WO2020079811A1 - Induction heater - Google Patents
Induction heater Download PDFInfo
- Publication number
- WO2020079811A1 WO2020079811A1 PCT/JP2018/038853 JP2018038853W WO2020079811A1 WO 2020079811 A1 WO2020079811 A1 WO 2020079811A1 JP 2018038853 W JP2018038853 W JP 2018038853W WO 2020079811 A1 WO2020079811 A1 WO 2020079811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- heated
- electrodes
- heating device
- container
- Prior art date
Links
- 230000006698 induction Effects 0.000 title abstract description 3
- 230000005684 electric field Effects 0.000 claims abstract description 49
- 238000010438 heat treatment Methods 0.000 claims description 109
- 238000005192 partition Methods 0.000 claims description 43
- 239000007788 liquid Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 description 19
- 230000006866 deterioration Effects 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 241000208125 Nicotiana Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/46—Dielectric heating
- H05B6/54—Electrodes
Definitions
- the present invention relates to an induction heating device.
- Patent Document 1 describes a device for heating and drying wood from the inside by applying a high frequency between a pair of electrodes sandwiching wood, which is an object to be heated.
- each of the pair of electrodes has a flat plate shape, and one electrode almost covers one surface of the wood. Therefore, by applying a high frequency between the electrodes, the whole wood is uniformly heated.
- the object to be heated is a liquid and the liquid is vaporized by dielectric heating
- the liquid may be uniformly heated by using a flat plate-shaped electrode like the conventional device described in Patent Document 1.
- a flat plate-shaped electrode like the conventional device described in Patent Document 1.
- the present invention solves the above problems, and an object of the present invention is to obtain an inductive heating device that can shorten the heating time required for the object to be vaporized.
- the dielectric heating device includes a signal source of a high frequency signal, a first electrode connected to the signal source, and a second electrode which is arranged to face the first electrode and is grounded, An object to be heated is supplied between the first electrode and the second electrode by a capillary phenomenon, and is generated between the first electrode to which a high frequency signal is applied from the signal source and the grounded second electrode. The object to be heated supplied between the first electrode and the second electrode is heated by the generated electric field.
- the object to be heated is supplied between the first electrode and the second electrode by the capillary phenomenon, and the first electric field is generated by the electric field generated between the first electrode and the second electrode.
- the object to be heated supplied between the electrode and the second electrode is heated. Since the object to be heated is intensively heated between the first electrode and the second electrode, the heating time required for the object to be heated to vaporize can be shortened.
- FIG. 3 is a perspective view showing a configuration example of the dielectric heating device according to the first embodiment.
- FIG. 3 is a front view showing a configuration example of the dielectric heating device according to the first embodiment. It is a graph which shows the relationship between the cross-sectional area of the space where the to-be-heated object moves by a capillary phenomenon, and the height of the liquid level of the to-be-heated object.
- It is a top view which shows the modification of the dielectric heating apparatus which concerns on Embodiment 1.
- It is a perspective view which shows the structural example of the dielectric heating apparatus which concerns on Embodiment 2.
- It is a top view which shows the structural example of the dielectric heating apparatus which concerns on Embodiment 2.
- FIG. 1 is a perspective view showing a configuration example of the dielectric heating device 1 according to the first embodiment.
- the dielectric heating device 1 includes a signal source 2, an electrode 3, an electrode 4 and a container 5, and heats an object 6 to be heated by inductive heating to be vaporized.
- Dielectric heating is a phenomenon in which electric dipoles inside a dielectric, which is the object 6 to be heated, rotate due to a high-frequency electric field, and the rotated electric dipoles cause friction to generate heat inside the dielectric.
- dielectric loss the phenomenon in which part of the electrical energy applied to the dielectric is converted into heat energy and dissipated is called dielectric loss.
- a member having a small dielectric loss is rarely heated by a high frequency electric field, and a member having a large dielectric loss is easily heated by a high frequency electric field.
- the signal source 2 is a signal source that generates a high frequency signal, and has an output terminal a that outputs the high frequency signal and a ground terminal b of 0 potential.
- the high frequency signal generated by the signal source 2 is output to the electrode 3 via the output terminal a.
- the ground terminal b of the signal source 2 may be connected to the ground (0 potential) of the dielectric heating device 1.
- any one of a crystal oscillator, a rubidium oscillator, a voltage controlled oscillator (VCO), a direct digital synthesizer (DDS), and a phase lock loop (PLL) circuit capable of outputting a signal of an arbitrary frequency is used. May be.
- the oscillator used for the signal source 2 may have any configuration as long as it can generate a high-frequency signal.
- the high-frequency signal output from the signal source 2 may be a sine wave, a rectangular wave, a continuous wave (CW) signal, or a modulated signal. .
- the electrode 3 is a first electrode connected to the output terminal a of the signal source 2, and the electrode 4 is a second electrode arranged so as to face the electrode 3.
- the electrode 4 is connected to the ground terminal b of the signal source 2 and grounded.
- a metal flat plate may be used for the electrodes 3 and 4, for example.
- the material forming the electrodes 3 and 4 may be any material that can generate a high-frequency electric field between the electrodes 3 and 4, and a plurality of materials may be used.
- the electrodes 3 and 4 function as capacitors, and the object 6 to be heated is supplied between the electrodes 3 and 4 by a capillary phenomenon.
- the object 6 to be heated may be any liquid that can be moved by a capillary phenomenon, and examples thereof include water and tobacco liquid.
- the container 5 is a container for holding the object 6 to be heated.
- the electrodes 3 and 4 are connected to the container 5 and their positions are fixed. For example, the distance between the electrodes 3 and 4 is constant, and the objects to be heated 6 are supplied only from the bottom surface side of the container 5 between the electrodes 3 and 4, so that the outer surfaces of the electrodes 3 and 4 are The wall surface of the container 5 is connected.
- Glass may be used as the material of the container 5, for example.
- the rectangular parallelepiped container 5 is shown in FIG. 1, it is not limited to this. If the container 5 holds the article to be heated 6 without leaking, the electrodes 3 and 4 are not short-circuited, and can withstand the heat generated between the electrodes 3 and 4, the material and shape of the container 5 are It doesn't matter. Also, a plurality of materials may be used for the container 5.
- FIG. 2 is a front view showing a configuration example of the dielectric heating device 1 according to the first embodiment.
- the front surface of the container 5 is transparent so that the inside of the container 5 can be visually recognized.
- the liquid level of the object to be heated 6 supplied between the electrodes 3 and 4 is higher than the liquid level of the object to be heated 6 held in the container 5. That is, the object to be heated 6 moves from the container 5 in the direction indicated by the solid arrow in FIG. 2 by the capillary phenomenon and is supplied between the electrode 3 and the electrode 4.
- the height h indicates the height of the liquid surface of the object to be heated 6 which is supplied from the container 5 between the electrodes 3 and 4 and rises due to the capillary phenomenon.
- the height h of the liquid surface of the object 6 to be heated is It can be represented by (1).
- ⁇ is the density of the object to be heated 6
- T is the surface tension of the object to be heated 6
- g is the gravitational acceleration
- S is the cross-sectional area of the pipe
- L is the length of the outer circumference of the cross-section of the pipe. Is the contact angle between the object 6 to be heated and the inner wall of the tube.
- h TLcos ⁇ / ⁇ gS (1)
- FIG. 3 is a graph showing the relationship between the cross-sectional area S of the tube, which is the space in which the object to be heated 6 moves due to the capillary phenomenon, and the height h of the liquid surface of the object to be heated 6, where the horizontal axis represents S and the vertical axis represents S. The axis is h.
- ⁇ , g, T, and ⁇ are assumed to be constant values regardless of the value of the cross-sectional area S.
- the cross-sectional area S of the tube is less than S A (S ⁇ S A )
- the capillary phenomenon occurs and the article 6 to be heated rises in the tube.
- the smaller the cross-sectional area S of the pipe the larger the value of h.
- the cross-sectional area S (S ⁇ S A ) of the tube where the capillary phenomenon occurs is generally a value sufficiently smaller than the area S B.
- the object 6 to be heated is supplied to the tube by the capillary phenomenon.
- the strict area S B is an area obtained by removing the cross-sectional area S of the pipe from the area of the liquid surface of the object 6 to be heated in the container 5.
- the object to be heated 6 is supplied between the electrodes 3 and 4 by the capillary phenomenon, and the object to be heated 6 is heated.
- the height h of the liquid surface becomes larger than zero.
- the vaporized object to be heated 6 is discharged in the direction indicated by the dashed arrow in FIG. 2, so that the object to be heated 6 existing between the electrodes 3 and 4 is reduced.
- the object 6 to be heated is continuously supplied from the container 5 between the electrodes 3 and 4 by a capillary phenomenon so as to compensate for the released amount. Thereby, the heating and vaporization of the object 6 to be heated can be continued between the electrodes 3 and 4.
- FIG. 4 is a top view showing a dielectric heating device 1A which is a modification of the dielectric heating device 1.
- description of the signal source 2, the wiring that connects the signal source 2 and the electrode 3A, and the wiring that connects the signal source 2 and the electrode 4A is omitted.
- the dielectric heating device 1A includes an electrode 3A and an electrode 4A, and the electrodes 3A and 4A are square pole-shaped electrodes.
- the dielectric heating device 1 by narrowing the gap between the electrode 3 and the electrode 4, a cross-sectional area S in which a capillary phenomenon occurs is secured.
- the dielectric heating device 1A secures the cross-sectional area S in which the capillary phenomenon occurs by narrowing the distance between the wall surface 5A-1 and the wall surface 5A-2 of the container 5A.
- the object to be heated 6 is supplied to the space surrounded by the front wall surface 5A-1 and the rear wall surface 5A-2 of the electrode 3A, the electrode 4A, and the container 5A by a capillary phenomenon.
- the object to be heated 6 existing between the electrode 3A and the electrode 4A is intensively heated, so that the heating time required for the object to be heated 6 to vaporize can be shortened.
- the dielectric heating device 1 includes the signal source 2, the electrode 3, and the electrode 4, and the object 6 to be heated is supplied between the electrode 3 and the electrode 4 by the capillary phenomenon.
- the object 6 to be heated supplied between the electrodes 3 and 4 is heated by the electric field generated between the electrodes 3 and 4. Since the object 6 to be heated supplied between the electrode 3 and the electrode 4 is intensively heated, the heating time required for the object 6 to be vaporized to be vaporized can be shortened. Similar effects can be obtained in the dielectric heating device 1A shown in FIG.
- the liquid level of the heated object 6 supplied between the electrode 3 and the electrode 4 is higher than the liquid level of the heated object 6 held in the container 5.
- the object to be heated 6 in the container 5 is continuously supplied between the electrodes 3 and 4 by a capillary phenomenon so as to compensate for the amount of the object to be heated 6 vaporized by heating.
- the heating and vaporization of the object 6 to be heated can be continued between the electrodes 3 and 4. Similar effects can be obtained in the dielectric heating device 1A shown in FIG.
- the cross-sectional area S of the portion where the capillary phenomenon occurs between the electrode 3 and the electrode 4 is 10 minutes of the area S B of the liquid surface of the object 6 to be heated in the container 5. Is less than or equal to 1. With this configuration, the object 6 to be heated can be supplied between the electrodes 3 and 4 by the capillary phenomenon.
- FIG. 5 is a perspective view showing a configuration example of the dielectric heating device 1B according to the second embodiment. 5, the same components as those of FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
- x is the height of the electrodes 3 and 4.
- a partition member 7 is arranged between the electrode 3 and the electrode 4 included in the dielectric heating device 1B.
- the partition member 7 is a flat plate-shaped member, as shown in FIG.
- the partition member 7 has a smaller dielectric loss than the object 6 to be heated, does not short-circuit the electrodes 3 and 4, and can withstand the heat generated between the electrodes 3 and 4. It is configured.
- the material forming the partition member 7 may be a material through which the article 6 to be heated permeates, or a plurality of materials may be used. Further, although the plate-shaped partition member 7 is shown in FIG. 5, the partition member 7 may have any shape as long as it can reduce the volume occupied by the article 6 to be heated between the electrodes 3 and 4. It may have a shape other than a flat plate.
- FIG. 6 is a top view showing a configuration example of the dielectric heating device 1B, and description of the signal source 2, the wiring connecting the signal source 2 and the electrode 3, and the wiring connecting the signal source 2 and the electrode 4 is omitted. are doing.
- the electrodes 3 and 4 are metal parallel plates
- the container 5 is a rectangular parallelepiped glass container.
- the partition member 7 is a glass prismatic member. The dielectric loss of the partition member 7 is sufficiently smaller than the dielectric loss of the object 6 to be heated and can be ignored with respect to the dielectric loss of the object 6 to be heated. The object to be heated 6 and air exist inside the container 5.
- the electrodes 3 and 4 are parallel flat plates having a height x and a width 2d, and the distance between the electrodes 3 and 4 is d.
- the partition member 7 has a square prismatic shape with a height x and a vertical and horizontal dimensions of d.
- Vd the volume of the object to be heated 6 that has risen in the tube due to the capillary phenomenon.
- E the energy applied per unit volume of the article to be heated 6
- the energy E ′ added per unit volume of the object to be heated 6 existing in the tube is the energy W stored between the electrode 3 and the electrode 4, and the above equations (5) and (8) are used. ) And can be represented by the following formula (9).
- the configuration in which the partition member 7 is arranged between the electrodes 3 and 4 is different from the configuration in which the partition member 7 is not arranged between the electrodes 3 and 4.
- the energy applied per unit volume of the article to be heated 6 becomes large.
- the heating time required for the heated object 6 to vaporize can be shortened.
- the dielectric loss of the partition member 7 is sufficiently smaller than the dielectric loss of the object 6 to be heated and can be ignored, but the dielectric loss of the partition member 7 cannot be ignored with respect to the dielectric loss of the object 6 to be heated.
- the partition member 7 needs to be made of a material having a relative dielectric constant smaller than that of the object 6 to be heated.
- the partition member 7 may be provided between the electrode 3A and the electrode 4A included in the dielectric heating device 1A shown in FIG.
- the partition member 7 is arranged between the wall surface 5A-1 and the wall surface 5A-2 of the container 5A.
- a partition member different from the partition member 7 may be provided between the electrodes 3 and 4 and the object 6 to be heated so that the object 6 to be heated does not come into contact with the electrodes 3 and 4.
- a glass member can be used as the partition member.
- the dielectric heating device 1B includes the partition member 7 having a smaller dielectric loss than the object 6 to be heated between the electrode 3 and the electrode 4, so that the electrode 3 and the electrode 4 are separated from each other.
- the volume occupied by the article 6 to be heated can be reduced.
- the energy applied per unit volume of the article to be heated 6 when an electric field is generated between the electrodes 3 and 4 is increased, so that the heating time required for the article to be heated 6 to vaporize is shortened. can do.
- FIG. 7 is a perspective view showing a configuration example of the dielectric heating device 1C according to the third embodiment. 7, the same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
- the dielectric heating device 1C includes a signal source 2, an electrode 3, an electrode 4, a container 5 and an electrode 8.
- the electrode 8 is a third electrode which is arranged to face the electrode 3 and is grounded.
- the electrode 8 is a conductor that is connected to the ground terminal b of the signal source 2 and that generates an electric field between the electrode 8 and the electrode 3 to which a high-frequency signal is applied from the signal source 2.
- the electrode 8 is connected to the container 5 and its position is fixed.
- a metal flat plate may be used for the electrode 8, for example.
- the material forming the electrode 8 may be any material that can generate a high-frequency electric field with the electrode 3, and a plurality of materials may be used for the electrode 8.
- each of the electrodes 3 and 4 and the electrodes 3 and 8 functions as a capacitor, and a space between the electrodes 3 and 4 and between the electrodes 3 and 8 is heated by a capillary phenomenon.
- the item 6 is supplied.
- the height of the liquid surface of the object to be heated 6 supplied between the electrodes 3 and 4 and the height of the liquid surface of the object to be heated 6 supplied between the electrodes 3 and 8 are , Higher than the liquid surface of the object 6 to be heated held in the container 5. That is, in the dielectric heating device 1C, the object 6 to be heated is supplied by the capillary phenomenon into the first tube surrounded by the wall surfaces of the electrode 3, the electrode 4 and the container 5, and thus the electrode 3, the electrode 8 and the container 5 are surrounded. The object 6 to be heated is supplied by the capillary phenomenon into the second tube surrounded by the wall surface.
- the cross-sectional area of the first tube to which the object to be heated 6 is supplied by the capillarity is 1/10 or less of the area S B of the liquid surface of the object to be heated 6 in the container 5,
- the cross-sectional area of the second pipe to which the heating object 6 is supplied is not more than 1/10 of the area S B of the liquid surface of the heating object 6.
- the electrodes 3, 4 and 8 are metal parallel plates, the container 5 is a rectangular parallelepiped glass container, and the heated object 6 and air are present inside the container 5.
- a high frequency electric field is generated between the electrode 3 and the electrode 4, between the electrode 3 and the electrode 8 and in the vicinity thereof. To do. Since a high frequency signal is applied to the electrode 3 and the electrodes 4 and 8 are grounded, an electric field from the electrode 3 toward the electrodes 4 and 8 is generated.
- FIG. 8 is a top view showing lines of electric force formed by the electric field generated between the electrodes 3 and 4 arranged in parallel.
- the dashed arrow is the line of electric force.
- the electrode 3 and the electrode 4 are arranged in parallel. Therefore, when a high frequency signal is applied to the electrode 3, the lines of electric force are generated from the electrode 3 toward the electrode 4. At this time, the lines of electric force are mainly generated between the electrodes 3 and 4, but some of the lines of electric force are widely generated at both ends of the electrodes 3 and 4, as shown in FIG. .
- the density of electric lines of force indicates the strength of the electric field.
- the electric field is strongly generated between the electrode 3 and the electrode 4, but it is also generated from both ends of the electrode 3 and the electrode 4 with a non-negligible strength. Since the object 6 to be heated is supplied between the electrodes 3 and 4, the electric field generated between the electrodes 3 and 4 is used to heat the object 6 to be heated. The electric field generated except between and is not used for heating.
- FIG. 9 is a top view showing electric lines of force formed by electric fields generated between the electrodes 3 and 4 and between the electrodes 3 and 8 which are arranged in parallel.
- the dashed arrow is the line of electric force.
- the electrode 3 is arranged in parallel between the electrode 4 and the electrode 8.
- the lines of electric force are mainly generated from the electrode 3 to the electrode 4 and from the electrode 3 to the electrode 8.
- Some of the lines of electric force are generated at both ends of the electrodes 3 and 4, and are generated at both ends of the electrodes 3 and 8.
- the lines of electric force generated at both ends of the electrodes 3 and 4 and both ends of the electrodes 3 and 8 shown in FIG. It is less dense than the lines of electric force generated at the ends of the electrodes 4. That is, in the dielectric heating device 1C, the electric field generated except between the electrodes is weak. Therefore, leakage of the electric field to the outside of the dielectric heating device 1C is reduced. Further, in the dielectric heating device 1C, most of the generated electric field is used for heating the object 6 to be heated, so that the heating time required for the object 6 to be vaporized to be vaporized can be shortened.
- FIG. 7 and 9 show a configuration in which three electrodes are arranged in parallel, but in the dielectric heating device 1C according to the third embodiment, a high frequency signal is applied between two grounded electrodes.
- a configuration in which five or more odd-numbered electrodes are arranged may be arranged so that the electrodes are arranged. For example, it is provided with five flat plate-shaped electrodes (1) to (5), and the grounded electrode (1), the electrode (2) to which a high frequency signal is applied, the grounded electrode (3) and the high frequency signal are applied. The electrode (4) and the grounded electrode (5) are arranged in this order. Even with this configuration, leakage of the electric field to the outside of the dielectric heating device 1C is reduced. Furthermore, since most of the electric field generated between the electrodes can be used for heating the object 6 to be heated, the heating time required for the object 6 to be heated to vaporize can be shortened.
- the partition member 7 shown in the second embodiment may be arranged between the electrodes 3 and 4 and between the electrodes 3 and 8. Further, in a configuration in which an odd number of five or more electrodes are arranged so that an electrode to which a high-frequency signal is applied is arranged between two grounded electrodes, a partition member 7 is arranged between the electrodes. Good. By arranging the partition member 7 between the electrodes, the effect shown in the second embodiment can be obtained.
- FIG. 10 is a top view showing lines of electric force formed by an electric field generated between the electrodes 3B and 4B arranged concentrically.
- the dashed arrow is the line of electric force.
- the cylindrical electrode 4B is arranged around the columnar electrode 3B.
- the dielectric heating device having the electrode structure shown in FIG. 10 can utilize more of the electric field generated between the electrodes for heating the object to be heated 6 than the electrode structure shown in FIG. As a result, the heating time required for the heated object 6 to vaporize can be shortened.
- the columnar electrode 3B and the cylindrical electrode 4B are shown in FIG. 10, the electrode 3B may be columnar and the electrode 4B may be cylindrical.
- the electrode 3B may have a polygonal columnar shape, and the electrode 4B may have a polygonal cylindrical shape.
- the dielectric heating device 1C may have a configuration in which an even number of four or more electrodes are concentrically arranged.
- the cylindrical electrode (3a) to which a high frequency signal is applied and the grounded cylindrical electrode (4a) are concentrically arranged in this order. Even with this configuration, leakage of the electric field to the outside of the dielectric heating device 1C is reduced. Furthermore, since most of the electric field generated between the electrodes can be used for heating the object 6 to be heated, the heating time required for the object 6 to be heated to vaporize can be shortened.
- the partition member 7 shown in the second embodiment may be arranged between the electrode 3B and the electrode 4B shown in FIG. Furthermore, in a configuration in which four or more even-numbered electrodes are arranged concentrically, the partition member 7 may be arranged between each electrode. By arranging the partition member 7 between the electrodes, the effect shown in the second embodiment can be obtained.
- the coating may be applied to the electrode surface.
- a partition member other than the partition member 7 may be provided between each electrode and the object to be heated 6 so that the object to be heated 6 does not come into contact with the electrodes.
- a glass member can be used as the partition member.
- the dielectric heating device 1C includes, in addition to the electrode 3 and the electrode 4, the electrode 8 that is arranged to face the electrode 3 and is grounded.
- An object to be heated 6 is supplied between the electrodes 3 and 8 by a capillary phenomenon, and an electric field generated between the electrode 3 to which a high frequency signal is applied from the signal source 2 and the grounded electrode 8 is generated.
- the object 6 to be heated supplied between the electrode 3 and the electrode 8 is heated.
- leakage of the electric field to the outside of the dielectric heating device 1C is reduced.
- most of the electric field generated between the electrodes can be used for heating the object 6 to be heated, so that the heating time required for the object 6 to be vaporized to be vaporized can be shortened.
- FIG. 11 is a perspective view showing a configuration example of the dielectric heating device 1D according to the fourth embodiment. 11, the same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.
- the dielectric heating device 1D includes a signal source 2, a container 5, an electrode 9 and an electrode 10.
- the electrode 9 is a first electrode connected to the output terminal a of the signal source 2, and is a conductor that generates an electric field with the electrode 10.
- the electrode 9 is connected to the container 5 and its position is fixed.
- a metal flat plate may be used for the electrode 9, for example.
- the material forming the electrode 9 may be any material that can generate a high-frequency electric field with the electrode 10, and a plurality of materials may be used for the electrode 9.
- the electrode 10 is a second electrode which is arranged facing the electrode 9 and is grounded.
- the electrode 10 is a conductor that is connected to the ground terminal b of the signal source 2 and that generates an electric field between the electrode 10 and the electrode 9 to which a high-frequency signal is applied from the signal source 2.
- the electrode 10 is connected to the container 5 and its position is fixed.
- a metal flat plate may be used for the electrode 10.
- the material forming the electrode 10 may be any material that can generate a high-frequency electric field with the electrode 9, and a plurality of materials may be used for the electrode 10.
- the electrodes 9 and 10 have a shape in which the thickness gradually increases along the direction (height direction) away from the bottom surface side of the container 5.
- the distance between the electrodes 9 and 10 becomes narrower along the height direction of the electrodes 9 and 10. That is, the interval between the electrode 9 and the electrode 10 is partially narrowed.
- FIG. 12 is a front view showing a configuration example of the dielectric heating device 1D according to the fourth embodiment.
- the front surface of the container 5 is transparent so that the inside of the container 5 can be visually recognized.
- the electrodes 9 and 10 are metal members, and the container 5 is a rectangular parallelepiped glass container.
- the object to be heated 6 held in the container 5 moves in the direction indicated by the solid arrow by the capillary phenomenon and is supplied between the electrode 9 and the electrode 10.
- the dashed arrow indicates the line of electric force formed by the electric field generated between the electrode 9 and the electrode 10 by applying a high frequency signal.
- the direction toward the bottom side of the container 5 is the downward direction, and the direction away from the bottom side of the container 5 is the upward direction.
- the density of the lines of electric force generated in the upper portion where the distance between the electrodes 9 and 10 is narrow is high. That is, since the strength of the electric field generated in the upper portion where the distance between the electrode 9 and the electrode 10 is narrow increases, the heated object 6 heated in this portion vaporizes.
- the capacitance of a capacitor composed of two plates is proportional to the area of the plates and inversely proportional to the distance between the plates. That is, the smaller the distance between the flat plates, the larger the electrostatic capacity and the stronger the electric field.
- the electric field strength increases in the upper portion where the distance between the electrode 9 and the electrode 10 is narrow, and the object 6 to be heated is intensively heated in this portion. As a result, the heating time required for the heated object 6 to vaporize can be shortened.
- the dielectric heating device 1D may have a configuration in which the interval between the electrodes shown in FIG. 4, FIG. 7 or FIG. 10 is partially narrowed. Further, in an arrangement in which an odd number of electrodes of 5 or more is arranged so that an electrode to which a high frequency signal is applied is arranged between two electrodes which are grounded, the interval between the electrodes is partially narrowed. Good. Further, in the dielectric heating device 1D, in a configuration in which four or more even-numbered electrodes are arranged concentrically, the interval between the electrodes may be partially narrowed.
- the object to be heated 6 supplied to the portion where the interval between the electrodes is narrow is intensively heated by the capillary phenomenon, so that the heating time required for the object to be heated 6 to be vaporized is shortened. be able to.
- the partition member 7 shown in the second embodiment is arranged between the electrodes, so that the effect shown in the second embodiment can be obtained.
- a deterioration preventing coating may be applied to the electrode surfaces.
- a partition member other than the partition member 7 may be provided between each electrode and the object to be heated 6 so that the object to be heated 6 does not come into contact with the electrodes.
- a glass member can be used as the partition member.
- the gap between the electrode 9 and the electrode 10 is partially narrowed.
- the object 6 to be heated is intensively heated at a place where the interval between the electrodes is narrow, and thus the heating time required for the object 6 to be heated to be vaporized can be shortened.
- the gap between the electrodes is partially narrowed, and the portion that narrows the gap is not limited to the upper portion.
- the interval between the electrodes may be narrowed in the lower part, or may be narrowed in the middle part between the lower side and the upper side.
- the object 6 to be heated is intensively heated in the portion where the distance between the electrodes is narrow, so that the heating time required until the object 6 to be heated is vaporized can be shortened.
- the dielectric heating device can shorten the heating time until the object to be heated is vaporized, it can be used for various devices that heat a liquid object to be heated to generate an aerosol.
- 1, 1A, 1B, 1C, 1D dielectric heating device 2 signal sources, 3, 3A, 3B, 4, 4A, 4B, 8, 9, 10 electrodes, 5, 5A container, 5A-1, 5A-2 wall surface, 6 objects to be heated, 7 partition members.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
Abstract
An induction heater (1), wherein matter to be heated (6) is fed between an electrode (3) and an electrode (4) by a capillary phenomenon, and the matter to be heated (6), fed between the electrode (3) and the electrode (4), is heated by an electric field produced between the grounded electrode (4) and the electrode (3) to which a high-frequency signal is applied from a signal source (2).
Description
本発明は、誘電加熱装置に関する。
The present invention relates to an induction heating device.
例えば、特許文献1には、被加熱物である木材を挟持した一対の電極間に高周波を印加することで、木材を内部から加熱して乾燥させる装置が記載されている。この装置では、一対の電極のそれぞれが平板形状であり、一つの電極は木材の一面をほとんど覆っているため、電極間に高周波を印加することで、木材全体が一様に加熱される。
For example, Patent Document 1 describes a device for heating and drying wood from the inside by applying a high frequency between a pair of electrodes sandwiching wood, which is an object to be heated. In this device, each of the pair of electrodes has a flat plate shape, and one electrode almost covers one surface of the wood. Therefore, by applying a high frequency between the electrodes, the whole wood is uniformly heated.
被加熱物が液体であり、誘電加熱によって液体を気化させる場合に、特許文献1に記載された従来の装置のように、平板形状の電極を用いて液体を一様に加熱したのでは、液体が気化されるまでに掛かる時間が長くなるという課題があった。
When the object to be heated is a liquid and the liquid is vaporized by dielectric heating, the liquid may be uniformly heated by using a flat plate-shaped electrode like the conventional device described in Patent Document 1. There was a problem that it takes a long time to be vaporized.
本発明は上記課題を解決するものであり、被加熱物が気化するまでに掛かる加熱時間を短くすることができる誘電加熱装置を得ることを目的とする。
The present invention solves the above problems, and an object of the present invention is to obtain an inductive heating device that can shorten the heating time required for the object to be vaporized.
本発明に係る誘電加熱装置は、高周波信号の信号源と、信号源に接続された第1の電極と、第1の電極に対向して配置され、接地された第2の電極とを備え、毛細管現象によって第1の電極と第2の電極との間に被加熱物が供給され、信号源から高周波信号が印加された第1の電極と、接地された第2の電極との間に発生させた電界によって、第1の電極と第2の電極との間に供給された被加熱物を加熱することを特徴とする。
The dielectric heating device according to the present invention includes a signal source of a high frequency signal, a first electrode connected to the signal source, and a second electrode which is arranged to face the first electrode and is grounded, An object to be heated is supplied between the first electrode and the second electrode by a capillary phenomenon, and is generated between the first electrode to which a high frequency signal is applied from the signal source and the grounded second electrode. The object to be heated supplied between the first electrode and the second electrode is heated by the generated electric field.
本発明によれば、毛細管現象によって第1の電極と第2の電極との間に被加熱物が供給され、第1の電極と第2の電極との間に発生させた電界によって第1の電極と第2の電極との間に供給された被加熱物を加熱する。第1の電極と第2の電極との間で被加熱物が集中的に加熱されるので、被加熱物が気化するまでに掛かる加熱時間を短くすることができる。
According to the present invention, the object to be heated is supplied between the first electrode and the second electrode by the capillary phenomenon, and the first electric field is generated by the electric field generated between the first electrode and the second electrode. The object to be heated supplied between the electrode and the second electrode is heated. Since the object to be heated is intensively heated between the first electrode and the second electrode, the heating time required for the object to be heated to vaporize can be shortened.
実施の形態1.
図1は、実施の形態1に係る誘電加熱装置1の構成例を示す斜視図である。図1に示すように、誘電加熱装置1は、信号源2、電極3、電極4および容器5を備え、誘電加熱によって被加熱物6を加熱して気化させる。誘電加熱は、高周波の電界によって被加熱物6である誘電体の内部の電気双極子が回転運動を起こし、回転した電気双極子同士が摩擦を起こして誘電体の内部で発熱する現象である。Embodiment 1.
FIG. 1 is a perspective view showing a configuration example of thedielectric heating device 1 according to the first embodiment. As shown in FIG. 1, the dielectric heating device 1 includes a signal source 2, an electrode 3, an electrode 4 and a container 5, and heats an object 6 to be heated by inductive heating to be vaporized. Dielectric heating is a phenomenon in which electric dipoles inside a dielectric, which is the object 6 to be heated, rotate due to a high-frequency electric field, and the rotated electric dipoles cause friction to generate heat inside the dielectric.
図1は、実施の形態1に係る誘電加熱装置1の構成例を示す斜視図である。図1に示すように、誘電加熱装置1は、信号源2、電極3、電極4および容器5を備え、誘電加熱によって被加熱物6を加熱して気化させる。誘電加熱は、高周波の電界によって被加熱物6である誘電体の内部の電気双極子が回転運動を起こし、回転した電気双極子同士が摩擦を起こして誘電体の内部で発熱する現象である。
FIG. 1 is a perspective view showing a configuration example of the
また、誘電加熱において、誘電体に加えられた電気エネルギーの一部が熱エネルギーに変換されて散逸する現象を誘電損失という。誘電損失が小さい部材は、高周波の電界によって加熱されることが少なく、誘電損失が大きい部材は、高周波の電界によって加熱されやすい。
Also, in dielectric heating, the phenomenon in which part of the electrical energy applied to the dielectric is converted into heat energy and dissipated is called dielectric loss. A member having a small dielectric loss is rarely heated by a high frequency electric field, and a member having a large dielectric loss is easily heated by a high frequency electric field.
信号源2は、高周波信号を生成する信号源であり、高周波信号を出力する出力端子aと0電位のグランド端子bとを有する。信号源2によって生成された高周波信号は、出力端子aを介して電極3に出力される。なお、信号源2のグランド端子bは、誘電加熱装置1のグランド(0電位)に接続されてもよい。
The signal source 2 is a signal source that generates a high frequency signal, and has an output terminal a that outputs the high frequency signal and a ground terminal b of 0 potential. The high frequency signal generated by the signal source 2 is output to the electrode 3 via the output terminal a. The ground terminal b of the signal source 2 may be connected to the ground (0 potential) of the dielectric heating device 1.
信号源2には、任意の周波数の信号を出力することができる、水晶発振器、ルビジウム発振器、電圧制御発振器(VCO)、ダイレクトデジタルシンセサイザ(DDS)およびフェーズロックループ(PLL)回路のいずれかを用いてもよい。ただし、高周波信号を発生できる発振器であれば、信号源2に用いる発振器の構成は問わない。また、信号源2から出力される高周波信号は、正弦波であってもよいし、矩形波であってもよく、連続波(CW)信号であってもよいし、変調信号であってもよい。
For the signal source 2, any one of a crystal oscillator, a rubidium oscillator, a voltage controlled oscillator (VCO), a direct digital synthesizer (DDS), and a phase lock loop (PLL) circuit capable of outputting a signal of an arbitrary frequency is used. May be. However, the oscillator used for the signal source 2 may have any configuration as long as it can generate a high-frequency signal. The high-frequency signal output from the signal source 2 may be a sine wave, a rectangular wave, a continuous wave (CW) signal, or a modulated signal. .
電極3は、信号源2の出力端子aに接続された第1の電極であり、電極4は、電極3に対向して配置された第2の電極である。電極4は、信号源2のグランド端子bに接続されて接地されている。信号源2によって生成された高周波信号が出力端子aを介して電極3に印加されると、電極3と電極4との間で高周波の電界が発生する。電極3および電極4には、例えば、金属の平板を用いてもよい。
The electrode 3 is a first electrode connected to the output terminal a of the signal source 2, and the electrode 4 is a second electrode arranged so as to face the electrode 3. The electrode 4 is connected to the ground terminal b of the signal source 2 and grounded. When the high frequency signal generated by the signal source 2 is applied to the electrode 3 via the output terminal a, a high frequency electric field is generated between the electrode 3 and the electrode 4. A metal flat plate may be used for the electrodes 3 and 4, for example.
電極3および電極4を構成する材料は、電極3と電極4との間で高周波の電界を発生させることができる材料であればよく、複数の材料を用いてもよい。電極3および電極4はコンデンサとして機能し、電極3と電極4との間には、毛細管現象によって被加熱物6が供給される。被加熱物6は、毛細管現象によって移動可能な液体であればよく、例えば、水、タバコリキッドが挙げられる。
The material forming the electrodes 3 and 4 may be any material that can generate a high-frequency electric field between the electrodes 3 and 4, and a plurality of materials may be used. The electrodes 3 and 4 function as capacitors, and the object 6 to be heated is supplied between the electrodes 3 and 4 by a capillary phenomenon. The object 6 to be heated may be any liquid that can be moved by a capillary phenomenon, and examples thereof include water and tobacco liquid.
容器5は、被加熱物6を保持する容器である。電極3と電極4は、容器5に接続されてその位置が固定されている。例えば、電極3と電極4との間隔が一定で、電極3と電極4との間に容器5の底面側からのみ被加熱物6が供給されるように、電極3および電極4の外表面と容器5の壁面が接続される。
The container 5 is a container for holding the object 6 to be heated. The electrodes 3 and 4 are connected to the container 5 and their positions are fixed. For example, the distance between the electrodes 3 and 4 is constant, and the objects to be heated 6 are supplied only from the bottom surface side of the container 5 between the electrodes 3 and 4, so that the outer surfaces of the electrodes 3 and 4 are The wall surface of the container 5 is connected.
容器5の材料には、例えば、ガラスを用いてもよい。なお、図1には直方体の容器5を示したが、これに限定されるものではない。容器5は、被加熱物6を漏れずに保持し、電極3と電極4とが短絡されず、かつ、電極3と電極4との間に発生する熱に耐えることができれば、材料および形状は問わない。また、容器5には複数の材料を用いてもよい。
Glass may be used as the material of the container 5, for example. In addition, although the rectangular parallelepiped container 5 is shown in FIG. 1, it is not limited to this. If the container 5 holds the article to be heated 6 without leaking, the electrodes 3 and 4 are not short-circuited, and can withstand the heat generated between the electrodes 3 and 4, the material and shape of the container 5 are It doesn't matter. Also, a plurality of materials may be used for the container 5.
図2は、実施の形態1に係る誘電加熱装置1の構成例を示す前面図である。図2では、容器5の内部を視認できるように、容器5の前面を透明にしている。電極3と電極4との間に供給された被加熱物6の液面は、容器5に保持された被加熱物6の液面よりも高い。すなわち、被加熱物6は、毛細管現象によって図2中の実線の矢印で示す方向に容器5から移動して電極3と電極4との間に供給される。図2において、高さhは、毛細管現象によって容器5から電極3と電極4との間に供給されて上昇した被加熱物6の液面の高さを示している。
FIG. 2 is a front view showing a configuration example of the dielectric heating device 1 according to the first embodiment. In FIG. 2, the front surface of the container 5 is transparent so that the inside of the container 5 can be visually recognized. The liquid level of the object to be heated 6 supplied between the electrodes 3 and 4 is higher than the liquid level of the object to be heated 6 held in the container 5. That is, the object to be heated 6 moves from the container 5 in the direction indicated by the solid arrow in FIG. 2 by the capillary phenomenon and is supplied between the electrode 3 and the electrode 4. In FIG. 2, the height h indicates the height of the liquid surface of the object to be heated 6 which is supplied from the container 5 between the electrodes 3 and 4 and rises due to the capillary phenomenon.
例えば、電極3、電極4および容器5の壁面で囲まれて形成された管の中を毛細管現象によって被加熱物6が上昇する場合、被加熱物6の液面の高さhは、下記式(1)で表すことができる。下記式(1)において、ρは被加熱物6の密度、Tは被加熱物6の表面張力、gは重力加速度、Sは上記管の断面積、Lは上記管の断面の外周の長さであり、θは被加熱物6と上記管の内壁との接触角である。
h=TLcosθ/ρgS ・・・(1) For example, when theobject 6 to be heated rises due to the capillary phenomenon in the tube formed by being surrounded by the walls of the electrodes 3, 4 and the container 5, the height h of the liquid surface of the object 6 to be heated is It can be represented by (1). In the following formula (1), ρ is the density of the object to be heated 6, T is the surface tension of the object to be heated 6, g is the gravitational acceleration, S is the cross-sectional area of the pipe, and L is the length of the outer circumference of the cross-section of the pipe. Is the contact angle between the object 6 to be heated and the inner wall of the tube.
h = TLcos θ / ρgS (1)
h=TLcosθ/ρgS ・・・(1) For example, when the
h = TLcos θ / ρgS (1)
上記式(1)は、上記管の断面形状が断面積Sの正方形である場合、L=S1/2となるので、下記式(2)の関係が成り立つ。
h=Tcosθ/ρgS1/2 ・・・(2) In the above formula (1), when the cross-sectional shape of the tube is a square with a cross-sectional area S, L = S 1/2, and therefore the relation of the following formula (2) is established.
h = Tcos θ / ρgS 1/2 (2)
h=Tcosθ/ρgS1/2 ・・・(2) In the above formula (1), when the cross-sectional shape of the tube is a square with a cross-sectional area S, L = S 1/2, and therefore the relation of the following formula (2) is established.
h = Tcos θ / ρgS 1/2 (2)
図3は、毛細管現象によって被加熱物6が移動する空間である上記管の断面積Sと被加熱物6の液面の高さhとの関係を示すグラフであり、横軸がS、縦軸がhである。図3において、断面積Sの値によらず、ρ、g、Tおよびθは一定の値であるものとする。SAは、毛細管現象が発生しない断面積Sの最小値である。上記式(2)から、上記管の断面積SがSA以上(S≧SA)であると、毛細管現象が発生せず、上記管の中を被加熱物6が上昇しないため、h=0となる。
FIG. 3 is a graph showing the relationship between the cross-sectional area S of the tube, which is the space in which the object to be heated 6 moves due to the capillary phenomenon, and the height h of the liquid surface of the object to be heated 6, where the horizontal axis represents S and the vertical axis represents S. The axis is h. In FIG. 3, ρ, g, T, and θ are assumed to be constant values regardless of the value of the cross-sectional area S. S A is the minimum value of the cross-sectional area S at which the capillary phenomenon does not occur. From the above formula (2), when the cross-sectional area S of the tube is S A or more (S ≧ S A ), the capillary phenomenon does not occur, and the heated object 6 does not rise in the tube, so h = It becomes 0.
一方、上記管の断面積SがSA未満(S<SA)であれば、毛細管現象が発生して上記管の中を被加熱物6が上昇する。このとき、上記管の断面積Sの値が小さいほどhの値は大きくなる。容器5における被加熱物6の液面の面積をSBとすると、毛細管現象が発生する上記管の断面積S(S<SA)は、一般的に面積SBよりも十分に小さい値となる。例えば、毛細管現象が発生する上記管の断面積Sが面積SBの10分の1以下の面積であると、毛細管現象によって上記管に被加熱物6が供給される。なお、厳密な面積SBは、容器5における被加熱物6の液面の面積から上記管の断面積Sを除いた面積である。
On the other hand, if the cross-sectional area S of the tube is less than S A (S <S A ), the capillary phenomenon occurs and the article 6 to be heated rises in the tube. At this time, the smaller the cross-sectional area S of the pipe, the larger the value of h. Assuming that the area of the liquid surface of the object 6 to be heated in the container 5 is S B , the cross-sectional area S (S <S A ) of the tube where the capillary phenomenon occurs is generally a value sufficiently smaller than the area S B. Become. For example, when the cross-sectional area S of the tube in which the capillary phenomenon occurs is 1/10 or less of the area S B , the object 6 to be heated is supplied to the tube by the capillary phenomenon. Note that the strict area S B is an area obtained by removing the cross-sectional area S of the pipe from the area of the liquid surface of the object 6 to be heated in the container 5.
電極3と電極4との間隔を十分に狭くし上記管の断面積Sを小さくすることで、毛細管現象によって電極3と電極4との間に被加熱物6が供給され、被加熱物6の液面の高さhが0よりも大きくなる。電極3と電極4との間に被加熱物6が存在する状態で、信号源2によって生成された高周波信号が電極3に印加されると、電極3と電極4との間に高周波の電界が発生して被加熱物6が加熱される。電極3と電極4との間隔は狭く上記管の断面積Sは小さいため、電極3と電極4との間に存在する被加熱物6の体積は非常に小さい。すなわち、誘電加熱装置1では、容器5に保持された被加熱物6のうちの極一部が電極3と電極4との間で集中的に加熱される。これにより、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。
By sufficiently narrowing the interval between the electrodes 3 and 4 and reducing the cross-sectional area S of the tube, the object to be heated 6 is supplied between the electrodes 3 and 4 by the capillary phenomenon, and the object to be heated 6 is heated. The height h of the liquid surface becomes larger than zero. When the high frequency signal generated by the signal source 2 is applied to the electrode 3 in the state where the object 6 to be heated is present between the electrode 3 and the electrode 4, a high frequency electric field is generated between the electrode 3 and the electrode 4. It is generated and the object 6 to be heated is heated. Since the distance between the electrodes 3 and 4 is narrow and the cross-sectional area S of the tube is small, the volume of the object to be heated 6 existing between the electrodes 3 and 4 is very small. That is, in the dielectric heating device 1, a part of the object 6 to be heated held in the container 5 is intensively heated between the electrodes 3 and 4. As a result, the heating time required for the heated object 6 to vaporize can be shortened.
例えば、図2に破線の矢印で示した方向に、気化した被加熱物6が放出されることで、電極3と電極4との間に存在する被加熱物6が少なくなっていく。このとき、誘電加熱装置1では、放出された分を補うように毛細管現象によって電極3と電極4との間に連続的に被加熱物6が容器5から供給される。これにより、電極3と電極4との間で被加熱物6の加熱と気化とを続けることができる。
For example, the vaporized object to be heated 6 is discharged in the direction indicated by the dashed arrow in FIG. 2, so that the object to be heated 6 existing between the electrodes 3 and 4 is reduced. At this time, in the dielectric heating device 1, the object 6 to be heated is continuously supplied from the container 5 between the electrodes 3 and 4 by a capillary phenomenon so as to compensate for the released amount. Thereby, the heating and vaporization of the object 6 to be heated can be continued between the electrodes 3 and 4.
次に、実施の形態1に係る誘電加熱装置1の変形例について説明する。
図4は、誘電加熱装置1の変形例である誘電加熱装置1Aを示す上面図である。図4において、信号源2、信号源2と電極3Aとを接続する配線、および信号源2と電極4Aとを接続する配線の記載を省略している。誘電加熱装置1Aは、電極3Aおよび電極4Aを備えており、電極3Aおよび電極4Aは四角柱形状の電極である。 Next, a modification of thedielectric heating device 1 according to the first embodiment will be described.
FIG. 4 is a top view showing a dielectric heating device 1A which is a modification of thedielectric heating device 1. In FIG. 4, description of the signal source 2, the wiring that connects the signal source 2 and the electrode 3A, and the wiring that connects the signal source 2 and the electrode 4A is omitted. The dielectric heating device 1A includes an electrode 3A and an electrode 4A, and the electrodes 3A and 4A are square pole-shaped electrodes.
図4は、誘電加熱装置1の変形例である誘電加熱装置1Aを示す上面図である。図4において、信号源2、信号源2と電極3Aとを接続する配線、および信号源2と電極4Aとを接続する配線の記載を省略している。誘電加熱装置1Aは、電極3Aおよび電極4Aを備えており、電極3Aおよび電極4Aは四角柱形状の電極である。 Next, a modification of the
FIG. 4 is a top view showing a dielectric heating device 1A which is a modification of the
誘電加熱装置1では、電極3と電極4との間隔を狭くすることで、毛細管現象が発生する断面積Sを確保している。これに対して、誘電加熱装置1Aは、容器5Aの壁面5A-1と壁面5A-2との間隔を狭くすることで、毛細管現象が発生する断面積Sを確保している。このような構成であっても、電極3A、電極4A、容器5Aの前方の壁面5A-1および後方の壁面5A-2で囲まれた空間に、毛細管現象によって被加熱物6が供給される。これにより、電極3Aと電極4Aとの間に存在する被加熱物6が集中的に加熱されるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。
In the dielectric heating device 1, by narrowing the gap between the electrode 3 and the electrode 4, a cross-sectional area S in which a capillary phenomenon occurs is secured. On the other hand, the dielectric heating device 1A secures the cross-sectional area S in which the capillary phenomenon occurs by narrowing the distance between the wall surface 5A-1 and the wall surface 5A-2 of the container 5A. Even with such a configuration, the object to be heated 6 is supplied to the space surrounded by the front wall surface 5A-1 and the rear wall surface 5A-2 of the electrode 3A, the electrode 4A, and the container 5A by a capillary phenomenon. As a result, the object to be heated 6 existing between the electrode 3A and the electrode 4A is intensively heated, so that the heating time required for the object to be heated 6 to vaporize can be shortened.
以上のように、実施の形態1に係る誘電加熱装置1は、信号源2、電極3および電極4を備え、毛細管現象によって電極3と電極4との間に被加熱物6が供給され、電極3と電極4との間に発生させた電界によって電極3と電極4との間に供給された被加熱物6を加熱する。電極3と電極4との間に供給された被加熱物6が集中的に加熱されるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。なお、図4に示した誘電加熱装置1Aにおいても同様の効果が得られる。
As described above, the dielectric heating device 1 according to the first embodiment includes the signal source 2, the electrode 3, and the electrode 4, and the object 6 to be heated is supplied between the electrode 3 and the electrode 4 by the capillary phenomenon. The object 6 to be heated supplied between the electrodes 3 and 4 is heated by the electric field generated between the electrodes 3 and 4. Since the object 6 to be heated supplied between the electrode 3 and the electrode 4 is intensively heated, the heating time required for the object 6 to be vaporized to be vaporized can be shortened. Similar effects can be obtained in the dielectric heating device 1A shown in FIG.
実施の形態1に係る誘電加熱装置1において、電極3と電極4との間に供給された被加熱物6の液面は、容器5に保持された被加熱物6の液面よりも高い。この状態であると、加熱によって気化した被加熱物6の放出分を補うように、容器5における被加熱物6が、毛細管現象によって電極3と電極4との間に連続的に供給される。これにより、電極3と電極4との間で被加熱物6の加熱と気化とを続けることができる。なお、図4に示した誘電加熱装置1Aにおいても同様の効果が得られる。
In the dielectric heating device 1 according to the first embodiment, the liquid level of the heated object 6 supplied between the electrode 3 and the electrode 4 is higher than the liquid level of the heated object 6 held in the container 5. In this state, the object to be heated 6 in the container 5 is continuously supplied between the electrodes 3 and 4 by a capillary phenomenon so as to compensate for the amount of the object to be heated 6 vaporized by heating. Thereby, the heating and vaporization of the object 6 to be heated can be continued between the electrodes 3 and 4. Similar effects can be obtained in the dielectric heating device 1A shown in FIG.
実施の形態1に係る誘電加熱装置1において、電極3と電極4との間で毛細管現象が発生する部分の断面積Sは、容器5における被加熱物6の液面の面積SBの10分の1以下である。このように構成することで、毛細管現象によって電極3と電極4との間に被加熱物6を供給することができる。
In the dielectric heating device 1 according to the first embodiment, the cross-sectional area S of the portion where the capillary phenomenon occurs between the electrode 3 and the electrode 4 is 10 minutes of the area S B of the liquid surface of the object 6 to be heated in the container 5. Is less than or equal to 1. With this configuration, the object 6 to be heated can be supplied between the electrodes 3 and 4 by the capillary phenomenon.
実施の形態2.
図5は、実施の形態2に係る誘電加熱装置1Bの構成例を示す斜視図である。図5において、図1と同一の構成要素には同一の符号を付して説明を省略する。xは電極3および電極4の高さである。誘電加熱装置1Bが備える電極3と電極4との間には仕切り部材7が配置されている。仕切り部材7は、図5に示すように、平板形状の部材である。Embodiment 2.
FIG. 5 is a perspective view showing a configuration example of thedielectric heating device 1B according to the second embodiment. 5, the same components as those of FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. x is the height of the electrodes 3 and 4. A partition member 7 is arranged between the electrode 3 and the electrode 4 included in the dielectric heating device 1B. The partition member 7 is a flat plate-shaped member, as shown in FIG.
図5は、実施の形態2に係る誘電加熱装置1Bの構成例を示す斜視図である。図5において、図1と同一の構成要素には同一の符号を付して説明を省略する。xは電極3および電極4の高さである。誘電加熱装置1Bが備える電極3と電極4との間には仕切り部材7が配置されている。仕切り部材7は、図5に示すように、平板形状の部材である。
FIG. 5 is a perspective view showing a configuration example of the
また、仕切り部材7は、被加熱物6よりも誘電損失が小さく、電極3と電極4とを短絡させず、かつ、電極3と電極4との間に発生する熱に耐えることができる材料で構成されている。仕切り部材7を構成する材料は、被加熱物6が透過する材料であってもよいし、複数の材料が用いられてもよい。さらに、図5には平板形状の仕切り部材7を示したが、仕切り部材7は、電極3と電極4との間で被加熱物6が占める体積を小さくすることができる形状であればよく、平板以外の形状であってもよい。
The partition member 7 has a smaller dielectric loss than the object 6 to be heated, does not short-circuit the electrodes 3 and 4, and can withstand the heat generated between the electrodes 3 and 4. It is configured. The material forming the partition member 7 may be a material through which the article 6 to be heated permeates, or a plurality of materials may be used. Further, although the plate-shaped partition member 7 is shown in FIG. 5, the partition member 7 may have any shape as long as it can reduce the volume occupied by the article 6 to be heated between the electrodes 3 and 4. It may have a shape other than a flat plate.
図6は、誘電加熱装置1Bの構成例を示す上面図であり、信号源2、信号源2と電極3とを接続する配線、および信号源2と電極4とを接続する配線の記載を省略している。図6において、電極3および電極4は金属の平行平板であり、容器5は直方体のガラス容器である。仕切り部材7はガラス製の角柱形状の部材である。仕切り部材7の誘電損失は、被加熱物6の誘電損失よりも十分に小さく被加熱物6の誘電損失に対して無視できるものとする。容器5の内部には被加熱物6と空気が存在する。
FIG. 6 is a top view showing a configuration example of the dielectric heating device 1B, and description of the signal source 2, the wiring connecting the signal source 2 and the electrode 3, and the wiring connecting the signal source 2 and the electrode 4 is omitted. are doing. In FIG. 6, the electrodes 3 and 4 are metal parallel plates, and the container 5 is a rectangular parallelepiped glass container. The partition member 7 is a glass prismatic member. The dielectric loss of the partition member 7 is sufficiently smaller than the dielectric loss of the object 6 to be heated and can be ignored with respect to the dielectric loss of the object 6 to be heated. The object to be heated 6 and air exist inside the container 5.
電極3および電極4は、高さがxで幅が2dの平行平板であり、電極3と電極4との間隔はdである。仕切り部材7は、高さがxで、縦と横の寸法がdである正方形の角柱形状を有している。ここで、電極3と電極4との間に仕切り部材7が配置されなかった場合、毛細管現象によって電極3と電極4との間に供給された被加熱物6の液面の高さhは、下記式(3)で表すことができる。
h=3Tcosθ/ρgd ・・・(3) The electrodes 3 and 4 are parallel flat plates having a height x and a width 2d, and the distance between the electrodes 3 and 4 is d. The partition member 7 has a square prismatic shape with a height x and a vertical and horizontal dimensions of d. Here, when the partition member 7 is not arranged between the electrode 3 and the electrode 4, the height h of the liquid surface of the object to be heated 6 supplied between the electrode 3 and the electrode 4 by the capillary phenomenon is It can be expressed by the following formula (3).
h = 3T cos θ / ρgd (3)
h=3Tcosθ/ρgd ・・・(3) The
h = 3T cos θ / ρgd (3)
電極3、電極4、容器5の前方の壁面および後方の壁面で囲まれた管の断面積は2d2であることから、毛細管現象によって上記管の中を上昇した被加熱物6の体積をVとした場合、体積Vは、下記式(4)で表すことができる。
V=2d2h=6dTcosθ/ρg ・・・(4) Since the cross-sectional area of the tube surrounded by the front wall surface and the rear wall surface of theelectrode 3, the electrode 4, and the container 5 is 2d 2 , the volume of the object to be heated 6 that has risen in the tube due to the capillary phenomenon is Vd. In this case, the volume V can be expressed by the following formula (4).
V = 2d 2 h = 6d Tcos θ / ρg (4)
V=2d2h=6dTcosθ/ρg ・・・(4) Since the cross-sectional area of the tube surrounded by the front wall surface and the rear wall surface of the
V = 2d 2 h = 6d Tcos θ / ρg (4)
被加熱物6の誘電率をεとし、電極3と電極4との間に印加される電圧をvとし、電極3と電極4との間に蓄えられるエネルギーをWとした場合に、Wは、下記式(5)で表すことができる。
W=(1/2)・ε・(2dx/d)・v2=εxv2 ・・・(5) When the permittivity of the object to be heated 6 is ε, the voltage applied between the electrodes 3 and 4 is v, and the energy stored between the electrodes 3 and 4 is W, W is It can be expressed by the following formula (5).
W = (1/2) ・ ε ・ (2dx / d) ・ v 2 = εxv 2 (5)
W=(1/2)・ε・(2dx/d)・v2=εxv2 ・・・(5) When the permittivity of the object to be heated 6 is ε, the voltage applied between the
W = (1/2) ・ ε ・ (2dx / d) ・ v 2 = εxv 2 (5)
被加熱物6の単位体積あたりに加えられるエネルギーをEとした場合に、上記式(4)および上記式(5)から、Eは、下記式(6)で表すことができる。
E=W/V=ρg・εxv2/6dTcosθ ・・・(6) When the energy applied per unit volume of the article to be heated 6 is E, E can be represented by the following equation (6) from the above equations (4) and (5).
E = W / V = ρg · εxv 2 / 6dTcosθ (6)
E=W/V=ρg・εxv2/6dTcosθ ・・・(6) When the energy applied per unit volume of the article to be heated 6 is E, E can be represented by the following equation (6) from the above equations (4) and (5).
E = W / V = ρg · εxv 2 / 6dTcosθ (6)
一方、電極3と電極4との間に仕切り部材7が配置された場合、被加熱物6は、毛細管現象によって、電極3、電極4、容器5の前方の壁面および仕切り部材7で囲まれた管の中に供給される。上記管の中を上昇する被加熱物6の液面の高さh’は、下記式(7)で表すことができる。
h’=4Tcosθ/ρgd ・・・(7) On the other hand, when thepartition member 7 is arranged between the electrode 3 and the electrode 4, the object to be heated 6 is surrounded by the electrode 3, the electrode 4, the front wall surface of the container 5 and the partition member 7 due to the capillary phenomenon. Supplied in a tube. The height h ′ of the liquid surface of the article 6 to be heated that rises in the tube can be expressed by the following equation (7).
h ′ = 4T cos θ / ρgd (7)
h’=4Tcosθ/ρgd ・・・(7) On the other hand, when the
h ′ = 4T cos θ / ρgd (7)
上記管の断面積はd2であるので、毛細管現象によって上記管の中に供給された被加熱物6の体積V’は、下記式(8)で表すことができる。
V’=d2・h’=4dTcosθ/ρg ・・・(8) Since the cross-sectional area of the tube is d 2 , the volume V ′ of the object to be heated 6 supplied into the tube by the capillary phenomenon can be expressed by the following formula (8).
V ′ = d 2 · h ′ = 4d Tcos θ / ρg (8)
V’=d2・h’=4dTcosθ/ρg ・・・(8) Since the cross-sectional area of the tube is d 2 , the volume V ′ of the object to be heated 6 supplied into the tube by the capillary phenomenon can be expressed by the following formula (8).
V ′ = d 2 · h ′ = 4d Tcos θ / ρg (8)
上記管の中に存在する被加熱物6の単位体積あたりに加えられるエネルギーE’は、電極3と電極4との間に蓄えられるエネルギーWを用いて、上記式(5)と上記式(8)とから、下記式(9)で表すことができる。
E’=W/V’=ρg・εxv2/4dTcosθ ・・・(9) The energy E ′ added per unit volume of the object to be heated 6 existing in the tube is the energy W stored between theelectrode 3 and the electrode 4, and the above equations (5) and (8) are used. ) And can be represented by the following formula (9).
E ′ = W / V ′ = ρg · εxv 2 / 4dTcosθ (9)
E’=W/V’=ρg・εxv2/4dTcosθ ・・・(9) The energy E ′ added per unit volume of the object to be heated 6 existing in the tube is the energy W stored between the
E ′ = W / V ′ = ρg · εxv 2 / 4dTcosθ (9)
上記(6)および上記(9)から明らかなように、電極3と電極4との間に仕切り部材7を配置した構成は、電極3と電極4との間に仕切り部材7を配置しない構成に比べて、被加熱物6の単位体積あたりに加えられるエネルギーが大きくなる。これにより、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。
As is clear from (6) and (9) above, the configuration in which the partition member 7 is arranged between the electrodes 3 and 4 is different from the configuration in which the partition member 7 is not arranged between the electrodes 3 and 4. In comparison, the energy applied per unit volume of the article to be heated 6 becomes large. As a result, the heating time required for the heated object 6 to vaporize can be shortened.
なお、仕切り部材7の誘電損失が、被加熱物6の誘電損失よりも十分に小さく無視できることを前提としたが、仕切り部材7の誘電損失が、被加熱物6の誘電損失に対して無視できない大きさである場合、被加熱物6の加熱効果は低下する。このため、仕切り部材7には、被加熱物6よりも小さい比誘電率の材料を用いる必要がある。
It is assumed that the dielectric loss of the partition member 7 is sufficiently smaller than the dielectric loss of the object 6 to be heated and can be ignored, but the dielectric loss of the partition member 7 cannot be ignored with respect to the dielectric loss of the object 6 to be heated. When the size is large, the heating effect of the object 6 to be heated is reduced. Therefore, the partition member 7 needs to be made of a material having a relative dielectric constant smaller than that of the object 6 to be heated.
図5および図6には、電極3と電極4との間に仕切り部材7を一つだけ配置した構成を示したが、電極3と電極4との間には複数の仕切り部材7を配置してもよい。
また、図4に示した誘電加熱装置1Aが備える電極3Aと電極4Aとの間に仕切り部材7を設けてもよい。例えば、容器5Aの壁面5A-1と壁面5A-2との間に仕切り部材7を配置する。仕切り部材7を設けることで、被加熱物6の単位体積あたりに加えられるエネルギーが大きくなるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。 5 and 6 show a configuration in which only onepartition member 7 is arranged between the electrodes 3 and 4, but a plurality of partition members 7 are arranged between the electrodes 3 and 4. May be.
Further, thepartition member 7 may be provided between the electrode 3A and the electrode 4A included in the dielectric heating device 1A shown in FIG. For example, the partition member 7 is arranged between the wall surface 5A-1 and the wall surface 5A-2 of the container 5A. By providing the partition member 7, the energy applied per unit volume of the object to be heated 6 becomes large, so that the heating time required for the object to be heated 6 to vaporize can be shortened.
また、図4に示した誘電加熱装置1Aが備える電極3Aと電極4Aとの間に仕切り部材7を設けてもよい。例えば、容器5Aの壁面5A-1と壁面5A-2との間に仕切り部材7を配置する。仕切り部材7を設けることで、被加熱物6の単位体積あたりに加えられるエネルギーが大きくなるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。 5 and 6 show a configuration in which only one
Further, the
また、被加熱物6との接触によって電極3および電極4の表面の劣化(例えば、錆び)または加熱性能の劣化が発生することを防止するために、電極3および電極4の電極表面に劣化防止用のコーティングを施してもよい。また、電極3および電極4に被加熱物6が接触しないように、仕切り部材7とは別の仕切り部材を、電極3および電極4と被加熱物6との間に設けてもよい。当該仕切り部材には、例えば、ガラス製の部材を用いることができる。
Further, in order to prevent deterioration of the surfaces of the electrodes 3 and 4 (for example, rust) or deterioration of heating performance due to contact with the object to be heated 6, deterioration of the electrode surfaces of the electrodes 3 and 4 is prevented. May be coated. Further, a partition member different from the partition member 7 may be provided between the electrodes 3 and 4 and the object 6 to be heated so that the object 6 to be heated does not come into contact with the electrodes 3 and 4. As the partition member, for example, a glass member can be used.
以上のように、実施の形態2に係る誘電加熱装置1Bは、電極3と電極4との間に被加熱物6よりも誘電損失が小さい仕切り部材7を備えるので、電極3と電極4との間で被加熱物6が占める体積を小さくすることができる。これにより、電極3と電極4との間に電界を発生させたときに被加熱物6の単位体積あたりに加えられるエネルギーが大きくなるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。
As described above, the dielectric heating device 1B according to the second embodiment includes the partition member 7 having a smaller dielectric loss than the object 6 to be heated between the electrode 3 and the electrode 4, so that the electrode 3 and the electrode 4 are separated from each other. The volume occupied by the article 6 to be heated can be reduced. As a result, the energy applied per unit volume of the article to be heated 6 when an electric field is generated between the electrodes 3 and 4 is increased, so that the heating time required for the article to be heated 6 to vaporize is shortened. can do.
実施の形態3.
図7は、実施の形態3に係る誘電加熱装置1Cの構成例を示す斜視図である。図7において、図1と同一の構成要素には同一の符号を付して説明を省略する。誘電加熱装置1Cは、信号源2、電極3、電極4、容器5および電極8を備える。Embodiment 3.
FIG. 7 is a perspective view showing a configuration example of the dielectric heating device 1C according to the third embodiment. 7, the same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The dielectric heating device 1C includes asignal source 2, an electrode 3, an electrode 4, a container 5 and an electrode 8.
図7は、実施の形態3に係る誘電加熱装置1Cの構成例を示す斜視図である。図7において、図1と同一の構成要素には同一の符号を付して説明を省略する。誘電加熱装置1Cは、信号源2、電極3、電極4、容器5および電極8を備える。
FIG. 7 is a perspective view showing a configuration example of the dielectric heating device 1C according to the third embodiment. 7, the same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The dielectric heating device 1C includes a
電極8は、電極3に対向して配置され、接地された第3の電極である。電極8は、信号源2のグランド端子bに接続されており、信号源2から高周波信号が印加された電極3との間で電界を発生させる導体である。電極8は、容器5に接続されてその位置が固定される。電極8には、例えば、金属の平板を用いてもよい。
The electrode 8 is a third electrode which is arranged to face the electrode 3 and is grounded. The electrode 8 is a conductor that is connected to the ground terminal b of the signal source 2 and that generates an electric field between the electrode 8 and the electrode 3 to which a high-frequency signal is applied from the signal source 2. The electrode 8 is connected to the container 5 and its position is fixed. A metal flat plate may be used for the electrode 8, for example.
電極8を構成する材料は、電極3との間で高周波の電界を発生させることができる材料であればよく、電極8には複数の材料を用いてもよい。図7において、電極3および電極4と電極3および電極8とのそれぞれは、コンデンサとして機能し、電極3と電極4との間および電極3と電極8との間には、毛細管現象によって被加熱物6が供給される。
The material forming the electrode 8 may be any material that can generate a high-frequency electric field with the electrode 3, and a plurality of materials may be used for the electrode 8. In FIG. 7, each of the electrodes 3 and 4 and the electrodes 3 and 8 functions as a capacitor, and a space between the electrodes 3 and 4 and between the electrodes 3 and 8 is heated by a capillary phenomenon. The item 6 is supplied.
また、電極3と電極4との間に供給された被加熱物6の液面の高さ、および、電極3と電極8との間に供給された被加熱物6の液面の高さは、容器5に保持された被加熱物6の液面よりも高い。すなわち、誘電加熱装置1Cでは、電極3、電極4および容器5の壁面で囲まれた第1の管の中に、毛細管現象によって被加熱物6が供給され、電極3、電極8および容器5の壁面で囲まれた第2の管の中に、毛細管現象によって被加熱物6が供給される。
Further, the height of the liquid surface of the object to be heated 6 supplied between the electrodes 3 and 4 and the height of the liquid surface of the object to be heated 6 supplied between the electrodes 3 and 8 are , Higher than the liquid surface of the object 6 to be heated held in the container 5. That is, in the dielectric heating device 1C, the object 6 to be heated is supplied by the capillary phenomenon into the first tube surrounded by the wall surfaces of the electrode 3, the electrode 4 and the container 5, and thus the electrode 3, the electrode 8 and the container 5 are surrounded. The object 6 to be heated is supplied by the capillary phenomenon into the second tube surrounded by the wall surface.
例えば、毛細管現象によって被加熱物6が供給される上記第1の管の断面積は、容器5における被加熱物6の液面の面積SBの10分の1以下であり、毛細管現象によって被加熱物6が供給される上記第2の管の断面積は、被加熱物6の液面の面積SBの10分の1以下である。
For example, the cross-sectional area of the first tube to which the object to be heated 6 is supplied by the capillarity is 1/10 or less of the area S B of the liquid surface of the object to be heated 6 in the container 5, The cross-sectional area of the second pipe to which the heating object 6 is supplied is not more than 1/10 of the area S B of the liquid surface of the heating object 6.
電極3、電極4および電極8は金属の平行平板であり、容器5は直方体のガラス容器であり、容器5の内部には被加熱物6と空気が存在するものとする。信号源2によって生成された高周波信号が出力端子aを介して電極3に印加されると、電極3と電極4との間、電極3と電極8との間およびその周辺に高周波の電界が発生する。高周波信号が電極3に印加され、電極4および電極8は接地されているので、電極3から電極4と電極8とに向かう電界が発生する。
The electrodes 3, 4 and 8 are metal parallel plates, the container 5 is a rectangular parallelepiped glass container, and the heated object 6 and air are present inside the container 5. When the high frequency signal generated by the signal source 2 is applied to the electrode 3 via the output terminal a, a high frequency electric field is generated between the electrode 3 and the electrode 4, between the electrode 3 and the electrode 8 and in the vicinity thereof. To do. Since a high frequency signal is applied to the electrode 3 and the electrodes 4 and 8 are grounded, an electric field from the electrode 3 toward the electrodes 4 and 8 is generated.
図8は、平行に配置された電極3と電極4との間に発生させた電界によって形成される電気力線を示す上面図である。破線の矢印が電気力線である。実施の形態1および実施の形態2に係る誘電加熱装置では、図8に示すように、電極3と電極4とが平行に配置されている。このため、電極3に高周波信号が印加されると、電気力線は、電極3から電極4に向かって発生する。このとき、電気力線は、主に電極3と電極4との間に発生するが、電気力線の一部は、図8に示すように、電極3および電極4の両端部に広く発生する。
FIG. 8 is a top view showing lines of electric force formed by the electric field generated between the electrodes 3 and 4 arranged in parallel. The dashed arrow is the line of electric force. In the dielectric heating device according to the first and second embodiments, as shown in FIG. 8, the electrode 3 and the electrode 4 are arranged in parallel. Therefore, when a high frequency signal is applied to the electrode 3, the lines of electric force are generated from the electrode 3 toward the electrode 4. At this time, the lines of electric force are mainly generated between the electrodes 3 and 4, but some of the lines of electric force are widely generated at both ends of the electrodes 3 and 4, as shown in FIG. .
電気力線の密集度合いは、電界の強さを示している。図8において、電極3と電極4との間に電界が強く発生しているが、電極3および電極4の両端部からも無視できない強さで発生している。被加熱物6は電極3と電極4との間に供給されるため、電極3と電極4との間に発生した電界は、被加熱物6の加熱に利用されるが、電極3と電極4との間以外に発生した電界は、加熱に利用されない。
The density of electric lines of force indicates the strength of the electric field. In FIG. 8, the electric field is strongly generated between the electrode 3 and the electrode 4, but it is also generated from both ends of the electrode 3 and the electrode 4 with a non-negligible strength. Since the object 6 to be heated is supplied between the electrodes 3 and 4, the electric field generated between the electrodes 3 and 4 is used to heat the object 6 to be heated. The electric field generated except between and is not used for heating.
図9は、平行に配置された、電極3と電極4との間および電極3と電極8との間に発生させた電界によって形成される電気力線を示す上面図である。破線の矢印が電気力線である。誘電加熱装置1Cでは、図9に示すように、電極4と電極8との間に電極3が平行に配置されている。電極3に高周波信号が印加されると、電気力線は、主に、電極3から電極4に向かって発生し、電極3から電極8に向かって発生する。電気力線の一部は、電極3と電極4の両端部に発生し、電極3と電極8の両端部に発生する。
FIG. 9 is a top view showing electric lines of force formed by electric fields generated between the electrodes 3 and 4 and between the electrodes 3 and 8 which are arranged in parallel. The dashed arrow is the line of electric force. In the dielectric heating device 1C, as shown in FIG. 9, the electrode 3 is arranged in parallel between the electrode 4 and the electrode 8. When a high-frequency signal is applied to the electrode 3, the lines of electric force are mainly generated from the electrode 3 to the electrode 4 and from the electrode 3 to the electrode 8. Some of the lines of electric force are generated at both ends of the electrodes 3 and 4, and are generated at both ends of the electrodes 3 and 8.
ただし、図8と図9を比較すると、図9に示した電極3および電極4の両端部と電極3および電極8の両端部とに発生する電気力線は、図8に示した電極3および電極4の端部に発生する電気力線よりも密集度合いが少ない。すなわち、誘電加熱装置1Cでは、電極間以外に発生する電界が弱くなっている。このため、誘電加熱装置1Cの外部への電界の漏洩が低減される。さらに、誘電加熱装置1Cでは、発生させた電界の多くが被加熱物6の加熱に利用されるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。
However, comparing FIG. 8 and FIG. 9, the lines of electric force generated at both ends of the electrodes 3 and 4 and both ends of the electrodes 3 and 8 shown in FIG. It is less dense than the lines of electric force generated at the ends of the electrodes 4. That is, in the dielectric heating device 1C, the electric field generated except between the electrodes is weak. Therefore, leakage of the electric field to the outside of the dielectric heating device 1C is reduced. Further, in the dielectric heating device 1C, most of the generated electric field is used for heating the object 6 to be heated, so that the heating time required for the object 6 to be vaporized to be vaporized can be shortened.
なお、図7および図9には、3つの電極を平行に並べた構成を示したが、実施の形態3に係る誘電加熱装置1Cは、接地された2つの電極間に、高周波信号が印加される電極が配置されるように、5つ以上の奇数個の電極を並べた構成であってもよい。例えば、5つの平板形状の電極(1)~(5)を備え、接地された電極(1)、高周波信号が印加される電極(2)、接地された電極(3)、高周波信号が印加される電極(4)および接地された電極(5)を、この順で並べた構成が挙げられる。この構成であっても、誘電加熱装置1Cの外部への電界の漏洩が低減される。さらに、電極間に発生させた電界の多くを被加熱物6の加熱に利用できるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。
7 and 9 show a configuration in which three electrodes are arranged in parallel, but in the dielectric heating device 1C according to the third embodiment, a high frequency signal is applied between two grounded electrodes. A configuration in which five or more odd-numbered electrodes are arranged may be arranged so that the electrodes are arranged. For example, it is provided with five flat plate-shaped electrodes (1) to (5), and the grounded electrode (1), the electrode (2) to which a high frequency signal is applied, the grounded electrode (3) and the high frequency signal are applied. The electrode (4) and the grounded electrode (5) are arranged in this order. Even with this configuration, leakage of the electric field to the outside of the dielectric heating device 1C is reduced. Furthermore, since most of the electric field generated between the electrodes can be used for heating the object 6 to be heated, the heating time required for the object 6 to be heated to vaporize can be shortened.
また、実施の形態2に示した仕切り部材7を、電極3と電極4との間および電極3と電極8との間にそれぞれ配置してもよい。さらに、接地された2つの電極間に、高周波信号が印加される電極が配置されるように、5つ以上の奇数個の電極を並べた構成において、各電極間に仕切り部材7を配置してもよい。各電極間に仕切り部材7を配置することで、実施の形態2で示した効果を得ることができる。
The partition member 7 shown in the second embodiment may be arranged between the electrodes 3 and 4 and between the electrodes 3 and 8. Further, in a configuration in which an odd number of five or more electrodes are arranged so that an electrode to which a high-frequency signal is applied is arranged between two grounded electrodes, a partition member 7 is arranged between the electrodes. Good. By arranging the partition member 7 between the electrodes, the effect shown in the second embodiment can be obtained.
図10は、同心円状に配置された電極3Bと電極4Bとの間に発生させた電界によって形成される電気力線を示す上面図である。図10において破線の矢印が電気力線である。円筒状の電極4Bは、円柱状の電極3Bを中心として配置される。高周波信号が電極3Bに印加されると、電極3Bから電極4Bの内壁に向かって電気力線が発生し、電極3Bと電極4Bとの間以外には電気力線が発生しない。このため、誘電加熱装置の外部への電界の漏洩が低減される。
FIG. 10 is a top view showing lines of electric force formed by an electric field generated between the electrodes 3B and 4B arranged concentrically. In FIG. 10, the dashed arrow is the line of electric force. The cylindrical electrode 4B is arranged around the columnar electrode 3B. When a high frequency signal is applied to the electrode 3B, an electric force line is generated from the electrode 3B toward the inner wall of the electrode 4B, and no electric force line is generated except between the electrode 3B and the electrode 4B. Therefore, leakage of the electric field to the outside of the dielectric heating device is reduced.
また、図10に示す電極構造を有した誘電加熱装置は、図9に示した電極構造よりも、電極間に発生させた電界の多くを被加熱物6の加熱に利用できる。これにより、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。
なお、図10では、円柱状の電極3Bと円筒状の電極4Bを示したが、電極3Bは柱状であればよく、電極4Bは筒状であればよい。例えば、電極3Bは多角形の柱状であってもよく、電極4Bは多角形の筒状であってもよい。 Further, the dielectric heating device having the electrode structure shown in FIG. 10 can utilize more of the electric field generated between the electrodes for heating the object to be heated 6 than the electrode structure shown in FIG. As a result, the heating time required for theheated object 6 to vaporize can be shortened.
Although thecolumnar electrode 3B and the cylindrical electrode 4B are shown in FIG. 10, the electrode 3B may be columnar and the electrode 4B may be cylindrical. For example, the electrode 3B may have a polygonal columnar shape, and the electrode 4B may have a polygonal cylindrical shape.
なお、図10では、円柱状の電極3Bと円筒状の電極4Bを示したが、電極3Bは柱状であればよく、電極4Bは筒状であればよい。例えば、電極3Bは多角形の柱状であってもよく、電極4Bは多角形の筒状であってもよい。 Further, the dielectric heating device having the electrode structure shown in FIG. 10 can utilize more of the electric field generated between the electrodes for heating the object to be heated 6 than the electrode structure shown in FIG. As a result, the heating time required for the
Although the
図10には、同心円状に2つの電極を配置した構成を示したが、誘電加熱装置1Cは、4つ以上の偶数個の電極を同心円状に配置した構成であってもよい。例えば、柱状の電極(1a)と筒状の電極(2a)~(4a)とを備え、高周波信号が印加される柱状の電極(1a)を中心として、接地された筒状の電極(2a)、高周波信号が印加される筒状の電極(3a)および接地された筒状の電極(4a)を、この順で同心円状に配置した構成が挙げられる。この構成であっても、誘電加熱装置1Cの外部への電界の漏洩が低減される。さらに、電極間に発生させた電界の多くを被加熱物6の加熱に利用できるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。
Although FIG. 10 shows a configuration in which two electrodes are concentrically arranged, the dielectric heating device 1C may have a configuration in which an even number of four or more electrodes are concentrically arranged. For example, a cylindrical electrode (2a) having a columnar electrode (1a) and cylindrical electrodes (2a) to (4a), which is grounded around the columnar electrode (1a) to which a high frequency signal is applied. The cylindrical electrode (3a) to which a high frequency signal is applied and the grounded cylindrical electrode (4a) are concentrically arranged in this order. Even with this configuration, leakage of the electric field to the outside of the dielectric heating device 1C is reduced. Furthermore, since most of the electric field generated between the electrodes can be used for heating the object 6 to be heated, the heating time required for the object 6 to be heated to vaporize can be shortened.
また、実施の形態2に示した仕切り部材7を、図10に示した電極3Bと電極4Bとの間に配置してもよい。さらに、4つ以上の偶数個の電極を同心円状に配置した構成において、各電極間に仕切り部材7を配置してもよい。各電極間に仕切り部材7を配置することで、実施の形態2で示した効果を得ることができる。
The partition member 7 shown in the second embodiment may be arranged between the electrode 3B and the electrode 4B shown in FIG. Furthermore, in a configuration in which four or more even-numbered electrodes are arranged concentrically, the partition member 7 may be arranged between each electrode. By arranging the partition member 7 between the electrodes, the effect shown in the second embodiment can be obtained.
被加熱物6との接触によって、電極3、電極4および電極8または電極3Bおよび電極4Bの表面の劣化(例えば、錆び)または加熱性能の劣化が発生することを防止するために、劣化防止用のコーティングを電極表面に施してもよい。さらに、電極に被加熱物6が接触しないように、仕切り部材7とは別の仕切り部材を各電極と被加熱物6との間に設けてもよい。当該仕切り部材には、例えば、ガラス製の部材を用いることができる。
In order to prevent deterioration (for example, rust) of the surface of the electrode 3, the electrode 4 and the electrode 8 or the electrode 3B and the electrode 4B or deterioration of the heating performance due to contact with the object 6 to be heated, deterioration prevention The coating may be applied to the electrode surface. Further, a partition member other than the partition member 7 may be provided between each electrode and the object to be heated 6 so that the object to be heated 6 does not come into contact with the electrodes. As the partition member, for example, a glass member can be used.
以上のように、実施の形態3に係る誘電加熱装置1Cは、電極3および電極4に加え、電極3に対向して配置されて、接地された電極8を備える。電極3と電極8との間には、毛細管現象によって被加熱物6が供給され、信号源2から高周波信号が印加された電極3と、接地された電極8との間に発生させた電界によって、電極3と電極8との間に供給された被加熱物6を加熱する。このように構成することで、誘電加熱装置1Cの外部への電界の漏洩が低減される。また、電極間に発生させた電界の多くを被加熱物6の加熱に利用できるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。
As described above, the dielectric heating device 1C according to the third embodiment includes, in addition to the electrode 3 and the electrode 4, the electrode 8 that is arranged to face the electrode 3 and is grounded. An object to be heated 6 is supplied between the electrodes 3 and 8 by a capillary phenomenon, and an electric field generated between the electrode 3 to which a high frequency signal is applied from the signal source 2 and the grounded electrode 8 is generated. The object 6 to be heated supplied between the electrode 3 and the electrode 8 is heated. With this configuration, leakage of the electric field to the outside of the dielectric heating device 1C is reduced. Further, most of the electric field generated between the electrodes can be used for heating the object 6 to be heated, so that the heating time required for the object 6 to be vaporized to be vaporized can be shortened.
実施の形態4.
実施の形態4では、2つの電極間の間隔が高さ方向に異なる誘電加熱装置について説明する。図11は、実施の形態4に係る誘電加熱装置1Dの構成例を示す斜視図である。図11において、図1と同一の構成要素には、同一の符号を付して説明を省略する。誘電加熱装置1Dは、信号源2、容器5、電極9および電極10を備える。 Fourth Embodiment
In the fourth embodiment, a dielectric heating device in which the distance between two electrodes is different in the height direction will be described. FIG. 11 is a perspective view showing a configuration example of thedielectric heating device 1D according to the fourth embodiment. 11, the same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The dielectric heating device 1D includes a signal source 2, a container 5, an electrode 9 and an electrode 10.
実施の形態4では、2つの電極間の間隔が高さ方向に異なる誘電加熱装置について説明する。図11は、実施の形態4に係る誘電加熱装置1Dの構成例を示す斜視図である。図11において、図1と同一の構成要素には、同一の符号を付して説明を省略する。誘電加熱装置1Dは、信号源2、容器5、電極9および電極10を備える。 Fourth Embodiment
In the fourth embodiment, a dielectric heating device in which the distance between two electrodes is different in the height direction will be described. FIG. 11 is a perspective view showing a configuration example of the
電極9は、信号源2の出力端子aに接続された第1の電極であり、電極10との間で電界を発生させる導体である。電極9は、容器5に接続されてその位置が固定される。信号源2によって生成された高周波信号が出力端子aを介して電極9に印加されると、電極10との間で高周波の電界が発生する。電極9には、例えば、金属の平板を用いてもよい。電極9を構成する材料は、電極10との間で高周波の電界を発生させることができる材料であればよく、電極9には複数の材料を用いてもよい。
The electrode 9 is a first electrode connected to the output terminal a of the signal source 2, and is a conductor that generates an electric field with the electrode 10. The electrode 9 is connected to the container 5 and its position is fixed. When the high frequency signal generated by the signal source 2 is applied to the electrode 9 via the output terminal a, a high frequency electric field is generated between the electrode 9 and the electrode 10. A metal flat plate may be used for the electrode 9, for example. The material forming the electrode 9 may be any material that can generate a high-frequency electric field with the electrode 10, and a plurality of materials may be used for the electrode 9.
電極10は、電極9に対向して配置され、接地された第2の電極である。電極10は、信号源2のグランド端子bに接続されており、信号源2から高周波信号が印加された電極9との間で電界を発生させる導体である。電極10は、容器5に接続されてその位置が固定される。電極10には、例えば、金属の平板を用いてもよい。電極10を構成する材料は、電極9との間で高周波の電界を発生させることができる材料であればよく、電極10には複数の材料を用いてもよい。
The electrode 10 is a second electrode which is arranged facing the electrode 9 and is grounded. The electrode 10 is a conductor that is connected to the ground terminal b of the signal source 2 and that generates an electric field between the electrode 10 and the electrode 9 to which a high-frequency signal is applied from the signal source 2. The electrode 10 is connected to the container 5 and its position is fixed. For the electrode 10, for example, a metal flat plate may be used. The material forming the electrode 10 may be any material that can generate a high-frequency electric field with the electrode 9, and a plurality of materials may be used for the electrode 10.
電極9および電極10は、図11に示すように、容器5の底面側から離れる方向(高さ方向)に沿って厚みが徐々に増加する形状を有している。電極9と電極10とが対向して配置されると、電極9と電極10との間隔は、電極9および電極10の高さ方向に沿って間隔が狭くなる。すなわち、電極9と電極10との間隔は、部分的に狭くなっている。
As shown in FIG. 11, the electrodes 9 and 10 have a shape in which the thickness gradually increases along the direction (height direction) away from the bottom surface side of the container 5. When the electrodes 9 and 10 are arranged so as to face each other, the distance between the electrodes 9 and 10 becomes narrower along the height direction of the electrodes 9 and 10. That is, the interval between the electrode 9 and the electrode 10 is partially narrowed.
図12は、実施の形態4に係る誘電加熱装置1Dの構成例を示す前面図である。図12では、容器5の内部を視認できるように容器5の前面を透明にしている。電極9および電極10は、金属の部材であり、容器5は、直方体のガラス容器であるものとする。容器5に保持された被加熱物6は、毛細管現象によって実線の矢印で示す方向に移動して電極9と電極10との間に供給される。破線の矢印は、高周波信号を印加して電極9と電極10との間に発生させた電界によって形成される電気力線を示している。
FIG. 12 is a front view showing a configuration example of the dielectric heating device 1D according to the fourth embodiment. In FIG. 12, the front surface of the container 5 is transparent so that the inside of the container 5 can be visually recognized. The electrodes 9 and 10 are metal members, and the container 5 is a rectangular parallelepiped glass container. The object to be heated 6 held in the container 5 moves in the direction indicated by the solid arrow by the capillary phenomenon and is supplied between the electrode 9 and the electrode 10. The dashed arrow indicates the line of electric force formed by the electric field generated between the electrode 9 and the electrode 10 by applying a high frequency signal.
図12において、容器5の底面側に向かう方向を下方向とし、容器5の底面側から離れる方向を上方向とする。誘電加熱装置1Dでは、電極9と電極10との間隔が狭い上側の部分に発生した電気力線の密集度合いが高くなっている。すなわち、電極9と電極10との間隔が狭い上側の部分で発生した電界の強度が大きくなるので、この部分で加熱された被加熱物6が気化する。
In FIG. 12, the direction toward the bottom side of the container 5 is the downward direction, and the direction away from the bottom side of the container 5 is the upward direction. In the dielectric heating device 1D, the density of the lines of electric force generated in the upper portion where the distance between the electrodes 9 and 10 is narrow is high. That is, since the strength of the electric field generated in the upper portion where the distance between the electrode 9 and the electrode 10 is narrow increases, the heated object 6 heated in this portion vaporizes.
2つの平板で構成されたコンデンサの静電容量は、平板の面積に比例し、平板間の距離に反比例する。すなわち、平板間の距離が近いほど、静電容量が大きくなり、電界の強度も大きくなる。図11に示したように、誘電加熱装置1Dでは、電極9と電極10との間隔が狭い上側の部分で電界の強度が大きくなり、この部分において被加熱物6が集中的に加熱される。これにより、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。
-The capacitance of a capacitor composed of two plates is proportional to the area of the plates and inversely proportional to the distance between the plates. That is, the smaller the distance between the flat plates, the larger the electrostatic capacity and the stronger the electric field. As shown in FIG. 11, in the dielectric heating device 1D, the electric field strength increases in the upper portion where the distance between the electrode 9 and the electrode 10 is narrow, and the object 6 to be heated is intensively heated in this portion. As a result, the heating time required for the heated object 6 to vaporize can be shortened.
また、誘電加熱装置1Dは、図4、図7または図10に示した電極同士の間隔を部分的に狭くした構成であってもよい。さらに、接地された2つの電極間に、高周波信号が印加される電極が配置されるように、5つ以上の奇数個の電極を並べた構成において、電極同士の間隔を部分的に狭くしてもよい。さらに、誘電加熱装置1Dは、4つ以上の偶数個の電極を同心円状に配置した構成において、電極同士の間隔を部分的に狭くしてもよい。
これらの構成であっても、毛細管現象によって電極同士の間隔が狭い部分に供給された被加熱物6が集中的に加熱されるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。また、これらの構成において、実施の形態2に示した仕切り部材7を各電極間に配置することで、実施の形態2で示した効果を得ることができる。 Further, thedielectric heating device 1D may have a configuration in which the interval between the electrodes shown in FIG. 4, FIG. 7 or FIG. 10 is partially narrowed. Further, in an arrangement in which an odd number of electrodes of 5 or more is arranged so that an electrode to which a high frequency signal is applied is arranged between two electrodes which are grounded, the interval between the electrodes is partially narrowed. Good. Further, in the dielectric heating device 1D, in a configuration in which four or more even-numbered electrodes are arranged concentrically, the interval between the electrodes may be partially narrowed.
Even with these configurations, the object to be heated 6 supplied to the portion where the interval between the electrodes is narrow is intensively heated by the capillary phenomenon, so that the heating time required for the object to be heated 6 to be vaporized is shortened. be able to. Further, in these configurations, thepartition member 7 shown in the second embodiment is arranged between the electrodes, so that the effect shown in the second embodiment can be obtained.
これらの構成であっても、毛細管現象によって電極同士の間隔が狭い部分に供給された被加熱物6が集中的に加熱されるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。また、これらの構成において、実施の形態2に示した仕切り部材7を各電極間に配置することで、実施の形態2で示した効果を得ることができる。 Further, the
Even with these configurations, the object to be heated 6 supplied to the portion where the interval between the electrodes is narrow is intensively heated by the capillary phenomenon, so that the heating time required for the object to be heated 6 to be vaporized is shortened. be able to. Further, in these configurations, the
なお、被加熱物6との接触によって電極9および電極10の表面の劣化または加熱性能の劣化が発生することを防止するために、劣化防止用のコーティングを電極表面に施してもよい。さらに、電極に被加熱物6が接触しないように、仕切り部材7とは別の仕切り部材を各電極と被加熱物6との間に設けてもよい。当該仕切り部材には、例えば、ガラス製の部材を用いることができる。
Incidentally, in order to prevent the deterioration of the surfaces of the electrodes 9 and 10 or the deterioration of the heating performance due to the contact with the object 6 to be heated, a deterioration preventing coating may be applied to the electrode surfaces. Further, a partition member other than the partition member 7 may be provided between each electrode and the object to be heated 6 so that the object to be heated 6 does not come into contact with the electrodes. As the partition member, for example, a glass member can be used.
以上のように、実施の形態4に係る誘電加熱装置1Dは、電極9と電極10との間隔が部分的に狭くなっている。このように構成することで、電極同士の間隔が狭い箇所で被加熱物6が集中的に加熱されるので、被加熱物6が気化されるまでに掛かる加熱時間を短くすることができる。
As described above, in the dielectric heating device 1D according to the fourth embodiment, the gap between the electrode 9 and the electrode 10 is partially narrowed. With such a configuration, the object 6 to be heated is intensively heated at a place where the interval between the electrodes is narrow, and thus the heating time required for the object 6 to be heated to be vaporized can be shortened.
なお、実施の形態4に係る誘電加熱装置1Dは、電極同士の間隔が部分的に狭くなっていればよく、間隔を狭くする部分は、上側の部分に限定されるものではない。
例えば、電極同士の間隔を下側の部分で狭くしてもよいし、下側と上側との中間の部分で狭くしてもよい。いずれの構成であっても、電極同士の間隔が狭い部分で被加熱物6が集中的に加熱されるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。 In addition, in thedielectric heating device 1D according to the fourth embodiment, it suffices that the gap between the electrodes is partially narrowed, and the portion that narrows the gap is not limited to the upper portion.
For example, the interval between the electrodes may be narrowed in the lower part, or may be narrowed in the middle part between the lower side and the upper side. In any of the configurations, theobject 6 to be heated is intensively heated in the portion where the distance between the electrodes is narrow, so that the heating time required until the object 6 to be heated is vaporized can be shortened.
例えば、電極同士の間隔を下側の部分で狭くしてもよいし、下側と上側との中間の部分で狭くしてもよい。いずれの構成であっても、電極同士の間隔が狭い部分で被加熱物6が集中的に加熱されるので、被加熱物6が気化するまでに掛かる加熱時間を短くすることができる。 In addition, in the
For example, the interval between the electrodes may be narrowed in the lower part, or may be narrowed in the middle part between the lower side and the upper side. In any of the configurations, the
なお、本発明は上記実施の形態に限定されるものではなく、本発明の範囲内において、実施の形態のそれぞれの自由な組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
It should be noted that the present invention is not limited to the above-described embodiments, and within the scope of the present invention, each free combination of the embodiments or any modification of any of the constituent elements of the embodiments or the embodiments. It is possible to omit arbitrary components in each of the above.
本発明に係る誘電加熱装置は、被加熱物が気化されるまでの加熱時間を短くすることができるので、液体の被加熱物を加熱してエアロゾルを発生させる各種の機器に利用可能である。
Since the dielectric heating device according to the present invention can shorten the heating time until the object to be heated is vaporized, it can be used for various devices that heat a liquid object to be heated to generate an aerosol.
1,1A,1B,1C,1D 誘電加熱装置、2 信号源、3,3A,3B,4,4A,4B,8,9,10 電極、5,5A 容器、5A-1,5A-2 壁面、6 被加熱物、7 仕切り部材。
1, 1A, 1B, 1C, 1D dielectric heating device, 2 signal sources, 3, 3A, 3B, 4, 4A, 4B, 8, 9, 10 electrodes, 5, 5A container, 5A-1, 5A-2 wall surface, 6 objects to be heated, 7 partition members.
Claims (11)
- 高周波信号を生成する信号源と、
前記信号源に接続された第1の電極と、
前記第1の電極に対向して配置され、接地された第2の電極と、
を備え、
毛細管現象によって前記第1の電極と前記第2の電極との間に被加熱物が供給され、
前記信号源から高周波信号が印加された前記第1の電極と、接地された前記第2の電極との間に発生させた電界によって、前記第1の電極と前記第2の電極との間に供給された前記被加熱物を加熱すること
を特徴とする誘電加熱装置。 A signal source for generating a high frequency signal,
A first electrode connected to the signal source,
A second electrode which is arranged to face the first electrode and is grounded;
Equipped with
An object to be heated is supplied between the first electrode and the second electrode by a capillary phenomenon,
An electric field generated between the first electrode to which a high-frequency signal is applied from the signal source and the grounded second electrode causes a gap between the first electrode and the second electrode. A dielectric heating device, which heats the supplied object to be heated. - 前記被加熱物を保持する容器を備え、
前記第1の電極と前記第2の電極との間に供給された前記被加熱物の液面は、前記容器に保持された前記被加熱物の液面よりも高いこと
を特徴とする請求項1記載の誘電加熱装置。 A container for holding the object to be heated,
The liquid level of the object to be heated supplied between the first electrode and the second electrode is higher than the liquid level of the object to be heated held in the container. 1. The dielectric heating device according to 1. - 前記第1の電極と前記第2の電極との間に配置されて、前記被加熱物よりも誘電損失が小さい仕切り部材を備えたこと
を特徴とする請求項1記載の誘電加熱装置。 The dielectric heating device according to claim 1, further comprising a partition member that is disposed between the first electrode and the second electrode and has a dielectric loss smaller than that of the object to be heated. - 前記第1の電極は、柱状の電極であり、
前記第2の電極は、筒状の電極であり、
前記第1の電極および前記第2の電極は、前記第1の電極を中心として同心円状に配置されること
を特徴とする請求項1から請求項3のいずれか1項記載の誘電加熱装置。 The first electrode is a columnar electrode,
The second electrode is a tubular electrode,
The said 1st electrode and the said 2nd electrode are arrange | positioned concentrically centering | focusing on the said 1st electrode, The dielectric heating apparatus of any one of Claim 1 to 3 characterized by the above-mentioned. - 前記第1の電極に対向して配置され、接地された第3の電極を備え、
毛細管現象によって前記第1の電極と前記第3の電極との間に前記被加熱物が供給され、
前記信号源から高周波信号が印加された前記第1の電極と、接地された前記第3の電極との間に発生させた電界によって、前記第1の電極と前記第3の電極との間に供給された前記被加熱物を加熱すること
を特徴とする請求項1記載の誘電加熱装置。 A third electrode which is arranged to face the first electrode and is grounded,
The object to be heated is supplied between the first electrode and the third electrode by a capillary phenomenon,
An electric field generated between the first electrode to which a high-frequency signal is applied from the signal source and the grounded third electrode causes a gap between the first electrode and the third electrode. The dielectric heating device according to claim 1, wherein the supplied object to be heated is heated. - 前記被加熱物を保持する容器を備え、
前記第1の電極と前記第2の電極との間に供給された前記被加熱物の液面と、前記第1の電極と前記第3の電極との間に供給された前記被加熱物の液面とは、前記容器に保持された前記被加熱物の液面よりも高いこと
を特徴とする請求項5記載の誘電加熱装置。 A container for holding the object to be heated,
The liquid surface of the object to be heated supplied between the first electrode and the second electrode, and the object to be heated supplied between the first electrode and the third electrode The liquid level is higher than the liquid level of the object to be heated held in the container. - 前記第1の電極と前記第2の電極との間に配置されて、前記被加熱物よりも誘電損失が小さい仕切り部材と、前記第1の電極と前記第3の電極との間に配置されて、前記被加熱物よりも誘電損失が小さい仕切り部材と、を備えたこと
を特徴とする請求項5または請求項6記載の誘電加熱装置。 A partition member that is arranged between the first electrode and the second electrode and has a dielectric loss smaller than that of the object to be heated, and is arranged between the first electrode and the third electrode. And a partition member having a dielectric loss smaller than that of the object to be heated. 7. The dielectric heating device according to claim 5, further comprising: - 前記第1の電極と前記第2の電極との間隔は、部分的に狭くなっていること
を特徴とする請求項1記載の誘電加熱装置。 The dielectric heating device according to claim 1, wherein a gap between the first electrode and the second electrode is partially narrowed. - 前記第1の電極と前記第2の電極との間隔は、部分的に狭くなっており、
前記第1の電極と前記第3の電極との間隔は、部分的に狭くなっていること
を特徴とする請求項5記載の誘電加熱装置。 The interval between the first electrode and the second electrode is partially narrowed,
The dielectric heating device according to claim 5, wherein a distance between the first electrode and the third electrode is partially narrowed. - 前記第1の電極と前記第2の電極との間で毛細管現象が発生する部分の断面積は、前記容器における前記被加熱物の液面の面積の10分の1以下であること
を特徴とする請求項2記載の誘電加熱装置。 A cross-sectional area of a portion where a capillary phenomenon occurs between the first electrode and the second electrode is 1/10 or less of an area of a liquid surface of the object to be heated in the container. The dielectric heating device according to claim 2. - 前記第1の電極と前記第2の電極との間で毛細管現象が発生する部分の断面積は、前記容器における前記被加熱物の液面の面積の10分の1以下であり、
前記第1の電極と前記第3の電極との間で毛細管現象が発生する部分の断面積は、前記容器における前記被加熱物の液面の面積の10分の1以下であること
を特徴とする請求項6記載の誘電加熱装置。 The cross-sectional area of the portion where the capillary phenomenon occurs between the first electrode and the second electrode is 1/10 or less of the area of the liquid surface of the object to be heated in the container,
The cross-sectional area of the portion where the capillary phenomenon occurs between the first electrode and the third electrode is 1/10 or less of the area of the liquid surface of the object to be heated in the container. The dielectric heating device according to claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/038853 WO2020079811A1 (en) | 2018-10-18 | 2018-10-18 | Induction heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/038853 WO2020079811A1 (en) | 2018-10-18 | 2018-10-18 | Induction heater |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020079811A1 true WO2020079811A1 (en) | 2020-04-23 |
Family
ID=70283434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038853 WO2020079811A1 (en) | 2018-10-18 | 2018-10-18 | Induction heater |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020079811A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023507913A (en) * | 2020-11-25 | 2023-02-28 | オーサム ラボ カンパニー,リミテッド | Electrode heating element, electrode heating device including the same, and leakage prevention control method applied thereto |
WO2025073958A1 (en) * | 2023-10-05 | 2025-04-10 | Philip Morris Products S.A. | Dielectric heating aerosol-generating device having a zoned dielectric heating |
WO2025074005A1 (en) * | 2023-10-05 | 2025-04-10 | Philip Morris Products S.A. | Dielectric heating aerosol-generating device with coaxial electrode arrangement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50134146U (en) * | 1974-04-19 | 1975-11-05 | ||
JPS5522003U (en) * | 1978-07-28 | 1980-02-13 | ||
CN1198522A (en) * | 1997-05-05 | 1998-11-11 | 郝武斌 | Ionizing type porous ceramic instantaneous vapour generating board |
JP2003307345A (en) * | 2002-04-17 | 2003-10-31 | Japan Science & Technology Corp | Hot water generator by vibrating electric field in coaxial cylinder |
WO2017143515A1 (en) * | 2016-02-23 | 2017-08-31 | Fontem Holdings 1 B.V. | High frequency polarization aerosol generator |
KR20180111347A (en) * | 2017-03-31 | 2018-10-11 | (주) 엔피홀딩스 | Apparatus for heating liquid |
-
2018
- 2018-10-18 WO PCT/JP2018/038853 patent/WO2020079811A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50134146U (en) * | 1974-04-19 | 1975-11-05 | ||
JPS5522003U (en) * | 1978-07-28 | 1980-02-13 | ||
CN1198522A (en) * | 1997-05-05 | 1998-11-11 | 郝武斌 | Ionizing type porous ceramic instantaneous vapour generating board |
JP2003307345A (en) * | 2002-04-17 | 2003-10-31 | Japan Science & Technology Corp | Hot water generator by vibrating electric field in coaxial cylinder |
WO2017143515A1 (en) * | 2016-02-23 | 2017-08-31 | Fontem Holdings 1 B.V. | High frequency polarization aerosol generator |
KR20180111347A (en) * | 2017-03-31 | 2018-10-11 | (주) 엔피홀딩스 | Apparatus for heating liquid |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023507913A (en) * | 2020-11-25 | 2023-02-28 | オーサム ラボ カンパニー,リミテッド | Electrode heating element, electrode heating device including the same, and leakage prevention control method applied thereto |
JP7319002B2 (en) | 2020-11-25 | 2023-08-01 | オーサム ラボ カンパニー,リミテッド | Electrode heating element, electrode heating device including the same, and leakage prevention control method applied thereto |
WO2025073958A1 (en) * | 2023-10-05 | 2025-04-10 | Philip Morris Products S.A. | Dielectric heating aerosol-generating device having a zoned dielectric heating |
WO2025074005A1 (en) * | 2023-10-05 | 2025-04-10 | Philip Morris Products S.A. | Dielectric heating aerosol-generating device with coaxial electrode arrangement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020079811A1 (en) | Induction heater | |
Reyes-Ayona et al. | Observation of genuine wave vector (k or β) gap in a dynamic transmission line and temporal photonic crystals | |
Lebedev | Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma | |
US5059929A (en) | Dielectric resonator | |
US20190221405A1 (en) | Plasma processing apparatus and plasma processing method | |
RU2115192C1 (en) | Atomic frequency standard | |
US8674792B2 (en) | Tunable metamaterials | |
JP6389062B2 (en) | Plasma generating device with microstrip resonator | |
AU621712B2 (en) | Improved uniformity of microwave heating | |
JP6861902B2 (en) | Dielectric heating device | |
US2262966A (en) | Piezoelectric crystal filter | |
US6759808B2 (en) | Microwave stripline applicators | |
US6040654A (en) | Piezoelectric transformer | |
Bardos et al. | Microwave plasma sources and methods in processing technology | |
Chagovets | Electric response in superfluid helium | |
CA2965216A1 (en) | Resonator and filter with resonator | |
Galve et al. | Operation of a planar Penning trap | |
US9497846B2 (en) | Plasma generator using spiral conductors | |
Collin et al. | Temperature-dependent energy levels of electrons on liquid helium | |
JP2005505112A (en) | Virtual cathode microwave generator | |
Corson et al. | Dynamic response of a thin sessile drop of conductive liquid to an abruptly applied or removed electric field | |
JP6740725B2 (en) | Heating device and image forming device | |
JPS629686A (en) | gas laser equipment | |
Dmitriev et al. | Enhanced interaction between a mechanical oscillator and two coupled resonant electrical circuits | |
Luk’yanchuk et al. | Terahertz electrodynamics of 180 domain walls in thin ferroelectric films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18937161 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18937161 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |