モルの範囲でよく、0.2~10、0.2~5モルとなる量の範囲であってよい。
このような成分(B)は、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、メチルハイドロジェンシロキシ基含有シロキサンレジン、環状メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、環状メチルハイドロジェンポリシロキサンが例示される。なお、これらの例示は非限定的であり、メチル基の一部はC2以上のアルキル基、フェニル基、水酸基、アルコキシ基、ハロゲン原子置換アルキル基等で置換されていてもよい。
成分(B1)の25℃における粘度は特に限定されないが、好ましくは、1~500mPa・sの範囲内であり、さらに、接点障害防止等の見地から、低分子量のシロキサンオリゴマー(オクタメチルテトラシロキサン(D4)、デカメチルペンタシロキサン(D5))が低減ないし除去されていることが好ましい。
[(C)ヒドロシリル化反応用触媒]
ヒドロシリル化反応用触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体、およびこれらの白金系触媒を、シリコーン樹脂、ポリカーボネート樹脂、アクリル樹脂等の熱可塑性樹脂で分散あるいはカプセル化した触媒が例示され、特に、白金-アルケニルシロキサン錯体が好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが好ましい。加えて、取扱作業性および組成物のポットライフの改善の見地から、熱可塑性樹脂で分散あるいはカプセル化した微粒子状の白金含有ヒドロシリル化反応触媒を用いてもよい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
ヒドロシリル化反応用触媒の添加量は触媒量であり、成分(A)に対して、金属原子が質量単位で0.01~500ppmの範囲内となる量、0.01~100ppmの範囲内となる量、あるいは、0.01~50ppmの範囲内となる量であることが好ましい。
[(D)機能性充填剤]
本発明に係る硬化性オルガノポリシロキサン組成物は、さらに、(D)機能性充填剤を含有することが好ましい。当該機能性充填剤は補強性充填剤、熱伝導性充填剤および導電性充填剤から選ばれる1種類以上であることが好ましく、特に、本発明組成物を保護剤または接着剤用途で使用する場合には、補強性充填剤を含有することが好ましい。また、これらの機能性充填剤の微粉末の粒子径は、特に限定されないが、例えばレーザー回折散乱式粒度分布測定によるメジアン径(以下、単に「平均粒子径」)で0.01μm~10μmの範囲内であることが好ましい。本発明組成物は直径1000μm以下の領域に精密塗布することに適することから、大粒子径の機能性充填剤を含まないことが好ましい。なお、平均粒子径は機能性充填剤の種類に応じて平均一次粒子径と二次粒子径のいずれかの概念を包摂するものであるが、特に補強性充填剤においては、平均一次粒子径が上記範囲にあることが好ましい。
補強性充填剤は、本組成物を硬化して得られるシリコーンゴム硬化物に機械的強度を付与し、保護剤または接着剤としての性能を向上させるための成分である。このような補強性フィラーとしては、例えば、ヒュームドシリカ微粉末、沈降性シリカ微粉末、焼成シリカ微粉末、ヒュームド二酸化チタン微粉末、石英微粉末、炭酸カルシウム微粉末、ケイ藻土微粉末、酸化アルミニウム微粉末、水酸化アルミニウム微粉末、酸化亜鉛微粉末、炭酸亜鉛微粉末、カーボンブラック等の無機質充填剤を挙げることができ、これらの無機質充填剤をメチルトリメトキシシラン等のオルガノアルコキシシラン、トリメチルクロロシラン等のオルガノハロシラン、ヘキサメチルジシラザン等のオルガノシラザン、α,ω-シラノール基封鎖ジメチルシロキサンオリゴマー、α,ω-シラノール基封鎖メチルフェニルシロキサンオリゴマー、α,ω-シラノール基封鎖メチルビニルシロキサンオリゴマー等のシロキサンオリゴマー等の処理剤により表面処理した無機質充填剤を含有してもよい。特に、分子鎖両末端にシラノール基を有する低重合度のオルガノポリシロキサン、好適には、分子中に当該末端シラノール基以外の反応性官能基を有しないα,ω-シラノール基封鎖ジメチルポリシロキサンにより成分(D)の表面を予め処理することにより、低温かつ短時間で優れた初期接着性、接着耐久性および接着強度を実現でき、さらに十分な使用可能時間(保存期間および取り扱い作業時間)を確保できる場合がある。特に、本発明の技術的硬化の見地から、上記のいずれかの表面処理行った、(D1)平均一次粒子径が0.01~0.5μmの範囲にある補強性充填剤、特に、オルガノシラザン等で処理されたシリカ微粉末であって、平均一次粒子径が0.01~0.30μmの範囲にあるものが好適である。
補強性充填剤の含有量は、限定されないが、前記のオルガノポリシロキサン100質量部に対して0.1~20.0質量部の範囲内であることが好ましく、1.0~15.0質量部、2.0~10.0質量部の範囲であることが、特に、ひずみ速度0.1(1/s)における粘度を改善する効果から好ましい。また、成分(D)の配合性の見地から、成分(D)の一部又は全部は、前記の成分(A)と事前に混練し、成分(D)、成分(A)および成分(D)の表面処理剤を含むマスターバッチの形態で組成物に配合してもよい。なお、成分(A)の少なくとも一部は、成分(A1)である、ケイ素原子結合芳香族官能基を有するオルガノポリシロキサンであることが好ましい。
熱伝導性充填剤または導電性充填剤は、所望により、本組成物を硬化して得られるシリコーンゴム硬化物に熱伝導性または電気伝導性を付与する成分であり、金、銀、ニッケル、銅等の金属微粉末;セラミック、ガラス、石英、有機樹脂等の微粉末表面に金、銀、ニッケル、銅等の金属を蒸着またはメッキした微粉末;酸化アルミニウム、窒化アルミニウム、酸化亜鉛等の金属化合物、およびこれらの2種以上の混合物が例示される。特に好適には、銀粉末、アルミニウム粉末、酸化アルミニウム粉末、酸化亜鉛粉末、窒化アルミニウム粉末またはグラファイトである。また、本組成物に、電気絶縁性が求められる場合には、金属酸化物系粉末、または金属窒化物系粉末であることが好ましく、特に、酸化アルミニウム粉末、酸化亜鉛粉末、または窒化アルミニウム粉末であることが好ましい。
[(E)接着促進剤]
本発明に係る組成物は、(E)1種類以上の接着促進剤を含むことが好ましく、具体的には、以下の成分成分(e1)~(e4)から選ばれる1種類以上の接着促進剤を含むことが好ましい。これらの成分を含有することで、未洗浄のアルミダイキャストや樹脂材料への初期接着性に優れ、過酷な環境下で使用した場合であっても、接着耐久性と接着強度にさらに改善され、電気・電子部品の信頼性・耐久性を長期間に渡って維持することを可能とするものである。
(e1) アミノ基含有オルガノアルコキシシランとエポキシ基含有オルガノアルコキシシランとの反応混合物
(e2) 一分子中に少なくとも二つのアルコキシシリル基を有し,かつそれらのシリル基の間にケイ素-酸素結合以外の結合が含まれている有機化合物、
(e3) 一般式:
  R Si(OR)4-n
(式中、Rは一価のエポキシ基含有有機基であり、Rは炭素原子数1~6のアルキル基または水素原子である。nは1~3の範囲の数である)
で表されるエポキシ基含有シランまたはその部分加水分解縮合物
(e4) ビニル基含有シロキサンオリゴマー(鎖状または環状構造のものを含む)とエポキシ基含有トリアルコキシシランとの反応混合物
成分(e1)は、アミノ基含有オルガノアルコキシシランとエポキシ基含有オルガノアルコキシシランとの反応混合物である。このような成分(e1)は、硬化途上で接触している各種基材に対する初期接着性、特に未洗浄被着体に対しても低温接着性を付与するための成分である。また、本接着促進剤を配合した硬化性組成物の硬化系によっては、架橋剤としても作用する場合もある。このような反応混合物は、特公昭52-8854号公報や特開平10-195085号公報に開示されている。
このような成分(e1)を構成するアミノ基含有有機基を有するアルコキシシランとしては、アミノメチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)アミノメチルトリブトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-アニリノプロピルトリエトキシシランが例示される。
また、エポキシ基含有オルガノアルコキシシランとしては、3-グリシドキシプロリルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシランが例示される。
これらアミノ基含有有機基を有するアルコキシシランとエポキシ基含有有機基を有するアルコキシシランとの比率はモル比で、(1:1.5)~(1:5)の範囲内にあることが好ましく、(1:2)~(1:4)の範囲内にあることが特に好ましい。この成分(e1)は、上記のようなアミノ基含有有機基を有するアルコキシシランとエポキシ基含有有機基を有するアルコキシシランとを混合して、室温下あるいは加熱下で反応させることによって容易に合成することができる。
特に、本発明においては、特開平10-195085号公報に記載の方法により、アミノ基含有有機基を有するアルコキシシランとエポキシ基含有有機基を有するアルコキシシランとを反応させる際、特に、アルコール交換反応により環化させてなる、一般式:
Figure JPOXMLDOC01-appb-C000002
{式中、R1はアルキル基またはアルコキシ基であり、R2は同じかまたは異なる一般式:
Figure JPOXMLDOC01-appb-C000003
(式中、R4はアルキレン基またはアルキレンオキシアルキレン基であり、R5は一価炭化水素基であり、R6はアルキル基であり、R7はアルキレン基であり、R8はアルキル基、アルケニル基、またはアシル基であり、aは0、1、または2である。)
で表される基からなる群から選択される基であり、R3は同じかまたは異なる水素原子もしくはアルキル基である。}
で表されるカルバシラトラン誘導体を含有することが特に好ましい。このようなカルバシラトラン誘導体として、以下の構造で表される1分子中にアルケニル基およびケイ素原子結合アルコキシ基を有するシラトラン誘導体が例示される。
Figure JPOXMLDOC01-appb-C000004
成分(e2)は一分子中に少なくとも二つのアルコキシシリル基を有し、かつそれらのシリル基の間にケイ素-酸素結合以外の結合が含まれている有機化合物であり、単独でも初期接着性を改善するほか、特に前記の成分(e1)および成分(e3)と併用することにより本接着促進剤を含んでなる硬化物に苛酷な条件下での接着耐久性を向上させる働きをする。
特に、成分(e2)は、下記の一般式:
Figure JPOXMLDOC01-appb-C000005
(式中、Rは置換または非置換の炭素原子数2~20のアルキレン基であり、Rは各々独立にアルキル基またはアルコキシアルキル基であり、Rは各々独立に一価炭化水素基であり、bは各々独立に0または1である。)で示されるジシラアルカン化合物が好適である。かかる成分(e2)は各種化合物が試薬や製品として市販されており,また必要ならグリニャール反応やヒドロシリル化反応等,公知の方法を用いて合成することができる。例えば、ジエンとトリアルコキシシランまたはオルガノジアルコキシシランとをヒドロシリル化反応させるという周知の方法により合成することができる。
式中、Rはメチル基、エチル基、プロピル基等のアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基等のアリール基で例示される一価炭化水素基であり、低級アルキル基が好ましい。Rはメチル基、エチル基、プロピル基等のアルキル基;メトキシエチル基等のアルコキシアルキル基であり、その炭素原子数が4以下のものが好ましい。Rは置換または非置換のアルキレン基であり、直鎖状または分岐鎖状のアルキレン基が制限なく用いられ、これらの混合物であっても良い。接着性改善の見地から、炭素数は2~20の直鎖および/または分岐鎖状のアルキレン基が好ましく、炭素原子数5~10の直鎖および/または分岐鎖状のアルキレン、特に炭素原子数6のヘキシレンが好ましい。非置換アルキレン基はブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基またはこれらの分岐鎖状体であり、その水素原子がメチル基、エチル基、プロピル基、ブチル基、シクロペンチル基、シクロヘキシル基、ビニル基、アリル基、3,3,3-トリフルオロプロピル基、3-クロロプロピル基によって置換されていても構わない。
成分(e2)の具体例としては、ビス(トリメトキシシリル)エタン、1,2-ビス(トリメトキシシリル)エタン、1,2-ビス(トリエトキシシリル)エタン、1,2-ビス(メチルジメトキシシリル)エタン、1,2-ビス(メチルジエトキシシリル)エタン、1,1-ビス(トリメトキシシリル)エタン、1,4-ビス(トリメトキシシリル)ブタン、1,4-ビス(トリエトキシシリル)ブタン、1-メチルジメトキシシリル-4-トリメトキシシリルブタン、1-メチルジエトキシシリル-4-トリエトキシシリルブタン、1,4-ビス(メチルジメトキシシリル)ブタン、1,4-ビス(メチルジエトキシシリル)ブタン、1,5-ビス(トリメトキシシリル)ペンタン、1,5-ビス(トリエトキシシリル)ペンタン、1,4-ビス(トリメトキシシリル)ペンタン、1,4-ビス(トリエトキシシリル)ペンタン、1-メチルジメトキシシリル-5-トリメトキシシリルペンタン、1-メチルジエトキシシリル-5-トリエトキシシリルペンタン、1,5-ビス(メチルジメトキシシリル)ペンタン、1,5-ビス(メチルジエトキシシリル)ペンタン、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン、1,4-ビス(トリメトキシシリル)ヘキサン、1,5-ビス(トリメトキシシリル)ヘキサン、2,5-ビス(トリメトキシシリル)ヘキサン、1-メチルジメトキシシリル-6-トリメトキシシリルヘキサン、1-フェニルジエトキシシリル-6-トリエトキシシリルヘキサン、1,6-ビス(メチルジメトキシシリル)ヘキサン、1,7-ビス(トリメトキシシリル)ヘプタン、2,5-ビス(トリメトキシシリル)ヘプタン、2,6-ビス(トリメトキシシリル)ヘプタン、1,8-ビス(トリメトキシシリル)オクタン、2,5-ビス(トリメトキシシリル)オクタン、2,7-ビス(トリメトキシシリル)オクタン、1,9-ビス(トリメトキシシリル)ノナン、2,7-ビス(トリメトキシシリル)ノナン、1,10-ビス(トリメトキシシリル)デカン、3,8-ビス(トリメトキシシリル)デカンが挙げられる。これらは単独で用いてもよく、また2種以上を混合しても良い。本発明において、好適には、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン、1,4-ビス(トリメトキシシリル)ヘキサン、1,5-ビス(トリメトキシシリル)ヘキサン、2,5-ビス(トリメトキシシリル)ヘキサン、1-メチルジメトキシシリル-6-トリメトキシシリルヘキサン、1-フェニルジエトキシシリル-6-トリエトキシシリルヘキサン、1,6-ビス(メチルジメトキシシリル)ヘキサンが例示できる。
成分(e3)は、一般式:
  R Si(OR)4-n
(式中、Rは一価のエポキシ基含有有機基であり、Rは炭素原子数1~6のアルキル基または水素原子である。nは1~3の範囲の数である)
で表されるエポキシ基含有シランまたはその部分加水分解縮合物であり、単独でも初期接着性を改善するほか、特に前記の成分(e1)および成分(e2)と併用することにより本接着促進剤を含んでなる硬化物に塩水浸漬などの苛酷な条件下での接着耐久性を向上させる働きをする。なお、成分(e3)は、成分(e1)の構成成分の一つであるが、反応物である成分(e1)(典型的には、環化した反応物であるカルバシラトラン誘導体)との質量比が特定の範囲にあることが発明の技術的効果の点から必要であり、成分(e1)とは別個の成分として添加されることが必要である。
このようなエポキシ基含有シランとしては、3-グリシドキシプロリルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシランが例示される。
成分(e4)は、R1 SiO3/2(R1はエポキシ基)で表されるエポキシシロキシ単位とビニルシロキシ単位を分子内に有する接着促進剤であり、特開平01-085224号公報に記載の成分である。かかる接着促進剤は、3-グリシドキシプロリルトリメトキシシラン等のエポキシ基含有トリアルコキシシランと、水酸基(シラノール基)を分子鎖両末端に有する鎖状ビニル基含有シロキサンオリゴマーまたはテトラメチルテトラビニルシクロテトラシロキサン等の環状ビニル基含有シロキサンオリゴマーをアルカリ化合物の存在下で加水分解反応させることで得ることができる(上記特許文献参照)。
(E)接着促進剤はの配合量は限定されないが、好適には、上記の成分(e1)~(e4)の和である(E)接着促進剤の質量が、硬化性オルガノポリシロキサン組成物中に0.1~20質量%の範囲であってよく、0.3~10質量%、特に、0.5~5.0質量%含有していることが好ましい。
[(F)ヒドロシリル化反応抑制剤]
本発明の組成物には、その取扱作業性の見地から、さらにヒドロシリル化反応抑制剤を含むことが好ましい。ヒドロシリル化反応抑制剤は、本発明の硬化性オルガノポリシロキサン組成物のヒドロシリル化反応を抑制するための成分であって、具体的には、例えば、エチニルシクロヘキサノールのようなアセチレン系、アミン系、カルボン酸エステル系、亜リン酸エステル系等の反応抑制剤が挙げられる。反応抑制剤の添加量は、通常、シリコーン組成物全体の0.001~5質量%である。特に、シリコーン組成物の取扱作業性を向上させる目的では、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-フェニル-1-ブチン-3-オール等のアセチレン系化合物;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン等のシクロアルケニルシロキサン;ベンゾトリアゾール等のトリアゾール化合物等が特に制限なく使用することができる。
特に、本発明にかかる硬化性オルガノポリシロキサン組成物は、ジェットディスペンサー等の微細液滴塗布装置により、直径1000μm以下のノズルから精密塗布により適用される形態での使用に適する。かかる高シェア条件下でも硬化反応をコントロールし、ノズル詰まり等を抑制する見地から、成分(F)は、(F1)アセチレン系のヒドロシリル化反応抑制剤および(F2)シクロアルケニルシロキサン系のヒドロシリル化反応抑制剤の混合物であってよく、特に、エチニルシクロヘキサノール、および1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサンの組み合わせが好ましい。
[(G)耐熱性付与剤]
本発明組成物は、前記の成分(A)~(F)、任意で他の架橋剤およびヒドロシリル化反応抑制剤を含んでなるものであるが、硬化性オルガノポリシロキサン組成物およびその硬化物の耐熱性改善の見地から、さらに、(G)耐熱性付与剤を含有することが好ましい。成分(G)として、本発明の組成物およびその硬化物に耐熱性を付与できるものならば特に限定されないが、例えば、酸化鉄、酸化チタン、酸化セリウム、酸化マグネシウム、酸化アルミニウム、酸化亜鉛等の金属酸化物、水酸化セリウム等の金属水酸化物、フタロシアニン化合物、カーボンブラック、セリウムシラノレ-ト、セリウム脂肪酸塩、オルガノポリシロキサンとセリウムのカルボン酸塩との反応生成物等が挙げられる。特に好適には、フタロシアニン化合物であり、例えば、特表2014-503680号公報に開示された無金属フタロシアニン化合物及び金属含有フタロシアニン化合物からなる群より選択される添加剤が好適に用いられ、金属含有フタロシアニン化合物のうち、銅フタロシアニン化合物が特に好適である。最も好適かつ非限定的な耐熱性付与剤の一例は、29H,31H-フタロシアニナト(2-)-N29,N30,N31,N32銅である。このようなフタロシアニン化合物は市販されており、例えば、PolyOne Corporation(Avon Lake,Ohio,USA)のStan-tone(商標)40SP03がある。
このような成分(G)の配合量は、組成物全体の0.01~5.0質量%の範囲内とするであってよく、0.05~0.2質量%、0.07~0.1質量%の範囲であってもよい。
[その他の添加剤]
本発明の硬化性オルガノポリシロキサン組成物は、上記した成分以外にも、本発明の目的を損なわない範囲で任意成分を配合することができる。この任意成分としては、例えば、任意の架橋剤成分として、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン等の3官能性アルコキシシラン;テトラメトキシシラン、テトラエトキシシラン等の4官能性アルコキシシラン;およびこれらの部分加水分解縮合物を含んでも良い。さらに、本組成物は、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、ヘプタン等の有機溶剤;ケイ素原子結合水素原子およびケイ素原子結合アルケニル基を含有しないオルガノポリシロキサン、耐寒性付与剤、難燃性付与剤、顔料、染料等が挙げられる。また、本発明の硬化性オルガノポリシロキサン組成物は、所望により、その他の公知の接着性付与剤、カチオン系界面活性剤、アニオン系界面活性剤、または非イオン系界面活性剤などからなる1種類以上の帯電防止剤;誘電性フィラー;電気伝導性フィラー;離型性成分;チクソ性付与剤;防カビ剤などを含むことができる。
[組成物の製造方法]
本発明の硬化性オルガノポリシロキサン組成物は、上記の各成分を均一に混合することにより調製でき、例えば、事前に成分(A)の一部と成分(D)を混合してマスターバッチを形成した後、残りの成分(A)~(C)、成分(E)、成分(F)並びに成分(G)等の他の任意の成分を混合することにより調製できる。ただし、本組成物の製造時における添加の順序はこれに限定されるものではない。
各成分の混合方法は、従来公知の方法でよく特に限定されないが、通常、単純な攪拌により均一な混合物となることから、混合装置を用いた混合が好ましい。こうした混合装置としては特に限定がなく、一軸または二軸の連続混合機、二本ロール、ロスミキサー、ホバートミキサー、デンタルミキサー、プラネタリミキサー、ニーダーミキサー、ヘンシェルミキサー等が例示される。
[組成物の形態およびパッケージ]
本発明の硬化性オルガノポリシロキサン組成物は、一成分型(一液型を含む)の組成物として用いることが好ましく、組成物の各構成成分を単一の保存容器に入れて、ジェットディスペンサー等の微細液滴塗布装置により使用することができる。なお、これらのパッケージは、後述する硬化方法や塗布手段、適用対象に応じて所望により選択することができ、特に制限されない。
[塗布およびパターン形成]
パターンの製造方法は、基材を準備する工程を含む。基材は略平坦または回路配置等に伴う起伏/凹凸を備えた固体基板であってよく、その材質は特に限定されないが、アルミニウム、鉄、亜鉛、銅、マグネシウム合金等の金属、エポキシ樹脂、アクリル樹脂、ABS、PA、PBT、PC、PPS、SPS等のプラスチック、及びガラスが挙げられる。なお、基材の厚みは特に制限されないが、0.1~10mmであってよい。
[適用方法]
  硬化性ポリオルガノシロキサン組成物を適用する方法は、特に限定されないが、本発明の利点を活用するためには、微細液滴塗布装置を用いて上記基材上に適用することが好ましい。
本発明に利用できる微細液滴塗布装置としては、インクジェット塗布方式や、ディスペンサー塗布方式によるものがあるが、本発明の硬化性ポリオルガノシロキサン組成物は、ディスペンサー塗布方式による微細液滴塗布装置による塗布に特に好ましく用いることが出来る。ディスペンサー塗布方法には、エアー方式、バルブ方式、スクリュー方式、容積方式、ジェット方式のディスペンサーがあるが、微細パターン塗布の観点から、ジェットディスペンサーが好ましい。さらに、ジェットディスペンサーには、エアーバルブ方式、ソレノイド方式、ピエゾ方式があり、そのうちより微細パターン塗布の観点から、ピエゾ方式が好ましい。微細液滴吐出装置で吐出する硬化性ポリオルガノシロキサン組成物の液滴の大きさおよびワンショットの液滴重量は、微細液滴塗布装置および吐出条件の選択により設計可能であるが、液滴重量が50μg以下、30μg以下、25μg以下とすることができ、装置によっては、より微少量である10μgの液滴重量であっても設計可能である。
これらの微細液滴塗布装置を用いることにより、硬化性部分の塗布量、硬化性部分の液滴の着弾位置を精密に制御することができ、高密度なパターン(すなわち、硬化性ポリオルガノシロキサン組成物の硬化物)を形成することができる。
これらの微細液滴塗布装置は、液滴状で組成物を吐出するためのノズルを備えることが一般的である。その塗布ノズル径は、特に限定されないが、精密な点状の塗布を行う目的では、そのノズル径が1000μm以下であることが必要であり、50~200μmであるのが好ましく、100~150μmであるのが特に好ましい。本発明の硬化性ポリオルガノシロキサン組成物は、高シェア時に流動性が改善されるため、塗布ノズル径が50μm以上であれば、安定して、液滴塗布を行うことができ、塗布ノズル径が200μm以下であれば、短時間でより多量の液滴塗布を行うことができる利点があり、かつ、液滴は見かけ上、吐出の瞬間から流動性が急激に低下して増粘するために、精密塗布を可能にする。
ディスペンシング頻度は、特に限定されないが、1ms/ショット~10s/ショットが好ましく、1ms/ショット~10ms/ショットが好ましい。また、ノズルの移動速度は、特に限定されないが、1~300mm/secが好ましく、50~100mm/secがより好ましい。ただし、これらのディスペンシング頻度及びノズルの移動速度は、装置及び目的に応じて適宜設定できる。
[パターン形成]
本発明の硬化性ポリオルガノシロキサン組成物は、上記の微細液滴塗布装置を用いて基材上に適用することにより、基材上に微細な点状または線状の塗布領域を含むパターンを形成可能である。
パターンを構成する各々の塗布領域は、点状または線状であり、微細領域であることから、縦横の長さが1000μmの枠内に収まる塗布領域(特に、直径1000μm以下の枠内に収まる略円状の領域)または線幅1000μm以下の線状の領域であることが好ましい。本発明の硬化性ポリオルガノシロキサン組成物は、精密なパターンを形成することに特に適するため、各々の塗布領域は、微細液滴塗布装置および吐出条件の選択により、直径800μm以下の枠内に収まる略円状の領域、線幅800μm以下の線状の領域またはこれらの組み合わせから構成されたパターンであってよい。また、当該塗布領域は、5~500μmの枠内に収まる略円状の領域、線幅5~500μmの線状の領域またはこれらの組み合わせから構成されたパターンとなるように設計することも可能である。また、パターンを構成するこれらの微細な塗布領域は同一基材上に2以上あることが好ましく、複数の微細な塗布領域が基材上に一定の間隔で分布したパターンを形成していてもよい。なお、塗布領域の間隔は任意に設計可能であるが、5.0mm以下の間隔であってよく、0.5~4.5mmの範囲の間隔に設計してもよい。
パターンを構成する各々の塗布領域は微細液滴塗布装置から吐出される液滴から形成されるものであり、その厚みは、特に限定されず、ジェットディスペンサー等の微細液滴塗布装置の種類および用途に応じ、適宜設計可能である。例えば、液滴一滴(ワンショット)あたりの塗布厚みは、1~1000μmの範囲であってよく、1~500μmであるのがより好ましく、1~300μmであるのが特に好ましい。
さらに、本発明の硬化性ポリオルガノシロキサン組成物は、見かけ上、吐出された液滴が流動性を急激に失って増粘するような挙動を見せるので、同一の塗布領域に多層的に精密塗布しても飛散や流出(広がり)が起き難く、多層化により組成物の塗布厚を調整しやすいという利点がある。たとえば、一点の塗布領域に連続的にショットすることで、硬化性オルガノポリシロキサンが多層的に塗布された箇所(外見としては、物理的に盛り上がった塗布領域となる)を精度よく形成することも可能である。
[本組成物およびパターンの用途]
本組成物は、上記のパターンを備えた電子部品、画像表示装置等の製造に有用であり、例えば、電子部品等の製造において、ダム材を形成するための方法に用いることができる。ダム材は、電子部品や画像表示装置の表示部又は保護部に枠を形成するために用いられ、この枠内に封止剤を適用することにより、封止剤が、表示部等からはみ出したりすることを防止することができる。ここで、本発明の硬化性ポリオルガノシロキサン組成物は、一液型の組成物であり、ヒドロシリル化反応を含む硬化系を選択した組成にすることによって、短時間かつ容易に硬化物を形成することから、これらの電子部品、画像表示装置等の工業的生産における歩留まりと生産効率を改善できる利点がある。
[電気・電子機器]
前記の領域に塗布された硬化性オルガノポリシロキサン組成物は加熱等の手段により硬化して硬化物を形成する。当該硬化性オルガノポリシロキサン組成物またはその硬化物を適用する目的は任意であるが、半導体部材においては、電子部品またはその前駆体の保護、封止、シールおよび被覆から選ばれる1種類以上の目的で形成されていることが好ましい。例えば、半導体チップ、電極または配線の保護、半導体チップや電極の封止、電子部品の間隙やギャップのシール、これらの被覆等が具体的な用途であり、上記の細密なパターンを用いた保護、封止、シールおよび被覆を意図していることが好ましい。基材上の当該硬化物からなる微細なパターンは、電子部品、画像表示装置、MEMSデバイス等の工業的生産に広く利用可能である。また、当該硬化物は、-70℃~室温の幅広い温度範囲で使用することができ、特に-70℃等の低温で使用しても硬化物の弾性が大きく変化しないことから耐寒性に優れ、これらの電子部品等に使用した場合に、その信頼性および低温耐久性をさらに改善できる利点がある。
[硬化性]
本発明にかかる硬化性オルガノポリシロキサン組成物は、好適にはヒドロシリル化反応により硬化して、オルガノポリシロキサン硬化物を形成する。このヒドロシリル化反応硬化型のシリコーン組成物を硬化するための温度条件は、特に限定されないが、通常20℃~200℃の範囲内であり、より好ましくは20~180℃の範囲内である。所望により、高温短時間で硬化させてもよく、短時間かつ容易に硬化物を形成することから、これらの電子部品、画像表示装置、MEMSデバイス等の工業的生産における歩留まりと生産効率を改善できる利点がある。ただし、所望により、上記組成物を室温等の低温で長時間(例えば数時間~数日)かけて硬化させてもよく、特に制限されるものではない。
本発明の硬化性オルガノポリシロキサン組成物は基材上にパターンを形成した後、所望の硬化条件で硬化することにより、基材上に当該硬化物からなる微細なパターンを形成することができ、電子部品、画像表示装置等の工業的生産に広く利用可能である。
[電子部品またはその前駆体への適用]
本発明の硬化性オルガノポリシロキサン組成物は、少なくとも一部の領域に適用することで、当該組成物またはその硬化物が適用された構造を備える電子部品またはその前駆体を提供することができる。すなわち、本発明にかかる電子部品またはその前駆体は、上記の硬化性ポリオルガノシロキサン組成物がその少なくとも一部の領域に適用されていればよく、適用された領域が前記のパターンを形成することが特に好ましい。
電子部品またはその前駆体は、ダイオード、トランジスタ、サイリスタ、モノリシックIC、ハイブリッドIC、LSI、VLSI等の公知の半導体装置またはその前駆体であってよく、特に、MEMSデバイスまたはその前駆体であってよい。ここで、MEMSデバイスとは、一般的にMicro Electro Mechanical Systemsと呼ばれる半導体微細加工技術を用いて形成された半導体装置の総称であり、MEMSチップを備えた加速度センサや角速度センサなどの慣性センサ、画像表示装置等であってよい。また、半導体装置等の前駆体とは、その後の配線やチップの配置、加熱等によるチップ等のダイボンディングにより半導体装置として完成する以前の未完成の電子部品の総称であり、配線やチップの搭載といった仕上げ前の状態で流通し、輸出入される電子部品用部材一般を含む概念である。
[電子部品またはその前駆体の製造方法]
本発明にかかる電子部品またはその前駆体は、上記の硬化性オルガノポリシロキサン組成物を、微細液滴塗布装置を用いて適用する工程を少なくとも備える、電子部品またはその前駆体の製造方法により得ることができる。その適用条件や適用領域等は前記のとおりであり、特に、当該硬化性オルガノポリシロキサンを適用する領域が、直径500μm以下の枠内に収まる略円状の領域、線幅500μm以下の線状の領域またはこれらの組み合わせから構成されたパターン組成物を前記のパターンであってよく、微細液滴塗布装置はノズル径50~200μmの吐出口を備えたジェットディスペンサーであることが特に好ましい。また、本発明の電子部品またはその前駆体の製造方法は、上記の工程に加えて、所望により、ウェハの保護膜形成工程や半導体基材への配線処理工程、チップと電極の接続工程、研磨処理工程や一部又は全部の封止工程などを所望のタイミングで含めてよいことはいうまでもない。
[電気・電子機器の具体例]
本発明にかかる電子部品またはその前駆体は、ダイオード、トランジスタ、サイリスタ、モノリシックIC、ハイブリッドIC、LSI、VLSI等の公知の半導体装置またはその前駆体であってよく、特に、MEMSデバイスまたはその前駆体であってよい。ここで、MEMSデバイスとは、一般的にMicro Electro Mechanical Systemsと呼ばれる半導体微細加工技術を用いて形成された半導体装置の総称であり、MEMSチップを備えた加速度センサや角速度センサなどの慣性センサ、磁気センサ、圧力センサ、マイクロフォン、ガス、湿度、パーティクルなどの環境センサ、画像センサ、またMEMS技術を用いたアクチュエータ類、例えばオートフォーカスやマイクロミラー等の光学系アクチュエータ、無線通信用部品、マイクロスピーカー、画像表示装置等であってよい。また、半導体装置等の前駆体とは、その後の配線やチップの配置、加熱等によるチップ等のダイボンディングにより半導体装置として完成する以前の未完成の電子部品の総称であり、配線やチップの搭載といった仕上げ前の状態で流通し、輸出入される電子部品用部材一般を含む概念である。本発明にかかる硬化性オルガノポリシロキサン組成物を硬化させてなる硬化物は、-70℃~室温の幅広い温度範囲で使用することができ、特に-70℃等の低温で使用しても硬化物の弾性が大きく変化しないことから耐寒性に優れ、これらの電気。電子機器に使用した場合に、その信頼性および低温耐久性をさらに改善できる利点がある。
以下、本発明に関して実施例を挙げて説明するが、本発明は、これらによって限定されるものではない。以下に示す実施例1~2および比較例1~2では下記の化合物ないし組成物を原料に用いた。
<硬化性オルガノポリシロキサン組成物の成分>
A1: 20℃における粘度が粘度60mPasである、両末端ジメチルビニル基封鎖した直鎖状ポリジメチルシロキサン(ビニル基の含有量=1.5質量%)

A2: 20℃における粘度が粘度400mPasである、両末端ジメチルビニル基封鎖した直鎖状ポリジメチルシロキサン(ビニル基の含有量=0.44質量%)

A3: 20℃における粘度が粘度2000mPasである、両末端ジメチルビニル基封鎖した直鎖状ポリジメチルシロキサン(ビニル基の含有量=0.23質量%)

A4: 粘度2,000mPasの分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.23質量%)65質量%、SiO4/2 単位と(CH3 )3 SiO1/2 単位と(CH3 )2(CH2 =CH)SiO1/2 単位からなるオルガノポリシロキサンレジン(ビニル基の含有量=2.5質量%)35質量%からなるシリコーンレジンポリシロキサン混合物

A5: 粘度190mPasのSiO4/2 単位と(CH3 )3 SiO1/2 単位と(CH3 )2(CH2 =CH)SiO1/2 単位からなるオルガノポリシロキサンレジン(ビニル基の含有量=5.1質量%)

A6: 20℃における粘度が粘度2,000mPasである、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン・メチルフェニルポリシロキサン共重合体(ビニル基の含有量=0.26質量%、フェニル基の含有量=8.9質量%)

B1: 20℃における粘度が60mPasである、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体(ケイ素原子結合水素原子の含有量=0.7質量%)

B2: 20℃における粘度が30mPasである、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体(ケイ素原子結合水素原子の含有量=0.13質量%)

B3:20℃における粘度が20mPa・sである、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量=1.55質量%)

C1: 白金濃度が0.6質量%である白金と1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの錯体

D1: 上記のA3成分80質量%とシラザン処理乾式シリカ(レーザー回折・散乱法で測定された平均一次粒子径:0.1~0.2μm)20質量%のマスターバッチ

D2: 上記のA6成分70質量%とシラザン処理乾式シリカ(レーザー回折・散乱法で測定された平均一次粒子径:0.1~0.2μm)30質量%のマスターバッチ

E1: 粘度30mPa・sの分子鎖両末端水酸基封鎖メチルビニルシロキサンオリゴマーと3-グリシドキシプロピルトリメトキシシランとの質量比1:1の縮合反応物

F1:エチニルシクロヘキサノール

F2:1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン
[硬化性オルガノポリシロキサン組成物の調製]
前記の各成分を下の表1に記載の質量比(質量部)で、成分(C1)以外の各成分を均一に混合し、最後に成分(C1)を表1に記載の質量比(質量部)で混合し、真空脱泡後にムサシエンジニアリング製10ccシリンジに充填して、実施例1~2および比較例1~2の組成物を得た。
Figure JPOXMLDOC01-appb-T000006

 本発明の技術的効果に関する試験は次のように行った。
[粘度]
  組成物の25℃における粘度(Pa・s)を、アントンパール社製レオメータMCR-102を用いて測定した。ジオメトリは直径20mm、2度コーン型を用い、プレシェア:10 (1/s)、60s、平衡化時間(プレシェア後停止時間):60sを経て、ひずみ速度を0.05 (1/s)から5000 (1/s)まで、ひずみ速度増加率を120s/decadeで上昇させて測定した。各組成物の粘度の測定結果および、ひずみ速度0.1(1/s)における粘度をひずみ速度1,000(1/s)における粘度を除した値を「チクソ指数」として、表1に併せて示す。
[硬化物の硬さ]
組成物の硬化物の硬さは、JIS K 6253に規定されたタイプAデュロメータを用いて測定した。
[複素せん断弾性率]
組成物を150℃で60分間加熱硬化させて得た硬化物を、アントンパール社製レオメータMCR-302を用いて測定した。-100℃から100℃まで3℃/分で昇温しながら弾性率を測定し、-70℃と25℃における複素せん断弾性率(以下、G*と略す)の値を得た。ここで、[(-70℃におけるG*(G*1))/(25℃におけるG*(G*2))]が10以下である場合に耐寒性合格と判定し、-70℃と25℃におけるG*の値と併せて、表1に示す。
[ジェットディスペンス試験]
各組成物のジェットディスペンサーによる塗布試験は、武蔵エンジニアリング製の下表2の装置構成を有する装置を用いて、基材は20mm x 20mmのシリコンチップに1.4mmの間隔で7X7ドット(実施例1~2)のパターンで塗布を行った。同様に、6X6ドット(比較例1)のパターンで塗布を行った。塗布時の平均塗布径(μm)および1ショットあたりの平均塗布量(質量、μg)を表1に示す。なお、上記の「チクソ指数」が50未満では、ジェットディスペンサーによる塗布試験を行うことができなかったので、「ディスペンス不可」とした。
Figure JPOXMLDOC01-appb-T000007
[総括]
表1に示すとおり、実施例1および2の組成物は本発明の要件を満たすものである。すなわちひずみ速度1,000(1/s)における粘度が2.0Pa・s以下と十分に低く、かつ、ひずみ速度0.1(1/s)における粘度が、ひずみ速度1,000(1/s)における粘度の50.0倍以上の値(=チクソ指数)となり、ディスペンス後の流動性が低く制御された硬化性オルガノポリシロキサン組成物である。当該実施例1および2の組成物は、表1および図1、図2に示したとおり、微細液滴塗布装置であるジェットディスペンサーを用いて、平均塗布径800μm以下の範囲に精密な塗布が可能である。さらに、当該組成物は原料のA6およびD1成分に由来するケイ素原子結合芳香族官能基(フェニル基)の含有量が本願所定の範囲内にあり、該硬化物の-70℃におけるG*が25℃におけるG*の10倍以下であり、すなわち超低温領域から室温においても急激な弾性率変化が認められないことから、硬化物の耐寒性は良好であり、幅広い温度領域で使用可能であることが確認できた。
一方、比較例1の組成物は、組成物中のケイ素原子結合芳香族官能基の含有量が0質量%であり、微細液滴塗布装置であるジェットディスペンサーを用いた際、平均塗布径800μm以下の範囲に精密な塗布が可能(図3)であるが、該硬化物の-70℃におけるG*が25℃におけるG*の100倍以上であり、実施例1または実施例2と異なり、硬化物の耐寒性を実現することができないものであった。なお、アントンパール社製レオメータMCR-302を用いて前記の条件で測定を行った場合、比較例1の硬化物は、-50℃付近でのG*の変化が急激であるため、特に-50℃以下での耐寒性が不十分であることが確認できた。
また、比較例2の組成物は、原料のA6およびD1成分に由来するケイ素原子結合芳香族官能基(フェニル基)の含有量が過剰であり、一定の耐寒性を実現することができたが、ひずみ速度1,000(1/s)における粘度が2.0Pa・s以上であり、かつひずみ速度0.1(1/s)における粘度が、ひずみ速度1,000(1/s)における粘度の50.0倍未満であることから、微細液滴塗布装置であるジェットディスペンサーを用いた際、安定したジェット吐出が出来ず、精密な塗布を行うことができなかった。

Claims (15)

  1. ひずみ速度1,000(1/s)における粘度が2.0Pa・s以下であり、かつ、ひずみ速度0.1(1/s)における粘度が、ひずみ速度1,000(1/s)における粘度の50.0倍以上の値となることを特徴とし、かつ、
    組成物中のケイ素原子結合芳香族官能基の含有量が1.0~6.0質量%の範囲である硬化性オルガノポリシロキサン組成物。
  2. ひずみ速度1,000(1/s)における粘度が1.5Pa・s以下であり、かつ、ひずみ速度0.1(1/s)における粘度が、50Pa・s以上の値となることを特徴とする、請求項1に記載の硬化性オルガノポリシロキサン組成物。
  3. (A)25℃における粘度が10~100,000mPa・sであるアルケニル基含有オルガノポリシロキサン 100質量部、
     (B)オルガノハイドロジェンポリシロキサン:成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~5モルとなる量、
     (C)触媒量のヒドロシリル化反応用触媒、
    (D)レーザー回折・散乱法により測定される平均粒子径が0.01~10μmの機能性充填剤 2.5~20.0質量部、
    (E)1種類以上の接着促進剤、および
    (F)ヒドロシリル化反応抑制剤
    を含有してなり、(A)成分または(B)成分の少なくとも一部がケイ素原子結合芳香族官能基を有するオルガノポリシロキサンである、請求項1または請求項2に記載の硬化性オルガノポリシロキサン組成物。
  4. (A1)25℃における粘度が10~100,000mPa・sであり、ケイ素原子結合芳香族官能基を2.0~25.0質量%の範囲で含有するアルケニル基含有オルガノポリシロキサンを少なくとも含む、請求項1~請求項3のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  5. 前記の成分(D)が、(D1)平均一次粒子径が0.01~0.5μmの範囲にある補強性充填剤を少なくとも有する、請求項3に記載の硬化性オルガノポリシロキサン組成物。
  6. 前記の成分(F)が、(F1)アセチレン系のヒドロシリル化反応抑制剤および(F2)シクロアルケニルシロキサン系のヒドロシリル化反応抑制剤の混合物である、請求項3に記載の硬化性オルガノポリシロキサン組成物。
  7. パターン形成用途に用いられる一液型の硬化性オルガノポリシロキサン組成物である、請求項1~請求項6のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  8. パターンが、縦横の長さが1000μmの枠内に収まる塗布領域または線幅1000μm以下の線状の領域である硬化性オルガノポリシロキサン組成物の塗布領域の組み合わせを少なくとも含む、請求項7に記載の硬化性オルガノポリシロキサン組成物。
  9. 微細液滴塗布装置により適用される一液型の硬化性オルガノポリシロキサン組成物である、請求項1~請求項6のいずれか1項に記載の硬化性オルガノポリシロキサン組成物。
  10. 請求項1~請求項6のいずれか1項に記載の硬化性オルガノポリシロキサン組成物を微細液滴塗布装置を用いて基材上に適用することを特徴とする、パターンの形成方法。
  11. 前記のパターンが、硬化性オルガノポリシロキサン組成物を、ノズル径が1000μm以下の微細液滴塗布装置を用いて、縦横の長さが1000μmの枠内に収まる塗布領域または線幅1000μm以下の線状の領域に適用してなる塗布領域、またはそれらの組み合わせを少なくとも含む、請求項10に記載のパターンの形成方法。
  12. 少なくとも一部の領域に、請求項1~請求項6のいずれか1項に記載の硬化性オルガノポリシロキサン組成物またはその硬化物が適用された構造を備える、電子部品またはその前駆体。
  13. 請求項1~請求項6のいずれか1項に記載の硬化性オルガノポリシロキサン組成物が、微細液滴塗布装置を用いて適用された構造を備える、請求項12の電子部品またはその前駆体。
  14. 電子部品が半導体装置である、請求項12または請求項13に記載の電子部品またはその前駆体。
  15. 電子部品が、MEMS(micro electro mechanical systems)デバイスである、請求項12または請求項13に記載の電子部品またはその前駆体。
PCT/JP2019/040371 2018-10-18 2019-10-15 耐寒性に優れる硬化性オルガノポリシロキサン組成物、パターン形成方法および電子部品等 WO2020080326A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020553168A JP7432519B2 (ja) 2018-10-18 2019-10-15 耐寒性に優れる硬化性オルガノポリシロキサン組成物、パターン形成方法および電子部品等
CN201980064816.1A CN112805335A (zh) 2018-10-18 2019-10-15 耐寒性优异的固化性聚有机硅氧烷组合物、图案形成方法以及电子器件等
KR1020217014471A KR20210080433A (ko) 2018-10-18 2019-10-15 내한성이 우수한 경화성 오가노폴리실록산 조성물, 패턴 형성 방법 및 전자 부품 등
US17/285,792 US12122915B2 (en) 2018-10-18 2019-10-15 Curable organopolysiloxane composition having excellent cold resistance, and a pattern forming method
EP19874027.6A EP3868833A4 (en) 2018-10-18 2019-10-15 CURABLE ORGANOPOLYSILOXANE COMPOSITION HAVING EXCELLENT COLD RESISTANCE, PATTERN FORMING METHOD, ELECTRONIC COMPONENTS, ETC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018196615 2018-10-18
JP2018-196615 2018-10-18

Publications (1)

Publication Number Publication Date
WO2020080326A1 true WO2020080326A1 (ja) 2020-04-23

Family

ID=70283387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040371 WO2020080326A1 (ja) 2018-10-18 2019-10-15 耐寒性に優れる硬化性オルガノポリシロキサン組成物、パターン形成方法および電子部品等

Country Status (7)

Country Link
US (1) US12122915B2 (ja)
EP (1) EP3868833A4 (ja)
JP (1) JP7432519B2 (ja)
KR (1) KR20210080433A (ja)
CN (1) CN112805335A (ja)
TW (1) TWI825200B (ja)
WO (1) WO2020080326A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528854B2 (ja) 1972-01-13 1977-03-11
JPS6485224A (en) 1987-09-25 1989-03-30 Toray Silicone Co Adhesion accelerator
JPH1012546A (ja) 1996-06-18 1998-01-16 Sharp Corp 半導体ウェハの加熱処理方法
JPH10195085A (ja) 1996-11-18 1998-07-28 Toray Dow Corning Silicone Co Ltd カルバシラトラン誘導体、その製造方法、接着促進剤、および硬化性シリコーン組成物
JP2001002922A (ja) 1999-06-21 2001-01-09 Shin Etsu Chem Co Ltd 半導体装置封止用付加硬化型シリコーン組成物及び半導体装置
WO2012050105A1 (ja) 2010-10-14 2012-04-19 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性ポリオルガノシロキサン組成物
JP2013100516A (ja) * 2006-02-24 2013-05-23 Dow Corning Corp シリコーンで封入された光放出装置及び前記シリコーンを調製するための硬化性シリコーン組成物
JP2013253210A (ja) * 2012-06-08 2013-12-19 Sekisui Chem Co Ltd 光半導体装置用硬化性組成物、光半導体装置及び光半導体装置の製造方法
JP2014503680A (ja) * 2011-01-26 2014-02-13 ダウ コーニング コーポレーション 高温安定熱伝導性材料
JP2014506263A (ja) * 2010-12-08 2014-03-13 ダウ コーニング コーポレーション 封止材を作成するのに好適なシロキサン組成物
WO2014050318A1 (ja) * 2012-09-27 2014-04-03 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 光半導体素子封止用シリコーン組成物および光半導体装置
JP2015091576A (ja) 2013-10-04 2015-05-14 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性ポリオルガノシロキサン組成物を用いたパターンの形成方法
JP2017179038A (ja) * 2016-03-29 2017-10-05 信越化学工業株式会社 熱硬化性オルガノポリシロキサン組成物
JP2018009127A (ja) 2016-07-15 2018-01-18 信越化学工業株式会社 シリコーンゲル組成物
WO2019054370A1 (ja) * 2017-09-15 2019-03-21 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物およびパターン形成方法
WO2019054371A1 (ja) * 2017-09-15 2019-03-21 東レ・ダウコーニング株式会社 電子部品またはその前駆体、それらの製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420473B2 (ja) 1997-04-30 2003-06-23 東レ・ダウコーニング・シリコーン株式会社 シリコーン系接着性シート、その製造方法、および半導体装置
WO2007058954A1 (en) 2005-11-11 2007-05-24 Hitachi Chemical Research Center, Inc. Method of enhancing biocompatibility of elastomeric materials by microtexturing using microdroplet patterning
JP2009523856A (ja) * 2006-01-17 2009-06-25 ダウ・コーニング・コーポレイション 熱安定性の透明なシリコーン樹脂組成物、並びにその調製方法及び使用
JP2008040003A (ja) * 2006-08-03 2008-02-21 Fuji Xerox Co Ltd フレキシブル光導波路フィルム、光送受信モジュール、マルチチャンネル光送受信モジュール及びフレキシブル光導波路フィルムの製造方法
JP2008222828A (ja) 2007-03-12 2008-09-25 Momentive Performance Materials Japan Kk 凸レンズ形成用シリコーンゴム組成物及びそれを用いた光半導体装置
JP2010106223A (ja) 2008-10-31 2010-05-13 Dow Corning Toray Co Ltd 電気・電子部品用封止・充填剤および電気・電子部品
EP2443652A2 (en) 2009-06-19 2012-04-25 Dow Corning Corporation Use of ionomeric silicone thermoplastic elastomers in electronic devices
TWI522423B (zh) 2010-08-31 2016-02-21 道康寧東麗股份有限公司 聚矽氧烷組合物及其硬化物
JP2013100464A (ja) 2011-10-13 2013-05-23 Shin-Etsu Chemical Co Ltd 導電性シリコーン組成物及びその製造方法
JP5704049B2 (ja) 2011-10-13 2015-04-22 信越化学工業株式会社 導電性回路形成方法
US9492846B2 (en) 2012-08-03 2016-11-15 Momentive Performance Materials Gmbh Process for the manufacture of a multilayer silicone structure
JP2014065900A (ja) 2012-09-07 2014-04-17 Dow Corning Toray Co Ltd 硬化性シリコーン組成物およびその硬化物
JP5910566B2 (ja) 2013-04-18 2016-04-27 信越化学工業株式会社 付加硬化型自己接着性シリコーンゴム組成物及び成形品
DE102013207077A1 (de) 2013-04-19 2014-10-23 Elantas Gmbh Einkomponentige, lösemittelfreie Organosiloxan-Zusammensetzung zur Applikation auf Leiterplatten mittels einer CrossCut-Düse
CN103937257B (zh) * 2014-03-24 2017-01-25 惠州市安品新材料有限公司 有机硅触变剂及触变性加成型液体硅橡胶
KR102385489B1 (ko) 2014-04-09 2022-04-14 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 경화성 오르가노폴리실록산 조성물 및 전기·전자 부품의 보호제 또는 접착제 조성물
EP3173434B1 (en) 2014-07-24 2019-11-20 Mitsubishi Chemical Corporation Thermosetting resin composition and molded body thereof
CN107428074B (zh) * 2016-01-11 2019-11-26 瓦克化学股份公司 用于通过弹道法制备高度透明的成型体的可交联硅氧烷组合物
JP6531724B2 (ja) 2016-07-01 2019-06-19 信越化学工業株式会社 エアーバッグ用シリコーンゴムコーティング基布の製造方法、紫外線硬化型エアーバッグコーティング剤及びエアーバッグ用基布
WO2018043270A1 (ja) 2016-09-01 2018-03-08 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物
JP6874366B2 (ja) 2016-12-28 2021-05-19 信越化学工業株式会社 シリコーン組成物およびその硬化物
US11578245B2 (en) 2017-07-24 2023-02-14 Dow Toray Co., Ltd. Thermally-conductive silicone gel composition, thermally-conductive member, and heat dissipation structure
JP7263381B2 (ja) 2018-03-19 2023-04-24 ダウ シリコーンズ コーポレーション ポリオレフィン-ポリジオルガノオシロキサン(polydiorganoosiloxane)コポリマーを含有するポリオルガノシロキサンホットメルト接着剤組成物ならびにそれを調製および使用するための方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528854B2 (ja) 1972-01-13 1977-03-11
JPS6485224A (en) 1987-09-25 1989-03-30 Toray Silicone Co Adhesion accelerator
JPH1012546A (ja) 1996-06-18 1998-01-16 Sharp Corp 半導体ウェハの加熱処理方法
JPH10195085A (ja) 1996-11-18 1998-07-28 Toray Dow Corning Silicone Co Ltd カルバシラトラン誘導体、その製造方法、接着促進剤、および硬化性シリコーン組成物
JP2001002922A (ja) 1999-06-21 2001-01-09 Shin Etsu Chem Co Ltd 半導体装置封止用付加硬化型シリコーン組成物及び半導体装置
JP2013100516A (ja) * 2006-02-24 2013-05-23 Dow Corning Corp シリコーンで封入された光放出装置及び前記シリコーンを調製するための硬化性シリコーン組成物
WO2012050105A1 (ja) 2010-10-14 2012-04-19 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性ポリオルガノシロキサン組成物
JP2014506263A (ja) * 2010-12-08 2014-03-13 ダウ コーニング コーポレーション 封止材を作成するのに好適なシロキサン組成物
JP2014503680A (ja) * 2011-01-26 2014-02-13 ダウ コーニング コーポレーション 高温安定熱伝導性材料
JP2013253210A (ja) * 2012-06-08 2013-12-19 Sekisui Chem Co Ltd 光半導体装置用硬化性組成物、光半導体装置及び光半導体装置の製造方法
WO2014050318A1 (ja) * 2012-09-27 2014-04-03 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 光半導体素子封止用シリコーン組成物および光半導体装置
JP2015091576A (ja) 2013-10-04 2015-05-14 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性ポリオルガノシロキサン組成物を用いたパターンの形成方法
JP2017179038A (ja) * 2016-03-29 2017-10-05 信越化学工業株式会社 熱硬化性オルガノポリシロキサン組成物
JP2018009127A (ja) 2016-07-15 2018-01-18 信越化学工業株式会社 シリコーンゲル組成物
WO2019054370A1 (ja) * 2017-09-15 2019-03-21 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物およびパターン形成方法
WO2019054371A1 (ja) * 2017-09-15 2019-03-21 東レ・ダウコーニング株式会社 電子部品またはその前駆体、それらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3868833A4

Also Published As

Publication number Publication date
TW202031799A (zh) 2020-09-01
CN112805335A (zh) 2021-05-14
EP3868833A1 (en) 2021-08-25
US12122915B2 (en) 2024-10-22
JPWO2020080326A1 (ja) 2021-09-16
JP7432519B2 (ja) 2024-02-16
TWI825200B (zh) 2023-12-11
EP3868833A4 (en) 2022-07-20
KR20210080433A (ko) 2021-06-30
US20210371659A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
EP3683274B1 (en) Curable organopolysiloxane composition, and pattern forming method
JP7264817B2 (ja) 電子部品またはその前駆体、それらの製造方法
EP2721108B1 (en) Cross-linkable silicone composition and cross-linked product thereof
TW201615714A (zh) 硬化性聚矽氧組合物、其硬化物、及光半導體裝置
TWI765925B (zh) 填充有反應性熱熔聚矽氧之容器及反應性熱熔聚矽氧之製造方法
CN110291156A (zh) 可固化有机硅组合物、其固化产物和光学显示器
JP2006002093A (ja) 硬化性オルガノポリシロキサン組成物
CN111978736A (zh) 固晶用有机硅组合物、其固化物及光学半导体装置
JPH09132718A (ja) 二液型硬化性液状シリコーン組成物
CN113015775B (zh) 粘接性聚有机硅氧烷组合物
JP7432519B2 (ja) 耐寒性に優れる硬化性オルガノポリシロキサン組成物、パターン形成方法および電子部品等
JP2020070402A (ja) 付加硬化型シリコーン樹脂組成物、その硬化物、及び光半導体装置
TWI853911B (zh) 室溫固化性有機聚矽氧烷組成物及電氣、電子零件之保護劑或黏合劑組成物
CN114630879B (zh) 聚苯硫醚树脂粘接用聚有机硅氧烷组合物
TW202104439A (zh) 室溫固化性有機聚矽氧烷組成物及電氣、電子零件之保護劑或黏合劑組成物
JP2024158046A (ja) 熱伝導性シリコーン組成物および熱伝導性シリコーン組成物の製造方法
TW202043419A (zh) 黏晶用有機改質矽氧樹脂組成物、其硬化物及光半導體元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217014471

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019874027

Country of ref document: EP

Effective date: 20210518