[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020079866A1 - 塩化物イオンセンサ、及び塩化物イオン濃度計測方法 - Google Patents

塩化物イオンセンサ、及び塩化物イオン濃度計測方法 Download PDF

Info

Publication number
WO2020079866A1
WO2020079866A1 PCT/JP2019/010580 JP2019010580W WO2020079866A1 WO 2020079866 A1 WO2020079866 A1 WO 2020079866A1 JP 2019010580 W JP2019010580 W JP 2019010580W WO 2020079866 A1 WO2020079866 A1 WO 2020079866A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride ion
electrode
hot melt
ion sensor
electrodes
Prior art date
Application number
PCT/JP2019/010580
Other languages
English (en)
French (fr)
Inventor
桑原 章史
田中 稔彦
晃太郎 水野
克郎 福原
直明 河村
晶平 滝野
周治 井出
毅 関谷
隆文 植村
秀輔 吉本
根津 俊一
Original Assignee
東洋インキScホールディングス株式会社
東電設計株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, 東電設計株式会社, 国立大学法人大阪大学 filed Critical 東洋インキScホールディングス株式会社
Publication of WO2020079866A1 publication Critical patent/WO2020079866A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass

Definitions

  • the present invention relates to a chloride ion sensor for detecting chloride ions in a concrete structure, and a chloride ion concentration measuring method.
  • Deterioration of metal such as reinforcing bars placed in a concrete structure may be accelerated depending on the surrounding environment. For example, it is known that corrosion of the metal is easily promoted in an environment with a high chloride ion concentration. Therefore, a method of nondestructively measuring the chloride ion concentration in the concrete structure is being studied.
  • the conductive method is known as one of the methods for measuring the concentration of chloride ions in concrete structures.
  • the conductive method is to be summarized, in a state where an alternating current is applied to the target concrete structure, the impedance of the concrete structure and the phase angle peak frequency of the impedance are measured, and the moisture content of the concrete structure is measured. This is a method of calculating the chloride ion concentration in combination with the information of.
  • Patent Document 1 a characteristic information storage unit that stores information about the characteristics of a concrete body, a pair of electrodes that are arranged on the surface of the concrete body at intervals, and the pair of electrodes are disposed between the pair of electrodes.
  • a system for measuring the salinity of a concrete body for identifying the concentration is disclosed.
  • the characteristic information includes, for example, characteristic information that correlates the impedance, the peak frequency of the impedance, the moisture content, and the salt concentration with each other. According to Patent Document 1, it is said that the system described above makes it possible to easily and in real time measure the salt concentration of a concrete body while visiting a building to be measured.
  • Patent Document 2 a pair of electrodes arranged on the surface of the concrete body at a distance from each other, and an impedance in a state in which an alternating current is passed between the pair of electrodes via the concrete body, Measuring means for measuring the phase angle peak frequency at which the phase angle of the impedance becomes a peak, water content of the concrete body, or water content information acquiring means for acquiring the amount of water vapor in the environment in which the concrete body is arranged, Based on the impedance and the phase angle peak frequency measured by measuring means, based on the plurality of water content or a plurality of water vapor content obtained by the moisture information acquisition means, the chloride concentration of the concrete body Based on the evaluation value calculated by the calculating means for calculating an evaluation value for evaluation and the calculating means, the concrete And a specifying means for specifying a product concentration, chloride concentration measurement system is disclosed in the concrete body.
  • Patent Document 2 regarding the impedance and the phase angle peak frequency that are easily affected by external factors such as the amount of water vapor, the chloride concentration of the concrete body is accurately measured by considering the influence of the external factors. It is supposed to be possible.
  • brass is used as the electrode.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a chloride ion sensor capable of long-term monitoring and a chloride ion concentration measuring method.
  • the present inventors have completed the present invention by finding that the above problems can be solved by using an electrode having excellent weather resistance and excellent adhesion to a concrete surface.
  • the chloride ion sensor of the present embodiment is a sensor for measuring the chloride ion concentration in the concrete structure, At least a pair of electrodes spaced apart from each other on the surface of the concrete structure; A measuring unit for measuring impedance in a state in which an alternating current is applied between the at least one pair of electrodes, The at least one pair of electrodes has a hot melt electrode containing a hot melt resin in which a conductive filler is dispersed.
  • the conductive filler is silver or conductive carbon.
  • the hot melt resin contains a thermoplastic elastomer.
  • the electrode has a conductive layer on the hot melt electrode.
  • One embodiment of the chloride ion sensor is One embodiment of the chloride ion sensor further includes a base material on the electrode.
  • the electrodes are formed into a sheet.
  • An embodiment of the above chloride ion sensor has a plurality of the electrodes, and the plurality of electrodes are arranged in a pattern on a sheet-shaped base material.
  • the electrode and the measurement unit are connected by conductive wiring, at least a part of the conductive wiring is a pattern wiring formed on at least one surface of the base material. is there.
  • the one embodiment of the chloride ion sensor further includes a wireless transmission unit that wirelessly transmits information based on the detected impedance.
  • the wireless transmission unit further includes a battery that supplies electric power.
  • the chloride ion concentration measuring method of the present embodiment is a measuring method for measuring the chloride ion concentration in the concrete structure, A preparatory step of preparing the chloride ion sensor, At least a pair of electrodes provided in the chloride ion sensor, a bonding step for respectively bonding to the surface of the concrete structure, A measuring step of measuring the impedance in the state of flowing an alternating current through the concrete body between the at least a pair of electrodes, The adhering step includes a step of adhering to the concrete structure by heating and melting the hot melt electrode.
  • One embodiment of the chloride ion concentration measuring method further has a calculation step of calculating a chloride ion concentration from the measured impedance, The calculation step calculates a chloride ion concentration based on at least the measured impedance obtained in the impedance measurement step.
  • the preparing step is a preparing step of preparing the chloride ion sensor according to claim 7 or 8.
  • the method further includes the step of wirelessly transmitting information based on the measured impedance obtained by the impedance measuring step.
  • FIG. 9B is a side view of FIG. 9A.
  • the chloride ion sensor of this embodiment is At least a pair of electrodes spaced apart from each other on the surface of the concrete structure; A measuring unit for measuring impedance in a state in which an alternating current is applied between the at least one pair of electrodes, The at least one pair of electrodes has a hot melt electrode containing a hot melt resin in which a conductive filler is dispersed.
  • the chloride ion sensor of the present embodiment can be installed in a concrete structure for a long period of time (for example, 3 months or more) and has a chloride ion sensor that can be monitored for a long time. can do.
  • the chloride ion sensor of the present embodiment measures the impedance with at least a pair of electrodes in a state where an alternating current is passed through a concrete structure to be measured.
  • the chloride ion concentration is measured by referring to a concrete characteristic information database (hereinafter, may be referred to as characteristic information DB) of concrete including the relationship between impedance, moisture content, and chloride ion concentration, which has been prepared in advance. It is calculated from the impedance.
  • characteristic information DB concrete characteristic information database
  • the frequency is the frequency corresponding to the impedance, and specifically, the frequency of the alternating current passed through the concrete structure during the impedance measurement.
  • the peak frequency means the frequency at which the phase angle of impedance reaches its peak.
  • the water content means the water content per unit volume in the range from the surface of the concrete structure to a predetermined depth (for example, 20 mm).
  • the amount of water vapor means the amount of water vapor in the environment where the concrete structure is arranged, and can be calculated from the humidity and the temperature by referring to the vapor pressure curve.
  • the electrode used in the chloride ion sensor of the present embodiment has at least a hot-melt electrode containing a hot-melt resin in which a conductive filler is dispersed, and if necessary, further has a conductive layer and other components. You can do it. Each configuration of such an electrode will be described below.
  • the hot melt electrode is arranged and used on the surface of the concrete structure.
  • the hot melt electrode is one that is melted by heating, attached to the surface of the concrete structure, and then cooled and solidified. Therefore, the concrete structure is firmly held in close contact with the surface. Further, since the hot melt electrode fills the voids on the surface of the concrete structure, the contact resistance is suppressed. Further, since the conductive filler is dispersed in the hot melt resin, it is retained in the electrode without being dissociated from the electrode and penetrating into the concrete structure. Therefore, the hot melt electrode of the present embodiment has a small state change on the surface of the concrete structure, and can stably measure the voltage. Therefore, a chloride ion sensor capable of long-term monitoring can be obtained by using the electrode.
  • the hot melt electrode of the present embodiment contains at least a hot melt resin and a conductive filler, and may further contain other components as necessary.
  • each component contained in such a hot melt electrode will be described.
  • the hot-melt resin contains a resin that can be heated and melted when the electrode is placed on the surface of the concrete structure, and a known thermoplastic resin should be used as such a resin. You can
  • thermoplastic resin examples include polyurethane resin, acrylonitrile resin, acrylic resin, polyamide resin, polyvinyl butyral resin, polyester resin, styrene resin, silicone resin, and thermoplastic elastomer. They may be used alone or in combination of two or more.
  • the hot melt resin contains a thermoplastic elastomer.
  • the electrode having rubber elasticity at room temperature for example, 25 ° C.
  • the elastic modulus of the thermoplastic elastomer at room temperature can be, for example, 0.1 to 100 MPa.
  • thermoplastic elastomer examples include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylene / butylene-styrene block copolymer (SEBS), styrene.
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEBS styrene-ethylene / butylene-styrene block copolymer
  • thermoplastic elastomer such as ethylene / propylene-styrene block copolymer (SEPS); urethane-based thermoplastic elastomer (TPU); olefin-based thermoplastic elastomer (TPO); polyester-based thermoplastic elastomer (TPEE); polyamide-based Examples thereof include thermoplastic elastomers, fluorine-based thermoplastic elastomers, vinyl chloride-based thermoplastic elastomers, and the like, and they can be used alone or in combination of two or more. Further, the thermoplastic elastomer may be hydrogenated. In the present embodiment, it is preferable to include a styrene-based thermoplastic elastomer among the thermoplastic elastomers.
  • the weight average molecular weight of the hot melt resin is preferably 5,000 or more and 1,000,000 or less, more preferably 10,000 or more and 800,000 or less, from the viewpoint of handleability.
  • the weight average molecular weight is a polystyrene equivalent molecular weight measured by GPC (gel permeation chromatography) “HLC-8320” manufactured by Tosoh Corporation.
  • the content ratio of the hot melt resin is preferably 40 to 98% by mass, and more preferably 60 to 95% by mass in 100% by mass of the total amount of the hot melt electrode.
  • the conductive filler is used by being dispersed in the hot melt resin to ensure the conductivity of the electrode.
  • the conductive filler can be appropriately selected from known ones.
  • the shape of the conductive filler may be any particle shape that can be dispersed in the hot melt resin, and may be any shape such as flake shape (scaly shape), spherical shape, needle shape, fibrous shape, or dendritic shape. From the viewpoint of ensuring the conductivity while reducing the content ratio of the conductive filler, it is preferable to use the flaky conductive filler.
  • Examples of the material of the conductive filler include metals such as silver, gold, copper, zinc, zinc oxide, manganese, nickel, and aluminum; tin oxide-doped indium oxide (ITO), tin oxide-doped indium oxide (FTO), tin oxide (IO).
  • metals such as silver, gold, copper, zinc, zinc oxide, manganese, nickel, and aluminum
  • ITO tin oxide-doped indium oxide
  • FTO tin oxide-doped indium oxide
  • IO tin oxide
  • Metal oxides such as neodymium / barium / indium oxide; organic substances such as polypyrrole, polythiophene, polyaniline, oligothiophene; carbon black, graphite, graphene, graphite, carbon nanotubes, carbon fiber, fullerene, graphene oxide
  • conductive carbon such as acetylene black
  • inorganic insulators such as alumina and glass and polymers such as polyethylene and polystyrene whose surface is coated with a conductive material can be used.
  • the conductive filler may be used alone or in combination of two or more.
  • the conductive filler is preferably silver or conductive carbon, and more preferably conductive carbon.
  • the conductive carbon graphite, carbon fiber, carbon black, carbon nanotube, graphene, or graphene oxide is particularly preferable. Since silver and conductive carbon have excellent conductivity and various resistances such as heat resistance, water resistance, and acid resistance, the electrode has excellent long-term reliability.
  • the hot-melt electrode using silver or conductive carbon has a stable presence of the silver or conductive carbon, and long-term monitoring is possible, so it is possible to capture voltage changes without using a reference electrode. You can Therefore, the corrosion sensor can be realized even if the electrode of this embodiment does not have a reference electrode.
  • the content ratio of the conductive filler is preferably 2 to 60 mass% and more preferably 5 to 40 mass% in 100 mass% of the hot melt electrode.
  • the thickness of the hot melt electrode is not particularly limited, but is, for example, 50 to 2000 ⁇ m, preferably 100 to 1500 ⁇ m.
  • the hot melt electrode of the present embodiment may contain other components as long as the effect is not impaired. Suitable other ingredients include tackifiers, plasticizers and the like. Since the hot melt electrode containing the tackifier or the plasticizer is provided with the tackiness, it can be temporarily fixed to the concrete surface and the construction at the time of adhesion becomes easy.
  • the tackifier and the plasticizer may be appropriately selected from known ones and used alone or in combination of two or more kinds. Moreover, the tackifier and the plasticizer may be used alone or in combination.
  • the total content ratio thereof is preferably 0.5% by mass or more and 40% by mass or less, and 1% by mass or more and 20% by mass, in 100% by mass of the total amount of the hot-melt electrode. % Or less is more preferable.
  • the hot melt electrode of the present embodiment as other components, for example, silane coupling agent, titanate coupling agent, flexibility imparting agent, flame retardant, storage stabilizer, antioxidant, metal deactivating agent. Agents, ultraviolet absorbers, thixotropy imparting agents, leveling agents, defoaming agents, dispersion stabilizers, fluidity imparting agents, defoaming agents, antiblocking agents, flame retardants, coloring materials and the like.
  • the hot melt electrode contains these components, the content ratio thereof is preferably 5% by mass or less and more preferably 3% by mass or less in 100% by mass of the total amount of the hot melt electrode.
  • the electrode may have a structure having only the hot melt electrode, or may have another structure such as a conductive layer, if necessary.
  • the conductive layer is provided on the surface opposite to the surface of the hot melt electrode on the surface of the concrete structure. Since the conductive layer does not directly contact the surface of the concrete structure, the influence of corrosion due to chloride ions in the concrete structure is suppressed. Therefore, the conductive layer can have any structure. Examples of the conductive layer include a silver / silver chloride electrode layer, a silver / silver chloride electrode layer containing carbon flakes, and a conductive foil such as a metal foil.
  • the base material is usually arranged on the surface of the hot melt electrode opposite to the surface arranged on the surface of the concrete structure, and when it has the conductive layer, it is arranged on the conductive layer.
  • the base material not only improves handleability during electrode production, but also functions as a protective film for the hot melt electrode and the conductive layer when the electrode is used.
  • the substrate is not limited, and can be appropriately selected from various resin films, for example.
  • the material of the base material examples include polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polystyrene, polyimide, polyamide, polyether sulfone, polyethylene naphthalate, polybutylene terephthalate, polyvinyl chloride, polyethylene, polypropylene, cycloolefin polymer, ABS ( Acrylonitrile-butadiene-styrene copolymer resin), AES (acrylonitrile-ethylene-styrene copolymer resin), Kydak (acrylic modified vinyl chloride resin), modified polyphenylene ether, and films such as polymer alloys composed of two or more of these resins, These laminated films etc. are mentioned.
  • the substrate may be transparent or opaque.
  • the base material preferably has flexibility because it easily follows the irregularities on the concrete surface.
  • Method of manufacturing electrode An example of the method of manufacturing the electrode in this embodiment will be described below.
  • a method for manufacturing an electrode first, the hot melt resin, the conductive filler, and other components used as necessary are mixed to form a mixture.
  • the mixture may contain a solvent that dissolves the hot melt resin in order to disperse it uniformly.
  • the mixture is dispersed by a known disperser to obtain a dispersion.
  • the disperser include roll mills such as two rolls and three rolls, ball mills such as ball mills and vibrating ball mills, paint conditioners, bead mills such as continuous disc type bead mills and continuous annular bead mills. Then, the obtained dispersion is applied onto a substrate.
  • the coating method may be appropriately selected depending on the thickness and material of the hot melt electrode.
  • inkjet method spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, screen printing method, reversal printing method, hot melt applicator , Hot melt coater, slit coater, hot melt roll coater and the like.
  • a hot melt electrode can be obtained by drying the obtained coating film as needed.
  • the base material is unnecessary, the base material may be peeled off after forming a coating film similar to the above using a peelable base material.
  • the hot melt electrode may be formed by forming the conductive layer on the substrate and then coating the dispersion for the hot melt electrode on the conductive layer.
  • the electrode formed by the above method is made into a sheet. Further, by printing the hot melt electrodes in a pattern by the above method, a plurality of electrodes can be arranged in a pattern on one sheet-shaped base material. By arranging the plurality of electrodes in a pattern, it is not necessary to adjust the distance between the pair of electrodes. Further, by arranging a plurality of electrodes on one sheet-shaped base material, even when a plurality of chloride ion sensors are arranged on a concrete structure, the installation becomes easy.
  • FIG. 1 is a schematic diagram showing a first embodiment of the chloride ion sensor of the present embodiment.
  • the chloride ion sensor 10 shown in the example of FIG. 1 includes a pair of electrodes 1a and 1b which are arranged on the surface of a concrete structure 100 at a distance from each other, and a measurement unit 2 which measures impedance.
  • the electrodes 1a and 1b each have a hot melt electrode.
  • the distance between the electrodes 1a and 1b is an arbitrary distance within a range in which impedance can be measured in the state where an alternating current is applied to the concrete structure 100, and is, for example, 1 to 100 mm.
  • the wider the distance between the pair of electrodes 1a and 1b the deeper the depth of the concrete structure can be measured. Therefore, the depth can be adjusted according to the depth of the concrete structure 100 to be measured.
  • FIG. 7 is a schematic sectional view showing an example of the electrode 1a.
  • the electrode 1a shown in FIG. 7 uses a laminated body in which the conductive layer 5 and the base material 6 are laminated in this order on the hot melt electrode 4, and the configuration of the electrode 1a is at least the hot melt electrode as described above. It suffices if the electrode 4 is provided. Further, in the example of FIG. 8, the electrode 1 a arranged on the surface of the concrete structure 100 is covered with the protective portion 7. With such a configuration, it is possible to suppress contact between the electrode 1a including the hot-melt electrode 4 and external moisture or salt, and thus a chloride ion sensor having longer-term reliability is obtained.
  • the protection part 7 may seal the entire electrode 1a including the base material 6 as shown in the example of FIG.
  • the protective portion 7 may be disposed at least at the peripheral portion of the electrode 1a and may protect the electrode 1a in combination with the base material 6.
  • a known resin can be used for the protection part 7. The details of the hot-melt electrode 4, the conductive layer 5, and the base material 6 are as described above, and thus the description thereof is omitted here.
  • the measuring unit 2 passes an alternating current between at least a pair of electrodes 1a and 1b through the concrete structure 100, and measures the impedance in the state where the alternating current is passed, and further the frequency and the peak frequency as necessary. To do.
  • a known impedance meter LCR meter
  • the measuring unit 2 may be configured by combining an oscillator, an ammeter and the like.
  • the impedance meter is a measuring unit that measures an impedance or a peak frequency in a state where an alternating current is passed through at least a pair of electrodes 1a and 1b through the concrete structure 100.
  • the measurement principle of this impedance meter is arbitrary, but the impedance can be measured by a known method such as a bridge method or a resonance method.
  • a two-terminal method impedance meter uses a pair of electrodes (two electrodes). Further, in a four-terminal method impedance meter, two pairs of electrodes (four electrodes) are used.
  • the measurement unit 2 may be normally connected to the calculation unit 50 to form a chloride ion sensor system. In the example of FIG. 1, the measurement unit 2 and the calculation unit 50 are connected by the wiring 21.
  • the impedance and the like measured by the measurement unit 2 are input to the calculation unit 50, and the calculation unit 50 calculates the chloride ion concentration.
  • the calculation unit 50 will be described later.
  • the concrete structure 100 to be measured in this embodiment is not particularly limited.
  • the concrete structure 100 to be measured usually contains chloride ions and water, and further has a reinforcing bar inside.
  • the structure of the concrete structure 100 is arbitrary and may be a flat surface or a curved surface, and may have irregularities or the like. Since the electrodes 1a and 1b of the chloride ion sensor 10 of the present embodiment have hot melt electrodes, they can be adhered to each other by following an arbitrary shape.
  • Specific examples of the concrete structure 100 include a tunnel, a bridge, a pier, a dam, and other concrete structures forming at least a part of a building.
  • FIG. 2 shows an example in which the chloride ion sensor 10 of the present embodiment is arranged on the inner wall 101 of the tunnel.
  • One chloride ion sensor 10 of the present embodiment may be arranged alone on the inner wall 101 of the tunnel, or two or more thereof may be connected as shown in the example of FIG.
  • the connected chloride ion sensor 20 can be manufactured, for example, by providing a plurality of measurement units 2 on electrodes arranged in a pattern on a sheet-shaped base material 31. By using the chloride ion sensors 20 connected to each other, it becomes easy to install each chloride ion sensor 10 at predetermined intervals.
  • the connected chloride ion sensor 20 may share the wiring 22.
  • the wiring 22 includes, for example, a wiring that connects the measurement unit 2 and the calculation unit 50, a wiring that connects the measurement unit 2 and a wireless transmission unit 3 described below, each chloride ion sensor 10 and an external power source (not shown). Examples include wiring to be connected.
  • the calculation unit 50 and the wireless transmission unit 3 may be shared.
  • a plurality of connected chloride ion sensors 20 may be provided in the tunnel at predetermined intervals. By providing a plurality of connected chloride ion sensors 20, the chloride ion concentration over the entire tunnel can be mapped. As shown in the example of FIG. 2, the plurality of connected chloride ion sensors 20 may share the wiring 23. Like the wiring 22, the wiring 23 is, for example, a wiring that connects the measurement unit 2 and the calculation unit 50, a wiring that connects the measurement unit 2 and a wireless transmission unit 3 described below, each chloride ion sensor 10 and an external power supply. Wiring for connecting to (not shown) and the like can be mentioned. The plurality of connected chloride ion sensors 20 may further share the calculation unit 50 and the wireless transmission unit 3.
  • FIG. 5 shows an example of the calculation unit 50.
  • the calculation unit 50 includes an input unit 51, an output unit 52, a storage unit 53, a calculation unit 54, and a control unit 55.
  • the calculation unit 50 for example, a known personal computer, PDA, tablet terminal or the like can be used.
  • the input unit 51 is an input unit for receiving input of various information necessary for executing the measurement method according to the present embodiment, and may have at least a terminal connected to the measurement unit 2. If necessary, a keyboard, a touch panel, a terminal connected to the moisture content meter 61 described later, and various switches may be provided.
  • the output unit 52 is an output unit that outputs various kinds of information necessary for executing the measurement method according to the present embodiment, and is configured as, for example, a monitor.
  • the storage unit 53 is a storage unit that stores various kinds of information necessary for the processing of the calculation unit 50, and is configured by, for example, a hard disk or another recording medium.
  • the characteristic information DB 40 is provided.
  • the characteristic information DB 40 is characteristic information that specifies the interrelationship between the impedance of the concrete structure 100, the frequency corresponding to the impedance, the moisture content, and the chloride ion concentration, or the phase angle of the impedance peaks. It includes characteristic information that specifies the correlation between the peak frequency, the water content, and the chloride ion concentration.
  • the characteristic information can be acquired, for example, by measuring the impedance and frequency of the concrete structure 100 whose moisture content and salt concentration are known in advance, or the peak frequency at which the phase angle of the impedance peaks. Alternatively, it may be obtained from publicly known documents such as Japanese Patent Laid-Open No. 2012-184948 and Japanese Patent No. 6338238.
  • the characteristic information DB 40 does not have to store all the raw data, but may store only some of the raw data and generate other data by interpolation as necessary. For example, when storing data indicating the relationship between frequency and impedance, only impedances corresponding to a plurality of intermittent frequencies are stored as raw data, and impedances corresponding to frequencies between these plurality of frequencies are stored. , May be generated by interpolation based on raw data.
  • the calculation unit 54 calculates the characteristic information stored in the characteristic information DB 40 based on the impedance measured using the measuring unit 2 and the frequency corresponding to the impedance, or the peak frequency at which the phase angle of the impedance reaches a peak.
  • the calculation unit 54 includes a CPU, various programs that are interpreted and executed on the CPU (including a basic control program such as an OS and an application program that is started on the OS and realizes a specific function), and It is configured to include an internal memory such as a RAM for storing programs and various data.
  • the chloride ion concentration calculating program according to the present embodiment is stored in a readable recording medium and installed in the arithmetic unit 5 from the recording medium, thereby substantially configuring the calculating unit 54.
  • control unit 55 controls each unit constituting the calculation unit 50, and controls the measurement unit 2 to start and end the measurement.
  • the control unit 55 includes a CPU, an internal memory such as a RAM for storing various programs interpreted and executed on the CPU, and programs and various data.
  • FIG. 3 is a schematic diagram showing a second embodiment of the chloride ion sensor of the present embodiment.
  • the chloride ion sensor 10 shown in the example of FIG. 3 is different from that of the first embodiment in that the wireless transmission unit 3 is provided and the wireless transmission unit 3 and the measurement unit 2 are connected.
  • the wireless transmission unit 3 wirelessly transmits information such as impedance measured by the measurement unit 2 to the calculation unit 50.
  • the signal to be transmitted is not particularly limited, and may be an analog system, a digital system, or any system. Further, the transmission form may be any communication form such as light, radio wave, electromagnetic wave.
  • each wireless transmission unit 3 outputs the identification information of the chloride ion sensor 10 so that it can be identified from which chloride ion sensor 10. It is sent to the calculation unit 50 together with the impedance information.
  • the wireless transmission unit 3 may include a battery (not shown) that supplies electric power.
  • the battery supplies at least the necessary power to the wireless transmission unit 3. Moreover, you may supply electric power from the battery to the measurement part 2 as needed.
  • the chloride ion sensor 10 does not require external wiring (for example, the wiring 22 and the wiring 23 in FIG. 2), and has a simple configuration. Become. As a result, the concrete structure 100 can be installed anywhere.
  • FIG. 4 is a schematic diagram showing a third embodiment of the chloride ion sensor of the present embodiment.
  • a moisture content meter 61 is provided separately from the chloride ion sensor 10 of the first embodiment, and the moisture content meter 61 is connected to the calculation unit 50.
  • the water content meter 61 acquires the water content of the concrete structure 100.
  • the water content and the chloride ion concentration are calculated from the measured values such as impedance.
  • the calculation accuracy of the chloride ion concentration is improved by using the water content as the measured value.
  • the water content meter 61 is a water content information acquisition unit that acquires the water content of the concrete structure 100.
  • This moisture content meter 61 can be appropriately selected from known methods, for example, a method of optically detecting moisture by reflection of infrared rays, or a change in dielectric constant (high frequency capacity) due to moisture in concrete, and detecting the moisture content. Examples include a method of measuring water content based on the result.
  • FIG. 9 is a schematic view showing a fourth embodiment of the chloride ion sensor of the present embodiment.
  • the wiring (conducting wire 8) between the impedance detection unit 2 and the electrode 4 is configured by the pattern wiring 8 a formed on the base material 6 including the electrode 4. That is, in the present embodiment, the electrode sheet with patterned wiring 200 including the patterned wiring 8 a and the pair of electrodes 4 on the base material 6 is used.
  • the pattern wiring 8a and the electrode 4 may be formed on the same surface, or the pattern wiring 8a may be formed on the surface opposite to the electrode 4 and connected through the opening of the base material.
  • the pattern wiring 8a is formed by, for example, printing an ink containing a conductive material between the electrode 4 on the base material 6 and a terminal connected to the impedance detection portion 2 arranged at an end of the base material 6 or the like. And patterning, Like a flexible circuit, a conductive metal is laminated on the base material 6 by vapor deposition, metal foil lamination, plating, etc., a pattern is formed by etching, and then an electrode 4 to be used is formed, and wiring for the impedance detection unit 2 is formed. The method of connecting is mentioned. If the contact resistance between the wiring pattern 8a and the electrode 4 is small, it can be connected by printing as it is.
  • the wiring may be connected with a conductive adhesive such as a silver paste or a metal filler.
  • a protective portion 7 for sealing the wiring pattern may be further provided on the wiring pattern 8a, or may be wholly or partially laminated with a laminating film in which a base material having weather resistance and an adhesive are laminated. Good.
  • the pattern wiring 8a is printed on the same surface as the electrode 4, the electrode can be formed at the end of the wiring, and the electrode can be partially or entirely exposed and heated and melted to be placed on the surface of the concrete structure 100.
  • the pattern wiring 8a When the pattern wiring 8a is printed on the surface opposite to the electrode 4 of the electrode sheet with pattern wiring, a through hole is provided in the base material of the voltage detecting portion or the electrode portion, and conductive ink, a conductive adhesive, or a hot melt electrode is provided therein. It is also possible to join by embedding. Also in that case, the protective portion 7 may be provided on the pattern wiring 8a, and the whole or a part may be laminated with a laminating film in which a weather resistant substrate and an adhesive are laminated.
  • the printed wiring can be easily formed and is also excellent in flexibility, which is preferable.
  • the conductive ink used for printed wiring contains at least conductive fine particles, and may contain other components such as a binder component and a solvent, if necessary.
  • the conductive fine particles may be sintered into a sintered body in the formed conductive wiring, but it is preferable that a plurality of conductive fine particles contact each other to exhibit conductivity.
  • Examples of the conductive fine particles include metal fine particles, carbon fine particles, and conductive oxide fine particles.
  • Examples of the metal fine particles include powders of metal such as gold, silver, copper, nickel, chromium, palladium, rhodium, ruthenium, indium, aluminum, tungsten, molbutene, platinum, copper-nickel alloy, silver-palladium alloy, Examples thereof include alloy powders such as copper-tin alloys, silver-copper alloys, and copper-manganese alloys, and metal-coated powders obtained by coating the surface of the above-mentioned single metal powder or alloy powder with silver or the like.
  • examples of the carbon fine particles include carbon black, graphite, carbon nanotubes and the like.
  • the conductive oxide fine particles include silver oxide, indium oxide, tin oxide, zinc oxide, ruthenium oxide and the like.
  • the conductive fine particles may be used alone or in combination of two or more.
  • fine carbon particles having excellent weather resistance such as water resistance and acid resistance.
  • the shape of the conductive fine particles is not particularly limited, and an amorphous shape, an aggregate shape, a scale shape, a microcrystalline shape, a spherical shape, a flake shape, a wire shape, or the like can be appropriately used.
  • the average particle size of the conductive fine particles is not particularly limited, but is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, and 0.5 ⁇ m or more and 30 ⁇ m or less from the viewpoint of dispersibility in the conductive ink and conductivity after wiring. Is more preferable.
  • the conductive ink preferably contains a binder component.
  • the binder component it is preferable to include a resin from the viewpoint of film-forming property, adhesion after film-forming, flexibility and the like.
  • the resin can be appropriately selected and used from resins used for conductive wiring.
  • the resin include acrylic resin, vinyl ether resin, polyether resin, polyester resin, polyurethane resin, epoxy resin, phenoxy resin, polycarbonate resin, polyvinyl chloride resin, polyolefin resin, styrene block.
  • a copolymer resin, a polyamide resin, a polyimide resin, etc. are mentioned, and they can be used individually by 1 type or in combination of 2 or more types.
  • the content ratio of the conductive fine particles in the pattern wiring 8a is preferably 50% by mass or more and 95% by mass or less, and more preferably 60% by mass or more and 90% by mass or less with respect to the total amount of the pattern wiring 8a. Further, the content ratio of the binder component in the pattern wiring 8a is preferably 5% by mass or more and 50% by mass or less, and more preferably 10% by mass or more and 40% by mass or less with respect to the total amount of the pattern wiring 8a.
  • the conductive wiring has excellent conductivity.
  • the content ratio of the binder component is at least the above lower limit, the film forming property and the adhesion to the base material 6 are improved, and flexibility can be imparted to the conductive wiring of the electrode sheet with conductive wiring. it can.
  • the pattern wiring 8a of the electrode sheet 200 with pattern wiring is prepared by, for example, preparing a conductive ink containing the conductive fine particles, the binder component, and optionally a solvent, and then applying the conductive ink on a substrate. It can be formed by printing on, and removing the solvent if necessary.
  • the solvent may be appropriately selected according to the printing method.
  • the printing method may be appropriately selected from known printing techniques such as a gravure printing method, a screen printing method, a flexo printing method, an inkjet method, and the like, depending on the composition of the conductive ink and the film thickness of the pattern wiring.
  • the thickness of the pattern wiring 8a of the electrode sheet 200 with pattern wiring is not particularly limited, and from the viewpoint of achieving both conductivity and flexibility, for example, it can be 1 ⁇ m or more and 500 ⁇ m or less, and 10 ⁇ m or more and 300 ⁇ m or less are preferable.
  • the width of the conductive wiring of the print-type sensor sheet is not limited, and may be a width that provides the necessary conductivity. For example, it can be 0.1 mm or more, and preferably 1 mm to 100 mm. Note that the plurality of conductive wirings may have the same thickness or width, or may have different thicknesses or widths.
  • the protective portion 7 of the electrode sheet with pattern wiring is a layer provided at least on the pattern wiring 8a, and suppresses damage to the pattern wiring 8a and contact with water, oxygen, acid, alkali, etc., and long-term reliability. To improve.
  • the protective part 7 can be formed as a protective layer by, for example, laminating a sheet similar to the sheet base material of the electrode sheet with conductive wiring.
  • the chloride ion concentration measuring method of this embodiment is A measurement method for measuring chloride ion concentration in a concrete structure, A preparatory step of preparing the chloride ion sensor, A pair of electrodes provided in the chloride ion sensor, a bonding step for respectively bonding to the surface of the concrete structure, And a measuring step for measuring impedance in a state where an alternating current is passed through the concrete body between the pair of electrodes,
  • the adhering step includes a step of adhering to the concrete structure by heating and melting the hot melt electrode.
  • FIG. 6 is a flowchart showing an example of a chloride ion concentration measuring method.
  • the chloride ion sensor 10 is prepared (S1: preparation step).
  • the pair of electrodes 1a and 1b and the surface of the concrete structure 100 are electrically contacted via the hot melt electrode (S3: bonding step).
  • the impedance is measured in a state where an alternating current is passed between the pair of electrodes through a concrete body (S4: measuring step).
  • the obtained measurement result is sent to the calculation unit by wire or wirelessly when the chloride ion sensor 10 includes the wireless transmission unit 3 (S5: wireless transmission process), and the characteristic information DB 40 is stored in the calculation unit 50.
  • the chloride ion concentration is calculated with reference (S6: calculation step).
  • the bonding step includes a step of heating and melting the hot melt electrodes included in the electrodes 1a and 1b.
  • the chloride ion sensor using the electrode sheet with patterned wiring 200 is an electrode sheet in which the conducting wire 8 is formed on the base material in advance, a corrosion sensor is installed when performing large-area / multipoint spontaneous potential measurement. Becomes even easier.
  • Example 2 A hot melt resin based on SIS (styrene-isoprene-styrene) elastomer and a carbon filler were added to a tabletop kneader equipped with a heating device, and heated and stirred at 130 to 180 ° C for 3 hours. It was confirmed that the elastomer did not remain unmelted, and a hot melt electrode was obtained.
  • the prepared hot melt electrode was laminated on a PEN (polyethylene naphthalate) film to a thickness of 100 ⁇ m to obtain an electrode having a base material.
  • the volume resistivity of the electrode portion was 3 ⁇ 10 3 ⁇ cm.
  • Example 3 A hot melt resin based on SEPS (styrene / ethylene / propylene / styrene) elastomer and a carbon filler were added to a tabletop kneader equipped with a heating device, and the mixture was heated and stirred at 130 to 180 ° C for 3 hours. It was confirmed that the elastomer did not remain unmelted, and a hot melt electrode was obtained.
  • the prepared hot melt electrode was laminated on a PEN film with a thickness of 200 ⁇ m to obtain an electrode having a base material.
  • the volume resistivity of the electrode part was 2 ⁇ 10 ⁇ 1 ⁇ cm.
  • Example 4 A hot melt resin based on SEPS (styrene / ethylene / propylene / styrene) elastomer and a carbon filler were added to a tabletop kneader equipped with a heating device, and the mixture was heated and stirred at 130 to 180 ° C for 3 hours. It was confirmed that the elastomer did not remain unmelted, and a hot melt electrode was obtained.
  • the prepared hot melt electrode was laminated on a polyimide film with a thickness of 1000 ⁇ m to obtain an electrode having a base material. The volume resistivity of the electrode portion was 2 ⁇ 10 1 ⁇ cm.
  • Example 5 A hot melt resin based on SEBS (styrene / ethylene / butylene / styrene) elastomer and a carbon filler were added to a tabletop kneader equipped with a heating device, and the mixture was heated and stirred at 130 to 180 ° C for 3 hours. It was confirmed that the elastomer did not remain unmelted, and a hot melt electrode was obtained.
  • the prepared hot melt electrode was laminated on a PEN film with a thickness of 300 ⁇ m to obtain an electrode having a base material.
  • the volume resistivity of the electrode part was 6 ⁇ 10 1 ⁇ cm.
  • Example 6 A hot melt resin based on a polyamide-based thermoplastic resin and a carbon filler were added to a tabletop kneader equipped with a heating device, and the mixture was heated and stirred at 130 to 180 ° C. for 3 hours. It was confirmed that the elastomer did not remain unmelted, and a hot melt electrode was obtained.
  • the prepared hot melt electrode was laminated on a PEN film to a thickness of 150 ⁇ m to obtain an electrode having a base material.
  • the volume resistivity of the electrode portion was 5 ⁇ 10 1 ⁇ cm.
  • Example 7 A hot melt resin based on a polyester thermoplastic resin and a carbon filler were added to a tabletop kneader equipped with a heating device, and the mixture was heated and stirred at 130 to 180 ° C. for 3 hours. It was confirmed that the elastomer did not remain unmelted, and a hot melt electrode was obtained.
  • the prepared hot melt electrode was laminated on a PEN film to a thickness of 500 ⁇ m to obtain an electrode having a base material.
  • the volume resistivity of the electrode part was 4 ⁇ 10 3 ⁇ cm.
  • Example 8 A hot melt resin based on a polyolefin-based thermoplastic resin and a carbon filler were added to a table-top kneader equipped with a heating device, and the mixture was heated and stirred at 130 to 180 ° C. for 3 hours. It was confirmed that the elastomer did not remain unmelted, and a hot melt electrode was obtained.
  • the prepared hot melt electrode was laminated on a PEN film with a thickness of 250 ⁇ m to obtain an electrode having a base material.
  • the volume resistivity of the electrode portion was 1 ⁇ 10 1 ⁇ cm.
  • Example 9 A hot melt resin based on a polyurethane-based thermoplastic resin and a carbon filler were added to a tabletop kneader equipped with a heating device, and the mixture was heated and stirred at 130 to 180 ° C. for 3 hours. It was confirmed that the elastomer did not remain unmelted, and a hot melt electrode was obtained.
  • the prepared hot melt electrode was laminated on a PEN film to a thickness of 400 ⁇ m to obtain an electrode having a base material.
  • the volume resistivity of the electrode portion was 1 ⁇ 10 1 ⁇ cm.
  • a hot melt resin based on a polyvinyl chloride (PVC) thermoplastic resin and a carbon filler were added to a tabletop kneader equipped with a heating device, and the mixture was heated and stirred at 130 to 180 ° C. for 3 hours. It was confirmed that the elastomer did not remain unmelted, and a hot melt electrode was obtained.
  • the prepared hot melt electrode was laminated on a PEN film with a thickness of 200 ⁇ m to obtain an electrode having a base material.
  • the volume resistivity of the electrode portion was 1 ⁇ 10 1 ⁇ cm.
  • Example 11 A hot melt resin based on SEPS (styrene / ethylene / propylene / styrene) elastomer and a silver filler were added to a tabletop kneader equipped with a heating device, and the mixture was heated and stirred at 130 to 180 ° C for 3 hours. It was confirmed that the elastomer did not remain unmelted, and a hot melt electrode was obtained.
  • the prepared hot-melt electrode was laminated on a PEN substrate to a thickness of 200 ⁇ m to obtain an electrode. The volume resistivity of the electrode portion was 4 ⁇ 10 ⁇ 4 ⁇ cm.
  • Hot Melt Resin Composition and Sealant Sheet A hot melt resin based on SIS (styrene / isoprene / styrene) elastomer is sandwiched between release films, and hot pressed at 100 ° C and 100 kgf / cm 2 for 30 seconds with a tester tabletop test press machine to obtain a film thickness of 200 It was processed into a sheet having a size of up to 300 ⁇ m to obtain a sealing material sheet 1.
  • SIS styrene / isoprene / styrene
  • ⁇ Production Example 12 Electrode sheet with pattern wiring> As shown in FIG. 9, a conductive carbon ink (carbon-based conductive paste RA FS 090: manufactured by Toyo Ink Co., Ltd.) on a 300 mm ⁇ 100 mm polyamide film (Kapton 200EN: manufactured by Toray DuPont Co., Ltd.) was used to form two 10 mm wide lines between the lines. Printed in a space of 5 mm and heat-dried at 100 ° C. for 30 minutes, and further, the hot melt electrode prepared in Example 1 is 200 ⁇ m thick on a polyimide film (Kapton: manufactured by Toray DuPont Co., Ltd.) so as to have a size of 40 mm ⁇ 40 mm.
  • a conductive carbon ink carbon-based conductive paste RA FS 090: manufactured by Toyo Ink Co., Ltd.
  • Kapton 200EN manufactured by Toray DuPont Co., Ltd.
  • the encapsulant sheet on the base material so as to cover the wiring part while avoiding the electrode part, and hot roll laminating is performed at 150 ° C., 4 kgf / cm 2 , and 1 m / min from the release film to form an electrode.
  • An electrode sheet 200 with a pattern wiring including carbon wiring and a sealing material was obtained (FIG. 9).
  • the volume resistivity of the electrode portion 4 was 2 ⁇ 10 1 ⁇ cm.
  • Electrode sheet with pattern wiring> As shown in FIG. 9, a conductive silver paste (RA FS 007: manufactured by Toyo Ink Co., Ltd.) is printed on a 300 mm ⁇ 100 mm polyamide film (Kapton 200 EN: manufactured by Toray DuPont Co., Ltd.) in a width of 5 mm to form two 10 mm wide lines. Then, it is dried by heating at 100 ° C. for 30 minutes, and the hot melt electrode prepared in Example 1 is further laminated on a polyimide film (Kapton: manufactured by Toray DuPont Co., Ltd.) so as to have a size of 40 mm ⁇ 40 mm, and a thickness of 200 ⁇ m.
  • a conductive silver paste (RA FS 007: manufactured by Toyo Ink Co., Ltd.) is printed on a 300 mm ⁇ 100 mm polyamide film (Kapton 200 EN: manufactured by Toray DuPont Co., Ltd.) in a width of 5 mm to form two 10
  • Electrode sheet with pattern wiring> As shown in FIG. 9, a sealing material sheet is covered on the base material so as to cover the wiring part, and hot roll laminating is performed from above the release film at 150 ° C., 4 kgf / cm 2 , 1 m / min to seal the electrode, carbon wiring and An electrode sheet with a pattern wiring 200 having a stopper was obtained (FIG. 9).
  • the volume resistivity of the electrode portion 4 was 2 ⁇ 10 1 ⁇ cm.
  • the hot-melt electrode prepared in the example was laminated on the base material so as to have a size of 40 mm ⁇ 40 mm with a thickness of 300 mm, and the electrode and the wiring pattern with the copper wiring by etching and the electrode with pattern wiring provided with the encapsulant by the coverlay.
  • a sheet 200 was obtained (Fig. 9).
  • the volume resistivity of the electrode portion 4 was 2 ⁇ 10 1 ⁇ cm.
  • Ionic conductivity is obtained by laminating an ion conductive gel formed by mixing a high molecular polymer (Poly-styrene-b-ethylene oxide-b-styrene): PS-PEO-PS) and an ionic liquid on an aluminum foil. I got an electrode. The ionic conductivity of the electrode portion was 4 ⁇ 10 ⁇ 2 Scm.
  • Example 1 (Measurement) 1. Measurement of Volume Resistivity The laminate of the electrode and the polyimide film produced in Production Example 1 was cut into 1.5 cm ⁇ 3 cm, and a low resistivity meter (Mitsubishi Chemical Analytech Co., Ltd .: Lorester GX MCP-T700) was used. The volume resistivity of the electrode portion was measured. It measured 3 times and made the average value the measured value.
  • a low resistivity meter Mitsubishi Chemical Analytech Co., Ltd .: Lorester GX MCP-T700
  • the adhesive strength was measured by using a tensile tester EX-SX manufactured by Shimadzu Corporation. A sheet of 25 mm width composed of a laminate of a hot melt electrode having a thickness of 200 ⁇ m and a polyimide film obtained in Production Example 1 was subjected to a surface polishing treatment with a grinder to obtain a 7 cm ⁇ 7 cm concrete adherend surface, which was hot. The melt electrode side was attached, and a plate heated to 200 ° C. was pressed against the base material for 1 minute to adhere to the concrete. After the heating was completed, the sample was allowed to stand for 24 hours until it returned to room temperature, which was used as a measurement sample.
  • the measuring method was such that the edge of the sheet was at an angle of 90 degrees and a speed of 50 mm / min.
  • the adhesive force was evaluated from the load when peeled off with.
  • Grinder used Monotaro Slim Disc Grinder (MRO-100DG)
  • Compound Corrosion Resistance Test As the compound corrosion test, a test based on the Japan Automobile Manufacturers Association Standard (JASO) M609 / M610 was carried out for a long time. Specifically, the sample was placed inside the complex corrosion tester (BQD-2) in a state of being inclined at 70 degrees with respect to the ground. The complex corrosion condition of the sample is as follows: 5% NaCl, salt spray at 35 ° C for 2 hours, then 4 hours in a dry environment of 50% RH and 60 ° C, and a wet environment of 95% RH and 50 ° C. I put it down for two hours. This cycle was performed 200 times. After the implementation, the measurement sample was collected, and the deterioration determination was performed by comparing the results before and after the following test.
  • JASO Japan Automobile Manufacturers Association Standard
  • Samples for measurement of complex corrosion test are 1. It was prepared in the same manner as the measurement of the volume resistivity, and at the same time, the resistivity was also measured. The sample was put into a complex corrosion tester, a corrosion cycle test was performed under the above conditions, and then the volume resistivity of the sample was measured by the same method. ⁇ when the volume resistivity is less than 1 ⁇ 10 3 ⁇ cm before and after the complex corrosion test, ⁇ when the volume resistivity is less than 1 ⁇ 10 5 ⁇ cm before and after the complex corrosion test, and other In the case of, it was marked with x.
  • Chloride ion measurement (creation of characteristic information database)
  • the concrete specimen used for impedance measurement was prepared as follows as a rectangular parallelepiped having a size of 200 ⁇ 100 ⁇ 100 cm.
  • Four kinds of specimens containing 0.5 kg, 1 kg, 5 kg, and 10 kg per 1 m 3 of chloride were manufactured by pouring using water, cement, and sand. Further, by adjusting the water content of each concrete specimen to 0.5%, 1%, 5%, 10%, a total of 16 types of concrete specimens with known chloride content and moisture content were prepared.
  • Two pairs of electrodes were bonded to the surface of each concrete specimen by pressure bonding.
  • AC impedance can be measured by connecting two pairs of electrodes bonded to the same concrete specimen surface to the LCR meter via electric wires. The frequency characteristics of the real part and the imaginary part of the AC impedance between the electrodes of each concrete specimen were measured. The frequency was swept from 0.1 Hz to 10 MHz. The value of the AC impedance at each water content / salt concentration was plotted for each frequency to create a characteristic information database.
  • a concrete specimen having a known water content and a chloride ion content shown in Table 2 was prepared, and the electrode after the complex corrosion resistance test of Example 1 was treated on the surface of the concrete specimen in the same manner as in the creation of the above database. Glued on. Measurement was made possible by connecting two pairs of electrodes that were bonded to the surface of the same concrete specimen to the LCR meter. The water content of the concrete specimen was measured in advance using a moisture meter (HI-520-2 manufactured by KETT). For the quantitative evaluation of chloride ion concentration, the frequency characteristics of the real part and the imaginary part of the AC impedance between the two pairs of electrodes are measured, and the measured water content and AC impedance value are applied to the characteristic information database by the calibration curve method. The chloride ion content was calculated. The frequency was swept from 0.1 Hz to 10 MHz. The impedance of the prepared specimen was measured, and when the chloride concentration could be quantified, it was marked with ⁇ , and the others were marked with x.
  • ⁇ Measurement> 1 Measurement of ionic conductivity The ionic conductivity of the ion gel electrode prepared in Comparative Production Example 1 was measured using an impedance analyzer. It measured 3 times and made the average value the measured value.
  • the adhesive strength was measured by using a tensile tester EX-SX manufactured by Shimadzu Corporation. To a concrete adherend surface of 7 cm ⁇ 7 cm, which was obtained in Comparative Production Example 1, a sheet of 25 mm width composed of a laminate of an ion gel electrode having a thickness of 500 ⁇ m and an aluminum base material was surface-polished with a grinder. Adhesion was performed by sticking the ion gel electrode side.
  • the measuring method of the adhesive force is as follows: the edge of the sheet is at an angle of 90 degrees and the speed is 50 mm / min. The adhesive force was evaluated from the load when peeled off with.
  • Grinder used Monotaro Slim Disc Grinder (MRO-100DG)
  • Compound Corrosion Resistance Test As the compound corrosion test, a test based on the Japan Automobile Manufacturers Association Standard (JASO) M609 / M610 was carried out for a long time. Specifically, the sample was placed inside the complex corrosion tester (BQD-2) in a state of being inclined at 70 degrees with respect to the ground. The complex corrosion condition of the sample is as follows: 5% NaCl, salt spray at 35 ° C for 2 hours, then 4 hours in a dry environment of 50% RH and 60 ° C, and a wet environment of 95% RH and 50 ° C. I put it down for two hours. This cycle was performed 200 times. After the implementation, the measurement sample was collected, and the deterioration determination was performed by comparing the results before and after the following test.
  • JASO Japan Automobile Manufacturers Association Standard
  • Chloride ion measurement (creation of characteristic information database)
  • the concrete specimen used for impedance measurement was prepared as follows as a rectangular parallelepiped having a size of 200 ⁇ 100 ⁇ 100 cm.
  • Four kinds of specimens containing 0.5 kg, 1 kg, 5 kg, and 10 kg per 1 m 3 of chloride were manufactured by pouring using water, cement, and sand. Furthermore, by adjusting the water content of each concrete specimen to 0.5%, 1%, 5%, 10%, a total of 16 types of concrete specimens with known chloride content and moisture content were prepared.
  • Comparative Example 1 The surface of each concrete specimen by sticking a laminate composed of two pairs of ion gel electrode sheets and a polyimide film, which are separated by a thickness of 200 ⁇ m, a size of 4 ⁇ 4 cm, and an interval of 10 cm, on each surface of each concrete specimen. Two pairs of electrodes were adhered to.
  • AC impedance can be measured by connecting two pairs of electrodes bonded to the same concrete specimen surface to the LCR meter via electric wires. The frequency characteristics of the real part and the imaginary part of the AC impedance between the electrodes of each concrete specimen were measured. The frequency was swept from 0.1 Hz to 10 MHz. The value of the AC impedance at each water content / salt concentration was plotted for each frequency to create a characteristic information database.
  • a concrete specimen having a known water content and a chloride ion content shown in Table 2 was prepared, and the electrode after the complex corrosion resistance test of Comparative Example 1 was prepared on the surface of the concrete specimen in the same manner as in the creation of the above database. Glued on. Measurement was made possible by connecting two pairs of electrodes that were bonded to the surface of the same concrete specimen to the LCR meter. The water content of the concrete specimen was measured in advance using a moisture meter (HI-520-2 manufactured by KETT). For the quantitative evaluation of chloride ion concentration, the frequency characteristics of the real part and the imaginary part of the AC impedance between the two pairs of electrodes are measured, and the measured water content and AC impedance value are applied to the characteristic information database by the calibration curve method. The chloride ion content was calculated. The frequency was swept from 0.1 Hz to 10 MHz. The impedance of the prepared specimen was measured, and when the chloride concentration could be quantified, it was marked with ⁇ , and the others were marked with x.
  • Example 2 to 14 In the same manner as in Example 1, Examples 2 to 14 were prepared and measured. The results are shown in Table 2.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

長期的なモニタリングが可能な塩化物イオンセンサ、及び塩化物イオン濃度計測方法を提供すること。コンクリート構造物中の塩化物イオン濃度を計測するセンサであって、前記コンクリート構造物の表面に相互に間隔を隔てて配置される少なくとも一対の電極と、前記少なくとも一対の電極の間に交流電流を流した状態におけるインピーダンスを測定する測定部とを備え、前記少なくとも一対の電極が、導電性フィラーが分散されたホットメルト樹脂を含むホットメルト電極を有する、塩化物イオンセンサ。

Description

塩化物イオンセンサ、及び塩化物イオン濃度計測方法
 本発明は、コンクリート構造物中の塩化物イオンを検出する塩化物イオンセンサ、及び、塩化物イオン濃度計測方法に関する。
 コンクリート構造物中に配設される鉄筋等の金属は、周囲の環境によっては劣化が促進することがある。例えば、塩化物イオン濃度の高い環境下では、当該金属の腐食が促進されやすいことが知られている。そのため、コンクリート構造物中の塩化物イオン濃度を非破壊で測定する方法が検討されている。
 コンクリート構造物中の塩化物イオン濃度の測定方法の一つとして、導電方式が知られている。導電方式は、概説すると、対象となるコンクリート構造物に交流電流を流した状態で、当該コンクリート構造物のインピーダンスと、当該インピーダンスの位相角ピーク周波数などを測定し、当該コンクリート構造物の水分率などの情報と組み合わせて、塩化物イオン濃度を算出する方法である。
 上記導電方式に用いられる、様々な測定装置、測定システムが提案されている。
 例えば特許文献1には、コンクリート体の特性に関する情報を格納する特性情報格納手段と、コンクリート体の表面に相互に間隔を隔てて配置された一対の電極と、前記一対の電極の相互間に前記コンクリート体を介して交流電流を流した状態におけるインピーダンス又はピーク周波数を測定する測定手段とを備え、前記測定手段を用いて測定されたインピーダンス等の測定値に基づき、前記特性情報を参照して塩分濃度を特定する、コンクリート体の塩分濃度測定システムが開示されている。上記特性情報としては、例えば、インピーダンスと、当該インピーダンスのピーク周波数と、水分率と、塩分濃度とを、相互に対応付ける特性情報等が含まれている。特許文献1によれば、上記システムにより、コンクリート体の塩分濃度を、測定対象となる建築物に出向いて簡易かつリアルタイムに測定することができるとされている。
 また特許文献2には、コンクリート体の表面に相互に間隔を隔てて配置された一対の電極と、前記一対の電極の相互間に前記コンクリート体を介して交流電流を流した状態におけるインピーダンスと、当該インピーダンスの位相角がピークになる位相角ピーク周波数とを測定する測定手段と、前記コンクリート体の水分率、又は前記コンクリート体が配置された環境の水蒸気量を取得する水分情報取得手段と、前記測定手段にて測定された前記インピーダンスと前記位相角ピーク周波数と、前記水分情報取得手段にて取得された複数の前記水分率又は複数の前記水蒸気量に基づいて、前記コンクリート体の塩化物濃度を評価するための評価値を算出する算出手段と、前記算出手段にて算出された前記評価値に基づいて、前記コンクリート体の塩化物濃度を特定する特定手段とを備えた、コンクリート体の塩化物濃度測定システムが開示されている。特許文献2によれば、水蒸気量等の外的要因の影響を受けやすいインピーダンスや位相角ピーク周波数について、当該外的要因の影響を考慮することにより、コンクリート体の塩化物濃度を正確に測定することが可能となるとされている。
 なお、特許文献1及び2のシステムにおいては、上記電極として真鍮が用いられている。
特開2012-184948号公報 特許第6338238号
 コンクリート構造物中に配設される鉄筋等の金属の状態を推定するためには、塩化物イオン濃度の長期的なモニタリングが必要である。本発明者らは、塩化物イオンセンサをコンクリート構造物に設置して、定点で長期的にモニタリングすることを検討した。しかしながら、コンクリート構造物表面に配置される電極は、コンクリート中の塩化物イオンにより劣化しやすいという問題があった。
 本発明は、このような実情に鑑みてなされたものであり、長期的なモニタリングが可能な塩化物イオンセンサ、及び塩化物イオン濃度計測方法を提供することを目的とする。
 本発明者らは耐候性に優れ、コンクリート表面への接着性にも優れた電極を用いることにより、上記課題を解決できるとの知見を得て本発明を完成させた。
 即ち、本実施の塩化物イオンセンサは、コンクリート構造物中の塩化物イオン濃度を計測するセンサであって、
 前記コンクリート構造物の表面に相互に間隔を隔てて配置される少なくとも一対の電極と、
 前記少なくとも一対の電極の間に交流電流を流した状態におけるインピーダンスを測定する測定部とを備え、
 前記少なくとも一対の電極が、導電性フィラーが分散されたホットメルト樹脂を含むホットメルト電極を有する。
 上記塩化物イオンセンサの一実施形態は、前記導電性フィラーが、銀または導電性カーボンである。
 上記塩化物イオンセンサの一実施形態は、前記ホットメルト樹脂が、熱可塑性エラストマーを含む。
 上記塩化物イオンセンサの一実施形態は、前記電極が、前記ホットメルト電極上に、導電層を有する。
上記塩化物イオンセンサの一実施形態は、
 上記塩化物イオンセンサの一実施形態は、前記電極上に、更に基材を有する。
 上記塩化物イオンセンサの一実施形態は、前記電極が、シート化されている。
 上記塩化物イオンセンサの一実施形態は、前記電極を複数有し、当該複数ある電極が、シート状の基材にパターン状に配置されている。
 上記塩化物イオンセンサの一実施形態は前記電極と前記測定部とが導電性配線で接続され、前記導電性配線の少なくとも一部が、前記基材の少なくとも一方の面に形成されたパターン配線である。
 上記塩化物イオンセンサの一実施形態は、検出されたインピーダンスに基づく情報の無線送信を行う無線送信部をさらに備える。
 上記塩化物イオンセンサの一実施形態は、前記無線送信部が、更に電力を供給するバッテリを備える。
 本実施の塩化物イオン濃度計測方法は、コンクリート構造物中の塩化物イオン濃度を計測する計測方法であって、
 前記塩化物イオンセンサを準備する準備工程と、
 前記塩化物イオンセンサが備える少なくとも一対の電極を、前記コンクリート構造物の表面にそれぞれ接着する接着工程と、
 前記少なくとも一対の電極間にコンクリート体を介して交流電流を流した状態におけるインピーダンスを測定する測定工程とを有し、
 前記接着工程が、前記ホットメルト電極を加熱溶融することによって、コンクリート構造物に接着する工程を含む。
 上記塩化物イオン濃度計測方法の一実施形態は、更に、測定されたインピーダンスから塩化物イオン濃度を算出する算出工程とを有し、
 前記算出工程が、少なくとも前記インピーダンスの測定工程により得られた測定されたインピーダンスに基づいて、塩化物イオン濃度を算出する。
 上記塩化物イオン濃度計測方法の一実施形態は、前記準備工程が、請求項7または8に記載の塩化物イオンセンサを準備する準備工程であり、
 前記インピーダンスの測定工程により得られた測定されたインピーダンスに基づく情報の無線送信を行う工程を更に有する。
 本発明によれば、長期的なモニタリングが可能な塩化物イオンセンサ、及び塩化物イオン濃度計測方法を提供することができる。
第1実施形態の塩化物イオンセンサの概略図である。 塩化物イオンセンサの設置例を示す概略図である。 第2実施形態の塩化物イオンセンサの概略図である。 第3実施形態の塩化物イオンセンサの概略図である。 演算部の一例を示すブロック図である。 塩化物イオン濃度計測方法の一例を示すフローチャートである。 電極1aの一例を示す、概略的な断面図である。 電極1aの別の一例を示す、概略的な断面図である。 第4実施形態における、配線パターンを備える電極シートの概略的な正面図である。 図9Aの側面図である。
[塩化物イオンセンサ]
 本実施の塩化物イオンセンサは、
 前記コンクリート構造物の表面に相互に間隔を隔てて配置される少なくとも一対の電極と、
 前記少なくとも一対の電極の間に交流電流を流した状態におけるインピーダンスを測定する測定部とを備え、
 前記少なくとも一対の電極が、導電性フィラーが分散されたホットメルト樹脂を含むホットメルト電極を有する。
 本実施の塩化物イオンセンサは、上記のような構成とすることにより、長期的(例えば3ヶ月以上)にコンクリート構造物への設置が可能であり、長期的にモニタリング可能な塩化物イオンセンサとすることができる。
 本実施の塩化物イオンセンサは、少なくとも一対の電極により、測定対象となるコンクリート構造物に交流電流を流した状態でインピーダンスを測定するものである。塩化物イオン濃度は、予め準備された、インピーダンスと、水分率と、塩化物イオン濃度との関係を含むコンクリートの特性情報データベース(以下、特性情報DBとすることがある)を参照し、測定されたインピーダンスから算出するものである。
 以下、このような本実施の塩化物イオンセンサに関し、まず電極について説明し、次いで各実施形態について図面を参照して説明する。
 なお、本実施において周波数とは、インピーダンスに対応する周波数であって、具体的には、インピーダンス測定時にコンクリート構造物に流した交流電流の周波数である。ピーク周波数とは、インピーダンスの位相角がピークになる周波数をいう。水分率とは、コンクリート構造物の表面から所定深さ(例えば20mm)までの範囲における単位体積当たりの水分量を意味する。また、水蒸気量とは、コンクリート構造物が配置された環境における水蒸気量を意味し、蒸気圧曲線を参照して湿度と温度から算出することができる。
<電極>
 本実施の塩化物イオンセンサにおいて用いられる電極は、少なくとも導電性フィラーが分散されたホットメルト樹脂を含むホットメルト電極を有するものであり、必要に応じて、導電層など、更に他の構成を有していてもよいものである。以下このような電極の各構成について説明する。
(ホットメルト電極)
 本実施において、ホットメルト電極は、前記コンクリート構造物の表面に配置されて用いられるものである。
 本実施においてホットメルト電極は、加熱により溶融し、コンクリート構造物の表面に貼り付けた後、冷却して固化するものである。そのため、コンクリート構造物表面に密着して安定して保持される。また、ホットメルト電極は、コンクリート構造物表面の空隙を充填するため、接触抵抗が抑制される。また、導電性フィラーはホットメルト樹脂中に分散されているため、電極から解離してコンクリート構造物に浸透することなく電極中に保持される。そのため、本実施のホットメルト電極は、コンクリート構造物表面での状態変化が小さく、安定して電圧を測定することが可能である。そのため、当該電極を用いることにより長期的なモニタリングが可能な塩化物イオンセンサを得ることができる。
 本実施のホットメルト電極は、少なくともホットメルト樹脂と、導電性フィラーとを含有するものであり、必要に応じて更に他の成分を含有してもよいものである。以下、このようなホットメルト電極に含まれる各成分について説明する。
(1)ホットメルト樹脂
 本実施においてホットメルト樹脂は、電極をコンクリート構造物の表面に設置する際に加熱溶融可能な樹脂を含むものであり、このような樹脂として公知の熱可塑性樹脂を用いることができる。
 熱可塑性樹脂としては、例えば、ポリウレタン系樹脂、アクリロニトリル系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリビニルブチラール系樹脂、ポリエステル系樹脂、スチレン系樹脂、シリコン系樹脂や、熱可塑性エラストマーが挙げられ、1種単独で又は2種以上を組み合わせて用いることができる。
 本実施においてはホットメルト樹脂として、熱可塑性エラストマーを含むことが好ましい。熱可塑性エラストマーを含むことにより、常温(例えば、25℃)においてゴム弾性を有する電極とすることができる。ゴム弾性を有することにより、電極の破断が抑制されて、より長期的なモニタリングが可能な塩化物イオンセンサを得ることができる。当該熱可塑性エラストマーの常温における弾性率は、例えば、0.1~100MPaとすることができる。
 熱可塑性エラストマーとしては、例えば、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレン・ブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレン・プロピレン-スチレンブロック共重合体(SEPS)等のスチレン系熱可塑性エラストマー;ウレタン系熱可塑性エラストマー(TPU);オレフィン系熱可塑性エラストマー(TPO);ポリエステル系熱可塑性エラストマー(TPEE);ポリアミド系熱可塑性エラストマー;フッ素系熱可塑性エラストマー;塩ビ系熱可塑性エラストマー等が挙げられ、1種単独で又は2種以上を組み合わせて用いることができる。また、上記熱可塑性エラストマーは、水素添加されたものであってもよい。
 本実施においては、熱可塑性エラストマーの中でも、スチレン系熱可塑性エラストマーを含むことが好ましい。
 本実施においてホットメルト樹脂の重量平均分子量は、取り扱い性の点から、5,000以上1,000,000以下が好ましく、10,000以上800,000以下がより好ましい。
 なお本実施において、重量平均分子量は、東ソー社製GPC(ゲル浸透クロマトグラフィー)「HLC-8320」を用いた測定におけるポリスチレン換算分子量である。
 ホットメルト樹脂の含有割合は、導電性と接着性の点から、ホットメルト電極全量100質量%中、40~98質量%が好ましく、60~95質量%がより好ましい。
(2)導電性フィラー
 本実施において、導電性フィラーは、ホットメルト樹脂中に分散されて用いられ、電極の導電性を確保するものである。導電性フィラーは、公知のものの中から適宜選択できる。導電性フィラーの形状は、ホットメルト樹脂中で分散され得る粒子状ものであればよく、フレーク状(鱗片状)、球状、針状、繊維状、樹枝状など任意の形状とすることができる。導電性フィラーの含有比率を減らしながら導電性を確保する点からは、フレーク状の導電性フィラーを用いることが好ましい。
 導電性フィラーの材質としては、例えば、銀、金、銅、亜鉛、酸化亜鉛、マンガン、ニッケル、アルミニウムなどの金属;酸化スズドープ酸化インジウム(ITO)、酸化スズドープ酸化インジウム(FTO)、酸化スズ(IO)、ネオジム・バリウム・インジウム酸化物などの金属酸化物;ポリピロール系、ポリチオフェン系、ポリアニリン系、オリゴチオフェン系等の有機物;カーボンブラック、黒鉛、グラフェン、グラファイト、カーボンナノチューブ、カーボンファイバー、フラーレン、酸化グラフェン、アセチレンブラックなどの導電性カーボンのほか、アルミナ、ガラスなどの無機絶縁体やポリエチレンやポリスチレンなどの高分子の表面を導電性材料でコーティングしたもの等が挙げられる。本実施において導電性フィラーは1種単独で、又は2種以上を組み合わせて用いることができる。
 本実施においては、中でも、導電性フィラーが銀または導電性カーボンであることが好ましく、導電性カーボンであることがより好ましい。更に、導電性カーボンとしては、中でも、グラファイト、カーボンファイバー、カーボンブラック、カーボンナノチューブ、グラフェン、又は酸化グラフェンが好ましい。
 銀及び導電性カーボンは導電性に優れ、また、耐熱性、耐水性、耐酸性など各種耐性に優れているため、長期信頼性に優れた電極となる。また、銀または導電性カーボンを用いたホットメルト電極は、当該銀または導電性カーボンが安定して存在し、長期的なモニタリングが可能であるため、照合電極を用いることなく電圧の変化を捉えることができる。そのため、本実施の電極は照合電極を有しない構成であっても、腐食センサを実現することができる。
 導電性フィラーの含有割合は、導電性と接着性の点から、ホットメルト電極100質量%中、2~60質量%が好ましく、5~40質量%がより好ましい。
 ホットメルト電極の厚みは特に限定されないが、例えば、50~2000μmであり、100~1500μmが好ましい。
(3)その他の成分
 本実施のホットメルト電極は、効果を損なわない範囲で、他の成分を含有してもよい。好適な他の成分として、粘着付与剤、可塑剤などが挙げられる。粘着付与剤又は可塑剤を含むホットメルト電極は、粘着性が付与されるため、コンクリート表面への仮止めが可能になり接着時の施工が容易になる。粘着付与剤及び可塑剤は、公知のものの中から適宜選択して各々1種単独で又は2種以上を組合せて用いることができる。また、粘着付与剤及び可塑剤は、一方のみを用いてもよく、併用してもよい。
 ホットメルト電極が粘着付与剤又は可塑剤を含有する場合、その合計の含有割合は、ホットメルト電極全量100質量%中、0.5質量%以上40質量%以下が好ましく、1質量%以上20質量%以下がより好ましい。
 また、本実施のホットメルト電極は、更に他の成分として、例えば、シランカップリング剤、チタネートカップリング剤、柔軟性付与剤、難燃化剤、保存安定剤、酸化防止剤、金属不活性化剤、紫外線吸収剤、チキソトロピー付与剤、レベリング剤、消泡剤、分散安定剤、流動性付与剤、消泡剤、ブロッキング防止剤、難燃剤、色材等を含有してもよい。ホットメルト電極がこれらの成分を含有する場合、その含有割合は、ホットメルト電極全量100質量%中、5質量%以下が好ましく、3質量%以下がより好ましい。
(他の構成)
 本実施において電極は、前記ホットメルト電極のみを有する構成であってもよく、必要に応じて、導電層など、更に他の構成を有していてもよい。
 導電層は、ホットメルト電極のコンクリート構造物の表面に配置される面とは反対側の面に設けられるものである。当該導電層は、コンクリート構造物の表面とは直接接触しないため、コンクリート構造物中の塩化物イオンによる腐食の影響が抑制される。そのため、当該導電層は任意の構成とすることができる。導電層としては、例えば、銀・塩化銀電極層、カーボンフレークを含有する銀・塩化銀電極層や、金属箔などの導電性の箔などが挙げられる。
 また、電極上に更に基材を有していてもよい。基材は、通常、ホットメルト電極のコンクリート構造物の表面に配置される面とは反対側の面に配置され、前記導電層を有する場合には、当該導電層上に配置される。基材は電極製造時における取り扱い性を向上するほか、電極使用時においてホットメルト電極及び導電層の保護膜としての機能を有する。
 本実施において、基材は限定されず、例えば各種樹脂フィルムの中から適宜選択することができる。基材の材質としては、例えば、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリスチレン、ポリイミド、ポリアミド、ポリエーテルスルホン、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー、ABS(アクリロニトリル-ブタジエン-スチレン共重合樹脂)、AES(アクリロニトリルーエチレンースチレン共重合樹脂)、カイダック(アクリル変性塩ビ樹脂)、変性ポリフェニレンエーテル、及びこれら樹脂の2種以上からなるポリマーアロイ等のフィルムや、これらの積層フィルムなどが挙げられる。基材は透明であっても不透明であってもよい。基材はコンクリート表面の凹凸に追従しやすい点から可撓性を有することが好ましい。
(電極の製造方法)
 本実施に電極の製造方法について、以下に一例を示す。
 電極の製造方法の一例として、まず、前記ホットメルト樹脂と、前記導電性フィラーと、必要に応じて用いられる他の成分とを混合して混合物とする。当該混合物は、均一に分散するためにホットメルト樹脂を溶解する溶剤を含有してもよい。
 次いで、前記混合物を公知の分散機により分散して分散体とする。分散機としては、例えば、2本ロール、3本ロール等のロールミル、ボールミル、振動ボールミル等のボールミル、ペイントコンディショナー、連続ディスク型ビーズミル、連続アニュラー型ビーズミル等のビーズミルが挙げられる。
 次いで、得られた分散体を基材上に塗布する。塗布方法は、ホットメルト電極の厚みや材質等に応じて適宜選択すればよい。例えば、インクジェット法、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、反転印刷法、ホットメルトアプリケーター、ホットメルトコーター、スリットコーター、ホットメルトロールコーター等の方法が挙げられる。得られた塗膜を必要に応じて乾燥することにより、ホットメルト電極を得ることができる。
 基材が不要な場合は、剥離性の基材を用いて上記と同様の塗膜を形成した後に、基材を剥離してもよい。また、電極が導電層を有する場合には、基材上に導電層を形成した後導電層上に、前記ホットメルト電極用の分散体を塗布して、ホットメルト電極を形成すればよい。
 上記の方法により形成された電極はシート化されている。また、上記の方法によりホットメルト電極をパターン状に印刷することにより、1つのシート状の基材に複数の電極をパターン状に配置することができる。複数の電極をパターン状に配置することにより、対となる電極の間隔の調整が不要となる。また、1つのシート状基材に複数の電極を配置することにより、コンクリート構造物に複数の塩化物イオンセンサを配置する場合も、設置が容易となる。
<塩化物イオンセンサの実施形態>
 以下、本発明に係る塩化物イオンセンサの実施形態について、図面を参照して説明する。
(第1実施形態)
 図1は、本実施の塩化物イオンセンサの第1実施形態を示す概略図である。図1の例に示す塩化物イオンセンサ10は、コンクリート構造物100の表面に相互に間隔を隔てて配置される一対の電極1a及び1bと、インピーダンスを測定する測定部2とを備え、前記一対の電極1a及び1bが各々ホットメルト電極を有している。
 電極1aと電極1bの間隔は、コンクリート構造物100に交流電流を流した状態で、インピーダンスが測定可能な範囲で任意の間隔であり、例えば、1~100mmの範囲である。傾向として、一対の電極1a及び1bの間隔を広げる程、コンクリート構造物の深い部分測定することが可能になるため、コンクリート構造物100の測定しようとする深さに応じて調整することができる。
 ここで図7及び図8を参照して、電極の構成を説明する。図7は電極1aの一例を示す、概略的な断面図である。図7に示される電極1aは、ホットメルト電極4上に、導電層5と基材6とがこの順に積層した積層体が用いられているが、電極1aの構成は前述の通り、少なくともホットメルト電極4を備えればよいものである。
 また図8の例では、コンクリート構造物100の表面上に配置された電極1aが、保護部7で被覆されている。このような構成とすることにより、ホットメルト電極4を含む電極1aと、外部の水分や塩分との接触を抑制できるため、より長期信頼性に優れた塩化物イオンセンサとなる。保護部7は、図8の例に示されるように基材6を含む電極1a全体を封止するものであってよい。また保護部7は、少なくとも電極1aの周縁部に配置され、基材6との組合せにより電極1aを保護してもよい。保護部7は、公知の樹脂を用いることができる。なお、ホットメルト電極4、導電層5及び基材6の詳細は前述の通りであるのでここでの説明は省略する。
 測定部2は、少なくとも一対の電極1a及び1bの相互間にコンクリート構造物100を介して交流電流を流し、当該交流電流を流した状態におけるインピーダンス、更に必要に応じて周波数や、ピーク周波数を測定する。測定部2としては、公知のインピーダンスメータ(LCRメータ)を用いることができる。また、測定部2は、発振器や電流計等を組み合わせて構成してもよい。
 インピーダンスメータは、少なくとも一対の電極1a及び1bの相互間にコンクリート構造物100を介して交流電流を流した状態におけるインピーダンス又はピーク周波数を測定する測定手段である。このインピーダンスメータの測定原理は任意であるが、例えば、ブリッジ法や共振法など公知の方法によってインピーダンスを測定できる。2端子法のインピーダンスメータでは、一対の電極(2つの電極)を使用する。また、4端子法のインピーダンスメータでは、二対の電極(4つの電極)を使用する。
 測定部2は、通常、演算部50と接続されて、塩化物イオンセンサシステムを構成してもよい。図1の例では、測定部2と演算部50とは、配線21により接続されている。測定部2で測定されたインピーダンス等は、演算部50に入力され、当該演算部50により塩化物イオン濃度が算出される。演算部50については後述する。
 本実施形態において測定対象となるコンクリート構造物100は特に限定されない。測定対象となるコンクリート構造物100は、通常、塩化物イオンと水分を含有し、更に内部に鉄筋を有している。当該コンクリート構造物100の構造は任意であり、平坦面であっても曲面であってもよく、凹凸等を有していてもよい。本実施の塩化物イオンセンサ10の電極1a及び1bはホットメルト電極を有するため、任意の形状に追従して密着することができる。コンクリート構造物100の具体例としては、トンネルや、橋梁、橋脚、ダム、その他建築物の少なくとも一部を構成するコンクリート構造物等が挙げられる。
 図2に、本実施の塩化物イオンセンサ10を、トンネルの内壁101に配置した例を示す。本実施の塩化物イオンセンサ10は、トンネルの内壁101に1個単独で配置してもよく、図2の例に示されるように2個以上が連結されたものであってもよい。連結した塩化物イオンセンサ20は、例えば、シート状の基材31にパターン状に配置された電極に複数の測定部2を設けることにより製造することができる。連結した塩化物イオンセンサ20を用いることにより、各塩化物イオンセンサ10を予め設定した所定の間隔で設置することが容易となる。
 また、図2の例に示されるように、連結した塩化物イオンセンサ20は、配線22を共有してもよい。配線22は、例えば、測定部2と演算部50とを接続する配線、測定部2と後述する無線送信部3とを接続する配線、各塩化物イオンセンサ10と外部電源(不図示)とを接続する配線等が挙げられる。連結した塩化物イオンセンサ20が配線22を共有する場合、更に演算部50や無線送信部3を共有してもよい。
 更に、図2の例に示されるように、連結した塩化物イオンセンサ20をトンネル内に所定の間隔で複数設けることもできる。連結した塩化物イオンセンサ20を複数設けることにより、トンネル全体にわたる塩化物イオン濃度をマッピングすることができる。
 図2の例に示されるように複数の連結した塩化物イオンセンサ20は、配線23を共有してもよい。配線23は、前記配線22と同様、例えば、測定部2と演算部50とを接続する配線、測定部2と後述する無線送信部3とを接続する配線、各塩化物イオンセンサ10と外部電源(不図示)とを接続する配線等が挙げられる。複数ある連結した塩化物イオンセンサ20は、更に演算部50や無線送信部3を共有してもよい。
 図5に演算部50の一例を示す。図5の例で演算部50は、入力部51、出力部52、記憶部53、算出部54及び制御部55を備える。演算部50として、例えば公知のパーソナルコンピュータ、PDA、タブレット端末等を用いることができる。
 入力部51は、本実施の形態に係る測定方法を実行するために必要な各種の情報の入力を受け付けるための入力手段であり、少なくとも測定部2に接続される端子を有していればよく、必要に応じて、キーボード、タッチパネル、後述する水分率計61に接続される端子や、各種のスイッチ類などを備えていてもよい。
 出力部52は、本実施の形態に係る測定方法を実行するために必要な各種の情報を出力する出力手段であり、例えば、モニタ等として構成されている。
 記憶部53は、演算部50の処理に必要な各種の情報を記憶する記憶手段であり、例えばハードディスクやその他の記録媒体によって構成される。本実施においては、特性情報DB40を備える。当該特性情報DB40は、コンクリート構造物100の、インピーダンスと、当該インピーダンスに対応する周波数と、水分率と、塩化物イオン濃度との相互関係を特定する特性情報、又は、インピーダンスの位相角がピークになるピーク周波数と、水分率と、塩化物イオン濃度との相互関係を特定する特性情報を含んでいる。当該特性情報は、例えば、予め、水分率及び塩分濃度が既知であるコンクリート構造物100のインピーダンス及び周波数、又は、インピーダンスの位相角がピークになるピーク周波数を測定することにより取得できる。また、例えば、特開2012-184948号公報、特許第6338238号など、公知の文献から取得してもよい。
 特性情報DB40は、全てを生データとして格納する必要はなく、一部の生データのみを格納すると共に必要に応じて他のデータを補間により生成してもよい。例えば、周波数とインピーダンスとの関係を示すデータを格納する場合、複数の断続的な周波数に対応するインピーダンスのみを生データとして格納しておき、これら複数の周波数の間の周波数に対応するインピーダンスについては、生データに基づいて補間により生成してもよい。
 算出部54は、測定部2を用いて測定されたインピーダンスと当該インピーダンスに対応する周波数、又は、インピーダンスの位相角がピークになるピーク周波数に基づいて、前記特性情報DB40に格納された特性情報を参照することにより、コンクリート構造体100の水分率と塩化物イオン濃度を算出する。当該算出部54は、具体的には、CPU、当該CPU上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及びプログラムや各種のデータを格納するためのRAMの如き内部メモリを備えて構成されている。特に、本実施の形態に係る塩化物イオン濃度算出プログラムは、読み取り可能な記録媒体に格納され、当該記録媒体から演算装置5にインストールされることで、算出部54を実質的に構成する。
 また、制御部55は、演算部50を構成する各部を制御すると共に、測定部2の測定開始、測定終了等の制御を行う。制御部55は、算出部54と同様、CPU、当該CPU上で解釈実行される各種のプログラム及びプログラムや各種のデータを格納するためのRAMの如き内部メモリを備えて構成される。
(第2実施形態)
 図3は、本実施の塩化物イオンセンサの第2実施形態を示す概略図である。図3の例に示す塩化物イオンセンサ10は、無線送信部3を備え、当該無線送信部3と測定部2とが接続されている点で第1実施形態と相違する。
 無線送信部3は、測定部2で測定されたインピーダンス等の情報を、演算部50に無線で送信する。送信される信号は、特に限定されず、アナログ方式でも、デジタル方式でも、どちらの方式でもよい。また、送信形態は光、電波、電磁波等どのような通信形態でもよい。
 図2の例のように塩化物イオンセンサ10が複数ある場合、どの塩化物イオンセンサ10からの情報かを識別できるように、各無線送信部3は、塩化物イオンセンサ10の識別情報を、インピーダンスの情報と併せて演算部50に送る。
 無線送信部3は、電力を供給するバッテリ(不図示)を備えてもよい。バッテリは、少なくとも無線送信部3に必要な電力を供給する。また必要に応じて、バッテリから測定部2へ電力を供給してもよい。バッテリによって無線送信部3及び測定部2に必要な電力を供給することにより、塩化物イオンセンサ10は外部への配線(例えば、図2の配線22及び配線23)が不要となり、シンプルな構成となる。その結果、コンクリート構造物100の任意の場所に設置することができる。
(第3実施形態)
 図4は、本実施の塩化物イオンセンサの第3実施形態を示す概略図である。第3実施形態では、前記第1実施形態の塩化物イオンセンサ10とは別に、水分率計61が備えられており、当該水分率計61は演算部50と接続されている。水分率計61は、コンクリート構造物100の水分率を取得する。第1実施形態は、インピーダンス等の測定値から、水分率と、塩化物イオン濃度を算出するものであった。これに対し、本実施形態は、水分率を測定値とすることにより、塩化物イオン濃度の算出精度が向上する。
 水分率計61は、コンクリート構造物100の水分率を取得する水分情報取得手段である。この水分率計61は公知の方法の中から適宜選択でき、例えば、赤外線の反射によって光学的に水分検出を行う方法や、コンクリートの水分による誘電率(高周波容量)の変化を検出し、当該検出結果に基づいて水分を測定する方法等が挙げられる。
(第4実施形態)
 図9は、本実施の塩化物イオンセンサの第4実施形態を示す概略図である。本実施形態では、インピーダンス検出部2と電極4との間の配線(導線8)の少なくとも一部が、電極4を備える基材6上に形成されたパターン配線8aにより構成されている。即ち、本実施形態では、基材6上にパターン配線8aと一対の電極4とを備えたパターン配線付電極シート200を用いる。パターン配線8aと電極4は同一面に形成してもよく、また、電極4とは反対側の面にパターン配線8aを形成して、基材の開口部を通じて結線してもよい。
 パターン配線8aの形成方法は、例えば、基材6上の電極4と、基材6の端部等に配置されたインピーダンス検出部2と接続する端子との間を、導電材を含むインキを印刷してパターニングする方法や、
 フレキシブル回路のように、基材6上に蒸着、金属箔のラミネートやメッキ等により導電性金属を積層し、エッチングでパターンを形成し、次いで用いる電極4を形成し、インピーダンス検出部2の配線と結線する方法が挙げられる。
 配線パターン8aと電極4との間の接合部分は、接触抵抗が小さければそのまま印刷により結線できる。また、接触抵抗が大きい場合は銀ペーストや金属フィラーによる導電性接着剤等により結線してもよい。配線パターン8a上には更に当該配線パターンを封止する保護部7を有してもよく、また、耐候性のある基材と粘着剤を積層したラミネートフィルムによって全体または部分的にラミネートしてもよい。
 電極4と同一面にパターン配線8aを印刷する場合は、配線の端部で電極を形成し、電極を部分的あるいは全体を露出させて加熱溶融してコンクリート構造物100の表面上に設置できる。パターン配線付電極シートの電極4の反対面にパターン配線8aを印刷する場合は電圧検出部または電極部の基材にスルーホールを設けその中に導電インキ、導電性の接着剤、あるいはホットメルト電極を埋め込むことで接合することもできる。その場合もパターン配線8a上に保護部7を有してもよく、耐候性のある基材と粘着剤を積層したラミネートフィルムによって全体または部分的にラミネートしてもよい。
 本実施においては、印刷配線は容易に形成可能で、フレキシブル性にも優れる点から、好ましい。印刷配線に用いられる導電性インキは、少なくとも導電性微粒子を含有するものであり、必要に応じてバインダー成分や、溶剤などの他の成分を含有してもよいものである。
 前記導電性微粒子は、形成された導電性配線内で、焼結して焼結体となるものであってもよいが、複数の導電性微粒子が接触して導電性を発現するものが好ましい。
 導電性微粒子としては、金属微粒子、カーボン微粒子、導電性酸化物微粒子などが挙げられる。
 金属微粒子としては、例えば、金、銀、銅、ニッケル、クロム、パラジウム、ロジウム、ルテニウム、インジウム、アルミニウム、タングステン、モルブテン、白金等の金属単体粉のほか、銅-ニッケル合金、銀-パラジウム合金、銅-スズ合金、銀-銅合金、銅-マンガン合金などの合金粉、前記金属単体粉または合金粉の表面を、銀などで被覆した金属コート粉などが挙げられる。また、カーボン微粒子としては、カーボンブラック、グラファイト、カーボンナノチューブなどが挙げられる。また、導電性酸化物微粒子としては、酸化銀、酸化インジウム、酸化スズ、酸化亜鉛、酸化ルテニウムなどが挙げられる。導電性微粒子は1種単独でまたは2種以上を組み合わせて用いることができる。
 本実施においては、導電性配線の長期信頼性の点から、耐水性、耐酸性などの耐候性に優れたカーボン微粒子を用いることが好ましい。
 導電性微粒子の形状は特に限定されず、不定形、凝集状、鱗片状、微結晶状、球状、フレーク状、ワイヤー状等を適宜用いることができる。また、導電性微粒子の平均粒子径は、特に限定されないが、導電性インキ中での分散性や、配線後の導電性の点から、0.1μm以上50μm以下が好ましく、0.5μm以上30μm以下がより好ましい。
 導電性インキは、バインダー成分を含有することが好ましい。バインダー成分としては、成膜性及び、成膜後の密着性、柔軟性などの点から樹脂を含むことが好ましい。前記樹脂は、導電性配線用途に用いられる樹脂の中から適宜選択して用いることができる。当該樹脂としては、例えば、アクリル系樹脂、ビニルエーテル樹脂、ポリエーテル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、エポキシ樹脂、フェノキシ系樹脂、ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、ポリオレフィン樹脂、スチレン系ブロック共重合樹脂、ポリアミド系樹脂、ポリイミド系樹脂などが挙げられ、1種単独で、又は2種以上を組み合わせて用いることができる。
 パターン配線8a中の導電性微粒子の含有割合は、パターン配線8a全量に対し、50質量%以上95質量%以下が好ましく、60質量%以上90質量%以下がより好ましい。また、パターン配線8a中のバインダー成分の含有割合は、パターン配線8a全量に対し、5質量%以上50質量%以下が好ましく、10質量%以上40質量%以下がより好ましい。
 導電性微粒子の含有割合が上記下限値以上であれば、導電性に優れた導電性配線となる。また、バインダー成分の含有割合が上記下限値以上であれば、成膜性や、基材6への密着性が向上し、導電性配線付き電極シートの導電性配線に柔軟性を付与することができる。
 パターン配線付電極シート200のパターン配線8aは、例えば、前記導電性微粒子と前記バインダー成分と、必要に応じて溶剤等を含有する導電性インキを調製した後、当該導電性インキを、基材上に印刷し、必要に応じて溶剤を除去することにより形成することができる。
 溶剤は、印刷方法に応じて適宜選択すればよい。また印刷方法は、導電性インキの組成や、パターン配線の膜厚に応じて、例えば、グラビア印刷法、スクリーン印刷法、フレキソ印刷、インクジェット法など公知の印刷技術の中から適宜選択すればよい。
 パターン配線付電極シート200のパターン配線8aの厚みは特に限定されず、導電性と柔軟性を両立する点から、例えば、1μm以上500μm以下とすることができ、10μm以上300μm以下が好ましい。また、印刷型センサシートの導電性配線の幅は、限定されず、必要な導電性が得られる幅とすればよい。例えば、0.1mm以上とすることができ、1mm~100mmが好ましい。なお、複数ある導電性配線は同一の厚みや幅であってもよく、互いに異なる厚みや幅を有していてもよい。
<パターン配線付電極シートの保護部(保護層)>
 パターン配線付電極シートの保護部7は、少なくとも前記パターン配線8a上に設けられる層であり、前記パターン配線8aの傷つきや、水、酸素、酸やアルカリ等との接触を抑制し、長期信頼性を向上する。保護部7は、例えば、前記導電性配線付き電極シートのシート基材と同様のシートを貼り合せることにより保護層として形成することができる。
[塩化物イオン濃度計測方法]
 本実施の塩化物イオン濃度計測方法は、
 コンクリート構造物中の塩化物イオン濃度を計測する計測方法であって、
 前記塩化物イオンセンサを準備する準備工程と、
 前記塩化物イオンセンサが備える一対の電極を、前記コンクリート構造物の表面にそれぞれ接着する接着工程と、
 前記一対の電極間にコンクリート体を介して交流電流を流した状態におけるインピーダンスを測定する測定工程とを有し、
 前記接着工程が、前記ホットメルト電極を加熱溶融することによって、コンクリート構造物に接着する工程を含む。
 以下、本発明の腐食検出方法の実施形態について、図6を参照して説明する。図6は、塩化物イオン濃度計測方法の一例を示すフローチャートである。
 まず、塩化物イオンセンサ10を準備する(S1:準備工程)。次に、一対の電極1a及び1bと、コンクリート構造物100の表面とを、ホットメルト電極を介して電気的に接触させる(S3:接着工程)。次いで、前記一対の電極間にコンクリート体を介して交流電流を流した状態におけるインピーダンスを測定する(S4:測定工程)。得られた測定結果は、有線で、又は、塩化物イオンセンサ10が無線送信部3を備える場合は無線により、演算部に送られ(S5:無線送信工程)、演算部50において特性情報DB40を参照して塩化物イオン濃度が算出される(S6:算出工程)。
 本実施形態では、接着工程において、電極1a及び1bが有するホットメルト電極を加熱溶融する工程を含む。このような手法により、コンクリート構造物100の表面に凹凸があったとしても、ホットメルト電極は、溶融時に凹凸に沿って変形して強固に接着される。その結果、コンクリート構造物100の表面に対する電気的接触を長期間良好に維持することができる。
 さらに、パターン配線付電極シート200を用いた塩化物イオンセンサは予め基材上に導線8が形成された電極シートであるため、大面積・多点の自然電位測定を行う際に腐食センサの設置がさらに簡単になる。
 以下、本発明を実施例により具体的かつ詳細に説明するが、これらの実施例は本発明の一態様に過ぎず、本発明はこれらの例によって限定されるものではない。
[塩化物イオンセンサ用電極の製造]
<製造例1>
 加熱装置を備えた卓上ニーダーにSIS(スチレン・イソプレン・スチレン)系エラストマーをベースとしたホットメルト樹脂とカーボンフィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をポリイミドフィルム(カプトン200EN:東レ・デュポン株式会社製)上に200μmの厚みで積層し、基材を有する電極とした。電極部位の体積抵抗率は2×10Ωcmであった。
<製造例2>
 加熱装置を備えた卓上ニーダーにSIS(スチレン・イソプレン・スチレン)系エラストマーをベースとしたホットメルト樹脂とカーボンフィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をPEN(ポリエチレンナフタレート)フィルム上に100μmの厚みで積層し、基材を有する電極とした。電極部位の体積抵抗率は3×10Ωcmであった。
<製造例3>
 加熱装置を備えた卓上ニーダーにSEPS(スチレン・エチレン・プロピレン・スチレン)系エラストマーをベースとしたホットメルト樹脂とカーボンフィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をPENフィルム上に200μmの厚みで積層し、基材を有する電極とした。電極部位の体積抵抗率は2×10-1Ωcmであった。
<製造例4>
 加熱装置を備えた卓上ニーダーにSEPS(スチレン・エチレン・プロピレン・スチレン)系エラストマーをベースとしたホットメルト樹脂とカーボンフィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をポリイミドフィルム上に1000μmの厚みで積層し、基材を有する電極とした。電極部位の体積抵抗率は2×10Ωcmであった。
<製造例5>
 加熱装置を備えた卓上ニーダーにSEBS(スチレン・エチレン・ブチレン・スチレン)系エラストマーをベースとしたホットメルト樹脂とカーボンフィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をPENフィルム上に300μmの厚みで積層し、基材を有する電極とした。電極部位の体積抵抗率は6×10Ωcmであった。
<製造例6>
 加熱装置を備えた卓上ニーダーにポリアミド系熱可塑性樹脂をベースとしたホットメルト樹脂とカーボンフィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をPENフィルム上に150μmの厚みで積層し、基材を有する電極とした。電極部位の体積抵抗率は5×10Ωcmであった。
<製造例7>
 加熱装置を備えた卓上ニーダーにポリエステル系熱可塑性樹脂をベースとしたホットメルト樹脂とカーボンフィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をPENフィルム上に500μmの厚みで積層し、基材を有する電極とした。電極部位の体積抵抗率は4×10Ωcmであった。
<製造例8>
 加熱装置を備えた卓上ニーダーにポリオレフィン系熱可塑性樹脂をベースとしたホットメルト樹脂とカーボンフィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をPENフィルム上に250μmの厚みで積層し、基材を有する電極とした。電極部位の体積抵抗率は1×10Ωcmであった。
<製造例9>
 加熱装置を備えた卓上ニーダーにポリウレタン系熱可塑性樹脂をベースとしたホットメルト樹脂とカーボンフィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をPENフィルム上に400μmの厚みで積層し、基材を有する電極とした。電極部位の体積抵抗率は1×10Ωcmであった。
<製造例10>
 加熱装置を備えた卓上ニーダーにポリ塩化ビニル(PVC)系熱可塑性樹脂をベースとしたホットメルト樹脂とカーボンフィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をPENフィルム上に200μmの厚みで積層し、基材を有する電極とした。電極部位の体積抵抗率は1×10Ωcmであった。
<製造例11>
 加熱装置を備えた卓上ニーダーにSEPS(スチレン・エチレン・プロピレン・スチレン)系エラストマーをベースとしたホットメルト樹脂と銀フィラーを加え、130~180℃で3時間加熱攪拌した。エラストマーの溶け残りがないことを確認し、ホットメルト電極を得た。作製したホットメルト電極をPEN基材上に200μmの厚みで積層された電極を得た。電極部位の体積抵抗率は4×10-4Ωcmであった。
<ホットメルト樹脂組成物および封止材シートの製造例>
 SIS(スチレン・イソプレン・スチレン)系エラストマーをベースとしたホットメルト樹脂を離型フィルムに挟み、テスター産業製卓上テストプレス機にて100℃、100kgf/cmで30秒間熱プレスをおこない膜厚200~300μmのシート状に加工し封止材シート1とした。
<製造例12:パターン配線付電極シート>
 300mm×100mmのポリアミドフィルム(カプトン200EN:東レ・デュポン株式会社製)上に図9のように導電性カーボンインキ(カーボン系導電ペースト RA FS 090:東洋インキ製)で幅10mmライン2本をライン間スペース5mmで印刷し100℃30分で熱乾燥させて、さらに実施例1で作成したホットメルト電極を40mm×40mmとなるようにポリイミドフィルム(カプトン:東レ・デュポン株式会社製)上に200μmの厚みで積層し、更に電極部分を避け、配線部分を覆うように基材上に封止材シートを離型フィルムの上から熱ロールラミを150℃、4kgf/cm、1m/minで行い、電極と炭素配線と封止材を備えるパターン配線付電極シート200を得た(図9)。電極部4の体積抵抗率は2×10Ωcmであった。
<製造例13:パターン配線付電極シート>
 300mm×100mmのポリアミドフィルム(カプトン200EN:東レ・デュポン株式会社製)上に図9のように導電性銀ペースト( RA FS 007:東洋インキ製)で幅10mmライン2本をライン間スペース5mmで印刷し100℃30分で熱乾燥させて、さらに実施例1で作成したホットメルト電極を40mm×40mmとなるようにポリイミドフィルム(カプトン:東レ・デュポン株式会社製)上に200μmの厚みで積層し、更に電極部分を避け、配線部分を覆うように基材上に封止材シートを離型フィルムの上から熱ロールラミを150℃、4kgf/cm、1m/minで行い、電極と炭素配線と封止材を備えるパターン配線付電極シート200を得た(図9)。電極部4の体積抵抗率は2×10Ωcmであった。
<製造例14:パターン配線付電極シート>
 300mm×100mmの片面ポリイミド銅張積層板(F30-VC1:ニッカン工業株式会社製)の基材上に図9の様に幅1mmのライン2本をライン間スペース5mmで導電性配線8を銅エッチングで形成し、さらに電極部分を避け配線部分を覆うように基材上にポリイミドカバーレイフィルム(ニカフレックスCSKE ベースフィルム厚さ25μm:日刊工業株式会社製)を貼り付け、カバーレイ部分を160℃×90分、成型圧力4MPaで熱プレスし配線部分を封止した。さらに実施例で作成したホットメルト電極を40mm×40mmとなるように基材上に300mmの厚みで積層し、電極とエッチングによる銅配線による配線パターンとカバーレイによる封止材を備えるパターン配線付電極シート200を得た(図9)。電極部4の体積抵抗率は2×10Ωcmであった。
<比較製造例1>
 高分子ポリマー(Poly(styrene-b-ethylene oxide-b-styrene):PS-PEO-PS)とイオン液体とを混合してなるイオン導電性ゲルをアルミ箔上に積層することによってイオン導電性を持つ電極を得た。電極部位のイオン伝導度は4×10-2Scmであった。
Figure JPOXMLDOC01-appb-T000001
<実施例1>
(測定)
1.体積抵抗率の測定
 製造例1で作製した電極とポリイミドフィルムの積層物を1.5cm×3cmに裁断し、低抵抗率計(株式会社三菱化学アナリテック製:ロレスターGX MCP-T700)を用いて電極部位の体積抵抗率の測定を行った。3回測定し、その平均値を測定値とした。
2.接着力の測定
 接着力判定には島津製作所社製の引張試験機EX―SXを用いて測定した。製造例1で得られた、200μmの厚みを持つホットメルト電極とポリイミドフィルムの積層物からなる25mm幅のシートをグラインダーで表面研磨処理をした7cm×7cmのコンクリート被着体表面、に対してホットメルト電極側を貼りつけ、さらに200℃に加熱した板を基材の上から1分間押し付けることでコンクリートに対する接着を行った。加熱終了後、室温に戻るまで24時間放置したものを測定サンプルとした。測定方法はシートの端を90度の角度で速度を50mm/min.で引き剥がしたときの荷重から接着力を評価した。使用グラインダー:Monotaro スリムディスクグラインダー(MRO-100DG)
3.複合腐食耐性試験
 複合腐食試験は日本自動車技術会規格(JASO)M609/M610に準拠した試験を長時間実施した。具体的には複合腐食試験機(BQD-2)内部にサンプルを地面に対して70度に傾けた状態で置いた。サンプルの複合腐食条件は、初めに5%NaCl、35℃で2時間塩水噴霧を行った後、50%RH、60℃の乾燥環境下に4時間おき、さらに95%RH、50℃の湿潤環境下に2時間おいた。このサイクルを200回実施した。実施後、測定サンプルを回収し、下記の試験前後の結果を比較することで劣化判定を行った。
A.導電性変化
 複合腐食試験測定用のサンプルは1.体積抵抗率の測定、と同様にして作製し、同時に抵抗率も測定した。サンプルを複合腐食試験機に投入し、上記の条件で腐食サイクル試験を行った後、同様の方法でサンプルの体積抵抗率の測定を行った。
 複合腐食試験前後で体積抵抗率が1×10Ωcm未満を保持している場合は◎、複合腐食試験前後で体積抵抗率が1×10Ωcm未満を保持している場合は〇、それ以外の場合は×とした。
B.接着性変化
 実施例1で作製した、ホットメルト電極がコンクリートに接着した測定サンプルを上記条件で腐食サイクル試験を行った後、同様の方法にて接着力を評価した。試験前の接着力が10N以上でかつ腐食試験後の接着力値の低下が10N未満の場合は◎、試験前の接着力が5N以上でかつ腐食試験後の接着力値の低下が5N未満の場合は〇、それ以外の場合は×とした。
使用グラインダー:Monotaro スリムディスクグラインダー(MRO-100DG)
4.塩化物イオン計測
(特性情報データベースの作成)
 インピーダンス計測用に使用したコンクリート供試体は、200×100×100cmサイズの直方体として次のように作製した。
 水、セメント、砂を用いて打設し、塩化物量1mあたり0.5kg、1kg、5kg、10kgを含んだ4種類の供試体を製作した。さらに各コンクリート供試体の含水率を0.5%、1%、5%、10%に調整することで、塩化物量と水分率が既知の合計16種類のコンクリート供試体を作製した
 実施例1で作製した厚み200μm、サイズ4×4cm、間隔10cmに隔てられた2対のホットメルト電極シートとポリイミドフィルムからなる積層体を前記各コンクリート供試体の各々の表面上に貼付し、それぞれ200℃で熱圧着することにより各コンクリート供試体表面に2対の電極を接着した。
 同一のコンクリート供試体表面に接着した2対の電極を、電線を介してLCRメーターにそれぞれ接続することにより交流インピーダンスの計測を可能とした。
 各コンクリート供試体の電極間の交流インピーダンスの実部及び虚部の周波数特性をそれぞれ計測した。周波数は0.1Hzから10MHzまで掃引した。
 各含水率・含有塩濃度における交流インピーダンスの値を各周波数ごとにプロットし特性情報データベースを作成した。
 次に、表2に示される含水率と塩化物イオン含有量が既知のコンクリート供試体を準備し、実施例1の複合腐食耐性試験後の電極を上記データベースの作成と同様にコンクリート供試体の表面上に接着した。
 同一コンクリート供試体表面に接着した2対の電極をLCRメーターにそれぞれ接続することにより計測を可能とした。事前に水分計(KETT社製HI-520-2)を用いてコンクリート供試体の含水率測定を行った。塩化物イオン濃度の定量評価は2対の電極間の交流インピーダンスの実部及び虚部の周波数特性を計測し、測定した含水率と、交流インピーダンス値を前記特性情報データベースに当てはめて検量線法により塩化物イオン含有量を算出した。周波数は0.1Hzから10MHzまで掃引した。作製した供試体のインピーダンスを計測し、塩化物濃度の定量化ができた場合は〇、それ以外を×とした。
<比較例1>
 比較製造例1で作製したイオンゲル電極をアルミ基板上に500μmの厚みで積層されたものを用いて、下記の測定を行った。導電性の評価は交流インピーダンス法を用いて行った。
<測定>
1.イオン伝導率の測定
 比較製造例1で作製したイオンゲル電極を、インピーダンスアナライザーを用いてイオン伝導率の測定を行った。3回測定し、その平均値を測定値とした。
2.接着力の測定
 接着力判定には島津製作所社製の引張試験機EX―SXを用いて測定した。比較製造例1で得られた、500μmの厚みを持つイオンゲル電極とアルミ基材の積層物からなる25mm幅のシートをグラインダーで表面研磨処理をした7cm×7cmのコンクリート被着体表面、に対してイオンゲル電極側を貼りつけることで接着を行った。接着力の測定方法はシートの端を90度の角度で速度を50mm/min.で引き剥がしたときの荷重から接着力を評価した。
使用グラインダー:Monotaro スリムディスクグラインダー(MRO-100DG)
 3.複合腐食耐性試験
 複合腐食試験は日本自動車技術会規格(JASO)M609/M610に準拠した試験を長時間実施した。具体的には複合腐食試験機(BQD-2)内部にサンプルを地面に対して70度に傾けた状態で置いた。サンプルの複合腐食条件は、初めに5%NaCl、35℃で2時間塩水噴霧を行った後、50%RH、60℃の乾燥環境下に4時間おき、さらに95%RH、50℃の湿潤環境下に2時間おいた。このサイクルを200回実施した。実施後、測定サンプルを回収し、下記の試験前後の結果を比較することで劣化判定を行った。
A.導電性変化
 複合腐食試験測定用のサンプルは1.イオン伝導率の測定、と同様にして作製し、同時に抵抗率も測定した。サンプルを複合腐食試験機に投入し、上記の条件で腐食サイクル試験を行った後、同様の方法でサンプルの導電性の測定を行った。複合腐食試験前後でイオン伝導率が1×10-3S/cm以上を保持している場合は◎、複合腐食試験前後でイオン伝導率が1×10-5S/cm以上を保持している場合は〇、それ以外の場合は×とした。
B.接着性変化
 比較例1で作製した、イオンゲル電極がコンクリートに接着した測定サンプルを上記条件で腐食サイクル試験を行った後、同様の方法にて接着力を評価した。試験前の接着力が10N以上でかつ腐食試験後の接着力値の低下が10N未満の場合は◎、試験前の接着力が5N以上でかつ腐食試験後の接着力値の低下が5N未満の場合は〇、それ以外の場合は×とした。
使用グラインダー:Monotaro スリムディスクグラインダー(MRO-100DG)
4.塩化物イオン計測
(特性情報データベースの作成)
 インピーダンス計測用に使用したコンクリート供試体は、200×100×100cmサイズの直方体として次のように作製した。
 水、セメント、砂を用いて打設し、塩化物量1mあたり0.5kg、1kg、5kg、10kgを含んだ4種類の供試体を製作した。さらに各コンクリート供試体の含水率を0.5%、1%、5%、10%に調整することで、塩化物量と水分率が既知の合計16種類のコンクリート供試体を作製した
 比較例1で作製した厚み200μm、サイズ4×4cm、間隔10cmに隔てられた2対のイオンゲル電極シートとポリイミドフィルムからなる積層体を前記各コンクリート供試体の各々の表面上に貼付することにより各コンクリート供試体表面に2対の電極を接着した。
 同一のコンクリート供試体表面に接着した2対の電極を、電線を介してLCRメーターにそれぞれ接続することにより交流インピーダンスの計測を可能とした。
 各コンクリート供試体の電極間の交流インピーダンスの実部及び虚部の周波数特性をそれぞれ計測した。周波数は0.1Hzから10MHzまで掃引した。
 各含水率・含有塩濃度における交流インピーダンスの値を各周波数ごとにプロットし特性情報データベースを作成した。
 次に、表2に示される含水率と塩化物イオン含有量が既知のコンクリート供試体を準備し、比較例1の複合腐食耐性試験後の電極を上記データベースの作成と同様にコンクリート供試体の表面上に接着した。
 同一コンクリート供試体表面に接着した2対の電極をLCRメーターにそれぞれ接続することにより計測を可能とした。事前に水分計(KETT社製HI-520-2)を用いてコンクリート供試体の含水率測定を行った。塩化物イオン濃度の定量評価は2対の電極間の交流インピーダンスの実部及び虚部の周波数特性を計測し、測定した含水率と、交流インピーダンス値を前記特性情報データベースに当てはめて検量線法により塩化物イオン含有量を算出した。周波数は0.1Hzから10MHzまで掃引した。作製した供試体のインピーダンスを計測し、塩化物濃度の定量化ができた場合は〇、それ以外を×とした。
<実施例2~14>
 実施例1と同様の方法にて、実施例2~14の作製と測定を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この出願は、2018年10月15日に出願された特願2018-194321を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1a、1b 電極
2 測定部
3 無線送信部
4 ホットメルト電極
5 導電層
6 基材
7 保護部
8 導線
10 塩化物イオンセンサ
20 連結した塩化物イオンセンサ
21、22、23 配線
31 シート状の基材
40 特性情報データベース
50 演算部
51 入力部
52 出力部
53 記憶部
54 算出部
55 制御部
61 水分率計
100 コンクリート構造物
101 内壁
200 パターン配線付電極シート

Claims (13)

  1.  コンクリート構造物中の塩化物イオン濃度を計測するセンサであって、
     前記コンクリート構造物の表面に相互に間隔を隔てて配置される少なくとも一対の電極と、
     前記少なくとも一対の電極の間に交流電流を流した状態におけるインピーダンスを測定する測定部とを備え、
     前記少なくとも一対の電極が、導電性フィラーが分散されたホットメルト樹脂を含むホットメルト電極を有する、塩化物イオンセンサ。
  2.  前記導電性フィラーが、銀または導電性カーボンである、請求項1に記載の塩化物イオンセンサ。
  3.  前記ホットメルト樹脂が、熱可塑性エラストマーを含む、請求項1又は2に記載の塩化物イオンセンサ。
  4.  前記電極が、前記ホットメルト電極上に、導電層を有する、請求項1乃至3のいずれか一項に記載の塩化物イオンセンサ。
  5.  前記電極上に、更に基材を有する、請求項1乃至4のいずれか一項に記載の塩化物イオンセンサ。
  6.  前記電極が、シート化されている、請求項1乃至5のいずれか一項に記載の塩化物イオンセンサ。
  7.  前記電極を複数有し、当該複数ある電極が、シート状の基材にパターン状に配置されている、請求項1乃至6のいずれか一項に記載の塩化物イオンセンサ。
  8.  前記電極と前記測定部とが導電性配線で接続され、前記導電性配線の少なくとも一部が、前記基材の少なくとも一方の面に形成されたパターン配線である、請求項5乃至7のいずれか一項に記載の塩化物イオンセンサ。
  9.  測定されたインピーダンスに基づく情報の無線送信を行う無線送信部をさらに備える、請求項1乃至8のいずれか一項に記載の塩化物イオンセンサ。
  10.  前記無線送信部が、更に電力を供給するバッテリを備える、請求項9に記載の塩化物イオンセンサ。
  11.  コンクリート構造物中の塩化物イオン濃度を計測する計測方法であって、
     請求項1乃至10のいずれか一項に記載の塩化物イオンセンサを準備する準備工程と、
     前記塩化物イオンセンサが備える少なくとも一対の電極を、前記コンクリート構造物の表面にそれぞれ接着する接着工程と、
     前記少なくとも一対の電極間にコンクリート体を介して交流電流を流した状態におけるインピーダンスを測定する測定工程とを有し、
     前記接着工程が、前記ホットメルト電極を加熱溶融することによって、コンクリート構造物に接着する工程を含む、塩化物イオン濃度計測方法。
  12.  更に、測定されたインピーダンスから塩化物イオン濃度を算出する算出工程とを有し、
     前記算出工程が、少なくとも前記インピーダンスの測定工程により得られた測定されたインピーダンスに基づいて、塩化物イオン濃度を算出する、請求項11に記載の塩化物イオン濃度計測方法。
  13.  前記準備工程が、請求項9又は10に記載の塩化物イオンセンサを準備する準備工程であり、
     前記インピーダンスの測定工程により得られた測定されたインピーダンスに基づく情報の無線送信を行う工程を更に有する、請求項11又は12に記載の塩化物イオン濃度計測方法。
PCT/JP2019/010580 2018-10-15 2019-03-14 塩化物イオンセンサ、及び塩化物イオン濃度計測方法 WO2020079866A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018194321 2018-10-15
JP2018-194321 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020079866A1 true WO2020079866A1 (ja) 2020-04-23

Family

ID=70283383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010580 WO2020079866A1 (ja) 2018-10-15 2019-03-14 塩化物イオンセンサ、及び塩化物イオン濃度計測方法

Country Status (2)

Country Link
JP (1) JP7284952B2 (ja)
WO (1) WO2020079866A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710371A (zh) * 2020-06-16 2020-09-25 齐鲁交通发展集团有限公司 一种确定碳纤维/石墨烯导电沥青混凝土组分含量方法
CN113624814A (zh) * 2021-09-09 2021-11-09 杭州超钜科技有限公司 一种地震前兆观测用氯离子在线监测装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7090533B2 (ja) * 2018-11-29 2022-06-24 鹿島建設株式会社 鉄筋コンクリートの遮塩性向上方法
JP7134882B2 (ja) * 2019-01-09 2022-09-12 一般財団法人電力中央研究所 コンクリートデバイスおよびその製造方法、ならびに電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165883A (ja) * 1999-09-28 2001-06-22 General Electric Co <Ge> 漂遊電界電極の感度向上材料
JP2012184948A (ja) * 2011-03-03 2012-09-27 Takenaka Komuten Co Ltd コンクリート体の塩分濃度測定システム及びコンクリート体の塩分濃度測定方法
JP2013019671A (ja) * 2011-07-07 2013-01-31 Seiko Epson Corp センサー装置
CN206208820U (zh) * 2016-11-26 2017-05-31 浙江大学 一种固体表面盐分含量测定传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165883A (ja) * 1999-09-28 2001-06-22 General Electric Co <Ge> 漂遊電界電極の感度向上材料
JP2012184948A (ja) * 2011-03-03 2012-09-27 Takenaka Komuten Co Ltd コンクリート体の塩分濃度測定システム及びコンクリート体の塩分濃度測定方法
JP2013019671A (ja) * 2011-07-07 2013-01-31 Seiko Epson Corp センサー装置
CN206208820U (zh) * 2016-11-26 2017-05-31 浙江大学 一种固体表面盐分含量测定传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710371A (zh) * 2020-06-16 2020-09-25 齐鲁交通发展集团有限公司 一种确定碳纤维/石墨烯导电沥青混凝土组分含量方法
CN113624814A (zh) * 2021-09-09 2021-11-09 杭州超钜科技有限公司 一种地震前兆观测用氯离子在线监测装置

Also Published As

Publication number Publication date
JP7284952B2 (ja) 2023-06-01
JP2020064038A (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
WO2020079866A1 (ja) 塩化物イオンセンサ、及び塩化物イオン濃度計測方法
CN101535395B (zh) 碳纳米管组合物和透明导电膜
JP7232463B2 (ja) 腐食センサ、及び、腐食検出方法
CN102165298A (zh) 感压传感器
CN102272863B (zh) 导电性粒子、导电性粒子的制造方法、各向异性导电材料及连接结构体
JP2018092940A (ja) 導電性複合材料を形成する方法
KR100614021B1 (ko) 정전 척 장치용 전극 시트, 정전 척 장치 및 흡착 방법
CN105103098B (zh) 触控面板、其制备方法以及用于触控面板的银‑钯‑钕合金
JP4666961B2 (ja) 透明導電層が付与された物体、及び転写用導電性フィルム
JP2011075322A (ja) 静電容量型センサ
CN106042519B (zh) Fpc用导电性粘接片及使用该粘接片的fpc
JP2018054590A (ja) 伸縮性コンデンサおよび変形センサ
JP4673573B2 (ja) 電磁波シールド材の製造方法
US20240217202A1 (en) Isotropic non-aqueous electrode sensing material
JP7124520B2 (ja) 配線シート
KR20150033517A (ko) 약산성 용액 누설 감지 장치
WO2015198906A1 (ja) 感圧応答性積層体、コーティング層及び感圧応答性付与材料
JP2006152233A (ja) 異方導電性接着剤及びこれを用いて形成された電子機器
TW200821150A (en) Print-receptive electrostatic dissipating label
CN105987793A (zh) 强酸性溶液泄漏传感装置
JP2022098352A (ja) 導電性ホットメルトを用いたコンクリート発電デバイスおよびその製造方法
JP6464452B2 (ja) 静電容量式センサー感知状態維持用の導電性粘着シートおよび前記導電性粘着シートを用いた静電容量式センサーの感知状態を維持する方法
JP2016160335A (ja) 静電容量式センサー感知状態維持用の導電性粘着シートおよび前記導電性粘着シートを用いた静電容量式センサーの感知状態を維持する方法
JP6541283B2 (ja) Fpc用導電性接着シート及びそれを用いたfpc
JP6542920B2 (ja) Fpc用導電性接着シート及びそれを用いたfpc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872809

Country of ref document: EP

Kind code of ref document: A1