[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020080119A1 - 微細繊維状セルロースの乾燥固形物の再分散方法、および微細繊維状セルロースの再分散液の製造方法 - Google Patents

微細繊維状セルロースの乾燥固形物の再分散方法、および微細繊維状セルロースの再分散液の製造方法 Download PDF

Info

Publication number
WO2020080119A1
WO2020080119A1 PCT/JP2019/039067 JP2019039067W WO2020080119A1 WO 2020080119 A1 WO2020080119 A1 WO 2020080119A1 JP 2019039067 W JP2019039067 W JP 2019039067W WO 2020080119 A1 WO2020080119 A1 WO 2020080119A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine fibrous
fibrous cellulose
cellulose
mixture
redispersion
Prior art date
Application number
PCT/JP2019/039067
Other languages
English (en)
French (fr)
Inventor
智弘 八木
武史 中山
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to CN201980057281.5A priority Critical patent/CN112673132A/zh
Priority to JP2020553044A priority patent/JP7323549B2/ja
Publication of WO2020080119A1 publication Critical patent/WO2020080119A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres

Definitions

  • the present invention relates to a method for redispersing a dry solid of fine fibrous cellulose and a method for producing a redispersion liquid of fine fibrous cellulose.
  • the fine fibrous cellulose obtained by finely disintegrating plant fibers includes microfibril cellulose (hereinafter referred to as "MFC”) and cellulose nanofibers (hereinafter referred to as "CNF").
  • MFC microfibril cellulose
  • CNF cellulose nanofibers
  • the fine fibrous cellulose is a fine fiber having a fiber diameter of about 1 nm to several tens of ⁇ m and is excellent in water-based dispersibility, and thus is expected to be applied to the fields of foods, cosmetics, medical products, paints and the like. Specifically, it is expected to be applied to the maintenance of viscosity of paint, the strengthening of food material dough, the retention of moisture, the improvement of food stability, the low calorie additive, the emulsion stabilization aid, and the like.
  • Microfiber cellulose is usually obtained in a state of being dispersed in water, and the solid content concentration is very low at about 0.1 to 5%. Therefore, when transporting an aqueous dispersion of fine fibrous cellulose, a large amount of water is transported, which causes a problem of high transportation costs. Further, in the state of the aqueous dispersion, there is a problem that microbial countermeasures and antiseptic treatment are necessary. Therefore, it is preferable to use a dried product. However, once the fine fibrous cellulose has been dried, it is difficult to re-disperse it as fine fibrous cellulose unless the dispersion treatment is performed by stirring at a high rotation speed for a long time. Therefore, Patent Document 1 proposes a method in which a dry solid substance of fine fibrous cellulose is subjected to hot water treatment and then redispersed in a solvent. However, this method requires a separate step of hot water treatment, which complicates the step.
  • the present invention even when the fine fibrous cellulose is dried, as in the case where the fine fibrous cellulose is prepared without passing through a dry state, can be redispersed as fine fibrous cellulose in an aqueous solvent, and, It is an object of the present invention to provide a method capable of efficiently redispersing regardless of the amount.
  • the present invention provides the following.
  • a method of redispersing a dried solid product of fine fibrous cellulose obtained by drying the produced fine fibrous cellulose dispersion in an aqueous solvent as fine fibrous cellulose comprising: A mixture containing a dry solid and the aqueous solvent is introduced into an in-line type mixer that causes turbulent stirring to mix the contents, at a flow rate at which turbulent stirring occurs, and stirs the mixture as well as to the mixture.
  • a method for redispersing a dry solid of fine fibrous cellulose which is characterized by imparting mechanical shearing force thereto.
  • the in-line mixer has a tubular body, and at least two intersecting plates for causing turbulent flow agitation are provided on the upstream side in the tubular body, and on the peripheral wall of the tubular body on the downstream side of the plates.
  • (4) In-line type in which a mixture containing a dry solid of fine fibrous cellulose obtained by drying the produced fine fibrous cellulose dispersion and an aqueous solvent is turbulently stirred to mix the contents.
  • the in-line mixer has a tubular body, at least two intersecting plates for causing turbulent flow stirring are provided on the upstream side in the tubular body, and on the peripheral wall of the tubular body on the downstream side of the plates.
  • the fine fibrous cellulose even when the fine fibrous cellulose is dried, as in the case where the fine fibrous cellulose is prepared without going through a dry state, it can be redispersed as a fine fibrous cellulose in an aqueous solvent, and, It is possible to provide a method capable of efficiently redispersing regardless of the amount.
  • FIG. 3 is an image of an optical microscope observation result of Example 1.
  • 6 is an image of an optical microscope observation result of Comparative Example 1. It is an image of the optical microscope observation result of the reference example 1.
  • the present invention is a method of redispersing a dried solid of fine fibrous cellulose obtained by drying the produced fine fibrous cellulose dispersion as fine fibrous cellulose in an aqueous solvent, wherein the fine fibrous cellulose is The mixture containing the dry solid and the aqueous solvent is introduced into an in-line mixer that causes turbulent stirring to mix the contents, at a flow rate at which turbulent stirring occurs, and the mixture is stirred and the mixture is mixed. A mechanical shearing force is applied to.
  • the fine fibrous cellulose used in the present invention is a fine fiber made of cellulose as a raw material.
  • the average fiber diameter of the fine fibrous cellulose is not particularly limited, but is about 1 nm to 10 ⁇ m.
  • the average fiber diameter and average fiber length of the fine fibrous cellulose are obtained from the results of observing each fiber using a scanning electron microscope (SEM), atomic force microscope (AFM) or transmission electron microscope (TEM). It can be obtained by averaging the fiber diameter and the fiber length.
  • Fine fibrous cellulose can be produced by defibrating cellulose.
  • the average aspect ratio of the fine fibrous cellulose used in the present invention is usually 50 or more.
  • the upper limit is not particularly limited, but is usually 1000 or less.
  • the cellulose raw material is not particularly limited as long as it contains cellulose, and examples thereof include plants (eg, wood, bamboo, hemp, jute, kenaf, agricultural land waste, cloth, pulp (softwood unbleached kraft pulp (NUKP), Softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), bleached kraft pulp (BKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP) Thermomechanical pulp (TMP), recycled pulp, waste paper, etc.), animals (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (acetobacter)), microbial products, etc.
  • plants eg, wood, bamboo, hemp, jute, kenaf, agricultural land waste, cloth, pulp (softwood unbleached kraft pulp (NUKP), Softwood bleached kraft pulp (NB
  • cellulose raw material Any of these may be used as the cellulose raw material. Or may be a combination of two or more kinds, Mashiku plant or microbial origin cellulosic material (e.g., cellulosic fibers), more preferably a cellulose material of plant origin (e.g., cellulose fibers).
  • Mashiku plant or microbial origin cellulosic material e.g., cellulosic fibers
  • a cellulose material of plant origin e.g., cellulose fibers
  • the number average fiber diameter of the cellulose raw material is not particularly limited, but it is about 30 to 60 ⁇ m in the case of general softwood kraft pulp and about 10 to 30 ⁇ m in the case of hardwood kraft pulp. In the case of other pulps, those that have undergone general refining have a size of about 50 ⁇ m. For example, when a chip or the like having a size of several cm is purified, it is preferable to perform mechanical treatment with a disintegrator such as a refiner or beater to adjust the size to about 50 ⁇ m.
  • a disintegrator such as a refiner or beater
  • Cellulose has three hydroxyl groups per glucose unit and can be chemically modified in various ways.
  • the chemical modification includes, for example, carboxymethylation, oxidation (carboxylation), cationization, esterification and the like. Among them, carboxymethylation and oxidation (carboxylation) are more preferable.
  • carboxymethylated cellulose is obtained by carboxymethylating the above cellulose raw material by a known method.
  • a commercially available product may be used.
  • the degree of carboxymethyl group substitution per anhydroglucose unit of cellulose is 0.01 to 0.50.
  • the following method can be mentioned as an example of a method for producing such carboxymethylated cellulose.
  • Cellulose is used as a bottoming raw material, and 3 to 20 times by mass of water and / or a lower alcohol as a solvent, specifically, water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, and tertiary A single medium such as butanol or a mixture of two or more types is used.
  • the mixing ratio of the lower alcohol is 60 to 95% by mass.
  • the mercerizing agent 0.5 to 20 times mol of alkali metal hydroxide, specifically sodium hydroxide or potassium hydroxide, is used per anhydrous glucose residue of the bottoming raw material.
  • the bottoming raw material, the solvent and the mercerizing agent are mixed, and the mercerization treatment is carried out at a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Then, 0.05 to 10.0 times mol of carboxymethylating agent is added per glucose residue, reaction temperature is 30 to 90 ° C, preferably 40 to 80 ° C, and reaction time is 30 minutes to 10 hours, preferably 1 hour. Perform the etherification reaction for ⁇ 4 hours.
  • carboxymethyl cellulose which is a kind of chemically modified cellulose used for the preparation of fine fibrous cellulose, maintains at least a part of the fibrous shape even when dispersed in water. Say something. Therefore, it is distinguished from carboxymethyl cellulose, which is a type of water-soluble polymer.
  • carboxymethyl cellulose which is a type of water-soluble polymer.
  • fibrous substances can be observed.
  • no fibrous substance is observed even when an aqueous dispersion of carboxymethyl cellulose, which is a kind of water-soluble polymer, is observed.
  • the peak of cellulose type I crystal can be observed when measured by X-ray diffraction, but no cellulose type I crystal is found in the water-soluble polymer carboxymethylcellulose.
  • oxidized fine fibrous cellulose obtained by defibrating oxidized (carboxylated) cellulose
  • oxidized cellulose also referred to as carboxylated cellulose
  • carboxylated cellulose is obtained by oxidizing the above cellulose raw material by a known method ( It can be obtained by carboxylation).
  • the amount of the carboxyl groups should be adjusted to 0.6 to 2.0 mmol / g with respect to the absolutely dry mass of the chemically modified fine fibrous cellulose. Is preferable, and it is more preferable to adjust to 1.0 mmol / g to 2.0 mmol / g.
  • a cellulose raw material is oxidized in water with an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof.
  • an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof.
  • a method can be mentioned.
  • This oxidation reaction C6-position primary hydroxyl groups of the glucopyranose ring of the cellulose surface is selectively oxidized, and an aldehyde group on the surface, a carboxyl group (-COOH) or carboxylate groups (-COO -) and cellulosic fibers having a Can be obtained.
  • the concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
  • N-oxyl compound refers to a compound capable of generating a nitroxy radical.
  • any compound can be used as long as it is a compound that promotes the desired oxidation reaction. Examples include 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivatives (eg 4-hydroxy TEMPO).
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxy radical
  • its derivatives eg 4-hydroxy TEMPO
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing cellulose as a raw material.
  • 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is still more preferable, relative to 1 g of absolutely dried cellulose. Further, it is preferably about 0.1 to 4 mmol / L with respect to the reaction system.
  • Bromide is a compound containing bromine, examples of which include alkali metal bromide that can be dissociated and ionized in water.
  • iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected within a range that can accelerate the oxidation reaction.
  • the total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, still more preferably 0.5 to 5 mmol, per 1 g of absolutely dried cellulose.
  • oxidizing agent known ones can be used, and for example, halogen, hypohalous acid, halogenous acid, perhalogenic acid or salts thereof, halogen oxide, peroxide, etc. can be used.
  • sodium hypochlorite which is inexpensive and has a low environmental load, is preferable.
  • the amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol per 1 g of absolutely dried cellulose. Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.
  • the reaction temperature is preferably 4 to 40 ° C., and may be room temperature of about 15 to 30 ° C. Since a carboxyl group is generated in the cellulose as the reaction progresses, the pH of the reaction solution is lowered. In order to allow the oxidation reaction to proceed efficiently, it is preferable to add an alkaline solution such as an aqueous solution of sodium hydroxide to maintain the pH of the reaction solution at 8 to 12, preferably about 10 to 11. Water is preferable as the reaction medium because it is easy to handle and side reactions are unlikely to occur.
  • the reaction time in the oxidation reaction can be appropriately set according to the degree of progress of oxidation, and is usually 0.5 to 6 hours, for example, 0.5 to 4 hours.
  • the oxidation reaction may be carried out in two stages. For example, by oxidizing the oxidized cellulose obtained by filtering after the completion of the reaction in the first step again under the same or different reaction conditions, the reaction efficiency by the salt produced as a by-product in the reaction in the first step is not increased, and the efficiency is improved. Can be well oxidized.
  • oxidation (carboxylation) method a method of oxidizing by bringing a gas containing ozone and a cellulose raw material into contact with each other can be mentioned.
  • the ozone concentration in the gas containing ozone is preferably 50 to 250 g / m 3 , and more preferably 50 to 220 g / m 3 .
  • the amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass and more preferably 5 to 30 parts by mass when the solid content of the cellulose raw material is 100 parts by mass.
  • the ozone treatment temperature is preferably 0 to 50 ° C, more preferably 20 to 50 ° C.
  • the ozone treatment time is not particularly limited, but is about 1 to 360 minutes, preferably about 30 to 360 minutes. When the conditions of the ozone treatment are within these ranges, it is possible to prevent the cellulose from being excessively oxidized and decomposed, and the yield of the oxidized cellulose becomes good.
  • an additional oxidizing treatment may be performed using an oxidizing agent.
  • the oxidizing agent used in the additional oxidation treatment is not particularly limited, but examples thereof include chlorine-based compounds such as chlorine dioxide and sodium chlorite, and oxygen, hydrogen peroxide, persulfuric acid, peracetic acid and the like.
  • an additional oxidization treatment can be performed by dissolving these oxidizing agents in water or a polar organic solvent such as alcohol to prepare an oxidizing agent solution, and immersing the cellulose raw material in the solution.
  • the amount of carboxyl groups in oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the above-mentioned oxidizing agent added and the reaction time.
  • cationized fine fibrous cellulose obtained by defibrating cellulose obtained by further cationizing the carboxylated cellulose can be used.
  • the cation-modified cellulose is obtained by using, as the carboxylated cellulose raw material, a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydride or its halohydrin type, and an alkali hydroxide as a catalyst. It can be obtained by reacting a metal (sodium hydroxide, potassium hydroxide, etc.) in the presence of water or an alcohol having 1 to 4 carbon atoms.
  • the cation substitution degree per glucose unit is preferably 0.02 to 0.50.
  • the cation substitution degree can be adjusted by the addition amount of the cationizing agent to be reacted and the composition ratio of water or an alcohol having 1 to 4 carbon atoms.
  • esterified fine fibrous cellulose obtained by defibrating esterified cellulose can be used.
  • the esterified cellulose can be obtained by a method of mixing powder of the phosphoric acid compound A or an aqueous solution with the above-mentioned cellulose raw material or a method of adding an aqueous solution of the phosphoric acid compound A to the slurry of the cellulose raw material.
  • Examples of the phosphoric acid compound A include phosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, polyphosphonic acid, and esters thereof. These may be in the form of salts. Among these, compounds having a phosphoric acid group are preferable because they are low in cost, easy to handle, and can introduce a phosphoric acid group into the cellulose of the pulp fiber to improve the defibration efficiency. Examples of the compound having a phosphoric acid group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite and potassium hypophosphite.
  • These may be used alone or in combination of two or more.
  • phosphoric acid, phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, phosphoric acid from the viewpoint of high efficiency of phosphate group introduction, easy to defibrate in the following defibration step, and easy to apply industrially Is more preferred.
  • the phosphoric acid compound A is preferably used as an aqueous solution.
  • the pH of the aqueous solution of the phosphoric acid compound A is preferably 7 or less because the efficiency of introducing a phosphoric acid group is high, but a pH of 3 to 7 is preferable from the viewpoint of suppressing hydrolysis of pulp fibers.
  • the following method can be mentioned as an example of a method for producing phosphorylated esterified cellulose.
  • the phosphoric acid compound A is added to a dispersion liquid of a cellulose raw material having a solid content concentration of 0.1 to 10 mass% while stirring to introduce a phosphoric acid group into the cellulose.
  • the amount of the cellulose raw material is 100 parts by mass
  • the amount of the phosphoric acid compound A added is preferably 0.2 to 500 parts by mass, and more preferably 1 to 400 parts by mass, as the amount of phosphorus element.
  • the ratio of the phosphoric acid compound A is at least the above lower limit, the yield of fine fibrous cellulose can be further improved. However, when the amount exceeds the upper limit, the effect of improving the yield reaches the ceiling, which is not preferable in terms of cost.
  • powders or aqueous solutions of other compounds B may be mixed.
  • the compound B is not particularly limited, but a nitrogen-containing compound having basicity is preferable.
  • the term "basic” as used herein is defined as that the aqueous solution exhibits a pink to red color in the presence of the phenolphthalein indicator, or that the pH of the aqueous solution is greater than 7.
  • the basic nitrogen-containing compound used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable.
  • urea methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like are mentioned, but not particularly limited. Of these, urea is preferable because it is inexpensive and easy to handle.
  • the addition amount of the compound B is preferably 2 to 1000 parts by mass, more preferably 100 to 700 parts by mass, based on 100 parts by mass of the solid content of the cellulose raw material.
  • the reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C.
  • the reaction time is not particularly limited, it is about 1 to 600 minutes, more preferably 30 to 480 minutes.
  • the conditions of the esterification reaction are within these ranges, it is possible to prevent the cellulose from being excessively esterified and easily dissolved, and the yield of the phosphorylated esterified cellulose becomes good.
  • After dehydrating the obtained phosphoric acid esterified cellulose suspension it is preferable to heat-treat at 100 to 170 ° C. from the viewpoint of suppressing hydrolysis of cellulose. Further, it is preferable to heat at 130 ° C. or lower, preferably 110 ° C. or lower while water is contained in the heat treatment, remove water, and then heat treatment at 100 to 170 ° C.
  • the degree of phosphoric acid group substitution per glucose unit in the phosphorylated cellulose is preferably 0.001 to 0.40.
  • the cellulose electrically repels each other. Therefore, the cellulose having the phosphate group introduced therein can be easily nano-disentangled. If the phosphate group substitution degree per glucose unit is less than 0.001, nanofibrillation cannot be sufficiently carried out.
  • the degree of substitution of phosphate groups per glucose unit is greater than 0.40, it may swell or dissolve, and it may not be possible to obtain fine fibrous cellulose. In order to efficiently perform defibration, it is preferable that the phosphoric acid esterified cellulose raw material obtained above is boiled and then washed with cold water for washing.
  • the apparatus for defibrating the chemically modified cellulose is not particularly limited, but a high shearing force is applied to the water dispersion using a high-speed rotation type, colloid mill type, high pressure type, roll mill type, ultrasonic type, or other device. Is preferably applied.
  • a wet high-pressure or ultra-high-pressure homogenizer that can apply a pressure of 50 MPa or more and a strong shearing force to the water dispersion.
  • the pressure is more preferably 100 MPa or more, further preferably 140 MPa or more.
  • the fine fibrous cellulose is subjected to a pretreatment using a known mixing, stirring, emulsifying, and dispersing device such as a high-speed shear mixer. It is also possible.
  • the number of treatments (passes) in the defibrating device may be once, twice or more, and preferably twice or more.
  • chemically modified cellulose is usually dispersed in a solvent.
  • the solvent is not particularly limited as long as it can disperse the chemically modified cellulose, and examples thereof include water, an organic solvent (for example, a hydrophilic organic solvent such as methanol), and a mixed solvent thereof. Since the cellulose raw material is hydrophilic, the solvent is preferably water.
  • the solid content concentration of the chemically modified cellulose in the dispersion is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more. As a result, the amount of liquid relative to the amount of cellulose fiber raw material becomes a proper amount, which is efficient.
  • the upper limit is usually 10% by mass or less, preferably 6% by mass or less. This makes it possible to maintain fluidity.
  • preliminary treatment may be performed if necessary.
  • the pretreatment may be carried out using a mixing, stirring, emulsifying and dispersing device such as a high speed shear mixer.
  • the chemically modified fine fibrous cellulose obtained through the defibration step is in the salt form, it may be used as it is, or may be treated with an acid using a mineral acid or an acid form by a method using a cation exchange resin. You may use. Further, it may be used by imparting hydrophobicity by a method using a cationic additive.
  • the dry solid of fine fibrous cellulose used in the present invention can be obtained by drying the dispersion liquid of fine fibrous cellulose produced as described above and evaporating the solvent.
  • a commercially available product may be used as the dry solid material of the fine fibrous cellulose.
  • the dry solid means a state of being dried so that the water content is 20% by mass or less.
  • the water content is preferably 0 to 20% by mass, and more preferably 0 to 12% by mass.
  • it may be dried to a water content of 0% (extremely dried). For example, it can be dried completely by drying at 105 ° C. for 3 hours.
  • the drying method is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include spray drying, pressing, air drying, hot air drying, freeze drying, spray drying, and vacuum drying.
  • the drying device is also not particularly limited, and is a continuous tunnel drying device, band drying device, vertical drying device, vertical turbo drying device, multi-stage disc drying device, aeration drying device, rotary drying device, airflow drying device, spray drying device.
  • the aqueous solvent includes water, a water-soluble organic solvent, or a mixed solvent thereof, and since the cellulose raw material is hydrophilic, water is used from the viewpoint of easily obtaining a good dispersed state during dispersion. Is preferred.
  • a water-soluble organic solvent is an organic solvent that dissolves in water.
  • examples thereof include methanol, ethanol, 2-propanol, butanol, glycerin, acetone, methyl ethyl ketone, 1,4-dioxane, N-methyl-2-pyrrolidone, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, Dimethyl sulfoxide, acetonitrile, and combinations thereof.
  • lower alcohols having 1 to 4 carbon atoms such as methanol, ethanol and 2-propanol are preferable, and from the viewpoint of safety and availability, methanol and ethanol are more preferable, and ethanol is still more preferable.
  • the amount of the water-soluble organic solvent in the mixed solvent is preferably 10% by mass or more, more preferably 50% by mass or more, and further preferably 70% by mass or more.
  • the upper limit of the amount is not limited, but is preferably 95% by mass or less, more preferably 90% by mass or less.
  • the water-based solvent may contain a water-insoluble organic solvent to the extent that the effects of the invention are not impaired.
  • the conditions of the preliminary stirring are not particularly limited, but are, for example, about 500 to 1000 rpm and about 30 to 120 seconds.
  • a homodisper, a homomixer or the like can be used as the device for preliminary stirring.
  • the solid content concentration of the fine fibrous cellulose in the mixture is not particularly limited, but is preferably 0.1 to 5.0 mass%, more preferably 0.1 to 3.0 mass%.
  • the in-line type mixer that can be used in the present invention can be used without particular limitation as long as it can turbulently stir the mixture to impart a mechanical shearing force to the mixture. It is preferable to use an OHR mixer, which is a kind of static mixer, from the viewpoint of excellent redispersibility and enabling efficient redispersion in a short time.
  • FIG. 1 is a schematic diagram showing a cross section of an in-line mixer.
  • the in-line mixer that can be used in the present invention is not limited to that shown in FIG.
  • the in-line mixer 2 shown in FIG. 1 is provided with a tube body 4 for passing a mixture and two intersecting plates 6 for causing turbulent stirring on the upstream side of the tube body 4. 6 is fixed to the inner wall of the tubular body 4. A plurality of protrusions 8 are provided on the inner peripheral wall of the tubular body 4 on the downstream side of the plate 6. In addition, in FIG. 1, the passage direction of the mixture is shown by the arrow.
  • the mixture When the mixture is introduced into the in-line type mixer 2 at a constant flow rate or more, the mixture becomes a spiral flow with a strong twist due to the action of the two plates 6. At this time, the mixture generates a mechanical shearing force due to the sudden division and change of flow by the two plates 6. Then, turbulent flow stirring occurs and stirring is performed. The mixture is sent further downstream in the tube and collides with the protrusions 8 while being stirred, whereby the mixture is more vigorously mixed, the dispersion is promoted, and a redispersion liquid of fine fibrous cellulose is obtained.
  • the number of times the mixture is passed through the in-line mixer is not particularly limited, but may be once or twice or more.
  • the mixture is introduced into an inline mixer at a flow rate at which turbulent agitation occurs.
  • the flow rate for introducing the mixture is not particularly limited as long as it is a flow rate at which turbulent stirring occurs, but from the viewpoint of efficient sample dispersion, it is preferably 1.0 to 10.0 m / sec, and 3.0 to 10. 0 m / sec is more preferable.
  • a pump having a sufficient liquid feeding capacity By using a pump having a sufficient liquid feeding capacity, a strong turbulent flow occurs in the in-line type mixer 2, and in the process where the turbulent flow collides with the protrusions 8, the dispersion of the dry solid of fine fibrous cellulose is promoted.
  • the pump is not particularly limited, but examples thereof include a swirl pump and a mono pump, and it is preferable to use the swirl pump.
  • the liquid feeding capacity of the pump is preferably 0.1 to 0.8 kW / h, more preferably 0.3 to 0.8 kW / h.
  • the number of plates 6 provided on the upstream side of the tubular body 4 is not limited as long as it can cause turbulent agitation, but the number of plates is 2 to 8 from the viewpoint of increasing the number of times of shearing. Is preferred, and two are more preferred.
  • the shape is preferably a semi-elliptical shape from the viewpoint of stirring efficiency.
  • the shape of the projection 8 on the inner peripheral wall of the tubular body 4 is not particularly limited, but it is preferably mushroom-shaped from the viewpoint of enhancing mixing efficiency.
  • redispersion method of the present invention since an in-line type mixer is used, when a small amount of redispersion liquid is produced, it is necessary to carry out redispersion using a batch mixer for several tens of minutes to several hours. The preparation time can be greatly shortened and the efficiency is excellent. When a large amount of redispersion liquid is produced, a redispersion liquid having stable quality can be efficiently obtained.
  • the fine fibrous cellulose is redispersed as fine fibrous cellulose in an aqueous solvent is determined by a field emission scanning electron microscope (FE-SEM) or the like. It can be confirmed by whether nano-sized cellulose having a width of 1 nm to 10 ⁇ m, preferably about 2 to 5 nm can be observed.
  • FE-SEM field emission scanning electron microscope
  • a redispersion liquid having a solid content concentration of 1.0% by mass added with a coloring material such as India ink is observed with an optical microscope at a magnification of 100 times, and a lump that looks white in the image is observed. The size and number can be confirmed by comparing with an observed image of the dispersion liquid before drying.
  • Example 1 Water was added to the dried solid substance of carboxymethyl cellulose nanofibers (water content 10.1%) and preliminary stirring (500 rpm, 30 seconds) was performed to prepare 10 L of a slurry having a CNF solid content of 1.0% by mass. A total of this slurry was sent at 5.69 m / sec using a vortex pump (manufactured by Nikuni Co., Ltd., 20NED04Z-V), and connected to an OHR mixer (manufactured by OHR Fluid Engineering Laboratory Co., Ltd., MX-F8, outlet cutoff). Area: 50.2 mm 2 ) was passed once to obtain a CNF redispersion liquid.
  • a vortex pump manufactured by Nikuni Co., Ltd., 20NED04Z-V
  • OHR mixer manufactured by OHR Fluid Engineering Laboratory Co., Ltd., MX-F8, outlet cutoff
  • the outlet flow rate of the slurry was 17.1 L / min, and the time required for the entire amount of the slurry to pass through the OHR mixer once was 35 seconds.
  • Example 1 in which the flow rate of the slurry was 5.69 m / sec, strong turbulence was generated in the OHR mixer.
  • ink droplets manufactured by Kuretake Co., Ltd., solid content 10%
  • a vortex mixer manufactured by IUCHI, device name: Automatic Lab-mixer HM-
  • the rotation speed scale of 10 H was set to the maximum and the mixture was stirred for 1 minute.
  • the cellulose nanofiber dispersion liquid containing the ink droplets was sandwiched between two glass plates so that the film thickness was 0.15 mm, and an optical microscope (digital microscope KH-8700 (manufactured by Hylox Corporation)) was used. It was used and observed at a magnification of 100 times. The results are shown in Fig. 2.
  • Comparative Example 1 A CNF redispersion liquid was obtained by passing once through the OHR mixer in the same manner as in Example 1 except that the liquid was fed at 2.01 m / sec using a mono pump.
  • the outlet flow rate of the slurry was 6.1 L / min, and the time required for the entire amount of the slurry to pass through the OHR mixer once was 99 seconds.
  • Comparative Example 1 in which the flow rate of the slurry was 2.01 m / sec, although turbulent flow was generated in the OHR mixer, it was weak.
  • the CNF redispersion liquid thus obtained was observed with an optical microscope in the same manner as in Example 1. The results are shown in Fig. 3.
  • Example 1 Evaluation result of dispersed state
  • the size and amount of gel particles were similar to those in Reference Example 1, and the dispersed state was good.
  • Comparative Example 1 a large number of gel particles larger than those of Reference Example 1 were observed, and it cannot be said that the appearance was close to that of Reference Example 1, and the dispersion state was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paper (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cosmetics (AREA)

Abstract

微細繊維状セルロースの乾燥固形物と水系溶媒とを含む混合物を、乱流撹拌を生じさせて内容物を混合するインライン型ミキサーに、乱流撹拌が起こる流速で導入し、前記混合物を撹拌すると共に、前記混合物に対して機械的せん断力を付与する。

Description

微細繊維状セルロースの乾燥固形物の再分散方法、および微細繊維状セルロースの再分散液の製造方法
 本発明は、微細繊維状セルロースの乾燥固形物の再分散方法、および微細繊維状セルロースの再分散液の製造方法に関する。
 植物繊維を細かく解すことで得られる微細繊維状セルロースは、ミクロフィブリルセルロース(以下「MFC」という)及びセルロースナノファイバー(以下「CNF」という)を包含する。微細繊維状セルロースは、約1nm~数10μm程度の繊維径の微細繊維であり、水系分散性に優れることから、食品、化粧品、医療品、または塗料等の分野への応用が期待されている。具体的には、塗料の粘度保持、食品原料生地の強化、水分の保持、食品安定性向上、低カロリー添加物、または乳化安定化助剤等への応用が期待されている。
 微細繊維状セルロースは、通常、水に分散している状態で得られ、固形分濃度が0.1~5%程度と非常に低い。そのため、微細繊維状セルロースの水分散液を輸送する際には、大量の水を運ぶこととなり輸送に係る費用が高いという問題がある。また、水分散液の状態であると、微生物対策や防腐処理が必要といった問題もある。そのため、乾燥品とすることが好ましい。しかしながら、微細繊維状セルロースは、一旦乾燥させると、高回転数かつ長時間の撹拌により分散処理を行わない限りは、微細繊維状セルロースとして再分散させることが難しかった。そのため、特許文献1には、微細繊維状セルロースの乾燥固形物に熱水処理を行ってから溶媒に再分散させる方法等が提案されている。しかしながら、この方法では熱水処理の工程が別途必要であるため、工程が煩雑になっていた。
 また、微細繊維状セルロースの乾燥品を輸送先で水系媒体に再分散させるために、回転式ミキサー等の撹拌機を用いたバッチ処理が一般に行われている。しかしながら、回転式ミキサーを用いてバッチ処理を行った場合には、少量の再分散液を得るためにも数十分~数時間の調製時間がかかるため、効率が悪いものであった。また、再分散液を大量に生産したい場合にも、バッチ処理では効率が悪かった。
 したがって、微細繊維状セルロースを乾燥させた場合であっても、乾燥状態を経ずに調製した場合と同様に、水系溶媒に微細繊維状セルロースとして再分散させることができ、且つ、量の多少によらず効率良く再分散させることができる方法が求められていた。
特開2017-2136号公報
 そこで、本発明は、微細繊維状セルロースを乾燥させた場合であっても、乾燥状態を経ずに調製した場合と同様に、水系溶媒に微細繊維状セルロースとして再分散させることができ、且つ、量の多少によらず効率良く再分散させることができる方法を提供することを目的とする。
 本発明者らは、かかる目的を達成するため鋭意検討した結果、特定の混合装置を用い、特定の条件で撹拌することが極めて有効であることを見出し、本発明を完成した。
 本発明は以下を提供する。
(1) 製造された微細繊維状セルロース分散液を乾燥させて得られた微細繊維状セルロースの乾燥固形物を水系溶媒に微細繊維状セルロースとして再分散させる方法であって、前記微細繊維状セルロースの乾燥固形物と前記水系溶媒とを含む混合物を、乱流撹拌を生じさせて内容物を混合するインライン型ミキサーに、乱流撹拌が起こる流速で導入し、前記混合物を撹拌すると共に、前記混合物に対して機械的せん断力を付与することを特徴とする微細繊維状セルロースの乾燥固形物の再分散方法。
(2) 前記微細繊維状セルロースが化学変性されている微細繊維状セルロースであることを特徴とする(1)に記載の微細繊維状セルロースの乾燥固形物の再分散方法。
(3) 前記インライン型ミキサーは、管体を有し、前記管体内の上流側に乱流撹拌を起こすための交差する少なくとも2枚の板を設け、前記板の下流側の前記管体内周壁に突起状物を複数設けることを特徴とする(1)または(2)に記載の微細繊維状セルロースの乾燥固形物の再分散方法。
(4) 製造された微細繊維状セルロース分散液を乾燥させて得られた微細繊維状セルロースの乾燥固形物と水系溶媒とを含む混合物を、乱流撹拌を生じさせて内容物を混合するインライン型ミキサーに、乱流撹拌が起こる流速で導入する工程と、前記インライン型ミキサー内で、前記混合物を撹拌すると共に、前記混合物に対して機械的せん断力を付与して、前記微細繊維状セルロースの乾燥固形物を前記水系溶媒に再分散させて、微細繊維状セルロースの再分散液を得る工程とを含む、微細繊維状セルロースの再分散液の製造方法。
(5) 前記微細繊維状セルロースが化学変性されている微細繊維状セルロースであることを特徴とする(4)に記載の微細繊維状セルロースの再分散液の製造方法。
(6) 前記インライン型ミキサーは、管体を有し、前記管体内の上流側に乱流撹拌を起こすための交差する少なくとも2枚の板を設け、前記板の下流側の前記管体内周壁に突起状物を複数設けることを特徴とする(4)または(5)に記載の微細繊維状セルロースの再分散液の製造方法。
 本発明によれば、微細繊維状セルロースを乾燥させた場合であっても、乾燥状態を経ずに調製した場合と同様に、水系溶媒に微細繊維状セルロースとして再分散させることができ、且つ、量の多少によらず効率良く再分散させることができる方法を提供することができる。
本発明の再分散方法に用いるインライン型ミキサーの断面を示す概略図である。 実施例1の光学顕微鏡観察結果の画像である。 比較例1の光学顕微鏡観察結果の画像である。 参考例1の光学顕微鏡観察結果の画像である。
 以下、図面を参照して本発明を詳細に説明する。本発明において「~」は端値を含む。すなわち「X~Y」はその両端の値XおよびYを含む。
 本発明は、製造された微細繊維状セルロース分散液を乾燥させて得られた微細繊維状セルロースの乾燥固形物を水系溶媒に微細繊維状セルロースとして再分散させる方法であって、前記微細繊維状セルロースの乾燥固形物と前記水系溶媒とを含む混合物を、乱流撹拌を生じさせて内容物を混合するインライン型ミキサーに、乱流撹拌が起こる流速で導入し、前記混合物を撹拌すると共に、前記混合物に対して機械的せん断力を付与する。
(微細繊維状セルロース)
 本発明で用いる、微細繊維状セルロースは、セルロースを原料とする微細繊維である。微細繊維状セルロースの平均繊維径は、特に限定されないが、1nm~10μm程度である。微細繊維状セルロースの平均繊維径および平均繊維長は、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)または透過型電子顕微鏡(TEM)を用いて、各繊維を観察した結果から得られる繊維径および繊維長を平均することによって得ることができる。微細繊維状セルロースは、セルロースを解繊することによって製造することができる。
 本発明に用いる微細繊維状セルロースの平均アスペクト比は、通常50以上である。上限は特に限定されないが、通常は1000以下である。平均アスペクト比は、下記の式により算出することができる:
 アスペクト比=平均繊維長/平均繊維径
 セルロース原料は、セルロースを含んでいればよく、特に限定されないが、例えば、植物(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、晒クラフトパルプ(BKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等が挙げられる。セルロース原料としては、これらのいずれかであってもよいし2種類以上の組み合わせであってもよいが、好ましくは植物又は微生物由来のセルロース原料(例えば、セルロース繊維)であり、より好ましくは植物由来のセルロース原料(例えば、セルロース繊維)である。
 セルロース原料の数平均繊維径は特に制限されないが、一般的なパルプである針葉樹クラフトパルプの場合は30~60μm程度、広葉樹クラフトパルプの場合は10~30μm程度である。その他のパルプの場合、一般的な精製を経たものは50μm程度である。例えばチップ等の数cm大のものを精製したものである場合、リファイナー、ビーター等の離解機で機械的処理を行い、50μm程度に調整することが好ましい。
 セルロースは、グルコース単位あたり3つのヒドロキシル基を有しており、各種の化学変性を行うことが可能である。本発明においては、解繊の進行を促進するという観点から、化学変性して得られたセルロース原料(化学変性セルロース)を解繊して製造された化学変性微細繊維状セルロースを用いることが好ましい。
 化学変性としては、例えば、カルボキシメチル化、酸化(カルボキシル化)、カチオン化、エステル化等が挙げられる。中でも、カルボキシメチル化、酸化(カルボキシル化)がより好ましい。
(化学変性)
(カルボキシメチル化)
 本発明において、カルボキシメチル化したセルロースを解繊して得られたカルボキシメチル化微細繊維状セルロース用いる場合、カルボキシメチル化したセルロースは、上記のセルロース原料を公知の方法でカルボキシメチル化することにより得てもよいし、市販品を用いてもよい。いずれの場合も、セルロースの無水グルコース単位当たりのカルボキシメチル基置換度が0.01~0.50となるものが好ましい。そのようなカルボキシメチル化したセルロースを製造する方法の一例として次のような方法を挙げることができる。セルロースを発底原料にし、溶媒として3~20質量倍の水及び/又は低級アルコール、具体的には水、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等の単独、又は2種以上の混合媒体を使用する。なお、低級アルコールを混合する場合の低級アルコールの混合割合は、60~95質量%である。マーセル化剤としては、発底原料の無水グルコース残基当たり0.5~20倍molの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。発底原料と溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間、マーセル化処理を行う。その後、カルボキシメチル化剤をグルコース残基当たり0.05~10.0倍mol添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、エーテル化反応を行う。
 なお、本明細書において、微細繊維状セルロースの調製に用いる化学変性セルロースの一種である「カルボキシメチル化したセルロース」は、水に分散した際にも繊維状の形状の少なくとも一部が維持されるものをいう。したがって、水溶性高分子の一種であるカルボキシメチルセルロースとは区別される。「カルボキシメチル化したセルロース」の水分散液を電子顕微鏡で観察すると、繊維状の物質を観察することができる。一方、水溶性高分子の一種であるカルボキシメチルセルロースの水分散液を観察しても、繊維状の物質は観察されない。また、「カルボキシメチル化したセルロース」はX線回折で測定した際にセルロースI型結晶のピークを観測することができるが、水溶性高分子のカルボキシメチルセルロースではセルロースI型結晶はみられない。
(酸化)
 本発明において、酸化(カルボキシル化)したセルロースを解繊して得られた酸化微細繊維状セルロースを用いる場合、酸化セルロース(カルボキシル化セルロースとも呼ぶ)は、上記のセルロース原料を公知の方法で酸化(カルボキシル化)することにより得ることができる。特に限定されるものではないが、酸化の際には、化学変性微細繊維状セルロースの絶乾質量に対して、カルボキシル基の量が0.6~2.0mmol/gとなるように調整することが好ましく、1.0mmol/g~2.0mmol/gになるように調整することがさらに好ましい。
 酸化(カルボキシル化)方法の一例として、セルロース原料を、N-オキシル化合物と、臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて水中で酸化する方法を挙げることができる。この酸化反応により、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、表面にアルデヒド基と、カルボキシル基(-COOH)またはカルボキシレート基(-COO)とを有するセルロース繊維を得ることができる。反応時のセルロースの濃度は特に限定されないが、5質量%以下が好ましい。
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)およびその誘導体(例えば4-ヒドロキシTEMPO)が挙げられる。
 N-オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であればよく、特に制限されない。例えば、絶乾1gのセルロースに対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.05~0.5mmolがさらに好ましい。また、反応系に対し0.1~4mmol/L程度が好ましい。
 臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロースに対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。酸化剤の使用量としては、例えば、絶乾1gのセルロースに対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、1~25mmolがさらに好ましく、3~10mmolが最も好ましい。また、例えば、N-オキシル化合物1molに対して1~40molが好ましい。
 セルロースの酸化は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は4~40℃が好ましく、また15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを8~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱容易性や、副反応が生じにくいこと等から、水が好ましい。
 酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5~6時間、例えば、0.5~4時間程度である。
 また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。
 酸化(カルボキシル化)方法の別の例として、オゾンを含む気体とセルロース原料とを接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50~250g/mであることが好ましく、50~220g/mであることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1~30質量部であることが好ましく、5~30質量部であることがより好ましい。オゾン処理温度は、0~50℃であることが好ましく、20~50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1~360分程度であり、30~360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化および分解されることを防ぐことができ、酸化セルロースの収率が良好となる。オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。
 酸化セルロースのカルボキシル基の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。
(カチオン化)
 本発明において、前記カルボキシル化セルロースをさらにカチオン化したセルロースを解繊して得られたカチオン化微細繊維状セルロースを使用することができる。当該カチオン変性されたセルロースは、前記カルボキシル化セルロース原料に、グリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリアルキルアンモニウムハイドライトまたはそのハロヒドリン型などのカチオン化剤と、触媒である水酸化アルカリ金属(水酸化ナトリウム、水酸化カリウムなど)を、水または炭素数1~4のアルコールの存在下で反応させることによって得ることができる。
 グルコース単位当たりのカチオン置換度は0.02~0.50であることが好ましい。セルロースにカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基を導入したセルロースは容易にナノ解繊することができる。グルコース単位当たりのカチオン置換度が0.02より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのカチオン置換度が0.50より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たカチオン変性されたセルロース原料は洗浄されることが好ましい。当該カチオン置換度は、反応させるカチオン化剤の添加量、水または炭素数1~4のアルコールの組成比率によって調整できる。
(エステル化)
 本発明において、エステル化したセルロースを解繊して得られたエステル化微細繊維状セルロースを使用することができる。当該エステル化セルロースは、前述のセルロース原料にリン酸系化合物Aの粉末や水溶液を混合する方法、セルロース原料のスラリーにリン酸系化合物Aの水溶液を添加する方法により得られる。
 リン酸系化合物Aとしては、リン酸、ポリリン酸、亜リン酸、次亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらのエステルが挙げられる。これらは塩の形態であってもよい。これらの中でも、低コストであり、扱いやすく、またパルプ繊維のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由からリン酸基を有する化合物が好ましい。リン酸基を有する化合物としては、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、亜リン酸ナトリウム、亜リン酸カリウム、次亜リン酸ナトリウム、次亜リン酸カリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。これらは1種、あるいは2種以上を併用できる。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩がより好ましい。特にリン酸二水素ナトリウム、リン酸水素二ナトリウムが好ましい。また、反応の均一性が高まり、かつリン酸基導入の効率が高くなることから前記リン酸系化合物Aは水溶液として用いることが好ましい。リン酸系化合物Aの水溶液のpHは、リン酸基導入の効率が高くなることから7以下であることが好ましいが、パルプ繊維の加水分解を抑える観点からpH3~7が好ましい。
 リン酸エステル化セルロースの製造方法の一例として以下の方法を挙げることができる。固形分濃度0.1~10質量%のセルロース原料の分散液に、リン酸系化合物Aを撹拌しながら添加してセルロースにリン酸基を導入する。セルロース原料を100質量部とした際に、リン酸系化合物Aの添加量はリン元素量として、0.2~500質量部であることが好ましく、1~400質量部であることがより好ましい。リン酸系化合物Aの割合が前記下限値以上であれば、微細繊維状セルロースの収率をより向上させることができる。しかし、前記上限値を超えると収率向上の効果は頭打ちとなるのでコスト面から好ましくない。
 この際、セルロース原料、リン酸系化合物Aの他に、これ以外の化合物Bの粉末や水溶液を混合してもよい。化合物Bは特に限定されないが、塩基性を示す窒素含有化合物が好ましい。ここでの「塩基性」は、フェノールフタレイン指示薬の存在下で水溶液が桃~赤色を呈すること、または水溶液のpHが7より大きいことと定義される。本発明で用いる塩基性を示す窒素含有化合物は、本発明の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられるが、特に限定されない。この中でも低コストで扱いやすい尿素が好ましい。化合物Bの添加量はセルロース原料の固形分100質量部に対して、2~1000質量部が好ましく、100~700質量部がより好ましい。反応温度は0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、1~600分程度であり、30~480分がより好ましい。エステル化反応の条件がこれらの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを防ぐことができ、リン酸エステル化セルロースの収率が良好となる。得られたリン酸エステル化セルロース懸濁液を脱水した後、セルロースの加水分解を抑える観点から、100~170℃で加熱処理することが好ましい。さらに、加熱処理の際に水が含まれている間は130℃以下、好ましくは110℃以下で加熱し、水を除いた後、100~170℃で加熱処理することが好ましい。
 リン酸エステル化されたセルロースのグルコース単位当たりのリン酸基置換度は0.001~0.40であることが好ましい。セルロースにリン酸基置換基を導入することで、セルロース同士が電気的に反発する。このため、リン酸基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのリン酸基置換度が0.001より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのリン酸基置換度が0.40より大きいと、膨潤あるいは溶解するため、微細繊維状セルロースとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たリン酸エステル化されたセルロース原料は煮沸した後、冷水で洗浄することで洗浄されることが好ましい。
(解繊)
 本発明において、化学変性セルロースを解繊する装置は特に限定されないが、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いて前記水分散体に強力なせん断力を印加することが好ましい。特に、効率よく解繊するには、前記水分散体に50MPa以上の圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊・分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、撹拌、乳化、分散装置を用いて、上記の微細繊維状セルロースに予備処理を施すことも可能である。解繊装置での処理(パス)回数は、1回でもよいし2回以上でもよく、2回以上が好ましい。
 分散処理においては通常、溶媒に化学変性セルロースを分散する。溶媒は、化学変性セルロースを分散できるものであれば特に限定されないが、例えば、水、有機溶媒(例えば、メタノール等の親水性の有機溶媒)、それらの混合溶媒が挙げられる。セルロース原料が親水性であることから、溶媒は水であることが好ましい。
 分散体中の化学変性セルロースの固形分濃度は、通常は0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上である。これにより、セルロース繊維原料の量に対する液量が適量となり効率的である。上限は、通常10質量%以下、好ましくは6質量%以下である。これにより流動性を保持することができる。
 解繊処理又は分散処理に先立ち、必要に応じて予備処理を行ってもよい。予備処理は、高速せん断ミキサーなどの混合、撹拌、乳化、分散装置を用いて行えばよい。
 解繊工程を経て得られた化学変性微細繊維状セルロースが塩型の場合は、そのまま用いても良いし、鉱酸を用いた酸処理や、陽イオン交換樹脂を用いた方法等により酸型として用いても良い。また、カチオン性添加剤を用いた方法により疎水性を付与して用いても良い。
(乾燥固形物)
 本発明において用いる微細繊維状セルロースの乾燥固形物は、上記のようにして製造された微細繊維状セルロースの分散液を乾燥し、溶媒を蒸発させることにより得ることができる。微細繊維状セルロースの乾燥固形物としては、市販品を用いてもよい。
 本発明において、乾燥固形物とは、水分量が20質量%以下になるように乾燥させた状態をいう。水分量は0~20質量%であることが好ましく、0~12質量%であることがさらに好ましい。乾燥時に、水分量0%(絶乾)まで乾燥させたものでもよい。例えば、105℃で3時間の乾燥により、絶乾させることができる。
 乾燥の方法は、特に制限されず、目的に応じて適宜選択することができ、例えば、噴霧乾燥、圧搾、風乾、熱風乾燥、凍結乾燥、噴霧乾燥、真空乾燥などが挙げられる。乾燥装置も特に制限されず、連続式のトンネル乾燥装置、バンド乾燥装置、縦型乾燥装置、垂直ターボ乾燥装置、多重段円板乾燥装置、通気乾燥装置、回転乾燥装置、気流乾燥装置、噴霧乾燥装置、円筒乾燥装置、ドラム乾燥装置、ベルト乾燥装置、スクリューコンベア乾燥装置、加熱管付回転乾燥装置、振動輸送乾燥装置、回分式の箱型乾燥装置、真空箱型乾燥装置、及び撹拌乾燥装置等を単独で又は2つ以上組み合わせて用いることができる。
(水系溶媒)
 本発明において、水系溶媒としては、水、水溶性有機溶媒、あるいはこれらの混合溶媒が挙げられ、セルロース原料が親水性であるため、分散時に良好な分散状態を取りやすいという観点から水を用いることが好ましい。
 水溶性有機溶媒とは、水に溶解する有機溶媒である。その例として、メタノール、エタノール、2-プロパノール、ブタノール、グリセリン、アセトン、メチルエチルケトン、1,4-ジオキサン、N-メチル-2-ピロリドン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、およびこれらの組合せが挙げられる。中でもメタノール、エタノール、2-プロパノール等の炭素数が1~4の低級アルコールが好ましく、安全性および入手容易性の観点から、メタノール、エタノールがより好ましく、エタノールがさらに好ましい。
 混合溶媒とする場合には、混合溶媒中の水溶性有機溶媒の量は、10質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上がさらに好ましい。当該量の上限は限定されないが95質量%以下が好ましく、90質量%以下がより好ましい。また、発明の効果を損なわない程度で、当該水系溶媒は非水溶性有機溶媒を含んでいてもよい。
(混合物)
 インライン型ミキサーに導入する微細繊維状セルロースと水系溶媒との混合物は、インライン型ミキサーに導入する前に、配管内でのサンプルによる詰まりを防止する観点から、乾燥固形物と水系溶媒とを予備撹拌して得ることが好ましい。予備撹拌の条件は特に制限されないが、例えば、500~1000rpmで、30秒~120秒程度である。また、予備撹拌の装置としては、例えば、ホモディスパー、ホモミクサー等を用いることができる。
 混合物における微細繊維状セルロースの固形分濃度は、特に限定されないが、0.1~5.0質量%が好ましく、0.1~3.0質量%がより好ましい。
(インライン型ミキサー)
 本発明に用いることができるインライン型ミキサーとしては、混合物を乱流撹拌して、混合物に対して機械的せん断力を付与することができるものであれば特に制限なく用いることができる。再分散性に優れ、効率良く短時間で再分散可能な観点から、静止型混合機の一種であるOHRミキサーを用いることが好ましい。
 インライン型ミキサーの一例を、図1を用いて説明する。図1は、インライン型ミキサーの断面を示す概略図である。なお、本発明に用いることができるインライン型ミキサーは、図1に示すものに限られるものではない。
 図1に示すインライン型ミキサー2には、混合物を通過させる管体4と、管体4の上流側に、乱流撹拌を起こすための交差する2枚の板6とが設けられており、板6は、管体4の内壁に固定されている。また、板6の下流側の管体4の内周壁には、複数の突起状物8が設けられている。なお、図1において、混合物の通過方向を矢印で示した。
 インライン型ミキサー2に混合物を一定以上の流速で導入すると、2枚の板6の作用で混合物は強いひねりをもった螺旋流となる。このとき、混合物は、2枚の板6による急激な分断と変流により、機械的せん断力を発生させる。そして、乱流撹拌が起こり撹拌される。混合物は、管体をさらに下流方向へ送られ、撹拌されながら突起状物8と衝突することにより、より激しく混合され、分散が促進されて、微細繊維状セルロースの再分散液が得られる。混合物をインライン型ミキサーに通す回数は、特に制限されないが、1回でもよく、2回以上でもよい。
 本発明の再分散方法を実施する場合は、インライン型ミキサーに対して、混合物を、乱流撹拌が起こる流速で導入する。混合物を導入する流速は、乱流撹拌が起こる流速であれば特に制限はないが、サンプルの効率的な分散の観点から、1.0~10.0m/秒が好ましく、3.0~10.0m/秒がより好ましい。
 混合物を所望の流速でインライン型ミキサー2に導入するために、十分な送液能力を持つポンプを用いることが好ましい。十分な送液能力を持つポンプを用いることで、インライン型ミキサー2内で強い乱流が起こり、乱流が突起状物8と衝突する過程で、微細繊維状セルロースの乾燥固形物の分散が促進される。ポンプとしては、特に制限されないが、渦流ポンプ、モーノポンプ等が挙げられ、渦流ポンプを用いることが好ましい。ポンプの送液能力としては、0.1~0.8kW/hが好ましく、0.3~0.8kW/hがより好ましい。
 また、管体4の上流側に設けられた板6は、乱流撹拌を起こすことができればその枚数及び形状に制限はないが、その枚数はせん断回数を増加させるという観点から、2~8枚が好ましく、2枚がより好ましい。また、形状は、撹拌効率の観点から、半楕円形とすることが好ましい。
 また、管体4の内周壁の突起状物8の形状は、特に制限されないが、混合効率を高める観点からキノコ状であることが好ましい。
 本発明の再分散方法によれば、インライン型ミキサーを用いるため、少量の再分散液を製造する場合に、バッチ式のミキサーを用いて再分散を行うために必要な数十分~数時間の調製時間を大幅に短縮することができ、効率に優れる。また、大量の再分散液を製造する場合は、品質の安定した再分散液を効率良く得ることができる。
 本発明の再分散方法により得られた再分散液について、微細繊維状セルロースが水系溶媒に微細繊維状セルロースとして再分散しているか否かは、電解放出型走査電子顕微鏡(FE-SEM)等を用いて幅1nm~10μm、好ましくは2~5nm程度のナノサイズのセルロースが観察できるか否かにより確認することができる。また、例えば、固形分濃度1.0質量%に調整した再分散液に墨汁等の色材を添加したものを、光学顕微鏡を用いて100倍の倍率で観察し、画像中に白く見える塊の大きさや数を、乾燥前の分散液の観察画像と比較する等して確認することができる。
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、各実施例における各数値の測定/算出方法が特に記載されていない場合には、明細書中に記載されている方法により測定/算出されたものである。
(実施例1)
 カルボキシメチル化セルロースナノファイバーの乾燥固形物(水分量10.1%)に水を加えて、予備撹拌(500rpm、30秒間)を行い、CNF固形分1.0質量%のスラリーを10L作製した。このスラリーを渦流ポンプ(株式会社ニクニ製、20NED04Z-V)を使用して5.69m/秒で全量送液し、接続したOHRミキサー(株式会社OHR流体工学研究所製、MX-F8、出口断面積:50.2mm)を1回通過させ、CNF再分散液を得た。なお、スラリーの出口流量は、17.1L/分であり、スラリーの全量がOHRミキサーを1回通過するのに要した時間は、35秒であった。なお、スラリーの流速を5.69m/秒とした実施例1では、OHRミキサー内で強い乱流が発生した。
 さらに、上記のようにして得られたCNF再分散液1gに墨滴(株式会社呉竹製、固形分10%)を2適垂らし、ボルテックスミキサー(IUCHI社製、機器名:Automatic Lab-mixer HM-10H)の回転数の目盛りを最大に設定して1分間撹拌した。次に、墨滴を含有するセルロースナノファイバー分散液の膜厚が0.15mmになるように二枚のガラス板に挟み、光学顕微鏡(デジタルマイクロスコープKH-8700(株式会社ハイロックス製))を用いて倍率100倍で観察した。結果を図2に示した。
(比較例1)
 モーノポンプを使用して2.01m/秒で送液したこと以外は実施例1と同様にしてOHRミキサーを1回通過させ、CNF再分散液を得た。なお、スラリーの出口流量は、6.1L/分であり、スラリーの全量がOHRミキサーを1回通過するのに要した時間は、99秒であった。なお、スラリーの流速を2.01m/秒とした比較例1では、OHRミキサー内で乱流が発生したものの、弱いものであった。また、このようにして得られたCNF再分散液を実施例1と同様にして光学顕微鏡を用いて観察した。結果を図3に示した。
(参考例1)
 カルボキシメチル化セルロースナノファイバーの乾燥固形物(水分量10.1%)に水を加えて、予備撹拌(500rpm、30秒間)を行い、CNF固形分1.0質量%のスラリーを10L作製した。このスラリーをホモディスパーにより撹拌して(3000rpm、1時間)CNF再分散液を得た。このようにして得られたCNF再分散液を実施例1と同様にして光学顕微鏡を用いて観察した。結果を図4に示した。
(分散状態の評価方法)
 実施例1で得られた画像(図2)および比較例1で得られた画像(図3)を観察し、画像中にみられる白い塊(ゲル粒)の大きさや量が、参考例1で得られた画像(図4)と近い様相かどうかを比較することにより分散状態を判断した。参考例1に近い様相であれば、分散状態が良好であるといえる。
(分散状態の評価結果)
 実施例1では、ゲル粒の大きさや量は参考例1に近い様相であり、分散状態が良好であった。一方、比較例1では、参考例1よりも大きなゲル粒が多数みられ、参考例1に近い様相であるとはいえず、分散状態は悪いものであった。
 
 
 

Claims (6)

  1.  製造された微細繊維状セルロース分散液を乾燥させて得られた微細繊維状セルロースの乾燥固形物を水系溶媒に微細繊維状セルロースとして再分散させる方法であって、
     前記微細繊維状セルロースの乾燥固形物と前記水系溶媒とを含む混合物を、乱流撹拌を生じさせて内容物を混合するインライン型ミキサーに、乱流撹拌が起こる流速で導入し、前記混合物を撹拌すると共に、前記混合物に対して機械的せん断力を付与することを特徴とする微細繊維状セルロースの乾燥固形物の再分散方法。
  2.  前記微細繊維状セルロースが化学変性されている微細繊維状セルロースであることを特徴とする請求項1に記載の微細繊維状セルロースの乾燥固形物の再分散方法。
  3.  前記インライン型ミキサーは、管体を有し、前記管体内の上流側に乱流撹拌を起こすための交差する少なくとも2枚の板を設け、前記板の下流側の前記管体内周壁に突起状物を複数設けることを特徴とする請求項1または2に記載の微細繊維状セルロースの乾燥固形物の再分散方法。
  4.  製造された微細繊維状セルロース分散液を乾燥させて得られた微細繊維状セルロースの乾燥固形物と水系溶媒とを含む混合物を、乱流撹拌を生じさせて内容物を混合するインライン型ミキサーに、乱流撹拌が起こる流速で導入する工程と、
     前記インライン型ミキサー内で、前記混合物を撹拌すると共に、前記混合物に対して機械的せん断力を付与して、前記微細繊維状セルロースの乾燥固形物を前記水系溶媒に再分散させて、微細繊維状セルロースの再分散液を得る工程とを含む、微細繊維状セルロースの再分散液の製造方法。
  5.  前記微細繊維状セルロースが化学変性されている微細繊維状セルロースであることを特徴とする請求項4に記載の微細繊維状セルロースの再分散液の製造方法。
  6.  前記インライン型ミキサーは、管体を有し、前記管体内の上流側に乱流撹拌を起こすための交差する少なくとも2枚の板を設け、前記板の下流側の前記管体内周壁に突起状物を複数設けることを特徴とする請求項4または5に記載の微細繊維状セルロースの再分散液の製造方法。
PCT/JP2019/039067 2018-10-19 2019-10-03 微細繊維状セルロースの乾燥固形物の再分散方法、および微細繊維状セルロースの再分散液の製造方法 WO2020080119A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980057281.5A CN112673132A (zh) 2018-10-19 2019-10-03 微细纤维状纤维素的干燥固形物的再分散方法和微细纤维状纤维素的再分散液的制造方法
JP2020553044A JP7323549B2 (ja) 2018-10-19 2019-10-03 微細繊維状セルロースの乾燥固形物の再分散方法、および微細繊維状セルロースの再分散液の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018197094 2018-10-19
JP2018-197094 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020080119A1 true WO2020080119A1 (ja) 2020-04-23

Family

ID=70284350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039067 WO2020080119A1 (ja) 2018-10-19 2019-10-03 微細繊維状セルロースの乾燥固形物の再分散方法、および微細繊維状セルロースの再分散液の製造方法

Country Status (3)

Country Link
JP (1) JP7323549B2 (ja)
CN (1) CN112673132A (ja)
WO (1) WO2020080119A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160594A (zh) * 2022-08-05 2022-10-11 南京林业大学 一种提高纳米纤维干燥再分散效率的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354749A (ja) * 1999-06-17 2000-12-26 Ohr:Kk キャビテーション発生装置及びこの装置を使用した流体混合装置並びにこの流体混合装置に使用する混合突起物
JP2017002138A (ja) * 2015-06-05 2017-01-05 大王製紙株式会社 セルロースナノファイバー含有乾燥体及びその製造方法並びにセルロースナノファイバー分散液の製造方法
WO2017154568A1 (ja) * 2016-03-11 2017-09-14 日本製紙株式会社 セルロースナノファイバー分散液の再分散方法
WO2017182883A1 (en) * 2016-04-22 2017-10-26 Fiberlean Technologies Limited Re-dispersed microfibrillated cellulose
JP2018009134A (ja) * 2016-07-15 2018-01-18 大王製紙株式会社 セルロースナノファイバー含有乾燥体及びその製造方法並びにセルロースナノファイバー含有乾燥体分散液の製造方法
WO2018038194A1 (ja) * 2016-08-26 2018-03-01 王子ホールディングス株式会社 繊維状セルロース含有物及び繊維状セルロース含有物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010234844A1 (en) * 2009-03-31 2011-09-08 Dow Global Technologies Llc Carboxymethyl cellulose with improved properties
US9321908B2 (en) * 2011-03-07 2016-04-26 Hercules Incorporated Methods for dispersing water soluble polymer powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354749A (ja) * 1999-06-17 2000-12-26 Ohr:Kk キャビテーション発生装置及びこの装置を使用した流体混合装置並びにこの流体混合装置に使用する混合突起物
JP2017002138A (ja) * 2015-06-05 2017-01-05 大王製紙株式会社 セルロースナノファイバー含有乾燥体及びその製造方法並びにセルロースナノファイバー分散液の製造方法
WO2017154568A1 (ja) * 2016-03-11 2017-09-14 日本製紙株式会社 セルロースナノファイバー分散液の再分散方法
WO2017182883A1 (en) * 2016-04-22 2017-10-26 Fiberlean Technologies Limited Re-dispersed microfibrillated cellulose
JP2018009134A (ja) * 2016-07-15 2018-01-18 大王製紙株式会社 セルロースナノファイバー含有乾燥体及びその製造方法並びにセルロースナノファイバー含有乾燥体分散液の製造方法
WO2018038194A1 (ja) * 2016-08-26 2018-03-01 王子ホールディングス株式会社 繊維状セルロース含有物及び繊維状セルロース含有物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160594A (zh) * 2022-08-05 2022-10-11 南京林业大学 一种提高纳米纤维干燥再分散效率的方法

Also Published As

Publication number Publication date
JPWO2020080119A1 (ja) 2021-09-30
JP7323549B2 (ja) 2023-08-08
CN112673132A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
JP6876619B2 (ja) セルロースナノファイバー乾燥固形物の製造方法
JP6228707B1 (ja) 酸型カルボキシメチル化セルロースナノファイバー及びその製造方法
JP7095595B2 (ja) 繊維状セルロース含有物及び繊維状セルロース含有物の製造方法
JP7170380B2 (ja) 化学変性パルプ乾燥固形物の製造方法
WO2018143149A1 (ja) 乾燥セルロースナノファイバーの製造方法
CN108602895A (zh) 阴离子改性纤维素纳米纤维分散液及其制造方法
JP6861972B2 (ja) 乾燥セルロースナノファイバーの製造方法
JP5910786B1 (ja) 微細繊維状セルロース含有物
JP7554770B2 (ja) 変性セルロースマイクロフィブリルの製造方法
JP2017066283A (ja) 気泡含有組成物用添加剤
WO2020080119A1 (ja) 微細繊維状セルロースの乾燥固形物の再分散方法、および微細繊維状セルロースの再分散液の製造方法
JPWO2019189318A1 (ja) セルロースナノファイバー乾燥固形物の製造方法
JP7157656B2 (ja) 微細繊維状セルロース分散体の製造方法
TWI803758B (zh) 混合液
JP7252975B2 (ja) 微細繊維状セルロース分散体の製造方法
JP2023109342A (ja) 微細繊維状セルロースの乾燥固形物の再分散方法
JP7162433B2 (ja) セルロースナノファイバー及びポリビニルアルコール系重合体を含む組成物の製造方法
JP7377397B1 (ja) 微細繊維状セルロースの製造方法およびセルロースの解繊方法
JP7203484B2 (ja) チーズ
WO2023234129A1 (ja) 微細繊維状セルロースの製造方法およびセルロースの解繊方法
JP7574553B2 (ja) 化学変性ミクロフィブリルセルロース繊維の製造方法
JP2022134120A (ja) セルロースナノファイバー乾燥固形物及びその製造方法
JP7424756B2 (ja) 疎水化アニオン変性セルロース粉砕物の乾燥固形物及びその製造方法ならびに疎水化アニオン変性セルロースナノファイバー分散体の製造方法
JP2023148586A (ja) 微細セルロース繊維
JP2022087414A (ja) セルロースナノファイバーの乾燥固形物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553044

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101001870

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873916

Country of ref document: EP

Kind code of ref document: A1