WO2020075719A1 - Image processing device, image processing method, and program - Google Patents
Image processing device, image processing method, and program Download PDFInfo
- Publication number
- WO2020075719A1 WO2020075719A1 PCT/JP2019/039676 JP2019039676W WO2020075719A1 WO 2020075719 A1 WO2020075719 A1 WO 2020075719A1 JP 2019039676 W JP2019039676 W JP 2019039676W WO 2020075719 A1 WO2020075719 A1 WO 2020075719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- medical image
- quality
- learned model
- unit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
Definitions
- the present invention relates to an image processing device, an image processing method, and a program.
- various types of ophthalmic equipment using optical equipment are used.
- various devices such as an anterior segment imaging device, a fundus camera, and a confocal laser scanning ophthalmoscope (SLO: Scanning Laser Ophthalmoscope) are used as optical devices for observing an eye.
- SLO Scanning Laser Ophthalmoscope
- an optical coherence tomography apparatus using optical coherence tomography (OCT) utilizing multi-wavelength light wave interference is an apparatus capable of obtaining a tomographic image of a sample with high resolution.
- OCT apparatus is becoming an indispensable device in the outpatient specialized in the retina as an ophthalmic device.
- the OCT device is used not only for ophthalmology but also for endoscopes and the like.
- the OCT apparatus is widely used in ophthalmologic diagnosis and the like to acquire a tomographic image of the retina of the fundus of the eye to be inspected and an anterior ocular segment such as the cornea.
- Original data of a tomographic image captured by an OCT apparatus is generally in a floating point format of about 32 bits or an integer format of 10 bits or more, and has a high dynamic range data including very low brightness information to high brightness information. Is.
- data that can be displayed on a normal display is, for example, 8-bit integer format data, which is data having a relatively low dynamic range. Therefore, if the original data having a high dynamic range is directly converted into the data having a low dynamic range for display, the contrast of the retina, which is important for the diagnosis of the fundus, is significantly reduced.
- the low-luminance side data is discarded to some extent to obtain good contrast in the retina.
- the contrast of the region related to the vitreous body, choroid, etc. which is shown as a low-luminance region, decreases, and it becomes difficult to observe the internal structure of the vitreous and choroid.
- Patent Document 1 proposes a method of segmenting a tomographic image, setting display conditions for each specified partial region, and performing gradation conversion processing.
- the shape of the retina becomes irregular due to the disappearance of layers, bleeding, and the formation of white spots and new blood vessels. Therefore, in the conventional segmentation processing method that determines the result of image feature extraction by utilizing the regularity of the shape of the retina and detects the boundary of the retinal layer, erroneous detection is performed when the boundary detection of the retinal layer is performed automatically. There was a limit that such things occur. In this case, due to erroneous detection or the like in the segmentation process, it may not be possible to appropriately perform the gradation conversion process or the like for each partial region (observation target) for performing a global observation of the eye to be inspected.
- one of the objects of the present invention is to provide an image processing apparatus, an image processing method, and a program that can generate an image in which appropriate image processing has been performed for each region to be observed.
- An image processing apparatus uses an acquisition unit that acquires a first medical image of a subject and a learned model to convert the first medical image from the first medical image into the first medical image.
- An image quality improving unit that generates a second medical image in which different regions are subjected to different image processing.
- An image processing method uses a step of acquiring a first medical image of a subject and a trained model to convert the first medical image from the first medical image into the first medical image. Generating a second medical image in which different regions are subjected to different image processing.
- FIG. 1 shows a schematic configuration example of an OCT apparatus according to a first embodiment.
- 1 illustrates a schematic configuration example of an imaging unit according to a first embodiment.
- 1 shows a schematic configuration example of a control unit according to the first embodiment.
- It is explanatory drawing of the segmentation of a retina part, a vitreous part, and a choroid part.
- It is an explanatory view of general display image processing.
- It is an explanatory view of general display image processing.
- It is an explanatory view of general display image processing.
- It is an explanatory view of general display image processing.
- It is explanatory drawing of general display image processing.
- It is explanatory drawing of the conversion process which makes it easy to observe a retina part.
- It is explanatory drawing of the conversion process which makes it easy to observe a retina part.
- FIG. 9 is a flowchart of a series of image processing according to the second embodiment.
- An example of a display screen for selecting an area to be noted is shown.
- An example of a display screen for selecting an area to be noted is shown.
- An example of a display screen for selecting an area to be noted is shown.
- An example of a display screen for selecting an area to be noted is shown.
- FIG. 9 is a flowchart of a series of image processing according to the third embodiment.
- An example of En-Face images of a plurality of OCTAs is shown.
- An example of a plurality of tomographic images is shown.
- 14 shows an example of a user interface according to a fourth embodiment.
- 14 shows an example of a user interface according to a fourth embodiment.
- 14 shows an example of a user interface according to a fourth embodiment.
- An example of the configuration of a neural network used as a machine learning model according to Modification 13 is shown.
- An example of the configuration of a neural network used as a machine learning model according to Modification 13 is shown.
- An example of the configuration of a neural network used as a machine learning model according to Modification 13 is shown.
- An example of the configuration of a neural network used as a machine learning model according to Modification 13 is shown.
- the machine learning model means a learning model based on a machine learning algorithm.
- Specific algorithms for machine learning include nearest neighbor method, naive Bayes method, decision tree, and support vector machine.
- there is also a deep learning in which a feature amount for learning and a connection weighting coefficient are generated by themselves using a neural network.
- Appropriately applicable ones of the above algorithms can be applied to the following embodiments and modifications.
- the teacher data refers to learning data, and is composed of a pair of input data and output data. The correct answer data is output data of learning data (teacher data).
- the learned model is a model obtained by training (learning) a machine learning model according to an arbitrary machine learning algorithm such as deep learning in advance using appropriate teacher data (learning data).
- learning data teacher data
- the learned model has been obtained in advance by using appropriate learning data, it is assumed that additional learning can be performed instead of not performing further learning. The additional learning can also be performed after the device has been installed at the point of use.
- FIG. 1 shows a schematic configuration example of the OCT apparatus according to this embodiment.
- the OCT device 1 is provided with an imaging unit 20, a control unit 30 (image processing device), an input unit 40, and a display unit 50.
- the imaging unit 20 is provided with a measurement optical system 21, a stage unit 25, and a base unit 23.
- the measurement optical system 21 can acquire an anterior segment image, an SLO fundus image of the subject's eye, and a tomographic image.
- the measurement optical system 21 is provided on the base portion 23 via the stage portion 25.
- the stage unit 25 supports the measurement optical system 21 so as to be movable back and forth and left and right.
- the base unit 23 is provided with a spectroscope described later.
- the control unit 30 is connected to the photographing unit 20 and the display unit 50 and can control them.
- the control unit 30 can also generate a tomographic image and perform image processing based on the tomographic information acquired from the imaging unit 20 and the like.
- the control unit 30 may be connected to any other device (not shown) via any network such as the Internet.
- An input unit 40 is connected to the control unit 30.
- the input unit 40 is operated by an operator (inspector) and is used to input an instruction to the control unit 30.
- the input unit 40 may include any input means, and may include, for example, a keyboard and a mouse.
- the display unit 50 is configured by an arbitrary display, and can display the information of the subject, various images, and the like under the control of the control unit 30.
- FIG. 2 shows a schematic configuration example of the imaging unit 20 according to the present embodiment.
- the configuration of the measurement optical system 21 will be described.
- the objective lens 201 is arranged so as to face the eye E to be inspected, and the first dichroic mirror 202 and the second dichroic mirror 203 are arranged on the optical axis thereof.
- the optical path from the objective lens 201 is the optical path L1 of the OCT optical system, the SLO optical system for observing the eye E and acquiring the SLO fundus image, and the optical path L2 for the fixation lamp, and the anterior eye.
- Each wavelength band is branched to the observation optical path L3.
- an optical path L3 for anterior ocular segment observation is provided in the reflection direction of the first dichroic mirror 202, and an optical path L1 for the OCT optical system and an optical path L2 for the SLO optical system and the fixation lamp are provided in the transmission direction. It is provided.
- the optical path L1 of the OCT optical system is provided in the reflection direction of the second dichroic mirror 203, and the SLO optical system and the optical path L2 for the fixation lamp are provided in the transmission direction.
- the direction in which the optical path of each optical system is provided is not limited to this, and may be arbitrarily changed according to the desired configuration.
- An SLO scanning unit 204, lenses 205 and 206, a mirror 207, a third dichroic mirror 208, a photodiode 209, an SLO light source 210, and a fixation lamp 211 are provided in the optical path L2 for the SLO optical system and the fixation lamp.
- the SLO light source 210 is provided in the reflection direction of the third dichroic mirror 208
- the fixation lamp 211 is provided in the transmission direction.
- the fixation lamp 211 may be provided in the reflection direction of the third dichroic mirror 208 and the SLO light source 210 may be provided in the transmission direction.
- the SLO scanning unit 204 is a scanning unit that scans the light emitted from the SLO light source 210 and the fixation lamp 211 on the eye E, and includes an X scanner that scans in the X-axis direction and a Y scanner that scans in the Y-axis direction. Including.
- the X scanner is required to perform high-speed scanning, so that it is composed of a polygon mirror and the Y scanner is composed of a galvanometer mirror.
- the configuration of the SLO scanning unit 204 is not limited to this, and may be arbitrarily changed according to the desired configuration.
- the lens 205 can be driven in the optical axis direction indicated by the arrow in the figure by a motor or the like (not shown) controlled by the control unit 30 for focusing the SLO optical system and the fixation lamp.
- the mirror 207 is a prism in which a perforated mirror or a hollow mirror is vapor-deposited, and can separate the projection light from the SLO light source 210 and the return light from the eye E to be inspected.
- the third dichroic mirror 208 separates the optical path to the SLO light source 210 and the optical path to the fixation lamp 211 for each wavelength band.
- the SLO light source 210 generates light with a wavelength near 780 nm, for example.
- the photodiode 209 detects the return light from the subject's eye E in the projection light emitted from the SLO light source 210.
- the fixation lamp 211 is used to generate visible light and promote the fixation of the subject.
- the projection light emitted from the SLO light source 210 is reflected by the third dichroic mirror 208, passes through the mirror 207, passes through the lenses 206 and 205, and is scanned on the eye E by the SLO scanning unit 204.
- the return light from the eye E to be examined returns through the same path as the projection light, is reflected by the mirror 207, and is guided to the photodiode 209.
- the control unit 30 can generate an SLO fundus image based on the drive position of the SLO scanning unit 204 and the output from the photodiode 209.
- the light emitted from the fixation lamp 211 passes through the third dichroic mirror 208 and the mirror 207, passes through the lenses 206 and 205, and is scanned on the eye E by the SLO scanning unit 204.
- the control unit 30 blinks the fixation lamp 211 in accordance with the movement of the SLO scanning unit 204 to create an arbitrary shape on the eye E to be inspected, thereby promoting the fixation of the subject. be able to.
- the lenses 212 and 213, the split prism 214, and the CCD 215 for observing the anterior segment that detects infrared light are arranged in the optical path L3 for observing the anterior eye.
- the CCD 215 has a sensitivity around the wavelength of irradiation light for anterior ocular segment observation (not shown), specifically, around 970 nm.
- the split prism 214 is arranged at a position conjugate with the pupil of the eye E to be inspected.
- the control unit 30 can generate an anterior segment image based on the output of the CCD 215.
- the control unit 30 can detect the distance in the Z-axis direction (front-back direction) of the measurement optical system 21 with respect to the eye E by using the split image of the anterior segment based on the light that has passed through the split prism 214.
- the optical path L1 of the OCT optical system is provided with an OCT optical system for capturing a tomographic image of the eye E to be inspected. More specifically, the OCT optical system is used to obtain an interference signal for generating a tomographic image of the eye E to be inspected.
- the XY scanner 216 is an OCT scanning unit for scanning the measurement light E described below on the eye E.
- the XY scanner 216 is illustrated as a single mirror, it is composed of two galvanometer mirrors for scanning the measurement light in the biaxial directions of the X-axis direction and the Y-axis direction.
- the configuration of the XY scanner 216 is not limited to this, and may be arbitrarily changed according to the desired configuration.
- the XY scanner 216 may be configured by a MEMS mirror or the like that can deflect light in a two-dimensional direction with one sheet.
- the lens 217 can be driven in the optical axis direction indicated by the arrow in the figure by a motor or the like (not shown) controlled by the control unit 30.
- the control unit 30 can focus the measurement light emitted from the optical fiber 224 connected to the optical coupler 219 on the eye E by driving the lens 217 by a motor (not shown) or the like. Due to this focusing, the return light of the measurement light from the eye E is simultaneously imaged and incident on the tip of the optical fiber 224 in a spot shape.
- the OCT light source 220 is connected to the optical coupler 219 via the optical fiber 225.
- Optical fibers 224, 225, 226 and 227 are connected to the optical coupler 219.
- the optical fibers 224, 225, 226 and 227 are single mode optical fibers connected to and integrated with the optical coupler 219.
- the fiber end of the optical fiber 224 is arranged on the OCT optical path L1, and the measuring light enters the OCT optical path L1 through the optical fiber 224 and the polarization adjusting unit 228 provided on the optical fiber 224 on the measuring light side.
- the fiber end of the optical fiber 226 is disposed in the optical path of the reference optical system, and the reference light described later enters the optical path of the reference optical system through the optical fiber 226 and the polarization adjusting unit 229 on the reference light side provided in the optical fiber 226.
- a lens 223, a dispersion compensation glass 222, and a reference mirror 221 are provided in the optical path of the reference optical system.
- the optical fiber 227 is connected to the spectroscope 230.
- Michelson interference system is configured.
- the Michelson interference system is used as the interference system, but a Mach-Zehnder interference system may be used.
- a Mach-Zehnder interference system can be used when the light quantity difference is large, and a Michelson interference system can be used when the light quantity difference is relatively small.
- the OCT light source 220 emits light used for measurement by OCT.
- an SLD Super Luminescent Diode
- the center wavelength of the SLD in this example was 855 nm, and the wavelength band width was about 100 nm.
- the bandwidth is an important parameter because it affects the resolution of the obtained tomographic image in the optical axis direction.
- SLD is selected here as the type of light source, ASE (Amplified Spontaneous Emission) or the like may be used as long as low-coherent light can be emitted.
- the center wavelength may be near-infrared light in view of photographing the eye. Further, since the central wavelength affects the lateral resolution of the tomographic image obtained, the wavelength can be as short as possible. In this embodiment, the central wavelength is set to 855 nm for both reasons.
- the light emitted from the OCT light source 220 enters the optical coupler 219 through the optical fiber 225.
- the light incident on the optical coupler 219 is split via the optical coupler 219 into measurement light traveling toward the optical fiber 224 side and reference light traveling toward the optical fiber 226 side.
- the measurement light is applied to the subject's eye E, which is the subject, through the optical path L1 of the OCT optical system described above.
- the return light of the measurement light due to the reflection or scattering of the eye E to be examined reaches the optical coupler 219 through the same optical path.
- the reference light reaches and is reflected by the reference mirror 221 via the optical fiber 226, the lens 223, and the dispersion compensation glass 222 inserted to match the dispersion of the measurement light and the reference light. After that, the reference light returns through the same optical path and reaches the optical coupler 219.
- the reference mirror 221 is held by a motor or the like (not shown) controlled by the control unit 30 so as to be adjustable in the optical axis direction indicated by the arrow in the figure.
- the measurement light and the reference light are combined into interference light.
- the measurement light and the reference light cause interference when the optical path length of the measurement light and the optical path length of the reference light become substantially the same.
- the control unit 30 controls a motor (not shown) or the like to move the reference mirror 221 in the optical axis direction, so that the optical path length of the reference light can be matched with the optical path length of the measurement light that changes depending on the eye E to be inspected.
- the polarization adjusting unit 228 on the measurement light side and the polarization adjusting unit 229 on the reference light side have some portions in which the optical fiber is looped.
- the polarization adjusting units 228 and 229 adjust the polarization states of the measurement light and the reference light by adjusting the polarization states of the measurement light and the reference light by rotating the loop-shaped portion about the longitudinal direction of the optical fiber and twisting the fiber.
- the interference light generated in the optical coupler 219 is guided to the spectroscope 230 provided in the base section 23 via the optical fiber 227.
- the spectroscope 230 is provided with lenses 234 and 232, a diffraction grating 233, and a line sensor 231.
- the interference light emitted from the optical fiber 227 becomes parallel light through the lens 234, is then dispersed by the diffraction grating 233, and is imaged on the line sensor 231 by the lens 232.
- the control unit 30 can generate a tomographic image of the eye E by using the interference signal based on the interference light, which is output from the line sensor 231.
- a tomographic image of the eye E to be inspected can be acquired, and an SLO fundus image of the eye E to be inspected with high contrast even with near infrared light can be acquired. can do.
- the control unit 30 controls the XY scanner 216 to capture a tomographic image of a predetermined portion of the eye E to be inspected.
- the locus along which the measurement light is scanned on the eye E is referred to as a scan pattern (scan pattern).
- This scan pattern includes, for example, a cross scan in which a single point is scanned in a vertical and horizontal cross shape, and a 3D scan in which the entire area is scanned to obtain a three-dimensional tomographic image as a result.
- Cross-scan is suitable for detailed observation of a specific region
- 3D scan is suitable for observing the layer structure and layer thickness of the entire retina.
- the measurement light is scanned (scanned) in the X-axis direction (main scanning direction) in the figure, and the line sensor 231 acquires information about a predetermined number of images from the imaging range of the eye E to be examined in the X-axis direction.
- a scan acquiring the tomographic information in the depth direction at one point in the X-axis direction of the eye E to be examined is called A scan.
- the luminance distribution on the line sensor 231 obtained by the A scan is subjected to fast Fourier transform (FFT: Fast Fourier Transform), and the linear luminance distribution obtained by the FFT is converted into density information for display on the display unit 50.
- FFT Fast Fourier Transform
- an A-scan image based on the information acquired by the A-scan can be generated.
- a B-scan image that is a two-dimensional image can be acquired.
- the scan position in the Y-axis direction (sub-scanning direction) is moved, and scanning in the X-axis direction is performed again. Images can be acquired.
- the examiner can observe the three-dimensional tomographic state of the eye E to be examined. The examiner can diagnose the eye E to be inspected based on the image.
- a three-dimensional tomographic image is acquired by obtaining a plurality of B-scan images in the X-axis direction
- a three-dimensional tomographic image may be obtained by obtaining a plurality of B-scan images in the Y-axis direction.
- the scanning direction is not limited to the X-axis direction and the Y-axis direction, and may be any axial direction orthogonal to the Z-axis direction and intersecting each other.
- FIG. 3 shows a schematic configuration example of the control unit 30.
- the control unit 30 is provided with an acquisition unit 310, an image processing unit 320, a drive control unit 330, a storage unit 340, and a display control unit 350.
- the acquisition unit 310 can acquire the output signals of the CCD 215 and the photodiode 209 and the output signal data of the line sensor 231 corresponding to the interference signal of the eye E from the imaging unit 20.
- the data of the output signal acquired by the acquisition unit 310 may be an analog signal or a digital signal.
- the control unit 30 can convert the analog signal into a digital signal.
- the acquisition unit 310 can acquire various data such as tomographic data generated by the image processing unit 320 and various images such as a tomographic image, an SLO fundus image, and an anterior segment image.
- the tomographic data is data including information on a tomographic image of a subject, and includes data including a signal obtained by performing Fourier transform on an interference signal by OCT, a signal obtained by performing arbitrary processing on the signal, and the like.
- the acquisition unit 310 includes a shooting condition group of images to be image-processed (for example, shooting date / time, shooting region name, shooting region, shooting angle of view, shooting method, image resolution and gradation, image size of image, image filter). , And information about the image data format).
- the shooting condition group is not limited to the illustrated one. Further, the shooting condition group does not need to include all of the exemplified ones, and may include some of them.
- the acquisition unit 310 acquires the photographing conditions of the photographing unit 20 when the image is photographed.
- the acquisition unit 310 can also acquire the shooting condition group stored in the data structure forming the image according to the data format of the image.
- the acquisition unit 310 can also acquire the shooting information group including the shooting condition group from a storage device or the like separately storing the shooting condition.
- the acquisition unit 310 can also acquire information for identifying the eye to be inspected, such as the subject identification number, from the input unit 40 or the like.
- the acquisition unit 310 may acquire various data, various images, and various information from the storage unit 340 and other devices (not shown) connected to the control unit 30.
- the acquisition unit 310 can store various acquired data and images in the storage unit 340.
- the image processing unit 320 can generate a tomographic image from the data acquired by the acquisition unit 310 or the data stored in the storage unit 340, and can perform image processing on the generated or acquired tomographic image.
- the image processing unit 320 is provided with a tomographic image generation unit 321 and an image quality improvement unit 322.
- the tomographic image generation unit 321 generates tomographic data by performing wave number conversion, Fourier transform, absolute value conversion (acquisition of amplitude) or the like on the data of the interference signal acquired by the acquisition unit 310, and based on the tomographic data, the tomographic image is generated.
- a tomographic image of the optometry E can be generated.
- the data of the interference signal acquired by the acquisition unit 310 may be the data of the signal output from the line sensor 231, or may be acquired from a device (not shown) connected to the storage unit 340 or the control unit 30. It may be the data of the generated interference signal. Any known method may be adopted as the method of generating the tomographic image, and detailed description thereof will be omitted.
- the image quality improving unit 322 generates a high quality tomographic image from the tomographic image generated by the tomographic image generating unit 321 using a learned model described later.
- the image quality improving unit 322 acquires not only the tomographic image captured by the image capturing unit 20 but also the acquisition unit 310 from the storage unit 340 and other devices (not shown) connected to the control unit 30. It is also possible to generate a high-quality tomographic image based on the tomographic image.
- the drive control unit 330 includes the OCT light source 220 of the imaging unit 20 connected to the control unit 30, the XY scanner 216, the lens 217, the reference mirror 221, the SLO light source 210, the SLO scanning unit 204, the lens 205, and the fixation lamp 211. It is possible to control driving of components such as.
- the storage unit 340 can store various data acquired by the acquisition unit 310 and various images and data such as tomographic images generated and processed by the image processing unit 320.
- the storage unit 340 stores information about the subject's eye such as the subject's attributes (name, age, etc.) and measurement results (e.g., axial length and intraocular pressure) acquired using other test equipment, imaging parameters, and images.
- the analysis parameter and the parameter set by the operator can be stored.
- the storage unit 340 can also store the statistical information of the normal database. Note that these images and information may be stored in an external storage device (not shown).
- the storage unit 340 can also store a program or the like for executing the functions of the respective components of the control unit 30 by being executed by the processor.
- the display control unit 350 can cause the display unit 50 to display various images acquired by the acquisition unit 310 and various images such as tomographic images generated and processed by the image processing unit 320. Further, the display control unit 350 can cause the display unit 50 to display information and the like input by the user.
- the control unit 30 may be configured using a general-purpose computer, for example.
- the control unit 30 may be configured using a dedicated computer for the OCT apparatus 1.
- the control unit 30 includes a storage medium including a CPU (Central Processing Unit), an MPU (Micro Processing Unit) (not shown), and a memory such as an optical disk and a ROM (Read Only Memory).
- Each component other than the storage unit 340 of the control unit 30 may be configured by a software module executed by a processor such as a CPU or MPU. Further, each component may be configured by a circuit such as an ASIC that performs a specific function, an independent device, or the like.
- the storage unit 340 may be configured by any storage medium such as an optical disk or a memory, for example.
- control unit 30 may have one or more processors such as CPU and storage media such as ROM. Therefore, each component of the control unit 30 functions when at least one processor and at least one storage medium are connected, and at least one processor executes a program stored in at least one storage medium. May be configured to do so.
- the processor is not limited to the CPU and MPU, and may be a GPU (Graphics Processing Unit), an FPGA (Field-Programmable Gate Array), or the like.
- FIG. 4 shows an example of a tomographic image in which the boundaries of the respective regions of the retinal layer have been detected by the segmentation processing.
- the boundary between the regions included in the tomographic image can be detected.
- the boundary 401 between the vitreous part and the retina and the boundary between the retina and the choroid part. 402 has been detected.
- a region 403 of the retina between the boundaries 401 and 402 a region 404 of the vitreous body on the shallow side of the boundary 401, and a region of the deep side from the boundary 402.
- An area 405 of a choroid can be identified.
- any known method can be used as the segmentation process.
- a median filter and a Sobel filter are applied to a tomographic image to be processed, and a median image and a Sobel image are generated.
- a profile is generated for each tomographic data corresponding to the A scan from the generated median image and Sobel image.
- the generated profile is a brightness value profile for the median image and a gradient profile for the Sobel image.
- the peak in the profile generated from the Sobel image is detected.
- the boundary of each region of the retinal layer can be detected.
- FIG. 5A shows a tomographic image 500 as an example of an original tomographic image (hereinafter, an original tomographic image) obtained by photographing the eye E.
- the tomographic image 500 is usually in an integer format of 10 bits or more, and is data of a high dynamic range including information of extremely low brightness to information of high brightness.
- the data that can be displayed on the display unit 50 is low dynamic range data such as an 8-bit integer format. Therefore, the gradation conversion processing is performed so that the original tomographic image 500 has low dynamic range data for display.
- FIG. 5B shows a tomographic image 501 that has been subjected to gradation conversion processing so that the region of the retina can be easily observed with respect to the original tomographic image 500, in other words, the contrast of the region of the retina is ensured.
- FIGS. 6A and 6B a gradation conversion process for ensuring the contrast of the region of the retina will be described.
- FIG. 6A shows the appearance frequency of the brightness value in the tomographic image 500, and shows a brightness value range 601 corresponding to the brightness value of the region of the retina.
- the range of the brightness value corresponding to the brightness value of the region of the retina may be determined based on an average brightness range obtained empirically for the region of the retina.
- the conversion process is performed such that the brightness range 601 corresponding to the brightness value of the region of the retina is a wide range of brightness values related to the display data. As a result, it is possible to generate the display tomographic image 501 in which the region of the retina is easily observed.
- FIG. 5C shows gradation conversion for the original tomographic image 500 so that the regions of the vitreous part and the choroid part can be easily observed, in other words, the contrast of the vitreous part and the choroid part can be ensured.
- a tomographic image 502 that has been processed is shown.
- FIG. 7A and FIG. 7B a gradation conversion process for ensuring the contrast in the regions of the vitreous part and the choroid part will be described.
- FIG. 7A shows the appearance frequency of the brightness value in the tomographic image 500, and shows a range 701 of brightness values corresponding to the brightness values in the regions of the vitreous part and the choroid part.
- the range of brightness values corresponding to the brightness values of the vitreous body portion and the choroid portion may be determined based on an empirically obtained average brightness range and the like for the vitreous portion and the choroid portion.
- the conversion process is performed so that the brightness range 701 corresponding to the brightness values of the vitreous body part and the choroid part is a wide range of brightness values related to the display data. To do.
- FIG. 5D shows a tomographic image 503 that has been subjected to gradation conversion processing so that the regions of the retina, vitreous body, and choroid are easy to observe, in other words, the contrast of these regions is ensured.
- a boundary 401 between the vitreous part and the retina and a boundary 402 between the retina and the choroid are detected by the above-described segmentation processing, and the region 403 of the retina, the region 404 of the vitreous part, and the choroid are detected.
- a partial area 405 is specified.
- gradation conversion is performed so that the range 601 of brightness values corresponding to the area of the retina becomes a wide range of brightness values relating to display data.
- Perform processing for the region 404 of the vitreous part and the region 405 of the choroid part, as shown in FIG. 7B, the range 701 of the brightness value corresponding to the region of the vitreous part and the choroid part is the data for display.
- the gradation conversion processing is performed so that the brightness value is in a wide range. This makes it possible to generate a tomographic image 503 for display, in which the regions of the retina, vitreous, and choroid are easy to observe.
- the region in the tomographic image is detected by segmentation processing. . Therefore, in the diseased eye, if the erroneous detection due to the segmentation process occurs due to the change in the layer structure due to the lesion, the gradation conversion process may not be properly performed, and it may not be possible to generate a tomographic image in which it is easy to observe the global region. is there.
- control unit 30 different image processing is performed for each region in the tomographic image using the learned model of the machine learning model according to an arbitrary machine learning algorithm such as deep learning.
- an arbitrary machine learning algorithm such as deep learning.
- Such a high-quality tomographic image that is easy to observe is generated.
- a high-quality image refers to an image converted into an image of a quality suitable for image diagnosis
- a high-quality processing refers to an input image suitable for image diagnosis. It means converting to an image of high quality.
- the content of the image quality suitable for image diagnosis depends on what is desired to be diagnosed by various image diagnosis. Therefore, although it cannot be said unequivocally, for example, the image quality suitable for image diagnosis is shown by colors and gradations that make it easy to observe the shooting target, there is little noise, high contrast, large image size, Includes image quality such as high resolution. Further, it is possible to include an image quality in which an object or gradation that does not actually exist and which is drawn in the process of image generation is removed from the image.
- -Teacher data consists of pairs of one or more input data and output data.
- the original tomographic image such as the tomographic image 500 acquired by the OCT apparatus is used as input data, and image processing is performed so that a global observation of the tomographic image 503 or the like is possible.
- the teacher data is composed of a pair of groups using the tomographic image as output data.
- the output data can be an image obtained by performing image processing on the tomographic image that is the input data.
- one of the pair groups forming the teacher data is the original tomographic image 810 and the high-quality tomographic image 820 shown in FIGS. 8A and 8B will be described.
- a pair is formed by using the entire original tomographic image 810 as input data and the entire high-quality tomographic image 820 as output data.
- a pair of input data and output data is formed by the entire image, but the pair is not limited to this.
- a rectangular area image 911 of an original tomographic image 910 is used as input data
- a rectangular area image 921 that is a corresponding imaging area in a high-quality tomographic image 920 is used as output data.
- the rectangular area image 911 and the rectangular area image 921 are images corresponding to each other in the tomographic image 910 and the high-quality tomographic image 920.
- the scan range (shooting angle of view) and scan density (the number of A scans and the number of B scans) can be normalized to make the image sizes uniform, and the rectangular area size at the time of learning can be made uniform.
- the rectangular area images shown in FIGS. 8A to 9B are examples of rectangular area sizes when learning separately.
- the number of rectangular areas can be set to one in the example shown in FIGS. 8A and 8B, and can be set to a plurality in the examples shown in FIGS. 9A and 9B.
- the rectangular area images 912 and 913 of the tomographic image 910 are used as input data
- the rectangular area images 922 and 923 of the corresponding imaging areas in the high-quality tomographic image 920 are used as output data.
- the rectangular area image 911 is an image of the area of the retina in the original tomographic image 910, and the rectangular area image 921 is subjected to image processing such as gradation conversion processing so that global observation is possible. It is an image of the region of the retina in the high-quality tomographic image 920.
- the rectangular area image 912 is an image of the vitreous body area in the original tomographic image 910, and the rectangular area image 922 is an image of the vitreous body area in the high-quality tomographic image 920.
- the rectangular area image 913 is an image of the area of the choroid in the original tomographic image 910, and the rectangular area image 923 is an image of the area of the choroid in the high-quality tomographic image 920.
- the rectangular areas are discretely shown, but the original tomographic image and the high-quality tomographic image are converted into a rectangular area image group having a constant image size and continuous without a gap. It can be divided. Further, the original tomographic image and the high-quality tomographic image may be divided into rectangular area image groups corresponding to each other at random positions. As described above, by selecting an image of a smaller area as a pair of input data and output data as a rectangular area, a large amount of pair data is generated from the tomographic image 910 and the tomographic image 920 that form the original pair. it can. Therefore, the time required to train the machine learning model can be shortened.
- the output data is not limited to high-quality tomographic images generated from one tomographic image. You may use the tomographic image for a display produced
- the rectangular area is not limited to a square and may be a rectangle. Further, the rectangular area may be one A scan. Further, when preparing output data for learning, not only is it generated by a predetermined automatic process, but also better data can be prepared by manual adjustment.
- pairs that do not contribute to higher image quality can be removed from the teacher data.
- the high-quality image that is the output data forming the pair of teacher data has an image quality that is not suitable for image diagnosis
- the image output by the learned model learned using the teacher data is also not suitable for image diagnosis.
- the image quality will end up. Therefore, it is possible to reduce the possibility that the learned model will generate an image having an image quality not suitable for image diagnosis by removing from the teacher data a pair whose output data has an image quality not suitable for image diagnosis.
- the learned model learned using the teacher data draws the imaged object at a structure or position significantly different from the input image.
- a pair of input data and output data which differ greatly in the structure or position of the imaged object to be drawn, can be removed from the teacher data.
- CNN Convolutional Neural Network
- the learned model shown in FIG. 10 is composed of a plurality of layer groups that are responsible for processing the input value group and outputting it.
- the types of layers included in the learned model configuration 1001 include a convolutional layer, a downsampling layer, an upsampling layer, and a merging layer.
- the convolution layer is a layer that performs convolution processing on the input value group according to the parameters such as the set kernel size of the filter, the number of filters, the stride value, and the dilation value.
- the number of dimensions of the kernel size of the filter may be changed according to the number of dimensions of the input image.
- the down-sampling layer is a layer that performs processing to reduce the number of output value groups to less than the number of input value groups by thinning out or combining the input value groups. Specifically, for example, there is Max Pooling processing as such processing.
- the upsampling layer is a layer that performs processing to make the number of output value groups larger than the number of input value groups by duplicating the input value group or adding values interpolated from the input value group.
- processing includes, for example, linear interpolation processing.
- the composition layer is a layer that inputs a value group such as an output value group of a certain layer or a pixel value group that constitutes an image from a plurality of sources, and performs a process of concatenating or adding them to combine them.
- the parameters set in the convolutional layer group included in the configuration 1001 illustrated in FIG. 10 for example, by setting the kernel size of the filter to 3 pixels in width and 3 pixels in height, and the number of filters to 64, constant accuracy can be obtained. It is possible to improve the image quality.
- the degree of reproducibility of the training tendency from the teacher data to the output data may differ if the parameter settings for the layers and node groups that make up the neural network are different. In other words, in many cases, the appropriate parameter differs depending on the mode of implementation, and thus it can be changed to a preferable value as necessary.
- changing the configuration of the CNN may allow the CNN to obtain better characteristics.
- the better characteristics are, for example, that the accuracy of the image quality improvement processing is high, the time of the image quality improvement processing is short, the time required for training the machine learning model is short, and the like.
- the CNN configuration 1001 used in the present embodiment has a U-function that has an encoder function including a plurality of layers including a plurality of downsampling layers and a decoder function including a plurality of layers including a plurality of upsampling layers.
- This is a net-type machine learning model.
- ambiguous position information (spatial information) in a plurality of layers configured as encoders is converted into a same-dimensional layer (layers corresponding to each other) in a plurality of layers configured as decoders. ) Is used (for example, using a skip connection).
- a batch normalization layer or an activation layer using a normalized linear function may be incorporated after the convolutional layer.
- data When data is input to the learned model of such a machine learning model, data according to the design of the machine learning model is output. For example, output data that is likely to correspond to the input data is output according to the tendency trained using the teacher data.
- an original tomographic image is input to the learned model according to this embodiment, a high-quality tomographic image that is used for global observation and in which the retina, vitreous part, and choroid part are easily observed is output.
- the learned model outputs a rectangular area image that is a high-quality tomographic image corresponding to each rectangular area.
- the image quality improving unit 322 first divides the tomographic image that is the input image into rectangular area image groups based on the image size at the time of learning, and inputs the divided rectangular area image groups to the learned model. After that, the image quality improving unit 322 sets each of the rectangular area image groups, which are high-quality tomographic images obtained by using the learned model, in the same manner as each of the rectangular area image groups input to the learned model. Arrange in a positional relationship and combine. As a result, the image quality improving unit 322 can generate a high quality tomographic image corresponding to the input tomographic image.
- FIG. 11 is a flowchart of a series of image processing according to this embodiment.
- the acquisition unit 310 acquires tomographic information obtained by imaging the eye E to be inspected.
- the acquisition unit 310 may acquire the tomographic information of the eye E using the imaging unit 20 or may acquire the tomographic information from the storage unit 340 or another device connected to the control unit 30.
- the imaging unit 20 when acquiring the tomographic information of the eye E to be inspected using the imaging unit 20, selection of an imaging mode, setting of various imaging parameters such as a scan pattern, a scan range, a focus, and a fixation lamp position, and adjustment are performed. After performing the scan, the scan of the eye E can be started.
- step S1102 the tomographic image generation unit 321 generates a tomographic image based on the acquired tomographic information of the eye E to be inspected.
- step S1102 may be omitted.
- step S1103 the image quality improving unit 322 uses the learned model to obtain high image quality such that different image processing is performed for each region from the tomographic image generated in step S1102 or acquired in step S1101. Generate a tomographic image.
- the image quality improving unit 322 When the learned model is learning by dividing the image area, the image quality improving unit 322 first divides the tomographic image, which is the input image, into a rectangular area image group based on the image size at the time of learning. Divide and input the divided rectangular area image group into the learned model. After that, the image quality improving unit 322 sets each of the rectangular area image groups, which are high-quality tomographic images obtained by using the learned model, in the same manner as each of the rectangular area image groups input to the learned model. A final high-quality tomographic image is generated by arranging them in a positional relationship and combining them.
- step S1104 the display control unit 350 causes the display unit 50 to display the high-quality tomographic image generated in step S1103.
- the display processing by the display control unit 350 ends, a series of image processing ends.
- the control unit 30 includes the acquisition unit 310 and the image quality improvement unit 322.
- the acquisition unit 310 acquires a first tomographic image (a tomographic image using optical interference) of the subject's eye E, which is the subject.
- the image quality improving unit 322 uses the learned model to generate a second tomographic image from the first tomographic image (first medical image) such that different regions in the first tomographic image are subjected to different image processing.
- An image (second medical image) is generated.
- the learning data of the learned model includes a tomographic image that has been subjected to the gradation conversion processing according to the area of the eye E to be inspected.
- the image quality improving unit 322 can generate a high quality tomographic image in which each region has high image quality by using the learned model. Therefore, the image quality improving unit 322 uses the learned model and determines that the first tomographic image includes a different region between the first region and the second region different from the first region in the first tomographic image. It is possible to generate a high-quality second tomographic image.
- the first region may be a retina region and the second region may be a vitreous region.
- the number of regions in which the image quality is improved is not limited to two, and may be three or more.
- the third region which is different from the first and second regions in which high image quality is performed, may be the region of the choroid. It should be noted that each area in which the image quality is improved may be arbitrarily changed according to a desired configuration. From this viewpoint as well, the control unit 30 according to the present embodiment can generate an image in which appropriate image processing is performed for each observation target region.
- an image subjected to an appropriate gradation conversion process for each area is used as output data of teacher data, but the teacher data is not limited to this.
- the teacher data is not limited to this.
- the original image means a tomographic image which is input data.
- a likelihood function is obtained from the probability density of each pixel value in a plurality of images, and the true signal value (pixel value) is estimated using the obtained likelihood function.
- the high-quality image obtained by the MAP estimation process becomes a high-contrast image based on the pixel value close to the true signal value.
- noise that is randomly generated is reduced in the high-quality image obtained by the MAP estimation process. Therefore, by using the learned model that has been trained with the high-quality image obtained by the MAP estimation process as the teacher data, noise is reduced from the input image and high contrast is obtained, which is suitable for image diagnosis. It is possible to generate a high quality image.
- a method of generating a pair of input data and output data of the teacher data may be the same as the method of using the superimposed image as the teacher data.
- a high quality image obtained by applying a smoothing filter process using an average value filter to the original image may be used as the output data of the teacher data.
- a high-quality image in which random noise is reduced can be generated from the input image.
- the method of generating the pair of the input data and the output data of the teacher data may be the same method as when the image subjected to the gradation conversion process is used as the teacher data.
- an image acquired from a photographing device having the same image quality tendency as that of the photographing unit 20 may be used as the input data of the teacher data.
- a high-quality image obtained by a high-cost process such as a successive approximation method may be used, and the subject corresponding to the input data is a photographing apparatus having higher performance than the photographing unit 20. You may use the high quality image acquired by photographing with.
- a high-quality image obtained by performing noise reduction processing based on a rule based on the structure of the subject may be used as the output data.
- the noise reduction process can include, for example, a process of replacing a high-luminance pixel of only one pixel, which is apparently noise appearing in the low-luminance region, with an average value of neighboring low-luminance pixel values. . Therefore, for learning of the learned model, an image captured by an image capturing device having a higher performance than the image capturing device used to capture the input image, or an image capturing process that requires more man-hours than the input image capturing process is acquired. The image may be used as teacher data.
- the output data of the teacher data is used for each observation target region for an image subjected to the above-described superimposition processing, MAP estimation processing, or the like, or an image photographed by a photographing device having a higher performance than the photographing unit 20.
- the image may be subjected to different gradation conversion processing. Therefore, the output data of the teacher data is generated by using a combination of gradation conversion processing that differs for each observation target region, other processing related to high image quality, and a tomographic image captured by a high-performance imaging device. It may be a tomographic image. In this case, a tomographic image more suitable for diagnosis can be generated and displayed.
- the original tomographic image is used as the input data, but the input data is not limited to this.
- a tomographic image whose gradation is converted to facilitate observation of the retina or a tomographic image whose gradation is converted to facilitate observation of the vitreous part and choroid may be used as the input data.
- the image quality improving unit 322 inputs the tomographic image corresponding to the input data of the learning data, into which the gradation is converted so that the retina, the vitreous body, and the choroid are easily observed, to the learned model.
- a high-quality tomographic image can be generated.
- the output data may be data with a high dynamic range adjusted to data that facilitates appropriate gradation conversion for each area.
- the image quality improving unit 322 can generate a high quality tomographic image by appropriately performing gradation conversion on the high dynamic range data obtained using the learned model.
- the image quality improving unit 322 uses the learned model to generate a high quality image in which the gradation conversion is appropriately performed for the display by the display unit 50.
- the image quality improving process is not limited to this.
- the image quality improving unit 322 is only required to be able to generate an image of image quality more suitable for image diagnosis.
- the display control unit 350 may also display that the tomographic image is acquired using the learned model. In this case, the occurrence of erroneous diagnosis by the operator can be suppressed.
- the display mode may be arbitrary as long as it can be understood that the image is obtained using the learned model.
- Modification 1 In the first embodiment, a case has been described in which a partial area (rectangular area) image of a tomographic image that has been subjected to gradation conversion processing so as to allow global observation is used as output data of teacher data.
- a tomographic image that differs for each region to be observed is used as output data of the teacher data.
- the teacher data in this modification will be described with reference to FIGS. 12A to 12C. Since the configuration and processing of the machine learning model according to the present modification other than the teacher data are the same as those in the first embodiment, the same reference numerals are used and description thereof is omitted.
- FIG. 12A shows an example of an original tomographic image 1210 related to input data of teacher data. Further, FIG. 12A shows a rectangular region image 1212 of the vitreous region, a rectangular region image 1211 of the retina region, and a rectangular region image 1213 of the choroid region.
- FIG. 12B shows a tomographic image 1220 obtained by performing gradation conversion processing on the original tomographic image 1210 so as to ensure the contrast of the region of the retina. Further, FIG. 12B shows a rectangular area image 1221 having a positional relationship with the rectangular area image 1211 of the retina area.
- FIG. 12C shows a tomographic image 1230 obtained by performing gradation conversion processing on the original tomographic image 1210 so as to secure the contrast of the vitreous body portion and the choroid portion. Further, FIG. 12C shows a rectangular area image 1232 having a positional relationship with the rectangular area image 1212 of the vitreous portion area, and a rectangular area image 1233 having a positional relationship with the rectangular area image 1213 of the choroid portion area. Has been done.
- one pair of teacher data is created using the rectangular area image 1211 of the retina area in the original tomographic image 1210 as input data and the rectangular area image 1221 of the retina area in the tomographic image 1220 as output data.
- one pair of teacher data is created using the rectangular region image 1212 of the vitreous region in the original tomographic image 1210 as input data and the rectangular region image 1232 of the vitreous region in the tomographic image 1230 as output data.
- one pair of teacher data is created using the rectangular area image 1213 of the area of the choroid in the original tomographic image 1210 as input data and the rectangular area image 1233 of the area of the choroid in the tomographic image 1230 as output data.
- the image quality improving unit 322 uses the learned model learned with such teacher data and performs high image quality such that different image processing is performed for each region of the observation target, as in the first embodiment. It is possible to generate various tomographic images.
- Modification 2 In the first embodiment, a tomographic image obtained by subjecting the original tomographic image to high image quality processing such as gradation conversion processing regardless of the shooting mode is used as output data as teacher data for a machine learning model.
- the tendency of the signal intensity in the tomographic image differs depending on the imaging mode. Therefore, in the second modification, the tomographic image acquired in the imaging mode in which the signal intensity of each region to be observed tends to be high is used as the output data of the teacher data.
- the teacher data according to this modification will be described below with reference to FIGS. 13A to 15C. Since the configuration and processing of the machine learning model according to the present modification other than the teacher data are the same as those in the first embodiment, the same reference numerals are used and description thereof is omitted.
- an imaging method for each imaging mode in the OCT apparatus 1 an imaging method in the vitreous mode and the choroid mode will be described.
- FIGS. 13A to 13C The imaging method in the vitreous mode of the OCT apparatus 1 will be described with reference to FIGS. 13A to 13C.
- a position Z1 in the depth direction (Z-axis direction) where the optical path lengths of the reference light and the measurement light match each other is shallower in the depth direction of the imaging range C10 (vitreous body side).
- the reference mirror 221 is moved so as to be located at the position of (1), and an image is taken.
- FIG. 13B With respect to the position Z1, a positive image is acquired in the imaging range C10 in the plus direction in the Z direction, and a virtual image is acquired in the imaging range C11 in the minus direction.
- Imaging in the vitreous mode of the OCT apparatus is generally performed by acquiring a normal image of the imaging range C10 as a tomographic image.
- FIG. 13C shows a tomographic image C12 which is an example of a tomographic image acquired in the vitreous mode.
- the virtual image on the side of the photographing range C11 can also be acquired as the tomographic image C12.
- the virtual image on the imaging range C11 side is acquired as the tomographic image C12, it may be displayed upside down.
- the reference mirror is set such that the position Z2 in the depth direction where the optical path lengths of the reference light and the measurement light match with each other is located deeper in the depth direction of the imaging range (choroid side). 221 is moved to take an image.
- FIG. 14B with respect to the position Z2, a normal image is acquired in the imaging direction C20 in the negative direction in the Z direction, and a virtual image is acquired in the imaging range C21 in the positive direction.
- Imaging in the choroidal mode of the OCT apparatus is generally performed by acquiring a virtual image on the imaging range C21 side as a tomographic image.
- FIG. 14C shows a tomographic image C22 that is an example of a tomographic image acquired in the choroid mode.
- a normal image on the side of the imaging range C20 can also be acquired as the tomographic image C22.
- the virtual image on the side of the imaging range C21 is acquired as the tomographic image C22, it may be displayed upside down.
- the OCT apparatus in view of such characteristics of the OCT apparatus, in the present modification, as output data of the teacher data of the machine learning model, in an imaging mode that has a tendency that the signal intensity of the observation target region is high, especially in the region.
- the acquired tomographic image is used. More specifically, in the OCT apparatus, the signal intensity on the vitreous side is high in the tomographic image captured in the vitreous mode, and the signal intensity on the choroidal side is high in the tomographic image captured in the choroidal mode.
- the same region of the same eye to be examined is photographed in the choroid mode and the vitreous mode, and for each partial region image (rectangular region image) of the input data, a tomographic image having a high signal intensity in the corresponding partial region is used as output data.
- the learning data of the learned model is a medical image obtained by imaging the subject, and the medical image acquired in the imaging mode corresponding to any of different regions in the medical image. including.
- FIG. 15A shows an example of an original tomographic image 1510 relating to input data of teacher data, which is taken in the vitreous mode. Further, FIG. 15A shows a rectangular area image 1511 of the vitreous portion area and a rectangular area image 1512 of the choroid portion area.
- FIG. 15B is a tomographic image 1520 obtained by performing gradation conversion processing on a tomographic image obtained by photographing the same region of the same eye to be examined in the vitreous mode so as to secure the contrast of the regions of the retina, vitreous, and choroid. Is shown. Further, FIG. 15B shows a rectangular area image 1521 having a positional relationship with the rectangular area image 1511 of the vitreous body area.
- FIG. 15C shows a tomographic image 1530 obtained by performing gradation conversion processing on a tomographic image of the same site of the same eye to be examined in the choroidal mode so as to ensure the contrast of the regions of the retina, vitreous part, and choroid. Shows. Also, FIG. 15C shows a rectangular area image 1532 having a positional relationship with the rectangular area image 1512 of the area of the choroid.
- a rectangular area image 1511 of the vitreous body area in the original tomographic image 1510 is used as input data, and a rectangular area image 1521 of the vitreous body area in the tomographic image 1520 is used as output data.
- one pair of teacher data is created using the rectangular area image 1512 of the choroidal area in the original tomographic image 1510 as input data and the rectangular area image 1532 of the choroidal area in the tomographic image 1530 as output data.
- the rectangular area image obtained by vertically inverting the rectangular area image 1532 is output data of the teacher data. Used as.
- the gradation corresponding to the region is applied to the tomographic image corresponding to the region of the observation target, particularly, the tomographic image acquired in the imaging mode in which the signal intensity of the region tends to be high.
- a tomographic image that has undergone the conversion process can be used.
- the learning data of the learned model is a medical image obtained by photographing the subject, and the medical image acquired in the photographing mode corresponding to any of different regions in the medical image It may include a medical image that has been subjected to gradation conversion processing corresponding to any of different regions in the medical image.
- the image quality improving unit 322 can generate a tomographic image with higher image quality for each region of the observation target by using the learned model learned by such teacher data.
- the input data of the teacher data is not limited to the original tomographic image taken in the vitreous mode, and may be the original tomographic image taken in the choroid mode.
- the tomographic image taken in the vitreous mode is vertically inverted from the original tomographic image related to the input data, an image obtained by vertically inverting the rectangular area image related to the tomographic image taken in the vitreous mode is output data of the teacher data. Used as.
- the gradation conversion process applied to the tomographic image captured in each imaging mode ensures the contrast of the retina portion, the vitreous portion, and the choroid portion so that a global observation can be performed. It is not limited to such gradation conversion processing.
- a tomographic image captured in the vitreous mode is subjected to gradation conversion so as to ensure the contrast of the vitreous region, and the tomographic image is used as output data of the teacher data.
- a tomographic image that has been subjected to gradation conversion so as to ensure the contrast of the region of the choroid may be used as the output data of the teacher data.
- Output data based on a tomographic image captured in the vitreous mode or output data based on a tomographic image captured in the choroid mode may be used as the output data of the teacher data regarding the region of the retina.
- the photographing mode is not limited to the vitreous mode and the choroid mode, and may be arbitrarily set according to a desired configuration. Also in this case, based on the tendency of the signal intensity in the tomographic image according to the imaging mode, a tomographic image having a tendency that the signal intensity of the region is high is used as the output data of the teacher data for each region of the observation target. be able to.
- the input data of the teacher data is not limited to the original tomographic image as in the first embodiment, and may be a tomographic image subjected to arbitrary gradation conversion.
- the output data of the teacher data is not limited to the tomographic image subjected to the gradation conversion, and may be a tomographic image adjusted so that the gradation conversion is easily performed on the original tomographic image.
- the image quality improving unit 322 uses one learned model to generate a high quality image in which different image processing is performed for each region of the target image.
- the image quality improving unit 322 for the tomographic image serving as the input data, the label image in which the region is labeled (annotated) for each pixel using the first learned model. To generate.
- the image quality improving unit 322 uses the second learned model different from the first learned model for the generated label image to generate a high quality image that has been subjected to image processing according to the region. To do.
- the image quality improving unit 322 uses a learned model that is different from the learned model for generating the high quality image (second medical image) to be used as the input data tomographic image (first medical image). ) To generate label images with different label values for different areas. Further, the image quality improving unit 322 generates a high quality image from the label image using the learned model for generating the high quality image (second medical image).
- the first learned model is trained by using the tomographic image as the input data and the teacher data as the output data of the label image in which the region is labeled for each pixel of the tomographic image.
- the label image an image appropriately processed by a conventional segmentation process may be used, or a manually labeled label image may be used.
- the label may be, for example, a vitreous label, a retina label, a choroid label, or the like.
- the label may be represented by a character string, or may be a numerical value or the like corresponding to each preset area.
- the label is not limited to the above example, and may indicate an arbitrary area according to a desired configuration.
- learning is performed using teacher data in which a label image is used as input data and a tomographic image obtained by subjecting the label image to high image quality processing according to a label for each pixel is output data.
- the image quality improvement processing according to the label for each pixel may include the gradation conversion processing according to the region of the observation target as described above.
- the image quality improving unit 322 uses the first and second learned models to perform high image processing that is different for each region of the observation target, as in the first embodiment. It is possible to generate a high-quality tomographic image. Further, the learned model outputs output data that is highly likely to correspond to the input data according to the learning tendency. In this regard, the learned model, when learning is performed using an image group having a similar image quality tendency as teacher data, outputs an image having a higher image quality more effectively with respect to the image having the similar tendency. be able to. Therefore, as in this modification, by using the learned model that uses the teacher data labeled for each area, it can be expected that an image with high image quality can be generated more effectively.
- the entire image may be used as in the first embodiment, or the rectangular area image (partial image) may be used.
- the input data and the output data may be an image after any gradation conversion or an image before gradation conversion depending on a desired configuration.
- the image quality improving unit 322 integrates the partial images of the tomographic images obtained by using the learned model to generate the final high image quality tomographic image.
- the partial image obtained by using the learned model is an image in which different gradation conversion processing is performed for each region of the observation target according to the tendency of learning. Therefore, if the partial images are simply integrated, the distribution of the luminance is different between the area where the different areas are in contact (the connection area) and the area adjacent to this area (for example, the vitreous area or the retina area). Notably, the image edges may be noticeable.
- the image quality improving unit 322 integrates the partial images obtained by using the learned model, the pixel values of the connected portion of the observation target area are based on the pixel values of the surrounding pixels. And make corrections so that the image edges are not noticeable. As a result, it is possible to generate an image suitable for diagnosis, in which discomfort due to an image edge is reduced.
- the image quality improving unit 322 can correct the brightness value by performing a known arbitrary blending process on the connection portion of the observation target region.
- the image quality improving unit 322 may perform blending processing on a portion adjacent to the connection portion of the observation target region.
- the process of making the image edge inconspicuous is not limited to the blending process, and may be any other process.
- Example 2 In the first embodiment, the generated / acquired tomographic image is uniformly subjected to the high image quality processing using the learned model.
- the image processing to be applied to the tomographic image is selected according to the instruction of the operator.
- the OCT apparatus according to this embodiment will be described below with reference to FIGS. 16 to 18C. Since the configuration other than the control unit according to the present embodiment is the same as that of the OCT apparatus 1 according to the first embodiment, the same reference numerals are used and the description thereof is omitted. Hereinafter, the OCT apparatus according to the present embodiment will be described focusing on the differences from the OCT apparatus according to the first embodiment.
- FIG. 16 shows a schematic configuration example of the control unit 1600 according to this embodiment.
- the configuration of the image processing unit 1620 other than the image quality improving unit 1622 and the selection unit 1623 is the same as the configuration of the control unit 30 according to the first embodiment, and thus the description will be given using the same reference numerals. Omit it.
- the image processing unit 1620 is provided with an image quality improving unit 1622 and a selecting unit 1623 in addition to the tomographic image generating unit 321.
- the selection unit 1623 selects image processing to be applied to the tomographic image according to the instruction from the operator input via the input unit 40.
- the image quality improving unit 1622 applies the image processing selected by the selecting unit 1623 to the tomographic image generated by the tomographic image generating unit 321 or the tomographic image acquired by the acquiring unit 310 to generate a high quality tomographic image. To do.
- FIG. 17 is a flowchart of a series of image processing according to this embodiment. Note that steps S1701 and S1702 are the same as steps S1101 and S1102 according to the first embodiment, and a description thereof will be omitted.
- step S1703 the acquisition unit 310 acquires an instruction from the operator regarding the selection of the process to be performed on the region of interest in the tomographic image or the tomographic image.
- the display control unit 350 can display the processing options on the display unit 50 and present the options to the operator.
- the selection unit 1623 selects image processing (image quality enhancement processing) to be applied to the tomographic image according to the instruction from the operator acquired in step S1703.
- image processing image quality enhancement processing
- the selection unit 1623 selects image quality enhancement processing for the retina, vitreous / choroid membrane quality enhancement processing, or image quality enhancement processing for the entire image in response to an instruction from the operator.
- step S1704 When the image quality improving process for the retina is selected in step S1704, the process proceeds to step S1705.
- step S1705 the image quality improving unit 1622 performs gradation conversion processing on the original tomographic image so that the above-described region of the retina can be easily observed, and generates a high image quality tomographic image.
- step S1704 when the image quality enhancement process for the vitreous / choroid is selected, the process proceeds to step S1706.
- the image quality improving unit 1622 performs a gradation conversion process on the original tomographic image so that the regions of the vitreous part and the choroid part as described above can be easily observed, and a high quality tomographic image is generated. To do.
- step S1707 the image quality improving unit 1622 uses the learned model for the original tomographic image to generate a high image quality tomographic image in which the retina, vitreous body, and choroid are easy to observe. Since the learned model according to the present embodiment is the same as the learned model according to the first embodiment, description regarding the learned model and learning data will be omitted.
- step S1708 the display control unit 350 causes the display unit 50 to display the high-quality tomographic image generated in step S1705, step S1706, or step S1707.
- the display processing by the display control unit 350 ends, a series of image processing ends.
- FIGS. 18A to 18C show an example of a display screen including a tomographic image that has undergone image quality enhancement processing according to the option of the region of interest and the selected region.
- FIG. 18A shows a display screen 1800 when the retina region is selected as the region of interest.
- a tomographic image 1802 that has been subjected to gradation conversion processing so that the option 1801 and the region of the retina can be easily observed is displayed.
- the operator uses the input unit 40 to select a retina from the three options of retina, vitreous / choroid, and overall retina. Select.
- the selecting unit 1623 selects the image quality improving process for the region of the retina according to the instruction from the operator, the image quality improving unit 1622 applies the selected image quality improving process for the tomographic image, and the retina region is observed.
- a tomographic image 1802 that is easy to perform is generated.
- the display control unit 350 displays the generated tomographic image 1802 on the display screen 1800 so that the retina portion can be easily observed.
- FIG. 18B shows a display screen 1810 when the vitreous portion and the choroid portion are selected as the areas to be noticed.
- a tomographic image 1812 that has been subjected to gradation conversion processing so that the options 1811 and the regions of the vitreous part and the choroid part can be easily observed are displayed.
- the operator desires the regions of the vitreous part and the choroid part as the regions to be focused on, the operator selects the three regions of the retina, the vitreous / choroid, and the whole in the option 1801 via the input unit 40. From the options, select the vitreous / choroid.
- the selecting unit 1623 selects the image quality improving process for the regions of the vitreous part and the choroid part according to the instruction from the operator, and the image quality improving unit 1622 applies the image quality improving process selected for the tomographic image, A high-quality tomographic image 1812 that allows easy observation of the vitreous body and choroid is generated.
- the display control unit 350 displays on the display screen 1810 a tomographic image 1812 in which the generated vitreous body and choroid can be easily observed.
- FIG. 18C shows the display screen 1820 when the entire area is selected as the area of interest.
- a tomographic image 1822 that has been subjected to gradation conversion processing so that the options 1821 and the entire region can be easily observed is displayed.
- the operator selects the entire area from the three options of the retina, vitreous / choroid, and the entire area in the option 1821 via the input unit 40. select.
- the selecting unit 1623 selects the image quality improving process for the entire image in accordance with the instruction from the operator, and the image quality improving unit 1622 applies the image quality improving process selected for the tomographic image to generate a high image quality tomographic image.
- the image quality improving unit 1622 uses the learned model to generate a high quality tomographic image that makes it easy to observe the entire image.
- the display controller 350 displays the generated tomographic image 1822 on the display screen 1820 so that the entire region is easy to observe.
- control unit 1600 includes the selection unit 1623 that selects the image processing to be applied to the first tomographic image acquired by the acquisition unit 310 according to the instruction from the operator. Based on the image processing selected by the selecting unit 1623, the image quality improving unit 1622 performs the gradation conversion process on the first tomographic image without using the learned model, and the third tomographic image (third medical image ) Is generated, or a second tomographic image is generated from the first tomographic image using the learned model.
- the control unit 1600 can observe a tomographic image that has undergone different image processing depending on the region that the operator wants to pay attention to.
- a tissue that does not actually exist may be drawn, or a tissue that originally exists may disappear. Therefore, erroneous diagnosis can be prevented by comparing and observing tomographic images subjected to different image processing.
- the gradation conversion processing for facilitating observation of the retina area and the gradation conversion processing for facilitation of observation of the vitreous and choroidal areas are not premised on the segmentation processing. . Therefore, appropriate image quality improvement processing can be expected even in a diseased eye.
- the image quality improving unit 1622 performs image processing of all options on the original tomographic image to generate high-quality tomographic images for each, and displays the high-quality tomographic image according to the instruction of the operator. It is also possible to switch only the above.
- the selection unit 1623 can function as a selection unit that selects a high-quality tomographic image to be displayed.
- preset image processing (default image processing) is applied to the original tomographic image to generate a high-quality tomographic image, and after displaying the high-quality tomographic image, an instruction from the operator is acquired. You may. In this case, if an instruction is received from the operator regarding image processing other than the default image processing, a new high quality image subjected to image processing according to the instruction can be displayed.
- the image processing is not limited to the image quality improvement processing for the retina area, the image quality improvement processing for the vitreous area and the choroid area, and the image quality improvement processing using the learned model.
- the gradation conversion processing that facilitates observation of the regions of the retina, vitreous body, and choroid which is based on the segmentation processing as described above, may be included in the image processing options.
- the high-quality tomographic image generated by the image processing based on the segmentation processing and the high-quality tomographic image generated by the image processing using the learned model can be compared and observed. Therefore, the operator can easily determine the false detection due to the segmentation process and the authenticity of the tissue in the tomographic image generated using the learned model.
- Example 3 In the first embodiment, the image subjected to the high image quality processing is displayed using the learned model.
- different analysis conditions are applied to each of a plurality of different regions in the generated high-quality tomographic image, image analysis is performed, and the image result is displayed.
- the OCT apparatus according to this embodiment will be described below with reference to FIGS. 19 and 20. Since the configuration other than the control unit according to the present embodiment is the same as that of the OCT apparatus 1 according to the first embodiment, the same reference numerals are used and the description thereof is omitted. Hereinafter, the OCT apparatus according to the present embodiment will be described focusing on the differences from the OCT apparatus according to the first embodiment.
- FIG. 19 shows a schematic configuration example of the control unit 1900 according to this embodiment.
- the configuration other than the analysis unit 1924 of the image processing unit 1920 is the same as the configuration of the control unit 30 according to the first embodiment, and thus the same reference numerals are used and the description thereof is omitted.
- the image processing unit 1920 is provided with an analysis unit 1924 in addition to the tomographic image generation unit 321 and the image quality improvement unit 322.
- the analysis unit 1924 performs image analysis on the high-quality tomographic image generated by the high-quality image generation unit 322 based on the analysis condition set for each region.
- the analysis condition set for each region for example, layer extraction or blood vessel extraction is set in the retina region or choroid region, and detection of vitreous or vitreous detachment is set in the vitreous region. To be done.
- the analysis conditions may be set in advance or may be set appropriately by the operator.
- the analysis unit 1924 can perform the layer extraction for the region for which the analysis condition is set, and perform the layer thickness value measurement or the like for the extracted layer. Further, when the blood vessel extraction is set as the analysis condition, the analysis unit 1924 can perform the blood vessel extraction on the region for which the analysis condition is set, and can perform the blood vessel density measurement or the like on the extracted blood vessel. . Furthermore, when the detection of the vitreous body or the separation of the vitreous body is set as the analysis condition, the analysis unit 1924 detects the vitreous body or the separation of the vitreous body in the region for which the analysis condition is set. After that, the analysis unit 1924 can quantify the detected vitreous body and peeling of the vitreous body, and can obtain the thickness, width, area, volume, and the like of the vitreous body and peeling of the vitreous body.
- the analysis conditions are not limited to these, and may be set arbitrarily according to the desired configuration.
- detection of the fibrous structure of the vitreous for the region of the vitreous part may be set.
- the analysis unit 1924 can quantify the detected fibrous structure of the vitreous and determine the thickness, width, area, volume, etc. of the fibrous structure.
- the analysis process according to the analysis condition is not limited to the above process and may be arbitrarily set according to a desired configuration.
- the display control unit 350 causes the display unit 50 to display the result of the image analysis performed by the analysis unit 1924 together with the high-quality tomographic image or separately from the high-quality tomographic image.
- FIG. 20 is a flowchart of a series of image processing according to this embodiment. Note that steps S2001 to S2003 are the same as steps S1101 to S1103 according to the first embodiment, and thus description thereof will be omitted.
- step S2003 when the image quality improving unit 322 generates a high quality tomographic image as in step S1103, the process proceeds to step S2004.
- step S2004 the analysis unit 1924 performs segmentation processing on the generated high-quality tomographic image and detects a plurality of different regions in the tomographic image.
- the analysis unit 1924 can detect, for example, a vitreous region, a retina region, a choroid region, and the like as the plurality of regions.
- Any known method can be used as the method of the segmentation processing, and for example, the segmentation processing may be a rule-based segmentation processing.
- the rule-based processing refers to processing using known regularity, for example, known regularity such as regularity of retina shape.
- the analysis unit 1924 performs image analysis on each area based on the analysis condition set for each detected area. For example, the analysis unit 1924 performs layer extraction or blood vessel extraction on the region for which the analysis condition is set according to the analysis condition, and calculates the layer thickness or the blood vessel density. The layer extraction and the blood vessel extraction may be performed by any known segmentation process or the like.
- the analysis unit 1924 may detect the vitreous body, the vitreous body exfoliation, and the vitreous body fiber structure in accordance with the analysis conditions, and perform quantification thereof. Note that the analysis unit 1924 can perform further contrast enhancement, binarization, morphology processing, boundary line tracking processing, and the like when detecting the vitreous body and the vitreous body exfoliation and the vitreous body fiber structure.
- step S2005 the display control unit 350 uses the analysis results (eg, layer thickness, blood vessel density, vitreous area, etc.) analyzed by the analysis unit 1924 to generate high-quality tomographic images generated by the high-quality image generation unit 322.
- the image is displayed on the display unit 50 together with the image.
- the display mode of the analysis result may be any mode according to the desired configuration.
- the display control unit 350 may display the analysis result of each area in association with each area of the high-quality tomographic image.
- the display control unit 350 may display the analysis result on the display unit 50 separately from the high quality tomographic image.
- control unit 1900 applies different analysis conditions to each of different areas in the high-quality tomographic image (second tomographic image) generated by the image quality improving unit 322, and The analysis part 1924 which performs an analysis is provided.
- the display control unit 350 causes the display unit 50 to display the analysis result of each of the different regions in the high-quality tomographic image by the analysis unit 1924.
- the analysis unit 1924 performs image analysis on the high-quality tomographic image generated by the high-quality image generation unit 322, so that features and the like in the image are detected more appropriately, and more accurate image analysis is performed. It can be performed.
- the analysis unit 1924 performs an image analysis on a high-quality tomographic image obtained by performing appropriate image processing for each region in accordance with the analysis conditions set for each region, thereby obtaining an appropriate analysis result for each region. Can be output. Therefore, the operator can quickly obtain an appropriate analysis result for the eye to be inspected.
- the analysis unit 1924 automatically performs image analysis on high-quality tomographic images according to the analysis conditions for each region.
- the analysis unit 1924 may start image processing on a high-quality tomographic image in response to an instruction from the operator.
- the analysis unit 1924 according to the present embodiment may be applied to the control unit 1600 according to the second embodiment.
- the analysis unit 1924 may perform the above-described image analysis on the tomographic images generated in steps S1705 to S1707, or may perform only the image processing on the region to be observed selected in step S1704. Good.
- the analysis unit 1924 can perform the above-described image analysis on the high-quality tomographic image using the result of the segmentation process.
- the analysis unit 1924 performs segmentation processing on the high-quality tomographic image generated by the image quality enhancement unit 322, and detects different areas.
- the analysis unit 1924 uses the label image obtained by using the first learned model, A plurality of different areas in a high-quality tomographic image may be grasped.
- the image processing units 320, 1620, and 1920 may generate a label image using a learned model for segmentation for the tomographic image and perform the segmentation process.
- the label image means a label image in which a region label is attached to each pixel in the tomographic image as described above. Specifically, it is an image in which an arbitrary region of the region group drawn in the image is divided by a group of pixel values (hereinafter, label value) that can be specified.
- the specified arbitrary region includes a region of interest (ROI: Region Of Interest) and a volume of interest (VOI: Volume Of Interest).
- the coordinate group of pixels By specifying the coordinate group of pixels with an arbitrary label value from the image, you can specify the coordinate group of pixels that depict the corresponding region such as the retina layer in the image. Specifically, for example, when the label value indicating the ganglion cell layer forming the retina is 1, the coordinate group having a pixel value of 1 is specified from the pixel group of the image, and the coordinate group is associated with the image. The pixel group to be extracted is extracted. Thereby, the region of the ganglion cell layer in the image can be specified.
- the segmentation processing may include processing for performing reduction or enlargement processing on the label image.
- the image complement processing method used for reducing or enlarging the label image uses a nearest neighbor method or the like that does not erroneously generate an undefined label value or a label value that should not exist at the corresponding coordinates. .
- the segmentation process is a process of identifying a region called ROI or VOI such as an organ or a lesion depicted in an image for use in image diagnosis or image analysis.
- the region group of the layer group that configures the retina can be specified from the image acquired by the OCT imaging in which the posterior segment of the eye is the imaging target.
- the number of specified regions is 0 if the region to be specified in the image is not drawn. Further, as long as a plurality of region groups to be specified in the image are drawn, the number of specified regions may be plural, or may be one region surrounding the region group. Good.
- the specified area group is output as information that can be used in other processing.
- the coordinate group of the pixel groups forming each of the specified region groups can be output as a numerical data group.
- a coordinate group indicating a rectangular area, an elliptical area, a rectangular area, an ellipsoidal area or the like including each of the specified area groups can be output as a numerical data group.
- a coordinate group indicating a straight line, a curved line, a plane, a curved surface, or the like, which is the boundary of the specified region group can be output as a numerical data group.
- a label image showing the specified area group can be output.
- a convolutional neural network for example, a convolutional neural network (CNN) can be used.
- CNN U-net type machine learning model
- LSTM Long short-term memory
- FCN Full Concurrent Network
- SegNet or the like
- a machine learning model or the like that performs object recognition in area units can be used according to the desired configuration.
- RCNN Registered CNN
- fastRCNN fastRCNN
- fastRCNN fastRCNN
- YOLO You Only Look Once
- SSD Single Shot Detector, or Single Shot MultiBox Detector
- the machine learning model illustrated here may be applied to the first learned model described in the third modification.
- the learning data of the machine learning model for segmentation uses a tomographic image as input data, and a label image in which a region label is attached to each pixel of the tomographic image as output data.
- Label images include, for example, inner limiting membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), photoreceptor inner segment outer segment junction (ISOS), retinal pigment epithelium layer (RPE), Bruch. Labeled images with labels such as membrane (BM) and choroid can be used.
- vitreous sclera
- OPL outer plexiform layer
- IPL inner plexiform layer
- INL inner granule layer
- cornea anterior chamber
- iris Alternatively, an image with a label such as a crystalline lens may be used. Note that the label image illustrated here may be used as output data of learning data regarding the first learned model described in Modification 3.
- the input data of the machine learning model for segmentation is not limited to the tomographic image. It may be an anterior segment image, an SLO fundus image, a fundus front image obtained by using a fundus camera, or an En-Face image or an OCTA front image described later.
- various images can be used as input data, and a label image in which a region name or the like is labeled for each pixel of various images can be used as output data.
- the output data may be an image labeled with a peripheral portion of the optic disc, Disc, and Cup.
- the input data may be an image with high image quality or an image without high image quality.
- the label image used as the output data may be an image in which each region is labeled in a tomographic image by a doctor or the like, or an image in which each region is labeled by a rule-based region detection process. It may be. However, if machine learning is performed using label images that have not been appropriately labeled as output data for training data, images obtained using a trained model trained using the training data will also be labeled appropriately. May result in a label image that has not been processed. Therefore, by removing the pair including such a label image from the learning data, it is possible to reduce the possibility that an inappropriate label image is generated using the learned model.
- the rule-based area detection process refers to a detection process that uses a known regularity such as the regularity of the shape of the retina.
- the image processing units 320, 1620, and 1920 can be expected to detect a specific area in various images at high speed and with accuracy by performing segmentation processing using such a learned model for segmentation.
- the learned model for segmentation may be used as the first learned model described in Modification 3.
- the analysis unit 1924 may perform the segmentation process using the learned model according to this modification.
- a trained model for segmentation may be prepared for each type of various images that are input data.
- the learned model for segmentation may be one that has been trained on images for each imaging region (for example, the center of the macula, the center of the optic disc), or it may be learned regardless of the imaging region. Good.
- the depth range is set and specified as described below. Therefore, for the En-Face image and the OCTA front image, a learned model may be prepared for each depth range for generating the image.
- the image processing units 320, 1620, and 1920 perform rule-based segmentation processing or segmentation processing using a learned model on at least one of the images before and after the image quality improvement units 322 and 1622 perform the image quality improvement processing. It can be performed.
- the image processing unit 320 can identify different regions in the at least one image.
- the image processing units 320, 1620, and 1920 use a learned model for segmentation (third learned model) different from the learned model for generating a high-quality image (second medical image). , Perform segmentation processing. As a result, it can be expected that a different region in at least one of the images can be specified accurately at high speed.
- the high-quality image obtained by using the learned model by the image quality improving units 322 and 1622 according to the above-described embodiment and modification may be manually corrected according to the instruction from the operator.
- the image quality improvement model may be updated by additional learning using, as learning data, a high quality image in which image processing of a designated area is changed, in response to an instruction from the examiner.
- the gradation conversion process is performed on the retina in the region where the gradation conversion process is performed on the vitreous part and the choroid part.
- the image can be used as learning data for additional learning.
- the image quality improvement model may be updated by additional learning using the value of the ratio set (changed) according to the instruction from the examiner as the learning data. For example, if the examiner tends to set a high ratio of the input image to the high-quality image when the input image is relatively dark, the learned model is additionally learned so as to have such a tendency. Thereby, for example, it can be customized as a learned model that can obtain a composition ratio that matches the taste of the examiner.
- a button may be displayed on the display screen for deciding whether or not to use the set (changed) value of the proportion as learning data for additional learning in response to an instruction from the examiner.
- the control units 30, 1600, 1900 can determine the necessity of additional learning according to the instruction of the operator.
- the ratio determined using the learned model may be set as a default value, and then the ratio value may be changed from the default value in response to an instruction from the examiner.
- the trained model can be provided in a device such as a server.
- the control unit 30, 1600, 1900 sets the input image and the above-described corrected high-quality image as a pair of learning data in accordance with an instruction from the operator to perform additional learning. It can be transmitted and saved in the server or the like.
- the control units 30, 1600, 1900 can determine whether or not to transmit the learning data of the additional learning to the device such as the server including the learned model according to the instruction of the operator.
- additional learning may be performed by similarly using the data manually corrected according to the instruction of the operator as the learning data.
- the determination of the necessity of additional learning and the determination of whether to transmit the data to the server may be performed by the same method. Also in these cases, it can be expected that the accuracy of each processing can be improved and that processing according to the tendency of the examiner's preference can be performed.
- additional learning may be performed using the data manually corrected according to the operator's instruction as the learning data. Further, the determination as to whether additional learning is necessary or whether to transmit data to the server may be performed by the same method as the above method. Also in these cases, it can be expected that the accuracy of the segmentation process is improved and that the process according to the preference of the examiner can be performed.
- the image processing units 320, 1620, and 1920 can also generate an En-Face image or OCTA front image of the eye to be inspected using the three-dimensional tomographic image.
- the display control unit 350 can display the generated En-Face image or OCTA image on the display unit 50.
- the analysis unit 1924 can also analyze the generated En-Face image and OCTA image.
- the En-Face image is a front image generated by projecting data in an arbitrary depth range in a three-dimensional tomographic image obtained by using optical interference in the XY directions.
- the front image is a depth range of at least a part of volume data (three-dimensional tomographic image) obtained by using optical interference, and data corresponding to the depth range determined based on the two reference planes is a two-dimensional plane. It is generated by projecting on or integrating with.
- the En-Face image is generated by projecting onto a two-dimensional plane data corresponding to a depth range determined based on the retinal layer detected by the segmentation processing of the two-dimensional tomographic image in the volume data.
- the representative value of the data within the depth range is set as the pixel value on the two-dimensional plane.
- the representative value can include a value such as an average value, a median value, or a maximum value of pixel values within a range (depth range) in the depth direction of a region surrounded by two reference planes.
- the depth range related to the En-Face image is based on, for example, two layer boundaries regarding the retinal layer detected by the above-described rule-based segmentation processing method or the segmentation processing using the trained model described in Modification 5. May be specified. Further, the depth range may be a range including a predetermined number of pixels in a deeper direction or a shallower direction with reference to one of two layer boundaries regarding the retinal layer detected by these segmentation processes. In addition, the depth range related to the En-Face image may be, for example, a range that is changed (offset) in accordance with an operator's instruction from a range between two layer boundaries related to the detected retinal layer. Good.
- the operator moves, for example, an index indicating the upper limit or the lower limit of the depth range, which is superimposed on the tomographic image whose image quality has been improved by the image quality improving units 322 and 1622 or which has not been imaged.
- the depth range can be changed by, for example,
- the generated front image is not limited to the En-Face image based on the brightness value (En-Face image of brightness) as described above.
- the generated front image may be, for example, a motion contrast front image generated by projecting or integrating data corresponding to the above-described depth range on a two-dimensional plane for motion contrast data between a plurality of volume data.
- the motion contrast data is data indicating a change between a plurality of volume data obtained by controlling the measurement light to be scanned a plurality of times in the same region (same position) of the eye to be inspected.
- the volume data is composed of a plurality of tomographic images obtained at different positions.
- the motion contrast data can be obtained as the volume data by obtaining the data indicating the change between the plurality of tomographic images obtained at the substantially same position at each of the different positions.
- the motion contrast front image is also referred to as an OCTA front image (OCTA En-Face image) regarding OCT angiography (OCTA) for measuring the movement of blood flow
- the motion contrast data is also referred to as OCTA data.
- the motion contrast data can be obtained, for example, as a decorrelation value between two tomographic images or corresponding interference signals, a variance value, or a value obtained by dividing the maximum value by the minimum value (maximum value / minimum value). , May be obtained by any known method.
- the two tomographic images can be obtained, for example, by controlling so that the measurement light is scanned a plurality of times in the same region (same position) of the subject's eye.
- the three-dimensional OCTA data (OCT volume data) used when generating the OCTA front image is generated by using at least a part of the interference signal common to the volume data including the tomographic image used for image segmentation.
- the volume data (three-dimensional tomographic image) and the three-dimensional OCTA data can correspond to each other. Therefore, by using the three-dimensional motion contrast data corresponding to the volume data, for example, a motion contrast front image corresponding to the depth range determined based on the retinal layer detected by the image segmentation can be generated.
- the volume data used when generating the En-Face image or the OCTA front image may be composed of tomographic images of which the image quality is improved by the image quality improving units 322 and 1622.
- the image processing units 320, 1620, and 1920 may generate an En-Face image or an OCTA front image by using the volume data composed of a plurality of tomographic images obtained at a plurality of different positions with high image quality. Good.
- the image processing units 320, 1620, and 1920 display one of the images after the image quality enhancement process.
- a front image corresponding to the depth range of the part can be generated.
- the image processing units 320, 1620, and 1920 can generate a high-quality front image based on the high-quality three-dimensional tomographic image.
- the image quality improving units 322 and 1622 perform the image quality improving process on the tomographic image using the learned model (image quality improving model) for image quality improvement.
- the image quality improving units 322 and 1622 may perform the image quality improving process on other images by using the image quality improving model, and the display control unit 350 displays the various image quality improving images on the display unit. It may be displayed on 50.
- the image quality enhancement units 322 and 1622 may perform the image quality enhancement processing on the En-Face image of brightness, the OCTA front image, and the like.
- the display control unit 350 can cause the display unit 50 to display at least one of the tomographic image, the brightness En-Face image, and the OCTA front image, which have been subjected to the image quality enhancement processing by the image quality enhancement units 322 and 1622.
- the image displayed with high image quality may be an SLO fundus image, a fundus image acquired by a fundus camera (not shown), a fluorescent fundus image, or the like.
- the learning data of the image quality enhancement model for performing the image quality enhancement process on various images is the same as the learning data of the image quality enhancement model according to the above-described embodiment and modification regarding various images.
- the previous image is used as input data, and the image after the high image quality processing is used as output data.
- the image quality enhancement processing regarding the learning data similar to the above-described embodiment and modification, for example, arithmetic averaging processing, processing using a smoothing filter, maximum posterior probability estimation processing (MAP estimation processing), floor It may be a tone conversion process or the like.
- the image after the high image quality processing may be, for example, an image that has been subjected to filter processing such as noise removal and edge enhancement, or an image whose contrast is adjusted from a low-luminance image to a high-luminance image. May be used.
- the output data of the teacher data related to the high image quality model may be a high quality image, it was captured using an OCT device having higher performance than the OCT device when the image as the input data was captured. It may be an image or an image taken with a high load setting.
- the image quality improvement model may be prepared for each type of image to be subjected to the image quality improvement processing.
- a high image quality model for a tomographic image a high image quality model for an En-Face image of brightness, and a high image quality model for an OCTA front image may be prepared.
- the image quality improvement model for the En-Face image of luminance and the image quality improvement model for the OCTA front image are learning by comprehensively learning images of different depth ranges with respect to the depth range related to image generation (generation range). It may be a completed model. Images of different depth ranges may include, for example, as shown in FIG.
- the image quality improvement model for the brightness En-Face image and the image quality improvement model for the OCTA front image a plurality of image quality improvement models obtained by learning images for different depth ranges may be prepared.
- the image quality improvement model for performing the image quality improvement processing on images other than the tomographic image is not limited to the image quality improvement model for performing different image processing for each region, and the image quality improvement model for performing the same image processing on the entire image is performed. It may be a model.
- the tomographic images Im2151 to Im2153 illustrated in FIG. 21B are examples of tomographic images obtained at different positions in the sub-scanning direction.
- learning may be performed separately for each imaged site, and the imaged site does not matter. You may also learn together.
- the tomographic image of high image quality may include a tomographic image of brightness and a tomographic image of motion contrast data.
- learning may be performed separately for each image quality improvement model.
- the display control unit 350 displays an image on which the image quality improving units 322 and 1622 have performed the image quality improving process on the display unit 50.
- the image quality improving process image quality improving process
- the image quality enhancement process can be similarly applied to a display screen such as an image capturing confirmation screen where the examiner confirms whether or not the image capturing is successful immediately after the image capturing.
- the display control unit 350 can cause the display unit 50 to display a plurality of high-quality images generated by the image-quality enhancing units 322 and 1622 and low-quality images that have not been enhanced in image quality.
- the display control unit 350 selects, for the plurality of high-quality images displayed on the display unit 50 and the low-quality images that have not been enhanced in quality, the low-quality image and the high-quality image selected according to the instruction of the examiner. Can be displayed on the display unit 50.
- the image processing apparatus can also output the low-quality image and the high-quality image selected according to the instruction of the examiner to the outside.
- the display screen 2200 shows the entire screen, and the display screen 2200 shows a patient tab 2201, an imaging tab 2202, a report tab 2203, and a setting tab 2204. Further, the diagonal lines in the report tab 2203 represent the active state of the report screen.
- a report screen will be described.
- the report screen shown in FIG. 22A shows an SLO fundus image Im2205, OCTA front images Im2207, Im2208, a luminance En-Face image Im2209, tomographic images Im2211, Im2212, and a button 2220. Further, an OCTA front image Im2206 corresponding to the OCTA front image Im2207 is superimposed and displayed on the SLO fundus image Im2205. Furthermore, the boundary lines 2213 and 2214 of the depth ranges of the OCTA front images Im2207 and Im2208 are superimposed and displayed on the tomographic images Im2211 and Im2212, respectively.
- the button 2220 is a button for designating execution of the high image quality processing. The button 2220 may be a button for instructing to display a high quality image, as described later.
- the image quality improvement process is executed by designating the button 2220 or based on the information stored (stored) in the database.
- the display of a high-quality image and the display of a low-quality image are switched by designating the button 2220 according to an instruction from the examiner will be described.
- the target image for the high image quality processing will be described below as an OCTA front image.
- the depth range of the OCTA front images Im2207 and Im2208 may be determined using information of the retinal layer detected by the above-described conventional segmentation processing or segmentation processing using a trained model.
- the depth range may be, for example, a range between two layer boundaries regarding the detected retinal layer, or a predetermined depth direction or a shallower direction based on one of the two layer boundaries regarding the detected retinal layer. The number of pixels may be included in the range.
- the depth range may be, for example, a range that is changed (offset) in accordance with an operator's instruction from a range between two layer boundaries regarding the detected retinal layer.
- the display control unit 350 displays the OCTA front images Im2207 and Im2208 of low image quality. After that, when the examiner designates the button 2220, the image quality improving units 322 and 1622 perform the image quality improving process on the OCTA front images Im2207 and Im2208 displayed on the screen. After the image quality improving process is completed, the display control unit 350 displays the high image quality images generated by the image quality enhancing units 322 and 1622 on the report screen.
- the display control unit 350 can also display an image that has been subjected to high image quality processing for the OCTA front image Im2206. it can. Further, the display control unit 350 can change the display of the button 2220 to the active state so that it can be seen that the image quality improving process has been executed.
- the execution of the processing in the image quality improving units 322 and 1622 does not have to be limited to the timing when the examiner specifies the button 2220. Since the types of the OCTA front images Im2207 and Im2208 to be displayed when opening the report screen are known in advance, the image quality improving units 322 and 1622 perform image quality improvement processing when the displayed screen transitions to the report screen. You may execute. Then, the display control unit 350 may display the high-quality image on the report screen when the button 2220 is pressed. Furthermore, it is not necessary that there be two types of images for which the high image quality processing is performed in response to an instruction from the examiner or when transitioning to the report screen.
- An image that is likely to be displayed for example, a plurality of OCTA front images such as a surface layer (Im2110), a deep layer (Im2120), an outer layer (Im2130), and a choroidal vascular network (Im2140) shown in FIG. 21A is processed. It may be performed. In this case, the image subjected to the high image quality processing may be temporarily stored in a memory or a database.
- the display quality is controlled by the image quality improvement units 322 and 1622 when the transition to the report screen is performed.
- the unit 350 causes the display unit 50 to display by default.
- the display control unit 350 displays the button 2220 in the active state by default so that the examiner can see that the high-quality image obtained by executing the high-quality processing is displayed. Can be configured.
- the display control unit 350 causes the display unit 50 to display the low-quality image by canceling the active state by designating the button 2220. You can At this time, if the examiner wants to return the displayed image to the high-quality image, he or she specifies the button 2220 to activate it, and the display control unit 350 causes the display unit 50 to display the high-quality image again.
- Whether to execute high image quality processing on the database is specified for each layer, such as common to all data stored in the database and for each shooting data (each inspection). For example, when the state in which the image quality enhancement process is performed on the entire database is saved, the state in which the examiner does not perform the image quality enhancement process is saved for individual imaging data (individual inspection). be able to. In this case, it is possible to display the individual imaged data in which the state in which the high image quality processing is not executed is stored in the state in which the high image quality processing is not executed when displaying next time. With such a configuration, if it is not designated whether or not to execute the image quality enhancement process in units of image data (inspection unit), the process can be performed based on the information designated for the entire database. it can. Further, in the case where the image data is designated by the image data unit (inspection unit), the processing can be individually executed based on the information.
- a user interface (not shown) (for example, a save button) may be used to save the execution state of the high image quality processing for each image data (each inspection). Also, when transitioning to other imaging data (other examination) or other patient data (for example, changing to a display screen other than the report screen in response to an instruction from the examiner), the display state (for example, button 2220 The state in which the image quality enhancement processing is executed may be stored based on the (state).
- an OCTA front image Im2207, Im2208 is displayed as the OCTA front image, but the OCTA front image to be displayed can be changed by the examiner's designation. Therefore, the change of the image to be displayed when the execution of the high image quality processing is designated (the button 2220 is in the active state) will be described.
- the image to be displayed can be changed using a user interface (not shown) (for example, a combo box).
- a user interface for example, a combo box
- the image quality improving units 322 and 1622 perform the image quality improving process on the choroidal vascular network image
- the display control unit 350 sets the high image quality.
- the high-quality image generated by the image quality conversion units 322 and 1622 is displayed on the report screen. That is, the display control unit 350 displays the high-quality image in the first depth range in accordance with the instruction from the examiner, and displays the high-quality image in the second depth range that is at least partially different from the first depth range. You may change to the display of an image.
- the display control unit 350 changes the first depth range to the second depth range in response to an instruction from the examiner, thereby displaying the high-quality image in the first depth range to the second depth range. You may change to the display of the high quality image of the depth range of. As described above, for the image that is likely to be displayed at the time of transition of the report screen, if the high quality image has already been generated, the display control unit 350 may display the generated high quality image. .
- the method of changing the image type is not limited to the above-described one, but the OCTA front image in which different depth ranges are set by changing the reference layer and the offset value is generated, and the image quality improvement processing is performed on the generated OCTA front image. It is also possible to display a high-quality image obtained by executing. In that case, when the reference layer or the offset value is changed, the image quality improving units 322 and 1622 execute the image quality improving process on an arbitrary OCTA front image, and the display control unit 350 displays the high image quality image. Display on the report screen.
- the reference layer and the offset value can be changed using a user interface (not shown) (for example, a combo box or a text box).
- the depth range (generation range) of the OCTA front image can be changed by dragging (moving the layer boundary) any one of the boundary lines 2213 and 2214 that are superimposed and displayed on the tomographic images Im2211 and Im2212, respectively. .
- the image quality improving units 322 and 1622 may always process the execution command, or may execute the command after changing the layer boundary by dragging. Alternatively, the execution of the high image quality processing is instructed continuously, but the previous instruction may be canceled and the latest instruction may be executed when the next instruction comes.
- the image quality improvement process may take a relatively long time. Therefore, it may take a relatively long time to display a high-quality image regardless of the timing at which the instruction is executed. Therefore, after the depth range for generating the OCTA front image is set in accordance with the instruction from the examiner and before the high-quality image is displayed, the low-quality OCTA corresponding to the set depth range is displayed.
- the front image (low quality image) may be displayed. That is, when the depth range is set, a low-quality OCTA front image (low-quality image) corresponding to the set depth range is displayed, and when the high image quality processing is completed, the low-quality OCTA front image is displayed.
- the display may be changed to the display of a high quality image.
- information indicating that the image quality enhancement process is being performed may be displayed from the setting of the depth range to the display of the high quality image.
- these processes are not limited to the configuration applied when it is premised that the image quality enhancement process is already designated (the button 2220 is in the active state). For example, when the execution of the high image quality processing is instructed according to the instruction from the examiner, these processing can be applied until the high quality image is displayed.
- the OCTA front images Im2207 and Im2108 relating to different layers are displayed as the OCTA front images, and low-quality and high-quality images are switched and displayed, but the displayed image is not limited to this.
- a low image quality OCTA front image may be displayed as the OCTA front image Im2207
- a high image quality OCTA front image may be displayed as the OCTA front image Im2208.
- FIG. 22B shows a screen example in which the OCTA front image Im2207 in FIG. 22A is enlarged and displayed. Also in the screen example shown in FIG. 22B, the button 2220 is displayed as in FIG. 22A.
- the screen transition from the screen of FIG. 22A to the screen of FIG. 22B is transitioned by, for example, double-clicking the OCTA front image Im2207, and transits from the screen of FIG. 22B to the screen of FIG. 22A by the close button 2230.
- the screen transition is not limited to the method shown here, and a user interface (not shown) may be used.
- buttons 2220 If execution of high image quality processing is specified during screen transition (button 2220 is active), that state is maintained even during screen transition. That is, when transitioning to the screen of FIG. 22B while the high-quality image is being displayed on the screen of FIG. 22A, the high-quality image is also displayed on the screen of FIG. 22B. Then, the button 2220 is activated. The same applies to the case of transition from the screen of FIG. 22B to the screen of FIG. 22A. In FIG. 22B, the button 2220 can be designated to switch the display to a low quality image.
- the high-quality image display state is maintained.
- the transition can be performed as it is. That is, an image corresponding to the state of the button 2220 on the display screen before transition can be displayed on the display screen after transition. For example, if the button 2220 on the display screen before the transition is in the active state, a high quality image is displayed on the display screen after the transition. Further, for example, if the active state of the button 2220 on the display screen before the transition is released, the low image quality image is displayed on the display screen after the transition.
- buttons 2220 on the follow-up observation display screen when the button 2220 on the follow-up observation display screen is activated, a plurality of images obtained at different dates and times (different examination dates) displayed side by side on the follow-up observation display screen are switched to high-quality images. May be. That is, when the button 2220 on the display screen for follow-up observation is activated, the button 2220 may be collectively reflected on a plurality of images obtained at different dates and times.
- Fig. 23 shows an example of a display screen for follow-up observation.
- the depth range of the OCTA front image can be changed by selecting a set desired by the examiner from the default depth range set displayed in the list boxes 2302 and 2303.
- the surface layer of the retina is selected in the list box 2302
- the deep layer of the retina is selected in the list box 2303.
- the analysis result of the OCTA front image of the retinal surface layer is displayed in the upper display area
- the analysis result of the OCTA front image of the deep retinal layer is displayed in the lower display area.
- the analysis result display is deselected, it may be collectively changed to a parallel display of a plurality of OCTA front images at different dates and times. Then, when the button 2220 is designated in response to the instruction from the examiner, the display of the plurality of OCTA front images is collectively changed to the display of the plurality of high-quality images.
- the analysis results of the plurality of OCTA front images are displayed and the analysis results of the plurality of high quality images are displayed. Will be changed all at once.
- the analysis result may be displayed by superimposing the analysis result on the image with arbitrary transparency.
- the change from the display of the image to the display of the analysis result may be, for example, a change in a state in which the analysis result is superimposed on the displayed image with an arbitrary transparency.
- the change from the display of the image to the display of the analysis result may be, for example, a change to the display of an image (for example, a two-dimensional map) obtained by blending the analysis result and the image with arbitrary transparency. Good.
- the type of layer boundary and the offset position used to specify the depth range can be collectively changed from the user interfaces 2305 and 2306. It should be noted that the user interfaces 2305 and 2306 for changing the type of layer boundary and the offset position are examples, and any other interface may be used.
- the tomographic image is also displayed together, and the layer boundary data superimposed on the tomographic image is moved in response to an instruction from the examiner, thereby collectively changing the depth range of a plurality of OCTA front images at different dates and times. You may. At this time, if a plurality of tomographic images of different dates and times are displayed side by side and the above-mentioned movement is performed on one tomographic image, the layer boundary data may be similarly moved on another tomographic image.
- the presence / absence of the image projection method and the projection artifact suppression processing may be changed by, for example, selecting from a user interface such as a context menu.
- the selection button 2307 may be selected to display a selection screen (not shown), and the image selected from the image list displayed on the selection screen may be displayed.
- the arrow 2304 displayed at the upper part of FIG. 23 is a mark indicating that the examination is currently selected, and the reference examination (Baseline) is the examination selected in the follow-up imaging (see FIG. 23). It is the image on the left side).
- a mark indicating the reference inspection may be displayed on the display unit.
- the measurement value distribution (map or sector map) for the reference image is displayed on the reference image. Further, in this case, in a region corresponding to the other inspection date, a difference measurement value map between the measurement value distribution calculated for the reference image and the measurement value distribution calculated for the image displayed in the region. Is displayed.
- a trend graph (a graph of measured values for images on each inspection day obtained by measuring change over time) may be displayed on the report screen. That is, time series data (for example, a time series graph) of a plurality of analysis results corresponding to a plurality of images at different dates and times may be displayed.
- analysis results related to dates and times other than the dates and times corresponding to the displayed images are also distinguishable from the analysis results corresponding to the displayed images (for example, time series).
- the color of each point on the graph may differ depending on whether or not an image is displayed).
- a regression line (curve) of the trend graph or a corresponding mathematical expression may be displayed on the report screen.
- the OCTA front image has been described, but the image to which the process according to this modification is applied is not limited to this.
- the image relating to processing such as display, image quality improvement, and image analysis according to the present modification may be an En-Face image of luminance. Further, not only the En-Face image but also a different image such as a tomographic image by B-scan, an SLO fundus image, a fundus image, or a fluorescent fundus image may be used.
- the user interface for executing the high image quality processing is to instruct execution of the high image quality processing for a plurality of images of different types, and select an arbitrary image from the plurality of images of different types. There may be an instruction to execute the image quality enhancement process.
- the tomographic images Im2211, Im2212 shown in FIG. 22A may be displayed with high image quality.
- a high-quality tomographic image may be displayed in the region where the OCTA front images Im2207 and Im2208 are displayed. Note that only one tomographic image having a high image quality and displayed may be displayed, or a plurality of tomographic images may be displayed.
- the tomographic images acquired at different positions in the sub-scanning direction may be displayed, or, for example, a plurality of tomographic images obtained by cross scanning or the like may be displayed with high image quality.
- images in different scanning directions may be displayed respectively.
- a plurality of tomographic images obtained by, for example, a radial scan with high image quality a plurality of partially selected tomographic images (for example, two tomographic images at positions symmetrical to each other with respect to a reference line). ) May be displayed respectively.
- a plurality of tomographic images are displayed on a display screen for follow-up observation as shown in FIG. 23, and an instruction for image quality improvement and an analysis result (for example, the thickness of a specific layer, etc.) are obtained by the same method as the above method.
- the image quality improving process may be performed on the tomographic image based on the information stored in the database by the same method as the above method.
- the SLO fundus image Im2205 may be displayed with high image quality.
- the SLO fundus image Im2205 may be displayed with high image quality.
- the En-Face image Im2209 of luminance may be displayed with high image quality.
- a plurality of SLO fundus images and En-Face images of brightness are displayed on a display screen for follow-up observation as shown in FIG. , Specific layer thickness, etc.) may be displayed.
- the image quality enhancement process may be performed on the SLO fundus image or the En-Face image of the brightness based on the information stored in the database by the same method as the above method.
- the display of the tomographic image, the SLO fundus image, and the luminance En-Face image is merely an example, and these images may be displayed in any manner depending on the desired configuration. Further, at least two or more of the OCTA front image, the tomographic image, the SLO fundus image, and the luminance En-Face image may be displayed with high image quality by a single instruction.
- the display control unit 350 can display the image that has been subjected to the image quality enhancement processing by the image quality enhancement units 322 and 1622 according to the present modification on the display unit 50.
- the display screen The selected state may be maintained even when is changed.
- the selected state of the at least one is maintained even if the other condition is changed to the selected state.
- the display control unit 350 raises the display of the analysis result of the low-quality image according to the instruction from the examiner (for example, when the button 2220 is designated). You may change to the display of the analysis result of a quality image.
- the display control unit 350 displays the analysis result of the high-quality image in response to an instruction from the examiner (for example, when the designation of the button 2220 is canceled) when the analysis result display is in the selected state. May be changed to the display of the analysis result of the low quality image.
- the display control unit 350 in the case where the display of the high quality image is in the non-selected state, responds to the instruction from the examiner (for example, when the designation of the display of the analysis result is canceled), the display control unit 350 displays the low quality image.
- the display of the analysis result may be changed to the display of the low quality image.
- the display control unit 350 displays the low quality image according to the instruction from the examiner (for example, when the display of the analysis result is designated). You may change to the display of the analysis result of a low quality image.
- the display control unit 350 analyzes the high-quality image in response to an instruction from the examiner (for example, when the display of the analysis result is canceled) when the display of the high-quality image is in the selected state.
- the display of the result may be changed to the display of a high quality image.
- the display control unit 350 raises the display of the high-quality image according to the instruction from the examiner (for example, when the display of the analysis result is designated). You may change to the display of the analysis result of a quality image.
- the display control unit 350 displays the analysis result of the first type of the low-quality image in response to the instruction from the examiner (for example, when the display of the analysis result of the second type is designated).
- the display may be changed to the display of the analysis result of the second type of the low image quality image.
- the display of the high-quality image is in the selected state and the display of the analysis result of the first type is in the selected state.
- the display control unit 350 displays the analysis result of the first type of the high-quality image in response to the instruction from the examiner (for example, when the display of the analysis result of the second type is designated).
- the display may be changed to the display of the analysis result of the second type of high quality image.
- the analysis result may be displayed by superimposing the analysis result on the image with arbitrary transparency.
- the display of the analysis result may be changed, for example, to a state in which the analysis result is superimposed on the displayed image with arbitrary transparency.
- the change to the display of the analysis result may be, for example, a change to the display of an image (for example, a two-dimensional map) obtained by blending the analysis result and the image with arbitrary transparency.
- the image quality improvement units 322 and 1622 use the image quality improvement model to generate a high quality image in which the image quality of the tomographic image is improved.
- the constituent elements that generate a high-quality image using the high-quality image model are not limited to the high-quality image units 322 and 1622.
- a second image quality improving unit different from the image quality improving units 322 and 1622 may be provided, and the second image quality improving unit may generate a high quality image using the image quality improving model.
- the second image quality improving unit is not the high quality image subjected to different image processing for each region using the learned model, but the high quality image subjected to the same image processing for the entire image. May be generated.
- the output data of the learned model may be an image in which the same image quality improving process is performed on the entire image.
- the second image quality improving unit and the image quality improving model used by the second image quality improving unit may be configured by a software module executed by a processor such as a CPU, MPU, GPU, or FPGA. It may be configured by a circuit that performs a specific function such as an ASIC.
- the display control unit 350 can cause the display unit 50 to display an image selected from the high-quality images generated by the high-quality image generation units 322 and 1622 and the input image, according to an instruction from the examiner. Further, the display control unit 350 may switch the display on the display unit 50 from the captured image (input image) to the high-quality image in response to an instruction from the examiner. That is, the display control unit 350 may change the display of the low image quality image to the display of the high image quality image in response to an instruction from the examiner. Further, the display control unit 350 may change the display of the high quality image to the display of the low quality image in response to an instruction from the examiner.
- the image quality improvement units 322 and 1622 execute the image quality improvement process using the image quality improvement model (input of the image to the image quality improvement model) according to the instruction from the examiner, and the display control unit
- the display unit 50 may display the generated high-quality image on the display unit 50.
- the image capturing device image capturing unit 20
- the image quality improving units 322 and 1622 automatically generate a high image quality image based on the input image using the image quality enhancing model
- the display control unit 350 may display the high-quality image on the display unit 50 in response to an instruction from the examiner.
- the display control unit 350 may change the display of the analysis result of the low-quality image to the display of the analysis result of the high-quality image in response to the instruction from the examiner.
- the display control unit 350 may change the display of the analysis result of the high-quality image to the display of the analysis result of the low-quality image according to an instruction from the examiner.
- the display control unit 350 may change the display of the analysis result of the low image quality image to the display of the low image quality image in response to an instruction from the examiner.
- the display control unit 350 may change the display of the low image quality image to the display of the analysis result of the low image quality image in response to an instruction from the examiner.
- the display control unit 350 may change the display of the analysis result of the high quality image to the display of the high quality image in accordance with the instruction from the examiner. Further, the display control unit 350 may change the display of the high-quality image to the display of the analysis result of the high-quality image in response to the instruction from the examiner.
- the display control unit 350 may change the display of the analysis result of the low image quality image to the display of the analysis result of another type of the low image quality image in response to an instruction from the examiner.
- the display control unit 350 may change the display of the analysis result of the high-quality image to the display of the analysis result of another type of the high-quality image according to the instruction from the examiner.
- the analysis result of the high quality image may be displayed by superimposing the analysis result of the high quality image on the high quality image with arbitrary transparency.
- the analysis result of the low image quality image may be displayed by superimposing the analysis result of the low image quality image on the low image quality image with arbitrary transparency.
- the display of the analysis result may be changed, for example, to a state in which the analysis result is superimposed on the displayed image with arbitrary transparency.
- the change to the display of the analysis result may be, for example, a change to the display of an image (for example, a two-dimensional map) obtained by blending the analysis result and the image with arbitrary transparency.
- the image quality improvement units 322 and 1622 use the image quality improvement model to generate a high quality image in which the image quality of the tomographic image is improved.
- the constituent elements that generate a high-quality image using the high-quality image model are not limited to the high-quality image units 322 and 1622.
- a second image quality improving unit different from the image quality improving units 322 and 1622 may be provided, and the second image quality improving unit may generate a high quality image using the image quality improving model.
- the second image quality improving unit is not the high quality image subjected to different image processing for each region using the learned model, but the high quality image subjected to the same image processing for the entire image. May be generated.
- the output data of the learned model may be an image in which the same image quality improving process is performed on the entire image.
- the second image quality improving unit and the image quality improving model used by the second image quality improving unit may be configured by a software module executed by a processor such as a CPU, MPU, GPU, or FPGA. It may be configured by a circuit that performs a specific function such as an ASIC.
- an image which has been subjected to the image quality enhancement process using the image quality enhancement model is displayed according to the active state of the button 2220 on the display screen.
- the analysis value using the result of the segmentation processing using the learned model may be displayed according to the active state of the button 2220.
- the display control unit 350 causes the display unit 50 to display the analysis result using the result of the segmentation process. Display it.
- the display control unit 350 causes the display unit 50 to display the analysis result using the result of the segmentation process using the learned model.
- the analysis result using the result of the segmentation process without using the learned model and the analysis result using the result of the segmentation process using the learned model are switched and displayed according to the active state of the button.
- These analysis results are based on the results of the processing by the learned model and the image processing by the rule base, respectively, and thus there may be a difference between the results. Therefore, by switching and displaying these analysis results, the examiner can compare the two and use a more convincing analysis result for diagnosis.
- the segmentation processing when the segmentation processing is switched, for example, when the displayed image is a tomographic image, the numerical value of the layer thickness analyzed for each layer may be switched and displayed. Further, for example, when a tomographic image that is divided for each layer by color, a hatching pattern, or the like is displayed, the tomographic images in which the shape of the layer is changed may be switched and displayed according to the result of the segmentation processing. Further, when the thickness map is displayed as the analysis result, the thickness map in which the color indicating the thickness is changed according to the result of the segmentation process may be displayed. Further, the button for designating the high image quality processing and the button for designating the segmentation processing using the learned model may be provided separately, or either one may be provided, or both buttons may be provided. It may be provided as one button.
- the switching of the segmentation process may be performed based on the information stored (recorded) in the database, similarly to the switching of the image quality enhancement process described above.
- the switching of the segmentation processing may be performed in the same manner as the switching of the image quality improvement processing described above.
- the display control unit 350 in the various embodiments and modifications described above may display the analysis result of the layer thickness of the desired layer, various blood vessel densities, etc. on the report screen of the display screen. Further, optic disc, macula, vascular region, nerve fiber bundle, vitreous region, macula region, choroid region, sclera region, lamina cribrosa region, retinal layer boundary, retinal layer boundary end, photoreceptor cell, blood cell, The value (distribution) of the parameter regarding the site of interest including at least one of a blood vessel wall, a blood vessel inner wall boundary, a blood vessel outer boundary, a ganglion cell, a corneal region, a corner region, and Schlemm's canal may be displayed as an analysis result.
- the artifacts are, for example, false image areas caused by light absorption by blood vessel areas, projection artifacts, band-like artifacts in the front image generated in the main scanning direction of the measurement light due to the state of the subject's eye (movement, blinking, etc.), and the like. It may be. Further, the artifact may be any artifact region as long as it occurs randomly on the medical image of the predetermined region of the subject every time the image is captured.
- the display control unit 350 may cause the display unit 50 to display the value (distribution) of the parameter regarding the area including at least one of the various artifacts (impairment area) as described above as the analysis result.
- parameter values (distributions) relating to a region including at least one of drusen, new blood vessels, vitiligo (hard vitiligo), and abnormal sites such as pseudo-drussen may be displayed as the analysis result.
- the image analysis process may be performed by the analysis unit 1924 or may be performed by an analysis unit different from the analysis unit 1924. Further, the image on which the image analysis is performed may be an image with high image quality or an image without high image quality.
- the analysis result may be displayed in an analysis map, a sector indicating a statistical value corresponding to each divided area, or the like.
- a learned model (analysis result generation engine, a learned model for analysis result generation) obtained by the analysis unit 1924 or another analysis unit learning the analysis result of the medical image as learning data is used. It may be generated by At this time, the learned model uses learning data including a medical image and an analysis result of the medical image, learning data including a medical image and an analysis result of a medical image of a different type from the medical image, and the like. It may be obtained from
- the learning data may include the area label image generated by the segmentation process and the analysis result of the medical image using the area label image.
- the image processing units 320, 1620, and 1920 use, for example, the learned model for generating the analysis result to execute the segmentation processing (for example, the detection result of the retinal layer) to obtain a tomographic image. It can function as an example of an analysis result generation unit that generates an analysis result.
- the image processing units 320, 1620, 1920 are different from the learned model for generating the high-quality image (second medical image), and the learned model for generating the analysis result (fourth learned model). Can be used to generate image analysis results for each of the different regions identified by the segmentation process.
- the learned model is obtained by learning using learning data including input data in which a plurality of medical images of different types of predetermined regions are set, such as a brightness front image and a motion contrast front image.
- learning data including input data in which a plurality of medical images of different types of predetermined regions are set, such as a brightness front image and a motion contrast front image.
- the luminance front image corresponds to the luminance En-Face image
- the motion contrast front image corresponds to the OCTA En-Face image.
- the analysis result obtained by using the high quality image generated by using the learned model for high image quality may be displayed.
- the input data included in the learning data may be a high quality image generated by using a learned model for high image quality, or may be a set of a low quality image and a high quality image. Good.
- the learning data may be an image in which at least a part of the image whose image quality has been improved by using the learned model is manually or automatically corrected.
- the learning data is, for example, at least an analysis value obtained by analyzing the analysis area (for example, an average value or a median value), a table including the analysis value, an analysis map, a position of the analysis area such as a sector in the image, and the like.
- Information including one item may be data obtained by labeling (annotating) the input data as correct answer data (learning with a teacher).
- the analysis result obtained by using the learned model for generating the analysis result may be displayed in response to the instruction from the operator.
- the display control unit 350 in the above-described embodiments and modifications may display various diagnostic results such as glaucoma and age-related macular degeneration on the report screen of the display screen.
- an accurate diagnostic result can be displayed by analyzing a medical image to which the above-described various artifact reduction processes are applied.
- the diagnosis result the position of the identified abnormal part or the like may be displayed on the image, or the state of the abnormal part or the like may be displayed by characters or the like.
- a classification result of abnormal parts for example, Curtin classification
- information indicating the probability of each abnormal part for example, a numerical value indicating a ratio
- the classification result for example, information indicating the probability of each abnormal part (for example, a numerical value indicating a ratio) may be displayed.
- information necessary for the doctor to confirm the diagnosis may be displayed as the diagnosis result.
- advice such as additional photographing can be considered.
- additional fluorescence imaging using a contrast agent that allows more detailed blood vessel observation than OCTA is performed.
- the diagnosis result is obtained by using the learned model (diagnosis result generation engine, learned model for diagnosis result generation) obtained by the control unit 30, 1600, 1900 learning the diagnosis result of the medical image as learning data. It may be generated. Further, the learned model is obtained by learning using learning data including a medical image and a diagnosis result of the medical image, learning data including a medical image and a diagnosis result of a medical image of a different type from the medical image, and the like. It may be obtained.
- the learning data may include the region label image generated by the segmentation process and the diagnostic result of the medical image using the region label image.
- the image processing units 320, 1620, 1920 use, for example, a learned model for generating a diagnostic result to execute a segmentation process (for example, a detection result of the retinal layer) to obtain a tomographic image. It can function as an example of a diagnostic result generation unit that generates a diagnostic result.
- the image processing units 320, 1620, 1920 are different from the learned model for generating the high-quality image (second medical image), and the learned model for generating the diagnostic result (fifth learned model). Can be used to generate diagnostic results for each of the different regions identified by the segmentation process.
- the diagnosis result obtained by using the high quality image generated by using the learned model for high image quality may be displayed.
- the input data included in the learning data may be a high quality image generated by using a learned model for high image quality, or may be a set of a low quality image and a high quality image. Good.
- the learning data may be an image in which at least a part of the image whose image quality has been improved by using the learned model is manually or automatically corrected.
- the learning data includes, for example, the diagnosis name, the type and state (degree) of the lesion (abnormal site), the position of the lesion in the image, the position of the lesion with respect to the region of interest, findings (interpretation findings, etc.), and the basis of the diagnosis name (affirmation).
- Input information is labeled (annotated) as correct answer data (for supervised learning) that contains at least one of the following: medical support information), grounds for denying a diagnosis name (negative medical support information), etc. It may be data.
- the diagnosis result obtained by using the learned model for generating the diagnosis result may be displayed in response to the instruction from the examiner.
- the display control unit 350 uses the report screen of the display screen, the object recognition result (object detection result) and the segmentation such as the above-described attention site, artifact, and abnormal site. You may display the result. At this time, for example, a rectangular frame or the like may be superimposed and displayed around the object on the image. Further, for example, a color or the like may be superimposed and displayed on the object in the image.
- the object recognition result and the segmentation result are learned models (object recognition engine, object recognition engine, for object recognition) obtained by learning the learning data obtained by labeling (annotation) the medical image with the information indicating the object recognition and the segmentation as correct data.
- a trained model, a segmentation engine, and a trained model for segmentation may be used.
- the analysis result generation and the diagnosis result generation described above may be obtained by using the object recognition result and the segmentation result described above.
- the analysis result generation and the diagnosis result generation may be performed on the part of interest obtained by the object recognition and the segmentation processing.
- the image processing units 320, 1620, and 1920 may use a hostile generation network (GAN: General Adversary Networks) or a variational auto encoder (VAE: Various Auto-Encoder).
- GAN General Adversary Networks
- VAE Various Auto-Encoder
- a DCGAN Deep Convolutional GAN including a generator obtained by learning generation of a tomographic image and a discriminator obtained by learning discrimination between a new tomographic image generated by the generator and a real frontal fundus image.
- a machine learning model can be used as a machine learning model.
- the discriminator encodes the input tomographic image as a latent variable, and the generator generates a new tomographic image based on the latent variable. Then, the difference between the input tomographic image and the generated new tomographic image can be extracted as the abnormal portion.
- VAE the input tomographic image is encoded by an encoder to be a latent variable, and the latent variable is decoded by a decoder to generate a new tomographic image. Then, the difference between the input tomographic image and the generated new tomographic image can be extracted as the abnormal portion.
- a tomographic image has been described as an example of the input data, a fundus image or a front image of the anterior eye may be used.
- the image processing units 320, 1620, and 1920 may detect an abnormal portion using a convolutional auto encoder (CAE: Conventional Auto-Encoder).
- CAE convolutional auto encoder
- CAE Conventional Auto-Encoder
- the same image is learned as input data and output data during learning.
- an image having no abnormal portion is output according to the learning tendency.
- the difference between the image input to the CAE and the image output from the CAE can be extracted as the abnormal portion.
- not only the tomographic image but also the fundus image, the front image of the anterior eye, etc. may be used as the input data.
- the image processing units 320, 1620, and 1920 input the medical images obtained by using the adversarial generation network or the auto-encoder for each of the different regions specified by the segmentation processing and the like to the adversarial generation network or the auto-encoder. It is possible to generate information regarding a difference from the obtained medical image as information regarding the abnormal part. As a result, the image processing units 320, 1620, 1920 can be expected to detect abnormal parts at high speed and with high accuracy.
- the auto encoder includes VAE, CAE, and the like.
- the learned models used in the various embodiments and modifications described above may be generated and prepared for each type of disease or each abnormal site.
- the image processing unit 320 can select a learned model to be used for the processing according to the input (instruction) of the type of disease of the eye to be inspected, the abnormal site, or the like from the operator.
- the learned model prepared for each type of disease or abnormal site is not limited to the learned model used for detection of the retinal layer or generation of the region label image, and for example, an engine for image evaluation or analysis. It may be a trained model used in the engine of the above.
- the image processing units 320, 1620, and 1920 may identify the type of disease or abnormal site of the eye to be inspected from the image using a separately prepared learned model.
- the image processing units 320, 1620, 1920 automatically generate the learned model used for the above-mentioned processing based on the type of disease or the abnormal part identified by using the separately prepared learned model.
- the learned model for identifying the type of disease or abnormal part of the eye to be examined is the input of a tomographic image or fundus image, and the learning data of the type of disease or abnormal part in these images as output data. You may learn using a pair.
- the input data of the learning data a tomographic image, a fundus image or the like may be used alone as the input data, or a combination thereof may be used as the input data.
- the learned model for generating the diagnostic result may be a learned model obtained by learning with learning data including input data in which a plurality of medical images of different types of predetermined regions of the subject are set.
- learning data including input data in which a plurality of medical images of different types of predetermined regions of the subject are set.
- the input data included in the learning data for example, input data in which a motion contrast front image of the fundus and a luminance front image (or luminance tomographic image) are set can be considered.
- input data included in the learning data for example, input data in which a tomographic image (B scan image) of the fundus and a color fundus image (or a fluorescent fundus image) are set is also considered.
- the plurality of medical images of different types may be anything acquired by different modalities, different optical systems, different principles, or the like.
- the learned model for generating the diagnostic result may be a learned model obtained by learning with learning data including input data in which a plurality of medical images of different parts of the subject are set.
- input data included in the learning data for example, input data in which a tomographic image of the fundus (B scan image) and a tomographic image of the anterior segment (B scan image) are set can be considered.
- input data included in the learning data for example, input data including a set of a three-dimensional OCT image (three-dimensional tomographic image) of the macula of the fundus and a circle scan (or raster scan) tomographic image of the optic disc of the fundus, and the like. Can also be considered.
- the input data included in the learning data may be a plurality of medical images of different parts of the subject and different types.
- the input data included in the learning data may be, for example, input data in which a tomographic image of the anterior segment and a color fundus image are set.
- the learned model described above may be a learned model obtained by learning with learning data including input data in which a plurality of medical images of different imaging fields of view of a predetermined region of the subject are set.
- the input data included in the learning data may be a combination of a plurality of medical images obtained by time-dividing a predetermined region into a plurality of regions, such as a panoramic image.
- the feature amount of the image can be acquired with high accuracy because the amount of information is larger than that of the narrow-angle image.
- the result of can be improved.
- the examiner may be configured to select each position on the wide-angle image in which the abnormal portion is detected, and the enlarged image of the abnormal portion at the selected position may be displayed.
- the input data included in the learning data may be input data in which a plurality of medical images at different dates and times of a predetermined part of the subject are set as a set.
- the display screen on which at least one of the above-mentioned analysis result, diagnosis result, object recognition result, and segmentation result is displayed is not limited to the report screen.
- a display screen is, for example, at least one display screen such as a shooting confirmation screen, a display screen for follow-up observation, and a preview screen for various adjustments before shooting (display screen on which various live moving images are displayed). May be displayed in.
- the display change between the low-quality image and the high-quality image described in Modification 9 and the like may be, for example, a change in the display between the analysis result of the low-quality image and the analysis result of the high-quality image.
- Machine learning includes, for example, deep learning including a multi-layer neural network.
- a convolutional neural network CNN
- a technology related to an auto encoder self-encoder
- a technique related to back propagation error back propagation method
- the machine learning is not limited to deep learning, and may be any learning as long as it uses a model capable of extracting (expressing) the feature amount of learning data such as an image by learning.
- the machine learning model refers to a learning model based on a machine learning algorithm such as deep learning.
- the learned model is a model that is trained (learned) with appropriate learning data in advance with respect to a machine learning model by an arbitrary machine learning algorithm. However, it is assumed that the learned model does not perform any further learning but can perform additional learning.
- the learning data is composed of a pair of input data and output data (correct answer data).
- the learning data may be referred to as teacher data, or the correct answer data may be referred to as teacher data.
- the GPU can perform efficient operations by processing more data in parallel. Therefore, when learning is performed a plurality of times using a learning model such as deep learning, it is effective to perform processing with the GPU. Therefore, in the present modification, a GPU is used in addition to the CPU for the processing by the image processing units 320, 1620, 1920, which is an example of a learning unit (not shown). Specifically, when the learning program including the learning model is executed, the CPU and the GPU cooperate to perform the learning to perform the learning. The processing of the learning unit may be calculated only by the CPU or GPU. Further, the processing unit (estimation unit) that executes the processing using the various learned models described above may use the GPU similarly to the learning unit. Further, the learning unit may include an error detection unit and an update unit (not shown).
- the error detection unit obtains an error between the correct data and the output data output from the output layer of the neural network according to the input data input to the input layer.
- the error detection unit may use a loss function to calculate the error between the output data from the neural network and the correct answer data.
- the updating unit updates the connection weighting coefficient between the nodes of the neural network based on the error obtained by the error detecting unit so that the error becomes small.
- the updating unit updates the combination weighting coefficient and the like by using the error back propagation method, for example.
- the error back-propagation method is a method of adjusting the coupling weighting coefficient between the nodes of each neural network so that the above error becomes small.
- a machine learning model used for high image quality and segmentation there are a function of an encoder composed of a plurality of layers including a plurality of downsampling layers and a function of a decoder composed of a plurality of layers including a plurality of upsampling layers.
- ambiguous position information (spatial information) in a plurality of layers configured as encoders is converted into a same-dimensional layer (layers corresponding to each other) in a plurality of layers configured as decoders. ) Is used (for example, using a skip connection).
- a machine learning model used for image quality enhancement, segmentation, etc. for example, FCN (Fully Concurrent Network), SegNet, or the like can be used.
- a machine learning model that performs object recognition in units of regions may be used according to a desired configuration.
- RCNN Region CNN
- fastRCNN fastRCNN
- fastRCNN fastRCNN
- YOLO You Only Look Once
- SSD Single Shot Detector, or Single Shot MultiBox Detector
- the machine learning model may be, for example, a capsule network (CapsNet).
- CapsNet capsule network
- each unit is configured to output a scalar value, so that, for example, spatial information regarding a spatial positional relationship (relative position) between features in an image is obtained. It is configured to be reduced. As a result, for example, it is possible to perform learning such that the effects of local distortion and parallel movement of the image are reduced.
- each unit is configured to output the spatial information as a vector, and thus is configured to hold the spatial information, for example. Thereby, for example, learning can be performed in consideration of the spatial positional relationship between the features in the image.
- the high image quality model (learned model for high image quality) may be a learned model obtained by additionally learning the learning data including at least one high image quality image generated by the high image quality model. Good. At this time, whether or not to use the high-quality image as learning data for additional learning may be configured to be selectable by an instruction from the examiner. Note that these configurations are applicable not only to the learned model for improving image quality, but also to the various learned models described above.
- a learned model for generating correct answer data for generating correct answer data such as labeling (annotation) may be used for generating correct answer data used for learning various learned models described above.
- the learned model for generating correct answer data may be obtained by performing additional learning (sequentially) on correct answer data obtained by labeling (annotating) the examiner. That is, the learned model for generating correct answer data may be obtained by additionally learning the learning data in which the data before labeling is the input data and the data after the labeling is the output data. Further, in a plurality of consecutive frames such as a moving image, it is configured to correct the result of a frame determined to have low accuracy in consideration of the results of object recognition and segmentation of preceding and following frames. Good. At this time, the corrected result may be additionally learned as correct answer data in response to an instruction from the examiner.
- a predetermined image processing is performed for each detected region.
- image processing such as contrast adjustment is performed on at least two detected areas
- different image processing parameters are used to perform adjustment suitable for each area. By displaying the image adjusted for each area, the operator can more appropriately diagnose the disease or the like in each area.
- the configuration using different image processing parameters for each detected region may be similarly applied to the region of the eye to be detected detected without using the learned model, for example.
- the learned model for improving image quality described above may be used for each at least one frame of the live moving image.
- the learned model corresponding to each live moving image may be used. Accordingly, for example, even in the case of a live moving image, the processing time can be shortened, so that the examiner can obtain highly accurate information before the start of imaging. Therefore, for example, failure in re-imaging can be reduced, so that the accuracy and efficiency of diagnosis can be improved.
- the plurality of live moving images may be, for example, a moving image of the anterior segment for alignment in the XYZ directions, and a front moving image of the fundus for focus adjustment and OCT focus adjustment of the fundus observation optical system. Further, the plurality of live moving images may be, for example, a tomographic moving image of the fundus for adjusting the coherence gate of OCT (adjusting the optical path length difference between the measurement optical path length and the reference optical path length).
- the various adjustments described above may be performed so that the region detected using the learned model for object recognition or the learned model for segmentation described above satisfies a predetermined condition.
- a value for example, a contrast value or an intensity value relating to a vitreous region or a predetermined retinal layer such as RPE detected using a learned model for object recognition or a learned model for segmentation exceeds a threshold value (
- various adjustments such as OCT focus adjustment may be performed so that the peak value is reached.
- the OCT of OCT is performed so that a predetermined retinal layer such as a vitreous region or RPE detected using a learned model for object recognition or a learned model for segmentation is at a predetermined position in the depth direction.
- the coherence gate adjustment may be performed.
- the image quality improving units 322 and 1622 can perform the image quality improving process on the moving image by using the learned model to generate the high image quality moving image.
- the drive control unit 330 in a state in which a high-quality moving image is displayed, sets the shooting range of the reference mirror 221 or the like so that any one of the different regions specified by the segmentation process or the like is at a predetermined position in the display region. It is possible to drive and control the optical member that changes In such a case, the control unit 30, 1600, 1900 can automatically perform the alignment process based on the highly accurate information so that the desired region is located at a predetermined position in the display region.
- the optical member for changing the shooting range may be, for example, an optical member for adjusting the coherence gate position, and specifically, may be the reference mirror 221 or the like. Further, the coherence gate position can be adjusted by an optical member that changes the optical path length difference between the measurement optical path length and the reference optical path length, and the optical member is, for example, for changing the optical path length of the measurement light (not shown). It may be a mirror or the like.
- the optical member that changes the shooting range may be the stage unit 25, for example.
- the moving image to which the learned model described above can be applied is not limited to the live moving image, but may be, for example, a moving image stored (saved) in the storage unit.
- a moving image obtained by aligning at least one frame of the fundus tomographic moving image stored (saved) in the storage unit may be displayed on the display screen.
- a reference frame may be selected based on the condition that the vitreous region exists on the frame as much as possible.
- each frame is a tomographic image (B scan image) in the XZ direction.
- a moving image in which another frame is aligned in the XZ direction with respect to the selected reference frame may be displayed on the display screen.
- the high-quality images (high-quality frames) sequentially generated by using the learned model for high image quality may be continuously displayed for each at least one frame of the moving image.
- the same method may be applied to the method of alignment in the X direction and the method of alignment in the Z direction (depth direction), or different methods may be used. May be applied. Further, the alignment in the same direction may be performed a plurality of times by different methods, for example, the precise alignment may be performed after performing the rough alignment. Further, as a method of alignment, for example, there is alignment (coarse in the Z direction) using a retinal layer boundary obtained by segmenting a tomographic image (B scan image). Further, as an alignment method, for example, there is an alignment (precision in the X direction and Z direction) using correlation information (similarity) between a plurality of regions obtained by dividing the tomographic image and the reference image.
- alignment method for example, alignment (in the X direction) using a one-dimensional projection image generated for each tomographic image (B scan image) and use of a two-dimensional front image (in the X direction) are used. There is alignment etc. Further, it may be configured such that rough alignment is performed in pixel units and then precise alignment is performed in subpixel units.
- the subject such as the retina of the eye to be inspected may not be able to image well yet. Therefore, since there is a large difference between the medical image input to the learned model and the medical image used as the learning data, a high-quality image may not be obtained accurately. Therefore, when the evaluation value such as the image quality evaluation of the tomographic image (B scan) exceeds the threshold value, the display of the high-quality moving image (continuous display of high-quality frames) may be automatically started. Further, when the evaluation value such as the image quality evaluation of the tomographic image (B scan) exceeds the threshold value, the image quality improving button may be changed to a state (active state) that can be designated by the examiner.
- a state active state
- a learned model for high image quality that is different for each shooting mode having a different scanning pattern or the like is prepared and a learned model for image quality improvement corresponding to the selected shooting mode is selected.
- a learned model for image quality improvement obtained by learning the learning data including various medical images obtained in different photographing modes may be used.
- the learned model obtained by learning for each imaging region may be selectively used. Specifically, a learning including a first learned model obtained using learning data including a first imaged region (lung, eye to be examined, etc.) and a second imaged region different from the first imaged region A plurality of trained models including a second trained model obtained using the data can be prepared. Then, the image processing units 320, 1620, and 1920 may have a selection unit that selects one of these plurality of learned models. At this time, the image processing units 320, 1620, and 1920 may include a control unit that executes additional learning on the selected learned model.
- the control means searches for data in which the imaged region corresponding to the selected learned model and the imaged image of the imaged region are paired, and the data obtained by the search is used as learning data.
- the learning can be performed as additional learning on the selected trained model.
- the imaged region corresponding to the selected learned model may be acquired from the information in the header of the data or manually input by the examiner.
- the data search may be performed, for example, from a server or the like of an external facility such as a hospital or a laboratory via a network. This makes it possible to efficiently perform additional learning for each imaged region using the imaged image of the imaged region corresponding to the learned model.
- selection unit and the control unit may be configured by software modules executed by a processor such as the CPU or MPU of the control unit 30, 1600, 1900. Further, the selection means and the control means may be configured by a circuit such as an ASIC that performs a specific function, an independent device, or the like.
- the validity of the learning data for additional learning may be detected by confirming the matching by a digital signature or hashing. Thereby, the learning data for additional learning can be protected. At this time, if the legitimacy of the learning data for additional learning cannot be detected as a result of checking the consistency by digital signature or hashing, a warning to that effect is given, and additional learning by the learning data is performed. Make it not exist.
- the server may be in any form such as a cloud server, a fog server, an edge server, or the like, regardless of its installation location.
- the instruction from the examiner may be an instruction by voice or the like as well as a manual instruction (for example, an instruction using a user interface or the like).
- a machine learning model including a voice recognition model obtained by machine learning (a voice recognition engine, a learned model for voice recognition) may be used.
- the manual instruction may be an instruction by character input using a keyboard, a touch panel, or the like.
- a machine learning model including a character recognition model (character recognition engine, learned model for character recognition) obtained by machine learning may be used.
- the instruction from the examiner may be an instruction such as a gesture.
- a machine learning model including a gesture recognition model gesture recognition engine, learned model for gesture recognition
- the instruction from the examiner may be a result of detecting the line of sight of the examiner on the display screen of the display unit 50.
- the line-of-sight detection result may be, for example, a pupil detection result using a moving image of the examiner obtained by photographing the periphery of the display screen of the display unit 50.
- the above-described object recognition engine may be used to detect the pupil from the moving image.
- the instruction from the examiner may be an instruction by an electroencephalogram, a weak electric signal flowing through the body, or the like.
- the learning data character data or voice data (waveform data) indicating the instruction to display the result of the processing of the various learned models as described above is used as the input data, and various learned data is obtained. It may be learning data in which the correct instruction data is an execution command for actually displaying the result of the model processing on the display unit.
- the learning data for example, character data or voice data indicating a display instruction of a high-quality image obtained by a learned model for high image quality is used as input data, and a high-quality image display execution command and a diagram are displayed. 22A and 22B may be learning data in which an execution command for changing a button 2220 to an active state is correct data.
- the learning data may be anything as long as the instruction content indicated by the character data or the voice data and the execution instruction content correspond to each other.
- voice data may be converted into character data by using an acoustic model or a language model.
- the waveform data obtained by a plurality of microphones may be used to perform the process of reducing the noise data superimposed on the voice data.
- it may be configured such that an instruction by a character or a voice or an instruction by a mouse or a touch panel can be selected according to an instruction from an examiner. Further, on / off of the instruction by characters or voice may be configured to be selectable according to the instruction from the examiner.
- the machine learning includes deep learning as described above, and a recursive neural network (RNN) can be used as at least a part of the multi-layered neural network, for example.
- RNN recursive neural network
- an RNN that is a neural network that handles time series information will be described with reference to FIGS. 24A and 24B.
- LSTM long short-term memory
- FIG. 24A shows the structure of RNN which is a machine learning model.
- the RNN 2420 has a loop structure in the network, receives the data x t 2410 at time t, and outputs the data h t 2430. Since the RNN 2420 has a loop function in the network, it is possible to take over the state at the current time to the next state, so that time series information can be handled.
- FIG. 24B shows an example of input / output of the parameter vector at time t.
- the data x t 2410 includes N pieces of data (Params1 to ParamsN). Further, the data h t 2430 output from the RNN 2420 includes N (Params 1 to ParamsN) data corresponding to the input data.
- the LSTM since the RNN cannot handle long-term information at the time of error back propagation, the LSTM may be used.
- the LSTM can learn long-term information by including a forgetting gate, an input gate, and an output gate.
- FIG. 25A the structure of the LSTM is shown in FIG. 25A.
- the information the network takes over at the next time t is the internal state c t-1 of the network called a cell and the output data h t-1 .
- the lower case letters (c, h, x) in the figure represent vectors.
- FIG. 25B shows details of the LSTM2540.
- a forgetting gate network FG an input gate network IG, and an output gate network OG are shown, each being a sigmoid layer. Therefore, a vector in which each element has a value of 0 to 1 is output.
- the forgetting gate network FG determines how much past information is retained, and the input gate network IG determines which value is updated.
- a cell update candidate network CU is shown, and the cell update candidate network CU is an activation function tanh layer. This creates a new vector of candidate values that will be added to the cell.
- the output gate network OG selects a cell candidate element and selects how much information is transmitted at the next time.
- LSTM model is a basic form, so it is not limited to the network shown here.
- the connection between networks may be changed.
- QRNN Quasi Current Neural Network
- machine learning model is not limited to the neural network, and boosting, support vector machine, or the like may be used.
- a technology related to natural language processing for example, Sequence to Sequence
- a dialogue engine a dialogue model, a learned model for dialogue that responds to the examiner with an output such as text or voice may be applied.
- the high-quality image, the label image, and the like may be stored in the storage unit according to an instruction from the operator.
- the file name including the information (for example, characters) indicating that the image is generated by the process using the learned model for image quality improvement (image quality improvement process) It may be displayed in an editable state in response to an instruction.
- a file name including information that is an image generated by the process using the learned model may be displayed.
- the displayed image is a high-quality image generated by a process using a learned model for high image quality. May be displayed together with the high quality image.
- the operator can easily identify by the display that the displayed high-quality image is not the image itself obtained by photographing, and thus the false diagnosis can be reduced or the diagnostic efficiency can be improved. be able to.
- the display indicating that the image is a high-quality image generated by the process using the learned model for high image quality is a display that can distinguish the input image from the high-quality image generated by the process. Any form may be used.
- the process using the learned model for image quality improvement is the result generated by the process using the learned model of the type.
- An indication that there is may be displayed with the result.
- a display indicating that it is an analysis result based on the result using the learned model for segmentation is displayed together with the analysis result. It may be displayed.
- the display screen such as the report screen may be saved in the storage unit as image data according to an instruction from the operator.
- the report screen may be stored in the storage unit as one image in which high-quality images and the like and a display indicating that these images are images generated by the process using the learned model are lined up.
- the learned model for high image quality learned by what learning data may be displayed on the display unit.
- the display may include a description of the types of the input data and the correct answer data of the learning data, and an arbitrary display regarding the correct answer data such as the imaging region included in the input data and the correct answer data.
- a display indicating what kind of learning data the learned model of the type learned is displayed on the display unit. May be.
- information for example, characters
- the portion to be superimposed on the image may be any portion as long as it is an area (for example, the edge of the image) that does not overlap with the area in which the attention site or the like to be imaged is displayed.
- a non-overlapping area may be determined and superimposed on the determined area. Note that not only the processing using the learned model for image quality improvement, but also the image obtained by the processing using the above-described various learned models such as segmentation processing may be similarly processed.
- the button 2220 as shown in FIGS. 22A and 22B is set as the default display screen of the report screen so that the button 2220 is in an active state (image quality improvement processing is turned on), an instruction from the examiner is given.
- the report image corresponding to the report screen including the high quality image may be transmitted to the server.
- the button 2220 is set to the active state by default, at the end of the examination (for example, when the photographing confirmation screen or the preview screen is changed to the report screen in response to an instruction from the examiner)
- the report image corresponding to the report screen including the high-quality image may be (automatically) transmitted to the server.
- the report image may be configured to be transmitted to the server based on at least one setting such as whether or not. Note that the same processing may be performed when the button 2220 represents switching of segmentation processing.
- the first type using the result for example, the analysis result, the diagnosis result, the object recognition result, the segmentation result
- the image input to the learned model of the first type different from the first type may be generated from the image input to the learned model of.
- the generated image is highly likely to be an image suitable as an image to be processed using the second type of learned model. Therefore, an image obtained by inputting the generated image to the second type of learned model (for example, a high-quality image, an image showing the analysis result of an analysis map, an image showing the object recognition result, a segmentation result The accuracy of the image shown) can be improved.
- a similar case image search may be performed using an external database stored in a server or the like, using the analysis result or diagnosis result of the processing of the learned model as described above as a search key.
- the image itself is used as a search key.
- a similar case image search engine similar case image search model, learned model for similar case image search
- the image processing units 320, 1620, and 1920 are different from the learned model for generating the high-quality image (second medical image), which is a learned model for similar case image retrieval (sixth learned model).
- the similar case image can be searched for each of the different regions identified by the segmentation process or the like.
- the process of generating motion contrast data in the above-described embodiment and modification is not limited to the configuration performed based on the brightness value of the tomographic image.
- the above-described various processes are performed on the tomographic data including the interference signal acquired by the imaging unit 20, the signal obtained by performing the Fourier transform on the interference signal, the signal obtained by subjecting the signal to an arbitrary process, and the tomographic image based on these signals. May be applied. Also in these cases, the same effect as that of the above configuration can be obtained.
- the image processing such as the gradation conversion processing in the above-described embodiments and modifications is not limited to the configuration performed based on the brightness value of the tomographic image.
- the various processes described above may be applied to tomographic data including an interference signal acquired by the imaging unit 20, a signal obtained by subjecting the interference signal to Fourier transform, a signal obtained by subjecting the signal to an arbitrary process, and the like. Also in these cases, the same effect as that of the above configuration can be obtained.
- the configuration of the OCT device according to the present invention is not limited to this.
- the present invention can be applied to any other type of OCT device such as a wavelength swept OCT (SS-OCT) device using a wavelength swept light source capable of sweeping the wavelength of emitted light.
- SS-OCT wavelength swept OCT
- the present invention can also be applied to a Line-OCT device (or an SS-Line-OCT device) using line light.
- the present invention can also be applied to a Full Field-OCT device (or SS-Full Field-OCT device) using area light.
- an optical fiber optical system using a coupler is used as the splitting means, but a spatial optical system using a collimator and a beam splitter may be used.
- the configuration of the image capturing unit 20 is not limited to the above configuration, and a part of the configuration included in the image capturing unit 20 may be a configuration separate from the image capturing unit 20.
- the acquisition unit 310 acquires the interference signal acquired by the imaging unit 20, the tomographic image generated by the image processing unit 320, and the like.
- the configuration in which the acquisition unit 310 acquires these signals and images is not limited to this.
- the acquisition unit 310 may acquire these signals from a server or a photographing device that is connected to the control units 30, 1600, 1900 via LAN, WAN, the Internet, or the like.
- the learning data of various learned models is not limited to the data obtained by using the ophthalmologic apparatus itself that actually performs imaging, depending on the desired configuration, the data obtained by using the same type of ophthalmologic apparatus, or the same type. It may be data obtained by using an ophthalmologic apparatus.
- the learned model may be composed of, for example, a CPU, a software module executed by a processor such as MPU, GPU, FPGA, or the like, or a circuit that performs a specific function such as ASIC. Further, these learned models may be provided in a device of another server connected to the control units 30, 1600, 1900. In this case, the control units 30, 1600, 1900 can use the learned model by connecting to a server or the like having the learned model via an arbitrary network such as the Internet.
- the server including the learned model may be, for example, a cloud server, a fog server, an edge server, or the like.
- the image processing may be performed on the tomographic image of the anterior segment of the eye to be inspected.
- the regions to be subjected to different image processing in the tomographic image include regions such as the crystalline lens, cornea, iris, and anterior chamber of the eye. Note that the region may include another region of the anterior segment.
- the region of the tomographic image regarding the fundus portion is not limited to the vitreous portion, the retina portion, and the choroid portion, and may include other regions regarding the fundus portion.
- the tomographic image regarding the fundus portion has a wider gradation than the tomographic image regarding the anterior segment, the image quality can be more effectively improved by the image processing according to the above-described embodiments and modifications. .
- the subject's eye was described as an example, but the subject is not limited to this.
- the subject may be skin or another organ.
- the OCT apparatus according to the above-described embodiments and modifications can be applied to medical equipment such as an endoscope in addition to the ophthalmologic apparatus.
- the image processed by the image processing device or the image processing method according to the above-described various embodiments and modifications includes a medical image acquired by using an arbitrary modality (imaging device, imaging method).
- the medical image to be processed can include a medical image acquired by an arbitrary imaging device or the like, or an image created by the image processing device or the image processing method according to the above-described embodiments and modifications.
- the medical image to be processed is an image of a predetermined part of the subject (subject), and the image of the predetermined part includes at least a part of the predetermined part of the subject.
- the medical image may include other parts of the subject.
- the medical image may be a still image or a moving image, and may be a monochrome image or a color image.
- the medical image may be an image showing the structure (morphology) of a predetermined part or an image showing its function.
- the image representing the function includes images representing blood flow dynamics (blood flow rate, blood flow velocity, etc.) such as an OCTA image, a Doppler OCT image, an fMRI image, and an ultrasonic Doppler image.
- the predetermined part of the subject may be determined according to the imaging target, human eyes (inspection eye), brain, lungs, intestines, heart, pancreas, kidneys, organs such as liver, head, chest, It includes any part such as legs and arms.
- the medical image may be a tomographic image of the subject or a front image.
- the front image is, for example, a front image of the fundus of the eye, a front image of the anterior segment of the eye, a fundus image obtained by fluorescence imaging, or at least a part of a range (three-dimensional OCT data) acquired by OCT in the depth direction of the imaging target.
- the En-Face image generated using the data of 1. is included.
- the En-Face image is an OCTA En-Face image (motion contrast front image) generated by using at least a partial range of data in the depth direction of the imaging target for the three-dimensional OCTA data (three-dimensional motion contrast data). ) Is okay.
- the three-dimensional OCT data and the three-dimensional motion contrast data are examples of the three-dimensional medical image data.
- the motion contrast data is data indicating a change between a plurality of volume data obtained by controlling the measurement light to be scanned a plurality of times in the same region (same position) of the eye to be inspected.
- the volume data is composed of a plurality of tomographic images obtained at different positions.
- the motion contrast data can be obtained as the volume data by obtaining the data indicating the change between the plurality of tomographic images obtained at the substantially same position at each of the different positions.
- the motion contrast front image is also referred to as an OCTA front image (OCTA En-Face image) regarding OCT angiography (OCTA) for measuring the movement of blood flow
- OCTA data is also referred to as OCTA data.
- the motion contrast data can be obtained, for example, as a decorrelation value between two tomographic images or corresponding interference signals, a variance value, or a value obtained by dividing the maximum value by the minimum value (maximum value / minimum value). , May be obtained by any known method.
- the two tomographic images can be obtained, for example, by controlling so that the measurement light is scanned a plurality of times in the same region (same position) of the subject's eye.
- the En-Face image is, for example, a front image generated by projecting data in the range between two layer boundaries in the XY directions.
- the front image is a depth range of at least a part of the volume data (three-dimensional tomographic image) obtained by using optical interference, and corresponds to the depth range determined based on the two reference planes. Is projected or integrated on a two-dimensional plane to be generated.
- the En-Face image is a front image generated by projecting, on a two-dimensional plane, data corresponding to the depth range determined based on the detected retinal layer in the volume data.
- the representative value of the data within the depth range is set as the pixel value on the two-dimensional plane.
- the representative value can include a value such as an average value, a median value, or a maximum value of the pixel values within the range in the depth direction of the area surrounded by the two reference planes.
- the depth range related to the En-Face image is a range including a predetermined number of pixels in a deeper direction or a shallower direction with reference to one of the two layer boundaries regarding the detected retinal layer, for example. Good.
- the depth range related to the En-Face image may be, for example, a range that is changed (offset) in accordance with an operator's instruction from a range between two layer boundaries related to the detected retinal layer. Good.
- the image capturing device is a device for capturing an image used for diagnosis.
- the imaging device detects, for example, a device that obtains an image of a predetermined region by irradiating a predetermined region of a subject with light, radiation such as X-rays, electromagnetic waves, or ultrasonic waves, or radiation emitted from a subject. It includes a device for obtaining an image of a predetermined part by doing so.
- the imaging apparatus includes at least an X-ray imaging apparatus, a CT apparatus, an MRI apparatus, a PET apparatus, a SPECT apparatus, an SLO apparatus, an OCT apparatus, an OCTA apparatus, and a fundus. It includes a camera and an endoscope.
- the OCT device may include a time domain OCT (TD-OCT) device and a Fourier domain OCT (FD-OCT) device. Further, the Fourier domain OCT device may include a spectral domain OCT (SD-OCT) device and a wavelength swept OCT (SS-OCT) device.
- the SLO device and the OCT device may include a wavefront compensation SLO (AO-SLO) device using a wavefront compensation optical system, a wavefront compensation OCT (AO-OCT) device, and the like. Further, the SLO device and the OCT device may include a polarization SLO (PS-SLO) device and a polarization OCT (PS-OCT) device for visualizing information on the polarization phase difference and depolarization.
- PS-SLO polarization SLO
- PS-OCT polarization OCT
- one of the feature values is the brightness value of the tomographic image, the order and inclination of the bright and dark parts, the position, the distribution, and the continuity. It can be considered that it is extracted as a part and used for the estimation process.
- learned models for voice recognition, character recognition, gesture recognition, etc. learning is performed using time-series data, so the slope between input continuous time-series data values is characteristic. It is considered that it is extracted as a part of the quantity and used for the estimation process. Therefore, such a learned model is expected to be able to perform accurate estimation by using the influence of a concrete change of a numerical value in the estimation process.
- the present invention also provides a process for supplying a program that implements one or more functions of the above-described embodiments and modifications to a system or apparatus via a network or a storage medium, and a computer of the system or apparatus reads and executes the program. It is feasible.
- a computer has one or more processors or circuits and may include separate computers or networks of separate processors or circuits for reading and executing computer-executable instructions.
- the processor or circuit may include a central processing unit (CPU), a micro processing unit (MPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), or a field programmable gateway (FPGA). Also, the processor or circuit may include a digital signal processor (DSP), a data flow processor (DFP), or a neural processing unit (NPU).
- CPU central processing unit
- MPU micro processing unit
- GPU graphics processing unit
- ASIC application specific integrated circuit
- FPGA field programmable gateway
- DSP digital signal processor
- DFP data flow processor
- NPU neural processing unit
- control unit image processing device
- acquisition unit acquisition unit
- 322 image quality improvement unit
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Eye Examination Apparatus (AREA)
Abstract
Provided is an image processing device provided with: an acquisition unit that acquires a first tomographic image of a subject; and an image quality improving unit that generates, from the first tomographic image by use of a learned model, a second tomographic image such that different image processes have been performed on different areas of the first tomographic image.
Description
本発明は、画像処理装置、画像処理方法及びプログラムに関するものである。
The present invention relates to an image processing device, an image processing method, and a program.
現在、光学機器を用いた眼科用機器として、様々なものが使用されている。例えば、眼を観察する光学機器として、前眼部撮影装置や、眼底カメラ、共焦点レーザー走査検眼鏡(SLO:Scanning Laser Ophthalmoscope)等、様々な機器が使用されている。
Currently, various types of ophthalmic equipment using optical equipment are used. For example, various devices such as an anterior segment imaging device, a fundus camera, and a confocal laser scanning ophthalmoscope (SLO: Scanning Laser Ophthalmoscope) are used as optical devices for observing an eye.
中でも、多波長光波干渉を利用した光コヒーレンストモグラフィ(OCT:Optical Coherence Tomography)による光干渉断層撮影装置(OCT装置)は、試料の断層画像を高解像度に得ることができる装置である。このため、OCT装置は、眼科用機器として網膜の専門外来では必要不可欠な装置になりつつある。また、OCT装置は、眼科用だけでなく、内視鏡等にも利用されている。OCT装置は眼科診断等において、被検眼の眼底における網膜の断層画像や、角膜などの前眼部の断層画像を取得するために広く利用されている。
Above all, an optical coherence tomography apparatus (OCT apparatus) using optical coherence tomography (OCT) utilizing multi-wavelength light wave interference is an apparatus capable of obtaining a tomographic image of a sample with high resolution. For this reason, the OCT device is becoming an indispensable device in the outpatient specialized in the retina as an ophthalmic device. Further, the OCT device is used not only for ophthalmology but also for endoscopes and the like. The OCT apparatus is widely used in ophthalmologic diagnosis and the like to acquire a tomographic image of the retina of the fundus of the eye to be inspected and an anterior ocular segment such as the cornea.
OCT装置で撮影した断層画像の元データは、一般的に32ビット程度の浮動小数点形式又は10ビット以上の整数形式であり、非常に低輝度な情報から高輝度な情報まで含む高ダイナミックレンジのデータである。一方、通常のディスプレイに表示可能なデータは、例えば8ビット整数形式のデータであり、相対的に低ダイナミックレンジのデータである。従って、この高ダイナミックレンジな元データを、そのまま表示用の低ダイナミックレンジのデータに変換した場合、眼底部の診断に重要な網膜部のコントラストが大幅に低下してしまう。
Original data of a tomographic image captured by an OCT apparatus is generally in a floating point format of about 32 bits or an integer format of 10 bits or more, and has a high dynamic range data including very low brightness information to high brightness information. Is. On the other hand, data that can be displayed on a normal display is, for example, 8-bit integer format data, which is data having a relatively low dynamic range. Therefore, if the original data having a high dynamic range is directly converted into the data having a low dynamic range for display, the contrast of the retina, which is important for the diagnosis of the fundus, is significantly reduced.
そのため、一般的なOCT装置では、断層画像の元データを表示用のデータに変換する際に、低輝度側のデータをある程度捨てることで、網膜部の良好なコントラストを得ている。この場合、表示される断層画像において、低輝度の領域として示される硝子体部や脈絡膜部等に関する領域のコントラストが低下し、硝子体部や脈絡膜部の内部構造の観察が難しくなる。
Therefore, in a general OCT device, when converting the original data of the tomographic image into the data for display, the low-luminance side data is discarded to some extent to obtain good contrast in the retina. In this case, in the displayed tomographic image, the contrast of the region related to the vitreous body, choroid, etc., which is shown as a low-luminance region, decreases, and it becomes difficult to observe the internal structure of the vitreous and choroid.
一方、硝子体部や脈絡膜部の内部構造をより詳細に観察するために、硝子体部や脈絡膜部等に関する領域のコントラストを確保するように、断層画像の元データを階調変換すると、高輝度な網膜部の領域のコントラストが低下し、網膜部の観察が難しくなる。
On the other hand, in order to observe the internal structure of the vitreous part and choroid part in more detail, if the original data of the tomographic image is gradation-converted so as to ensure the contrast of the regions related to the vitreous part and the choroid part, high brightness The contrast of the retina area is reduced, making it difficult to observe the retina area.
近年では、被検眼の局所的な観察だけでなく、大局的な観察を行いたいというニーズがある。このようなニーズに関して、特許文献1では、断層画像をセグメンテーションし、特定した部分領域毎に表示条件を設定し、階調変換処理を行う方法が提案されている。
In recent years, there is a need to make a global observation as well as a local observation of the eye to be inspected. Regarding such needs, Patent Document 1 proposes a method of segmenting a tomographic image, setting display conditions for each specified partial region, and performing gradation conversion processing.
疾病眼では、層の消失、出血、及び白斑や新生血管の発生などがあるため、網膜の形状が不規則となる。そのため、画像特徴抽出の結果を、網膜の形状の規則性を利用して判断し網膜層の境界検出を行う従来のセグメンテーション処理の方法では、網膜層の境界検出を自動で行う際に、誤検出などが発生するという限界があった。この場合、セグメンテーション処理における誤検出等に起因して、被検眼の大局的な観察を行うための部分領域(観察対象)毎の階調変換処理等を適切に行えない場合があった。
In diseased eyes, the shape of the retina becomes irregular due to the disappearance of layers, bleeding, and the formation of white spots and new blood vessels. Therefore, in the conventional segmentation processing method that determines the result of image feature extraction by utilizing the regularity of the shape of the retina and detects the boundary of the retinal layer, erroneous detection is performed when the boundary detection of the retinal layer is performed automatically. There was a limit that such things occur. In this case, due to erroneous detection or the like in the segmentation process, it may not be possible to appropriately perform the gradation conversion process or the like for each partial region (observation target) for performing a global observation of the eye to be inspected.
そこで、本発明の目的の一つは、観察対象の領域毎に適切な画像処理が行われたような画像を生成できる画像処理装置、画像処理方法、及びプログラムを提供することである。
Therefore, one of the objects of the present invention is to provide an image processing apparatus, an image processing method, and a program that can generate an image in which appropriate image processing has been performed for each region to be observed.
本発明の一実施態様に係る画像処理装置は、被検体の第1の医用画像を取得する取得部と、学習済モデルを用いて、前記第1の医用画像から、前記第1の医用画像における異なる領域に異なる画像処理が施されたような第2の医用画像を生成する高画質化部とを備える。
An image processing apparatus according to an embodiment of the present invention uses an acquisition unit that acquires a first medical image of a subject and a learned model to convert the first medical image from the first medical image into the first medical image. An image quality improving unit that generates a second medical image in which different regions are subjected to different image processing.
本発明の他の実施態様に係る画像処理方法は、被検体の第1の医用画像を取得する工程と、学習済モデルを用いて、前記第1の医用画像から、前記第1の医用画像における異なる領域に異なる画像処理が施されたような第2の医用画像を生成する工程とを含む。
An image processing method according to another embodiment of the present invention uses a step of acquiring a first medical image of a subject and a trained model to convert the first medical image from the first medical image into the first medical image. Generating a second medical image in which different regions are subjected to different image processing.
本発明のさらなる特徴が、添付の図面を参照して以下の例示的な実施例の説明から明らかになる。
Further features of the invention will be apparent from the following description of an exemplary embodiment with reference to the accompanying drawings.
以下、本発明を実施するための例示的な実施例を、図面を参照して詳細に説明する。ただし、以下の実施例で説明する寸法、材料、形状、及び構成要素の相対的な位置等は任意であり、本発明が適用される装置の構成又は様々な条件に応じて変更できる。また、図面において、同一であるか又は機能的に類似している要素を示すために図面間で同じ参照符号を用いる。
Hereinafter, exemplary embodiments for carrying out the present invention will be described in detail with reference to the drawings. However, dimensions, materials, shapes, relative positions of components and the like described in the following embodiments are arbitrary, and can be changed according to the configuration of the apparatus to which the present invention is applied or various conditions. Also, in the drawings, the same reference numerals are used between the drawings to indicate the same or functionally similar elements.
なお、以下において、機械学習モデルとは、機械学習アルゴリズムによる学習モデルをいう。機械学習の具体的なアルゴリズムとしては、最近傍法、ナイーブベイズ法、決定木、サポートベクターマシンなどが挙げられる。また、ニューラルネットワークを利用して、学習するための特徴量、結合重み付け係数を自ら生成する深層学習(ディープラーニング)も挙げられる。適宜、上記アルゴリズムのうち利用できるものを用いて以下の実施例及び変形例に適用することができる。また、教師データとは、学習データのことをいい、入力データ及び出力データのペアで構成される。また、正解データとは、学習データ(教師データ)の出力データのことをいう。
Note that in the following, the machine learning model means a learning model based on a machine learning algorithm. Specific algorithms for machine learning include nearest neighbor method, naive Bayes method, decision tree, and support vector machine. Further, there is also a deep learning in which a feature amount for learning and a connection weighting coefficient are generated by themselves using a neural network. Appropriately applicable ones of the above algorithms can be applied to the following embodiments and modifications. Further, the teacher data refers to learning data, and is composed of a pair of input data and output data. The correct answer data is output data of learning data (teacher data).
なお、学習済モデルとは、ディープラーニング等の任意の機械学習アルゴリズムに従った機械学習モデルに対して、事前に適切な教師データ(学習データ)を用いてトレーニング(学習)を行ったモデルをいう。ただし、学習済モデルは、事前に適切な学習データを用いて得ているが、それ以上の学習を行わないものではなく、追加の学習を行うこともできるものとする。追加学習は、装置が使用先に設置された後も行われることができる。
Note that the learned model is a model obtained by training (learning) a machine learning model according to an arbitrary machine learning algorithm such as deep learning in advance using appropriate teacher data (learning data). . However, although the learned model has been obtained in advance by using appropriate learning data, it is assumed that additional learning can be performed instead of not performing further learning. The additional learning can also be performed after the device has been installed at the point of use.
(実施例1)
図1乃至図13Cを参照して、実施例1に係るOCT装置について説明する。図1は、本実施例によるOCT装置の概略的な構成例を示す。 (Example 1)
An OCT apparatus according to the first embodiment will be described with reference to FIGS. 1 to 13C. FIG. 1 shows a schematic configuration example of the OCT apparatus according to this embodiment.
図1乃至図13Cを参照して、実施例1に係るOCT装置について説明する。図1は、本実施例によるOCT装置の概略的な構成例を示す。 (Example 1)
An OCT apparatus according to the first embodiment will be described with reference to FIGS. 1 to 13C. FIG. 1 shows a schematic configuration example of the OCT apparatus according to this embodiment.
(本体構成)
OCT装置1には、撮影部20、制御部30(画像処理装置)、入力部40、及び表示部50が設けられている。撮影部20には、測定光学系21、ステージ部25、及びベース部23が設けられている。測定光学系21は、前眼部像、被検眼のSLO眼底像、及び断層像を取得することができる。測定光学系21は、ステージ部25を介して、ベース部23に設けられている。ステージ部25は、測定光学系21を前後左右に移動可能に支持する。ベース部23には、後述の分光器等が設けられている。 (Body configuration)
TheOCT device 1 is provided with an imaging unit 20, a control unit 30 (image processing device), an input unit 40, and a display unit 50. The imaging unit 20 is provided with a measurement optical system 21, a stage unit 25, and a base unit 23. The measurement optical system 21 can acquire an anterior segment image, an SLO fundus image of the subject's eye, and a tomographic image. The measurement optical system 21 is provided on the base portion 23 via the stage portion 25. The stage unit 25 supports the measurement optical system 21 so as to be movable back and forth and left and right. The base unit 23 is provided with a spectroscope described later.
OCT装置1には、撮影部20、制御部30(画像処理装置)、入力部40、及び表示部50が設けられている。撮影部20には、測定光学系21、ステージ部25、及びベース部23が設けられている。測定光学系21は、前眼部像、被検眼のSLO眼底像、及び断層像を取得することができる。測定光学系21は、ステージ部25を介して、ベース部23に設けられている。ステージ部25は、測定光学系21を前後左右に移動可能に支持する。ベース部23には、後述の分光器等が設けられている。 (Body configuration)
The
制御部30は、撮影部20及び表示部50に接続され、これらを制御することができる。また、制御部30は、撮影部20等から取得した断層情報に基づいて断層画像の生成や画像処理などを行うことができる。なお、制御部30は、インターネット等の任意のネットワークを介して、不図示の他の任意の装置と接続されてもよい。
The control unit 30 is connected to the photographing unit 20 and the display unit 50 and can control them. The control unit 30 can also generate a tomographic image and perform image processing based on the tomographic information acquired from the imaging unit 20 and the like. The control unit 30 may be connected to any other device (not shown) via any network such as the Internet.
また、制御部30には入力部40が接続されている。入力部40は、操作者(検者)によって操作され、制御部30への指示を入力するために用いられる。入力部40は任意の入力手段を含んでよく、例えばキーボードとマウス等を含むことができる。表示部50は、任意のディスプレイによって構成され、制御部30による制御に従い、被検者の情報や各種画像等を表示することができる。
An input unit 40 is connected to the control unit 30. The input unit 40 is operated by an operator (inspector) and is used to input an instruction to the control unit 30. The input unit 40 may include any input means, and may include, for example, a keyboard and a mouse. The display unit 50 is configured by an arbitrary display, and can display the information of the subject, various images, and the like under the control of the control unit 30.
(撮影部の構成)
次に、図2を参照して、撮影部20の構成について説明する。図2は、本実施例に係る撮影部20の概略的な構成例を示す。 (Structure of shooting unit)
Next, the configuration of theimage capturing unit 20 will be described with reference to FIG. FIG. 2 shows a schematic configuration example of the imaging unit 20 according to the present embodiment.
次に、図2を参照して、撮影部20の構成について説明する。図2は、本実施例に係る撮影部20の概略的な構成例を示す。 (Structure of shooting unit)
Next, the configuration of the
まず、測定光学系21の構成について説明する。測定光学系21においては、被検眼Eに対向するように対物レンズ201が配置され、その光軸上に第1ダイクロイックミラー202及び第2ダイクロイックミラー203が配置されている。これらのダイクロイックミラーによって、対物レンズ201からの光路が、OCT光学系の光路L1、被検眼Eの観察とSLO眼底像の取得とを兼ねるSLO光学系と固視灯用の光路L2、及び前眼観察用の光路L3とに波長帯域毎に分岐される。
First, the configuration of the measurement optical system 21 will be described. In the measurement optical system 21, the objective lens 201 is arranged so as to face the eye E to be inspected, and the first dichroic mirror 202 and the second dichroic mirror 203 are arranged on the optical axis thereof. With these dichroic mirrors, the optical path from the objective lens 201 is the optical path L1 of the OCT optical system, the SLO optical system for observing the eye E and acquiring the SLO fundus image, and the optical path L2 for the fixation lamp, and the anterior eye. Each wavelength band is branched to the observation optical path L3.
なお、本実施例では、第1ダイクロイックミラー202の反射方向に前眼観察用の光路L3が設けられ、透過方向にOCT光学系の光路L1、及びSLO光学系と固視灯用の光路L2が設けられている。また、第2ダイクロイックミラー203の反射方向に、OCT光学系の光路L1が設けられ、透過方向にSLO光学系と固視灯用の光路L2が設けられている。しかしながら、各光学系の光路を設ける方向はこれに限られず、所望の構成に応じて任意に変更されてよい。
In this embodiment, an optical path L3 for anterior ocular segment observation is provided in the reflection direction of the first dichroic mirror 202, and an optical path L1 for the OCT optical system and an optical path L2 for the SLO optical system and the fixation lamp are provided in the transmission direction. It is provided. The optical path L1 of the OCT optical system is provided in the reflection direction of the second dichroic mirror 203, and the SLO optical system and the optical path L2 for the fixation lamp are provided in the transmission direction. However, the direction in which the optical path of each optical system is provided is not limited to this, and may be arbitrarily changed according to the desired configuration.
SLO光学系と固視灯用の光路L2には、SLO走査部204、レンズ205,206、ミラー207、第3ダイクロイックミラー208、フォトダイオード209、SLO光源210、及び固視灯211が設けられている。なお、本実施例では、第3ダイクロイックミラー208の反射方向にSLO光源210が設けられ、透過方向に固視灯211が設けられている。しかしながら、第3ダイクロイックミラー208の反射方向に固視灯211が設けられ透過方向にSLO光源210が設けられてもよい。
An SLO scanning unit 204, lenses 205 and 206, a mirror 207, a third dichroic mirror 208, a photodiode 209, an SLO light source 210, and a fixation lamp 211 are provided in the optical path L2 for the SLO optical system and the fixation lamp. There is. In this embodiment, the SLO light source 210 is provided in the reflection direction of the third dichroic mirror 208, and the fixation lamp 211 is provided in the transmission direction. However, the fixation lamp 211 may be provided in the reflection direction of the third dichroic mirror 208 and the SLO light source 210 may be provided in the transmission direction.
SLO走査部204は、SLO光源210と固視灯211から発せられた光を被検眼E上で走査する走査部であり、X軸方向に走査するXスキャナ、Y軸方向に走査するYスキャナを含む。本実施例では、Xスキャナは高速走査を行う必要があるためポリゴンミラーによって、Yスキャナはガルバノミラーによって構成されている。なお、SLO走査部204の構成はこれに限られず、所望の構成に応じて任意に変更されてよい。
The SLO scanning unit 204 is a scanning unit that scans the light emitted from the SLO light source 210 and the fixation lamp 211 on the eye E, and includes an X scanner that scans in the X-axis direction and a Y scanner that scans in the Y-axis direction. Including. In this embodiment, the X scanner is required to perform high-speed scanning, so that it is composed of a polygon mirror and the Y scanner is composed of a galvanometer mirror. The configuration of the SLO scanning unit 204 is not limited to this, and may be arbitrarily changed according to the desired configuration.
レンズ205は、SLO光学系及び固視灯の焦点合わせのため、制御部30によって制御される不図示のモータ等によって、図中の矢印で示される光軸方向に駆動されることができる。ミラー207は、穴あきミラーや中空のミラーが蒸着されたプリズムであり、SLO光源210による投影光と、被検眼Eからの戻り光とを分離することができる。第3ダイクロイックミラー208は、SLO光源210への光路と固視灯211への光路とを波長帯域毎に分離する。
The lens 205 can be driven in the optical axis direction indicated by the arrow in the figure by a motor or the like (not shown) controlled by the control unit 30 for focusing the SLO optical system and the fixation lamp. The mirror 207 is a prism in which a perforated mirror or a hollow mirror is vapor-deposited, and can separate the projection light from the SLO light source 210 and the return light from the eye E to be inspected. The third dichroic mirror 208 separates the optical path to the SLO light source 210 and the optical path to the fixation lamp 211 for each wavelength band.
SLO光源210は、例えば、780nm付近の波長の光を発生する。フォトダイオード209は、SLO光源210から照射された投影光について、被検眼Eからの戻り光を検出する。固視灯211は、可視光を発生して被検者の固視を促すために用いられる。
The SLO light source 210 generates light with a wavelength near 780 nm, for example. The photodiode 209 detects the return light from the subject's eye E in the projection light emitted from the SLO light source 210. The fixation lamp 211 is used to generate visible light and promote the fixation of the subject.
SLO光源210から発せられた投影光は、第3ダイクロイックミラー208で反射され、ミラー207を通過し、レンズ206,205を通り、SLO走査部204によって、被検眼E上で走査される。被検眼Eからの戻り光は、投影光と同じ経路を戻った後、ミラー207によって反射され、フォトダイオード209へと導かれる。制御部30は、SLO走査部204の駆動位置及びフォトダイオード209からの出力に基づいて、SLO眼底画像を生成することができる。
The projection light emitted from the SLO light source 210 is reflected by the third dichroic mirror 208, passes through the mirror 207, passes through the lenses 206 and 205, and is scanned on the eye E by the SLO scanning unit 204. The return light from the eye E to be examined returns through the same path as the projection light, is reflected by the mirror 207, and is guided to the photodiode 209. The control unit 30 can generate an SLO fundus image based on the drive position of the SLO scanning unit 204 and the output from the photodiode 209.
固視灯211から発せられた光は、第3ダイクロイックミラー208及びミラー207を透過し、レンズ206,205を通り、SLO走査部204によって、被検眼E上で走査される。このとき、制御部30は、SLO走査部204の動きに合わせて固視灯211を点滅させることによって、被検眼E上の任意の位置に任意の形状をつくり、被検者の固視を促すことができる。
The light emitted from the fixation lamp 211 passes through the third dichroic mirror 208 and the mirror 207, passes through the lenses 206 and 205, and is scanned on the eye E by the SLO scanning unit 204. At this time, the control unit 30 blinks the fixation lamp 211 in accordance with the movement of the SLO scanning unit 204 to create an arbitrary shape on the eye E to be inspected, thereby promoting the fixation of the subject. be able to.
前眼観察用の光路L3には、レンズ212,213、スプリットプリズム214、及び赤外光を検知する前眼部観察用のCCD215が配置されている。CCD215は、不図示の前眼観察用照射光の波長、具体的には970nm付近に感度を有する。スプリットプリズム214は、被検眼Eの瞳孔と共役な位置に配置されている。制御部30は、CCD215の出力に基づいて前眼部画像を生成することができる。制御部30は、スプリットプリズム214を通った光に基づく前眼部のスプリット像を用いて、被検眼Eに対する測定光学系21のZ軸方向(前後方向)の距離を検出することができる。
The lenses 212 and 213, the split prism 214, and the CCD 215 for observing the anterior segment that detects infrared light are arranged in the optical path L3 for observing the anterior eye. The CCD 215 has a sensitivity around the wavelength of irradiation light for anterior ocular segment observation (not shown), specifically, around 970 nm. The split prism 214 is arranged at a position conjugate with the pupil of the eye E to be inspected. The control unit 30 can generate an anterior segment image based on the output of the CCD 215. The control unit 30 can detect the distance in the Z-axis direction (front-back direction) of the measurement optical system 21 with respect to the eye E by using the split image of the anterior segment based on the light that has passed through the split prism 214.
OCT光学系の光路L1には、被検眼Eの断層像を撮像するためのOCT光学系が設けられている。より具体的には、OCT光学系は、被検眼Eの断層画像を生成するための干渉信号を得るために用いられる。
The optical path L1 of the OCT optical system is provided with an OCT optical system for capturing a tomographic image of the eye E to be inspected. More specifically, the OCT optical system is used to obtain an interference signal for generating a tomographic image of the eye E to be inspected.
OCT光学系の光路L1には、XYスキャナ216、レンズ217,218、及び光ファイバー224のファイバー端が設けられている。XYスキャナ216は、後述する測定光を被検眼E上で走査するためのOCT走査部である。XYスキャナ216は、1枚のミラーとして図示されているが、X軸方向及びY軸方向の2軸方向に測定光を走査するための2枚のガルバノミラーによって構成される。なお、XYスキャナ216の構成はこれに限られず、所望の構成に応じて任意に変更されてよい。例えば、1枚で二次元方向に光を偏向させることができるMEMSミラー等によって、XYスキャナ216を構成してもよい。
An XY scanner 216, lenses 217 and 218, and a fiber end of an optical fiber 224 are provided in the optical path L1 of the OCT optical system. The XY scanner 216 is an OCT scanning unit for scanning the measurement light E described below on the eye E. Although the XY scanner 216 is illustrated as a single mirror, it is composed of two galvanometer mirrors for scanning the measurement light in the biaxial directions of the X-axis direction and the Y-axis direction. The configuration of the XY scanner 216 is not limited to this, and may be arbitrarily changed according to the desired configuration. For example, the XY scanner 216 may be configured by a MEMS mirror or the like that can deflect light in a two-dimensional direction with one sheet.
レンズ217は、制御部30によって制御される不図示のモータ等により、図中矢印で示される光軸方向に駆動されることができる。制御部30は、不図示のモータ等によりレンズ217を駆動させることで、光カプラー219に接続されている光ファイバー224から出射される測定光を被検眼Eに焦点合わせすることができる。この焦点合わせによって、被検眼Eからの測定光の戻り光は、同時に光ファイバー224の先端に、スポット状に結像されて入射されることとなる。
The lens 217 can be driven in the optical axis direction indicated by the arrow in the figure by a motor or the like (not shown) controlled by the control unit 30. The control unit 30 can focus the measurement light emitted from the optical fiber 224 connected to the optical coupler 219 on the eye E by driving the lens 217 by a motor (not shown) or the like. Due to this focusing, the return light of the measurement light from the eye E is simultaneously imaged and incident on the tip of the optical fiber 224 in a spot shape.
次に、OCT光源220からの光路、参照光学系、及び分光器230の構成について説明する。OCT光源220は、光ファイバー225を介して光カプラー219に接続される。光カプラー219には、光ファイバー224,225,226,227が接続される。光ファイバー224,225,226,227は、光カプラー219に接続されて一体化しているシングルモードの光ファイバーである。
Next, the configurations of the optical path from the OCT light source 220, the reference optical system, and the spectroscope 230 will be described. The OCT light source 220 is connected to the optical coupler 219 via the optical fiber 225. Optical fibers 224, 225, 226 and 227 are connected to the optical coupler 219. The optical fibers 224, 225, 226 and 227 are single mode optical fibers connected to and integrated with the optical coupler 219.
光ファイバー224のファイバー端は、OCT光路L1上に配置され、測定光は光ファイバー224及び光ファイバー224に設けられた測定光側の偏光調整部228を通ってOCT光路L1に入射する。一方、光ファイバー226のファイバー端は、参照光学系の光路に配置され、後述する参照光は光ファイバー226及び光ファイバー226に設けられた参照光側の偏光調整部229を通って参照光学系の光路に入射する。参照光学系の光路には、レンズ223、分散補償ガラス222、及び参照ミラー221が設けられている。また、光ファイバー227は分光器230に接続される。
The fiber end of the optical fiber 224 is arranged on the OCT optical path L1, and the measuring light enters the OCT optical path L1 through the optical fiber 224 and the polarization adjusting unit 228 provided on the optical fiber 224 on the measuring light side. On the other hand, the fiber end of the optical fiber 226 is disposed in the optical path of the reference optical system, and the reference light described later enters the optical path of the reference optical system through the optical fiber 226 and the polarization adjusting unit 229 on the reference light side provided in the optical fiber 226. To do. A lens 223, a dispersion compensation glass 222, and a reference mirror 221 are provided in the optical path of the reference optical system. Further, the optical fiber 227 is connected to the spectroscope 230.
これらの構成によって、マイケルソン干渉系が構成される。なお、本実施例では、干渉系としてマイケルソン干渉系を用いたが、マッハツェンダー干渉系を用いてもよい。測定光と参照光との光量差に応じて、光量差が大きい場合にはマッハツェンダー干渉系を、光量差が比較的小さい場合にはマイケルソン干渉系を用いることができる。
According to these configurations, Michelson interference system is configured. In this embodiment, the Michelson interference system is used as the interference system, but a Mach-Zehnder interference system may be used. Depending on the light quantity difference between the measurement light and the reference light, a Mach-Zehnder interference system can be used when the light quantity difference is large, and a Michelson interference system can be used when the light quantity difference is relatively small.
OCT光源220は、OCTによる測定に用いられる光を出射する。本実施例では、OCT光源220として、代表的な低コヒーレント光源であるSLD(Super Luminescent Diode)を用いた。また、本実施例におけるSLDの中心波長は855nm、波長バンド幅は約100nmとした。ここで、バンド幅は、得られる断層画像の光軸方向の分解能に影響するため、重要なパラメータである。また、光源の種類は、ここではSLDを選択したが、低コヒーレント光が出射できればよく、ASE(Amplified Spontaneous Emission)等も用いることができる。中心波長は眼を撮影することを鑑みて、近赤外光とすることができる。また、中心波長は得られる断層画像の横方向の分解能に影響するため、なるべく短波長とすることができる。本実施例では、双方の理由から中心波長を855nmとした。
The OCT light source 220 emits light used for measurement by OCT. In this embodiment, an SLD (Super Luminescent Diode), which is a typical low-coherent light source, is used as the OCT light source 220. The center wavelength of the SLD in this example was 855 nm, and the wavelength band width was about 100 nm. Here, the bandwidth is an important parameter because it affects the resolution of the obtained tomographic image in the optical axis direction. Although SLD is selected here as the type of light source, ASE (Amplified Spontaneous Emission) or the like may be used as long as low-coherent light can be emitted. The center wavelength may be near-infrared light in view of photographing the eye. Further, since the central wavelength affects the lateral resolution of the tomographic image obtained, the wavelength can be as short as possible. In this embodiment, the central wavelength is set to 855 nm for both reasons.
OCT光源220から出射された光は、光ファイバー225を通じて光カプラー219に入射する。光カプラー219に入射した光は、光カプラー219を介して、光ファイバー224側に向かう測定光と、光ファイバー226側に向かう参照光とに分割される。測定光は前述のOCT光学系の光路L1を通じ、被検体である被検眼Eに照射される。被検眼Eの反射や散乱による測定光の戻り光は、同じ光路を通じて光カプラー219に到達する。
The light emitted from the OCT light source 220 enters the optical coupler 219 through the optical fiber 225. The light incident on the optical coupler 219 is split via the optical coupler 219 into measurement light traveling toward the optical fiber 224 side and reference light traveling toward the optical fiber 226 side. The measurement light is applied to the subject's eye E, which is the subject, through the optical path L1 of the OCT optical system described above. The return light of the measurement light due to the reflection or scattering of the eye E to be examined reaches the optical coupler 219 through the same optical path.
一方、参照光は、光ファイバー226、レンズ223、及び測定光と参照光の分散を合わせるために挿入された分散補償ガラス222を介して参照ミラー221に到達し反射される。その後、参照光は、同じ光路を戻り、光カプラー219に到達する。ここで、参照ミラー221は、制御部30によって制御される不図示のモータ等によって、図中矢印で示される光軸方向に調整可能に保持されている。
On the other hand, the reference light reaches and is reflected by the reference mirror 221 via the optical fiber 226, the lens 223, and the dispersion compensation glass 222 inserted to match the dispersion of the measurement light and the reference light. After that, the reference light returns through the same optical path and reaches the optical coupler 219. Here, the reference mirror 221 is held by a motor or the like (not shown) controlled by the control unit 30 so as to be adjustable in the optical axis direction indicated by the arrow in the figure.
光カプラー219において、測定光と参照光は合波され干渉光となる。ここで、測定光と参照光は、測定光の光路長と参照光の光路長がほぼ同一となったときに干渉を生じる。制御部30は、不図示のモータ等を制御し、参照ミラー221を光軸方向に移動させることで、被検眼Eによって変わる測定光の光路長に参照光の光路長を合わせることができる。
In the optical coupler 219, the measurement light and the reference light are combined into interference light. Here, the measurement light and the reference light cause interference when the optical path length of the measurement light and the optical path length of the reference light become substantially the same. The control unit 30 controls a motor (not shown) or the like to move the reference mirror 221 in the optical axis direction, so that the optical path length of the reference light can be matched with the optical path length of the measurement light that changes depending on the eye E to be inspected.
なお、測定光側の偏光調整部228及び参照光側の偏光調整部229は、光ファイバーをループ状にひきまわした部分を幾つか有する。偏光調整部228,229は、このループ状の部分を光ファイバーの長手方向を中心として回動させてファイバーに捩じりを加えることで、測定光と参照光の偏光状態を各々調整して合わせることができる。
The polarization adjusting unit 228 on the measurement light side and the polarization adjusting unit 229 on the reference light side have some portions in which the optical fiber is looped. The polarization adjusting units 228 and 229 adjust the polarization states of the measurement light and the reference light by adjusting the polarization states of the measurement light and the reference light by rotating the loop-shaped portion about the longitudinal direction of the optical fiber and twisting the fiber. You can
光カプラー219で生じた干渉光は、光ファイバー227を介して、ベース部23に設けられた分光器230に導かれる。分光器230には、レンズ234,232、回折格子233、及びラインセンサ231が設けられている。光ファイバー227から出射された干渉光は、レンズ234を介して平行光となった後、回折格子233で分光され、レンズ232によってラインセンサ231に結像される。制御部30は、ラインセンサ231から出力された、干渉光に基づく干渉信号を用いて被検眼Eの断層画像を生成することができる。
The interference light generated in the optical coupler 219 is guided to the spectroscope 230 provided in the base section 23 via the optical fiber 227. The spectroscope 230 is provided with lenses 234 and 232, a diffraction grating 233, and a line sensor 231. The interference light emitted from the optical fiber 227 becomes parallel light through the lens 234, is then dispersed by the diffraction grating 233, and is imaged on the line sensor 231 by the lens 232. The control unit 30 can generate a tomographic image of the eye E by using the interference signal based on the interference light, which is output from the line sensor 231.
以上のような構成により、撮影部20を用いることで、被検眼Eの断層像を取得することができ、且つ、近赤外光であってもコントラストの高い被検眼EのSLO眼底像を取得することができる。
With the above-described configuration, by using the imaging unit 20, a tomographic image of the eye E to be inspected can be acquired, and an SLO fundus image of the eye E to be inspected with high contrast even with near infrared light can be acquired. can do.
(断層画像の撮影方法)
次に、OCT装置1を用いた断層画像の撮影方法について説明する。OCT装置1では、制御部30によりXYスキャナ216を制御することで、被検眼Eの所定部位の断層画像を撮影することができる。ここで、測定光を被検眼E上で走査する軌跡のことをスキャンパターン(走査パターン)と呼ぶ。このスキャンパターンには、例えば、一点を中心として縦横十字にスキャンするクロススキャンや、エリア全体を塗りつぶすようにスキャンし結果として三次元断層画像を得る3Dスキャン等がある。特定の部位に対して詳細な観察を行いたい場合はクロススキャンが適しており、網膜全体の層構造や層厚を観察したい場合は3Dスキャンが適している。 (How to take a tomographic image)
Next, a method of capturing a tomographic image using theOCT apparatus 1 will be described. In the OCT apparatus 1, the control unit 30 controls the XY scanner 216 to capture a tomographic image of a predetermined portion of the eye E to be inspected. Here, the locus along which the measurement light is scanned on the eye E is referred to as a scan pattern (scan pattern). This scan pattern includes, for example, a cross scan in which a single point is scanned in a vertical and horizontal cross shape, and a 3D scan in which the entire area is scanned to obtain a three-dimensional tomographic image as a result. Cross-scan is suitable for detailed observation of a specific region, and 3D scan is suitable for observing the layer structure and layer thickness of the entire retina.
次に、OCT装置1を用いた断層画像の撮影方法について説明する。OCT装置1では、制御部30によりXYスキャナ216を制御することで、被検眼Eの所定部位の断層画像を撮影することができる。ここで、測定光を被検眼E上で走査する軌跡のことをスキャンパターン(走査パターン)と呼ぶ。このスキャンパターンには、例えば、一点を中心として縦横十字にスキャンするクロススキャンや、エリア全体を塗りつぶすようにスキャンし結果として三次元断層画像を得る3Dスキャン等がある。特定の部位に対して詳細な観察を行いたい場合はクロススキャンが適しており、網膜全体の層構造や層厚を観察したい場合は3Dスキャンが適している。 (How to take a tomographic image)
Next, a method of capturing a tomographic image using the
ここでは、3Dスキャンを実行した場合の撮影方法を説明する。まず、図中X軸方向(主走査方向)に測定光のスキャン(走査)を行い、被検眼EにおけるX軸方向の撮影範囲から所定の撮影本数の情報をラインセンサ231で取得する。
Here, we will explain the shooting method when 3D scanning is performed. First, the measurement light is scanned (scanned) in the X-axis direction (main scanning direction) in the figure, and the line sensor 231 acquires information about a predetermined number of images from the imaging range of the eye E to be examined in the X-axis direction.
ここで、被検眼EのX軸方向の一点における深さ方向の断層情報を取得することをAスキャンという。Aスキャンで得られるラインセンサ231上の輝度分布を高速フーリエ変換(FFT:Fast Fourier Transform)し、FFTで得られた線状の輝度分布を表示部50に示すために濃度情報に変換する。これにより、Aスキャンで取得した情報に基づくAスキャン画像を生成することができる。また、複数のAスキャン画像を並べることで、二次元画像であるBスキャン画像を取得することができる。
Here, acquiring the tomographic information in the depth direction at one point in the X-axis direction of the eye E to be examined is called A scan. The luminance distribution on the line sensor 231 obtained by the A scan is subjected to fast Fourier transform (FFT: Fast Fourier Transform), and the linear luminance distribution obtained by the FFT is converted into density information for display on the display unit 50. As a result, an A-scan image based on the information acquired by the A-scan can be generated. Further, by arranging a plurality of A-scan images, a B-scan image that is a two-dimensional image can be acquired.
1つのBスキャン画像を構成するための複数のAスキャン画像を撮影した後、Y軸方向(副走査方向)のスキャン位置を移動させて再びX軸方向のスキャンを行うことにより、複数のBスキャン画像を取得することができる。複数のBスキャン画像、又は複数のBスキャン画像から構築した三次元断層画像を表示部50に表示することで、検者が被検眼Eの三次元の断層の状態を観察することができる。検者は、当該画像に基づいて、被検眼Eの診断を行うことができる。ここでは、X軸方向のBスキャン画像を複数得ることで三次元断層画像を取得する例を示したが、Y軸方向のBスキャン画像を複数得ることで三次元断層画像を取得してもよい。なお、走査方向はX軸方向及びY軸方向に限られず、Z軸方向に直交するとともに互いに交差する軸方向であればよい。
After capturing a plurality of A-scan images for forming one B-scan image, the scan position in the Y-axis direction (sub-scanning direction) is moved, and scanning in the X-axis direction is performed again. Images can be acquired. By displaying a plurality of B-scan images or a three-dimensional tomographic image constructed from the plurality of B-scan images on the display unit 50, the examiner can observe the three-dimensional tomographic state of the eye E to be examined. The examiner can diagnose the eye E to be inspected based on the image. Here, an example in which a three-dimensional tomographic image is acquired by obtaining a plurality of B-scan images in the X-axis direction has been shown, but a three-dimensional tomographic image may be obtained by obtaining a plurality of B-scan images in the Y-axis direction. . The scanning direction is not limited to the X-axis direction and the Y-axis direction, and may be any axial direction orthogonal to the Z-axis direction and intersecting each other.
(制御部の構成)
次に、図3を参照して制御部30について説明する。図3は制御部30の概略的な構成例を示す。制御部30には、取得部310、画像処理部320、駆動制御部330、記憶部340、及び表示制御部350が設けられている。 (Configuration of control unit)
Next, thecontrol unit 30 will be described with reference to FIG. FIG. 3 shows a schematic configuration example of the control unit 30. The control unit 30 is provided with an acquisition unit 310, an image processing unit 320, a drive control unit 330, a storage unit 340, and a display control unit 350.
次に、図3を参照して制御部30について説明する。図3は制御部30の概略的な構成例を示す。制御部30には、取得部310、画像処理部320、駆動制御部330、記憶部340、及び表示制御部350が設けられている。 (Configuration of control unit)
Next, the
取得部310は、撮影部20から、CCD215及びフォトダイオード209の出力信号、並びに被検眼Eの干渉信号に対応するラインセンサ231の出力信号のデータを取得することができる。なお、取得部310が取得する出力信号のデータは、アナログ信号でもデジタル信号でもよい。取得部310がアナログ信号を取得する場合には、制御部30でアナログ信号をデジタル信号に変換することができる。
The acquisition unit 310 can acquire the output signals of the CCD 215 and the photodiode 209 and the output signal data of the line sensor 231 corresponding to the interference signal of the eye E from the imaging unit 20. The data of the output signal acquired by the acquisition unit 310 may be an analog signal or a digital signal. When the acquisition unit 310 acquires an analog signal, the control unit 30 can convert the analog signal into a digital signal.
また、取得部310は、画像処理部320で生成された断層データ等の各種データや、断層画像、SLO眼底画像、及び前眼部画像等の各種画像を取得することができる。ここで、断層データとは、被検体の断層に関する情報を含むデータであり、OCTによる干渉信号にフーリエ変換を施した信号、及び該信号に任意の処理を施した信号等を含むものをいう。
Further, the acquisition unit 310 can acquire various data such as tomographic data generated by the image processing unit 320 and various images such as a tomographic image, an SLO fundus image, and an anterior segment image. Here, the tomographic data is data including information on a tomographic image of a subject, and includes data including a signal obtained by performing Fourier transform on an interference signal by OCT, a signal obtained by performing arbitrary processing on the signal, and the like.
さらに、取得部310は、画像処理すべき画像の撮影条件群(例えば、撮影日時、撮影部位名、撮影領域、撮影画角、撮影方式、画像の解像度や階調、画像の画像サイズ、画像フィルタ、及び画像のデータ形式に関する情報など)を取得できる。なお、撮影条件群については、例示したものに限られない。また、撮影条件群は、例示したもの全てを含む必要はなく、これらのうちの一部を含んでもよい。
Further, the acquisition unit 310 includes a shooting condition group of images to be image-processed (for example, shooting date / time, shooting region name, shooting region, shooting angle of view, shooting method, image resolution and gradation, image size of image, image filter). , And information about the image data format). The shooting condition group is not limited to the illustrated one. Further, the shooting condition group does not need to include all of the exemplified ones, and may include some of them.
具体的には、取得部310は、画像を撮影した際の撮影部20の撮影条件を取得する。また、取得部310は、画像のデータ形式に応じて、画像を構成するデータ構造に保存された撮影条件群を取得することもできる。なお、画像のデータ構造に撮影条件が保存されていない場合には、取得部310は、別途撮影条件を保存している記憶装置等から撮影条件群を含む撮影情報群を取得することもできる。
Specifically, the acquisition unit 310 acquires the photographing conditions of the photographing unit 20 when the image is photographed. In addition, the acquisition unit 310 can also acquire the shooting condition group stored in the data structure forming the image according to the data format of the image. In addition, when the shooting condition is not stored in the data structure of the image, the acquisition unit 310 can also acquire the shooting information group including the shooting condition group from a storage device or the like separately storing the shooting condition.
また、取得部310は、被検者識別番号等の被検眼を同定するための情報を入力部40等から取得することもできる。なお、取得部310は、記憶部340や、制御部30に接続される不図示のその他の装置から各種データや各種画像、各種情報を取得してもよい。取得部310は、取得した各種データや画像を記憶部340に記憶させることができる。
The acquisition unit 310 can also acquire information for identifying the eye to be inspected, such as the subject identification number, from the input unit 40 or the like. The acquisition unit 310 may acquire various data, various images, and various information from the storage unit 340 and other devices (not shown) connected to the control unit 30. The acquisition unit 310 can store various acquired data and images in the storage unit 340.
画像処理部320は、取得部310で取得されたデータや記憶部340に記憶されたデータから断層画像を生成したり、生成又は取得した断層画像に画像処理を施したりすることができる。画像処理部320には、断層画像生成部321、及び高画質化部322が設けられている。
The image processing unit 320 can generate a tomographic image from the data acquired by the acquisition unit 310 or the data stored in the storage unit 340, and can perform image processing on the generated or acquired tomographic image. The image processing unit 320 is provided with a tomographic image generation unit 321 and an image quality improvement unit 322.
断層画像生成部321は、取得部310が取得した干渉信号のデータに対して波数変換やフーリエ変換、絶対値変換(振幅の取得)等を施して断層データを生成し、断層データに基づいて被検眼Eの断層画像を生成することができる。ここで、取得部310で取得される干渉信号のデータは、ラインセンサ231から出力された信号のデータであってもよいし、記憶部340や制御部30に接続された不図示の装置から取得された干渉信号のデータであってもよい。なお、断層画像の生成方法としては公知の任意の方法を採用してよく、詳細な説明は省略する。
The tomographic image generation unit 321 generates tomographic data by performing wave number conversion, Fourier transform, absolute value conversion (acquisition of amplitude) or the like on the data of the interference signal acquired by the acquisition unit 310, and based on the tomographic data, the tomographic image is generated. A tomographic image of the optometry E can be generated. Here, the data of the interference signal acquired by the acquisition unit 310 may be the data of the signal output from the line sensor 231, or may be acquired from a device (not shown) connected to the storage unit 340 or the control unit 30. It may be the data of the generated interference signal. Any known method may be adopted as the method of generating the tomographic image, and detailed description thereof will be omitted.
高画質化部322は、後述する学習済モデルを用いて、断層画像生成部321で生成された断層画像から高画質な断層画像を生成する。なお、高画質化部322は、撮影部20を用いて撮影された断層画像等だけでなく、取得部310が、記憶部340や制御部30に接続される不図示のその他の装置から取得した断層画像に基づいて高画質な断層画像を生成することもできる。
The image quality improving unit 322 generates a high quality tomographic image from the tomographic image generated by the tomographic image generating unit 321 using a learned model described later. The image quality improving unit 322 acquires not only the tomographic image captured by the image capturing unit 20 but also the acquisition unit 310 from the storage unit 340 and other devices (not shown) connected to the control unit 30. It is also possible to generate a high-quality tomographic image based on the tomographic image.
駆動制御部330は、制御部30に接続されている撮影部20のOCT光源220や、XYスキャナ216、レンズ217、参照ミラー221、SLO光源210、SLO走査部204、レンズ205、固視灯211等の構成要素の駆動を制御することができる。
The drive control unit 330 includes the OCT light source 220 of the imaging unit 20 connected to the control unit 30, the XY scanner 216, the lens 217, the reference mirror 221, the SLO light source 210, the SLO scanning unit 204, the lens 205, and the fixation lamp 211. It is possible to control driving of components such as.
記憶部340は、取得部310で取得された各種データ、及び画像処理部320で生成・処理された断層画像等の各種画像やデータ等を記憶することができる。また、記憶部340は、被検者の属性(氏名や年齢など)や他の検査機器を用いて取得した計測結果(眼軸長や眼圧など)などの被検眼に関する情報、撮影パラメータ、画像解析パラメータ、操作者によって設定されたパラメータを記憶することができる。さらに、記憶部340は、正常データベースの統計情報を記憶することもできる。なお、これらの画像及び情報は、不図示の外部記憶装置に記憶する構成にしてもよい。また、記憶部340は、プロセッサーによって実行されることで制御部30の各構成要素の機能を果たすためのプログラム等を記憶することもできる。
The storage unit 340 can store various data acquired by the acquisition unit 310 and various images and data such as tomographic images generated and processed by the image processing unit 320. In addition, the storage unit 340 stores information about the subject's eye such as the subject's attributes (name, age, etc.) and measurement results (e.g., axial length and intraocular pressure) acquired using other test equipment, imaging parameters, and images. The analysis parameter and the parameter set by the operator can be stored. Further, the storage unit 340 can also store the statistical information of the normal database. Note that these images and information may be stored in an external storage device (not shown). The storage unit 340 can also store a program or the like for executing the functions of the respective components of the control unit 30 by being executed by the processor.
表示制御部350は、取得部310で取得された各種情報や画像処理部320で生成・処理された断層画像等の各種画像を表示部50に表示させることができる。また、表示制御部350は、ユーザによって入力された情報等を表示部50に表示させることができる。
The display control unit 350 can cause the display unit 50 to display various images acquired by the acquisition unit 310 and various images such as tomographic images generated and processed by the image processing unit 320. Further, the display control unit 350 can cause the display unit 50 to display information and the like input by the user.
制御部30は、例えば汎用のコンピュータを用いて構成されてよい。なお、制御部30は、OCT装置1の専用のコンピュータを用いて構成されてもよい。制御部30は、不図示のCPU(Central Processing Unit)やMPU(Micro Processing Unit)、及び光学ディスクやROM(Read Only Memory)等のメモリを含む記憶媒体を備えている。制御部30の記憶部340以外の各構成要素は、CPUやMPU等のプロセッサーによって実行されるソフトウェアモジュールにより構成されてよい。また、当該各構成要素は、ASIC等の特定の機能を果たす回路や独立した装置等によって構成されてもよい。記憶部340は、例えば、光学ディスクやメモリ等の任意の記憶媒体によって構成されてよい。
The control unit 30 may be configured using a general-purpose computer, for example. The control unit 30 may be configured using a dedicated computer for the OCT apparatus 1. The control unit 30 includes a storage medium including a CPU (Central Processing Unit), an MPU (Micro Processing Unit) (not shown), and a memory such as an optical disk and a ROM (Read Only Memory). Each component other than the storage unit 340 of the control unit 30 may be configured by a software module executed by a processor such as a CPU or MPU. Further, each component may be configured by a circuit such as an ASIC that performs a specific function, an independent device, or the like. The storage unit 340 may be configured by any storage medium such as an optical disk or a memory, for example.
なお、制御部30が備えるCPU等のプロセッサー及びROM等の記憶媒体は1つであってもよいし複数であってもよい。そのため、制御部30の各構成要素は、少なくとも1以上のプロセッサーと少なくとも1つの記憶媒体とが接続され、少なくとも1以上のプロセッサーが少なくとも1以上の記憶媒体に記憶されたプログラムを実行した場合に機能するように構成されてもよい。なお、プロセッサーはCPUやMPUに限定されるものではなく、GPU(Graphics Processing Unit)やFPGA(Field-Programmable Gate Array)等であってもよい。
Note that the control unit 30 may have one or more processors such as CPU and storage media such as ROM. Therefore, each component of the control unit 30 functions when at least one processor and at least one storage medium are connected, and at least one processor executes a program stored in at least one storage medium. May be configured to do so. The processor is not limited to the CPU and MPU, and may be a GPU (Graphics Processing Unit), an FPGA (Field-Programmable Gate Array), or the like.
次に、本実施例に係る断層画像の高画質化処理を説明するにあたり、図4乃至図5Dを参照して、セグメンテーション処理及び階調変換処理について説明する。
Next, in explaining the tomographic image quality improving process according to the present embodiment, the segmentation process and the gradation conversion process will be described with reference to FIGS. 4 to 5D.
(セグメンテーション処理)
図4は、セグメンテーション処理により網膜層の各領域の境界が検出された断層画像の一例を示す。断層画像のセグメンテーション処理では、断層画像に含まれる各領域の境界を検出することができ、図4に示す断層画像400では、硝子体部と網膜部の境界401、及び網膜部と脈絡膜部の境界402が検出されている。断層画像400における境界401,402を検出することで、境界401と境界402の間における網膜部の領域403、境界401から浅層側にある硝子体部の領域404、及び境界402から深層側にある脈絡膜部の領域405を特定することができる。 (Segmentation process)
FIG. 4 shows an example of a tomographic image in which the boundaries of the respective regions of the retinal layer have been detected by the segmentation processing. In the segmentation processing of the tomographic image, the boundary between the regions included in the tomographic image can be detected. In thetomographic image 400 shown in FIG. 4, the boundary 401 between the vitreous part and the retina and the boundary between the retina and the choroid part. 402 has been detected. By detecting the boundaries 401 and 402 in the tomographic image 400, a region 403 of the retina between the boundaries 401 and 402, a region 404 of the vitreous body on the shallow side of the boundary 401, and a region of the deep side from the boundary 402. An area 405 of a choroid can be identified.
図4は、セグメンテーション処理により網膜層の各領域の境界が検出された断層画像の一例を示す。断層画像のセグメンテーション処理では、断層画像に含まれる各領域の境界を検出することができ、図4に示す断層画像400では、硝子体部と網膜部の境界401、及び網膜部と脈絡膜部の境界402が検出されている。断層画像400における境界401,402を検出することで、境界401と境界402の間における網膜部の領域403、境界401から浅層側にある硝子体部の領域404、及び境界402から深層側にある脈絡膜部の領域405を特定することができる。 (Segmentation process)
FIG. 4 shows an example of a tomographic image in which the boundaries of the respective regions of the retinal layer have been detected by the segmentation processing. In the segmentation processing of the tomographic image, the boundary between the regions included in the tomographic image can be detected. In the
セグメンテーション処理としては既知の任意の方法を用いることができる。一例では、まず、処理の対象とする断層画像に対して、メディアンフィルタとSobelフィルタをそれぞれ適用してメディアン画像及びSobel画像を生成する。次に、生成したメディアン画像とSobel画像から、Aスキャンに対応する断層データ毎にプロファイルを生成する。ここで、生成されるプロファイルは、メディアン画像では輝度値のプロファイル、Sobel画像では勾配のプロファイルとなる。その後、Sobel画像から生成したプロファイル内のピークを検出する。検出したピークの前後やピーク間に対応するメディアン画像のプロファイルを参照することで、網膜層の各領域の境界を検出することができる。
Any known method can be used as the segmentation process. In one example, first, a median filter and a Sobel filter are applied to a tomographic image to be processed, and a median image and a Sobel image are generated. Next, a profile is generated for each tomographic data corresponding to the A scan from the generated median image and Sobel image. Here, the generated profile is a brightness value profile for the median image and a gradient profile for the Sobel image. Then, the peak in the profile generated from the Sobel image is detected. By referring to the profile of the median image corresponding to before and after the detected peak or between the peaks, the boundary of each region of the retinal layer can be detected.
(階調変換処理)
次に、図5A乃至図5Dを参照して、硝子体部の領域404及び脈絡膜部の領域405、網膜部の領域403、又はこれらすべての領域におけるコントラストを強調する階調変換処理について説明する。図5Aは、被検眼Eを撮影した元の断層画像(以下、オリジナルの断層画像)の一例として断層画像500を示す。断層画像500は、通常10ビット以上の整数形式であり、非常に低輝度な情報から高輝度な情報まで含む高ダイナミックレンジのデータである。これに対し、上述のように、表示部50に表示可能なデータは、例えば、8ビット整数形式等の低ダイナミックレンジのデータである。そのため、オリジナルの断層画像500について表示用の低ダイナミックレンジのデータとなるように階調変換処理が行われる。 (Gradation conversion processing)
Next, with reference to FIGS. 5A to 5D, a gradation conversion process for enhancing the contrast in thevitreous region 404 and the choroid region 405, the retina region 403, or all these regions will be described. FIG. 5A shows a tomographic image 500 as an example of an original tomographic image (hereinafter, an original tomographic image) obtained by photographing the eye E. The tomographic image 500 is usually in an integer format of 10 bits or more, and is data of a high dynamic range including information of extremely low brightness to information of high brightness. On the other hand, as described above, the data that can be displayed on the display unit 50 is low dynamic range data such as an 8-bit integer format. Therefore, the gradation conversion processing is performed so that the original tomographic image 500 has low dynamic range data for display.
次に、図5A乃至図5Dを参照して、硝子体部の領域404及び脈絡膜部の領域405、網膜部の領域403、又はこれらすべての領域におけるコントラストを強調する階調変換処理について説明する。図5Aは、被検眼Eを撮影した元の断層画像(以下、オリジナルの断層画像)の一例として断層画像500を示す。断層画像500は、通常10ビット以上の整数形式であり、非常に低輝度な情報から高輝度な情報まで含む高ダイナミックレンジのデータである。これに対し、上述のように、表示部50に表示可能なデータは、例えば、8ビット整数形式等の低ダイナミックレンジのデータである。そのため、オリジナルの断層画像500について表示用の低ダイナミックレンジのデータとなるように階調変換処理が行われる。 (Gradation conversion processing)
Next, with reference to FIGS. 5A to 5D, a gradation conversion process for enhancing the contrast in the
図5Bは、オリジナルの断層画像500に対して、網膜部の領域が観察しやすいように、言い換えると、網膜部の領域のコントラストを確保するように、階調変換処理が行われた断層画像501を示す。ここで、図6A及び図6Bを参照して、網膜部の領域のコントラストを確保するための階調変換処理について説明する。
FIG. 5B shows a tomographic image 501 that has been subjected to gradation conversion processing so that the region of the retina can be easily observed with respect to the original tomographic image 500, in other words, the contrast of the region of the retina is ensured. Indicates. Here, with reference to FIGS. 6A and 6B, a gradation conversion process for ensuring the contrast of the region of the retina will be described.
図6Aは、断層画像500における輝度値の出現頻度を示しており、網膜部の領域の輝度値に対応する輝度値の範囲601が示されている。なお、網膜部の領域の輝度値に対応する輝度値の範囲は、網膜部の領域について経験的に得られた平均的な輝度範囲等に基づいて決めてよい。当該階調変換処理では、図6Bに示すように、網膜部の領域の輝度値に対応する輝度範囲601が、表示用のデータに関する輝度値の広い範囲となるように変換処理を行う。これにより、網膜部の領域が観察しやすい表示用の断層画像501を生成することができる。
FIG. 6A shows the appearance frequency of the brightness value in the tomographic image 500, and shows a brightness value range 601 corresponding to the brightness value of the region of the retina. The range of the brightness value corresponding to the brightness value of the region of the retina may be determined based on an average brightness range obtained empirically for the region of the retina. In the gradation conversion process, as shown in FIG. 6B, the conversion process is performed such that the brightness range 601 corresponding to the brightness value of the region of the retina is a wide range of brightness values related to the display data. As a result, it is possible to generate the display tomographic image 501 in which the region of the retina is easily observed.
図5Cは、オリジナルの断層画像500に対して、硝子体部及び脈絡膜部の領域が観察しやすいように、言い換えると、硝子体部及び脈絡膜部の領域のコントラストを確保するように、階調変換処理が行われた断層画像502を示す。ここで、図7A及び図7Bを参照して、硝子体部及び脈絡膜部の領域のコントラストを確保するための階調変換処理について説明する。
FIG. 5C shows gradation conversion for the original tomographic image 500 so that the regions of the vitreous part and the choroid part can be easily observed, in other words, the contrast of the vitreous part and the choroid part can be ensured. A tomographic image 502 that has been processed is shown. Here, with reference to FIG. 7A and FIG. 7B, a gradation conversion process for ensuring the contrast in the regions of the vitreous part and the choroid part will be described.
図7Aは、断層画像500における輝度値の出現頻度を示しており、硝子体部及び脈絡膜部の領域の輝度値に対応する輝度値の範囲701が示されている。なお、硝子体部及び脈絡膜部の領域の輝度値に対応する輝度値の範囲は、硝子体部及び脈絡膜部の領域について経験的に得られた平均的な輝度範囲等に基づいて決めてよい。当該階調変換処理では、図7Bに示すように、硝子体部及び脈絡膜部の領域の輝度値に対応する輝度範囲701が、表示用のデータに関する輝度値の広い範囲となるように変換処理を行う。これにより、硝子体部及び脈絡膜部の領域が観察しやすい表示用の断層画像502を生成することができる。
FIG. 7A shows the appearance frequency of the brightness value in the tomographic image 500, and shows a range 701 of brightness values corresponding to the brightness values in the regions of the vitreous part and the choroid part. The range of brightness values corresponding to the brightness values of the vitreous body portion and the choroid portion may be determined based on an empirically obtained average brightness range and the like for the vitreous portion and the choroid portion. In the gradation conversion process, as shown in FIG. 7B, the conversion process is performed so that the brightness range 701 corresponding to the brightness values of the vitreous body part and the choroid part is a wide range of brightness values related to the display data. To do. As a result, it is possible to generate the tomographic image 502 for display in which the regions of the vitreous body portion and the choroid portion can be easily observed.
図5Dは、網膜部、硝子体部、及び脈絡膜部の領域が観察しやすいように、言い換えると、これらの領域のコントラストを確保するように階調変換処理が行われた断層画像503を示す。この場合には、まず、上述したセグメンテーション処理により、硝子体部と網膜部の境界401及び網膜部と脈絡膜部の境界402を検出し、網膜部の領域403、硝子体部の領域404、及び脈絡膜部の領域405を特定する。
FIG. 5D shows a tomographic image 503 that has been subjected to gradation conversion processing so that the regions of the retina, vitreous body, and choroid are easy to observe, in other words, the contrast of these regions is ensured. In this case, first, a boundary 401 between the vitreous part and the retina and a boundary 402 between the retina and the choroid are detected by the above-described segmentation processing, and the region 403 of the retina, the region 404 of the vitreous part, and the choroid are detected. A partial area 405 is specified.
その後、網膜部の領域403に対しては、図6Bに示すように、網膜部の領域に対応する輝度値の範囲601が、表示用のデータに関する輝度値の広い範囲となるように階調変換処理を行う。これに対し、硝子体部の領域404及び脈絡膜部の領域405に対しては、図7Bに示すように、硝子体部及び脈絡膜部の領域に対応する輝度値の範囲701が、表示用のデータに関する輝度値の広い範囲となるように階調変換処理を行う。これにより、網膜部、硝子体部、及び脈絡膜部の領域が観察しやすい表示用の断層画像503を生成することができる。
Thereafter, for the retina area 403, as shown in FIG. 6B, gradation conversion is performed so that the range 601 of brightness values corresponding to the area of the retina becomes a wide range of brightness values relating to display data. Perform processing. On the other hand, for the region 404 of the vitreous part and the region 405 of the choroid part, as shown in FIG. 7B, the range 701 of the brightness value corresponding to the region of the vitreous part and the choroid part is the data for display. The gradation conversion processing is performed so that the brightness value is in a wide range. This makes it possible to generate a tomographic image 503 for display, in which the regions of the retina, vitreous, and choroid are easy to observe.
なお、硝子体部と脈絡膜部で同じ変換処理を行うだけでなく、硝子体部と脈絡膜部で異なる変換処理を行うこともできる。また、線形の変換処理を行うだけでなく、シグモイド変換やγ変換等のS字カーブの変換処理等を行うこともできる。
Note that not only the same conversion process can be performed on the vitreous part and the choroid part, but also different conversion processes can be performed on the vitreous part and the choroid part. Further, not only linear conversion processing but also S-curve conversion processing such as sigmoid conversion and γ conversion can be performed.
上述した網膜部、硝子体部、及び脈絡膜部の大局的な領域を観察しやすい断層画像を生成するための階調変換処理では、セグメンテーション処理により断層画像における領域を検出することが行われている。そのため、疾病眼において病変による層構造の変化に起因して、セグメンテーション処理による誤検出が生じると、階調変換処理が適切に行われず、大局的な領域を観察しやすい断層画像を生成できない場合がある。
In the gradation conversion process for generating a tomographic image that makes it easy to observe the general regions of the retina, vitreous part, and choroid, the region in the tomographic image is detected by segmentation processing. . Therefore, in the diseased eye, if the erroneous detection due to the segmentation process occurs due to the change in the layer structure due to the lesion, the gradation conversion process may not be properly performed, and it may not be possible to generate a tomographic image in which it is easy to observe the global region. is there.
これに対し、本実施例に係る制御部30では、ディープラーニングなどの任意の機械学習アルゴリズムに従った機械学習モデルの学習済モデルを用いて、断層画像における領域毎に異なる画像処理が行われたような観察しやすい高画質な断層画像を生成する。学習済モデルを用いてセグメンテーション処理を行う場合、例えば、疾病眼において病変による層構造の変化が生じていても、学習した傾向に応じて適切に画像処理を行うことができる。
On the other hand, in the control unit 30 according to the present embodiment, different image processing is performed for each region in the tomographic image using the learned model of the machine learning model according to an arbitrary machine learning algorithm such as deep learning. Such a high-quality tomographic image that is easy to observe is generated. When performing the segmentation processing using the learned model, for example, even if the layer structure changes due to the lesion in the diseased eye, the image processing can be appropriately performed according to the learned tendency.
なお、本明細書における高画質な画像(高画質画像)とは、画像診断により適した画質の画像に変換された画像をいい、高画質化処理とは、入力された画像を画像診断により適した画質の画像に変換することをいう。ここで、画像診断に適した画質の内容は、各種の画像診断で何を診断したいのかということに依存する。そのため一概には言えないが、例えば、画像診断に適した画質は、撮影対象を観察しやすい色や階調で示していたり、ノイズが少なかったり、高コントラストであったり、画像サイズが大きかったり、高解像度であったりする画質を含む。また、画像生成の過程で描画されてしまった実際には存在しないオブジェクトやグラデーションが画像から除去されているような画質を含むことができる。
In the present specification, a high-quality image (high-quality image) refers to an image converted into an image of a quality suitable for image diagnosis, and a high-quality processing refers to an input image suitable for image diagnosis. It means converting to an image of high quality. Here, the content of the image quality suitable for image diagnosis depends on what is desired to be diagnosed by various image diagnosis. Therefore, although it cannot be said unequivocally, for example, the image quality suitable for image diagnosis is shown by colors and gradations that make it easy to observe the shooting target, there is little noise, high contrast, large image size, Includes image quality such as high resolution. Further, it is possible to include an image quality in which an object or gradation that does not actually exist and which is drawn in the process of image generation is removed from the image.
(機械学習の学習)
ここで、図8A乃至図10を参照して、本実施例に係る学習済モデルについて説明する。まず、図8A乃至図9Bを参照して、学習済モデルに関する教師データ(学習データ)について説明する。 (Machine learning learning)
Here, the learned model according to the present embodiment will be described with reference to FIGS. 8A to 10. First, with reference to FIGS. 8A to 9B, teacher data (learning data) regarding a learned model will be described.
ここで、図8A乃至図10を参照して、本実施例に係る学習済モデルについて説明する。まず、図8A乃至図9Bを参照して、学習済モデルに関する教師データ(学習データ)について説明する。 (Machine learning learning)
Here, the learned model according to the present embodiment will be described with reference to FIGS. 8A to 10. First, with reference to FIGS. 8A to 9B, teacher data (learning data) regarding a learned model will be described.
教師データは、1つ以上の入力データと出力データとのペア群で構成される。本実施例では、具体的には、断層画像500等のOCT装置によって取得されたオリジナルの断層画像を入力データとし、断層画像503等の大局的な観察が可能であるように画像処理を行った断層画像を出力データとしたペア群によって教師データを構成する。なお、出力データは、入力データとなる断層画像について画像処理を行った画像とすることができる。
-Teacher data consists of pairs of one or more input data and output data. In the present embodiment, specifically, the original tomographic image such as the tomographic image 500 acquired by the OCT apparatus is used as input data, and image processing is performed so that a global observation of the tomographic image 503 or the like is possible. The teacher data is composed of a pair of groups using the tomographic image as output data. The output data can be an image obtained by performing image processing on the tomographic image that is the input data.
まず、教師データを構成するペア群の1つを、図8A及び図8Bに示すオリジナルの断層画像810と高画質な断層画像820とした場合について説明する。この場合には、図8A及び図8Bに示すように、オリジナルの断層画像810の全体を入力データ、高画質な断層画像820の全体を出力データとして、ペアを構成する。なお、図8A及び図8Bに示す例では各画像の全体により入力データと出力データのペアを構成しているが、ペアはこれに限らない。
First, a case where one of the pair groups forming the teacher data is the original tomographic image 810 and the high-quality tomographic image 820 shown in FIGS. 8A and 8B will be described. In this case, as shown in FIGS. 8A and 8B, a pair is formed by using the entire original tomographic image 810 as input data and the entire high-quality tomographic image 820 as output data. In the example shown in FIGS. 8A and 8B, a pair of input data and output data is formed by the entire image, but the pair is not limited to this.
例えば、図9A及び図9Bに示すように、オリジナルの断層画像910のうちの矩形領域画像911を入力データ、高画質な断層画像920における対応する撮影領域である矩形領域画像921を出力データとして、ペアを構成してもよい。ここで、矩形領域画像911と矩形領域画像921は、断層画像910及び高画質な断層画像920において、互いに位置関係が対応する画像である。
For example, as shown in FIGS. 9A and 9B, a rectangular area image 911 of an original tomographic image 910 is used as input data, and a rectangular area image 921 that is a corresponding imaging area in a high-quality tomographic image 920 is used as output data. You may comprise a pair. Here, the rectangular area image 911 and the rectangular area image 921 are images corresponding to each other in the tomographic image 910 and the high-quality tomographic image 920.
なお、学習時には、スキャン範囲(撮影画角)、スキャン密度(Aスキャン数、Bスキャン数)を正規化して画像サイズを揃えて、学習時の矩形領域サイズを一定に揃えることができる。また、図8A乃至図9Bに示した矩形領域画像は、それぞれ別々に学習する際の矩形領域サイズの一例である。
Note that during learning, the scan range (shooting angle of view) and scan density (the number of A scans and the number of B scans) can be normalized to make the image sizes uniform, and the rectangular area size at the time of learning can be made uniform. Further, the rectangular area images shown in FIGS. 8A to 9B are examples of rectangular area sizes when learning separately.
また、矩形領域の数は、図8A及び図8Bに示す例では1つ、図9A及び図9Bに示す例では複数設定可能である。例えば、図9A及び図9Bに示す例において、断層画像910のうちの矩形領域画像912,913を入力データ、高画質な断層画像920における対応する撮影領域の矩形領域画像922,923を出力データとしてペアを構成することもできる。このように、1枚ずつの断層画像及び高画質な断層画像のペアから、互いに異なる矩形領域画像のペアを作成できる。なお、元となる断層画像及び高画質な断層画像において、矩形領域の位置を異なる座標に変えながら多数の矩形領域画像のペアを作成することで、教師データを構成するペア群を充実させることができる。
Also, the number of rectangular areas can be set to one in the example shown in FIGS. 8A and 8B, and can be set to a plurality in the examples shown in FIGS. 9A and 9B. For example, in the example shown in FIGS. 9A and 9B, the rectangular area images 912 and 913 of the tomographic image 910 are used as input data, and the rectangular area images 922 and 923 of the corresponding imaging areas in the high-quality tomographic image 920 are used as output data. You can also configure pairs. In this way, it is possible to create different pairs of rectangular area images from each pair of tomographic images and high-quality tomographic images. In the original tomographic image and the high-quality tomographic image, by creating a large number of pairs of rectangular area images while changing the position of the rectangular area to different coordinates, it is possible to enhance the pair group forming the teacher data. it can.
ここで、矩形領域画像911は、オリジナルの断層画像910における網膜部の領域の画像であり、矩形領域画像921は、大局的な観察が可能なように階調変換処理等の画像処理が行われた高画質な断層画像920における網膜部の領域の画像である。同様に、矩形領域画像912は、オリジナルの断層画像910における硝子体部の領域の画像であり、矩形領域画像922は高画質な断層画像920における硝子体部の領域の画像である。また、矩形領域画像913は、オリジナルの断層画像910における脈絡膜部の領域の画像であり、矩形領域画像923は高画質な断層画像920における脈絡膜部の領域の画像である。
Here, the rectangular area image 911 is an image of the area of the retina in the original tomographic image 910, and the rectangular area image 921 is subjected to image processing such as gradation conversion processing so that global observation is possible. It is an image of the region of the retina in the high-quality tomographic image 920. Similarly, the rectangular area image 912 is an image of the vitreous body area in the original tomographic image 910, and the rectangular area image 922 is an image of the vitreous body area in the high-quality tomographic image 920. The rectangular area image 913 is an image of the area of the choroid in the original tomographic image 910, and the rectangular area image 923 is an image of the area of the choroid in the high-quality tomographic image 920.
なお、図9A及び図9Bに示す例では、離散的に矩形領域を示しているが、元となる断層画像及び高画質な断層画像を、隙間なく連続する一定の画像サイズの矩形領域画像群に分割することができる。また、元となる断層画像及び高画質な断層画像について、互いに対応する、ランダムな位置の矩形領域画像群に分割してもよい。このように、矩形領域として、より小さな領域の画像を入力データ及び出力データのペアとして選択することで、もともとのペアを構成する断層画像910及び高画質な断層画像920から多くのペアデータを生成できる。そのため、機械学習モデルのトレーニングにかかる時間を短縮することができる。
In the example shown in FIGS. 9A and 9B, the rectangular areas are discretely shown, but the original tomographic image and the high-quality tomographic image are converted into a rectangular area image group having a constant image size and continuous without a gap. It can be divided. Further, the original tomographic image and the high-quality tomographic image may be divided into rectangular area image groups corresponding to each other at random positions. As described above, by selecting an image of a smaller area as a pair of input data and output data as a rectangular area, a large amount of pair data is generated from the tomographic image 910 and the tomographic image 920 that form the original pair. it can. Therefore, the time required to train the machine learning model can be shortened.
なお、出力データは、1つの断層画像から生成した高画質な断層画像に限らない。被検眼の同一部位を複数回撮影して取得した複数の断層画像を用いて加算平均処理等を行った断層画像について生成した表示用の断層画像を使用してもよい。
The output data is not limited to high-quality tomographic images generated from one tomographic image. You may use the tomographic image for a display produced | generated about the tomographic image which carried out the arithmetic mean processing etc. using the several tomographic image which image | photographed the same site | part of the to-be-tested eye several times.
なお、矩形領域は、正方形に限定されず、長方形でもよい。さらには、矩形領域はAスキャン1本分でもよい。また、学習時の出力データを準備する際には、あらかじめ決めた自動処理により生成するだけでなく、手動調整により、より良いデータを準備することができる。
Note that the rectangular area is not limited to a square and may be a rectangle. Further, the rectangular area may be one A scan. Further, when preparing output data for learning, not only is it generated by a predetermined automatic process, but also better data can be prepared by manual adjustment.
さらに、教師データを構成するペア群のうち、高画質化に寄与しないペアは教師データから取り除くことができる。例えば、教師データのペアを構成する出力データである高画質画像が画像診断に適さない画質である場合には、当該教師データを用いて学習した学習済モデルが出力する画像も画像診断に適さない画質になってしまう可能性がある。そのため、出力データが画像診断に適さない画質であるペアを教師データから取り除くことで、学習済モデルが画像診断に適さない画質の画像を生成する可能性を低減させることができる。
Furthermore, of the group of pairs that make up the teacher data, pairs that do not contribute to higher image quality can be removed from the teacher data. For example, when the high-quality image that is the output data forming the pair of teacher data has an image quality that is not suitable for image diagnosis, the image output by the learned model learned using the teacher data is also not suitable for image diagnosis. There is a possibility that the image quality will end up. Therefore, it is possible to reduce the possibility that the learned model will generate an image having an image quality not suitable for image diagnosis by removing from the teacher data a pair whose output data has an image quality not suitable for image diagnosis.
また、ペアである画像群に描画される撮影対象の構造や位置が大きく異なる場合には、当該教師データを用いて学習した学習済モデルが、入力画像と大きく異なる構造や位置に撮影対象を描画した画像診断に適さない画像を出力する可能性がある。このため、描画される撮影対象の構造や位置が大きく異なる入力データと出力データのペアを教師データから取り除くこともできる。
Also, when the structure or position of the imaged object drawn in the pair of images is significantly different, the learned model learned using the teacher data draws the imaged object at a structure or position significantly different from the input image. There is a possibility of outputting an image that is not suitable for the image diagnosis. Therefore, a pair of input data and output data, which differ greatly in the structure or position of the imaged object to be drawn, can be removed from the teacher data.
次に、本実施例に係る学習済モデルの一例として、入力された断層画像に対して、高画質化処理を行う畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)について、図10を用いて説明する。
Next, as an example of the learned model according to the present embodiment, a convolutional neural network (CNN: Convolutional Neural Network) that performs image quality enhancement processing on an input tomographic image will be described with reference to FIG.
図10に示す学習済モデルは、入力値群を加工して出力する処理を担う複数の層群によって構成される。なお、当該学習済モデルの構成1001に含まれる層の種類としては、畳み込み(Convolution)層、ダウンサンプリング(Downsampling)層、アップサンプリング(Upsampling)層、及び合成(Merger)層がある。
The learned model shown in FIG. 10 is composed of a plurality of layer groups that are responsible for processing the input value group and outputting it. The types of layers included in the learned model configuration 1001 include a convolutional layer, a downsampling layer, an upsampling layer, and a merging layer.
畳み込み層は、設定されたフィルタのカーネルサイズや、フィルタの数、ストライドの値、ダイレーションの値等のパラメータに従い、入力値群に対して畳み込み処理を行う層である。なお、入力される画像の次元数に応じて、フィルタのカーネルサイズの次元数も変更してもよい。
The convolution layer is a layer that performs convolution processing on the input value group according to the parameters such as the set kernel size of the filter, the number of filters, the stride value, and the dilation value. The number of dimensions of the kernel size of the filter may be changed according to the number of dimensions of the input image.
ダウンサンプリング層は、入力値群を間引いたり、合成したりすることによって、出力値群の数を入力値群の数よりも少なくする処理を行う層である。具体的には、このような処理として、例えば、Max Pooling処理がある。
The down-sampling layer is a layer that performs processing to reduce the number of output value groups to less than the number of input value groups by thinning out or combining the input value groups. Specifically, for example, there is Max Pooling processing as such processing.
アップサンプリング層は、入力値群を複製したり、入力値群から補間した値を追加したりすることによって、出力値群の数を入力値群の数よりも多くする処理を行う層である。具体的には、このような処理として、例えば、線形補間処理がある。
The upsampling layer is a layer that performs processing to make the number of output value groups larger than the number of input value groups by duplicating the input value group or adding values interpolated from the input value group. Specifically, such processing includes, for example, linear interpolation processing.
合成層は、ある層の出力値群や画像を構成する画素値群といった値群を、複数のソースから入力し、それらを連結したり、加算したりして合成する処理を行う層である。
The composition layer is a layer that inputs a value group such as an output value group of a certain layer or a pixel value group that constitutes an image from a plurality of sources, and performs a process of concatenating or adding them to combine them.
なお、図10に示す構成1001に含まれる畳み込み層群に設定されるパラメータとして、例えば、フィルタのカーネルサイズを幅3画素、高さ3画素、フィルタの数を64とすることで、一定の精度の高画質化処理が可能である。ただし、ニューラルネットワークを構成する層群やノード群に対するパラメータの設定が異なると、教師データからトレーニングされた傾向を出力データに再現可能な程度が異なる場合があるので注意が必要である。つまり、多くの場合、実施する際の形態に応じて適切なパラメータは異なるので、必要に応じて好ましい値に変更することができる。
As the parameters set in the convolutional layer group included in the configuration 1001 illustrated in FIG. 10, for example, by setting the kernel size of the filter to 3 pixels in width and 3 pixels in height, and the number of filters to 64, constant accuracy can be obtained. It is possible to improve the image quality. However, it should be noted that the degree of reproducibility of the training tendency from the teacher data to the output data may differ if the parameter settings for the layers and node groups that make up the neural network are different. In other words, in many cases, the appropriate parameter differs depending on the mode of implementation, and thus it can be changed to a preferable value as necessary.
また、上述したようなパラメータを変更するという方法だけでなく、CNNの構成を変更することによって、CNNがより良い特性を得られる場合がある。より良い特性とは、例えば、画質向上処理の精度が高かったり、画質向上処理の時間が短かったり、機械学習モデルのトレーニングにかかる時間が短かったりする等である。
-In addition to changing the parameters as described above, changing the configuration of the CNN may allow the CNN to obtain better characteristics. The better characteristics are, for example, that the accuracy of the image quality improvement processing is high, the time of the image quality improvement processing is short, the time required for training the machine learning model is short, and the like.
なお、本実施例で用いるCNNの構成1001は、複数のダウンサンプリング層を含む複数の階層からなるエンコーダーの機能と、複数のアップサンプリング層を含む複数の階層からなるデコーダーの機能とを有するU-net型の機械学習モデルである。U-net型の機械学習モデルでは、エンコーダーとして構成される複数の階層において曖昧にされた位置情報(空間情報)を、デコーダーとして構成される複数の階層において、同次元の階層(互いに対応する階層)で用いることができるように(例えば、スキップコネクションを用いて)構成される。
Note that the CNN configuration 1001 used in the present embodiment has a U-function that has an encoder function including a plurality of layers including a plurality of downsampling layers and a decoder function including a plurality of layers including a plurality of upsampling layers. This is a net-type machine learning model. In the U-net type machine learning model, ambiguous position information (spatial information) in a plurality of layers configured as encoders is converted into a same-dimensional layer (layers corresponding to each other) in a plurality of layers configured as decoders. ) Is used (for example, using a skip connection).
図示しないが、CNNの構成の変更例として、例えば、畳み込み層の後にバッチ正規化(Batch Normalization)層や、正規化線形関数(Rectifier Linear Unit)を用いた活性化層を組み込む等してもよい。
Although not shown, as a modification example of the CNN configuration, for example, a batch normalization layer or an activation layer using a normalized linear function (Rectifier Linear Unit) may be incorporated after the convolutional layer. .
このような機械学習モデルの学習済モデルにデータを入力すると、機械学習モデルの設計に従ったデータが出力される。例えば、教師データを用いてトレーニングされた傾向に従って入力データに対応する可能性の高い出力データが出力される。本実施例に係る学習済モデルに、オリジナルの断層画像を入力すると、大局的な観察に用いられる、網膜部、硝子体部及び脈絡膜部が観察しやすい高画質な断層画像が出力される。
When data is input to the learned model of such a machine learning model, data according to the design of the machine learning model is output. For example, output data that is likely to correspond to the input data is output according to the tendency trained using the teacher data. When an original tomographic image is input to the learned model according to this embodiment, a high-quality tomographic image that is used for global observation and in which the retina, vitreous part, and choroid part are easily observed is output.
なお、断層画像の領域を分割して学習している場合、学習済モデルは、それぞれの矩形領域に対応する高画質な断層画像である矩形領域画像を出力する。この場合、高画質化部322は、まず、入力画像である断層画像を学習時の画像サイズに基づいて矩形領域画像群に分割し、分割した矩形領域画像群を学習済モデルに入力する。その後、高画質化部322は、学習済モデルを用いて得た高画質な断層画像である矩形領域画像群のそれぞれを、学習済モデルに入力した矩形領域画像群のぞれぞれと同様の位置関係に配置して結合する。これにより、高画質化部322は、入力された断層画像に対応する、高画質な断層画像を生成することができる。
Note that when learning is performed by dividing the area of the tomographic image, the learned model outputs a rectangular area image that is a high-quality tomographic image corresponding to each rectangular area. In this case, the image quality improving unit 322 first divides the tomographic image that is the input image into rectangular area image groups based on the image size at the time of learning, and inputs the divided rectangular area image groups to the learned model. After that, the image quality improving unit 322 sets each of the rectangular area image groups, which are high-quality tomographic images obtained by using the learned model, in the same manner as each of the rectangular area image groups input to the learned model. Arrange in a positional relationship and combine. As a result, the image quality improving unit 322 can generate a high quality tomographic image corresponding to the input tomographic image.
(フローチャート)
次に、図11を参照して、本実施例に係る一連の画像処理について説明する。図11は、本実施例に係る一連の画像処理のフローチャートである。 (flowchart)
Next, with reference to FIG. 11, a series of image processing according to the present embodiment will be described. FIG. 11 is a flowchart of a series of image processing according to this embodiment.
次に、図11を参照して、本実施例に係る一連の画像処理について説明する。図11は、本実施例に係る一連の画像処理のフローチャートである。 (flowchart)
Next, with reference to FIG. 11, a series of image processing according to the present embodiment will be described. FIG. 11 is a flowchart of a series of image processing according to this embodiment.
まず、ステップS1101では、取得部310が、被検眼Eを撮影して得た断層情報を取得する。取得部310は、撮影部20を用いて被検眼Eの断層情報を取得してもよいし、記憶部340や制御部30に接続される他の装置から断層情報を取得してもよい。
First, in step S1101, the acquisition unit 310 acquires tomographic information obtained by imaging the eye E to be inspected. The acquisition unit 310 may acquire the tomographic information of the eye E using the imaging unit 20 or may acquire the tomographic information from the storage unit 340 or another device connected to the control unit 30.
ここで、撮影部20を用いて被検眼Eの断層情報を取得する場合には、撮影モードの選択、スキャンパターン、スキャン範囲、フォーカス、及び固視灯位置などの各種撮影パラメータの設定、調整を行った後、被検眼Eのスキャンを開始することができる。
Here, when acquiring the tomographic information of the eye E to be inspected using the imaging unit 20, selection of an imaging mode, setting of various imaging parameters such as a scan pattern, a scan range, a focus, and a fixation lamp position, and adjustment are performed. After performing the scan, the scan of the eye E can be started.
ステップS1102では、断層画像生成部321が、取得された被検眼Eの断層情報に基づいて、断層画像を生成する。なお、取得部310が、ステップS1101において、記憶部340や制御部30に接続される他の装置から断層画像を取得する場合には、ステップS1102は省略されてよい。
In step S1102, the tomographic image generation unit 321 generates a tomographic image based on the acquired tomographic information of the eye E to be inspected. When the acquisition unit 310 acquires the tomographic image from the storage unit 340 or another device connected to the control unit 30 in step S1101, step S1102 may be omitted.
ステップS1103では、高画質化部322が、学習済モデルを用いて、ステップS1102で生成された又はステップS1101で取得された断層画像から、領域毎に異なる画像処理が行われたような高画質な断層画像を生成する。
In step S1103, the image quality improving unit 322 uses the learned model to obtain high image quality such that different image processing is performed for each region from the tomographic image generated in step S1102 or acquired in step S1101. Generate a tomographic image.
なお、学習済モデルが画像の領域を分割して学習している場合には、高画質化部322は、まず、入力画像である断層画像を学習時の画像サイズに基づいて矩形領域画像群に分割し、分割した矩形領域画像群を学習済モデルに入力する。その後、高画質化部322は、学習済モデルを用いて得た高画質な断層画像である矩形領域画像群のそれぞれを、学習済モデルに入力した矩形領域画像群のぞれぞれと同様の位置関係に配置して結合することで、最終的な高画質な断層画像を生成する。
When the learned model is learning by dividing the image area, the image quality improving unit 322 first divides the tomographic image, which is the input image, into a rectangular area image group based on the image size at the time of learning. Divide and input the divided rectangular area image group into the learned model. After that, the image quality improving unit 322 sets each of the rectangular area image groups, which are high-quality tomographic images obtained by using the learned model, in the same manner as each of the rectangular area image groups input to the learned model. A final high-quality tomographic image is generated by arranging them in a positional relationship and combining them.
ステップS1104では、表示制御部350が、ステップS1103で生成された高画質な断層画像を表示部50に表示させる。表示制御部350による表示処理が終了すると、一連の画像処理が終了する。
In step S1104, the display control unit 350 causes the display unit 50 to display the high-quality tomographic image generated in step S1103. When the display processing by the display control unit 350 ends, a series of image processing ends.
このような処理によれば、学習済モデルを用いて異なる領域に異なる画像処理が行われたような高画質な断層画像を生成し、表示させることができる。特に本実施例では、疾病眼などにおいても、硝子体、脈絡膜及び網膜のコントラストが強調された、大局的な観察に適した画像を生成し、表示することができる。
According to such processing, it is possible to generate and display a high-quality tomographic image in which different image processing is performed on different regions using the learned model. Particularly, in the present embodiment, it is possible to generate and display an image suitable for global observation in which the contrast of the vitreous body, the choroid and the retina is emphasized even in a diseased eye.
上記のように、本実施例に係る制御部30は、取得部310と、高画質化部322とを備える。取得部310は、被検体である被検眼Eの第1の断層画像(光干渉を利用した断層画像)を取得する。高画質化部322は、学習済モデルを用いて、第1の断層画像(第1の医用画像)から、第1の断層画像における異なる領域に異なる画像処理が施されたような第2の断層画像(第2の医用画像)を生成する。また、本実施例では、学習済モデルの学習データは、被検眼Eの領域に応じた階調変換処理が施された断層画像を含む。
As described above, the control unit 30 according to the present embodiment includes the acquisition unit 310 and the image quality improvement unit 322. The acquisition unit 310 acquires a first tomographic image (a tomographic image using optical interference) of the subject's eye E, which is the subject. The image quality improving unit 322 uses the learned model to generate a second tomographic image from the first tomographic image (first medical image) such that different regions in the first tomographic image are subjected to different image processing. An image (second medical image) is generated. Further, in the present embodiment, the learning data of the learned model includes a tomographic image that has been subjected to the gradation conversion processing according to the area of the eye E to be inspected.
このような構成によれば、学習済モデルを用いて異なる領域に異なる画像処理が行われたような高画質な断層画像を生成し、表示させることができる。特に本実施例では、疾病眼などにおいて、断層画像のセグメンテーションで良好な結果が得られない場合でも、網膜、硝子体、脈絡膜の内部構造を詳細に観察可能な表示画像を得ることができる。
With such a configuration, it is possible to generate and display a high-quality tomographic image in which different image processing is performed on different regions using the learned model. In particular, in the present embodiment, it is possible to obtain a display image in which the internal structures of the retina, vitreous body, and choroid can be observed in detail even when a good result cannot be obtained by segmentation of a tomographic image in a diseased eye or the like.
また、本実施例では、高画質化部322が、学習済モデルを用いて、各領域が高画質化された高画質な断層画像を生成することができる。そのため、高画質化部322は、学習済モデルを用いて、第1の断層画像から、第1の断層画像における第1の領域と第1の領域とは異なる第2の領域との異なる領域が高画質化された第2の断層画像を生成することができる。ここで、例えば、第1の領域は網膜部の領域であってよく、第2の領域は硝子体部の領域であってよい。また、高画質化が行われる領域は2つに限られず、3つ以上であってもよい。この場合、例えば、高画質が行われる、第1及び第2の領域とは異なる第3の領域は脈絡膜部の領域であってよい。なお、高画質化が行われる各領域は、所望の構成に応じて任意に変更されてよい。この観点からも、本実施例に係る制御部30は、観察対象の領域毎に適切な画像処理が行われたような画像を生成できる。
In addition, in the present embodiment, the image quality improving unit 322 can generate a high quality tomographic image in which each region has high image quality by using the learned model. Therefore, the image quality improving unit 322 uses the learned model and determines that the first tomographic image includes a different region between the first region and the second region different from the first region in the first tomographic image. It is possible to generate a high-quality second tomographic image. Here, for example, the first region may be a retina region and the second region may be a vitreous region. Moreover, the number of regions in which the image quality is improved is not limited to two, and may be three or more. In this case, for example, the third region, which is different from the first and second regions in which high image quality is performed, may be the region of the choroid. It should be noted that each area in which the image quality is improved may be arbitrarily changed according to a desired configuration. From this viewpoint as well, the control unit 30 according to the present embodiment can generate an image in which appropriate image processing is performed for each observation target region.
本実施例に係る学習済モデルでは、教師データの出力データとして、領域毎に適切な階調変換処理が行われた画像を用いたが、教師データはこれに限られない。例えば、教師データの出力データとして、断層画像の領域毎に、元画像群に対して加算平均等の重ね合わせ処理や最大事後確率推定処理(MAP推定処理)を行うことで得られる高画質画像を用いてもよい。ここで、元画像とは入力データとなる断層画像のことをいう。
In the learned model according to the present embodiment, an image subjected to an appropriate gradation conversion process for each area is used as output data of teacher data, but the teacher data is not limited to this. For example, as the output data of the teacher data, a high-quality image obtained by performing superimposition processing such as arithmetic mean and maximum posterior probability estimation processing (MAP estimation processing) on the original image group for each area of the tomographic image You may use. Here, the original image means a tomographic image which is input data.
MAP推定処理では、複数の画像における各画素値の確率密度から尤度関数を求め、求めた尤度関数を用いて真の信号値(画素値)を推定する。MAP推定処理により得られた高画質画像は、真の信号値に近い画素値に基づいて高コントラストな画像となる。また、推定される信号値は、確率密度に基づいて求められるため、MAP推定処理により得られた高画質画像では、ランダムに発生するノイズが低減される。このため、MAP推定処理により得られた高画質画像を教師データとして学習を行った学習済モデルを用いることで、入力画像から、ノイズが低減されたり、高コントラストとなったりした、画像診断に適した高画質画像を生成することができる。なお、教師データの入力データと出力データのペアの生成方法は、重ね合わせ画像を教師データとした場合と同様の方法で行われてよい。
In the MAP estimation process, a likelihood function is obtained from the probability density of each pixel value in a plurality of images, and the true signal value (pixel value) is estimated using the obtained likelihood function. The high-quality image obtained by the MAP estimation process becomes a high-contrast image based on the pixel value close to the true signal value. In addition, since the estimated signal value is obtained based on the probability density, noise that is randomly generated is reduced in the high-quality image obtained by the MAP estimation process. Therefore, by using the learned model that has been trained with the high-quality image obtained by the MAP estimation process as the teacher data, noise is reduced from the input image and high contrast is obtained, which is suitable for image diagnosis. It is possible to generate a high quality image. A method of generating a pair of input data and output data of the teacher data may be the same as the method of using the superimposed image as the teacher data.
また、教師データの出力データとして、元画像に平均値フィルタ等を用いた平滑化フィルタ処理を適用した高画質画像を用いてもよい。この場合には、学習済モデルを用いることで、入力画像から、ランダムノイズが低減された高画質画像を生成することができる。なお、教師データの入力データと出力データのペアの生成方法は、階調変換処理が行われた画像を教師データとした場合と同様の方法で行われてよい。
Also, as the output data of the teacher data, a high quality image obtained by applying a smoothing filter process using an average value filter to the original image may be used. In this case, by using the learned model, a high-quality image in which random noise is reduced can be generated from the input image. The method of generating the pair of the input data and the output data of the teacher data may be the same method as when the image subjected to the gradation conversion process is used as the teacher data.
なお、教師データの入力データとして、撮影部20と同じ画質傾向を持つ撮影装置から取得された画像を用いてもよい。また、教師データの出力データとして、逐次近似法等の高コストな処理によって得られた高画質画像を用いてもよい、入力データに対応する被検体を、撮影部20よりも高性能な撮影装置で撮影することで取得した高画質画像を用いてもよい。さらに、出力データとして、被検体の構造等に基づくルールベースによるノイズ低減処理を行うことによって取得された高画質画像を用いてもよい。ここで、ノイズ低減処理は、例えば、低輝度領域内に現れた明らかにノイズである1画素のみの高輝度画素を、近傍の低輝度画素値の平均値に置き換える等の処理を含むことができる。このため、学習済モデルの学習には、入力画像の撮影に用いられる撮影装置よりも高性能な撮影装置によって撮影された画像、又は入力画像の撮影工程よりも工数の多い撮影工程で取得された画像を教師データとして用いてもよい。
Note that an image acquired from a photographing device having the same image quality tendency as that of the photographing unit 20 may be used as the input data of the teacher data. Further, as the output data of the teacher data, a high-quality image obtained by a high-cost process such as a successive approximation method may be used, and the subject corresponding to the input data is a photographing apparatus having higher performance than the photographing unit 20. You may use the high quality image acquired by photographing with. Further, as the output data, a high-quality image obtained by performing noise reduction processing based on a rule based on the structure of the subject may be used. Here, the noise reduction process can include, for example, a process of replacing a high-luminance pixel of only one pixel, which is apparently noise appearing in the low-luminance region, with an average value of neighboring low-luminance pixel values. . Therefore, for learning of the learned model, an image captured by an image capturing device having a higher performance than the image capturing device used to capture the input image, or an image capturing process that requires more man-hours than the input image capturing process is acquired. The image may be used as teacher data.
さらに、教師データの出力データは、上述のような重ね合わせ処理やMAP推定処理等を施した画像や撮影部20よりも高性能な撮影装置で撮影された画像に対して、観察対象の領域毎に異なる階調変換処理が行われた画像であってもよい。従って、教師データの出力データは、観察対象の領域毎に異なる階調変換処理と、他の高画質化に関する処理や高性能な撮影装置での撮影による断層画像との組み合わせを用いて生成された断層画像であってもよい。この場合には、より診断に適した断層画像を生成し、表示することができる。
Further, the output data of the teacher data is used for each observation target region for an image subjected to the above-described superimposition processing, MAP estimation processing, or the like, or an image photographed by a photographing device having a higher performance than the photographing unit 20. The image may be subjected to different gradation conversion processing. Therefore, the output data of the teacher data is generated by using a combination of gradation conversion processing that differs for each observation target region, other processing related to high image quality, and a tomographic image captured by a high-performance imaging device. It may be a tomographic image. In this case, a tomographic image more suitable for diagnosis can be generated and displayed.
また、本実施例では、オリジナルの断層画像を入力データとしているが、入力データはこれに限られない。例えば、網膜部が観察しやすいように階調変換された断層画像や硝子体部及び脈絡膜部が観察しやすいように階調変換された断層画像を入力データとしてもよい。この場合には、高画質化部322は、学習データの入力データに対応する、網膜部や硝子体部及び脈絡膜部が観察しやすいように階調変換された断層画像を学習済モデルに入力し、高画質な断層画像を生成することができる。
Also, in this embodiment, the original tomographic image is used as the input data, but the input data is not limited to this. For example, a tomographic image whose gradation is converted to facilitate observation of the retina or a tomographic image whose gradation is converted to facilitate observation of the vitreous part and choroid may be used as the input data. In this case, the image quality improving unit 322 inputs the tomographic image corresponding to the input data of the learning data, into which the gradation is converted so that the retina, the vitreous body, and the choroid are easily observed, to the learned model. A high-quality tomographic image can be generated.
さらに、出力データを、各領域について適切な階調変換を行いやすいようなデータに調整した、高ダイナミックレンジのデータとしてもよい。この場合には、高画質化部322は、学習済モデルを用いて得た、高ダイナミックレンジのデータに適切な階調変換を行い高画質な断層画像を生成することができる。
Furthermore, the output data may be data with a high dynamic range adjusted to data that facilitates appropriate gradation conversion for each area. In this case, the image quality improving unit 322 can generate a high quality tomographic image by appropriately performing gradation conversion on the high dynamic range data obtained using the learned model.
なお、高画質化部322が、学習済モデルを用いて、表示部50による表示に関して適切な階調変換が行われた高画質な画像を生成することについて述べたが、高画質化部322による高画質化処理はこれに限られない。高画質化部322は、画像診断により適した画質の画像を生成できればよい。
Although it has been described that the image quality improving unit 322 uses the learned model to generate a high quality image in which the gradation conversion is appropriately performed for the display by the display unit 50. The image quality improving process is not limited to this. The image quality improving unit 322 is only required to be able to generate an image of image quality more suitable for image diagnosis.
学習済モデルを用いて取得した断層画像では、学習の傾向に従って、実際には存在しない血管等の組織が描出されたり、存在するはずの組織が描出されなかったりする場合も起こり得る。そのため、表示制御部350は、学習済モデルを用いて取得した高画質な断層画像を表示させる際に、学習済モデルを用いて取得した断層画像である旨をともに表示させてもよい。この場合には、操作者による誤診断の発生を抑制することができる。なお、学習済モデルを用いて取得した画像である旨が理解できる態様であれば、表示の態様については任意であってよい。
In a tomographic image acquired using a trained model, it is possible that tissues such as blood vessels that do not actually exist may be drawn, or tissues that should exist may not be drawn, depending on the tendency of learning. Therefore, when displaying the high-quality tomographic image acquired using the learned model, the display control unit 350 may also display that the tomographic image is acquired using the learned model. In this case, the occurrence of erroneous diagnosis by the operator can be suppressed. Note that the display mode may be arbitrary as long as it can be understood that the image is obtained using the learned model.
(変形例1)
実施例1では、大局的な観察を行うことができるように階調変換処理が行われた断層画像の部分領域(矩形領域)画像を教師データの出力データとして用いる場合について説明した。これに対し、変形例1では、観察対象の領域毎に異なる断層画像を教師データの出力データとして用いる。以下、図12A乃至図12Cを参照して、本変形例における教師データについて説明する。なお、本変形例に係る機械学習モデルの教師データ以外の構成や処理は実施例1と同様であるため、同じ参照符号を用いて説明を省略する。 (Modification 1)
In the first embodiment, a case has been described in which a partial area (rectangular area) image of a tomographic image that has been subjected to gradation conversion processing so as to allow global observation is used as output data of teacher data. On the other hand, in the first modification, a tomographic image that differs for each region to be observed is used as output data of the teacher data. Hereinafter, the teacher data in this modification will be described with reference to FIGS. 12A to 12C. Since the configuration and processing of the machine learning model according to the present modification other than the teacher data are the same as those in the first embodiment, the same reference numerals are used and description thereof is omitted.
実施例1では、大局的な観察を行うことができるように階調変換処理が行われた断層画像の部分領域(矩形領域)画像を教師データの出力データとして用いる場合について説明した。これに対し、変形例1では、観察対象の領域毎に異なる断層画像を教師データの出力データとして用いる。以下、図12A乃至図12Cを参照して、本変形例における教師データについて説明する。なお、本変形例に係る機械学習モデルの教師データ以外の構成や処理は実施例1と同様であるため、同じ参照符号を用いて説明を省略する。 (Modification 1)
In the first embodiment, a case has been described in which a partial area (rectangular area) image of a tomographic image that has been subjected to gradation conversion processing so as to allow global observation is used as output data of teacher data. On the other hand, in the first modification, a tomographic image that differs for each region to be observed is used as output data of the teacher data. Hereinafter, the teacher data in this modification will be described with reference to FIGS. 12A to 12C. Since the configuration and processing of the machine learning model according to the present modification other than the teacher data are the same as those in the first embodiment, the same reference numerals are used and description thereof is omitted.
図12Aは、教師データの入力データに係るオリジナルな断層画像1210の一例を示している。また、図12Aには、硝子体部の領域の矩形領域画像1212、網膜部の領域の矩形領域画像1211、及び脈絡膜部の領域の矩形領域画像1213が示されている。
FIG. 12A shows an example of an original tomographic image 1210 related to input data of teacher data. Further, FIG. 12A shows a rectangular region image 1212 of the vitreous region, a rectangular region image 1211 of the retina region, and a rectangular region image 1213 of the choroid region.
図12Bは、オリジナルな断層画像1210について網膜部の領域のコントラストを確保するように階調変換処理を行った断層画像1220を示している。また、図12Bには、網膜部の領域の矩形領域画像1211と位置関係が対応する矩形領域画像1221が示されている。
FIG. 12B shows a tomographic image 1220 obtained by performing gradation conversion processing on the original tomographic image 1210 so as to ensure the contrast of the region of the retina. Further, FIG. 12B shows a rectangular area image 1221 having a positional relationship with the rectangular area image 1211 of the retina area.
図12Cは、オリジナルな断層画像1210について硝子体部及び脈絡膜部の領域のコントラストを確保するように階調変換処理を行った断層画像1230を示している。また、図12Cには、硝子体部の領域の矩形領域画像1212と位置関係が対応する矩形領域画像1232、及び脈絡膜部の領域の矩形領域画像1213と位置関係が対応する矩形領域画像1233が示されている。
FIG. 12C shows a tomographic image 1230 obtained by performing gradation conversion processing on the original tomographic image 1210 so as to secure the contrast of the vitreous body portion and the choroid portion. Further, FIG. 12C shows a rectangular area image 1232 having a positional relationship with the rectangular area image 1212 of the vitreous portion area, and a rectangular area image 1233 having a positional relationship with the rectangular area image 1213 of the choroid portion area. Has been done.
本変形例では、オリジナルな断層画像1210における網膜部の領域の矩形領域画像1211を入力データとし、断層画像1220における網膜部の領域の矩形領域画像1221を出力データとして教師データの1つのペアを作成する。同様に、オリジナルな断層画像1210における硝子体部の領域の矩形領域画像1212を入力データとし、断層画像1230における硝子体部の領域の矩形領域画像1232を出力データとして教師データの1つのペアを作成する。また、オリジナルな断層画像1210における脈絡膜部の領域の矩形領域画像1213を入力データとし、断層画像1230における脈絡膜部の領域の矩形領域画像1233を出力データとして教師データの1つのペアを作成する。
In this modification, one pair of teacher data is created using the rectangular area image 1211 of the retina area in the original tomographic image 1210 as input data and the rectangular area image 1221 of the retina area in the tomographic image 1220 as output data. To do. Similarly, one pair of teacher data is created using the rectangular region image 1212 of the vitreous region in the original tomographic image 1210 as input data and the rectangular region image 1232 of the vitreous region in the tomographic image 1230 as output data. To do. Further, one pair of teacher data is created using the rectangular area image 1213 of the area of the choroid in the original tomographic image 1210 as input data and the rectangular area image 1233 of the area of the choroid in the tomographic image 1230 as output data.
このような場合にも、教師データの出力データとして、観察対象の領域毎に適切な階調変換処理が行われた断層画像を用いることができる。そのため、高画質化部322は、このような教師データにより学習を行った学習済モデルを用いて、実施例1と同様に、観察対象の領域毎に異なる画像処理が行われたような高画質な断層画像を生成することができる。
Even in such a case, as the output data of the teacher data, it is possible to use a tomographic image subjected to an appropriate gradation conversion process for each observation target area. Therefore, the image quality improving unit 322 uses the learned model learned with such teacher data and performs high image quality such that different image processing is performed for each region of the observation target, as in the first embodiment. It is possible to generate various tomographic images.
(変形例2)
実施例1では、オリジナルの断層画像について、撮影モードに関係なく階調変換処理等の高画質化処理が行われた断層画像を出力データとして、機械学習モデルの教師データとして用いた。ここで、OCT装置では、撮影モードに応じて、断層画像における信号強度の強弱の傾向が異なる。そこで、変形例2では、観察対象の領域毎に当該領域について信号強度が高い傾向を有する撮影モードで取得した断層画像を教師データの出力データとして用いる。 (Modification 2)
In the first embodiment, a tomographic image obtained by subjecting the original tomographic image to high image quality processing such as gradation conversion processing regardless of the shooting mode is used as output data as teacher data for a machine learning model. Here, in the OCT apparatus, the tendency of the signal intensity in the tomographic image differs depending on the imaging mode. Therefore, in the second modification, the tomographic image acquired in the imaging mode in which the signal intensity of each region to be observed tends to be high is used as the output data of the teacher data.
実施例1では、オリジナルの断層画像について、撮影モードに関係なく階調変換処理等の高画質化処理が行われた断層画像を出力データとして、機械学習モデルの教師データとして用いた。ここで、OCT装置では、撮影モードに応じて、断層画像における信号強度の強弱の傾向が異なる。そこで、変形例2では、観察対象の領域毎に当該領域について信号強度が高い傾向を有する撮影モードで取得した断層画像を教師データの出力データとして用いる。 (Modification 2)
In the first embodiment, a tomographic image obtained by subjecting the original tomographic image to high image quality processing such as gradation conversion processing regardless of the shooting mode is used as output data as teacher data for a machine learning model. Here, in the OCT apparatus, the tendency of the signal intensity in the tomographic image differs depending on the imaging mode. Therefore, in the second modification, the tomographic image acquired in the imaging mode in which the signal intensity of each region to be observed tends to be high is used as the output data of the teacher data.
以下、図13A乃至図15Cを参照して、本変形例に係る教師データについて説明する。なお、本変形例に係る機械学習モデルの教師データ以外の構成や処理は実施例1と同様であるため、同じ参照符号を用いて説明を省略する。まず、OCT装置1での撮影モード毎の撮影方法として、硝子体モード及び脈絡膜モードでの撮影方法を説明する。
The teacher data according to this modification will be described below with reference to FIGS. 13A to 15C. Since the configuration and processing of the machine learning model according to the present modification other than the teacher data are the same as those in the first embodiment, the same reference numerals are used and description thereof is omitted. First, as an imaging method for each imaging mode in the OCT apparatus 1, an imaging method in the vitreous mode and the choroid mode will be described.
(硝子体モードでの撮影方法)
図13A乃至図13Cを参照して、OCT装置1の硝子体モードでの撮影方法について説明する。硝子体モードでは、図13Aに示すように、参照光と測定光の光路長が一致する深さ方向(Z軸方向)の位置Z1が、撮影範囲C10の深さ方向において浅い方(硝子体側)に位置するように参照ミラー221を移動して撮影を行う。 (How to shoot in vitreous mode)
The imaging method in the vitreous mode of theOCT apparatus 1 will be described with reference to FIGS. 13A to 13C. In the vitreous body mode, as shown in FIG. 13A, a position Z1 in the depth direction (Z-axis direction) where the optical path lengths of the reference light and the measurement light match each other is shallower in the depth direction of the imaging range C10 (vitreous body side). The reference mirror 221 is moved so as to be located at the position of (1), and an image is taken.
図13A乃至図13Cを参照して、OCT装置1の硝子体モードでの撮影方法について説明する。硝子体モードでは、図13Aに示すように、参照光と測定光の光路長が一致する深さ方向(Z軸方向)の位置Z1が、撮影範囲C10の深さ方向において浅い方(硝子体側)に位置するように参照ミラー221を移動して撮影を行う。 (How to shoot in vitreous mode)
The imaging method in the vitreous mode of the
この場合、図13Bに示すように、位置Z1に対して、Z方向にプラス方向の撮影範囲C10に正像が取得され、マイナス方向の撮影範囲C11に虚像が取得される。OCT装置の硝子体モードでの撮影は、一般的に、撮影範囲C10の正像を断層画像として取得して行われる。ここで、図13Cに硝子体モードで取得される断層画像の一例である断層画像C12を示す。なお、撮影範囲C11側の虚像を断層画像C12として取得することもできる。撮影範囲C11側の虚像を断層画像C12として取得した場合は、上下反転して表示してもよい。
In this case, as shown in FIG. 13B, with respect to the position Z1, a positive image is acquired in the imaging range C10 in the plus direction in the Z direction, and a virtual image is acquired in the imaging range C11 in the minus direction. Imaging in the vitreous mode of the OCT apparatus is generally performed by acquiring a normal image of the imaging range C10 as a tomographic image. Here, FIG. 13C shows a tomographic image C12 which is an example of a tomographic image acquired in the vitreous mode. The virtual image on the side of the photographing range C11 can also be acquired as the tomographic image C12. When the virtual image on the imaging range C11 side is acquired as the tomographic image C12, it may be displayed upside down.
OCT装置では、参照光と測定光の光路長が一致する深さ方向の位置に近い領域ほど、当該領域について取得される信号強度が高くなる。そのため、硝子体モードで撮影した断層画像C12では、位置Z1に近い側、つまり、硝子体側の信号強度が高くなる。
In the OCT device, the closer to the position in the depth direction where the optical path lengths of the reference light and the measurement light match, the higher the signal intensity acquired for that area. Therefore, in the tomographic image C12 captured in the vitreous mode, the signal intensity on the side close to the position Z1, that is, on the vitreous side is high.
(脈絡膜モードでの撮影方法)
次に図14A乃至図14Cを参照して、OCT装置の脈絡膜モードでの撮影方法について説明する。脈絡膜モードでは、図14Aに示すように、参照光と測定光の光路長が一致する深さ方向の位置Z2が、撮影範囲の深さ方向に深い方(脈絡膜側)に位置するように参照ミラー221を移動して撮影を行う。 (How to shoot in choroid mode)
Next, with reference to FIGS. 14A to 14C, an imaging method in the choroid mode of the OCT apparatus will be described. In the choroid mode, as shown in FIG. 14A, the reference mirror is set such that the position Z2 in the depth direction where the optical path lengths of the reference light and the measurement light match with each other is located deeper in the depth direction of the imaging range (choroid side). 221 is moved to take an image.
次に図14A乃至図14Cを参照して、OCT装置の脈絡膜モードでの撮影方法について説明する。脈絡膜モードでは、図14Aに示すように、参照光と測定光の光路長が一致する深さ方向の位置Z2が、撮影範囲の深さ方向に深い方(脈絡膜側)に位置するように参照ミラー221を移動して撮影を行う。 (How to shoot in choroid mode)
Next, with reference to FIGS. 14A to 14C, an imaging method in the choroid mode of the OCT apparatus will be described. In the choroid mode, as shown in FIG. 14A, the reference mirror is set such that the position Z2 in the depth direction where the optical path lengths of the reference light and the measurement light match with each other is located deeper in the depth direction of the imaging range (choroid side). 221 is moved to take an image.
この場合、図14Bに示すように、位置Z2に対して、Z方向にマイナス方向の撮影範囲C20に正像が取得され、プラス方向の撮影範囲C21に虚像が取得される。OCT装置の脈絡膜モードでの撮影は、一般的に、撮影範囲C21側の虚像を断層画像として取得して行われる。ここで、図14Cに脈絡膜モードで取得される断層画像の一例である断層画像C22を示す。なお、撮影範囲C20側の正像を断層画像C22として取得することもできる。また、撮影範囲C21側の虚像を断層画像C22として取得した場合は、上下反転して表示してもよい。
In this case, as shown in FIG. 14B, with respect to the position Z2, a normal image is acquired in the imaging direction C20 in the negative direction in the Z direction, and a virtual image is acquired in the imaging range C21 in the positive direction. Imaging in the choroidal mode of the OCT apparatus is generally performed by acquiring a virtual image on the imaging range C21 side as a tomographic image. Here, FIG. 14C shows a tomographic image C22 that is an example of a tomographic image acquired in the choroid mode. A normal image on the side of the imaging range C20 can also be acquired as the tomographic image C22. Further, when the virtual image on the side of the imaging range C21 is acquired as the tomographic image C22, it may be displayed upside down.
上述のように、OCT装置では、参照光と測定光の光路長が一致する深さ方向の位置に近い領域ほど、当該領域について取得される信号強度が高くなる。そのため、脈絡膜モードで撮影した断層画像C22では、位置Z2に近い側、つまり、脈絡膜側の信号強度が高くなる。
As described above, in the OCT apparatus, the closer to the position in the depth direction where the optical path lengths of the reference light and the measurement light match, the higher the signal intensity acquired for the area. Therefore, in the tomographic image C22 taken in the choroid mode, the signal intensity on the side close to the position Z2, that is, on the choroid side is high.
本変形例では、このようなOCT装置の特性を鑑みて、機械学習モデルの教師データの出力データとして、観察対象の領域に応じた、特に当該領域の信号強度が高くなる傾向を有する撮影モードで取得した断層画像を用いる。より具体的には、OCT装置においては、硝子体モードで撮影した断層画像では硝子体側の信号強度が高く、脈絡膜モードで撮影した断層画像では脈絡膜側の信号強度が高くなる。そのため、同一被検眼の同一部位を脈絡膜モードと硝子体モードで撮影し、入力データの部分領域画像(矩形領域画像)毎に、対応する部分領域の信号強度が高い断層画像を出力データとして用いる。言い換えると、本変形例では、学習済モデルの学習データは、被検体を撮影して得られる医用画像であって、該医用画像における異なる領域のいずれかに対応する撮影モードで取得された医用画像を含む。
In view of such characteristics of the OCT apparatus, in the present modification, as output data of the teacher data of the machine learning model, in an imaging mode that has a tendency that the signal intensity of the observation target region is high, especially in the region. The acquired tomographic image is used. More specifically, in the OCT apparatus, the signal intensity on the vitreous side is high in the tomographic image captured in the vitreous mode, and the signal intensity on the choroidal side is high in the tomographic image captured in the choroidal mode. Therefore, the same region of the same eye to be examined is photographed in the choroid mode and the vitreous mode, and for each partial region image (rectangular region image) of the input data, a tomographic image having a high signal intensity in the corresponding partial region is used as output data. In other words, in this modified example, the learning data of the learned model is a medical image obtained by imaging the subject, and the medical image acquired in the imaging mode corresponding to any of different regions in the medical image. including.
図15Aは、硝子体モードで撮影した、教師データの入力データに係るオリジナルな断層画像1510の一例を示している。また、図15Aには、硝子体部の領域の矩形領域画像1511、及び脈絡膜部の領域の矩形領域画像1512が示されている。
FIG. 15A shows an example of an original tomographic image 1510 relating to input data of teacher data, which is taken in the vitreous mode. Further, FIG. 15A shows a rectangular area image 1511 of the vitreous portion area and a rectangular area image 1512 of the choroid portion area.
図15Bは、同一被検眼の同一部位を硝子体モードで撮影した断層画像について、網膜部、硝子体部、及び脈絡膜部の領域のコントラストを確保するように階調変換処理を行った断層画像1520を示している。また、図15Bには、硝子体部の領域の矩形領域画像1511と位置関係が対応する矩形領域画像1521が示されている。
FIG. 15B is a tomographic image 1520 obtained by performing gradation conversion processing on a tomographic image obtained by photographing the same region of the same eye to be examined in the vitreous mode so as to secure the contrast of the regions of the retina, vitreous, and choroid. Is shown. Further, FIG. 15B shows a rectangular area image 1521 having a positional relationship with the rectangular area image 1511 of the vitreous body area.
図15Cは、同一被検眼の同一部位を脈絡膜モードで撮影した断層画像について、網膜部、硝子体部、及び脈絡膜部の領域のコントラストを確保するように階調変換処理を行った断層画像1530を示している。また、図15Cには、脈絡膜部の領域の矩形領域画像1512と位置関係が対応する矩形領域画像1532が示されている。
FIG. 15C shows a tomographic image 1530 obtained by performing gradation conversion processing on a tomographic image of the same site of the same eye to be examined in the choroidal mode so as to ensure the contrast of the regions of the retina, vitreous part, and choroid. Shows. Also, FIG. 15C shows a rectangular area image 1532 having a positional relationship with the rectangular area image 1512 of the area of the choroid.
本変形例では、オリジナルな断層画像1510における硝子体部の領域の矩形領域画像1511を入力データとし、断層画像1520における硝子体部の領域の矩形領域画像1521を出力データとして教師データの1つのペアを作成する。同様に、オリジナルな断層画像1510における脈絡膜部の領域の矩形領域画像1512を入力データとし、断層画像1530における脈絡膜部の領域の矩形領域画像1532を出力データとして教師データの1つのペアを作成する。なお、本変形例では、脈絡膜モードで撮影した断層画像1530は入力データに係るオリジナルな断層画像1510と上下反転しているため、矩形領域画像1532を上下反転した矩形領域画像を教師データの出力データとして用いる。
In this modification, a rectangular area image 1511 of the vitreous body area in the original tomographic image 1510 is used as input data, and a rectangular area image 1521 of the vitreous body area in the tomographic image 1520 is used as output data. To create. Similarly, one pair of teacher data is created using the rectangular area image 1512 of the choroidal area in the original tomographic image 1510 as input data and the rectangular area image 1532 of the choroidal area in the tomographic image 1530 as output data. In this modification, since the tomographic image 1530 captured in the choroid mode is vertically inverted from the original tomographic image 1510 related to the input data, the rectangular area image obtained by vertically inverting the rectangular area image 1532 is output data of the teacher data. Used as.
このような場合には、教師データの出力データとして、観察対象の領域に応じた、特に当該領域の信号強度が高い傾向を有する撮影モードで取得した断層画像に対して、領域に応じた階調変換処理が行われた断層画像を用いることができる。言い換えると、学習済モデルの学習データは、被検体を撮影して得られる医用画像であって、該医用画像における異なる領域のいずれかに対応する撮影モードで取得された医用画像に対して、該医用画像における異なる領域のいずれかに対応する階調変換処理が施された医用画像を含むことができる。高画質化部322は、このような教師データにより学習を行った学習済モデルを用いることで、観察対象の領域毎により高画質化されたような断層画像を生成することができる。
In such a case, as the output data of the teacher data, the gradation corresponding to the region is applied to the tomographic image corresponding to the region of the observation target, particularly, the tomographic image acquired in the imaging mode in which the signal intensity of the region tends to be high. A tomographic image that has undergone the conversion process can be used. In other words, the learning data of the learned model is a medical image obtained by photographing the subject, and the medical image acquired in the photographing mode corresponding to any of different regions in the medical image It may include a medical image that has been subjected to gradation conversion processing corresponding to any of different regions in the medical image. The image quality improving unit 322 can generate a tomographic image with higher image quality for each region of the observation target by using the learned model learned by such teacher data.
なお、教師データの入力データは、硝子体モードで撮影したオリジナルな断層画像に限られず、脈絡膜モードで撮影したオリジナルな断層画像であってもよい。この場合、硝子体モードで撮影した断層画像は入力データに係るオリジナルな断層画像と上下反転するため、硝子体モードで撮影した断層画像に係る矩形領域画像を上下反転した画像を教師データの出力データとして用いる。
Note that the input data of the teacher data is not limited to the original tomographic image taken in the vitreous mode, and may be the original tomographic image taken in the choroid mode. In this case, since the tomographic image taken in the vitreous mode is vertically inverted from the original tomographic image related to the input data, an image obtained by vertically inverting the rectangular area image related to the tomographic image taken in the vitreous mode is output data of the teacher data. Used as.
また、各撮影モードで撮影された断層画像に適用される階調変換処理は、大局的な観察を行うことができるような、網膜部、硝子体部、及び脈絡膜部の領域のコントラストを確保するような階調変換処理に限られない。例えば、変形例1と同様に、硝子体モードで撮影された断層画像について、硝子体部の領域のコントラストを確保するような階調変換が行われた断層画像を教師データの出力データとして用いてもよい。同様に、脈絡膜モードで撮影された断層画像について、脈絡膜部の領域のコントラストを確保するような階調変換が行われた断層画像を教師データの出力データとして用いてもよい。
In addition, the gradation conversion process applied to the tomographic image captured in each imaging mode ensures the contrast of the retina portion, the vitreous portion, and the choroid portion so that a global observation can be performed. It is not limited to such gradation conversion processing. For example, as in the first modification, a tomographic image captured in the vitreous mode is subjected to gradation conversion so as to ensure the contrast of the vitreous region, and the tomographic image is used as output data of the teacher data. Good. Similarly, with respect to the tomographic image captured in the choroid mode, a tomographic image that has been subjected to gradation conversion so as to ensure the contrast of the region of the choroid may be used as the output data of the teacher data.
なお、網膜部の領域に関する教師データの出力データとしては、硝子体モードで撮影した断層画像に基づく出力データを用いてもよいし、脈絡膜モードで撮影した断層画像に基づく出力データを用いてもよい。また、撮影モードは、硝子体モード及び脈絡膜モードに限られず、所望の構成に応じて任意に設定されてよい。この場合にも、撮影モードに応じた断層画像における信号強度の強弱の傾向に基づいて、観察対象の領域毎に、当該領域の信号強度が高い傾向を有する断層画像を教師データの出力データとして用いることができる。
Output data based on a tomographic image captured in the vitreous mode or output data based on a tomographic image captured in the choroid mode may be used as the output data of the teacher data regarding the region of the retina. . Further, the photographing mode is not limited to the vitreous mode and the choroid mode, and may be arbitrarily set according to a desired configuration. Also in this case, based on the tendency of the signal intensity in the tomographic image according to the imaging mode, a tomographic image having a tendency that the signal intensity of the region is high is used as the output data of the teacher data for each region of the observation target. be able to.
また、変形例1及び2においても、実施例1と同様に、教師データの入力データは、オリジナルな断層画像に限られず、任意の階調変換が行われた断層画像であってもよい。また、教師データの出力データは、階調変換が行われた断層画像に限られず、オリジナルな断層画像について階調変換を行いやすいような調整を行った断層画像であってもよい。
Also in the modified examples 1 and 2, the input data of the teacher data is not limited to the original tomographic image as in the first embodiment, and may be a tomographic image subjected to arbitrary gradation conversion. Further, the output data of the teacher data is not limited to the tomographic image subjected to the gradation conversion, and may be a tomographic image adjusted so that the gradation conversion is easily performed on the original tomographic image.
(変形例3)
実施例1では、高画質化部322は、1つの学習済モデルを用いて、対象画像の領域毎に異なる画像処理が行われたような高画質画像を生成した。これに対し、変形例3では、まず、高画質化部322は、入力データとなる断層画像について、第1の学習済モデルを用いて画素毎に領域のラベル付け(アノテーション)がなされたラベル画像を生成する。その後、高画質化部322は、生成したラベル画像について、第1の学習済モデルとは異なる第2の学習済モデルを用いて、領域に応じた画像処理がなされたような高画質画像を生成する。言い換えると、高画質化部322は、高画質画像(第2の医用画像)を生成するための学習済モデルとは異なる学習済モデルを用いて、入力データとなる断層画像(第1の医用画像)から、異なる領域について異なるラベル値が付されたラベル画像を生成する。また、高画質化部322は、高画質画像(第2の医用画像)を生成するための学習済モデルを用いて、ラベル画像から高画質画像を生成する。 (Modification 3)
In the first embodiment, the imagequality improving unit 322 uses one learned model to generate a high quality image in which different image processing is performed for each region of the target image. On the other hand, in the modified example 3, first, the image quality improving unit 322, for the tomographic image serving as the input data, the label image in which the region is labeled (annotated) for each pixel using the first learned model. To generate. After that, the image quality improving unit 322 uses the second learned model different from the first learned model for the generated label image to generate a high quality image that has been subjected to image processing according to the region. To do. In other words, the image quality improving unit 322 uses a learned model that is different from the learned model for generating the high quality image (second medical image) to be used as the input data tomographic image (first medical image). ) To generate label images with different label values for different areas. Further, the image quality improving unit 322 generates a high quality image from the label image using the learned model for generating the high quality image (second medical image).
実施例1では、高画質化部322は、1つの学習済モデルを用いて、対象画像の領域毎に異なる画像処理が行われたような高画質画像を生成した。これに対し、変形例3では、まず、高画質化部322は、入力データとなる断層画像について、第1の学習済モデルを用いて画素毎に領域のラベル付け(アノテーション)がなされたラベル画像を生成する。その後、高画質化部322は、生成したラベル画像について、第1の学習済モデルとは異なる第2の学習済モデルを用いて、領域に応じた画像処理がなされたような高画質画像を生成する。言い換えると、高画質化部322は、高画質画像(第2の医用画像)を生成するための学習済モデルとは異なる学習済モデルを用いて、入力データとなる断層画像(第1の医用画像)から、異なる領域について異なるラベル値が付されたラベル画像を生成する。また、高画質化部322は、高画質画像(第2の医用画像)を生成するための学習済モデルを用いて、ラベル画像から高画質画像を生成する。 (Modification 3)
In the first embodiment, the image
本変形例では、第1の学習済モデルについて、断層画像を入力データとし、該断層画像の画素毎に領域のラベル付けがなされたラベル画像を出力データとした教師データを用いて学習を行う。なお、当該ラベル画像については、従来のセグメンテーション処理により適切に処理された画像を用いてもよいし、手動でラベル付けされたラベル画像を用いてもよい。ラベルは、例えば、硝子体ラベルや網膜ラベル、脈絡膜ラベル等であってよい。なお、ラベルは文字列で示されてもよいし、予め設定された各領域に対応する数値等であってもよい。また、ラベルは上記例に限られず、所望の構成に応じて任意の領域を示すものであってよい。
In this modification, the first learned model is trained by using the tomographic image as the input data and the teacher data as the output data of the label image in which the region is labeled for each pixel of the tomographic image. As the label image, an image appropriately processed by a conventional segmentation process may be used, or a manually labeled label image may be used. The label may be, for example, a vitreous label, a retina label, a choroid label, or the like. The label may be represented by a character string, or may be a numerical value or the like corresponding to each preset area. Moreover, the label is not limited to the above example, and may indicate an arbitrary area according to a desired configuration.
また、第2の学習済モデルについて、ラベル画像を入力データとし、該ラベル画像について画素毎のラベルに応じた高画質化処理を行った断層画像を出力データとした教師データを用いて学習を行う。なお、画素毎のラベルに応じた高画質化処理については、上述のような、観察対象の領域に応じた階調変換処理等を含むことができる。
Further, with respect to the second learned model, learning is performed using teacher data in which a label image is used as input data and a tomographic image obtained by subjecting the label image to high image quality processing according to a label for each pixel is output data. . Note that the image quality improvement processing according to the label for each pixel may include the gradation conversion processing according to the region of the observation target as described above.
このような場合には、高画質化部322は、第1及び第2の学習済モデルを用いて、実施例1と同様に、観察対象の領域毎に異なる画像処理が行われたような高画質な断層画像を生成することができる。また、学習済モデルは、学習の傾向に従って入力データに対応する可能性の高い出力データを出力する。これに関連して、学習済モデルは、画質の傾向が似た画像群を教師データとして学習を行うと、当該似た傾向の画像に対して、より効果的に高画質化した画像を出力することができる。そのため、本変形例のように、領域毎にラベル付けされた教師データを用いた学習済モデルを用いることで、より効果的に高画質化した画像を生成することが期待できる。
In such a case, the image quality improving unit 322 uses the first and second learned models to perform high image processing that is different for each region of the observation target, as in the first embodiment. It is possible to generate a high-quality tomographic image. Further, the learned model outputs output data that is highly likely to correspond to the input data according to the learning tendency. In this regard, the learned model, when learning is performed using an image group having a similar image quality tendency as teacher data, outputs an image having a higher image quality more effectively with respect to the image having the similar tendency. be able to. Therefore, as in this modification, by using the learned model that uses the teacher data labeled for each area, it can be expected that an image with high image quality can be generated more effectively.
なお、本変形例に係る教師データについても、実施例1と同様に画像全体を用いてもよいし、矩形領域画像(部分画像)を用いてもよい。また、入力データ及び出力データは、所望の構成に応じて、任意の階調変換後の画像であってもよいし、階調変換前の画像であってもよい。
As for the teacher data according to this modification, the entire image may be used as in the first embodiment, or the rectangular area image (partial image) may be used. Further, the input data and the output data may be an image after any gradation conversion or an image before gradation conversion depending on a desired configuration.
(変形例4)
実施例1では、高画質化部322は、学習済モデルを用いて得た断層画像の部分画像を統合して最終的な高画質な断層画像を生成する場合について説明した。特に、実施例1で説明した例では、学習済モデルを用いて得た部分画像は、学習の傾向に従って、観察対象の領域毎に異なる階調変換処理がなされたような画像である。そのため、部分画像を単純に統合すると、異なる領域が接している箇所(接続部分)とこれに隣接する領域(例えば、硝子体部の領域や網膜部の領域)の箇所とで、輝度の分布が著しく異なり、画像エッジが目立ってしまう場合がある。 (Modification 4)
In the first embodiment, the case where the imagequality improving unit 322 integrates the partial images of the tomographic images obtained by using the learned model to generate the final high image quality tomographic image has been described. Particularly, in the example described in the first embodiment, the partial image obtained by using the learned model is an image in which different gradation conversion processing is performed for each region of the observation target according to the tendency of learning. Therefore, if the partial images are simply integrated, the distribution of the luminance is different between the area where the different areas are in contact (the connection area) and the area adjacent to this area (for example, the vitreous area or the retina area). Notably, the image edges may be noticeable.
実施例1では、高画質化部322は、学習済モデルを用いて得た断層画像の部分画像を統合して最終的な高画質な断層画像を生成する場合について説明した。特に、実施例1で説明した例では、学習済モデルを用いて得た部分画像は、学習の傾向に従って、観察対象の領域毎に異なる階調変換処理がなされたような画像である。そのため、部分画像を単純に統合すると、異なる領域が接している箇所(接続部分)とこれに隣接する領域(例えば、硝子体部の領域や網膜部の領域)の箇所とで、輝度の分布が著しく異なり、画像エッジが目立ってしまう場合がある。 (Modification 4)
In the first embodiment, the case where the image
そこで、変形例4では、高画質化部322が、学習済モデルを用いて得た部分画像を統合する際に、観察対象の領域の接続部分の画素値について、周囲の画素の画素値に基づいて、画像エッジが目立たなくなるように修正する。これにより、画像エッジによる違和感が軽減された、診断に適した画像を生成することができる。
Therefore, in the fourth modification, when the image quality improving unit 322 integrates the partial images obtained by using the learned model, the pixel values of the connected portion of the observation target area are based on the pixel values of the surrounding pixels. And make corrections so that the image edges are not noticeable. As a result, it is possible to generate an image suitable for diagnosis, in which discomfort due to an image edge is reduced.
この場合、高画質化部322は、観察対象の領域の接続部分について、公知の任意のブレンディング処理を施して輝度値を修正することができる。なお、高画質化部322は、観察対象の領域の接続部分に隣接する箇所について、ブレンディング処理を行ってもよい。また、画像エッジを目立たなくする処理はブレンディング処理に限られず、その他の任意の処理であってもよい。
In this case, the image quality improving unit 322 can correct the brightness value by performing a known arbitrary blending process on the connection portion of the observation target region. Note that the image quality improving unit 322 may perform blending processing on a portion adjacent to the connection portion of the observation target region. Further, the process of making the image edge inconspicuous is not limited to the blending process, and may be any other process.
(実施例2)
実施例1では、生成/取得した断層画像について一律に学習済モデルを用いた高画質化処理を施した。これに対し、実施例2に係るOCT装置では、断層画像について適用する画像処理を操作者の指示に応じて選択する。 (Example 2)
In the first embodiment, the generated / acquired tomographic image is uniformly subjected to the high image quality processing using the learned model. On the other hand, in the OCT apparatus according to the second embodiment, the image processing to be applied to the tomographic image is selected according to the instruction of the operator.
実施例1では、生成/取得した断層画像について一律に学習済モデルを用いた高画質化処理を施した。これに対し、実施例2に係るOCT装置では、断層画像について適用する画像処理を操作者の指示に応じて選択する。 (Example 2)
In the first embodiment, the generated / acquired tomographic image is uniformly subjected to the high image quality processing using the learned model. On the other hand, in the OCT apparatus according to the second embodiment, the image processing to be applied to the tomographic image is selected according to the instruction of the operator.
以下、図16乃至図18Cを参照して、本実施例に係るOCT装置について説明する。なお、本実施例に係る制御部以外の構成は、実施例1に係るOCT装置1と同様であるため、同じ参照符号を用いて説明を省略する。以下、本実施例に係るOCT装置について、実施例1に係るOCT装置との違いを中心として説明する。
The OCT apparatus according to this embodiment will be described below with reference to FIGS. 16 to 18C. Since the configuration other than the control unit according to the present embodiment is the same as that of the OCT apparatus 1 according to the first embodiment, the same reference numerals are used and the description thereof is omitted. Hereinafter, the OCT apparatus according to the present embodiment will be described focusing on the differences from the OCT apparatus according to the first embodiment.
図16は、本実施例に係る制御部1600の概略的な構成例を示す。なお、制御部1600において、画像処理部1620の高画質化部1622及び選択部1623以外の構成は、実施例1に係る制御部30の構成と同様であるため、同じ参照符号を用いて説明を省略する。
FIG. 16 shows a schematic configuration example of the control unit 1600 according to this embodiment. In the control unit 1600, the configuration of the image processing unit 1620 other than the image quality improving unit 1622 and the selection unit 1623 is the same as the configuration of the control unit 30 according to the first embodiment, and thus the description will be given using the same reference numerals. Omit it.
画像処理部1620には、断層画像生成部321に加えて、高画質化部1622及び選択部1623が設けられている。選択部1623は、入力部40を介して入力された操作者からの指示に応じて、断層画像に適用する画像処理を選択する。
The image processing unit 1620 is provided with an image quality improving unit 1622 and a selecting unit 1623 in addition to the tomographic image generating unit 321. The selection unit 1623 selects image processing to be applied to the tomographic image according to the instruction from the operator input via the input unit 40.
高画質化部1622は、断層画像生成部321で生成された断層画像又は取得部310で取得された断層画像に、選択部1623によって選択された画像処理を適用し、高画質な断層画像を生成する。
The image quality improving unit 1622 applies the image processing selected by the selecting unit 1623 to the tomographic image generated by the tomographic image generating unit 321 or the tomographic image acquired by the acquiring unit 310 to generate a high quality tomographic image. To do.
次に、図17を参照して本実施例に係る一連の画像処理について説明する。図17は、本実施例に係る一連の画像処理のフローチャートである。なお、ステップS1701及びステップS1702は実施例1に係るステップS1101及びS1102と同様であるため説明を省略する。
Next, a series of image processing according to the present embodiment will be described with reference to FIG. FIG. 17 is a flowchart of a series of image processing according to this embodiment. Note that steps S1701 and S1702 are the same as steps S1101 and S1102 according to the first embodiment, and a description thereof will be omitted.
ステップS1702において断層画像生成部321がオリジナルの断層画像を生成したら、処理はステップS1703に移行する。ステップS1703では、取得部310が、断層画像において注目したい領域又は断層画像について施されるべき処理の選択に関する操作者からの指示を取得する。なお、この際には、表示制御部350が、表示部50に処理の選択肢を表示させ、操作者に選択肢を提示することができる。
When the tomographic image generation unit 321 generates the original tomographic image in step S1702, the process proceeds to step S1703. In step S1703, the acquisition unit 310 acquires an instruction from the operator regarding the selection of the process to be performed on the region of interest in the tomographic image or the tomographic image. At this time, the display control unit 350 can display the processing options on the display unit 50 and present the options to the operator.
ステップS1704では、選択部1623が、ステップS1703において取得された操作者からの指示に応じて、断層画像に適用されるべき画像処理(高画質化処理)を選択する。本実施例では、選択部1623は、操作者からの指示に応じて、網膜部に対する高画質化処理、硝子体/脈絡膜部に対する高画質化処理、又は画像全体に対する高画質化処理を選択する。
In step S1704, the selection unit 1623 selects image processing (image quality enhancement processing) to be applied to the tomographic image according to the instruction from the operator acquired in step S1703. In the present embodiment, the selection unit 1623 selects image quality enhancement processing for the retina, vitreous / choroid membrane quality enhancement processing, or image quality enhancement processing for the entire image in response to an instruction from the operator.
ステップS1704において、網膜部に対する高画質化処理が選択されると、処理はステップS1705に移行する。ステップS1705では、高画質化部1622が、オリジナルの断層画像について、上述したような網膜部の領域が観察しやすくなるような階調変換処理を行い、高画質な断層画像を生成する。
When the image quality improving process for the retina is selected in step S1704, the process proceeds to step S1705. In step S1705, the image quality improving unit 1622 performs gradation conversion processing on the original tomographic image so that the above-described region of the retina can be easily observed, and generates a high image quality tomographic image.
ステップS1704において、硝子体/脈絡膜に対する高画質化処理が選択されると、処理はステップS1706に移行する。ステップS1704では、高画質化部1622が、オリジナルの断層画像について、上述したような硝子体部及び脈絡膜部の領域が観察しやすくなるような階調変換処理を行い、高画質な断層画像を生成する。
In step S1704, when the image quality enhancement process for the vitreous / choroid is selected, the process proceeds to step S1706. In step S1704, the image quality improving unit 1622 performs a gradation conversion process on the original tomographic image so that the regions of the vitreous part and the choroid part as described above can be easily observed, and a high quality tomographic image is generated. To do.
ステップS1704において、画像全体に対する高画質化処理が選択されると、処理はステップS1707に移行する。ステップS1707では、高画質化部1622が、オリジナルの断層画像について、学習済モデルを用いて、網膜部、硝子体部及び脈絡膜部が観察しやすい高画質な断層画像を生成する。なお、本実施例に係る学習済モデルは実施例1に係る学習済モデルと同様であるため、学習済モデル及び学習データに関する説明を省略する。
When the image quality improving process for the entire image is selected in step S1704, the process proceeds to step S1707. In step S1707, the image quality improving unit 1622 uses the learned model for the original tomographic image to generate a high image quality tomographic image in which the retina, vitreous body, and choroid are easy to observe. Since the learned model according to the present embodiment is the same as the learned model according to the first embodiment, description regarding the learned model and learning data will be omitted.
ステップS1708では、表示制御部350が、ステップS1705、ステップS1706、又はステップS1707で生成された高画質な断層画像を表示部50に表示させる。表示制御部350による表示処理が終了すると、一連の画像処理が終了する。
In step S1708, the display control unit 350 causes the display unit 50 to display the high-quality tomographic image generated in step S1705, step S1706, or step S1707. When the display processing by the display control unit 350 ends, a series of image processing ends.
ここで、図18A乃至図18Cを参照して、本実施例に係る操作方法について説明する。図18A乃至図18Cは、注目すべき領域の選択肢と選択された領域に応じた高画質化処理が施された断層画像を含む表示画面の一例を示す。
Here, the operation method according to the present embodiment will be described with reference to FIGS. 18A to 18C. 18A to 18C show an example of a display screen including a tomographic image that has undergone image quality enhancement processing according to the option of the region of interest and the selected region.
図18Aは、注目すべき領域として網膜部の領域が選択された場合の表示画面1800を示している。表示画面1800には、選択肢1801及び網膜部の領域が観察しやすくなるように階調変換処理がなされた断層画像1802が表示されている。
FIG. 18A shows a display screen 1800 when the retina region is selected as the region of interest. On the display screen 1800, a tomographic image 1802 that has been subjected to gradation conversion processing so that the option 1801 and the region of the retina can be easily observed is displayed.
操作者が注目したい領域として網膜部の領域を所望している場合には、操作者が入力部40を介して、選択肢1801において、網膜、硝子体/脈絡膜、及び全体の3つの選択肢から、網膜を選択する。選択部1623は、操作者からの指示に応じて網膜部の領域に対する高画質化処理を選択し、高画質化部1622が断層画像について選択された高画質化処理を適用し、網膜部が観察しやすい断層画像1802を生成する。表示制御部350は、生成された網膜部が観察しやすい断層画像1802を表示画面1800に表示する。
When the operator desires a region of the retina as a region to be noticed, the operator uses the input unit 40 to select a retina from the three options of retina, vitreous / choroid, and overall retina. Select. The selecting unit 1623 selects the image quality improving process for the region of the retina according to the instruction from the operator, the image quality improving unit 1622 applies the selected image quality improving process for the tomographic image, and the retina region is observed. A tomographic image 1802 that is easy to perform is generated. The display control unit 350 displays the generated tomographic image 1802 on the display screen 1800 so that the retina portion can be easily observed.
図18Bは、注目すべき領域として硝子体部及び脈絡膜部の領域が選択された場合の表示画面1810を示している。表示画面1810には、選択肢1811及び硝子体部及び脈絡膜部の領域が観察しやすくなるように階調変換処理がなされた断層画像1812が表示されている。
FIG. 18B shows a display screen 1810 when the vitreous portion and the choroid portion are selected as the areas to be noticed. On the display screen 1810, a tomographic image 1812 that has been subjected to gradation conversion processing so that the options 1811 and the regions of the vitreous part and the choroid part can be easily observed are displayed.
操作者が注目したい領域として硝子体部及び脈絡膜部の領域を所望している場合には、操作者が入力部40を介して、選択肢1801において、網膜、硝子体/脈絡膜、及び全体の3つの選択肢から、硝子体/脈絡膜を選択する。選択部1623は、操作者からの指示に応じて硝子体部及び脈絡膜部の領域に対する高画質化処理を選択し、高画質化部1622が断層画像について選択された高画質化処理を適用し、高画質な硝子体部及び脈絡膜部が観察しやすい断層画像1812を生成する。表示制御部350は、生成された硝子体部及び脈絡膜部が観察しやすい断層画像1812を表示画面1810に表示する。
When the operator desires the regions of the vitreous part and the choroid part as the regions to be focused on, the operator selects the three regions of the retina, the vitreous / choroid, and the whole in the option 1801 via the input unit 40. From the options, select the vitreous / choroid. The selecting unit 1623 selects the image quality improving process for the regions of the vitreous part and the choroid part according to the instruction from the operator, and the image quality improving unit 1622 applies the image quality improving process selected for the tomographic image, A high-quality tomographic image 1812 that allows easy observation of the vitreous body and choroid is generated. The display control unit 350 displays on the display screen 1810 a tomographic image 1812 in which the generated vitreous body and choroid can be easily observed.
図18Cは、注目すべき領域として全体の領域が選択された場合の表示画面1820を示している。表示画面1820には、選択肢1821及び全体の領域が観察しやすくなるように階調変換処理がなされたような断層画像1822が表示されている。
FIG. 18C shows the display screen 1820 when the entire area is selected as the area of interest. On the display screen 1820, a tomographic image 1822 that has been subjected to gradation conversion processing so that the options 1821 and the entire region can be easily observed is displayed.
操作者が注目したい領域として全体の領域を所望している場合には、操作者が入力部40を介して、選択肢1821において、網膜、硝子体/脈絡膜、及び全体の3つの選択肢から、全体を選択する。選択部1623は、操作者からの指示に応じて画像全体に対する高画質化処理を選択し、高画質化部1622が断層画像について選択された高画質化処理を適用し、高画質な断層画像を生成する。この場合には、高画質化部1622は、学習済モデルを用いて画像全体が観察しやすい高画質な断層画像を生成する。表示制御部350は、生成された全体の領域が観察しやすい断層画像1822を表示画面1820に表示する。
When the operator desires the entire area as the area to be noticed, the operator selects the entire area from the three options of the retina, vitreous / choroid, and the entire area in the option 1821 via the input unit 40. select. The selecting unit 1623 selects the image quality improving process for the entire image in accordance with the instruction from the operator, and the image quality improving unit 1622 applies the image quality improving process selected for the tomographic image to generate a high image quality tomographic image. To generate. In this case, the image quality improving unit 1622 uses the learned model to generate a high quality tomographic image that makes it easy to observe the entire image. The display controller 350 displays the generated tomographic image 1822 on the display screen 1820 so that the entire region is easy to observe.
上記のように、本実施例に係る制御部1600は、操作者からの指示に応じて、取得部310で取得された第1の断層画像について適用する画像処理を選択する選択部1623を備える。高画質化部1622は、選択部1623によって選択された画像処理に基づいて、第1の断層画像について学習済モデルを用いずに階調変換処理を行い第3の断層画像(第3の医用画像)を生成する、又は、学習済モデルを用いて第1の断層画像から第2の断層画像を生成する。
As described above, the control unit 1600 according to the present embodiment includes the selection unit 1623 that selects the image processing to be applied to the first tomographic image acquired by the acquisition unit 310 according to the instruction from the operator. Based on the image processing selected by the selecting unit 1623, the image quality improving unit 1622 performs the gradation conversion process on the first tomographic image without using the learned model, and the third tomographic image (third medical image ) Is generated, or a second tomographic image is generated from the first tomographic image using the learned model.
このような構成によれば、制御部1600は、操作者が注目したい領域に応じて、異なる画像処理が施された断層画像を観察することができる。特に、上述のように、学習済モデルを用いた高画質化処理では現実には存在しない組織が描出されてしまったり、本来存在している組織が消えてしまったりする場合がある。このため、異なる画像処理が施された断層画像を対比して観察することで、誤診断を防止することができる。
With such a configuration, the control unit 1600 can observe a tomographic image that has undergone different image processing depending on the region that the operator wants to pay attention to. In particular, as described above, in the image quality enhancement process using the learned model, a tissue that does not actually exist may be drawn, or a tissue that originally exists may disappear. Therefore, erroneous diagnosis can be prevented by comparing and observing tomographic images subjected to different image processing.
また、上述のような、網膜部の領域について観察しやすくなるような階調変換処理や硝子体部及び脈絡膜部の領域について観察しやすくなるような階調変換処理は、セグメンテーション処理を前提としない。そのため、疾病眼においても適切な高画質化処理が期待できる。
Further, as described above, the gradation conversion processing for facilitating observation of the retina area and the gradation conversion processing for facilitation of observation of the vitreous and choroidal areas are not premised on the segmentation processing. . Therefore, appropriate image quality improvement processing can be expected even in a diseased eye.
本実施例では、ステップS1703において注目したい領域に関する操作者の指示を取得した後に、指示に応じた画像処理を行う例を説明した。しかしながら、操作者からの指示の取得と画像処理の順序はこれに限られない。あらかじめ、高画質化部1622によりオリジナルの断層画像について全ての選択肢の画像処理を行い、それぞれの高画質な断層画像を生成しておき、操作者の指示に応じて、表示する高画質な断層画像の切り替えのみを行ってもよい。この場合には、選択部1623は、表示すべき高画質な断層画像を選択する選択部として機能することができる。
In the present embodiment, an example has been described in which after the operator's instruction regarding the area to be noted is acquired in step S1703, image processing according to the instruction is performed. However, the order of obtaining the instruction from the operator and the image processing is not limited to this. In advance, the image quality improving unit 1622 performs image processing of all options on the original tomographic image to generate high-quality tomographic images for each, and displays the high-quality tomographic image according to the instruction of the operator. It is also possible to switch only the above. In this case, the selection unit 1623 can function as a selection unit that selects a high-quality tomographic image to be displayed.
また、予め設定された画像処理(デフォルトの画像処理)をオリジナルの断層画像に適用して高画質な断層画像を生成し、当該高画質な断層画像を表示した後に、操作者からの指示を取得してもよい。この場合には、デフォルトの画像処理以外の画像処理について操作者から指示を取得したら、当該指示に応じた画像処理を施した新たな高画質画像を表示することができる。
In addition, preset image processing (default image processing) is applied to the original tomographic image to generate a high-quality tomographic image, and after displaying the high-quality tomographic image, an instruction from the operator is acquired. You may. In this case, if an instruction is received from the operator regarding image processing other than the default image processing, a new high quality image subjected to image processing according to the instruction can be displayed.
なお、硝子体部の領域及び脈絡膜部の領域で同じ画像処理を行う例で説明したが、硝子体部の領域と脈絡膜部の領域について別々の画像処理を行ってもよい。
Note that the example in which the same image processing is performed in the vitreous region and the choroid region has been described, but different image processing may be performed in the vitreous region and the choroid region.
また、画像処理は網膜部の領域に対する高画質化処理、硝子体部及び脈絡膜部の領域に対する高画質化処理、及び学習済モデルを用いた高画質化処理に限られない。例えば、上述したような、セグメンテーション処理を前提とした網膜部、硝子体部、及び脈絡膜部の領域について観察しやすくなるような階調変換処理を、画像処理の選択肢に含んでもよい。この場合には、セグメンテーション処理を前提とした画像処理により生成した高画質な断層画像と、学習済モデルを用いた画像処理により生成した高画質な断層画像等を対比して観察することができる。そのため、操作者は、セグメンテーション処理による誤検出や学習済モデルを用いて生成した断層画像における組織の真偽等を容易に判断することができる。
Also, the image processing is not limited to the image quality improvement processing for the retina area, the image quality improvement processing for the vitreous area and the choroid area, and the image quality improvement processing using the learned model. For example, the gradation conversion processing that facilitates observation of the regions of the retina, vitreous body, and choroid, which is based on the segmentation processing as described above, may be included in the image processing options. In this case, the high-quality tomographic image generated by the image processing based on the segmentation processing and the high-quality tomographic image generated by the image processing using the learned model can be compared and observed. Therefore, the operator can easily determine the false detection due to the segmentation process and the authenticity of the tissue in the tomographic image generated using the learned model.
(実施例3)
実施例1では、学習済モデルを用いて高画質化処理を施した画像を表示した。これに対し、実施例3に係るOCT装置では、生成された高画質な断層画像における互いに異なる複数の領域のそれぞれに対して異なる解析条件を適用して画像解析を行い、画像結果を表示する。 (Example 3)
In the first embodiment, the image subjected to the high image quality processing is displayed using the learned model. On the other hand, in the OCT apparatus according to the third embodiment, different analysis conditions are applied to each of a plurality of different regions in the generated high-quality tomographic image, image analysis is performed, and the image result is displayed.
実施例1では、学習済モデルを用いて高画質化処理を施した画像を表示した。これに対し、実施例3に係るOCT装置では、生成された高画質な断層画像における互いに異なる複数の領域のそれぞれに対して異なる解析条件を適用して画像解析を行い、画像結果を表示する。 (Example 3)
In the first embodiment, the image subjected to the high image quality processing is displayed using the learned model. On the other hand, in the OCT apparatus according to the third embodiment, different analysis conditions are applied to each of a plurality of different regions in the generated high-quality tomographic image, image analysis is performed, and the image result is displayed.
以下、図19及び図20を参照して、本実施例に係るOCT装置について説明する。なお、本実施例に係る制御部以外の構成は、実施例1に係るOCT装置1と同様であるため、同じ参照符号を用いて説明を省略する。以下、本実施例に係るOCT装置について、実施例1に係るOCT装置との違いを中心として説明する。
The OCT apparatus according to this embodiment will be described below with reference to FIGS. 19 and 20. Since the configuration other than the control unit according to the present embodiment is the same as that of the OCT apparatus 1 according to the first embodiment, the same reference numerals are used and the description thereof is omitted. Hereinafter, the OCT apparatus according to the present embodiment will be described focusing on the differences from the OCT apparatus according to the first embodiment.
図19は、本実施例に係る制御部1900の概略的な構成例を示す。なお、制御部1900において、画像処理部1920の解析部1924以外の構成は、実施例1に係る制御部30の構成と同様であるため、同じ参照符号を用いて説明を省略する。
FIG. 19 shows a schematic configuration example of the control unit 1900 according to this embodiment. In the control unit 1900, the configuration other than the analysis unit 1924 of the image processing unit 1920 is the same as the configuration of the control unit 30 according to the first embodiment, and thus the same reference numerals are used and the description thereof is omitted.
画像処理部1920には、断層画像生成部321及び高画質化部322に加えて、解析部1924が設けられている。解析部1924は、高画質化部322によって生成された高画質な断層画像について、領域毎に設定された解析条件に基づいて、画像解析を行う。ここで、領域毎に設定される解析条件としては、例えば、網膜部の領域や脈絡膜部の領域では、層抽出や血管抽出、硝子体部の領域では硝子体や硝子体の剥離の検出が設定される。なお、解析条件は、あらかじめ設定されていてもよいし、操作者によって適宜設定されてもよい。
The image processing unit 1920 is provided with an analysis unit 1924 in addition to the tomographic image generation unit 321 and the image quality improvement unit 322. The analysis unit 1924 performs image analysis on the high-quality tomographic image generated by the high-quality image generation unit 322 based on the analysis condition set for each region. Here, as the analysis condition set for each region, for example, layer extraction or blood vessel extraction is set in the retina region or choroid region, and detection of vitreous or vitreous detachment is set in the vitreous region. To be done. The analysis conditions may be set in advance or may be set appropriately by the operator.
解析部1924は、解析条件として層抽出が設定されている場合には、当該解析条件が設定されている領域について層抽出を行い、抽出された層について層厚値計測等を行うことができる。また、解析部1924は、解析条件として血管抽出が設定されている場合には、当該解析条件が設定されている領域について血管抽出を行い、抽出された血管について血管密度計測等を行うことができる。さらに、解析部1924は、解析条件として硝子体や硝子体の剥離の検出が設定されている場合には、当該解析条件が設定されている領域について硝子体や硝子体の剥離の検出を行う。その後、解析部1924は、検出された硝子体や硝子体の剥離について定量化を行い硝子体や硝子体の剥離の厚みや、幅、面積、体積等を求めることができる。
When the layer extraction is set as the analysis condition, the analysis unit 1924 can perform the layer extraction for the region for which the analysis condition is set, and perform the layer thickness value measurement or the like for the extracted layer. Further, when the blood vessel extraction is set as the analysis condition, the analysis unit 1924 can perform the blood vessel extraction on the region for which the analysis condition is set, and can perform the blood vessel density measurement or the like on the extracted blood vessel. . Furthermore, when the detection of the vitreous body or the separation of the vitreous body is set as the analysis condition, the analysis unit 1924 detects the vitreous body or the separation of the vitreous body in the region for which the analysis condition is set. After that, the analysis unit 1924 can quantify the detected vitreous body and peeling of the vitreous body, and can obtain the thickness, width, area, volume, and the like of the vitreous body and peeling of the vitreous body.
なお、解析条件はこれらに限られず、所望の構成に応じて任意に設定されてよい。例えば、硝子体部の領域について硝子体の線維構造の検出が設定されてもよい。この場合には、解析部1924は、検出した硝子体の線維構造の定量化を行い、線維構造の厚みや、幅、面積、体積等を求めることができる。また、解析条件に従った解析処理も、上記処理に限られず所望の構成に応じて任意に設定されてよい。
Note that the analysis conditions are not limited to these, and may be set arbitrarily according to the desired configuration. For example, detection of the fibrous structure of the vitreous for the region of the vitreous part may be set. In this case, the analysis unit 1924 can quantify the detected fibrous structure of the vitreous and determine the thickness, width, area, volume, etc. of the fibrous structure. Further, the analysis process according to the analysis condition is not limited to the above process and may be arbitrarily set according to a desired configuration.
表示制御部350は、解析部1924によって行われた画像解析の結果を、高画質な断層画像とともに又は高画質な断層画像とは別に表示部50に表示させる。
The display control unit 350 causes the display unit 50 to display the result of the image analysis performed by the analysis unit 1924 together with the high-quality tomographic image or separately from the high-quality tomographic image.
次に、図20を参照して本実施例に係る一連の画像処理について説明する。図20は、本実施例に係る一連の画像処理のフローチャートである。なお、ステップS2001乃至ステップS2003は実施例1に係るステップS1101乃至S1103と同様であるため説明を省略する。
Next, a series of image processing according to this embodiment will be described with reference to FIG. FIG. 20 is a flowchart of a series of image processing according to this embodiment. Note that steps S2001 to S2003 are the same as steps S1101 to S1103 according to the first embodiment, and thus description thereof will be omitted.
ステップS2003において、ステップS1103と同様に高画質化部322が高画質な断層画像を生成したら、処理はステップS2004に移行する。ステップS2004では、解析部1924が、生成された高画質な断層画像についてセグメンテーション処理を行い、断層画像における異なる複数の領域を検出する。解析部1924は、複数の領域として、例えば、硝子体部の領域、網膜部の領域、及び脈絡膜部の領域等を検出することができる。なお、セグメンテーション処理の方法は既知の任意の方法を用いることができ、例えば、セグメンテーション処理は、ルールベースのセグメンテーション処理であってよい。ここで、ルールベースの処理とは既知の規則性、例えば網膜の形状の規則性等の既知の規則性を利用した処理をいう。
In step S2003, when the image quality improving unit 322 generates a high quality tomographic image as in step S1103, the process proceeds to step S2004. In step S2004, the analysis unit 1924 performs segmentation processing on the generated high-quality tomographic image and detects a plurality of different regions in the tomographic image. The analysis unit 1924 can detect, for example, a vitreous region, a retina region, a choroid region, and the like as the plurality of regions. Any known method can be used as the method of the segmentation processing, and for example, the segmentation processing may be a rule-based segmentation processing. Here, the rule-based processing refers to processing using known regularity, for example, known regularity such as regularity of retina shape.
その後、解析部1924は、検出した各領域について設定された解析条件に基づいて、各領域について画像解析を行う。例えば、解析部1924は、解析条件に従って、当該解析条件が設定されている領域について、層抽出や血管抽出を行い、層厚や血管密度を算出する。なお、層抽出や血管抽出については、既知の任意のセグメンテーション処理等によって行われてよい。また、解析部1924は、解析条件に従って、硝子体や硝子体の剥離、硝子体の線維構造を検出し、これらの定量化を行ってもよい。なお、解析部1924は、硝子体や硝子体の剥離、硝子体の線維構造を検出に際しては、更なるコントラスト強調や2値化、モルフォロジー処理、境界線追跡処理等を行うことができる。
After that, the analysis unit 1924 performs image analysis on each area based on the analysis condition set for each detected area. For example, the analysis unit 1924 performs layer extraction or blood vessel extraction on the region for which the analysis condition is set according to the analysis condition, and calculates the layer thickness or the blood vessel density. The layer extraction and the blood vessel extraction may be performed by any known segmentation process or the like. In addition, the analysis unit 1924 may detect the vitreous body, the vitreous body exfoliation, and the vitreous body fiber structure in accordance with the analysis conditions, and perform quantification thereof. Note that the analysis unit 1924 can perform further contrast enhancement, binarization, morphology processing, boundary line tracking processing, and the like when detecting the vitreous body and the vitreous body exfoliation and the vitreous body fiber structure.
ステップS2005では、表示制御部350が、解析部1924によって解析されたそれぞれの解析結果(例えば、層厚や血管密度、硝子体の面積等)を、高画質化部322が生成した高画質な断層画像とともに表示部50に表示させる。なお、解析結果の表示の態様は所望の構成に応じて任意の態様で行われてよい。例えば、表示制御部350は、高画質な断層画像の各領域と対応付けて、各領域の解析結果を表示してよい。また、表示制御部350は、高画質な断層画像とは別に解析結果を表示部50に表示させてもよい。表示制御部350による表示処理が終了すると、一連の画像処理が終了する。
In step S2005, the display control unit 350 uses the analysis results (eg, layer thickness, blood vessel density, vitreous area, etc.) analyzed by the analysis unit 1924 to generate high-quality tomographic images generated by the high-quality image generation unit 322. The image is displayed on the display unit 50 together with the image. The display mode of the analysis result may be any mode according to the desired configuration. For example, the display control unit 350 may display the analysis result of each area in association with each area of the high-quality tomographic image. Further, the display control unit 350 may display the analysis result on the display unit 50 separately from the high quality tomographic image. When the display processing by the display control unit 350 ends, a series of image processing ends.
このように、本実施例に係る制御部1900は、高画質化部322が生成した高画質な断層画像(第2の断層画像)における互いに異なる領域のそれぞれについて、異なる解析条件を適用し、画像解析を行う解析部1924を備える。表示制御部350は、解析部1924による高画質な断層画像における互いに異なる複数の領域それぞれに対する解析結果を表示部50に表示させる。
As described above, the control unit 1900 according to the present embodiment applies different analysis conditions to each of different areas in the high-quality tomographic image (second tomographic image) generated by the image quality improving unit 322, and The analysis part 1924 which performs an analysis is provided. The display control unit 350 causes the display unit 50 to display the analysis result of each of the different regions in the high-quality tomographic image by the analysis unit 1924.
当該構成によれば、解析部1924は、高画質化部322によって生成された高画質な断層画像について画像解析を行うため、画像内の特徴等をより適切に検出し、より精度の高い画像解析を行うことができる。また、解析部1924は、領域毎に適切な画像処理が行われたような高画質な断層画像について、領域毎に設定された解析条件に従って画像解析を行うことで、各領域について適切な解析結果を出力することができる。このため、操作者は、被検眼についての適切な解析結果を迅速に取得することができる。
According to this configuration, the analysis unit 1924 performs image analysis on the high-quality tomographic image generated by the high-quality image generation unit 322, so that features and the like in the image are detected more appropriately, and more accurate image analysis is performed. It can be performed. In addition, the analysis unit 1924 performs an image analysis on a high-quality tomographic image obtained by performing appropriate image processing for each region in accordance with the analysis conditions set for each region, thereby obtaining an appropriate analysis result for each region. Can be output. Therefore, the operator can quickly obtain an appropriate analysis result for the eye to be inspected.
本実施例では、解析部1924は自動的に高画質な断層画像について、各領域についての解析条件に従った画像解析を行った。これに対し、解析部1924は、操作者の指示に応じて、高画質な断層画像に対する画像処理を開始してもよい。
In this embodiment, the analysis unit 1924 automatically performs image analysis on high-quality tomographic images according to the analysis conditions for each region. On the other hand, the analysis unit 1924 may start image processing on a high-quality tomographic image in response to an instruction from the operator.
また、本実施例に係る解析部1924は、実施例2に係る制御部1600に適用されてもよい。この場合、解析部1924は、ステップS1705~ステップS1707で生成された断層画像について、上述した画像解析を行ってもよいし、ステップS1704で選択された観察したい領域についての画像処理のみを行ってもよい。なお、解析部1924は、高画質化に際してセグメンテーション処理が行われる場合には、当該セグメンテーション処理の結果を用いて、高画質な断層画像について上述の画像解析を行うことができる。
The analysis unit 1924 according to the present embodiment may be applied to the control unit 1600 according to the second embodiment. In this case, the analysis unit 1924 may perform the above-described image analysis on the tomographic images generated in steps S1705 to S1707, or may perform only the image processing on the region to be observed selected in step S1704. Good. Note that, when the segmentation process is performed when the image quality is improved, the analysis unit 1924 can perform the above-described image analysis on the high-quality tomographic image using the result of the segmentation process.
さらに、本実施例では、解析部1924が、高画質化部322によって生成された高画質な断層画像についてセグメンテーション処理を行い、互いに異なる領域を検出した。これに対して、例えば、実施例1の変形例3に係る制御部に解析部1924を適用する場合には、解析部1924は第1の学習済モデルを用いて得たラベル画像に基づいて、高画質な断層画像における異なる複数の領域を把握してもよい。
Furthermore, in the present embodiment, the analysis unit 1924 performs segmentation processing on the high-quality tomographic image generated by the image quality enhancement unit 322, and detects different areas. On the other hand, for example, when the analysis unit 1924 is applied to the control unit according to the modified example 3 of the first embodiment, the analysis unit 1924 uses the label image obtained by using the first learned model, A plurality of different areas in a high-quality tomographic image may be grasped.
(変形例5)
また、画像処理部320,1620,1920は、断層画像について、セグメンテーション用の学習済モデルを用いてラベル画像を生成し、セグメンテーション処理を行ってもよい。ここでラベル画像とは、上述のように、断層画像について画素毎に領域のラベルが付されたラベル画像をいう。具体的には、画像に描出されている領域群のうち、任意の領域を特定可能な画素値(以下、ラベル値)群によって分けている画像のことである。ここで、特定される任意の領域には関心領域(ROI:Region Of Interest)や関心体積(VOI:Volume Of Interest)等が含まれる。 (Modification 5)
Further, the image processing units 320, 1620, and 1920 may generate a label image using a learned model for segmentation for the tomographic image and perform the segmentation process. Here, the label image means a label image in which a region label is attached to each pixel in the tomographic image as described above. Specifically, it is an image in which an arbitrary region of the region group drawn in the image is divided by a group of pixel values (hereinafter, label value) that can be specified. Here, the specified arbitrary region includes a region of interest (ROI: Region Of Interest) and a volume of interest (VOI: Volume Of Interest).
また、画像処理部320,1620,1920は、断層画像について、セグメンテーション用の学習済モデルを用いてラベル画像を生成し、セグメンテーション処理を行ってもよい。ここでラベル画像とは、上述のように、断層画像について画素毎に領域のラベルが付されたラベル画像をいう。具体的には、画像に描出されている領域群のうち、任意の領域を特定可能な画素値(以下、ラベル値)群によって分けている画像のことである。ここで、特定される任意の領域には関心領域(ROI:Region Of Interest)や関心体積(VOI:Volume Of Interest)等が含まれる。 (Modification 5)
Further, the
画像から任意のラベル値を持つ画素の座標群を特定すると、画像中において対応する網膜層等の領域を描出している画素の座標群を特定できる。具体的には、例えば、網膜を構成する神経節細胞層を示すラベル値が1である場合、画像の画素群のうち画素値が1である座標群を特定し、画像から該座標群に対応する画素群を抽出する。これにより、当該画像における神経節細胞層の領域を特定できる。
By specifying the coordinate group of pixels with an arbitrary label value from the image, you can specify the coordinate group of pixels that depict the corresponding region such as the retina layer in the image. Specifically, for example, when the label value indicating the ganglion cell layer forming the retina is 1, the coordinate group having a pixel value of 1 is specified from the pixel group of the image, and the coordinate group is associated with the image. The pixel group to be extracted is extracted. Thereby, the region of the ganglion cell layer in the image can be specified.
なお、セグメンテーション処理には、ラベル画像に対する縮小又は拡大処理を実施する処理が含まれてもよい。このとき、ラベル画像の縮小又は拡大に用いる画像補完処理手法は、未定義のラベル値や対応する座標に存在しないはずのラベル値を誤って生成しないような、最近傍法等を使うものとする。
Note that the segmentation processing may include processing for performing reduction or enlargement processing on the label image. At this time, the image complement processing method used for reducing or enlarging the label image uses a nearest neighbor method or the like that does not erroneously generate an undefined label value or a label value that should not exist at the corresponding coordinates. .
ここで、セグメンテーション処理についてより詳細に説明する。セグメンテーション処理とは、画像に描出された臓器や病変といった、ROIやVOIと呼ばれる領域を、画像診断や画像解析に利用するために特定する処理のことである。例えば、セグメンテーション処理によれば、後眼部を撮影対象としたOCTの撮影によって取得された画像から、網膜を構成する層群の領域群を特定することができる。なお、画像に特定すべき領域が描出されていなければ特定される領域の数は0である。また、画像に特定すべき複数の領域群が描出されていれば、特定される領域の数は複数であってもよいし、又は、該領域群を含むように囲む領域1つであってもよい。
Here, the segmentation process will be explained in more detail. The segmentation process is a process of identifying a region called ROI or VOI such as an organ or a lesion depicted in an image for use in image diagnosis or image analysis. For example, according to the segmentation process, the region group of the layer group that configures the retina can be specified from the image acquired by the OCT imaging in which the posterior segment of the eye is the imaging target. Note that the number of specified regions is 0 if the region to be specified in the image is not drawn. Further, as long as a plurality of region groups to be specified in the image are drawn, the number of specified regions may be plural, or may be one region surrounding the region group. Good.
特定された領域群は、その他の処理において利用可能な情報として出力される。具体的には、例えば、特定された領域群のそれぞれを構成する画素群の座標群を数値データ群として出力することができる。また、例えば、特定された領域群のそれぞれを含む矩形領域や楕円領域、長方体領域、楕円体領域等を示す座標群を数値データ群として出力することもできる。さらに、例えば、特定された領域群の境界にあたる直線や曲線、平面、又は曲面等を示す座標群を数値データ群として出力することもできる。また、例えば、特定された領域群を示すラベル画像を出力することもできる。
The specified area group is output as information that can be used in other processing. Specifically, for example, the coordinate group of the pixel groups forming each of the specified region groups can be output as a numerical data group. Further, for example, a coordinate group indicating a rectangular area, an elliptical area, a rectangular area, an ellipsoidal area or the like including each of the specified area groups can be output as a numerical data group. Furthermore, for example, a coordinate group indicating a straight line, a curved line, a plane, a curved surface, or the like, which is the boundary of the specified region group, can be output as a numerical data group. Further, for example, a label image showing the specified area group can be output.
ここで、セグメンテーション用の機械学習モデルとしては、例えば、畳み込みニューラルネットワーク(CNN)を用いることができる。なお、本変形例に係る機械学習モデルとしては、例えば、図10で示したようなCNN(U-net型の機械学習モデル)や、CNNとLSTM(Long short-term memory)を組み合わせたモデルを用いることができる。また、機械学習モデルとしてFCN(Fully Convolutional Network)、又はSegNet等を用いることもできる。さらに、所望の構成に応じて、領域単位で物体認識を行う機械学習モデル等を用いることができる。領域単位で物体認識を行う機械学習モデルとしては、例えば、RCNN(Region CNN)、fastRCNN、又はfasterRCNNを用いることができる。さらに、領域単位で物体認識を行う機械学習モデルとして、YOLO(You Only Look Once)、又はSSD(Single Shot Detector、あるいはSingle Shot MultiBox Detector)を用いることもできる。なお、ここで例示した機械学習モデルについては、変形例3で述べた第1の学習済モデルに適用されてもよい。
Here, as a machine learning model for segmentation, for example, a convolutional neural network (CNN) can be used. As a machine learning model according to this modification, for example, a CNN (U-net type machine learning model) as shown in FIG. 10 or a model combining CNN and LSTM (Long short-term memory) is used. Can be used. Further, FCN (Fully Concurrent Network), SegNet, or the like can be used as the machine learning model. Furthermore, a machine learning model or the like that performs object recognition in area units can be used according to the desired configuration. As a machine learning model for recognizing an object in a region unit, for example, RCNN (Region CNN), fastRCNN, or fastRCNN can be used. Further, YOLO (You Only Look Once), SSD (Single Shot Detector, or Single Shot MultiBox Detector) can be used as a machine learning model for recognizing objects in units of areas. The machine learning model illustrated here may be applied to the first learned model described in the third modification.
また、セグメンテーション用の機械学習モデルの学習データは、断層画像を入力データとし、当該断層画像について画素毎に領域のラベルが付されたラベル画像を出力データとする。ラベル画像としては、例えば、内境界膜(ILM)、神経線維層(NFL)、神経節細胞層(GCL)、視細胞内節外節接合部(ISOS)、網膜色素上皮層(RPE)、ブルッフ膜(BM)、及び脈絡膜等のラベルが付されたラベル画像を用いることができる。なお、その他の領域として、例えば、硝子体、強膜、外網状層(OPL)、外顆粒層(ONL)、内網状層(IPL)、内顆粒層(INL)、角膜、前房、虹彩、及び水晶体等のラベルが付された画像を用いてもよい。なお、ここで例示したラベル画像については、変形例3で述べた第1の学習済モデルに関する学習データの出力データとして用いられてもよい。
Also, the learning data of the machine learning model for segmentation uses a tomographic image as input data, and a label image in which a region label is attached to each pixel of the tomographic image as output data. Label images include, for example, inner limiting membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), photoreceptor inner segment outer segment junction (ISOS), retinal pigment epithelium layer (RPE), Bruch. Labeled images with labels such as membrane (BM) and choroid can be used. In addition, as other regions, for example, vitreous, sclera, outer plexiform layer (OPL), outer granule layer (ONL), inner plexiform layer (IPL), inner granule layer (INL), cornea, anterior chamber, iris, Alternatively, an image with a label such as a crystalline lens may be used. Note that the label image illustrated here may be used as output data of learning data regarding the first learned model described in Modification 3.
また、セグメンテーション用の機械学習モデルの入力データは断層画像に限られない。前眼部画像、SLO眼底画像、眼底カメラ等を用いて得られた眼底正面画像、又は後述するEn-Face画像やOCTA正面画像等であってもよい。この場合、学習データは、各種画像を入力データとし、各種画像の画素毎に領域名等がラベル付けされたラベル画像を出力データとすることができる。例えば、学習データの入力データが眼底正面画像である場合には、出力データは、視神経乳頭の周辺部、Disc、及びCup等のラベルが付された画像であってよい。なお、入力データは高画質化された画像であってもよいし、高画質化されていない画像であってもよい。
Also, the input data of the machine learning model for segmentation is not limited to the tomographic image. It may be an anterior segment image, an SLO fundus image, a fundus front image obtained by using a fundus camera, or an En-Face image or an OCTA front image described later. In this case, as the learning data, various images can be used as input data, and a label image in which a region name or the like is labeled for each pixel of various images can be used as output data. For example, when the input data of the learning data is a fundus front image, the output data may be an image labeled with a peripheral portion of the optic disc, Disc, and Cup. The input data may be an image with high image quality or an image without high image quality.
なお、出力データとして用いられるラベル画像は、医師等により断層画像において各領域にラベルが付された画像であってもよいし、ルールベースの領域検出処理により各領域にラベルが付された画像であってもよい。ただし、適切にラベル付けが行われていないラベル画像を学習データの出力データとして用いて機械学習を行うと、当該学習データを用いて学習した学習済モデルを用いて得た画像も適切にラベル付けが行われていないラベル画像となってしまう可能性がある。そのため、そのようなラベル画像を含むペアを学習データから取り除くことで、学習済モデルを用いて適切でないラベル画像が生成される可能性を低減させることができる。ここで、ルールベースの領域検出処理とは、例えば網膜の形状の規則性等の既知の規則性を利用した検出処理をいう。
The label image used as the output data may be an image in which each region is labeled in a tomographic image by a doctor or the like, or an image in which each region is labeled by a rule-based region detection process. It may be. However, if machine learning is performed using label images that have not been appropriately labeled as output data for training data, images obtained using a trained model trained using the training data will also be labeled appropriately. May result in a label image that has not been processed. Therefore, by removing the pair including such a label image from the learning data, it is possible to reduce the possibility that an inappropriate label image is generated using the learned model. Here, the rule-based area detection process refers to a detection process that uses a known regularity such as the regularity of the shape of the retina.
画像処理部320,1620,1920は、このようなセグメンテーション用の学習済モデルを用いて、セグメンテーション処理を行うことで、各種画像について特定の領域を高速に精度良く検出することが期待できる。なお、セグメンテーション用の学習済モデルは、変形例3で述べた第1の学習済モデルとして用いられてもよい。また、実施例3においては、解析部1924が、本変形例に係る学習済モデルを用いてセグメンテーション処理を行ってもよい。
The image processing units 320, 1620, and 1920 can be expected to detect a specific area in various images at high speed and with accuracy by performing segmentation processing using such a learned model for segmentation. The learned model for segmentation may be used as the first learned model described in Modification 3. Further, in the third embodiment, the analysis unit 1924 may perform the segmentation process using the learned model according to this modification.
なお、セグメンテーション用の学習済モデルは、入力データである各種画像の種類毎に用意されてもよい。さらに、セグメンテーション用の学習済モデルは、撮影部位(例えば、黄斑部中心、視神経乳頭部中心)毎の画像について学習を行ったものでもよいし、撮影部位を関わらず学習を行ったものであってもよい。
Note that a trained model for segmentation may be prepared for each type of various images that are input data. Furthermore, the learned model for segmentation may be one that has been trained on images for each imaging region (for example, the center of the macula, the center of the optic disc), or it may be learned regardless of the imaging region. Good.
また、En-Face画像やOCTA正面画像を生成する際に、後述のように深度範囲が設定・指定される。このため、En-Face画像やOCTA正面画像については、画像を生成するための深度範囲毎に学習済モデルが用意されてもよい。
Also, when generating an En-Face image or OCTA front image, the depth range is set and specified as described below. Therefore, for the En-Face image and the OCTA front image, a learned model may be prepared for each depth range for generating the image.
なお、画像処理部320,1620,1920は、高画質化部322,1622が高画質化処理を行う前後の画像の少なくとも一方に対して、ルールベースのセグメンテーション処理又は学習済モデルを用いたセグメンテーション処理を行うことができる。これにより、画像処理部320は、当該少なくとも一方の画像における異なる領域を特定することができる。特に、画像処理部320,1620,1920は、高画質画像(第2の医用画像)を生成するための学習済モデルとは異なるセグメンテーション用の学習済モデル(第3の学習済モデル)を用いて、セグメンテーション処理を行う。これにより、当該少なくとも一方の画像における異なる領域を高速に精度良く特定することが期待できる。
Note that the image processing units 320, 1620, and 1920 perform rule-based segmentation processing or segmentation processing using a learned model on at least one of the images before and after the image quality improvement units 322 and 1622 perform the image quality improvement processing. It can be performed. As a result, the image processing unit 320 can identify different regions in the at least one image. In particular, the image processing units 320, 1620, and 1920 use a learned model for segmentation (third learned model) different from the learned model for generating a high-quality image (second medical image). , Perform segmentation processing. As a result, it can be expected that a different region in at least one of the images can be specified accurately at high speed.
(変形例6)
上述した実施例及び変形例に係る高画質化部322,1622によって学習済モデルを用いて得られた高画質画像は、操作者からの指示に応じて手動で修正されてもよい。例えば、高画質化モデルは、検者の指示に応じて、指定された領域の画像処理が変更された高画質画像を学習データとする追加学習により更新されてもよい。この場合、例えば、高画質化モデルを用いて生成した高画質画像において、硝子体部や脈絡膜部に対する階調変換処理がなされている領域について、網膜部に対する階調変換処理がなされるように修正した画像を追加学習用の学習データとすることができる。逆に、高画質化モデルを用いて生成した高画質画像において、網膜部に対する階調変換処理がなされている領域について、硝子体部や脈絡膜部に対する階調変換処理がなされるように修正した画像を追加学習用の学習データとすることができる。 (Modification 6)
The high-quality image obtained by using the learned model by the image quality improving units 322 and 1622 according to the above-described embodiment and modification may be manually corrected according to the instruction from the operator. For example, the image quality improvement model may be updated by additional learning using, as learning data, a high quality image in which image processing of a designated area is changed, in response to an instruction from the examiner. In this case, for example, in the high-quality image generated by using the high-quality model, the gradation conversion process is performed on the retina in the region where the gradation conversion process is performed on the vitreous part and the choroid part. The image can be used as learning data for additional learning. On the contrary, in the high-quality image generated by using the high-quality image model, an image corrected so that the gradation conversion process is performed on the vitreous part and the choroid part in the region where the gradation conversion process is performed on the retina part. Can be used as learning data for additional learning.
上述した実施例及び変形例に係る高画質化部322,1622によって学習済モデルを用いて得られた高画質画像は、操作者からの指示に応じて手動で修正されてもよい。例えば、高画質化モデルは、検者の指示に応じて、指定された領域の画像処理が変更された高画質画像を学習データとする追加学習により更新されてもよい。この場合、例えば、高画質化モデルを用いて生成した高画質画像において、硝子体部や脈絡膜部に対する階調変換処理がなされている領域について、網膜部に対する階調変換処理がなされるように修正した画像を追加学習用の学習データとすることができる。逆に、高画質化モデルを用いて生成した高画質画像において、網膜部に対する階調変換処理がなされている領域について、硝子体部や脈絡膜部に対する階調変換処理がなされるように修正した画像を追加学習用の学習データとすることができる。 (Modification 6)
The high-quality image obtained by using the learned model by the image
また、高画質化モデルは、検者からの指示に応じて設定(変更)された割合の値を学習データとする追加学習により更新されてもよい。例えば、入力画像が比較的暗いときに、高画質画像に対する入力画像の割合を検者が高く設定する傾向にあれば、学習済モデルはそのような傾向となるように追加学習することになる。これにより、例えば、検者の好みに合った合成の割合を得ることができる学習済モデルとしてカスタマイズすることができる。
Also, the image quality improvement model may be updated by additional learning using the value of the ratio set (changed) according to the instruction from the examiner as the learning data. For example, if the examiner tends to set a high ratio of the input image to the high-quality image when the input image is relatively dark, the learned model is additionally learned so as to have such a tendency. Thereby, for example, it can be customized as a learned model that can obtain a composition ratio that matches the taste of the examiner.
このとき、設定(変更)された割合の値を追加学習の学習データとして用いるか否かを、検者からの指示に応じて決定するためのボタンが表示画面に表示されていてもよい。これにより、制御部30,1600,1900は、操作者の指示に応じて、追加学習の要否を決定することができる。また、学習済モデルを用いて決定された割合をデフォルトの値とし、その後、検者からの指示に応じて割合の値をデフォルトの値から変更可能となるように構成されてもよい。
At this time, a button may be displayed on the display screen for deciding whether or not to use the set (changed) value of the proportion as learning data for additional learning in response to an instruction from the examiner. Accordingly, the control units 30, 1600, 1900 can determine the necessity of additional learning according to the instruction of the operator. Alternatively, the ratio determined using the learned model may be set as a default value, and then the ratio value may be changed from the default value in response to an instruction from the examiner.
なお、後述するように、学習済モデルはサーバ等の装置に設けられることもできる。この場合には、制御部30,1600,1900は、追加学習を行うとする操作者の指示に応じて、入力された画像と上述の修正が行われた高画質画像を学習データのペアとして、当該サーバ等に送信・保存することができる。言い換えると、制御部30,1600,1900は、操作者の指示に応じて、学習済モデルを備えるサーバ等の装置に追加学習の学習データを送信するか否かを決定することができる。
Note that, as described later, the trained model can be provided in a device such as a server. In this case, the control unit 30, 1600, 1900 sets the input image and the above-described corrected high-quality image as a pair of learning data in accordance with an instruction from the operator to perform additional learning. It can be transmitted and saved in the server or the like. In other words, the control units 30, 1600, 1900 can determine whether or not to transmit the learning data of the additional learning to the device such as the server including the learned model according to the instruction of the operator.
なお、上述の実施例や他の変形例で説明した各種学習済モデルについても、同様に操作者の指示に応じて手動で修正されたデータを学習データとして追加学習が行われてもよい。また、追加学習の要否の判断やサーバにデータを送信するか否かの判断も同様の方法で行われてよい。これらの場合にも、各処理の精度を向上させたり、検者の好みの傾向に応じた処理を行えたりすることが期待できる。
Note that, with respect to the various learned models described in the above-described embodiments and other modified examples, additional learning may be performed by similarly using the data manually corrected according to the instruction of the operator as the learning data. Further, the determination of the necessity of additional learning and the determination of whether to transmit the data to the server may be performed by the same method. Also in these cases, it can be expected that the accuracy of each processing can be improved and that processing according to the tendency of the examiner's preference can be performed.
例えば、セグメンテーション用の学習済モデルについて、操作者の指示に応じて手動で修正されたデータを学習データとして追加学習が行われてもよい。また、追加学習の要否の判断やサーバにデータを送信するか否かの判断は、上述の方法と同様の方法で行われてよい。これらの場合にも、セグメンテーション処理の精度を向上させたり、検者の好みの傾向に応じた処理を行えたりすることが期待できる。
For example, for a trained model for segmentation, additional learning may be performed using the data manually corrected according to the operator's instruction as the learning data. Further, the determination as to whether additional learning is necessary or whether to transmit data to the server may be performed by the same method as the above method. Also in these cases, it can be expected that the accuracy of the segmentation process is improved and that the process according to the preference of the examiner can be performed.
(変形例7)
上述した各実施例及び変形例において、画像処理部320,1620,1920は、三次元断層画像を用いて被検眼のEn-Face画像やOCTA正面画像を生成することもできる。この場合、表示制御部350は、生成されたEn-Face画像やOCTA画像を表示部50に表示させることができる。また、解析部1924は、生成されたEn-Face画像やOCTA画像について解析を行うこともできる。 (Modification 7)
In each of the above-described embodiments and modifications, the image processing units 320, 1620, and 1920 can also generate an En-Face image or OCTA front image of the eye to be inspected using the three-dimensional tomographic image. In this case, the display control unit 350 can display the generated En-Face image or OCTA image on the display unit 50. The analysis unit 1924 can also analyze the generated En-Face image and OCTA image.
上述した各実施例及び変形例において、画像処理部320,1620,1920は、三次元断層画像を用いて被検眼のEn-Face画像やOCTA正面画像を生成することもできる。この場合、表示制御部350は、生成されたEn-Face画像やOCTA画像を表示部50に表示させることができる。また、解析部1924は、生成されたEn-Face画像やOCTA画像について解析を行うこともできる。 (Modification 7)
In each of the above-described embodiments and modifications, the
ここで、En-Face画像及びOCTA正面画像について説明する。En-Face画像は、光干渉を用いて得た三次元断層画像における任意の深度範囲のデータをXY方向に投影して生成した正面画像である。正面画像は、光干渉を用いて得たボリュームデータ(三次元断層画像)の少なくとも一部の深度範囲であって、2つの基準面に基づいて定められた深度範囲に対応するデータを二次元平面に投影又は積算して生成される。
Here, the En-Face image and the OCTA front image will be described. The En-Face image is a front image generated by projecting data in an arbitrary depth range in a three-dimensional tomographic image obtained by using optical interference in the XY directions. The front image is a depth range of at least a part of volume data (three-dimensional tomographic image) obtained by using optical interference, and data corresponding to the depth range determined based on the two reference planes is a two-dimensional plane. It is generated by projecting on or integrating with.
例えばEn-Face画像は、ボリュームデータのうちの、二次元の断層画像についてのセグメンテーション処理により検出された網膜層に基づいて決定された深度範囲に対応するデータを二次元平面に投影して生成されることができる。なお、2つの基準面に基づいて定められた深度範囲に対応するデータを二次元平面に投影する手法としては、例えば、当該深度範囲内のデータの代表値を二次元平面上の画素値とする手法を用いることができる。ここで、代表値は、2つの基準面に囲まれた領域の深さ方向の範囲(深度範囲)内における画素値の平均値、中央値又は最大値などの値を含むことができる。
For example, the En-Face image is generated by projecting onto a two-dimensional plane data corresponding to a depth range determined based on the retinal layer detected by the segmentation processing of the two-dimensional tomographic image in the volume data. You can As a method of projecting the data corresponding to the depth range determined based on the two reference planes onto the two-dimensional plane, for example, the representative value of the data within the depth range is set as the pixel value on the two-dimensional plane. Techniques can be used. Here, the representative value can include a value such as an average value, a median value, or a maximum value of pixel values within a range (depth range) in the depth direction of a region surrounded by two reference planes.
En-Face画像に係る深度範囲は、例えば、上述したルールベースのセグメンテーション処理の手法や変形例5で述べた学習済モデルを用いたセグメンテーション処理によって検出された網膜層に関する2つの層境界を基準として指定されてよい。また、当該深度範囲は、これらセグメンテーション処理によって検出された網膜層に関する2つの層境界の一方を基準として、より深い方向又はより浅い方向に所定の画素数分だけ含んだ範囲であってもよい。また、En-Face画像に係る深度範囲は、例えば、検出された網膜層に関する2つの層境界の間の範囲から、操作者の指示に応じて変更された(オフセットされた)範囲であってもよい。この際、操作者は、例えば、高画質化部322,1622によって高画質化された断層画像又は高画質化されていない断層画像上に重畳された、深度範囲の上限又は下限を示す指標を移動させる等により、深度範囲を変更することができる。
The depth range related to the En-Face image is based on, for example, two layer boundaries regarding the retinal layer detected by the above-described rule-based segmentation processing method or the segmentation processing using the trained model described in Modification 5. May be specified. Further, the depth range may be a range including a predetermined number of pixels in a deeper direction or a shallower direction with reference to one of two layer boundaries regarding the retinal layer detected by these segmentation processes. In addition, the depth range related to the En-Face image may be, for example, a range that is changed (offset) in accordance with an operator's instruction from a range between two layer boundaries related to the detected retinal layer. Good. At this time, the operator moves, for example, an index indicating the upper limit or the lower limit of the depth range, which is superimposed on the tomographic image whose image quality has been improved by the image quality improving units 322 and 1622 or which has not been imaged. The depth range can be changed by, for example,
なお、生成される正面画像は、上述のような輝度値に基づくEn-Face画像(輝度のEn-Face画像)に限られない。生成される正面画像は、例えば、複数のボリュームデータ間のモーションコントラストデータについて、上述の深度範囲に対応するデータを二次元平面に投影又は積算して生成したモーションコントラスト正面画像であってもよい。ここで、モーションコントラストデータとは、被検眼の同一領域(同一位置)において測定光が複数回走査されるように制御して得た複数のボリュームデータ間での変化を示すデータである。このとき、ボリュームデータは、異なる位置で得た複数の断層画像により構成される。そして、異なる位置それぞれにおいて、略同一位置で得た複数の断層画像の間での変化を示すデータを得ることで、モーションコントラストデータをボリュームデータとして得ることができる。なお、モーションコントラスト正面画像は、血流の動きを測定するOCTアンギオグラフィ(OCTA)に関するOCTA正面画像(OCTAのEn-Face画像)とも呼ばれ、モーションコントラストデータはOCTAデータとも呼ばれる。モーションコントラストデータは、例えば、2枚の断層画像又はこれに対応する干渉信号間の脱相関値、分散値、又は最大値を最小値で割った値(最大値/最小値)として求めることができ、公知の任意の方法により求められてよい。このとき、2枚の断層画像は、例えば、被検眼の同一領域(同一位置)において測定光が複数回走査されるように制御して得ることができる。
Note that the generated front image is not limited to the En-Face image based on the brightness value (En-Face image of brightness) as described above. The generated front image may be, for example, a motion contrast front image generated by projecting or integrating data corresponding to the above-described depth range on a two-dimensional plane for motion contrast data between a plurality of volume data. Here, the motion contrast data is data indicating a change between a plurality of volume data obtained by controlling the measurement light to be scanned a plurality of times in the same region (same position) of the eye to be inspected. At this time, the volume data is composed of a plurality of tomographic images obtained at different positions. Then, the motion contrast data can be obtained as the volume data by obtaining the data indicating the change between the plurality of tomographic images obtained at the substantially same position at each of the different positions. The motion contrast front image is also referred to as an OCTA front image (OCTA En-Face image) regarding OCT angiography (OCTA) for measuring the movement of blood flow, and the motion contrast data is also referred to as OCTA data. The motion contrast data can be obtained, for example, as a decorrelation value between two tomographic images or corresponding interference signals, a variance value, or a value obtained by dividing the maximum value by the minimum value (maximum value / minimum value). , May be obtained by any known method. At this time, the two tomographic images can be obtained, for example, by controlling so that the measurement light is scanned a plurality of times in the same region (same position) of the subject's eye.
また、OCTA正面画像を生成する際に用いられる三次元のOCTAデータ(OCTボリュームデータ)は、画像セグメンテーションに用いられる断層画像を含むボリュームデータと共通の干渉信号の少なくとも一部を用いて生成されてもよい。この場合には、ボリュームデータ(三次元の断層画像)と三次元のOCTAデータとが互いに対応することができる。そのため、ボリュームデータに対応する三次元のモーションコントラストデータを用いて、例えば、画像セグメンテーションにより検出された網膜層に基づいて決定された深度範囲に対応するモーションコントラスト正面画像が生成されることができる。
The three-dimensional OCTA data (OCT volume data) used when generating the OCTA front image is generated by using at least a part of the interference signal common to the volume data including the tomographic image used for image segmentation. Good. In this case, the volume data (three-dimensional tomographic image) and the three-dimensional OCTA data can correspond to each other. Therefore, by using the three-dimensional motion contrast data corresponding to the volume data, for example, a motion contrast front image corresponding to the depth range determined based on the retinal layer detected by the image segmentation can be generated.
なお、En-Face画像又はOCTA正面画像を生成する際に用いられるボリュームデータは、高画質化部322,1622によって高画質化された断層画像で構成されてもよい。言い換えると、画像処理部320,1620,1920は、高画質化した、異なる複数の位置で得た複数の断層画像からなるボリュームデータを用いて、En-Face画像又はOCTA正面画像を生成してもよい。言い換えると、高画質化部322,1622によって高画質化処理を行う前後の画像が3次元のOCT断層画像である場合、画像処理部320,1620,1920は、高画質化処理後の画像の一部の深度範囲に対応する正面画像を生成することができる。これにより、画像処理部320,1620,1920は、高画質な3次元の断層画像に基づいて、高画質な正面画像を生成することができる。
Note that the volume data used when generating the En-Face image or the OCTA front image may be composed of tomographic images of which the image quality is improved by the image quality improving units 322 and 1622. In other words, the image processing units 320, 1620, and 1920 may generate an En-Face image or an OCTA front image by using the volume data composed of a plurality of tomographic images obtained at a plurality of different positions with high image quality. Good. In other words, when the images before and after the image quality enhancement processing by the image quality enhancement units 322 and 1622 are three-dimensional OCT tomographic images, the image processing units 320, 1620, and 1920 display one of the images after the image quality enhancement process. A front image corresponding to the depth range of the part can be generated. As a result, the image processing units 320, 1620, and 1920 can generate a high-quality front image based on the high-quality three-dimensional tomographic image.
(変形例8)
次に、図21A乃至図23を参照して、変形例8に係る画像処理装置について説明する。上述の実施例及び変形例では、高画質化部322,1622は、高画質化用の学習済モデル(高画質化モデル)を用いて、断層画像について高画質化処理を行った。これに対し、高画質化部322,1622は、他の画像について高画質化モデルを用いて高画質化処理を行ってもよく、表示制御部350は、高画質化された各種画像を表示部50に表示させてもよい。例えば、高画質化部322,1622は、輝度のEn-Face画像やOCTA正面画像等を高画質化処理してもよい。また、表示制御部350は、高画質化部322,1622によって高画質化処理された断層画像、輝度のEn-Face画像、及びOCTA正面画像の少なくとも1つを表示部50に表示させることができる。なお、高画質化し表示する画像は、SLO眼底画像や、不図示の眼底カメラ等で取得された眼底画像、蛍光眼底画像等であってもよい。 (Modification 8)
Next, an image processing apparatus according toModification 8 will be described with reference to FIGS. 21A to 23. In the above-described embodiments and modified examples, the image quality improving units 322 and 1622 perform the image quality improving process on the tomographic image using the learned model (image quality improving model) for image quality improvement. On the other hand, the image quality improving units 322 and 1622 may perform the image quality improving process on other images by using the image quality improving model, and the display control unit 350 displays the various image quality improving images on the display unit. It may be displayed on 50. For example, the image quality enhancement units 322 and 1622 may perform the image quality enhancement processing on the En-Face image of brightness, the OCTA front image, and the like. Further, the display control unit 350 can cause the display unit 50 to display at least one of the tomographic image, the brightness En-Face image, and the OCTA front image, which have been subjected to the image quality enhancement processing by the image quality enhancement units 322 and 1622. . The image displayed with high image quality may be an SLO fundus image, a fundus image acquired by a fundus camera (not shown), a fluorescent fundus image, or the like.
次に、図21A乃至図23を参照して、変形例8に係る画像処理装置について説明する。上述の実施例及び変形例では、高画質化部322,1622は、高画質化用の学習済モデル(高画質化モデル)を用いて、断層画像について高画質化処理を行った。これに対し、高画質化部322,1622は、他の画像について高画質化モデルを用いて高画質化処理を行ってもよく、表示制御部350は、高画質化された各種画像を表示部50に表示させてもよい。例えば、高画質化部322,1622は、輝度のEn-Face画像やOCTA正面画像等を高画質化処理してもよい。また、表示制御部350は、高画質化部322,1622によって高画質化処理された断層画像、輝度のEn-Face画像、及びOCTA正面画像の少なくとも1つを表示部50に表示させることができる。なお、高画質化し表示する画像は、SLO眼底画像や、不図示の眼底カメラ等で取得された眼底画像、蛍光眼底画像等であってもよい。 (Modification 8)
Next, an image processing apparatus according to
ここで、各種画像を高画質化処理するための高画質化モデルの学習データは、各種画像について、上述の実施例及び変形例に係る高画質化モデルの学習データと同様に、高画質化処理前の画像を入力データとし、高画質化処理後の画像を出力データとする。なお、学習データに関する高画質化処理については、上述の実施例及び変形例と同様に、例えば、加算平均処理や、平滑化フィルタを用いた処理、最大事後確率推定処理(MAP推定処理)、階調変換処理等であってよい。また、高画質化処理後の画像としては、例えば、ノイズ除去とエッジ強調などのフィルタ処理を行った画像でもよいし、低輝度な画像から高輝度な画像とするようなコントラストが調整された画像を用いてもよい。さらに、高画質化モデルに係る教師データの出力データは、高画質な画像であればよいため、入力データである画像を撮影した際のOCT装置よりも高性能なOCT装置を用いて撮影された画像や、高負荷な設定により撮影された画像であってもよい。
Here, the learning data of the image quality enhancement model for performing the image quality enhancement process on various images is the same as the learning data of the image quality enhancement model according to the above-described embodiment and modification regarding various images. The previous image is used as input data, and the image after the high image quality processing is used as output data. Note that, regarding the image quality enhancement processing regarding the learning data, similar to the above-described embodiment and modification, for example, arithmetic averaging processing, processing using a smoothing filter, maximum posterior probability estimation processing (MAP estimation processing), floor It may be a tone conversion process or the like. Further, the image after the high image quality processing may be, for example, an image that has been subjected to filter processing such as noise removal and edge enhancement, or an image whose contrast is adjusted from a low-luminance image to a high-luminance image. May be used. Furthermore, since the output data of the teacher data related to the high image quality model may be a high quality image, it was captured using an OCT device having higher performance than the OCT device when the image as the input data was captured. It may be an image or an image taken with a high load setting.
また、高画質化モデルは、高画質化処理を行う画像の種類毎に用意されてもよい。例えば、断層画像用の高画質化モデルや輝度のEn-Face画像用の高画質化モデル、OCTA正面画像用の高画質化モデルが用意されてよい。さらに、輝度のEn-Face画像用の高画質化モデルやOCTA正面画像用の高画質化モデルは、画像の生成に係る深度範囲(生成範囲)について異なる深度範囲の画像を網羅的に学習した学習済モデルであってよい。異なる深度範囲の画像としては、例えば、図21Aに示すように、表層(Im2110)、深層(Im2120)、外層(Im2130)、及び脈絡膜血管網(Im1940)などの画像が含まれてよい。また、輝度のEn-Face画像用の高画質化モデルやOCTA正面画像用の高画質化モデルは、異なる深度範囲毎の画像を学習した複数の高画質化モデルが用意されてもよい。なお、断層画像以外の画像について高画質化処理を行う高画質化モデルは、領域毎に異なる画像処理を行う高画質化モデルに限られず、画像全体に対して同一の画像処理を行う高画質化モデルであってもよい。
Also, the image quality improvement model may be prepared for each type of image to be subjected to the image quality improvement processing. For example, a high image quality model for a tomographic image, a high image quality model for an En-Face image of brightness, and a high image quality model for an OCTA front image may be prepared. Further, the image quality improvement model for the En-Face image of luminance and the image quality improvement model for the OCTA front image are learning by comprehensively learning images of different depth ranges with respect to the depth range related to image generation (generation range). It may be a completed model. Images of different depth ranges may include, for example, as shown in FIG. 21A, images of the surface layer (Im2110), the deep layer (Im2120), the outer layer (Im2130), and the choroidal vascular network (Im1940). Further, as the image quality improvement model for the brightness En-Face image and the image quality improvement model for the OCTA front image, a plurality of image quality improvement models obtained by learning images for different depth ranges may be prepared. It should be noted that the image quality improvement model for performing the image quality improvement processing on images other than the tomographic image is not limited to the image quality improvement model for performing different image processing for each region, and the image quality improvement model for performing the same image processing on the entire image is performed. It may be a model.
また、断層画像用の高画質化モデルを用意する場合には、異なる副走査方向(Y軸方向)の位置で得られた断層画像を網羅的に学習した学習済モデルであってよい。図21Bに示す断層画像Im2151~Im2153は、異なる副走査方向の位置で得られた断層画像の例である。ただし、撮影部位(例えば、黄斑部中心、視神経乳頭部中心)が異なる場所を撮影した画像の場合には、撮影部位毎に別々に学習をするようにしてもよいし、撮影部位を気にせずに一緒に学習をするようにしてもよい。なお、高画質化する断層画像としては、輝度の断層画像と、モーションコントラストデータの断層画像とが含まれてよい。ただし、輝度の断層画像とモーションコントラストデータの断層画像においては画像特徴量が大きく異なるため、それぞれの高画質化モデルとして別々に学習を行ってもよい。
When preparing a high quality image model for a tomographic image, it may be a learned model that comprehensively learns tomographic images obtained at different positions in the sub-scanning direction (Y-axis direction). The tomographic images Im2151 to Im2153 illustrated in FIG. 21B are examples of tomographic images obtained at different positions in the sub-scanning direction. However, in the case of an image taken at a place where the imaged site (for example, the center of the macula, the center of the optic papilla) is taken, learning may be performed separately for each imaged site, and the imaged site does not matter. You may also learn together. It should be noted that the tomographic image of high image quality may include a tomographic image of brightness and a tomographic image of motion contrast data. However, since the image feature amount differs greatly between the tomographic image of luminance and the tomographic image of motion contrast data, learning may be performed separately for each image quality improvement model.
本変形例では、高画質化部322,1622が高画質化処理を行った画像を表示制御部350が表示部50に表示を行う例について説明を行う。なお、本変形例では、図22A及び図22Bを用いて説明を行うが表示画面はこれに限らない。経過観察のように、異なる日時で得た複数の画像を並べて表示する表示画面においても同様に高画質化処理(画質向上処理)は適用可能である。また、撮影確認画面のように、検者が撮影直後に撮影成否を確認する表示画面においても同様に高画質化処理は適用可能である。表示制御部350は、高画質化部322,1622が生成した複数の高画質画像や高画質化を行っていない低画質画像を表示部50に表示させることができる。また、表示制御部350は、表示部50に表示された複数の高画質画像や高画質化を行っていない低画質画像について、検者の指示に応じて選択された低画質画像及び高画質画像をそれぞれ表示部50に表示させることができる。また、画像処理装置は、当該検者の指示に応じて選択された低画質画像及び高画質画像を外部に出力することもできる。
In this modification, an example will be described in which the display control unit 350 displays an image on which the image quality improving units 322 and 1622 have performed the image quality improving process on the display unit 50. It should be noted that in the present modification, the description will be given with reference to FIGS. 22A and 22B, but the display screen is not limited to this. The image quality improving process (image quality improving process) can be similarly applied to a display screen in which a plurality of images obtained at different dates and times are displayed side by side as in follow-up observation. Further, the image quality enhancement process can be similarly applied to a display screen such as an image capturing confirmation screen where the examiner confirms whether or not the image capturing is successful immediately after the image capturing. The display control unit 350 can cause the display unit 50 to display a plurality of high-quality images generated by the image- quality enhancing units 322 and 1622 and low-quality images that have not been enhanced in image quality. In addition, the display control unit 350 selects, for the plurality of high-quality images displayed on the display unit 50 and the low-quality images that have not been enhanced in quality, the low-quality image and the high-quality image selected according to the instruction of the examiner. Can be displayed on the display unit 50. Further, the image processing apparatus can also output the low-quality image and the high-quality image selected according to the instruction of the examiner to the outside.
以下、図22A及び図22Bを参照して、本変形例に係るインターフェースの表示画面2200の一例を示す。表示画面2200は画面全体を示し、表示画面2200には、患者タブ2201、撮影タブ2202、レポートタブ2203、設定タブ2204が示されている。また、レポートタブ2203における斜線は、レポート画面のアクティブ状態を表している。本変形例においては、レポート画面を表示する例について説明する。
22A and 22B, an example of the display screen 2200 of the interface according to this modification will be shown below. The display screen 2200 shows the entire screen, and the display screen 2200 shows a patient tab 2201, an imaging tab 2202, a report tab 2203, and a setting tab 2204. Further, the diagonal lines in the report tab 2203 represent the active state of the report screen. In this modification, an example of displaying a report screen will be described.
図22Aに示されるレポート画面には、SLO眼底画像Im2205、OCTA正面画像Im2207,Im2208、輝度のEn-Face画像Im2209、断層画像Im2211,Im2212、及びボタン2220が示されている。また、SLO眼底画像Im2205には、OCTA正面画像Im2207に対応するOCTA正面画像Im2206が重畳表示されている。さらに、断層画像Im2211,Im2212には、それぞれOCTA正面画像Im2207,Im2208の深度範囲の境界線2213,2214が重畳表示されている。ボタン2220は、高画質化処理の実行を指定するためのボタンである。ボタン2220は、後述するように、高画質画像の表示を指示するためのボタンであってもよい。
The report screen shown in FIG. 22A shows an SLO fundus image Im2205, OCTA front images Im2207, Im2208, a luminance En-Face image Im2209, tomographic images Im2211, Im2212, and a button 2220. Further, an OCTA front image Im2206 corresponding to the OCTA front image Im2207 is superimposed and displayed on the SLO fundus image Im2205. Furthermore, the boundary lines 2213 and 2214 of the depth ranges of the OCTA front images Im2207 and Im2208 are superimposed and displayed on the tomographic images Im2211 and Im2212, respectively. The button 2220 is a button for designating execution of the high image quality processing. The button 2220 may be a button for instructing to display a high quality image, as described later.
本変形例において、高画質化処理の実行はボタン2220を指定して行うか、データベースに保存(記憶)されている情報に基づいて実行の有無を判断する。初めに、検者からの指示に応じてボタン2220を指定することで高画質画像の表示と低画質画像の表示を切り替える例について説明する。なお、以下、高画質化処理の対象画像はOCTA正面画像として説明する。
In this modified example, the image quality improvement process is executed by designating the button 2220 or based on the information stored (stored) in the database. First, an example in which the display of a high-quality image and the display of a low-quality image are switched by designating the button 2220 according to an instruction from the examiner will be described. Note that the target image for the high image quality processing will be described below as an OCTA front image.
なお、OCTA正面画像Im2207,Im2208の深度範囲は、上述した従来のセグメンテーション処理又は学習済モデル用いたセグメンテーション処理により検出された網膜層の情報を用いて定められてよい。深度範囲は、例えば、検出された網膜層に関する2つの層境界の間の範囲としてもよいし、検出された網膜層に関する2つの層境界の一方を基準として、より深い方向又はより浅い方向に所定の画素数分だけ含んだ範囲であってもよい。また、深度範囲は、例えば、検出された網膜層に関する2つの層境界の間の範囲から、操作者の指示に応じて変更された(オフセットされた)範囲であってもよい。
Note that the depth range of the OCTA front images Im2207 and Im2208 may be determined using information of the retinal layer detected by the above-described conventional segmentation processing or segmentation processing using a trained model. The depth range may be, for example, a range between two layer boundaries regarding the detected retinal layer, or a predetermined depth direction or a shallower direction based on one of the two layer boundaries regarding the detected retinal layer. The number of pixels may be included in the range. Further, the depth range may be, for example, a range that is changed (offset) in accordance with an operator's instruction from a range between two layer boundaries regarding the detected retinal layer.
検者がレポートタブ2203を指定してレポート画面に遷移した際には、表示制御部350は、低画質なOCTA正面画像Im2207,Im2208を表示する。その後、検者がボタン2220を指定することで、高画質化部322,1622は画面に表示されているOCTA正面画像Im2207,Im2208に対して高画質化処理を実行する。高画質化処理が完了後、表示制御部350は、高画質化部322,1622が生成した高画質画像をレポート画面に表示する。なお、OCTA正面画像Im2206は、OCTA正面画像Im2207をSLO眼底画像Im2205に重畳表示しているものであるため、表示制御部350は、OCTA正面Im2206についても高画質化処理した画像を表示させることができる。また、表示制御部350は、ボタン2220の表示をアクティブ状態に変更し、高画質化処理を実行したことが分かるような表示とすることができる。
When the inspector specifies the report tab 2203 and transitions to the report screen, the display control unit 350 displays the OCTA front images Im2207 and Im2208 of low image quality. After that, when the examiner designates the button 2220, the image quality improving units 322 and 1622 perform the image quality improving process on the OCTA front images Im2207 and Im2208 displayed on the screen. After the image quality improving process is completed, the display control unit 350 displays the high image quality images generated by the image quality enhancing units 322 and 1622 on the report screen. Since the OCTA front image Im2206 is a display in which the OCTA front image Im2207 is superimposed and displayed on the SLO fundus image Im2205, the display control unit 350 can also display an image that has been subjected to high image quality processing for the OCTA front image Im2206. it can. Further, the display control unit 350 can change the display of the button 2220 to the active state so that it can be seen that the image quality improving process has been executed.
ここで、高画質化部322,1622における処理の実行は、検者がボタン2220を指定したタイミングに限る必要はない。レポート画面を開く際に表示するOCTA正面画像Im2207,Im2208の種類は事前に分かっているため、高画質化部322,1622は、表示される画面がレポート画面に遷移する際に高画質化処理の実行をしてもよい。そして、ボタン2220が押下されたタイミングで、表示制御部350が高画質画像をレポート画面に表示するようにしてもよい。さらに、検者からの指示に応じて、又はレポート画面に遷移する際に高画質化処理を行う画像の種類は2種類である必要はない。表示する可能性の高い画像、例えば、図21Aで示すような表層(Im2110)、深層(Im2120)、外層(Im2130)、及び脈絡膜血管網(Im2140)などの複数のOCTA正面画像に対して処理を行うようにしてもよい。この場合、高画質化処理を行った画像を一時的にメモリに記憶、あるいはデータベースに記憶しておくようにしてもよい。
Here, the execution of the processing in the image quality improving units 322 and 1622 does not have to be limited to the timing when the examiner specifies the button 2220. Since the types of the OCTA front images Im2207 and Im2208 to be displayed when opening the report screen are known in advance, the image quality improving units 322 and 1622 perform image quality improvement processing when the displayed screen transitions to the report screen. You may execute. Then, the display control unit 350 may display the high-quality image on the report screen when the button 2220 is pressed. Furthermore, it is not necessary that there be two types of images for which the high image quality processing is performed in response to an instruction from the examiner or when transitioning to the report screen. An image that is likely to be displayed, for example, a plurality of OCTA front images such as a surface layer (Im2110), a deep layer (Im2120), an outer layer (Im2130), and a choroidal vascular network (Im2140) shown in FIG. 21A is processed. It may be performed. In this case, the image subjected to the high image quality processing may be temporarily stored in a memory or a database.
次に、データベースに保存(記録)されている情報に基づいて高画質化処理を実行する場合について説明する。データベースに高画質化処理の実行を行う状態が保存されている場合、レポート画面に遷移した際に、高画質化部322,1622が高画質化処理を実行して得た高画質画像を表示制御部350がデフォルトで表示部50に表示させる。そして、表示制御部350が、ボタン2220をアクティブ状態としてデフォルトで表示させることで、検者に対しては高画質化処理を実行して得た高画質画像が表示されていることが分かるように構成することができる。検者は、高画質化処理前の低画質画像を表示したい場合には、ボタン2220を指定してアクティブ状態を解除することで、表示制御部350が低画質画像を表示部50に表示させることができる。この際、検者は、表示される画像を高画質画像に戻したい場合には、ボタン2220を指定してアクティブ状態とすることで、表示制御部350が高画質画像を表示部50に再び表示させる。
Next, a case where the image quality improvement processing is executed based on the information stored (recorded) in the database will be described. When a state in which the image quality improvement processing is executed is stored in the database, the display quality is controlled by the image quality improvement units 322 and 1622 when the transition to the report screen is performed. The unit 350 causes the display unit 50 to display by default. Then, the display control unit 350 displays the button 2220 in the active state by default so that the examiner can see that the high-quality image obtained by executing the high-quality processing is displayed. Can be configured. When the examiner wants to display the low-quality image before the high-quality processing, the display control unit 350 causes the display unit 50 to display the low-quality image by canceling the active state by designating the button 2220. You can At this time, if the examiner wants to return the displayed image to the high-quality image, he or she specifies the button 2220 to activate it, and the display control unit 350 causes the display unit 50 to display the high-quality image again. Let
データベースへの高画質化処理の実行有無は、データベースに保存されているデータ全体に対して共通、及び撮影データ毎(検査毎)など、階層別に指定するものとする。例えば、データベース全体に対して高画質化処理を実行する状態を保存してある場合において、個別の撮影データ(個別の検査)に対して、検者が高画質化処理を実行しない状態を保存することができる。この場合、高画質化処理を実行しないとした状態が保存された個別の撮影データについては次回表示する際に高画質化処理を実行しない状態で表示を行うことができる。このような構成によれば、撮影データ単位(検査単位)で高画質化処理の実行の有無が指定されていない場合、データベース全体に対して指定されている情報に基づいて処理を実行することができる。また、撮影データ単位(検査単位)で指定されている場合には、その情報に基づいて個別に処理を実行することができる。
Whether to execute high image quality processing on the database is specified for each layer, such as common to all data stored in the database and for each shooting data (each inspection). For example, when the state in which the image quality enhancement process is performed on the entire database is saved, the state in which the examiner does not perform the image quality enhancement process is saved for individual imaging data (individual inspection). be able to. In this case, it is possible to display the individual imaged data in which the state in which the high image quality processing is not executed is stored in the state in which the high image quality processing is not executed when displaying next time. With such a configuration, if it is not designated whether or not to execute the image quality enhancement process in units of image data (inspection unit), the process can be performed based on the information designated for the entire database. it can. Further, in the case where the image data is designated by the image data unit (inspection unit), the processing can be individually executed based on the information.
なお、撮影データ毎(検査毎)に高画質化処理の実行状態を保存するために、不図示のユーザーインターフェース(例えば、保存ボタン)を用いてもよい。また、他の撮影データ(他の検査)や他の患者データに遷移(例えば、検者からの指示に応じてレポート画面以外の表示画面に変更)する際に、表示状態(例えば、ボタン2220の状態)に基づいて、高画質化処理の実行を行う状態が保存されるようにしてもよい。
Note that a user interface (not shown) (for example, a save button) may be used to save the execution state of the high image quality processing for each image data (each inspection). Also, when transitioning to other imaging data (other examination) or other patient data (for example, changing to a display screen other than the report screen in response to an instruction from the examiner), the display state (for example, button 2220 The state in which the image quality enhancement processing is executed may be stored based on the (state).
本変形例では、OCTA正面画像として、OCTA正面画像Im2207,Im2208を表示する例を示しているが、表示するOCTA正面画像は検者の指定により変更することが可能である。そのため、高画質化処理の実行が指定されている場合(ボタン2220がアクティブ状態)における、表示する画像の変更について説明する。
In this modification, an OCTA front image Im2207, Im2208 is displayed as the OCTA front image, but the OCTA front image to be displayed can be changed by the examiner's designation. Therefore, the change of the image to be displayed when the execution of the high image quality processing is designated (the button 2220 is in the active state) will be described.
表示する画像の変更は、不図示のユーザーインターフェース(例えば、コンボボックス)を用いて行うことができる。例えば、検者が画像の種類を表層から脈絡膜血管網に変更した場合には、高画質化部322,1622は脈絡膜血管網画像に対して高画質化処理を実行し、表示制御部350は高画質化部322,1622が生成した高画質な画像をレポート画面に表示する。すなわち、表示制御部350は、検者からの指示に応じて、第1の深度範囲の高画質画像の表示を、第1の深度範囲とは少なくとも一部が異なる第2の深度範囲の高画質画像の表示に変更してもよい。このとき、表示制御部350は、検者からの指示に応じて第1の深度範囲が第2の深度範囲に変更されることにより、第1の深度範囲の高画質画像の表示を、第2の深度範囲の高画質画像の表示に変更してもよい。なお、上述したようにレポート画面遷移時に表示する可能性の高い画像に対しては、既に高画質画像が生成済みである場合、表示制御部350は生成済みの高画質な画像を表示すればよい。
The image to be displayed can be changed using a user interface (not shown) (for example, a combo box). For example, when the examiner changes the type of image from the surface layer to the choroidal vascular network, the image quality improving units 322 and 1622 perform the image quality improving process on the choroidal vascular network image, and the display control unit 350 sets the high image quality. The high-quality image generated by the image quality conversion units 322 and 1622 is displayed on the report screen. That is, the display control unit 350 displays the high-quality image in the first depth range in accordance with the instruction from the examiner, and displays the high-quality image in the second depth range that is at least partially different from the first depth range. You may change to the display of an image. At this time, the display control unit 350 changes the first depth range to the second depth range in response to an instruction from the examiner, thereby displaying the high-quality image in the first depth range to the second depth range. You may change to the display of the high quality image of the depth range of. As described above, for the image that is likely to be displayed at the time of transition of the report screen, if the high quality image has already been generated, the display control unit 350 may display the generated high quality image. .
また、画像の種類の変更方法は上記したものに限らず、基準となる層やオフセットの値を変えて異なる深度範囲を設定したOCTA正面画像を生成し、生成したOCTA正面画像に高画質化処理を実行した高画質画像を表示させることも可能である。その場合、基準となる層、又はオフセット値が変更された時に、高画質化部322,1622は任意のOCTA正面画像に対して高画質化処理を実行し、表示制御部350は高画質画像をレポート画面に表示する。なお、基準となる層やオフセット値の変更は、不図示のユーザーインターフェース(例えば、コンボボックスやテキストボックス)を用いて行われることができる。また、断層画像Im2211,Im2212にそれぞれ重畳表示している境界線2213,2214のいずれかをドラッグ(層境界を移動)することで、OCTA正面画像の深度範囲(生成範囲)を変更することもできる。
Further, the method of changing the image type is not limited to the above-described one, but the OCTA front image in which different depth ranges are set by changing the reference layer and the offset value is generated, and the image quality improvement processing is performed on the generated OCTA front image. It is also possible to display a high-quality image obtained by executing. In that case, when the reference layer or the offset value is changed, the image quality improving units 322 and 1622 execute the image quality improving process on an arbitrary OCTA front image, and the display control unit 350 displays the high image quality image. Display on the report screen. The reference layer and the offset value can be changed using a user interface (not shown) (for example, a combo box or a text box). In addition, the depth range (generation range) of the OCTA front image can be changed by dragging (moving the layer boundary) any one of the boundary lines 2213 and 2214 that are superimposed and displayed on the tomographic images Im2211 and Im2212, respectively. .
境界線をドラッグによって変更する場合、高画質化処理の実行命令が連続的に実施される。そのため、高画質化部322,1622は実行命令に対して常に処理を行ってもよいし、ドラッグによる層境界の変更後に実行するようにしてもよい。又は、高画質化処理の実行は連続的に命令されるが、次の命令が来た時点で前回の命令をキャンセルし、最新の命令を実行するようにしてもよい。
When changing the boundary line by dragging, execution instructions for image quality improvement processing are continuously executed. Therefore, the image quality improving units 322 and 1622 may always process the execution command, or may execute the command after changing the layer boundary by dragging. Alternatively, the execution of the high image quality processing is instructed continuously, but the previous instruction may be canceled and the latest instruction may be executed when the next instruction comes.
なお、高画質化処理には比較的時間がかかる場合がある。このため、上述したどのようなタイミングで命令が実行されたとしても、高画質画像が表示されるまでに比較的時間がかかる場合がある。そこで、検者からの指示に応じてOCTA正面画像を生成するための深度範囲が設定されてから、高画質画像が表示されるまでの間、該設定された深度範囲に対応する低画質なOCTA正面画像(低画質画像)が表示されてもよい。すなわち、上記深度範囲が設定されると、該設定された深度範囲に対応する低画質なOCTA正面画像(低画質画像)が表示され、高画質化処理が終了すると、該低画質なOCTA正面画像の表示が高画質画像の表示に変更されるように構成されてもよい。また、上記深度範囲が設定されてから、高画質画像が表示されるまでの間、高画質化処理が実行されていることを示す情報が表示されてもよい。なお、これらの処理は、高画質化処理の実行が既に指定されている状態(ボタン2220がアクティブ状態)を前提とする場合に適用される構成に限られない。例えば、検者からの指示に応じて高画質化処理の実行が指示された際に、高画質画像が表示されるまでの間においても、これらの処理を適用することが可能である。
Note that the image quality improvement process may take a relatively long time. Therefore, it may take a relatively long time to display a high-quality image regardless of the timing at which the instruction is executed. Therefore, after the depth range for generating the OCTA front image is set in accordance with the instruction from the examiner and before the high-quality image is displayed, the low-quality OCTA corresponding to the set depth range is displayed. The front image (low quality image) may be displayed. That is, when the depth range is set, a low-quality OCTA front image (low-quality image) corresponding to the set depth range is displayed, and when the high image quality processing is completed, the low-quality OCTA front image is displayed. The display may be changed to the display of a high quality image. In addition, information indicating that the image quality enhancement process is being performed may be displayed from the setting of the depth range to the display of the high quality image. Note that these processes are not limited to the configuration applied when it is premised that the image quality enhancement process is already designated (the button 2220 is in the active state). For example, when the execution of the high image quality processing is instructed according to the instruction from the examiner, these processing can be applied until the high quality image is displayed.
本変形例では、OCTA正面画像として、異なる層に関するOCTA正面画像Im2207,Im2108を表示し、低画質と高画質な画像は切り替えて表示する例を示したが、表示される画像はこれに限らない。例えば、OCTA正面画像Im2207として低画質なOCTA正面画像、OCTA正面画像Im2208として高画質なOCTA正面画像を並べて表示するようにしてもよい。画像を切り替えて表示する場合には、同じ場所で画像を切り替えるので変化がある部分の比較を行いやすく、並べて表示する場合には、同時に画像を表示することができるので画像全体を比較しやすい。
In this modification, the OCTA front images Im2207 and Im2108 relating to different layers are displayed as the OCTA front images, and low-quality and high-quality images are switched and displayed, but the displayed image is not limited to this. . For example, a low image quality OCTA front image may be displayed as the OCTA front image Im2207, and a high image quality OCTA front image may be displayed as the OCTA front image Im2208. When the images are switched and displayed, the images are switched at the same place, so that it is easy to compare the changed portions, and when the images are displayed side by side, the images can be displayed simultaneously, so that the entire images are easily compared.
次に、図22A及び図22Bを用いて、画面遷移における高画質化処理の実行について説明を行う。図22Bは、図22AにおけるOCTA正面画像Im2207を拡大表示した画面例を示す。図22Bに示す画面例においても、図22Aと同様にボタン2220を表示する。図22Aの画面から図22Bの画面への画面遷移は、例えば、OCTA正面画像Im2207をダブルクリックすることで遷移し、図22Bの画面から図22Aの画面へは閉じるボタン2230で遷移する。なお、画面遷移に関しては、ここで示した方法に限らず、不図示のユーザーインターフェースを用いてもよい。
Next, using FIG. 22A and FIG. 22B, the execution of the image quality improvement process in the screen transition will be described. FIG. 22B shows a screen example in which the OCTA front image Im2207 in FIG. 22A is enlarged and displayed. Also in the screen example shown in FIG. 22B, the button 2220 is displayed as in FIG. 22A. The screen transition from the screen of FIG. 22A to the screen of FIG. 22B is transitioned by, for example, double-clicking the OCTA front image Im2207, and transits from the screen of FIG. 22B to the screen of FIG. 22A by the close button 2230. The screen transition is not limited to the method shown here, and a user interface (not shown) may be used.
画面遷移の際に高画質化処理の実行が指定されている場合(ボタン2220がアクティブ)、画面遷移時においてもその状態を保つ。すなわち、図22Aの画面で高画質画像を表示している状態で図22Bの画面に遷移する場合、図22Bの画面においても高画質画像を表示する。そして、ボタン2220はアクティブ状態にする。図22Bの画面から図22Aの画面に遷移する場合にも同様である。図22Bにおいて、ボタン2220を指定して低画質画像に表示を切り替えることもできる。
If execution of high image quality processing is specified during screen transition (button 2220 is active), that state is maintained even during screen transition. That is, when transitioning to the screen of FIG. 22B while the high-quality image is being displayed on the screen of FIG. 22A, the high-quality image is also displayed on the screen of FIG. 22B. Then, the button 2220 is activated. The same applies to the case of transition from the screen of FIG. 22B to the screen of FIG. 22A. In FIG. 22B, the button 2220 can be designated to switch the display to a low quality image.
画面遷移に関して、ここで示した画面に限らず、経過観察用の表示画面、又はパノラマ用の表示画面など同じ撮影データを表示する画面への遷移であれば、高画質画像の表示状態を保ったまま遷移を行うことができる。すなわち、遷移後の表示画面において、遷移前の表示画面におけるボタン2220の状態に対応する画像が表示されることができる。例えば、遷移前の表示画面におけるボタン2220がアクティブ状態であれば、遷移後の表示画面において高画質画像が表示される。また、例えば、遷移前の表示画面におけるボタン2220のアクティブ状態が解除されていれば、遷移後の表示画面において低画質画像が表示される。なお、経過観察用の表示画面におけるボタン2220がアクティブ状態になると、経過観察用の表示画面に並べて表示される異なる日時(異なる検査日)で得た複数の画像が高画質画像に切り換わるようにしてもよい。すなわち、経過観察用の表示画面におけるボタン2220がアクティブ状態になると、異なる日時で得た複数の画像に対して一括で反映されるように構成してもよい。
Regarding the screen transition, not only the screen shown here but also a display screen for follow-up observation, a display screen for panorama, and the like for displaying the same image data, the high-quality image display state is maintained. The transition can be performed as it is. That is, an image corresponding to the state of the button 2220 on the display screen before transition can be displayed on the display screen after transition. For example, if the button 2220 on the display screen before the transition is in the active state, a high quality image is displayed on the display screen after the transition. Further, for example, if the active state of the button 2220 on the display screen before the transition is released, the low image quality image is displayed on the display screen after the transition. Note that when the button 2220 on the follow-up observation display screen is activated, a plurality of images obtained at different dates and times (different examination dates) displayed side by side on the follow-up observation display screen are switched to high-quality images. May be. That is, when the button 2220 on the display screen for follow-up observation is activated, the button 2220 may be collectively reflected on a plurality of images obtained at different dates and times.
なお、経過観察用の表示画面の例を、図23に示す。検者からの指示に応じてタブ2301が選択されると、図23のように、経過観察用の表示画面が表示される。このとき、OCTA正面画像の深度範囲を、リストボックス2302,2303に表示された既定の深度範囲セットから検者が所望するセットを選択することで変更できる。例えば、リストボックス2302では網膜表層が選択され、また、リストボックス2303では網膜深層が選択されている。上側の表示領域には網膜表層のOCTA正面画像の解析結果が表示され、また、下側の表示領域には網膜深層のOCTA正面画像の解析結果が表示されている。深度範囲が選択されると、異なる日時の複数の画像について、選択された深度範囲の複数のOCTA正面画像の解析結果の並列表示に一括して変更される。
Note that Fig. 23 shows an example of a display screen for follow-up observation. When the tab 2301 is selected according to an instruction from the examiner, a display screen for follow-up observation is displayed as shown in FIG. At this time, the depth range of the OCTA front image can be changed by selecting a set desired by the examiner from the default depth range set displayed in the list boxes 2302 and 2303. For example, the surface layer of the retina is selected in the list box 2302, and the deep layer of the retina is selected in the list box 2303. The analysis result of the OCTA front image of the retinal surface layer is displayed in the upper display area, and the analysis result of the OCTA front image of the deep retinal layer is displayed in the lower display area. When the depth range is selected, it is collectively changed to the parallel display of the analysis results of the plurality of OCTA front images of the selected depth range for the plurality of images at different dates and times.
このとき、解析結果の表示を非選択状態にすると、異なる日時の複数のOCTA正面画像の並列表示に一括して変更されてもよい。そして、検者からの指示に応じてボタン2220が指定されると、複数のOCTA正面画像の表示が複数の高画質画像の表示に一括して変更される。
At this time, if the analysis result display is deselected, it may be collectively changed to a parallel display of a plurality of OCTA front images at different dates and times. Then, when the button 2220 is designated in response to the instruction from the examiner, the display of the plurality of OCTA front images is collectively changed to the display of the plurality of high-quality images.
また、解析結果の表示が選択状態である場合には、検者からの指示に応じてボタン2220が指定されると、複数のOCTA正面画像の解析結果の表示が複数の高画質画像の解析結果の表示に一括して変更される。ここで、解析結果の表示は、解析結果を任意の透明度により画像に重畳表示させたものであってもよい。このとき、画像の表示から解析結果の表示への変更は、例えば、表示されている画像に対して任意の透明度により解析結果を重畳させた状態に変更したものであってもよい。また、画像の表示から解析結果の表示への変更は、例えば、解析結果と画像とを任意の透明度によりブレンド処理して得た画像(例えば、二次元マップ)の表示への変更であってもよい。
Further, when the display of the analysis result is in the selected state and the button 2220 is designated in response to the instruction from the examiner, the analysis results of the plurality of OCTA front images are displayed and the analysis results of the plurality of high quality images are displayed. Will be changed all at once. Here, the analysis result may be displayed by superimposing the analysis result on the image with arbitrary transparency. At this time, the change from the display of the image to the display of the analysis result may be, for example, a change in a state in which the analysis result is superimposed on the displayed image with an arbitrary transparency. Further, the change from the display of the image to the display of the analysis result may be, for example, a change to the display of an image (for example, a two-dimensional map) obtained by blending the analysis result and the image with arbitrary transparency. Good.
また、深度範囲の指定に用いる層境界の種類とオフセット位置をそれぞれ、ユーザーインターフェース2305,2306から一括して変更することができる。なお、層境界の種類やオフセット位置を変更するためのユーザーインターフェース2305,2306は一例であり、他の任意の態様のインターフェースを用いてよい。なお、断層画像も一緒に表示させ、断層画像上に重畳された層境界データを検者からの指示に応じて移動させることにより、異なる日時の複数のOCTA正面画像の深度範囲を一括して変更してもよい。このとき、異なる日時の複数の断層画像を並べて表示し、1つの断層画像上で上記移動が行われると、他の断層画像上でも同様に層境界データが移動されてもよい。
Also, the type of layer boundary and the offset position used to specify the depth range can be collectively changed from the user interfaces 2305 and 2306. It should be noted that the user interfaces 2305 and 2306 for changing the type of layer boundary and the offset position are examples, and any other interface may be used. The tomographic image is also displayed together, and the layer boundary data superimposed on the tomographic image is moved in response to an instruction from the examiner, thereby collectively changing the depth range of a plurality of OCTA front images at different dates and times. You may. At this time, if a plurality of tomographic images of different dates and times are displayed side by side and the above-mentioned movement is performed on one tomographic image, the layer boundary data may be similarly moved on another tomographic image.
また、画像投影法やプロジェクションアーチファクト抑制処理の有無を、例えば、コンテキストメニューのようなユーザーインターフェースから選択することにより変更してもよい。
Also, the presence / absence of the image projection method and the projection artifact suppression processing may be changed by, for example, selecting from a user interface such as a context menu.
また、選択ボタン2307を選択して不図示の選択画面を表示させ、該選択画面上に表示された画像リストから選択された画像が表示されてもよい。なお、図23の上部に表示されている矢印2304は現在選択されている検査であることを示す印であり、基準検査(Baseline)はFollow-up撮影の際に選択した検査(図23の一番左側の画像)である。もちろん、基準検査を示すマークを表示部に表示させてもよい。
Alternatively, the selection button 2307 may be selected to display a selection screen (not shown), and the image selected from the image list displayed on the selection screen may be displayed. The arrow 2304 displayed at the upper part of FIG. 23 is a mark indicating that the examination is currently selected, and the reference examination (Baseline) is the examination selected in the follow-up imaging (see FIG. 23). It is the image on the left side). Of course, a mark indicating the reference inspection may be displayed on the display unit.
また、「Show Difference」チェックボックス2308が指定された場合には、基準画像上に基準画像に対する計測値分布(マップもしくはセクタマップ)を表示する。さらに、この場合には、それ以外の検査日に対応する領域に、基準画像に対して算出した計測値分布と当該領域に表示される画像に対して算出した計測値分布との差分計測値マップを表示する。計測結果としては、レポート画面上にトレンドグラフ(経時変化計測によって得られた各検査日の画像に対する計測値のグラフ)を表示させてもよい。すなわち、異なる日時の複数の画像に対応する複数の解析結果の時系列データ(例えば、時系列グラフ)が表示されてもよい。このとき、表示されている複数の画像に対応する複数の日時以外の日時に関する解析結果についても、表示されている複数の画像に対応する複数の解析結果と判別可能な状態で(例えば、時系列グラフ上の各点の色が画像の表示の有無で異なる)時系列データとして表示させてもよい。また、該トレンドグラフの回帰直線(曲線)や対応する数式をレポート画面に表示させてもよい。
If the “Show Difference” check box 2308 is specified, the measurement value distribution (map or sector map) for the reference image is displayed on the reference image. Further, in this case, in a region corresponding to the other inspection date, a difference measurement value map between the measurement value distribution calculated for the reference image and the measurement value distribution calculated for the image displayed in the region. Is displayed. As the measurement result, a trend graph (a graph of measured values for images on each inspection day obtained by measuring change over time) may be displayed on the report screen. That is, time series data (for example, a time series graph) of a plurality of analysis results corresponding to a plurality of images at different dates and times may be displayed. At this time, analysis results related to dates and times other than the dates and times corresponding to the displayed images are also distinguishable from the analysis results corresponding to the displayed images (for example, time series). The color of each point on the graph may differ depending on whether or not an image is displayed). Further, a regression line (curve) of the trend graph or a corresponding mathematical expression may be displayed on the report screen.
本変形例においては、OCTA正面画像に関して説明を行ったが、本変形例に係る処理が適用される画像はこれに限らない。本変形例に係る表示、高画質化、及び画像解析等の処理に関する画像は、輝度のEn-Face画像でもよい。さらには、En-Face画像だけではなく、B-スキャンによる断層画像、SLO眼底画像、眼底画像、又は蛍光眼底画像など、異なる画像であってもよい。その場合、高画質化処理を実行するためのユーザーインターフェースは、種類の異なる複数の画像に対して高画質化処理の実行を指示するもの、種類の異なる複数の画像から任意の画像を選択して高画質化処理の実行を指示するものがあってもよい。
In this modification, the OCTA front image has been described, but the image to which the process according to this modification is applied is not limited to this. The image relating to processing such as display, image quality improvement, and image analysis according to the present modification may be an En-Face image of luminance. Further, not only the En-Face image but also a different image such as a tomographic image by B-scan, an SLO fundus image, a fundus image, or a fluorescent fundus image may be used. In that case, the user interface for executing the high image quality processing is to instruct execution of the high image quality processing for a plurality of images of different types, and select an arbitrary image from the plurality of images of different types. There may be an instruction to execute the image quality enhancement process.
例えば、B-スキャンによる断層画像を高画質化して表示する場合には、図22Aに示す断層画像Im2211,Im2212を高画質化して表示してもよい。また、OCTA正面画像Im2207,Im2208が表示されている領域に高画質化された断層画像が表示されてもよい。なお、高画質化され、表示される断層画像は、1つだけ表示されてもよいし、複数表示されてもよい。複数の断層画像が表示される場合には、それぞれ異なる副走査方向の位置で取得された断層画像が表示されてもよいし、例えばクロススキャン等により得られた複数の断層画像を高画質化して表示する場合には、異なる走査方向の画像がそれぞれ表示されてもよい。また、例えばラジアルスキャン等により得られた複数の断層画像を高画質化して表示する場合には、一部選択された複数の断層画像(例えば基準ラインに対して互いに対称な位置の2つの断層画像)がそれぞれ表示されてもよい。さらに、図23に示されるような経過観察用の表示画面に複数の断層画像を表示し、上述の方法と同様の手法により高画質化の指示や解析結果(例えば、特定の層の厚さ等)の表示が行われてもよい。また、上述の方法と同様の手法によりデータベースに保存されている情報に基づいて断層画像に高画質化処理を実行してもよい。
For example, when displaying a tomographic image by B-scan with high image quality, the tomographic images Im2211, Im2212 shown in FIG. 22A may be displayed with high image quality. Further, a high-quality tomographic image may be displayed in the region where the OCTA front images Im2207 and Im2208 are displayed. Note that only one tomographic image having a high image quality and displayed may be displayed, or a plurality of tomographic images may be displayed. When a plurality of tomographic images are displayed, the tomographic images acquired at different positions in the sub-scanning direction may be displayed, or, for example, a plurality of tomographic images obtained by cross scanning or the like may be displayed with high image quality. When displaying, images in different scanning directions may be displayed respectively. When displaying a plurality of tomographic images obtained by, for example, a radial scan with high image quality, a plurality of partially selected tomographic images (for example, two tomographic images at positions symmetrical to each other with respect to a reference line). ) May be displayed respectively. Further, a plurality of tomographic images are displayed on a display screen for follow-up observation as shown in FIG. 23, and an instruction for image quality improvement and an analysis result (for example, the thickness of a specific layer, etc.) are obtained by the same method as the above method. ) May be displayed. Further, the image quality improving process may be performed on the tomographic image based on the information stored in the database by the same method as the above method.
同様に、SLO眼底画像を高画質化して表示する場合には、例えば、SLO眼底画像Im2205を高画質化して表示してよい。さらに、輝度のEn-Face画像を高画質化して表示する場合には、例えば輝度のEn-Face画像Im2209を高画質化して表示してよい。さらに、図23に示されるような経過観察用の表示画面に複数のSLO眼底画像や輝度のEn-Face画像を表示し、上述の方法と同様の手法により高画質化の指示や解析結果(例えば、特定の層の厚さ等)の表示が行われてもよい。また、上述の方法と同様の手法によりデータベースに保存されている情報に基づいてSLO眼底画像や輝度のEn-Face画像に高画質化処理を実行してもよい。なお、断層画像、SLO眼底画像、及び輝度のEn-Face画像の表示は例示であり、これらの画像は所望の構成に応じて任意の態様で表示されてよい。また、OCTA正面画像、断層画像、SLO眼底画像、及び輝度のEn-Face画像の少なくとも2つ以上が、一度の指示で高画質化され表示されてもよい。
Similarly, when the SLO fundus image is displayed with high image quality, for example, the SLO fundus image Im2205 may be displayed with high image quality. Furthermore, when displaying an En-Face image of luminance with high image quality, for example, the En-Face image Im2209 of luminance may be displayed with high image quality. Furthermore, a plurality of SLO fundus images and En-Face images of brightness are displayed on a display screen for follow-up observation as shown in FIG. , Specific layer thickness, etc.) may be displayed. In addition, the image quality enhancement process may be performed on the SLO fundus image or the En-Face image of the brightness based on the information stored in the database by the same method as the above method. It should be noted that the display of the tomographic image, the SLO fundus image, and the luminance En-Face image is merely an example, and these images may be displayed in any manner depending on the desired configuration. Further, at least two or more of the OCTA front image, the tomographic image, the SLO fundus image, and the luminance En-Face image may be displayed with high image quality by a single instruction.
このような構成により、本変形例に係る高画質化部322,1622が高画質化処理した画像を表示制御部350が表示部50に表示することができる。このとき、上述したように、高画質画像の表示、解析結果の表示、及び表示される正面画像の深度範囲等に関する複数の条件のうち少なくとも1つが選択された状態である場合には、表示画面が遷移されても、選択された状態が維持されてもよい。
With such a configuration, the display control unit 350 can display the image that has been subjected to the image quality enhancement processing by the image quality enhancement units 322 and 1622 according to the present modification on the display unit 50. At this time, as described above, when at least one of the plurality of conditions regarding the display of the high-quality image, the display of the analysis result, the depth range of the displayed front image, and the like is selected, the display screen The selected state may be maintained even when is changed.
また、上述したように、複数の条件のうち少なくとも1つが選択された状態である場合には、他の条件が選択された状態に変更されても、該少なくとも1つが選択された状態が維持されてもよい。例えば、表示制御部350は、解析結果の表示が選択状態である場合に、検者からの指示に応じて(例えば、ボタン2220が指定されると)、低画質画像の解析結果の表示を高画質画像の解析結果の表示に変更してもよい。また、表示制御部350は、解析結果の表示が選択状態である場合に、検者からの指示に応じて(例えば、ボタン2220の指定が解除されると)、高画質画像の解析結果の表示を低画質画像の解析結果の表示に変更してもよい。
Further, as described above, when at least one of the plurality of conditions is in the selected state, the selected state of the at least one is maintained even if the other condition is changed to the selected state. May be. For example, when the display of the analysis result is in the selected state, the display control unit 350 raises the display of the analysis result of the low-quality image according to the instruction from the examiner (for example, when the button 2220 is designated). You may change to the display of the analysis result of a quality image. In addition, the display control unit 350 displays the analysis result of the high-quality image in response to an instruction from the examiner (for example, when the designation of the button 2220 is canceled) when the analysis result display is in the selected state. May be changed to the display of the analysis result of the low quality image.
また、表示制御部350は、高画質画像の表示が非選択状態である場合に、検者からの指示に応じて(例えば、解析結果の表示の指定が解除されると)、低画質画像の解析結果の表示を低画質画像の表示に変更してもよい。また、表示制御部350は、高画質画像の表示が非選択状態である場合に、検者からの指示に応じて(例えば、解析結果の表示が指定されると)、低画質画像の表示を低画質画像の解析結果の表示に変更してもよい。また、表示制御部350は、高画質画像の表示が選択状態である場合に、検者からの指示に応じて(例えば、解析結果の表示の指定が解除されると)、高画質画像の解析結果の表示を高画質画像の表示に変更してもよい。また、表示制御部350は、高画質画像の表示が選択状態である場合に、検者からの指示に応じて(例えば、解析結果の表示が指定されると)、高画質画像の表示を高画質画像の解析結果の表示に変更してもよい。
Further, the display control unit 350, in the case where the display of the high quality image is in the non-selected state, responds to the instruction from the examiner (for example, when the designation of the display of the analysis result is canceled), the display control unit 350 displays the low quality image. The display of the analysis result may be changed to the display of the low quality image. Further, when the display of the high quality image is in the non-selected state, the display control unit 350 displays the low quality image according to the instruction from the examiner (for example, when the display of the analysis result is designated). You may change to the display of the analysis result of a low quality image. In addition, the display control unit 350 analyzes the high-quality image in response to an instruction from the examiner (for example, when the display of the analysis result is canceled) when the display of the high-quality image is in the selected state. The display of the result may be changed to the display of a high quality image. In addition, when the display of the high-quality image is in the selected state, the display control unit 350 raises the display of the high-quality image according to the instruction from the examiner (for example, when the display of the analysis result is designated). You may change to the display of the analysis result of a quality image.
また、高画質画像の表示が非選択状態で且つ第1の種類の解析結果の表示が選択状態である場合を考える。この場合には、表示制御部350は、検者からの指示に応じて(例えば、第2の種類の解析結果の表示が指定されると)、低画質画像の第1の種類の解析結果の表示を低画質画像の第2の種類の解析結果の表示に変更してもよい。また、高画質画像の表示が選択状態で且つ第1の種類の解析結果の表示が選択状態である場合を考える。この場合には、表示制御部350は、検者からの指示に応じて(例えば、第2の種類の解析結果の表示が指定されると)、高画質画像の第1の種類の解析結果の表示を高画質画像の第2の種類の解析結果の表示に変更してもよい。
Also, consider the case where the display of the high-quality image is in the non-selected state and the display of the analysis result of the first type is in the selected state. In this case, the display control unit 350 displays the analysis result of the first type of the low-quality image in response to the instruction from the examiner (for example, when the display of the analysis result of the second type is designated). The display may be changed to the display of the analysis result of the second type of the low image quality image. Also, consider a case where the display of the high-quality image is in the selected state and the display of the analysis result of the first type is in the selected state. In this case, the display control unit 350 displays the analysis result of the first type of the high-quality image in response to the instruction from the examiner (for example, when the display of the analysis result of the second type is designated). The display may be changed to the display of the analysis result of the second type of high quality image.
なお、経過観察用の表示画面においては、上述したように、これらの表示の変更が、異なる日時で得た複数の画像に対して一括で反映されるように構成してもよい。ここで、解析結果の表示は、解析結果を任意の透明度により画像に重畳表示させたものであってもよい。このとき、解析結果の表示への変更は、例えば、表示されている画像に対して任意の透明度により解析結果を重畳させた状態に変更したものであってもよい。また、解析結果の表示への変更は、例えば、解析結果と画像とを任意の透明度によりブレンド処理して得た画像(例えば、二次元マップ)の表示への変更であってもよい。
Note that, on the display screen for follow-up observation, as described above, these display changes may be collectively reflected in a plurality of images obtained at different dates and times. Here, the analysis result may be displayed by superimposing the analysis result on the image with arbitrary transparency. At this time, the display of the analysis result may be changed, for example, to a state in which the analysis result is superimposed on the displayed image with arbitrary transparency. The change to the display of the analysis result may be, for example, a change to the display of an image (for example, a two-dimensional map) obtained by blending the analysis result and the image with arbitrary transparency.
なお、本変形例では、高画質化部322,1622が高画質化モデルを用いて断層画像の画質を改善した高画質画像を生成した。しかしながら、高画質化モデルを用いて高画質画像を生成する構成要素は高画質化部322,1622に限られない。例えば、高画質化部322,1622とは別の第2の高画質化部を設け、第2の高画質化部が高画質化モデルを用いて高画質画像を生成してもよい。この場合、第2の高画質化部は、学習済モデルを用いて領域毎に異なる画像処理が行われた高画質画像ではなく、画像全体に対して同一の画像処理が行われた高画質画像を生成してもよい。この際、学習済モデルの出力データは、画像全体に対して同一の高画質化処理が行われた画像であってよい。なお、第2の高画質化部や第2の高画質化部が用いる高画質化モデルは、CPUやMPU、GPU、FPGA等のプロセッサーによって実行されるソフトウェアモジュール等で構成されてもよいし、ASIC等の特定の機能を果たす回路等によって構成されてもよい。
In this modification, the image quality improvement units 322 and 1622 use the image quality improvement model to generate a high quality image in which the image quality of the tomographic image is improved. However, the constituent elements that generate a high-quality image using the high-quality image model are not limited to the high- quality image units 322 and 1622. For example, a second image quality improving unit different from the image quality improving units 322 and 1622 may be provided, and the second image quality improving unit may generate a high quality image using the image quality improving model. In this case, the second image quality improving unit is not the high quality image subjected to different image processing for each region using the learned model, but the high quality image subjected to the same image processing for the entire image. May be generated. At this time, the output data of the learned model may be an image in which the same image quality improving process is performed on the entire image. The second image quality improving unit and the image quality improving model used by the second image quality improving unit may be configured by a software module executed by a processor such as a CPU, MPU, GPU, or FPGA. It may be configured by a circuit that performs a specific function such as an ASIC.
(変形例9)
表示制御部350は、高画質化部322,1622によって生成された高画質画像と入力画像のうち、検者からの指示に応じて選択された画像を表示部50に表示させることができる。また、表示制御部350は、検者からの指示に応じて、表示部50上の表示を撮影画像(入力画像)から高画質画像に切り替えてもよい。すなわち、表示制御部350は、検者からの指示に応じて、低画質画像の表示を高画質画像の表示に変更してもよい。また、表示制御部350は、検者からの指示に応じて、高画質画像の表示を低画質画像の表示に変更してもよい。 (Modification 9)
Thedisplay control unit 350 can cause the display unit 50 to display an image selected from the high-quality images generated by the high-quality image generation units 322 and 1622 and the input image, according to an instruction from the examiner. Further, the display control unit 350 may switch the display on the display unit 50 from the captured image (input image) to the high-quality image in response to an instruction from the examiner. That is, the display control unit 350 may change the display of the low image quality image to the display of the high image quality image in response to an instruction from the examiner. Further, the display control unit 350 may change the display of the high quality image to the display of the low quality image in response to an instruction from the examiner.
表示制御部350は、高画質化部322,1622によって生成された高画質画像と入力画像のうち、検者からの指示に応じて選択された画像を表示部50に表示させることができる。また、表示制御部350は、検者からの指示に応じて、表示部50上の表示を撮影画像(入力画像)から高画質画像に切り替えてもよい。すなわち、表示制御部350は、検者からの指示に応じて、低画質画像の表示を高画質画像の表示に変更してもよい。また、表示制御部350は、検者からの指示に応じて、高画質画像の表示を低画質画像の表示に変更してもよい。 (Modification 9)
The
さらに、高画質化部322,1622が、高画質化モデルを用いた高画質化処理の開始(高画質化モデルへの画像の入力)を検者からの指示に応じて実行し、表示制御部350が、生成された高画質画像を表示部50に表示させてもよい。これに対し、撮影装置(撮影部20)によって入力画像が撮影されると、高画質化部322,1622が自動的に高画質化モデルを用いて入力画像に基づいて高画質画像を生成し、表示制御部350が、検者からの指示に応じて高画質画像を表示部50に表示させてもよい。
Further, the image quality improvement units 322 and 1622 execute the image quality improvement process using the image quality improvement model (input of the image to the image quality improvement model) according to the instruction from the examiner, and the display control unit The display unit 50 may display the generated high-quality image on the display unit 50. On the other hand, when the image capturing device (image capturing unit 20) captures an input image, the image quality improving units 322 and 1622 automatically generate a high image quality image based on the input image using the image quality enhancing model, The display control unit 350 may display the high-quality image on the display unit 50 in response to an instruction from the examiner.
なお、これらの処理は解析結果の出力についても同様に行うことができる。すなわち、表示制御部350は、検者からの指示に応じて、低画質画像の解析結果の表示を高画質画像の解析結果の表示に変更してもよい。また、表示制御部350は、検者からの指示に応じて、高画質画像の解析結果の表示を低画質画像の解析結果の表示に変更してもよい。さらに、表示制御部350は、検者からの指示に応じて、低画質画像の解析結果の表示を低画質画像の表示に変更してもよい。また、表示制御部350は、検者からの指示に応じて、低画質画像の表示を低画質画像の解析結果の表示に変更してもよい。さらに、表示制御部350は、検者からの指示に応じて、高画質画像の解析結果の表示を高画質画像の表示に変更してもよい。また、表示制御部350は、検者からの指示に応じて、高画質画像の表示を高画質画像の解析結果の表示に変更してもよい。
Note that these processes can be performed for the output of analysis results as well. That is, the display control unit 350 may change the display of the analysis result of the low-quality image to the display of the analysis result of the high-quality image in response to the instruction from the examiner. In addition, the display control unit 350 may change the display of the analysis result of the high-quality image to the display of the analysis result of the low-quality image according to an instruction from the examiner. Furthermore, the display control unit 350 may change the display of the analysis result of the low image quality image to the display of the low image quality image in response to an instruction from the examiner. Further, the display control unit 350 may change the display of the low image quality image to the display of the analysis result of the low image quality image in response to an instruction from the examiner. Further, the display control unit 350 may change the display of the analysis result of the high quality image to the display of the high quality image in accordance with the instruction from the examiner. Further, the display control unit 350 may change the display of the high-quality image to the display of the analysis result of the high-quality image in response to the instruction from the examiner.
さらに、表示制御部350は、検者からの指示に応じて、低画質画像の解析結果の表示を低画質画像の他の種類の解析結果の表示に変更してもよい。また、表示制御部350は、検者からの指示に応じて、高画質画像の解析結果の表示を高画質画像の他の種類の解析結果の表示に変更してもよい。
Furthermore, the display control unit 350 may change the display of the analysis result of the low image quality image to the display of the analysis result of another type of the low image quality image in response to an instruction from the examiner. In addition, the display control unit 350 may change the display of the analysis result of the high-quality image to the display of the analysis result of another type of the high-quality image according to the instruction from the examiner.
ここで、高画質画像の解析結果の表示は、高画質画像の解析結果を任意の透明度により高画質画像に重畳表示させたものであってもよい。また、低画質画像の解析結果の表示は、低画質画像の解析結果を任意の透明度により低画質画像に重畳表示させたものであってもよい。このとき、解析結果の表示への変更は、例えば、表示されている画像に対して任意の透明度により解析結果を重畳させた状態に変更したものであってもよい。また、解析結果の表示への変更は、例えば、解析結果と画像とを任意の透明度によりブレンディング処理して得た画像(例えば、二次元マップ)の表示への変更であってもよい。
Here, the analysis result of the high quality image may be displayed by superimposing the analysis result of the high quality image on the high quality image with arbitrary transparency. The analysis result of the low image quality image may be displayed by superimposing the analysis result of the low image quality image on the low image quality image with arbitrary transparency. At this time, the display of the analysis result may be changed, for example, to a state in which the analysis result is superimposed on the displayed image with arbitrary transparency. The change to the display of the analysis result may be, for example, a change to the display of an image (for example, a two-dimensional map) obtained by blending the analysis result and the image with arbitrary transparency.
なお、本変形例では、高画質化部322,1622が高画質化モデルを用いて断層画像の画質を改善した高画質画像を生成した。しかしながら、高画質化モデルを用いて高画質画像を生成する構成要素は高画質化部322,1622に限られない。例えば、高画質化部322,1622とは別の第2の高画質化部を設け、第2の高画質化部が高画質化モデルを用いて高画質画像を生成してもよい。この場合、第2の高画質化部は、学習済モデルを用いて領域毎に異なる画像処理が行われた高画質画像ではなく、画像全体に対して同一の画像処理が行われた高画質画像を生成してもよい。この際、学習済モデルの出力データは、画像全体に対して同一の高画質化処理が行われた画像であってよい。なお、第2の高画質化部や第2の高画質化部が用いる高画質化モデルは、CPUやMPU、GPU、FPGA等のプロセッサーによって実行されるソフトウェアモジュール等で構成されてもよいし、ASIC等の特定の機能を果たす回路等によって構成されてもよい。
In this modification, the image quality improvement units 322 and 1622 use the image quality improvement model to generate a high quality image in which the image quality of the tomographic image is improved. However, the constituent elements that generate a high-quality image using the high-quality image model are not limited to the high- quality image units 322 and 1622. For example, a second image quality improving unit different from the image quality improving units 322 and 1622 may be provided, and the second image quality improving unit may generate a high quality image using the image quality improving model. In this case, the second image quality improving unit is not the high quality image subjected to different image processing for each region using the learned model, but the high quality image subjected to the same image processing for the entire image. May be generated. At this time, the output data of the learned model may be an image in which the same image quality improving process is performed on the entire image. The second image quality improving unit and the image quality improving model used by the second image quality improving unit may be configured by a software module executed by a processor such as a CPU, MPU, GPU, or FPGA. It may be configured by a circuit that performs a specific function such as an ASIC.
また、変形例8では、表示画面のボタン2220のアクティブ状態に応じて、高画質化モデルを用いた高画質化処理が行われた画像が表示された。これに対し、ボタン2220のアクティブ状態に応じて、学習済モデルを用いたセグメンテーション処理の結果を用いた解析値が表示されるように構成してもよい。この場合、例えば、ボタン2220が非アクティブ状態(学習済モデルを用いたセグメンテーション処理が非選択状態)の場合には、表示制御部350は、セグメンテーション処理の結果を用いた解析結果を表示部50に表示させる。これに対し、ボタン2220がアクティブ状態にされると、表示制御部350は、学習済モデルを用いたセグメンテーション処理の結果を用いた解析結果を表示部50に表示させる。
Further, in the modified example 8, an image which has been subjected to the image quality enhancement process using the image quality enhancement model is displayed according to the active state of the button 2220 on the display screen. On the other hand, the analysis value using the result of the segmentation processing using the learned model may be displayed according to the active state of the button 2220. In this case, for example, when the button 2220 is in the inactive state (the segmentation process using the learned model is in the non-selected state), the display control unit 350 causes the display unit 50 to display the analysis result using the result of the segmentation process. Display it. On the other hand, when the button 2220 is activated, the display control unit 350 causes the display unit 50 to display the analysis result using the result of the segmentation process using the learned model.
このような構成では、学習済モデルを用いないセグメンテーション処理の結果を用いた解析結果と、学習済モデルを用いたセグメンテーション処理の結果を用いた解析結果が、ボタンのアクティブ状態に応じて切り替えて表示される。これらの解析結果は、それぞれ学習済モデルによる処理とルールベースによる画像処理の結果に基づくため、両結果には差異が生じる場合がある。そのため、これらの解析結果を切り替えて表示させることで、検者は両者を対比し、より納得できる解析結果を診断に用いることができる。
With such a configuration, the analysis result using the result of the segmentation process without using the learned model and the analysis result using the result of the segmentation process using the learned model are switched and displayed according to the active state of the button. To be done. These analysis results are based on the results of the processing by the learned model and the image processing by the rule base, respectively, and thus there may be a difference between the results. Therefore, by switching and displaying these analysis results, the examiner can compare the two and use a more convincing analysis result for diagnosis.
なお、セグメンテーション処理が切り替えられた際には、例えば、表示される画像が断層画像である場合には、層毎に解析された層厚の数値が切り替えられて表示されてよい。また、例えば、層毎に色やハッチングパターン等で分けられた断層画像が表示される場合には、セグメンテーション処理の結果に応じて層の形状が変化した断層画像が切り替えられて表示されてよい。さらに、解析結果として厚みマップが表示される場合には、厚みを示す色がセグメンテーション処理の結果に応じて変化した厚みマップが表示されてよい。また、高画質化処理を指定するボタンと学習済モデルを用いたセグメンテーション処理を指定するボタンは別々に設けられてもよいし、いずれか一方のも設けられてもよいし、両方のボタンを一つのボタンとして設けてもよい。
Note that when the segmentation processing is switched, for example, when the displayed image is a tomographic image, the numerical value of the layer thickness analyzed for each layer may be switched and displayed. Further, for example, when a tomographic image that is divided for each layer by color, a hatching pattern, or the like is displayed, the tomographic images in which the shape of the layer is changed may be switched and displayed according to the result of the segmentation processing. Further, when the thickness map is displayed as the analysis result, the thickness map in which the color indicating the thickness is changed according to the result of the segmentation process may be displayed. Further, the button for designating the high image quality processing and the button for designating the segmentation processing using the learned model may be provided separately, or either one may be provided, or both buttons may be provided. It may be provided as one button.
また、セグメンテーション処理の切り替えは、上述の高画質化処理の切り替えと同様に、データベースに保存(記録)されている情報に基づいて行われてもよい。なお、画面遷移時に処理についても、セグメンテーション処理の切り替えは、上述の高画質化処理の切り替えと同様に行われてよい。
Also, the switching of the segmentation process may be performed based on the information stored (recorded) in the database, similarly to the switching of the image quality enhancement process described above. Regarding the processing at the time of screen transition, the switching of the segmentation processing may be performed in the same manner as the switching of the image quality improvement processing described above.
(変形例10)
上述した様々な実施例及び変形例における表示制御部350は、表示画面のレポート画面において、所望の層の層厚や各種の血管密度等の解析結果を表示させてもよい。また、視神経乳頭部、黄斑部、血管領域、神経線維束、硝子体領域、黄斑領域、脈絡膜領域、強膜領域、篩状板領域、網膜層境界、網膜層境界端部、視細胞、血球、血管壁、血管内壁境界、血管外側境界、神経節細胞、角膜領域、隅角領域、シュレム管等の少なくとも1つを含む注目部位に関するパラメータの値(分布)を解析結果として表示させてもよい。このとき、例えば、各種のアーチファクトの低減処理が適用された医用画像を解析することで、精度の良い解析結果を表示させることができる。なお、アーチファクトは、例えば、血管領域等による光吸収により生じる偽像領域や、プロジェクションアーチファクト、被検眼の状態(動きや瞬き等)によって測定光の主走査方向に生じる正面画像における帯状のアーチファクト等であってもよい。また、アーチファクトは、例えば、被検者の所定部位の医用画像上に撮影毎にランダムに生じるような写損領域であれば、何でもよい。また、表示制御部350は、上述したような様々なアーチファクト(写損領域)の少なくとも1つを含む領域に関するパラメータの値(分布)を解析結果として表示部50に表示させてもよい。また、ドルーゼン、新生血管、白斑(硬性白斑)、及びシュードドルーゼン等の異常部位等の少なくとも1つを含む領域に関するパラメータの値(分布)を解析結果として表示させてもよい。なお、画像解析処理は解析部1924によって行われてもよいし、解析部1924とは別の解析部によって行われてもよい。さらに、画像解析が行われる画像は、高画質化された画像であってもよいし、高画質化されていない画像であってもよい。 (Modification 10)
Thedisplay control unit 350 in the various embodiments and modifications described above may display the analysis result of the layer thickness of the desired layer, various blood vessel densities, etc. on the report screen of the display screen. Further, optic disc, macula, vascular region, nerve fiber bundle, vitreous region, macula region, choroid region, sclera region, lamina cribrosa region, retinal layer boundary, retinal layer boundary end, photoreceptor cell, blood cell, The value (distribution) of the parameter regarding the site of interest including at least one of a blood vessel wall, a blood vessel inner wall boundary, a blood vessel outer boundary, a ganglion cell, a corneal region, a corner region, and Schlemm's canal may be displayed as an analysis result. At this time, for example, by analyzing a medical image to which various types of artifact reduction processing are applied, it is possible to display an accurate analysis result. Note that the artifacts are, for example, false image areas caused by light absorption by blood vessel areas, projection artifacts, band-like artifacts in the front image generated in the main scanning direction of the measurement light due to the state of the subject's eye (movement, blinking, etc.), and the like. It may be. Further, the artifact may be any artifact region as long as it occurs randomly on the medical image of the predetermined region of the subject every time the image is captured. Further, the display control unit 350 may cause the display unit 50 to display the value (distribution) of the parameter regarding the area including at least one of the various artifacts (impairment area) as described above as the analysis result. In addition, parameter values (distributions) relating to a region including at least one of drusen, new blood vessels, vitiligo (hard vitiligo), and abnormal sites such as pseudo-drussen may be displayed as the analysis result. The image analysis process may be performed by the analysis unit 1924 or may be performed by an analysis unit different from the analysis unit 1924. Further, the image on which the image analysis is performed may be an image with high image quality or an image without high image quality.
上述した様々な実施例及び変形例における表示制御部350は、表示画面のレポート画面において、所望の層の層厚や各種の血管密度等の解析結果を表示させてもよい。また、視神経乳頭部、黄斑部、血管領域、神経線維束、硝子体領域、黄斑領域、脈絡膜領域、強膜領域、篩状板領域、網膜層境界、網膜層境界端部、視細胞、血球、血管壁、血管内壁境界、血管外側境界、神経節細胞、角膜領域、隅角領域、シュレム管等の少なくとも1つを含む注目部位に関するパラメータの値(分布)を解析結果として表示させてもよい。このとき、例えば、各種のアーチファクトの低減処理が適用された医用画像を解析することで、精度の良い解析結果を表示させることができる。なお、アーチファクトは、例えば、血管領域等による光吸収により生じる偽像領域や、プロジェクションアーチファクト、被検眼の状態(動きや瞬き等)によって測定光の主走査方向に生じる正面画像における帯状のアーチファクト等であってもよい。また、アーチファクトは、例えば、被検者の所定部位の医用画像上に撮影毎にランダムに生じるような写損領域であれば、何でもよい。また、表示制御部350は、上述したような様々なアーチファクト(写損領域)の少なくとも1つを含む領域に関するパラメータの値(分布)を解析結果として表示部50に表示させてもよい。また、ドルーゼン、新生血管、白斑(硬性白斑)、及びシュードドルーゼン等の異常部位等の少なくとも1つを含む領域に関するパラメータの値(分布)を解析結果として表示させてもよい。なお、画像解析処理は解析部1924によって行われてもよいし、解析部1924とは別の解析部によって行われてもよい。さらに、画像解析が行われる画像は、高画質化された画像であってもよいし、高画質化されていない画像であってもよい。 (Modification 10)
The
また、解析結果は、解析マップや、各分割領域に対応する統計値を示すセクター等で表示されてもよい。なお、解析結果は、解析部1924又は別の解析部が、医用画像の解析結果を学習データとして学習して得た学習済モデル(解析結果生成エンジン、解析結果生成用の学習済モデル)を用いて生成したものであってもよい。このとき、学習済モデルは、医用画像とその医用画像の解析結果とを含む学習データや、医用画像とその医用画像とは異なる種類の医用画像の解析結果とを含む学習データ等を用いた学習により得たものであってもよい。
Also, the analysis result may be displayed in an analysis map, a sector indicating a statistical value corresponding to each divided area, or the like. As the analysis result, a learned model (analysis result generation engine, a learned model for analysis result generation) obtained by the analysis unit 1924 or another analysis unit learning the analysis result of the medical image as learning data is used. It may be generated by At this time, the learned model uses learning data including a medical image and an analysis result of the medical image, learning data including a medical image and an analysis result of a medical image of a different type from the medical image, and the like. It may be obtained from
また、学習データは、セグメンテーション処理により生成された領域ラベル画像と、それらを用いた医用画像の解析結果とを含んだものでもよい。この場合、画像処理部320,1620,1920は、例えば、解析結果生成用の学習済モデルを用いて、セグメンテーション処理を実行して得た結果(例えば、網膜層の検出結果)から、断層画像の解析結果を生成する、解析結果生成部の一例として機能することができる。言い換えれば、画像処理部320,1620,1920は、高画質画像(第2の医用画像)を生成するための学習済モデルとは異なる解析結果生成用の学習済モデル(第4の学習済モデル)を用いて、セグメンテーション処理により特定した異なる領域それぞれについて画像解析結果を生成することができる。
Also, the learning data may include the area label image generated by the segmentation process and the analysis result of the medical image using the area label image. In this case, the image processing units 320, 1620, and 1920 use, for example, the learned model for generating the analysis result to execute the segmentation processing (for example, the detection result of the retinal layer) to obtain a tomographic image. It can function as an example of an analysis result generation unit that generates an analysis result. In other words, the image processing units 320, 1620, 1920 are different from the learned model for generating the high-quality image (second medical image), and the learned model for generating the analysis result (fourth learned model). Can be used to generate image analysis results for each of the different regions identified by the segmentation process.
さらに、学習済モデルは、輝度正面画像及びモーションコントラスト正面画像のように、所定部位の異なる種類の複数の医用画像をセットとする入力データを含む学習データを用いた学習により得たものであってもよい。ここで、輝度正面画像は輝度のEn-Face画像に対応し、モーションコントラスト正面画像はOCTAのEn-Face画像に対応する。
Further, the learned model is obtained by learning using learning data including input data in which a plurality of medical images of different types of predetermined regions are set, such as a brightness front image and a motion contrast front image. Good. Here, the luminance front image corresponds to the luminance En-Face image, and the motion contrast front image corresponds to the OCTA En-Face image.
また、高画質化用の学習済モデルを用いて生成された高画質画像を用いて得た解析結果が表示されるように構成されてもよい。この場合、学習データに含まれる入力データとしては、高画質化用の学習済モデルを用いて生成された高画質画像であってもよいし、低画質画像と高画質画像とのセットであってもよい。なお、学習データは、学習済モデルを用いて高画質化された画像について、手動又は自動で少なくとも一部に修正が施された画像であってもよい。
Also, the analysis result obtained by using the high quality image generated by using the learned model for high image quality may be displayed. In this case, the input data included in the learning data may be a high quality image generated by using a learned model for high image quality, or may be a set of a low quality image and a high quality image. Good. Note that the learning data may be an image in which at least a part of the image whose image quality has been improved by using the learned model is manually or automatically corrected.
また、学習データは、例えば、解析領域を解析して得た解析値(例えば、平均値や中央値等)、解析値を含む表、解析マップ、画像におけるセクター等の解析領域の位置等の少なくとも1つを含む情報を(教師あり学習の)正解データとして、入力データにラベル付け(アノテーション)したデータであってもよい。なお、操作者からの指示に応じて、解析結果生成用の学習済モデルを用いて得た解析結果が表示されるように構成されてもよい。
Further, the learning data is, for example, at least an analysis value obtained by analyzing the analysis area (for example, an average value or a median value), a table including the analysis value, an analysis map, a position of the analysis area such as a sector in the image, and the like. Information including one item may be data obtained by labeling (annotating) the input data as correct answer data (learning with a teacher). Note that the analysis result obtained by using the learned model for generating the analysis result may be displayed in response to the instruction from the operator.
また、上述した実施例及び変形例における表示制御部350は、表示画面のレポート画面において、緑内障や加齢黄斑変性等の種々の診断結果を表示させてもよい。このとき、例えば、上述したような各種のアーチファクトの低減処理が適用された医用画像を解析することで、精度の良い診断結果を表示させることができる。また、診断結果としては、特定された異常部位等の位置が画像上に表示されてもよいし、異常部位の状態等が文字等によって表示されてもよい。さらに、異常部位等の分類結果(例えば、カーティン分類)が診断結果として表示されてもよい。また、分類結果としては、例えば、異常部位毎の確からしさを示す情報(例えば、割合を示す数値)が表示されてもよい。また、医師が診断を確定させる上で必要な情報が診断結果として表示されてもよい。上記必要な情報としては、例えば、追加撮影等のアドバイスが考えられる。例えば、OCTA画像における血管領域に異常部位が検出された場合には、OCTAよりも詳細に血管を観察可能な造影剤を用いた蛍光撮影を追加で行う旨が表示されてもよい。
Further, the display control unit 350 in the above-described embodiments and modifications may display various diagnostic results such as glaucoma and age-related macular degeneration on the report screen of the display screen. At this time, for example, an accurate diagnostic result can be displayed by analyzing a medical image to which the above-described various artifact reduction processes are applied. Further, as the diagnosis result, the position of the identified abnormal part or the like may be displayed on the image, or the state of the abnormal part or the like may be displayed by characters or the like. Furthermore, a classification result of abnormal parts (for example, Curtin classification) may be displayed as a diagnosis result. Further, as the classification result, for example, information indicating the probability of each abnormal part (for example, a numerical value indicating a ratio) may be displayed. Further, information necessary for the doctor to confirm the diagnosis may be displayed as the diagnosis result. As the necessary information, for example, advice such as additional photographing can be considered. For example, when an abnormal portion is detected in the blood vessel region in the OCTA image, it may be displayed that additional fluorescence imaging using a contrast agent that allows more detailed blood vessel observation than OCTA is performed.
なお、診断結果は、制御部30,1600,1900が、医用画像の診断結果を学習データとして学習して得た学習済モデル(診断結果生成エンジン、診断結果生成用の学習済モデル)を用いて生成されたものであってもよい。また、学習済モデルは、医用画像とその医用画像の診断結果とを含む学習データや、医用画像とその医用画像とは異なる種類の医用画像の診断結果とを含む学習データ等を用いた学習により得たものであってもよい。
The diagnosis result is obtained by using the learned model (diagnosis result generation engine, learned model for diagnosis result generation) obtained by the control unit 30, 1600, 1900 learning the diagnosis result of the medical image as learning data. It may be generated. Further, the learned model is obtained by learning using learning data including a medical image and a diagnosis result of the medical image, learning data including a medical image and a diagnosis result of a medical image of a different type from the medical image, and the like. It may be obtained.
また、学習データは、セグメンテーション処理により生成された領域ラベル画像と、それらを用いた医用画像の診断結果とを含んだものでもよい。この場合、画像処理部320,1620,1920は、例えば、診断結果生成用の学習済モデルを用いて、セグメンテーション処理を実行して得た結果(例えば、網膜層の検出結果)から、断層画像の診断結果を生成する、診断結果生成部の一例として機能することができる。言い換えれば、画像処理部320,1620,1920は、高画質画像(第2の医用画像)を生成するための学習済モデルとは異なる診断結果生成用の学習済モデル(第5の学習済モデル)を用いて、セグメンテーション処理により特定した異なる領域それぞれについて診断結果を生成することができる。
Further, the learning data may include the region label image generated by the segmentation process and the diagnostic result of the medical image using the region label image. In this case, the image processing units 320, 1620, 1920 use, for example, a learned model for generating a diagnostic result to execute a segmentation process (for example, a detection result of the retinal layer) to obtain a tomographic image. It can function as an example of a diagnostic result generation unit that generates a diagnostic result. In other words, the image processing units 320, 1620, 1920 are different from the learned model for generating the high-quality image (second medical image), and the learned model for generating the diagnostic result (fifth learned model). Can be used to generate diagnostic results for each of the different regions identified by the segmentation process.
さらに、高画質化用の学習済モデルを用いて生成された高画質画像を用いて得た診断結果が表示されるように構成されてもよい。この場合、学習データに含まれる入力データとしては、高画質化用の学習済モデルを用いて生成された高画質画像であってもよいし、低画質画像と高画質画像とのセットであってもよい。なお、学習データは、学習済モデルを用いて高画質化された画像について、手動又は自動で少なくとも一部に修正が施された画像であってもよい。
Further, the diagnosis result obtained by using the high quality image generated by using the learned model for high image quality may be displayed. In this case, the input data included in the learning data may be a high quality image generated by using a learned model for high image quality, or may be a set of a low quality image and a high quality image. Good. Note that the learning data may be an image in which at least a part of the image whose image quality has been improved by using the learned model is manually or automatically corrected.
また、学習データは、例えば、診断名、病変(異常部位)の種類や状態(程度)、画像における病変の位置、注目領域に対する病変の位置、所見(読影所見等)、診断名の根拠(肯定的な医用支援情報等)、診断名を否定する根拠(否定的な医用支援情報)等の少なくとも1つを含む情報を(教師あり学習の)正解データとして、入力データにラベル付け(アノテーション)したデータであってもよい。なお、検者からの指示に応じて、診断結果生成用の学習済モデルを用いて得た診断結果が表示されるように構成されてもよい。
In addition, the learning data includes, for example, the diagnosis name, the type and state (degree) of the lesion (abnormal site), the position of the lesion in the image, the position of the lesion with respect to the region of interest, findings (interpretation findings, etc.), and the basis of the diagnosis name (affirmation). Input information is labeled (annotated) as correct answer data (for supervised learning) that contains at least one of the following: medical support information), grounds for denying a diagnosis name (negative medical support information), etc. It may be data. The diagnosis result obtained by using the learned model for generating the diagnosis result may be displayed in response to the instruction from the examiner.
また、上述した様々な実施例及び変形例に係る表示制御部350は、表示画面のレポート画面において、上述したような注目部位、アーチファクト、及び異常部位等の物体認識結果(物体検出結果)やセグメンテーション結果を表示させてもよい。このとき、例えば、画像上の物体の周辺に矩形の枠等を重畳して表示させてもよい。また、例えば、画像における物体上に色等を重畳して表示させてもよい。なお、物体認識結果やセグメンテーション結果は、物体認識やセグメンテーションを示す情報を正解データとして医用画像にラベル付け(アノテーション)した学習データを学習して得た学習済モデル(物体認識エンジン、物体認識用の学習済モデル、セグメンテーションエンジン、セグメンテーション用の学習済モデル)を用いて生成されたものであってもよい。なお、上述した解析結果生成や診断結果生成は、上述した物体認識結果やセグメンテーション結果を利用することで得られたものであってもよい。例えば、物体認識やセグメンテーションの処理により得た注目部位に対して解析結果生成や診断結果生成の処理を行ってもよい。
In addition, the display control unit 350 according to the above-described various embodiments and modified examples uses the report screen of the display screen, the object recognition result (object detection result) and the segmentation such as the above-described attention site, artifact, and abnormal site. You may display the result. At this time, for example, a rectangular frame or the like may be superimposed and displayed around the object on the image. Further, for example, a color or the like may be superimposed and displayed on the object in the image. It should be noted that the object recognition result and the segmentation result are learned models (object recognition engine, object recognition engine, for object recognition) obtained by learning the learning data obtained by labeling (annotation) the medical image with the information indicating the object recognition and the segmentation as correct data. A trained model, a segmentation engine, and a trained model for segmentation) may be used. The analysis result generation and the diagnosis result generation described above may be obtained by using the object recognition result and the segmentation result described above. For example, the analysis result generation and the diagnosis result generation may be performed on the part of interest obtained by the object recognition and the segmentation processing.
また、異常部位を検出する場合には、画像処理部320,1620,1920は、敵対的生成ネットワーク(GAN:Generative Adversarial Networks)や変分オートエンコーダー(VAE:Variational Auto-Encoder)を用いてもよい。例えば、断層画像の生成を学習して得た生成器と、生成器が生成した新たな断層画像と本物の眼底正面画像との識別を学習して得た識別器とからなるDCGAN(Deep Convolutional GAN)を機械学習モデルとして用いることができる。
When detecting an abnormal part, the image processing units 320, 1620, and 1920 may use a hostile generation network (GAN: General Adversary Networks) or a variational auto encoder (VAE: Various Auto-Encoder). . For example, a DCGAN (Deep Convolutional GAN) including a generator obtained by learning generation of a tomographic image and a discriminator obtained by learning discrimination between a new tomographic image generated by the generator and a real frontal fundus image. ) Can be used as a machine learning model.
DCGANを用いる場合には、例えば、識別器が入力された断層画像をエンコードすることで潜在変数にし、生成器が潜在変数に基づいて新たな断層画像を生成する。その後、入力された断層画像と生成された新たな断層画像との差分を異常部位として抽出することができる。また、VAEを用いる場合には、例えば、入力された断層画像をエンコーダーによりエンコードすることで潜在変数にし、潜在変数をデコーダーによりデコードすることで新たな断層画像を生成する。その後、入力された断層画像と生成された新たな断層画像との差分を異常部位として抽出することができる。なお、入力データの例として断層画像を例として説明したが、眼底画像や前眼の正面画像等を用いてもよい。
When DCGAN is used, for example, the discriminator encodes the input tomographic image as a latent variable, and the generator generates a new tomographic image based on the latent variable. Then, the difference between the input tomographic image and the generated new tomographic image can be extracted as the abnormal portion. When VAE is used, for example, the input tomographic image is encoded by an encoder to be a latent variable, and the latent variable is decoded by a decoder to generate a new tomographic image. Then, the difference between the input tomographic image and the generated new tomographic image can be extracted as the abnormal portion. Although a tomographic image has been described as an example of the input data, a fundus image or a front image of the anterior eye may be used.
さらに、画像処理部320,1620,1920は、畳み込みオートエンコーダー(CAE:Convolutional Auto-Encoder)を用いて、異常部位を検出してもよい。CAEを用いる場合には、学習時に入力データ及び出力データとして同じ画像を学習させる。これにより、推定時に異常部位がある画像をCAEに入力すると、学習の傾向に従って異常部位がない画像が出力される。その後、CAEに入力された画像とCAEから出力された画像の差分を異常部位として抽出することができる。なお、この場合にも、断層画像だけでなく、眼底画像や前眼の正面画像等を入力データとして用いてもよい。
Furthermore, the image processing units 320, 1620, and 1920 may detect an abnormal portion using a convolutional auto encoder (CAE: Conventional Auto-Encoder). When CAE is used, the same image is learned as input data and output data during learning. Thus, when an image having an abnormal portion is input to the CAE at the time of estimation, an image having no abnormal portion is output according to the learning tendency. Then, the difference between the image input to the CAE and the image output from the CAE can be extracted as the abnormal portion. Also in this case, not only the tomographic image but also the fundus image, the front image of the anterior eye, etc. may be used as the input data.
これらの場合、画像処理部320,1620,1920は、セグメンテーション処理等により特定した異なる領域それぞれについて敵対的生成ネットワーク又はオートエンコーダーを用いて得た医用画像と、該敵対的生成ネットワーク又はオートエンコーダーに入力された医用画像との差に関する情報を異常部位に関する情報として生成することができる。これにより、画像処理部320,1620,1920は、高速に精度よく異常部位を検出することが期待できる。ここで、オートエンコーダーには、VAEやCAE等が含まれる。
In these cases, the image processing units 320, 1620, and 1920 input the medical images obtained by using the adversarial generation network or the auto-encoder for each of the different regions specified by the segmentation processing and the like to the adversarial generation network or the auto-encoder. It is possible to generate information regarding a difference from the obtained medical image as information regarding the abnormal part. As a result, the image processing units 320, 1620, 1920 can be expected to detect abnormal parts at high speed and with high accuracy. Here, the auto encoder includes VAE, CAE, and the like.
また、疾病眼では、疾病の種類に応じて画像特徴が異なる。そのため、上述した様々な実施例や変形例において用いられる学習済モデルは、疾病の種類毎又は異常部位毎にそれぞれ生成・用意されてもよい。この場合には、例えば、画像処理部320は、操作者からの被検眼の疾病の種類や異常部位等の入力(指示)に応じて、処理に用いる学習済モデルを選択することができる。なお、疾病の種類や異常部位毎に用意される学習済モデルは、網膜層の検出や領域ラベル画像等の生成に用いられる学習済モデルに限られず、例えば、画像の評価用のエンジンや解析用のエンジン等で用いられる学習済モデルであってもよい。このとき、画像処理部320,1620,1920は、別に用意された学習済モデルを用いて、画像から被検眼の疾病の種類や異常部位を識別してもよい。この場合には、画像処理部320,1620,1920は、当該別に用意された学習済モデルを用いて識別された疾病の種類や異常部位に基づいて、上記処理に用いる学習済モデルを自動的に選択することができる。なお、当該被検眼の疾病の種類や異常部位を識別するための学習済モデルは、断層画像や眼底画像等を入力データとし、疾病の種類やこれら画像における異常部位を出力データとした学習データのペアを用いて学習を行ってよい。ここで、学習データの入力データとしては、断層画像や眼底画像等を単独で入力データとしてもよいし、これらの組み合わせを入力データとしてもよい。
Also, in the diseased eye, the image characteristics differ depending on the type of disease. Therefore, the learned models used in the various embodiments and modifications described above may be generated and prepared for each type of disease or each abnormal site. In this case, for example, the image processing unit 320 can select a learned model to be used for the processing according to the input (instruction) of the type of disease of the eye to be inspected, the abnormal site, or the like from the operator. Note that the learned model prepared for each type of disease or abnormal site is not limited to the learned model used for detection of the retinal layer or generation of the region label image, and for example, an engine for image evaluation or analysis. It may be a trained model used in the engine of the above. At this time, the image processing units 320, 1620, and 1920 may identify the type of disease or abnormal site of the eye to be inspected from the image using a separately prepared learned model. In this case, the image processing units 320, 1620, 1920 automatically generate the learned model used for the above-mentioned processing based on the type of disease or the abnormal part identified by using the separately prepared learned model. You can choose. Note that the learned model for identifying the type of disease or abnormal part of the eye to be examined is the input of a tomographic image or fundus image, and the learning data of the type of disease or abnormal part in these images as output data. You may learn using a pair. Here, as the input data of the learning data, a tomographic image, a fundus image or the like may be used alone as the input data, or a combination thereof may be used as the input data.
また、特に診断結果生成用の学習済モデルは、被検者の所定部位の異なる種類の複数の医用画像をセットとする入力データを含む学習データにより学習して得た学習済モデルであってもよい。このとき、学習データに含まれる入力データとして、例えば、眼底のモーションコントラスト正面画像及び輝度正面画像(あるいは輝度断層画像)をセットとする入力データが考えられる。また、学習データに含まれる入力データとして、例えば、眼底の断層画像(Bスキャン画像)及びカラー眼底画像(あるいは蛍光眼底画像)をセットとする入力データ等も考えられる。また、異なる種類の複数の医療画像は、異なるモダリティ、異なる光学系、又は異なる原理等により取得されたものであれば何でもよい。
In addition, particularly, the learned model for generating the diagnostic result may be a learned model obtained by learning with learning data including input data in which a plurality of medical images of different types of predetermined regions of the subject are set. Good. At this time, as the input data included in the learning data, for example, input data in which a motion contrast front image of the fundus and a luminance front image (or luminance tomographic image) are set can be considered. Further, as the input data included in the learning data, for example, input data in which a tomographic image (B scan image) of the fundus and a color fundus image (or a fluorescent fundus image) are set is also considered. Further, the plurality of medical images of different types may be anything acquired by different modalities, different optical systems, different principles, or the like.
また、特に診断結果生成用の学習済モデルは、被検者の異なる部位の複数の医用画像をセットとする入力データを含む学習データにより学習して得た学習済モデルであってもよい。このとき、学習データに含まれる入力データとして、例えば、眼底の断層画像(Bスキャン画像)と前眼部の断層画像(Bスキャン画像)とをセットとする入力データが考えられる。また、学習データに含まれる入力データとして、例えば、眼底の黄斑の三次元OCT画像(三次元断層画像)と眼底の視神経乳頭のサークルスキャン(又はラスタスキャン)断層画像とをセットとする入力データ等も考えられる。
Further, the learned model for generating the diagnostic result may be a learned model obtained by learning with learning data including input data in which a plurality of medical images of different parts of the subject are set. At this time, as the input data included in the learning data, for example, input data in which a tomographic image of the fundus (B scan image) and a tomographic image of the anterior segment (B scan image) are set can be considered. In addition, as input data included in the learning data, for example, input data including a set of a three-dimensional OCT image (three-dimensional tomographic image) of the macula of the fundus and a circle scan (or raster scan) tomographic image of the optic disc of the fundus, and the like. Can also be considered.
なお、学習データに含まれる入力データは、被検者の異なる部位及び異なる種類の複数の医用画像であってもよい。このとき、学習データに含まれる入力データは、例えば、前眼部の断層画像とカラー眼底画像とをセットとする入力データ等が考えられる。また、上述した学習済モデルは、被検者の所定部位の異なる撮影画角の複数の医用画像をセットとする入力データを含む学習データにより学習して得た学習済モデルであってもよい。また、学習データに含まれる入力データは、パノラマ画像のように、所定部位を複数領域に時分割して得た複数の医用画像を貼り合わせたものであってもよい。このとき、パノラマ画像のような広画角画像を学習データとして用いることにより、狭画角画像よりも情報量が多い等の理由から画像の特徴量を精度良く取得できる可能性があるため、処理の結果を向上することができる。例えば、推定時(予測時)において、広画角画像における複数の位置で異常部位が検出された場合に、各異常部位の拡大画像を順次表示可能に構成させる。これにより、複数の位置における異常部位を効率よく確認することができるため、例えば、検者の利便性を向上することができる。このとき、例えば、異常部位が検出された広画角画像上の各位置を検者が選択可能に構成され、選択された位置における異常部位の拡大画像が表示されるように構成されてもよい。また、学習データに含まれる入力データは、被検者の所定部位の異なる日時の複数の医用画像をセットとする入力データであってもよい。
The input data included in the learning data may be a plurality of medical images of different parts of the subject and different types. At this time, the input data included in the learning data may be, for example, input data in which a tomographic image of the anterior segment and a color fundus image are set. Further, the learned model described above may be a learned model obtained by learning with learning data including input data in which a plurality of medical images of different imaging fields of view of a predetermined region of the subject are set. Further, the input data included in the learning data may be a combination of a plurality of medical images obtained by time-dividing a predetermined region into a plurality of regions, such as a panoramic image. At this time, by using a wide-angle image such as a panoramic image as learning data, there is a possibility that the feature amount of the image can be acquired with high accuracy because the amount of information is larger than that of the narrow-angle image. The result of can be improved. For example, at the time of estimation (at the time of prediction), when abnormal parts are detected at a plurality of positions in the wide-angle image, enlarged images of the abnormal parts can be sequentially displayed. This allows the abnormal parts at a plurality of positions to be efficiently confirmed, so that the convenience of the examiner can be improved, for example. At this time, for example, the examiner may be configured to select each position on the wide-angle image in which the abnormal portion is detected, and the enlarged image of the abnormal portion at the selected position may be displayed. . Further, the input data included in the learning data may be input data in which a plurality of medical images at different dates and times of a predetermined part of the subject are set as a set.
また、上述した解析結果と診断結果と物体認識結果とセグメンテーション結果とのうち少なくとも1つの結果が表示される表示画面は、レポート画面に限らない。このような表示画面は、例えば、撮影確認画面、経過観察用の表示画面、及び撮影前の各種調整用のプレビュー画面(各種のライブ動画像が表示される表示画面)等の少なくとも1つの表示画面に表示されてもよい。例えば、上述した学習済モデルを用いて得た上記少なくとも1つの結果を撮影確認画面に表示させることにより、操作者は、撮影直後であっても精度の良い結果を確認することができる。また、変形例9等で説明した低画質画像と高画質画像との表示の変更は、例えば、低画質画像の解析結果と高画質画像の解析結果との表示の変更であってもよい。
Also, the display screen on which at least one of the above-mentioned analysis result, diagnosis result, object recognition result, and segmentation result is displayed is not limited to the report screen. Such a display screen is, for example, at least one display screen such as a shooting confirmation screen, a display screen for follow-up observation, and a preview screen for various adjustments before shooting (display screen on which various live moving images are displayed). May be displayed in. For example, by displaying the at least one result obtained using the learned model described above on the shooting confirmation screen, the operator can confirm the accurate result even immediately after the shooting. Further, the display change between the low-quality image and the high-quality image described in Modification 9 and the like may be, for example, a change in the display between the analysis result of the low-quality image and the analysis result of the high-quality image.
ここで、上述した様々な学習済モデルは、学習データを用いた機械学習により得ることができる。機械学習には、例えば、多階層のニューラルネットワークから成る深層学習(Deep Learning)がある。また、多階層のニューラルネットワークの少なくとも一部には、例えば、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)を機械学習モデルとして用いることができる。また、多階層のニューラルネットワークの少なくとも一部には、オートエンコーダー(自己符号化器)に関する技術が用いられてもよい。また、学習には、バックプロパゲーション(誤差逆伝播法)に関する技術が用いられてもよい。ただし、機械学習としては、深層学習に限らず、画像等の学習データの特徴量を学習によって自ら抽出(表現)可能なモデルを用いた学習であれば何でもよい。ここで、機械学習モデルとは、ディープラーニング等の機械学習アルゴリズムによる学習モデルをいう。また、学習済モデルとは、任意の機械学習アルゴリズムによる機械学習モデルに対して、事前に適切な学習データを用いてトレーニングした(学習を行った)モデルである。ただし、学習済モデルは、それ以上の学習を行わないものではなく、追加の学習を行うこともできるものとする。また、学習データとは、入力データ及び出力データ(正解データ)のペアで構成される。ここで、学習データを教師データという場合もあるし、あるいは、正解データを教師データという場合もある。
Here, the various learned models described above can be obtained by machine learning using learning data. Machine learning includes, for example, deep learning including a multi-layer neural network. In addition, for example, a convolutional neural network (CNN) may be used as a machine learning model for at least a part of the multi-layer neural network. Further, a technology related to an auto encoder (self-encoder) may be used for at least a part of the multi-layer neural network. In addition, a technique related to back propagation (error back propagation method) may be used for learning. However, the machine learning is not limited to deep learning, and may be any learning as long as it uses a model capable of extracting (expressing) the feature amount of learning data such as an image by learning. Here, the machine learning model refers to a learning model based on a machine learning algorithm such as deep learning. The learned model is a model that is trained (learned) with appropriate learning data in advance with respect to a machine learning model by an arbitrary machine learning algorithm. However, it is assumed that the learned model does not perform any further learning but can perform additional learning. The learning data is composed of a pair of input data and output data (correct answer data). Here, the learning data may be referred to as teacher data, or the correct answer data may be referred to as teacher data.
なお、GPUは、データをより多く並列処理することで効率的な演算を行うことができる。このため、ディープラーニングのような学習モデルを用いて複数回に渡り学習を行う場合には、GPUで処理を行うことが有効である。そこで、本変形例では、学習部(不図示)の一例である画像処理部320,1620,1920による処理には、CPUに加えてGPUを用いる。具体的には、学習モデルを含む学習プログラムを実行する場合に、CPUとGPUが協働して演算を行うことで学習を行う。なお、学習部の処理は、CPU又はGPUのみにより演算が行われても良い。また、上述した様々な学習済モデルを用いた処理を実行する処理部(推定部)も、学習部と同様にGPUを用いても良い。また、学習部は、不図示の誤差検出部と更新部とを備えてもよい。誤差検出部は、入力層に入力される入力データに応じてニューラルネットワークの出力層から出力される出力データと、正解データとの誤差を得る。誤差検出部は、損失関数を用いて、ニューラルネットワークからの出力データと正解データとの誤差を計算するようにしてもよい。また、更新部は、誤差検出部で得られた誤差に基づいて、その誤差が小さくなるように、ニューラルネットワークのノード間の結合重み付け係数等を更新する。この更新部は、例えば、誤差逆伝播法を用いて、結合重み付け係数等を更新する。誤差逆伝播法は、上記の誤差が小さくなるように、各ニューラルネットワークのノード間の結合重み付け係数等を調整する手法である。
Note that the GPU can perform efficient operations by processing more data in parallel. Therefore, when learning is performed a plurality of times using a learning model such as deep learning, it is effective to perform processing with the GPU. Therefore, in the present modification, a GPU is used in addition to the CPU for the processing by the image processing units 320, 1620, 1920, which is an example of a learning unit (not shown). Specifically, when the learning program including the learning model is executed, the CPU and the GPU cooperate to perform the learning to perform the learning. The processing of the learning unit may be calculated only by the CPU or GPU. Further, the processing unit (estimation unit) that executes the processing using the various learned models described above may use the GPU similarly to the learning unit. Further, the learning unit may include an error detection unit and an update unit (not shown). The error detection unit obtains an error between the correct data and the output data output from the output layer of the neural network according to the input data input to the input layer. The error detection unit may use a loss function to calculate the error between the output data from the neural network and the correct answer data. The updating unit updates the connection weighting coefficient between the nodes of the neural network based on the error obtained by the error detecting unit so that the error becomes small. The updating unit updates the combination weighting coefficient and the like by using the error back propagation method, for example. The error back-propagation method is a method of adjusting the coupling weighting coefficient between the nodes of each neural network so that the above error becomes small.
また、高画質化やセグメンテーション等に用いられる機械学習モデルとしては、複数のダウンサンプリング層を含む複数の階層からなるエンコーダーの機能と、複数のアップサンプリング層を含む複数の階層からなるデコーダーの機能とを有するU-net型の機械学習モデルが適用可能である。U-net型の機械学習モデルでは、エンコーダーとして構成される複数の階層において曖昧にされた位置情報(空間情報)を、デコーダーとして構成される複数の階層において、同次元の階層(互いに対応する階層)で用いることができるように(例えば、スキップコネクションを用いて)構成される。
In addition, as a machine learning model used for high image quality and segmentation, there are a function of an encoder composed of a plurality of layers including a plurality of downsampling layers and a function of a decoder composed of a plurality of layers including a plurality of upsampling layers. A U-net type machine learning model having is applicable. In the U-net type machine learning model, ambiguous position information (spatial information) in a plurality of layers configured as encoders is converted into a same-dimensional layer (layers corresponding to each other) in a plurality of layers configured as decoders. ) Is used (for example, using a skip connection).
また、高画質化やセグメンテーション等に用いられる機械学習モデルとしては、例えば、FCN(Fully Convolutional Network)、又はSegNet等を用いることもできる。また、所望の構成に応じて領域単位で物体認識を行う機械学習モデルを用いてもよい。物体認識を行う機械学習モデルとしては、例えば、RCNN(Region CNN)、fastRCNN、又はfasterRCNNを用いることができる。さらに、領域単位で物体認識を行う機械学習モデルとして、YOLO(You Only Look Once)、又はSSD(Single Shot Detector、あるいはSingle Shot MultiBox Detector)を用いることもできる。
Also, as a machine learning model used for image quality enhancement, segmentation, etc., for example, FCN (Fully Concurrent Network), SegNet, or the like can be used. Alternatively, a machine learning model that performs object recognition in units of regions may be used according to a desired configuration. As the machine learning model for object recognition, for example, RCNN (Region CNN), fastRCNN, or fastRCNN can be used. Further, YOLO (You Only Look Once), SSD (Single Shot Detector, or Single Shot MultiBox Detector) can be used as a machine learning model for recognizing objects in units of areas.
また、機械学習モデルは、例えば、カプセルネットワーク(Capsule Network;CapsNet)でもよい。ここで、一般的なニューラルネットワークでは、各ユニット(各ニューロン)はスカラー値を出力するように構成されることによって、例えば、画像における特徴間の空間的な位置関係(相対位置)に関する空間情報が低減されるように構成されている。これにより、例えば、画像の局所的な歪みや平行移動等の影響が低減されるような学習を行うことができる。一方、カプセルネットワークでは、各ユニット(各カプセル)は空間情報をベクトルとして出力するように構成されることよって、例えば、空間情報が保持されるように構成されている。これにより、例えば、画像における特徴間の空間的な位置関係が考慮されたような学習を行うことができる。
The machine learning model may be, for example, a capsule network (CapsNet). Here, in a general neural network, each unit (each neuron) is configured to output a scalar value, so that, for example, spatial information regarding a spatial positional relationship (relative position) between features in an image is obtained. It is configured to be reduced. As a result, for example, it is possible to perform learning such that the effects of local distortion and parallel movement of the image are reduced. On the other hand, in the capsule network, each unit (each capsule) is configured to output the spatial information as a vector, and thus is configured to hold the spatial information, for example. Thereby, for example, learning can be performed in consideration of the spatial positional relationship between the features in the image.
また、高画質化モデル(高画質化用の学習済モデル)は、高画質化モデルにより生成された少なくとも1つの高画質画像を含む学習データを追加学習して得た学習済モデルであってもよい。このとき、高画質画像を追加学習用の学習データとして用いるか否かを、検者からの指示により選択可能に構成されてもよい。なお、これらの構成は、高画質化用の学習済モデルに限らず、上述した様々な学習済モデルに対しても適用可能である。また、上述した様々な学習済モデルの学習に用いられる正解データの生成には、ラベル付け(アノテーション)等の正解データを生成するための正解データ生成用の学習済モデルが用いられてもよい。このとき、正解データ生成用の学習済モデルは、検者がラベル付け(アノテーション)して得た正解データを(順次)追加学習することにより得られたものであってもよい。すなわち、正解データ生成用の学習済モデルは、ラベル付け前のデータを入力データとし、ラベル付け後のデータを出力データとする学習データを追加学習することにより得られたものであってもよい。また、動画像等のような連続する複数フレームにおいて、前後のフレームの物体認識やセグメンテーション等の結果を考慮して、結果の精度が低いと判定されたフレームの結果を修正するように構成されてもよい。このとき、検者からの指示に応じて、修正後の結果を正解データとして追加学習するように構成されてもよい。
Further, the high image quality model (learned model for high image quality) may be a learned model obtained by additionally learning the learning data including at least one high image quality image generated by the high image quality model. Good. At this time, whether or not to use the high-quality image as learning data for additional learning may be configured to be selectable by an instruction from the examiner. Note that these configurations are applicable not only to the learned model for improving image quality, but also to the various learned models described above. In addition, a learned model for generating correct answer data for generating correct answer data such as labeling (annotation) may be used for generating correct answer data used for learning various learned models described above. At this time, the learned model for generating correct answer data may be obtained by performing additional learning (sequentially) on correct answer data obtained by labeling (annotating) the examiner. That is, the learned model for generating correct answer data may be obtained by additionally learning the learning data in which the data before labeling is the input data and the data after the labeling is the output data. Further, in a plurality of consecutive frames such as a moving image, it is configured to correct the result of a frame determined to have low accuracy in consideration of the results of object recognition and segmentation of preceding and following frames. Good. At this time, the corrected result may be additionally learned as correct answer data in response to an instruction from the examiner.
なお、上述した様々な実施例及び変形例において、物体認識用の学習済モデルやセグメンテーション用の学習済モデルを用いて被検眼の領域を検出する場合には、検出した領域毎に所定の画像処理を施すこともできる。例えば、硝子体領域、網膜領域、及び脈絡膜領域のうちの少なくとも2つの領域を検出する場合を考える。この場合には、検出された少なくとも2つの領域に対してコントラスト調整等の画像処理を施す際に、それぞれ異なる画像処理のパラメータを用いることで、各領域に適した調整を行うことができる。各領域に適した調整が行われた画像を表示することで、操作者は領域毎の疾病等をより適切に診断することができる。なお、検出された領域毎に異なる画像処理のパラメータを用いる構成については、例えば、学習済モデルを用いずに検出された被検眼の領域について同様に適用されてもよい。
In the various embodiments and modifications described above, when detecting a region of the eye to be examined using a learned model for object recognition or a learned model for segmentation, a predetermined image processing is performed for each detected region. Can also be applied. For example, consider the case of detecting at least two regions of the vitreous region, the retina region, and the choroid region. In this case, when image processing such as contrast adjustment is performed on at least two detected areas, different image processing parameters are used to perform adjustment suitable for each area. By displaying the image adjusted for each area, the operator can more appropriately diagnose the disease or the like in each area. The configuration using different image processing parameters for each detected region may be similarly applied to the region of the eye to be detected detected without using the learned model, for example.
(変形例11)
上述した様々な実施例及び変形例におけるプレビュー画面において、ライブ動画像の少なくとも1つのフレーム毎に上述した高画質化用の学習済モデルが用いられるように構成されてもよい。このとき、プレビュー画面において、異なる部位や異なる種類の複数のライブ動画像が表示されている場合には、各ライブ動画像に対応する学習済モデルが用いられるように構成されてもよい。これにより、例えば、ライブ動画像であっても、処理時間を短縮することができるため、検者は撮影開始前に精度の高い情報を得ることができる。このため、例えば、再撮影の失敗等を低減することができるため、診断の精度や効率を向上させることができる。 (Modification 11)
In the preview screens in the various embodiments and modifications described above, the learned model for improving image quality described above may be used for each at least one frame of the live moving image. At this time, when a plurality of live moving images of different parts or different types are displayed on the preview screen, the learned model corresponding to each live moving image may be used. Accordingly, for example, even in the case of a live moving image, the processing time can be shortened, so that the examiner can obtain highly accurate information before the start of imaging. Therefore, for example, failure in re-imaging can be reduced, so that the accuracy and efficiency of diagnosis can be improved.
上述した様々な実施例及び変形例におけるプレビュー画面において、ライブ動画像の少なくとも1つのフレーム毎に上述した高画質化用の学習済モデルが用いられるように構成されてもよい。このとき、プレビュー画面において、異なる部位や異なる種類の複数のライブ動画像が表示されている場合には、各ライブ動画像に対応する学習済モデルが用いられるように構成されてもよい。これにより、例えば、ライブ動画像であっても、処理時間を短縮することができるため、検者は撮影開始前に精度の高い情報を得ることができる。このため、例えば、再撮影の失敗等を低減することができるため、診断の精度や効率を向上させることができる。 (Modification 11)
In the preview screens in the various embodiments and modifications described above, the learned model for improving image quality described above may be used for each at least one frame of the live moving image. At this time, when a plurality of live moving images of different parts or different types are displayed on the preview screen, the learned model corresponding to each live moving image may be used. Accordingly, for example, even in the case of a live moving image, the processing time can be shortened, so that the examiner can obtain highly accurate information before the start of imaging. Therefore, for example, failure in re-imaging can be reduced, so that the accuracy and efficiency of diagnosis can be improved.
なお、複数のライブ動画像は、例えば、XYZ方向のアライメントのための前眼部の動画像、及び眼底観察光学系のフォーカス調整やOCTフォーカス調整のための眼底の正面動画像であってよい。また、複数のライブ動画像は、例えば、OCTのコヒーレンスゲート調整(測定光路長と参照光路長との光路長差の調整)のための眼底の断層動画像等であってもよい。このとき、上述した物体認識用の学習済モデルやセグメンテーション用の学習済モデルを用いて検出された領域が所定の条件を満たすように、上述した各種調整が行われるように構成されてもよい。例えば、物体認識用の学習済モデルやセグメンテーション用の学習済モデルを用いて検出された硝子体領域やRPE等の所定の網膜層等に関する値(例えば、コントラスト値あるいは強度値)が閾値を超える(あるいはピーク値になる)ように、OCTフォーカス調整等の各種調整が行われるように構成されてもよい。また、例えば、物体認識用の学習済モデルやセグメンテーション用の学習済モデルを用いて検出された硝子体領域やRPE等の所定の網膜層が深さ方向における所定の位置になるように、OCTのコヒーレンスゲート調整が行われるように構成されてもよい。
The plurality of live moving images may be, for example, a moving image of the anterior segment for alignment in the XYZ directions, and a front moving image of the fundus for focus adjustment and OCT focus adjustment of the fundus observation optical system. Further, the plurality of live moving images may be, for example, a tomographic moving image of the fundus for adjusting the coherence gate of OCT (adjusting the optical path length difference between the measurement optical path length and the reference optical path length). At this time, the various adjustments described above may be performed so that the region detected using the learned model for object recognition or the learned model for segmentation described above satisfies a predetermined condition. For example, a value (for example, a contrast value or an intensity value) relating to a vitreous region or a predetermined retinal layer such as RPE detected using a learned model for object recognition or a learned model for segmentation exceeds a threshold value ( Alternatively, various adjustments such as OCT focus adjustment may be performed so that the peak value is reached. In addition, for example, the OCT of OCT is performed so that a predetermined retinal layer such as a vitreous region or RPE detected using a learned model for object recognition or a learned model for segmentation is at a predetermined position in the depth direction. The coherence gate adjustment may be performed.
これらの場合には、高画質化部322,1622は、学習済モデルを用いて、動画像について高画質化処理を行って、高画質な動画像を生成することができる。また、駆動制御部330は、高画質な動画像が表示された状態で、セグメンテーション処理等により特定した異なる領域のいずれかが表示領域における所定の位置になるように、参照ミラー221等の撮影範囲を変更する光学部材を駆動制御することができる。このような場合には、制御部30,1600,1900は、精度の高い情報に基づいて、所望される領域が表示領域の所定の位置になるように自動的にアライメント処理を行うことができる。なお、撮影範囲を変更する光学部材としては、例えばコヒーレンスゲート位置を調整する光学部材であってよく、具体的には参照ミラー221等であってよい。また、コヒーレンスゲート位置は、測定光路長及び参照光路長の光路長差を変更する光学部材によって調整されることができ、当該光学部材は、例えば、不図示の測定光の光路長を変更するためのミラー等であってもよい。なお、撮影範囲を変更する光学部材は、例えばステージ部25であってもよい。
In these cases, the image quality improving units 322 and 1622 can perform the image quality improving process on the moving image by using the learned model to generate the high image quality moving image. Further, the drive control unit 330, in a state in which a high-quality moving image is displayed, sets the shooting range of the reference mirror 221 or the like so that any one of the different regions specified by the segmentation process or the like is at a predetermined position in the display region. It is possible to drive and control the optical member that changes In such a case, the control unit 30, 1600, 1900 can automatically perform the alignment process based on the highly accurate information so that the desired region is located at a predetermined position in the display region. The optical member for changing the shooting range may be, for example, an optical member for adjusting the coherence gate position, and specifically, may be the reference mirror 221 or the like. Further, the coherence gate position can be adjusted by an optical member that changes the optical path length difference between the measurement optical path length and the reference optical path length, and the optical member is, for example, for changing the optical path length of the measurement light (not shown). It may be a mirror or the like. The optical member that changes the shooting range may be the stage unit 25, for example.
また、上述した学習済モデルを適用可能な動画像は、ライブ動画像に限らず、例えば、記憶部に記憶(保存)された動画像であってもよい。このとき、例えば、記憶部に記憶(保存)された眼底の断層動画像の少なくとも1つのフレーム毎に位置合わせして得た動画像が表示画面に表示されてもよい。例えば、硝子体領域を好適に観察したい場合には、まず、フレーム上に硝子体領域ができるだけ存在する等の条件を基準とする基準フレームを選択してもよい。このとき、各フレームは、XZ方向の断層画像(Bスキャン像)である。そして、選択された基準フレームに対して他のフレームがXZ方向に位置合わせされた動画像が表示画面に表示されてもよい。このとき、例えば、動画像の少なくとも1つのフレーム毎に高画質化用の学習済モデルを用いて順次生成された高画質画像(高画質フレーム)を連続表示させるように構成してもよい。
The moving image to which the learned model described above can be applied is not limited to the live moving image, but may be, for example, a moving image stored (saved) in the storage unit. At this time, for example, a moving image obtained by aligning at least one frame of the fundus tomographic moving image stored (saved) in the storage unit may be displayed on the display screen. For example, in order to preferably observe the vitreous region, first, a reference frame may be selected based on the condition that the vitreous region exists on the frame as much as possible. At this time, each frame is a tomographic image (B scan image) in the XZ direction. Then, a moving image in which another frame is aligned in the XZ direction with respect to the selected reference frame may be displayed on the display screen. At this time, for example, the high-quality images (high-quality frames) sequentially generated by using the learned model for high image quality may be continuously displayed for each at least one frame of the moving image.
なお、上述したフレーム間の位置合わせの手法としては、X方向の位置合わせの手法とZ方向(深度方向)の位置合わせの手法とは、同じ手法が適用されてもよいし、全て異なる手法が適用されてもよい。また、同一方向の位置合わせは、異なる手法で複数回行われてもよく、例えば、粗い位置合わせを行った後に、精密な位置合わせが行われてもよい。また、位置合わせの手法としては、例えば、断層画像(Bスキャン像)をセグメンテーション処理して得た網膜層境界を用いた(Z方向の粗い)位置合わせがある。さらに、位置合わせの手法としては、例えば、断層画像を分割して得た複数の領域と基準画像との相関情報(類似度)を用いた(X方向やZ方向の精密な)位置合わせもある。またさらに、位置合わせの手法としては、例えば、断層画像(Bスキャン像)毎に生成した一次元投影像を用いた(X方向の)位置合わせ、二次元正面画像を用いた(X方向の)位置合わせ等がある。また、ピクセル単位で粗く位置合わせが行われてから、サブピクセル単位で精密な位置合わせが行われるように構成されてもよい。
Note that as the above-described method of alignment between frames, the same method may be applied to the method of alignment in the X direction and the method of alignment in the Z direction (depth direction), or different methods may be used. May be applied. Further, the alignment in the same direction may be performed a plurality of times by different methods, for example, the precise alignment may be performed after performing the rough alignment. Further, as a method of alignment, for example, there is alignment (coarse in the Z direction) using a retinal layer boundary obtained by segmenting a tomographic image (B scan image). Further, as an alignment method, for example, there is an alignment (precision in the X direction and Z direction) using correlation information (similarity) between a plurality of regions obtained by dividing the tomographic image and the reference image. . Furthermore, as the alignment method, for example, alignment (in the X direction) using a one-dimensional projection image generated for each tomographic image (B scan image) and use of a two-dimensional front image (in the X direction) are used. There is alignment etc. Further, it may be configured such that rough alignment is performed in pixel units and then precise alignment is performed in subpixel units.
ここで、各種の調整中では、被検眼の網膜等の撮影対象がまだ上手く撮像できていない可能性がある。このため、学習済モデルに入力される医用画像と学習データとして用いられた医用画像との違いが大きいために、精度良く高画質画像が得られない可能性がある。そこで、断層画像(Bスキャン)の画質評価等の評価値が閾値を超えたら、高画質動画像の表示(高画質フレームの連続表示)を自動的に開始するように構成してもよい。また、断層画像(Bスキャン)の画質評価等の評価値が閾値を超えたら、高画質化ボタンを検者が指定可能な状態(アクティブ状態)に変更するように構成されてもよい。
Here, during various adjustments, the subject such as the retina of the eye to be inspected may not be able to image well yet. Therefore, since there is a large difference between the medical image input to the learned model and the medical image used as the learning data, a high-quality image may not be obtained accurately. Therefore, when the evaluation value such as the image quality evaluation of the tomographic image (B scan) exceeds the threshold value, the display of the high-quality moving image (continuous display of high-quality frames) may be automatically started. Further, when the evaluation value such as the image quality evaluation of the tomographic image (B scan) exceeds the threshold value, the image quality improving button may be changed to a state (active state) that can be designated by the examiner.
また、走査パターン等が異なる撮影モード毎に異なる高画質化用の学習済モデルを用意して、選択された撮影モードに対応する高画質化用の学習済モデルが選択されるように構成されてもよい。また、異なる撮影モードで得た様々な医用画像を含む学習データを学習して得た1つの高画質化用の学習済モデルが用いられてもよい。
Further, it is configured such that a learned model for high image quality that is different for each shooting mode having a different scanning pattern or the like is prepared and a learned model for image quality improvement corresponding to the selected shooting mode is selected. Good. Further, one learned model for image quality improvement obtained by learning the learning data including various medical images obtained in different photographing modes may be used.
(変形例12)
上述した様々な実施例及び変形例においては、各種学習済モデルが追加学習中である場合、追加学習中の学習済モデル自体を用いて出力(推論・予測)することが難しい可能性がある。このため、追加学習中の学習済モデルに対する医用画像の入力を禁止することがよい。また、追加学習中の学習済モデルと同じ学習済モデルをもう一つ予備の学習済モデルとして用意してもよい。このとき、追加学習中には、予備の学習済モデルに対して医用画像の入力が実行できるようにすることがよい。そして、追加学習が完了した後に、追加学習後の学習済モデルを評価し、問題がなければ、予備の学習済モデルから追加学習後の学習済モデルに置き換えればよい。また、問題があれば、予備の学習済モデルが用いられるようにしてもよい。 (Modification 12)
In the various embodiments and modifications described above, when various learned models are undergoing additional learning, it may be difficult to output (infer / predict) using the learned models themselves during additional learning. Therefore, it is preferable to prohibit the input of the medical image to the learned model during the additional learning. Further, the same learned model as the learned model in the additional learning may be prepared as another preliminary learned model. At this time, it is preferable that the medical image can be input to the preliminary learned model during the additional learning. After the additional learning is completed, the learned model after the additional learning is evaluated, and if there is no problem, the preliminary learned model may be replaced with the learned model after the additional learning. Further, if there is a problem, a preliminary learned model may be used.
上述した様々な実施例及び変形例においては、各種学習済モデルが追加学習中である場合、追加学習中の学習済モデル自体を用いて出力(推論・予測)することが難しい可能性がある。このため、追加学習中の学習済モデルに対する医用画像の入力を禁止することがよい。また、追加学習中の学習済モデルと同じ学習済モデルをもう一つ予備の学習済モデルとして用意してもよい。このとき、追加学習中には、予備の学習済モデルに対して医用画像の入力が実行できるようにすることがよい。そして、追加学習が完了した後に、追加学習後の学習済モデルを評価し、問題がなければ、予備の学習済モデルから追加学習後の学習済モデルに置き換えればよい。また、問題があれば、予備の学習済モデルが用いられるようにしてもよい。 (Modification 12)
In the various embodiments and modifications described above, when various learned models are undergoing additional learning, it may be difficult to output (infer / predict) using the learned models themselves during additional learning. Therefore, it is preferable to prohibit the input of the medical image to the learned model during the additional learning. Further, the same learned model as the learned model in the additional learning may be prepared as another preliminary learned model. At this time, it is preferable that the medical image can be input to the preliminary learned model during the additional learning. After the additional learning is completed, the learned model after the additional learning is evaluated, and if there is no problem, the preliminary learned model may be replaced with the learned model after the additional learning. Further, if there is a problem, a preliminary learned model may be used.
また、撮影部位毎に学習して得た学習済モデルを選択的に利用できるようにしてもよい。具体的には、第1の撮影部位(肺、被検眼等)を含む学習データを用いて得た第1の学習済モデルと、第1の撮影部位とは異なる第2の撮影部位を含む学習データを用いて得た第2の学習済モデルと、を含む複数の学習済モデルを用意することができる。そして、画像処理部320,1620,1920は、これら複数の学習済モデルのいずれかを選択する選択手段を有してもよい。このとき、画像処理部320,1620,1920は、選択された学習済モデルに対して追加学習を実行する制御手段を有してもよい。制御手段は、検者からの指示に応じて、選択された学習済モデルに対応する撮影部位と該撮影部位の撮影画像とがペアとなるデータを検索し、検索して得たデータを学習データとする学習を、選択された学習済モデルに対して追加学習として実行することができる。なお、選択された学習済モデルに対応する撮影部位は、データのヘッダの情報から取得したり、検者により手動入力されたりしたものであってよい。また、データの検索は、例えば、病院や研究所等の外部施設のサーバ等からネットワークを介して行われてよい。これにより、学習済モデルに対応する撮影部位の撮影画像を用いて、撮影部位毎に効率的に追加学習することができる。
Also, the learned model obtained by learning for each imaging region may be selectively used. Specifically, a learning including a first learned model obtained using learning data including a first imaged region (lung, eye to be examined, etc.) and a second imaged region different from the first imaged region A plurality of trained models including a second trained model obtained using the data can be prepared. Then, the image processing units 320, 1620, and 1920 may have a selection unit that selects one of these plurality of learned models. At this time, the image processing units 320, 1620, and 1920 may include a control unit that executes additional learning on the selected learned model. In response to an instruction from the examiner, the control means searches for data in which the imaged region corresponding to the selected learned model and the imaged image of the imaged region are paired, and the data obtained by the search is used as learning data. The learning can be performed as additional learning on the selected trained model. The imaged region corresponding to the selected learned model may be acquired from the information in the header of the data or manually input by the examiner. Further, the data search may be performed, for example, from a server or the like of an external facility such as a hospital or a laboratory via a network. This makes it possible to efficiently perform additional learning for each imaged region using the imaged image of the imaged region corresponding to the learned model.
なお、選択手段及び制御手段は、制御部30,1600,1900のCPUやMPU等のプロセッサーによって実行されるソフトウェアモジュールにより構成されてよい。また、選択手段及び制御手段は、ASIC等の特定の機能を果たす回路や独立した装置等によって構成されてもよい。
Note that the selection unit and the control unit may be configured by software modules executed by a processor such as the CPU or MPU of the control unit 30, 1600, 1900. Further, the selection means and the control means may be configured by a circuit such as an ASIC that performs a specific function, an independent device, or the like.
また、追加学習用の学習データを、病院や研究所等の外部施設のサーバ等からネットワークを介して取得する際には、改ざんや、追加学習時のシステムトラブル等による信頼性低下を低減することが有用である。そこで、デジタル署名やハッシュ化による一致性の確認を行うことで、追加学習用の学習データの正当性を検出してもよい。これにより、追加学習用の学習データを保護することができる。このとき、デジタル署名やハッシュ化による一致性の確認した結果として、追加学習用の学習データの正当性が検出できなかった場合には、その旨の警告を行い、その学習データによる追加学習を行わないものとする。なお、サーバは、その設置場所を問わず、例えば、クラウドサーバ、フォグサーバ、エッジサーバ等のどのような形態でもよい。
In addition, when acquiring the learning data for additional learning from the server etc. of external facilities such as hospitals and research institutes via the network, it is necessary to reduce tampering and decrease in reliability due to system troubles during additional learning. Is useful. Therefore, the validity of the learning data for additional learning may be detected by confirming the matching by a digital signature or hashing. Thereby, the learning data for additional learning can be protected. At this time, if the legitimacy of the learning data for additional learning cannot be detected as a result of checking the consistency by digital signature or hashing, a warning to that effect is given, and additional learning by the learning data is performed. Make it not exist. The server may be in any form such as a cloud server, a fog server, an edge server, or the like, regardless of its installation location.
(変形例13)
上述した様々な実施例及び変形例において、検者からの指示は、手動による指示(例えば、ユーザーインターフェース等を用いた指示)以外にも、音声等による指示であってもよい。このとき、例えば、機械学習により得た音声認識モデル(音声認識エンジン、音声認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。また、手動による指示は、キーボードやタッチパネル等を用いた文字入力等による指示であってもよい。このとき、例えば、機械学習により得た文字認識モデル(文字認識エンジン、文字認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。また、検者からの指示は、ジェスチャー等による指示であってもよい。このとき、機械学習により得たジェスチャー認識モデル(ジェスチャー認識エンジン、ジェスチャー認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。 (Modification 13)
In the above-described various embodiments and modifications, the instruction from the examiner may be an instruction by voice or the like as well as a manual instruction (for example, an instruction using a user interface or the like). At this time, for example, a machine learning model including a voice recognition model obtained by machine learning (a voice recognition engine, a learned model for voice recognition) may be used. Further, the manual instruction may be an instruction by character input using a keyboard, a touch panel, or the like. At this time, for example, a machine learning model including a character recognition model (character recognition engine, learned model for character recognition) obtained by machine learning may be used. Further, the instruction from the examiner may be an instruction such as a gesture. At this time, a machine learning model including a gesture recognition model (gesture recognition engine, learned model for gesture recognition) obtained by machine learning may be used.
上述した様々な実施例及び変形例において、検者からの指示は、手動による指示(例えば、ユーザーインターフェース等を用いた指示)以外にも、音声等による指示であってもよい。このとき、例えば、機械学習により得た音声認識モデル(音声認識エンジン、音声認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。また、手動による指示は、キーボードやタッチパネル等を用いた文字入力等による指示であってもよい。このとき、例えば、機械学習により得た文字認識モデル(文字認識エンジン、文字認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。また、検者からの指示は、ジェスチャー等による指示であってもよい。このとき、機械学習により得たジェスチャー認識モデル(ジェスチャー認識エンジン、ジェスチャー認識用の学習済モデル)を含む機械学習モデルが用いられてもよい。 (Modification 13)
In the above-described various embodiments and modifications, the instruction from the examiner may be an instruction by voice or the like as well as a manual instruction (for example, an instruction using a user interface or the like). At this time, for example, a machine learning model including a voice recognition model obtained by machine learning (a voice recognition engine, a learned model for voice recognition) may be used. Further, the manual instruction may be an instruction by character input using a keyboard, a touch panel, or the like. At this time, for example, a machine learning model including a character recognition model (character recognition engine, learned model for character recognition) obtained by machine learning may be used. Further, the instruction from the examiner may be an instruction such as a gesture. At this time, a machine learning model including a gesture recognition model (gesture recognition engine, learned model for gesture recognition) obtained by machine learning may be used.
また、検者からの指示は、表示部50における表示画面上の検者の視線検出結果等であってもよい。視線検出結果は、例えば、表示部50における表示画面の周辺から撮影して得た検者の動画像を用いた瞳孔検出結果であってもよい。このとき、動画像からの瞳孔検出は、上述したような物体認識エンジンを用いてもよい。また、検者からの指示は、脳波、体を流れる微弱な電気信号等による指示であってもよい。
Further, the instruction from the examiner may be a result of detecting the line of sight of the examiner on the display screen of the display unit 50. The line-of-sight detection result may be, for example, a pupil detection result using a moving image of the examiner obtained by photographing the periphery of the display screen of the display unit 50. At this time, the above-described object recognition engine may be used to detect the pupil from the moving image. Further, the instruction from the examiner may be an instruction by an electroencephalogram, a weak electric signal flowing through the body, or the like.
このような場合、例えば、学習データとしては、上述したような種々の学習済モデルの処理による結果の表示の指示を示す文字データ又は音声データ(波形データ)等を入力データとし、種々の学習済モデルの処理による結果等を実際に表示部に表示させるための実行命令を正解データとする学習データであってもよい。また、学習データとしては、例えば、高画質化用の学習済モデルで得た高画質画像の表示の指示を示す文字データ又は音声データ等を入力データとし、高画質画像の表示の実行命令及び図22A及び図22Bに示すようなボタン2220をアクティブ状態に変更するための実行命令を正解データとする学習データであってもよい。なお、学習データとしては、例えば、文字データ又は音声データ等が示す指示内容と実行命令内容とが互いに対応するものであれば何でもよい。また、音響モデルや言語モデル等を用いて、音声データから文字データに変換してもよい。また、複数のマイクで得た波形データを用いて、音声データに重畳しているノイズデータを低減する処理を行ってもよい。また、文字又は音声等による指示と、マウス又はタッチパネル等による指示とを、検者からの指示に応じて選択可能に構成されてもよい。また、文字又は音声等による指示のオン・オフを、検者からの指示に応じて選択可能に構成されてもよい。
In such a case, for example, as the learning data, character data or voice data (waveform data) indicating the instruction to display the result of the processing of the various learned models as described above is used as the input data, and various learned data is obtained. It may be learning data in which the correct instruction data is an execution command for actually displaying the result of the model processing on the display unit. As the learning data, for example, character data or voice data indicating a display instruction of a high-quality image obtained by a learned model for high image quality is used as input data, and a high-quality image display execution command and a diagram are displayed. 22A and 22B may be learning data in which an execution command for changing a button 2220 to an active state is correct data. The learning data may be anything as long as the instruction content indicated by the character data or the voice data and the execution instruction content correspond to each other. In addition, voice data may be converted into character data by using an acoustic model or a language model. Further, the waveform data obtained by a plurality of microphones may be used to perform the process of reducing the noise data superimposed on the voice data. Further, it may be configured such that an instruction by a character or a voice or an instruction by a mouse or a touch panel can be selected according to an instruction from an examiner. Further, on / off of the instruction by characters or voice may be configured to be selectable according to the instruction from the examiner.
ここで、機械学習には、上述したような深層学習があり、また、多階層のニューラルネットワークの少なくとも一部には、例えば、再帰型ニューラルネットワーク(RNN:Recurrent Neural Network)を用いることができる。ここで、本変形例に係る機械学習モデルの一例として、時系列情報を扱うニューラルネットワークであるRNNに関して、図24A及び図24Bを参照して説明する。また、RNNの一種であるLong short-term memory(以下、LSTM)に関して、図25A及び図25Bを参照して説明する。
Here, the machine learning includes deep learning as described above, and a recursive neural network (RNN) can be used as at least a part of the multi-layered neural network, for example. Here, as an example of a machine learning model according to the present modification, an RNN that is a neural network that handles time series information will be described with reference to FIGS. 24A and 24B. Further, a long short-term memory (hereinafter, LSTM), which is a type of RNN, will be described with reference to FIGS. 25A and 25B.
図24Aは、機械学習モデルであるRNNの構造を示す。RNN2420は、ネットワークにループ構造を持ち、時刻tにおいてデータxt2410が入力され、データht2430を出力する。RNN2420はネットワークにループ機能を持つため、現時刻の状態を次の状態に引き継ぐことが可能であるため、時系列情報を扱うことができる。図24Bには時刻tにおけるパラメータベクトルの入出力の一例を示す。データxt2410にはN個(Params1~ParamsN)のデータが含まれる。また、RNN2420より出力されるデータht2430には入力データに対応するN個(Params1~ParamsN)のデータが含まれる。
FIG. 24A shows the structure of RNN which is a machine learning model. The RNN 2420 has a loop structure in the network, receives the data x t 2410 at time t, and outputs the data h t 2430. Since the RNN 2420 has a loop function in the network, it is possible to take over the state at the current time to the next state, so that time series information can be handled. FIG. 24B shows an example of input / output of the parameter vector at time t. The data x t 2410 includes N pieces of data (Params1 to ParamsN). Further, the data h t 2430 output from the RNN 2420 includes N (Params 1 to ParamsN) data corresponding to the input data.
しかしながら、RNNでは誤差逆伝播時に長期時間の情報を扱うことができないため、LSTMが用いられることがある。LSTMは、忘却ゲート、入力ゲート、及び出力ゲートを備えることで長期時間の情報を学習することができる。ここで、図25AにLSTMの構造を示す。LSTM2540において、ネットワークが次の時刻tに引き継ぐ情報は、セルと呼ばれるネットワークの内部状態ct-1と出力データht-1である。なお、図の小文字(c、h、x)はベクトルを表している。
However, since the RNN cannot handle long-term information at the time of error back propagation, the LSTM may be used. The LSTM can learn long-term information by including a forgetting gate, an input gate, and an output gate. Here, the structure of the LSTM is shown in FIG. 25A. In the LSTM2540, the information the network takes over at the next time t is the internal state c t-1 of the network called a cell and the output data h t-1 . The lower case letters (c, h, x) in the figure represent vectors.
次に、図25BにLSTM2540の詳細を示す。図25Bにおいては、忘却ゲートネットワークFG、入力ゲートネットワークIG、及び出力ゲートネットワークOGが示され、それぞれはシグモイド層である。そのため、各要素が0から1の値となるベクトルを出力する。忘却ゲートネットワークFGは過去の情報をどれだけ保持するかを決め、入力ゲートネットワークIGはどの値を更新するかを判定するものである。また、図25Bにおいては、セル更新候補ネットワークCUが示され、セル更新候補ネットワークCUは活性化関数tanh層である。これは、セルに加えられる新たな候補値のベクトルを作成する。出力ゲートネットワークOGは、セル候補の要素を選択し次の時刻にどの程度の情報を伝えるか選択する。
Next, FIG. 25B shows details of the LSTM2540. In FIG. 25B, a forgetting gate network FG, an input gate network IG, and an output gate network OG are shown, each being a sigmoid layer. Therefore, a vector in which each element has a value of 0 to 1 is output. The forgetting gate network FG determines how much past information is retained, and the input gate network IG determines which value is updated. Further, in FIG. 25B, a cell update candidate network CU is shown, and the cell update candidate network CU is an activation function tanh layer. This creates a new vector of candidate values that will be added to the cell. The output gate network OG selects a cell candidate element and selects how much information is transmitted at the next time.
なお、上述したLSTMのモデルは基本形であるため、ここで示したネットワークに限らない。ネットワーク間の結合を変更してもよい。LSTMではなく、QRNN(Quasi Recurrent Neural Network)を用いてもよい。さらに、機械学習モデルは、ニューラルネットワークに限定されるものではなく、ブースティングやサポートベクターマシン等が用いられてもよい。また、検者からの指示が文字又は音声等による入力の場合には、自然言語処理に関する技術(例えば、Sequence to Sequence)が適用されてもよい。また、検者に対して文字又は音声等による出力で応答する対話エンジン(対話モデル、対話用の学習済モデル)が適用されてもよい。
Note that the above-mentioned LSTM model is a basic form, so it is not limited to the network shown here. The connection between networks may be changed. QRNN (Quasi Current Neural Network) may be used instead of LSTM. Furthermore, the machine learning model is not limited to the neural network, and boosting, support vector machine, or the like may be used. Further, when the instruction from the inspector is input by characters or voice, a technology related to natural language processing (for example, Sequence to Sequence) may be applied. Further, a dialogue engine (a dialogue model, a learned model for dialogue) that responds to the examiner with an output such as text or voice may be applied.
(変形例14)
上述した様々な実施例及び変形例において、高画質画像やラベル画像等は、操作者からの指示に応じて記憶部に保存されてもよい。このとき、例えば、高画質画像を保存するための操作者からの指示の後、ファイル名の登録の際に、推奨のファイル名として、ファイル名のいずれかの箇所(例えば、最初の箇所、又は最後の箇所)に、高画質化用の学習済モデルを用いた処理(高画質化処理)により生成された画像であることを示す情報(例えば、文字)を含むファイル名が、操作者からの指示に応じて編集可能な状態で表示されてもよい。なお、同様に、境界画像や領域ラベル画像等についても、学習済モデルを用いた処理により生成された画像である情報を含むファイル名が表示されてもよい。 (Modification 14)
In the various embodiments and modifications described above, the high-quality image, the label image, and the like may be stored in the storage unit according to an instruction from the operator. At this time, for example, after the instruction from the operator to save the high-quality image, when registering the file name, as a recommended file name, any part of the file name (for example, the first part, or At the end), the file name including the information (for example, characters) indicating that the image is generated by the process using the learned model for image quality improvement (image quality improvement process) It may be displayed in an editable state in response to an instruction. Similarly, for the boundary image, the region label image, and the like, a file name including information that is an image generated by the process using the learned model may be displayed.
上述した様々な実施例及び変形例において、高画質画像やラベル画像等は、操作者からの指示に応じて記憶部に保存されてもよい。このとき、例えば、高画質画像を保存するための操作者からの指示の後、ファイル名の登録の際に、推奨のファイル名として、ファイル名のいずれかの箇所(例えば、最初の箇所、又は最後の箇所)に、高画質化用の学習済モデルを用いた処理(高画質化処理)により生成された画像であることを示す情報(例えば、文字)を含むファイル名が、操作者からの指示に応じて編集可能な状態で表示されてもよい。なお、同様に、境界画像や領域ラベル画像等についても、学習済モデルを用いた処理により生成された画像である情報を含むファイル名が表示されてもよい。 (Modification 14)
In the various embodiments and modifications described above, the high-quality image, the label image, and the like may be stored in the storage unit according to an instruction from the operator. At this time, for example, after the instruction from the operator to save the high-quality image, when registering the file name, as a recommended file name, any part of the file name (for example, the first part, or At the end), the file name including the information (for example, characters) indicating that the image is generated by the process using the learned model for image quality improvement (image quality improvement process) It may be displayed in an editable state in response to an instruction. Similarly, for the boundary image, the region label image, and the like, a file name including information that is an image generated by the process using the learned model may be displayed.
また、レポート画面等の種々の表示画面において、表示部50に高画質画像を表示させる際に、表示されている画像が高画質化用の学習済モデルを用いた処理により生成された高画質画像であることを示す表示が、高画質画像とともに表示されてもよい。この場合には、操作者は、当該表示によって、表示された高画質画像が撮影によって取得した画像そのものではないことが容易に識別できるため、誤診断を低減させたり、診断効率を向上させたりすることができる。なお、高画質化用の学習済モデルを用いた処理により生成された高画質画像であることを示す表示は、入力画像と当該処理により生成された高画質画像とを識別可能な表示であればどのような態様のものでもよい。また、高画質化用の学習済モデルを用いた処理だけでなく、上述したような種々の学習済モデルを用いた処理についても、その種類の学習済モデルを用いた処理により生成された結果であることを示す表示が、その結果とともに表示されてもよい。また、セグメンテーション処理用の学習済モデルを用いたセグメンテーション結果の解析結果を表示する際にも、セグメンテーション用の学習済モデルを用いた結果に基づいた解析結果であることを示す表示が、解析結果とともに表示されてもよい。
Further, when displaying a high-quality image on the display unit 50 on various display screens such as a report screen, the displayed image is a high-quality image generated by a process using a learned model for high image quality. May be displayed together with the high quality image. In this case, the operator can easily identify by the display that the displayed high-quality image is not the image itself obtained by photographing, and thus the false diagnosis can be reduced or the diagnostic efficiency can be improved. be able to. It should be noted that the display indicating that the image is a high-quality image generated by the process using the learned model for high image quality is a display that can distinguish the input image from the high-quality image generated by the process. Any form may be used. Further, not only the process using the learned model for image quality improvement, but also the process using the various learned models as described above is the result generated by the process using the learned model of the type. An indication that there is may be displayed with the result. Also, when displaying the analysis result of the segmentation result using the learned model for segmentation processing, a display indicating that it is an analysis result based on the result using the learned model for segmentation is displayed together with the analysis result. It may be displayed.
このとき、レポート画面等の表示画面は、操作者からの指示に応じて、画像データとして記憶部に保存されてもよい。例えば、高画質画像等と、これらの画像が学習済モデルを用いた処理により生成された画像であることを示す表示とが並んだ1つの画像としてレポート画面が記憶部に保存されてもよい。
At this time, the display screen such as the report screen may be saved in the storage unit as image data according to an instruction from the operator. For example, the report screen may be stored in the storage unit as one image in which high-quality images and the like and a display indicating that these images are images generated by the process using the learned model are lined up.
また、高画質化用の学習済モデルを用いた処理により生成された高画質画像であることを示す表示について、高画質化用の学習済モデルがどのような学習データによって学習を行ったものであるかを示す表示が表示部に表示されてもよい。当該表示としては、学習データの入力データと正解データの種類の説明や、入力データと正解データに含まれる撮影部位等の正解データに関する任意の表示を含んでよい。なお、例えばセグメンテーション処理等上述した種々の学習済モデルを用いた処理についても、その種類の学習済モデルがどのような学習データによって学習を行ったものであるかを示す表示が表示部に表示されてもよい。
In addition, regarding the display indicating that the image is a high-quality image generated by the process using the learned model for high image quality, the learned model for high image quality learned by what learning data. A display indicating whether there is may be displayed on the display unit. The display may include a description of the types of the input data and the correct answer data of the learning data, and an arbitrary display regarding the correct answer data such as the imaging region included in the input data and the correct answer data. In addition, for the processing using the various learned models described above such as the segmentation processing, a display indicating what kind of learning data the learned model of the type learned is displayed on the display unit. May be.
また、学習済モデルを用いた処理により生成された画像であることを示す情報(例えば、文字)を、画像等に重畳した状態で表示又は保存されるように構成されてもよい。このとき、画像上に重畳する箇所は、撮影対象となる注目部位等が表示されている領域には重ならない領域(例えば、画像の端)であればどこでもよい。また、重ならない領域を判定し、判定された領域に重畳させてもよい。なお、高画質化用の学習済モデルを用いた処理だけでなく、例えばセグメンテーション処理等の上述した種々の学習済モデルを用いた処理により得た画像についても、同様に処理してよい。
Also, information (for example, characters) indicating that the image is generated by the process using the learned model may be displayed or saved in a state of being superimposed on the image or the like. At this time, the portion to be superimposed on the image may be any portion as long as it is an area (for example, the edge of the image) that does not overlap with the area in which the attention site or the like to be imaged is displayed. Alternatively, a non-overlapping area may be determined and superimposed on the determined area. Note that not only the processing using the learned model for image quality improvement, but also the image obtained by the processing using the above-described various learned models such as segmentation processing may be similarly processed.
また、レポート画面の初期表示画面として、図22A及び図22Bに示すようなボタン2220がアクティブ状態(高画質化処理がオン)となるようにデフォルト設定されている場合には、検者からの指示に応じて、高画質画像等を含むレポート画面に対応するレポート画像がサーバに送信されるように構成されてもよい。また、ボタン2220がアクティブ状態となるようにデフォルト設定されている場合には、検査終了時(例えば、検者からの指示に応じて、撮影確認画面やプレビュー画面からレポート画面に変更された場合)に、高画質画像等を含むレポート画面に対応するレポート画像がサーバに(自動的に)送信されるように構成されてもよい。このとき、デフォルト設定における各種設定(例えば、レポート画面の初期表示画面におけるEn-Face画像の生成のための深度範囲、解析マップの重畳の有無、高画質画像か否か、経過観察用の表示画面か否か等の少なくとも1つに関する設定)に基づいて生成されたレポート画像がサーバに送信されるように構成されもよい。なお、ボタン2220がセグメンテーション処理の切り替えを表す場合に関しても、同様に処理されてよい。
If the button 2220 as shown in FIGS. 22A and 22B is set as the default display screen of the report screen so that the button 2220 is in an active state (image quality improvement processing is turned on), an instruction from the examiner is given. According to the above, the report image corresponding to the report screen including the high quality image may be transmitted to the server. When the button 2220 is set to the active state by default, at the end of the examination (for example, when the photographing confirmation screen or the preview screen is changed to the report screen in response to an instruction from the examiner) In addition, the report image corresponding to the report screen including the high-quality image may be (automatically) transmitted to the server. At this time, various settings in the default settings (for example, a depth range for generating an En-Face image on the initial display screen of the report screen, presence / absence of analysis map superimposition, whether or not a high-quality image is displayed, a display screen for follow-up observation) The report image may be configured to be transmitted to the server based on at least one setting such as whether or not. Note that the same processing may be performed when the button 2220 represents switching of segmentation processing.
(変形例15)
上述した様々な実施例及び変形例において、上述したような種々の学習済モデルのうち、第1の種類の学習済モデルで得た画像(例えば、高画質画像、解析マップ等の解析結果を示す画像、物体認識結果を示す画像、セグメンテーション結果を示す画像)を、第1の種類とは異なる第2の種類の学習済モデルに入力してもよい。このとき、第2の種類の学習済モデルの処理による結果(例えば、解析結果、診断結果、物体認識結果、セグメンテーション結果)が生成されるように構成されてもよい。 (Modification 15)
In the various examples and modifications described above, among various learned models as described above, images obtained by the first type of learned models (for example, analysis results of high-quality images, analysis maps, etc. are shown. The image, the image showing the object recognition result, and the image showing the segmentation result) may be input to the trained model of the second type different from the first type. At this time, a result (for example, an analysis result, a diagnosis result, an object recognition result, a segmentation result) by processing the second type of learned model may be generated.
上述した様々な実施例及び変形例において、上述したような種々の学習済モデルのうち、第1の種類の学習済モデルで得た画像(例えば、高画質画像、解析マップ等の解析結果を示す画像、物体認識結果を示す画像、セグメンテーション結果を示す画像)を、第1の種類とは異なる第2の種類の学習済モデルに入力してもよい。このとき、第2の種類の学習済モデルの処理による結果(例えば、解析結果、診断結果、物体認識結果、セグメンテーション結果)が生成されるように構成されてもよい。 (Modification 15)
In the various examples and modifications described above, among various learned models as described above, images obtained by the first type of learned models (for example, analysis results of high-quality images, analysis maps, etc. are shown. The image, the image showing the object recognition result, and the image showing the segmentation result) may be input to the trained model of the second type different from the first type. At this time, a result (for example, an analysis result, a diagnosis result, an object recognition result, a segmentation result) by processing the second type of learned model may be generated.
また、上述したような種々の学習済モデルのうち、第1の種類の学習済モデルの処理による結果(例えば、解析結果、診断結果、物体認識結果、セグメンテーション結果)を用いて、第1の種類の学習済モデルに入力した画像から、第1の種類とは異なる第1の種類の学習済モデルに入力する画像を生成してもよい。このとき、生成された画像は、第2の種類の学習済モデルを用いて処理する画像として適した画像である可能性が高い。このため、生成された画像を第2の種類の学習済モデルに入力して得た画像(例えば、高画質画像、解析マップ等の解析結果を示す画像、物体認識結果を示す画像、セグメンテーション結果を示す画像)の精度を向上することができる。
In addition, of the various learned models as described above, the first type using the result (for example, the analysis result, the diagnosis result, the object recognition result, the segmentation result) of the processing of the first type of the learned model. The image input to the learned model of the first type different from the first type may be generated from the image input to the learned model of. At this time, the generated image is highly likely to be an image suitable as an image to be processed using the second type of learned model. Therefore, an image obtained by inputting the generated image to the second type of learned model (for example, a high-quality image, an image showing the analysis result of an analysis map, an image showing the object recognition result, a segmentation result The accuracy of the image shown) can be improved.
また、上述したような学習済モデルの処理による解析結果や診断結果等を検索キーとして、サーバ等に格納された外部のデータベースを利用した類似症例画像検索を行ってもよい。なお、データベースにおいて保存されている複数の画像が、既に機械学習等によって該複数の画像それぞれの特徴量を付帯情報として付帯された状態で管理されている場合等には、画像自体を検索キーとする類似症例画像検索エンジン(類似症例画像検索モデル、類似症例画像検索用の学習済モデル)が用いられてもよい。例えば、画像処理部320,1620,1920は、高画質画像(第2の医用画像)を生成するための学習済モデルとは異なる類似症例画像検索用の学習済モデル(第6の学習済モデル)を用いて、セグメンテーション処理等により特定した異なる領域それぞれについて類似症例画像の検索を行うことができる。
Alternatively, a similar case image search may be performed using an external database stored in a server or the like, using the analysis result or diagnosis result of the processing of the learned model as described above as a search key. In addition, when a plurality of images stored in the database are already managed by the machine learning or the like with the feature amount of each of the plurality of images as additional information, the image itself is used as a search key. A similar case image search engine (similar case image search model, learned model for similar case image search) may be used. For example, the image processing units 320, 1620, and 1920 are different from the learned model for generating the high-quality image (second medical image), which is a learned model for similar case image retrieval (sixth learned model). Using, the similar case image can be searched for each of the different regions identified by the segmentation process or the like.
(変形例16)
なお、上記実施例及び変形例におけるモーションコントラストデータの生成処理は、断層画像の輝度値に基づいて行われる構成に限られない。上記各種処理は、撮影部20で取得された干渉信号、干渉信号にフーリエ変換を施した信号、該信号に任意の処理を施した信号、及びこれらに基づく断層画像等を含む断層データに対して適用されてよい。これらの場合も、上記構成と同様の効果を奏することができる。 (Modification 16)
It should be noted that the process of generating motion contrast data in the above-described embodiment and modification is not limited to the configuration performed based on the brightness value of the tomographic image. The above-described various processes are performed on the tomographic data including the interference signal acquired by theimaging unit 20, the signal obtained by performing the Fourier transform on the interference signal, the signal obtained by subjecting the signal to an arbitrary process, and the tomographic image based on these signals. May be applied. Also in these cases, the same effect as that of the above configuration can be obtained.
なお、上記実施例及び変形例におけるモーションコントラストデータの生成処理は、断層画像の輝度値に基づいて行われる構成に限られない。上記各種処理は、撮影部20で取得された干渉信号、干渉信号にフーリエ変換を施した信号、該信号に任意の処理を施した信号、及びこれらに基づく断層画像等を含む断層データに対して適用されてよい。これらの場合も、上記構成と同様の効果を奏することができる。 (Modification 16)
It should be noted that the process of generating motion contrast data in the above-described embodiment and modification is not limited to the configuration performed based on the brightness value of the tomographic image. The above-described various processes are performed on the tomographic data including the interference signal acquired by the
また、上記実施例及び変形例における階調変換処理等の画像処理は、断層画像の輝度値に基づいて行われる構成に限られない。上記各種処理は、撮影部20で取得された干渉信号、干渉信号にフーリエ変換を施した信号、及び該信号に任意の処理を施した信号等を含む断層データに対して適用されてよい。これらの場合も、上記構成と同様の効果を奏することができる。
Further, the image processing such as the gradation conversion processing in the above-described embodiments and modifications is not limited to the configuration performed based on the brightness value of the tomographic image. The various processes described above may be applied to tomographic data including an interference signal acquired by the imaging unit 20, a signal obtained by subjecting the interference signal to Fourier transform, a signal obtained by subjecting the signal to an arbitrary process, and the like. Also in these cases, the same effect as that of the above configuration can be obtained.
さらに、上記実施例及び変形例では、OCT装置として、SLDを光源として用いたスペクトラルドメインOCT(SD-OCT)装置について述べたが、本発明によるOCT装置の構成はこれに限られない。例えば、出射光の波長を掃引することができる波長掃引光源を用いた波長掃引型OCT(SS-OCT)装置等の他の任意の種類のOCT装置にも本発明を適用することができる。また、ライン光を用いたLine-OCT装置(あるいはSS-Line-OCT装置)に対して本発明を適用することもできる。また、エリア光を用いたFull Field-OCT装置(あるいはSS-Full Field-OCT装置)にも本発明を適用することもできる。
Furthermore, although the spectral domain OCT (SD-OCT) device using the SLD as the light source is described as the OCT device in the above-described embodiments and modifications, the configuration of the OCT device according to the present invention is not limited to this. For example, the present invention can be applied to any other type of OCT device such as a wavelength swept OCT (SS-OCT) device using a wavelength swept light source capable of sweeping the wavelength of emitted light. The present invention can also be applied to a Line-OCT device (or an SS-Line-OCT device) using line light. Further, the present invention can also be applied to a Full Field-OCT device (or SS-Full Field-OCT device) using area light.
上記実施例及び変形例では、分割手段としてカプラーを使用した光ファイバー光学系を用いているが、コリメータとビームスプリッタを使用した空間光学系を用いてもよい。また、撮影部20の構成は、上記の構成に限られず、撮影部20に含まれる構成の一部を撮影部20と別体の構成としてもよい。
In the above embodiments and modifications, an optical fiber optical system using a coupler is used as the splitting means, but a spatial optical system using a collimator and a beam splitter may be used. Further, the configuration of the image capturing unit 20 is not limited to the above configuration, and a part of the configuration included in the image capturing unit 20 may be a configuration separate from the image capturing unit 20.
また、上記実施例及び変形例では、取得部310は、撮影部20で取得された干渉信号や画像処理部320で生成された断層画像等を取得した。しかしながら、取得部310がこれらの信号や画像を取得する構成はこれに限られない。例えば、取得部310は、制御部30,1600,1900とLAN、WAN、又はインターネット等を介して接続されるサーバや撮影装置からこれらの信号を取得してもよい。
In addition, in the above-described embodiment and modification, the acquisition unit 310 acquires the interference signal acquired by the imaging unit 20, the tomographic image generated by the image processing unit 320, and the like. However, the configuration in which the acquisition unit 310 acquires these signals and images is not limited to this. For example, the acquisition unit 310 may acquire these signals from a server or a photographing device that is connected to the control units 30, 1600, 1900 via LAN, WAN, the Internet, or the like.
また、各種学習済モデルの学習データは、実際の撮影を行う眼科装置自体を用いて得たデータに限られず、所望の構成に応じて、同型の眼科装置を用いて得たデータや、同種の眼科装置を用いて得たデータ等であってもよい。
Further, the learning data of various learned models is not limited to the data obtained by using the ophthalmologic apparatus itself that actually performs imaging, depending on the desired configuration, the data obtained by using the same type of ophthalmologic apparatus, or the same type. It may be data obtained by using an ophthalmologic apparatus.
なお、上記実施例及び変形例に係る各種学習済モデルは制御部30,1600、1900に設けられることができる。学習済モデルは、例えば、CPUや、MPU、GPU、FPGA等のプロセッサーによって実行されるソフトウェアモジュール等で構成されてもよいし、ASIC等の特定の機能を果たす回路等によって構成されてもよい。また、これら学習済モデルは、制御部30,1600、1900と接続される別のサーバの装置等に設けられてもよい。この場合には、制御部30,1600、1900は、インターネット等の任意のネットワークを介して学習済モデルを備えるサーバ等に接続することで、学習済モデルを用いることができる。ここで、学習済モデルを備えるサーバは、例えば、クラウドサーバや、フォグサーバ、エッジサーバ等であってよい。
Note that the various learned models according to the above-described embodiments and modified examples can be provided in the control units 30, 1600, 1900. The learned model may be composed of, for example, a CPU, a software module executed by a processor such as MPU, GPU, FPGA, or the like, or a circuit that performs a specific function such as ASIC. Further, these learned models may be provided in a device of another server connected to the control units 30, 1600, 1900. In this case, the control units 30, 1600, 1900 can use the learned model by connecting to a server or the like having the learned model via an arbitrary network such as the Internet. Here, the server including the learned model may be, for example, a cloud server, a fog server, an edge server, or the like.
なお、上記実施例及び変形例では、被検眼の眼底部分に関する断層画像について説明したが、被検眼の前眼部に関する断層画像について上記画像処理を行ってもよい。この場合、断層画像において異なる画像処理が施されるべき領域には、水晶体、角膜、虹彩、及び前眼房等の領域が含まれる。なお、当該領域に前眼部の他の領域が含まれてもよい。また、眼底部分に関する断層画像についての領域は、硝子体部、網膜部、及び脈絡膜部に限られず、眼底部分に関する他の領域を含んでもよい。ここで、眼底部分に関する断層画像については、前眼部に関する断層画像よりも階調が広くなるため、上記実施例及び変形例に係る画像処理による高画質化がより効果的に行われることができる。
In addition, although the tomographic image of the fundus of the eye to be inspected has been described in the above-described embodiments and modifications, the image processing may be performed on the tomographic image of the anterior segment of the eye to be inspected. In this case, the regions to be subjected to different image processing in the tomographic image include regions such as the crystalline lens, cornea, iris, and anterior chamber of the eye. Note that the region may include another region of the anterior segment. Further, the region of the tomographic image regarding the fundus portion is not limited to the vitreous portion, the retina portion, and the choroid portion, and may include other regions regarding the fundus portion. Here, since the tomographic image regarding the fundus portion has a wider gradation than the tomographic image regarding the anterior segment, the image quality can be more effectively improved by the image processing according to the above-described embodiments and modifications. .
また、上記実施例及び変形例では、被検体として被検眼を例に説明したが、被検体はこれに限定されない。例えば、被検体は皮膚や他の臓器等でもよい。この場合、上記実施例及び変形例に係るOCT装置は、眼科装置以外に、内視鏡等の医療機器に適用することができる。
Also, in the above-described embodiments and modifications, the subject's eye was described as an example, but the subject is not limited to this. For example, the subject may be skin or another organ. In this case, the OCT apparatus according to the above-described embodiments and modifications can be applied to medical equipment such as an endoscope in addition to the ophthalmologic apparatus.
(変形例17)
また、上述した様々な実施例及び変形例による画像処理装置又は画像処理方法によって処理される画像は、任意のモダリティ(撮影装置、撮影方法)を用いて取得された医用画像を含む。処理される医用画像は、任意の撮影装置等で取得された医用画像や、上記実施例及び変形例による画像処理装置又は画像処理方法によって作成された画像を含むことができる。 (Modification 17)
Further, the image processed by the image processing device or the image processing method according to the above-described various embodiments and modifications includes a medical image acquired by using an arbitrary modality (imaging device, imaging method). The medical image to be processed can include a medical image acquired by an arbitrary imaging device or the like, or an image created by the image processing device or the image processing method according to the above-described embodiments and modifications.
また、上述した様々な実施例及び変形例による画像処理装置又は画像処理方法によって処理される画像は、任意のモダリティ(撮影装置、撮影方法)を用いて取得された医用画像を含む。処理される医用画像は、任意の撮影装置等で取得された医用画像や、上記実施例及び変形例による画像処理装置又は画像処理方法によって作成された画像を含むことができる。 (Modification 17)
Further, the image processed by the image processing device or the image processing method according to the above-described various embodiments and modifications includes a medical image acquired by using an arbitrary modality (imaging device, imaging method). The medical image to be processed can include a medical image acquired by an arbitrary imaging device or the like, or an image created by the image processing device or the image processing method according to the above-described embodiments and modifications.
さらに、処理される医用画像は、被検者(被検体)の所定部位の画像であり、所定部位の画像は被検者の所定部位の少なくとも一部を含む。また、当該医用画像は、被検者の他の部位を含んでもよい。また、医用画像は、静止画像又は動画像であってよく、白黒画像又はカラー画像であってもよい。さらに医用画像は、所定部位の構造(形態)を表す画像でもよいし、その機能を表す画像でもよい。機能を表す画像は、例えば、OCTA画像、ドップラーOCT画像、fMRI画像、及び超音波ドップラー画像等の血流動態(血流量、血流速度等)を表す画像を含む。なお、被検者の所定部位は、撮影対象に応じて決定されてよく、人眼(被検眼)、脳、肺、腸、心臓、すい臓、腎臓、及び肝臓等の臓器、頭部、胸部、脚部、並びに腕部等の任意の部位を含む。
Furthermore, the medical image to be processed is an image of a predetermined part of the subject (subject), and the image of the predetermined part includes at least a part of the predetermined part of the subject. In addition, the medical image may include other parts of the subject. Further, the medical image may be a still image or a moving image, and may be a monochrome image or a color image. Further, the medical image may be an image showing the structure (morphology) of a predetermined part or an image showing its function. The image representing the function includes images representing blood flow dynamics (blood flow rate, blood flow velocity, etc.) such as an OCTA image, a Doppler OCT image, an fMRI image, and an ultrasonic Doppler image. The predetermined part of the subject may be determined according to the imaging target, human eyes (inspection eye), brain, lungs, intestines, heart, pancreas, kidneys, organs such as liver, head, chest, It includes any part such as legs and arms.
また、医用画像は、被検者の断層画像であってもよいし、正面画像であってもよい。正面画像は、例えば、眼底正面画像や、前眼部の正面画像、蛍光撮影された眼底画像、OCTで取得したデータ(三次元のOCTデータ)について撮影対象の深さ方向における少なくとも一部の範囲のデータを用いて生成したEn-Face画像を含む。En-Face画像は、三次元のOCTAデータ(三次元のモーションコントラストデータ)について撮影対象の深さ方向における少なくとも一部の範囲のデータを用いて生成したOCTAのEn-Face画像(モーションコントラスト正面画像)でもよい。また、三次元のOCTデータや三次元のモーションコントラストデータは、三次元の医用画像データの一例である。
Also, the medical image may be a tomographic image of the subject or a front image. The front image is, for example, a front image of the fundus of the eye, a front image of the anterior segment of the eye, a fundus image obtained by fluorescence imaging, or at least a part of a range (three-dimensional OCT data) acquired by OCT in the depth direction of the imaging target. The En-Face image generated using the data of 1. is included. The En-Face image is an OCTA En-Face image (motion contrast front image) generated by using at least a partial range of data in the depth direction of the imaging target for the three-dimensional OCTA data (three-dimensional motion contrast data). ) Is okay. The three-dimensional OCT data and the three-dimensional motion contrast data are examples of the three-dimensional medical image data.
ここで、モーションコントラストデータとは、被検眼の同一領域(同一位置)において測定光が複数回走査されるように制御して得た複数のボリュームデータ間での変化を示すデータである。このとき、ボリュームデータは、異なる位置で得た複数の断層画像により構成される。そして、異なる位置それぞれにおいて、略同一位置で得た複数の断層画像の間での変化を示すデータを得ることで、モーションコントラストデータをボリュームデータとして得ることができる。なお、モーションコントラスト正面画像は、血流の動きを測定するOCTアンギオグラフィ(OCTA)に関するOCTA正面画像(OCTAのEn-Face画像)とも呼ばれ、モーションコントラストデータはOCTAデータとも呼ばれる。モーションコントラストデータは、例えば、2枚の断層画像又はこれに対応する干渉信号間の脱相関値、分散値、又は最大値を最小値で割った値(最大値/最小値)として求めることができ、公知の任意の方法により求められてよい。このとき、2枚の断層画像は、例えば、被検眼の同一領域(同一位置)において測定光が複数回走査されるように制御して得ることができる。
Here, the motion contrast data is data indicating a change between a plurality of volume data obtained by controlling the measurement light to be scanned a plurality of times in the same region (same position) of the eye to be inspected. At this time, the volume data is composed of a plurality of tomographic images obtained at different positions. Then, the motion contrast data can be obtained as the volume data by obtaining the data indicating the change between the plurality of tomographic images obtained at the substantially same position at each of the different positions. The motion contrast front image is also referred to as an OCTA front image (OCTA En-Face image) regarding OCT angiography (OCTA) for measuring the movement of blood flow, and the motion contrast data is also referred to as OCTA data. The motion contrast data can be obtained, for example, as a decorrelation value between two tomographic images or corresponding interference signals, a variance value, or a value obtained by dividing the maximum value by the minimum value (maximum value / minimum value). , May be obtained by any known method. At this time, the two tomographic images can be obtained, for example, by controlling so that the measurement light is scanned a plurality of times in the same region (same position) of the subject's eye.
また、En-Face画像は、例えば、2つの層境界の間の範囲のデータをXY方向に投影して生成した正面画像である。このとき、正面画像は、光干渉を用いて得たボリュームデータ(三次元の断層画像)の少なくとも一部の深度範囲であって、2つの基準面に基づいて定められた深度範囲に対応するデータを二次元平面に投影又は積算して生成される。En-Face画像は、ボリュームデータのうちの、検出された網膜層に基づいて決定された深度範囲に対応するデータを二次元平面に投影して生成された正面画像である。なお、2つの基準面に基づいて定められた深度範囲に対応するデータを二次元平面に投影する手法としては、例えば、当該深度範囲内のデータの代表値を二次元平面上の画素値とする手法を用いることができる。ここで、代表値は、2つの基準面に囲まれた領域の深さ方向の範囲内における画素値の平均値、中央値又は最大値などの値を含むことができる。また、En-Face画像に係る深度範囲は、例えば、検出された網膜層に関する2つの層境界の一方を基準として、より深い方向又はより浅い方向に所定の画素数分だけ含んだ範囲であってもよい。また、En-Face画像に係る深度範囲は、例えば、検出された網膜層に関する2つの層境界の間の範囲から、操作者の指示に応じて変更された(オフセットされた)範囲であってもよい。
The En-Face image is, for example, a front image generated by projecting data in the range between two layer boundaries in the XY directions. At this time, the front image is a depth range of at least a part of the volume data (three-dimensional tomographic image) obtained by using optical interference, and corresponds to the depth range determined based on the two reference planes. Is projected or integrated on a two-dimensional plane to be generated. The En-Face image is a front image generated by projecting, on a two-dimensional plane, data corresponding to the depth range determined based on the detected retinal layer in the volume data. As a method of projecting the data corresponding to the depth range determined based on the two reference planes onto the two-dimensional plane, for example, the representative value of the data within the depth range is set as the pixel value on the two-dimensional plane. Techniques can be used. Here, the representative value can include a value such as an average value, a median value, or a maximum value of the pixel values within the range in the depth direction of the area surrounded by the two reference planes. Further, the depth range related to the En-Face image is a range including a predetermined number of pixels in a deeper direction or a shallower direction with reference to one of the two layer boundaries regarding the detected retinal layer, for example. Good. In addition, the depth range related to the En-Face image may be, for example, a range that is changed (offset) in accordance with an operator's instruction from a range between two layer boundaries related to the detected retinal layer. Good.
また、撮影装置とは、診断に用いられる画像を撮影するための装置である。撮影装置は、例えば、被検者の所定部位に光、X線等の放射線、電磁波、又は超音波等を照射することにより所定部位の画像を得る装置や、被写体から放出される放射線を検出することにより所定部位の画像を得る装置を含む。より具体的には、上述した様々な実施例及び変形例に係る撮影装置は、少なくとも、X線撮影装置、CT装置、MRI装置、PET装置、SPECT装置、SLO装置、OCT装置、OCTA装置、眼底カメラ、及び内視鏡等を含む。
Also, the image capturing device is a device for capturing an image used for diagnosis. The imaging device detects, for example, a device that obtains an image of a predetermined region by irradiating a predetermined region of a subject with light, radiation such as X-rays, electromagnetic waves, or ultrasonic waves, or radiation emitted from a subject. It includes a device for obtaining an image of a predetermined part by doing so. More specifically, the imaging apparatus according to the various embodiments and modifications described above includes at least an X-ray imaging apparatus, a CT apparatus, an MRI apparatus, a PET apparatus, a SPECT apparatus, an SLO apparatus, an OCT apparatus, an OCTA apparatus, and a fundus. It includes a camera and an endoscope.
なお、OCT装置としては、タイムドメインOCT(TD-OCT)装置やフーリエドメインOCT(FD-OCT)装置を含んでよい。また、フーリエドメインOCT装置はスペクトラルドメインOCT(SD-OCT)装置や波長掃引型OCT(SS-OCT)装置を含んでよい。また、SLO装置やOCT装置として、波面補償光学系を用いた波面補償SLO(AO-SLO)装置や波面補償OCT(AO-OCT)装置等を含んでよい。また、SLO装置やOCT装置として、偏光位相差や偏光解消に関する情報を可視化するための偏光SLO(PS-SLO)装置や偏光OCT(PS-OCT)装置等を含んでよい。
The OCT device may include a time domain OCT (TD-OCT) device and a Fourier domain OCT (FD-OCT) device. Further, the Fourier domain OCT device may include a spectral domain OCT (SD-OCT) device and a wavelength swept OCT (SS-OCT) device. The SLO device and the OCT device may include a wavefront compensation SLO (AO-SLO) device using a wavefront compensation optical system, a wavefront compensation OCT (AO-OCT) device, and the like. Further, the SLO device and the OCT device may include a polarization SLO (PS-SLO) device and a polarization OCT (PS-OCT) device for visualizing information on the polarization phase difference and depolarization.
また、上述の様々な実施例及び変形例に係る高画質化用の学習済モデルでは、断層画像の輝度値の大小、明部と暗部の順番や傾き、位置、分布、連続性等を特徴量の一部として抽出して、推定処理に用いているものと考えらえる。同様に、セグメンテーション処理用や画像解析用、診断結果生成用の学習済モデルでも、断層画像の輝度値の大小、明部と暗部の順番や傾き、位置、分布、連続性等を特徴量の一部として抽出して、推定処理に用いているものと考えらえる。一方で、音声認識用や文字認識用、ジェスチャー認識用等の学習済モデルでは、時系列のデータを用いて学習を行っているため、入力される連続する時系列のデータ値間の傾きを特徴量の一部として抽出し、推定処理に用いているものと考えられる。そのため、このような学習済モデルは、具体的な数値の時間的な変化による影響を推定処理に用いることで、精度のよい推定を行うことができると期待される。
Further, in the learned model for improving image quality according to the above-described various embodiments and modified examples, the magnitude of the brightness value of the tomographic image, the order and inclination of the bright part and the dark part, the position, the distribution, the continuity, etc. It can be considered that it is extracted as a part of and used for the estimation process. Similarly, even in the learned model for segmentation processing, image analysis, and diagnostic result generation, one of the feature values is the brightness value of the tomographic image, the order and inclination of the bright and dark parts, the position, the distribution, and the continuity. It can be considered that it is extracted as a part and used for the estimation process. On the other hand, in learned models for voice recognition, character recognition, gesture recognition, etc., learning is performed using time-series data, so the slope between input continuous time-series data values is characteristic. It is considered that it is extracted as a part of the quantity and used for the estimation process. Therefore, such a learned model is expected to be able to perform accurate estimation by using the influence of a concrete change of a numerical value in the estimation process.
上記実施例及び変形例によれば、観察対象の領域毎に適切な画像処理が行われたような画像を生成できる。
According to the above-described embodiment and modification, it is possible to generate an image in which appropriate image processing is performed for each observation target area.
(その他の実施例)
本発明は、上述の実施例及び変形例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータがプログラムを読出し実行する処理でも実現可能である。コンピュータは、1つ又は複数のプロセッサー若しくは回路を有し、コンピュータ実行可能命令を読み出し実行するために、分離した複数のコンピュータ又は分離した複数のプロセッサー若しくは回路のネットワークを含みうる。 (Other Examples)
The present invention also provides a process for supplying a program that implements one or more functions of the above-described embodiments and modifications to a system or apparatus via a network or a storage medium, and a computer of the system or apparatus reads and executes the program. It is feasible. A computer has one or more processors or circuits and may include separate computers or networks of separate processors or circuits for reading and executing computer-executable instructions.
本発明は、上述の実施例及び変形例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータがプログラムを読出し実行する処理でも実現可能である。コンピュータは、1つ又は複数のプロセッサー若しくは回路を有し、コンピュータ実行可能命令を読み出し実行するために、分離した複数のコンピュータ又は分離した複数のプロセッサー若しくは回路のネットワークを含みうる。 (Other Examples)
The present invention also provides a process for supplying a program that implements one or more functions of the above-described embodiments and modifications to a system or apparatus via a network or a storage medium, and a computer of the system or apparatus reads and executes the program. It is feasible. A computer has one or more processors or circuits and may include separate computers or networks of separate processors or circuits for reading and executing computer-executable instructions.
プロセッサー又は回路は、中央演算処理装置(CPU)、マイクロプロセッシングユニット(MPU)、グラフィクスプロセッシングユニット(GPU)、特定用途向け集積回路(ASIC)、又はフィールドプログラマブルゲートウェイ(FPGA)を含みうる。また、プロセッサー又は回路は、デジタルシグナルプロセッサー(DSP)、データフロープロセッサー(DFP)、又はニューラルプロセッシングユニット(NPU)を含みうる。
The processor or circuit may include a central processing unit (CPU), a micro processing unit (MPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), or a field programmable gateway (FPGA). Also, the processor or circuit may include a digital signal processor (DSP), a data flow processor (DFP), or a neural processing unit (NPU).
本発明は上記実施例及び変形例に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
The present invention is not limited to the above embodiments and modifications, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, the following claims are appended to make the scope of the present invention public.
本願は、2018年10月10日提出の日本国特許出願特願2018-191449、及び2019年10月3日提出の日本国特許出願特願2019-183106を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
This application claims priority based on Japanese Patent Application No. 2018-191449 filed October 10, 2018 and Japanese Patent Application No. 2019-183106 filed October 3, 2019. , The entire contents of which are incorporated herein.
30:制御部(画像処理装置)、310:取得部、322:高画質化部
30: control unit (image processing device), 310: acquisition unit, 322: image quality improvement unit
30: control unit (image processing device), 310: acquisition unit, 322: image quality improvement unit
Claims (28)
- 被検体の第1の医用画像を取得する取得部と、
学習済モデルを用いて、前記第1の医用画像から、前記第1の医用画像における異なる領域に異なる画像処理が施されたような第2の医用画像を生成する高画質化部と、
を備える、画像処理装置。 An acquisition unit that acquires a first medical image of the subject;
An image quality improving unit that uses the learned model to generate a second medical image from the first medical image such that different regions in the first medical image have undergone different image processing;
An image processing apparatus comprising: - 被検体の第1の医用画像を取得する取得部と、
学習済モデルを用いて、前記第1の医用画像から、前記第1の医用画像における第1の領域と該第1の領域とは異なる第2の領域との異なる領域が高画質化された第2の医用画像を生成する高画質化部と、
を備える、画像処理装置。 An acquisition unit that acquires a first medical image of the subject;
Using the learned model, a high-quality image of a different region of the first medical image and the second region different from the first region is formed from the first medical image. A high-quality image generating unit for generating a medical image of 2;
An image processing apparatus comprising: - 前記学習済モデルの学習データは、被検体を撮影して得られる医用画像であって、該医用画像における異なる領域のいずれかに対応する階調変換処理が施された医用画像を含む、請求項1又は2に記載の画像処理装置。 The learning data of the learned model is a medical image obtained by photographing a subject, and includes a medical image that has been subjected to gradation conversion processing corresponding to any of different regions in the medical image. The image processing device according to 1 or 2.
- 前記学習済モデルの学習データは、被検体を撮影して得られる医用画像であって、該医用画像における異なる領域のいずれかに対応する撮影モードで取得された医用画像を含む、請求項1乃至3のいずれか一項に記載の画像処理装置。 The learning data of the learned model is a medical image obtained by photographing a subject, and includes a medical image acquired in a photographing mode corresponding to any of different regions in the medical image. The image processing device according to any one of 3 above.
- 前記第1の医用画像及び前記第2の医用画像は、断層画像であり、
前記第1の医用画像は、光干渉を利用して得た断層画像である、請求項1乃至4のいずれか一項に記載の画像処理装置。 The first medical image and the second medical image are tomographic images,
The image processing apparatus according to claim 1, wherein the first medical image is a tomographic image obtained by using optical interference. - 操作者からの指示に応じて、前記第1の医用画像について適用する画像処理を選択する選択部を更に備え、
前記高画質化部は、前記選択部によって選択された画像処理に基づいて、前記第1の医用画像について前記学習済モデルを用いずに階調変換処理を行い第3の医用画像を生成する、又は、前記学習済モデルを用いて前記第1の医用画像から前記第2の医用画像を生成する、請求項1乃至5のいずれか一項に記載の画像処理装置。 Further comprising a selection unit for selecting image processing to be applied to the first medical image according to an instruction from an operator,
The image quality improving unit performs a gradation conversion process on the first medical image based on the image process selected by the selecting unit without using the learned model to generate a third medical image. Alternatively, the image processing apparatus according to claim 1, wherein the second medical image is generated from the first medical image using the learned model. - 前記高画質化部は、前記第2の医用画像において、前記第1の医用画像における互いに異なる複数の領域の接続部分の画素値を該接続部分の周囲の画素の画素値に基づいて、又は該周囲の画素の画素値を該接続部分の画素値に基づいて修正する、請求項1乃至6のいずれか一項に記載の画像処理装置。 In the second medical image, the image quality improving unit determines a pixel value of a connecting portion of a plurality of different regions in the first medical image based on pixel values of pixels around the connecting portion, or The image processing device according to claim 1, wherein the pixel values of surrounding pixels are modified based on the pixel values of the connection portion.
- 前記被検体は、被検眼であり、
前記異なる領域は、網膜、硝子体、脈絡膜、水晶体、角膜、虹彩、及び前眼房の領域のうちの少なくとも1つを含む、請求項1乃至7のいずれか一項に記載の画像処理装置。 The subject is an eye to be inspected,
The image processing apparatus according to claim 1, wherein the different region includes at least one of a retina, a vitreous body, a choroid, a lens, a cornea, an iris, and an anterior chamber. - 前記学習済モデルの学習データは、重ね合わせ処理、最大事後確率推定処理、平滑化フィルタ処理及び階調変換処理のうちの一つの処理により得られた画像を含む、請求項1乃至8のいずれか一項に記載の画像処理装置。 9. The learning data of the learned model includes an image obtained by one of a superimposing process, a maximum posterior probability estimating process, a smoothing filter process, and a gradation converting process. The image processing device according to one item.
- 前記学習済モデルの学習データは、前記第1の医用画像の撮影に用いられる撮影装置よりも高性能な撮影装置によって撮影された医用画像、又は前記第1の医用画像の撮影工程よりも工数の多い撮影工程で取得された医用画像を含む、請求項1乃至9のいずれか一項に記載の画像処理装置。 The learning data of the learned model is a medical image captured by an image capturing device having a higher performance than an image capturing device used for capturing the first medical image, or a man-hour required for the first medical image capturing step. The image processing apparatus according to claim 1, wherein the image processing apparatus includes medical images acquired in many imaging steps.
- 前記学習済モデルの学習データは、被検体を撮影して得られる医用画像であって、該医用画像における異なる領域のいずれかに対応する撮影モードで取得された医用画像に対して、該医用画像における異なる領域のいずれかに対応する階調変換処理が施された医用画像を含む、請求項1乃至10のいずれか一項に記載された画像処理装置。 The learning data of the learned model is a medical image obtained by photographing a subject, and the medical image is obtained with respect to a medical image acquired in a photographing mode corresponding to any of different regions in the medical image. The image processing apparatus according to claim 1, further comprising a medical image that has been subjected to gradation conversion processing corresponding to any of different areas in.
- 前記学習済モデルの学習データは、重ね合わせ処理、最大事後確率推定処理、平滑化フィルタ処理及び階調変換処理のうちの一つの処理により得られた画像に対して、該画像における異なる領域のいずれかに対応する階調変換処理が施された医用画像を含む、請求項1乃至11のいずれか一項に記載の画像処理装置。 The learning data of the learned model is one of different regions in the image with respect to the image obtained by one of the superimposing process, the maximum posterior probability estimating process, the smoothing filtering process, and the gradation converting process. The image processing apparatus according to claim 1, comprising a medical image that has been subjected to gradation conversion processing corresponding to.
- 前記学習済モデルの学習データは、前記第1の医用画像の撮影に用いられる撮影装置よりも高性能な撮影装置によって撮影された医用画像、又は前記第1の医用画像の撮影工程よりも工数の多い撮影工程で取得された医用画像に対して、該医用画像における異なる領域のいずれかに対応する階調変換処理が施された医用画像を含む、請求項1乃至12のいずれか一項に記載の画像処理装置。 The learning data of the learned model has a medical image captured by an image capturing device having a higher performance than an image capturing device used for capturing the first medical image, or a man-hour required for the first medical image capturing process. 13. The medical image obtained by a large number of photographing steps includes a medical image that has been subjected to gradation conversion processing corresponding to any of different regions in the medical image, and the medical image is included in any one of claims 1 to 12. Image processing device.
- 前記第2の医用画像における互いに異なる複数の領域それぞれに対して異なる解析条件を適用する解析部を更に備える、請求項1乃至13のいずれか一項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 13, further comprising an analysis unit that applies different analysis conditions to each of a plurality of mutually different regions in the second medical image.
- 表示部の表示を制御する表示制御部を更に備え、
前記表示制御部は、前記解析部による前記互いに異なる複数の領域それぞれに対する解析結果を前記表示部に表示させる、請求項14に記載の画像処理装置。 A display control unit for controlling the display of the display unit,
The image processing device according to claim 14, wherein the display control unit causes the display unit to display an analysis result of each of the plurality of different regions by the analysis unit. - 表示部の表示を制御する表示制御部を更に備え、
前記表示制御部は、前記第2の医用画像とともに、前記第2の医用画像が前記学習済モデルを用いて生成された画像であることを前記表示部に表示させる、請求項1乃至14のいずれか一項に記載の画像処理装置。 A display control unit for controlling the display of the display unit,
15. The display control unit causes the display unit to display, together with the second medical image, that the second medical image is an image generated using the learned model. The image processing device according to item 1. - 前記高画質化部は、
前記第2の医用画像を生成するための学習済モデルとは異なる学習済モデルを用いて、前記第1の医用画像から、前記異なる領域について異なるラベル値が付されたラベル画像を生成し、
前記第2の医用画像を生成するための学習済モデルを用いて、前記ラベル画像から前記第2の医用画像を生成する、請求項1乃至16のいずれか一項に記載の画像処理装置。 The image quality improving unit is
Using a learned model different from the learned model for generating the second medical image, generating label images with different label values for the different regions from the first medical image,
The image processing device according to claim 1, wherein the second medical image is generated from the label image using a learned model for generating the second medical image. - 前記第1の医用画像及び前記第2の医用画像の少なくとも一方の画像から、該少なくとも一方の画像における異なる領域を特定する画像処理部を更に備える、請求項1乃至16のいずれか一項に記載の画像処理装置。 17. The image processing unit according to claim 1, further comprising an image processing unit that identifies a different region in at least one of the first medical image and the second medical image from at least one image. Image processing device.
- 前記画像処理部は、前記第2の医用画像を生成するための学習済モデルとは異なる学習済モデルを用いて、前記少なくとも一方の画像における異なる領域を特定する、請求項18に記載の画像処理装置。 The image processing according to claim 18, wherein the image processing unit specifies a different region in the at least one image by using a learned model different from a learned model for generating the second medical image. apparatus.
- 前記第1の医用画像及び前記第2の医用画像は動画像であり、
前記第2の医用画像が動画像として表示された状態で、前記特定した異なる領域のいずれかが表示領域における所定の位置になるように、撮影範囲を変更する光学部材を駆動制御する駆動制御部を更に備える、請求項18又は19に記載の画像処理装置。 The first medical image and the second medical image are moving images,
With the second medical image displayed as a moving image, a drive control unit that drives and controls an optical member that changes an imaging range such that one of the specified different areas is located at a predetermined position in the display area. The image processing device according to claim 18, further comprising: - 前記画像処理部は、前記第2の医用画像を生成するための学習済モデルとは異なる学習済モデルを用いて、前記特定した異なる領域それぞれについて画像解析結果を生成する、請求項18乃至20のいずれか一項に記載の画像処理装置。 21. The image processing unit generates an image analysis result for each of the specified different regions by using a learned model different from a learned model for generating the second medical image. The image processing device according to claim 1.
- 前記画像処理部は、前記第2の医用画像を生成するための学習済モデルとは異なる学習済モデルを用いて、前記特定した異なる領域それぞれについて診断結果を生成する、請求項18乃至21のいずれか一項に記載の画像処理装置。 The image processing unit generates a diagnosis result for each of the specified different regions by using a learned model different from a learned model for generating the second medical image. The image processing device according to item 1.
- 前記画像処理部は、前記特定した異なる領域それぞれについて敵対的生成ネットワーク又はオートエンコーダーを用いて得た医用画像と、該敵対的生成ネットワーク又は該オートエンコーダーに入力された医用画像との差に関する情報を異常部位に関する情報として生成する、請求項18乃至22のいずれか一項の記載の画像処理装置。 The image processing unit provides information regarding a difference between a medical image obtained by using a hostile generation network or an auto encoder for each of the specified different areas and a medical image input to the hostile generation network or the auto encoder. The image processing device according to claim 18, wherein the image processing device is generated as information regarding an abnormal part.
- 前記画像処理部は、前記第2の医用画像を生成するための学習済モデルとは異なる学習済モデルを用いて、前記特定した異なる領域それぞれについて類似症例画像の検索を行う、請求項18乃至23のいずれか一項に記載の画像処理装置。 24. The image processing unit searches for similar case images for each of the specified different regions using a learned model different from a learned model for generating the second medical image. The image processing device according to claim 1.
- 前記第1の医用画像及び前記第2の医用画像は3次元のOCT断層画像であり、
前記画像処理部は、前記第2の医用画像の一部の深度範囲に対応する正面画像を生成する、請求項18乃至24のいずれか一項に記載の画像処理装置。 The first medical image and the second medical image are three-dimensional OCT tomographic images,
The image processing device according to any one of claims 18 to 24, wherein the image processing unit generates a front image corresponding to a partial depth range of the second medical image. - 被検体の第1の医用画像を取得する工程と、
学習済モデルを用いて、前記第1の医用画像から、前記第1の医用画像における異なる領域に異なる画像処理が施されたような第2の医用画像を生成する工程と、
を含む、画像処理方法。 Acquiring a first medical image of the subject,
Using the learned model to generate a second medical image from the first medical image such that different regions in the first medical image have undergone different image processing;
An image processing method including: - 被検体の第1の医用画像を取得する工程と、
学習済モデルを用いて、前記第1の医用画像から、前記第1の医用画像における第1の領域と該第1の領域とは異なる第2の領域との異なる領域が高画質化された第2の医用画像を生成する工程と、
を含む、画像処理方法。 Acquiring a first medical image of the subject,
Using the learned model, a high-quality image of a different region of the first medical image and the second region different from the first region is formed from the first medical image. Generating a medical image of step 2,
An image processing method including: - プロセッサーによって実行されると、該プロセッサーに請求項26又は27に記載の画像処理方法の各工程を実行させるプログラム。
A program which, when executed by a processor, causes the processor to execute each step of the image processing method according to claim 26.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980066849.XA CN112822972A (en) | 2018-10-10 | 2019-10-08 | Image processing apparatus, image processing method, and program |
US17/224,562 US11935241B2 (en) | 2018-10-10 | 2021-04-07 | Image processing apparatus, image processing method and computer-readable medium for improving image quality |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018191449 | 2018-10-10 | ||
JP2018-191449 | 2018-10-10 | ||
JP2019-183106 | 2019-10-03 | ||
JP2019183106A JP7250653B2 (en) | 2018-10-10 | 2019-10-03 | Image processing device, image processing method and program |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/224,562 Continuation US11935241B2 (en) | 2018-10-10 | 2021-04-07 | Image processing apparatus, image processing method and computer-readable medium for improving image quality |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020075719A1 true WO2020075719A1 (en) | 2020-04-16 |
Family
ID=70165002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039676 WO2020075719A1 (en) | 2018-10-10 | 2019-10-08 | Image processing device, image processing method, and program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020075719A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111493854A (en) * | 2020-04-24 | 2020-08-07 | 天津恒宇医疗科技有限公司 | Display method for three-dimensional imaging of skin structure and blood flow |
CN112465839A (en) * | 2020-12-10 | 2021-03-09 | 山东承势电子科技有限公司 | Data enhancement-based fundus image focus segmentation and quantitative analysis method |
US20220183551A1 (en) * | 2020-12-16 | 2022-06-16 | Canon Kabushiki Kaisha | Optical coherence tomography apparatus, control method for optical coherence tomography apparatus, and computer readable storage medium |
JP2023535245A (en) * | 2020-06-29 | 2023-08-17 | 国立大学法人大阪大学 | MEDICAL DIAGNOSTIC APPARATUS AND PATHOLOGY EVALUATION METHOD USING THREE-DIMENSIONAL OPTICAL COHERENCE TOMOGRAPHY DATA AND IMAGES |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6046250B2 (en) * | 1981-06-22 | 1985-10-15 | 株式会社日立製作所 | turbo charger |
JPH09179977A (en) * | 1995-12-21 | 1997-07-11 | Shimadzu Corp | Automatic processor for intensity level of medical image |
JP2009151350A (en) * | 2007-12-18 | 2009-07-09 | Nec Corp | Image correction method and device |
JP2014104275A (en) * | 2012-11-29 | 2014-06-09 | Osaka Univ | Ophthalmologic apparatus |
JP2017055916A (en) * | 2015-09-15 | 2017-03-23 | キヤノン株式会社 | Image generation apparatus, image generation method, and program |
WO2018055545A1 (en) * | 2016-09-23 | 2018-03-29 | International Business Machines Corporation | Prediction of age related macular degeneration by image reconstruction |
US20180140257A1 (en) * | 2016-11-21 | 2018-05-24 | International Business Machines Corporation | Retinal Scan Processing for Diagnosis of a Subject |
JP2018136537A (en) * | 2017-02-15 | 2018-08-30 | 株式会社半導体エネルギー研究所 | Semiconductor device and display system |
-
2019
- 2019-10-08 WO PCT/JP2019/039676 patent/WO2020075719A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6046250B2 (en) * | 1981-06-22 | 1985-10-15 | 株式会社日立製作所 | turbo charger |
JPH09179977A (en) * | 1995-12-21 | 1997-07-11 | Shimadzu Corp | Automatic processor for intensity level of medical image |
JP2009151350A (en) * | 2007-12-18 | 2009-07-09 | Nec Corp | Image correction method and device |
JP2014104275A (en) * | 2012-11-29 | 2014-06-09 | Osaka Univ | Ophthalmologic apparatus |
JP2017055916A (en) * | 2015-09-15 | 2017-03-23 | キヤノン株式会社 | Image generation apparatus, image generation method, and program |
WO2018055545A1 (en) * | 2016-09-23 | 2018-03-29 | International Business Machines Corporation | Prediction of age related macular degeneration by image reconstruction |
US20180140257A1 (en) * | 2016-11-21 | 2018-05-24 | International Business Machines Corporation | Retinal Scan Processing for Diagnosis of a Subject |
JP2018136537A (en) * | 2017-02-15 | 2018-08-30 | 株式会社半導体エネルギー研究所 | Semiconductor device and display system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111493854A (en) * | 2020-04-24 | 2020-08-07 | 天津恒宇医疗科技有限公司 | Display method for three-dimensional imaging of skin structure and blood flow |
CN111493854B (en) * | 2020-04-24 | 2022-11-11 | 天津恒宇医疗科技有限公司 | Display method for three-dimensional imaging of skin structure and blood flow |
JP2023535245A (en) * | 2020-06-29 | 2023-08-17 | 国立大学法人大阪大学 | MEDICAL DIAGNOSTIC APPARATUS AND PATHOLOGY EVALUATION METHOD USING THREE-DIMENSIONAL OPTICAL COHERENCE TOMOGRAPHY DATA AND IMAGES |
JP7510141B2 (en) | 2020-06-29 | 2024-07-03 | 国立大学法人大阪大学 | Medical diagnostic device and pathological condition evaluation method using three-dimensional optical coherence tomography data and images |
CN112465839A (en) * | 2020-12-10 | 2021-03-09 | 山东承势电子科技有限公司 | Data enhancement-based fundus image focus segmentation and quantitative analysis method |
US20220183551A1 (en) * | 2020-12-16 | 2022-06-16 | Canon Kabushiki Kaisha | Optical coherence tomography apparatus, control method for optical coherence tomography apparatus, and computer readable storage medium |
US11819275B2 (en) * | 2020-12-16 | 2023-11-21 | Canon Kabushiki Kaisha | Optical coherence tomography apparatus, control method for optical coherence tomography apparatus, and computer-readable storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7250653B2 (en) | Image processing device, image processing method and program | |
JP7579372B2 (en) | Medical image processing device, medical image processing system, medical image processing method and program | |
JP7269413B2 (en) | MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL IMAGE PROCESSING SYSTEM, MEDICAL IMAGE PROCESSING METHOD AND PROGRAM | |
JP7341874B2 (en) | Image processing device, image processing method, and program | |
US12039704B2 (en) | Image processing apparatus, image processing method and computer-readable medium | |
WO2020183791A1 (en) | Image processing device and image processing method | |
JP7362403B2 (en) | Image processing device and image processing method | |
WO2020075719A1 (en) | Image processing device, image processing method, and program | |
JP7374615B2 (en) | Information processing device, information processing method and program | |
JP2021037239A (en) | Area classification method | |
WO2020138128A1 (en) | Image processing device, image processing method, and program | |
WO2019230643A1 (en) | Information processing device, information processing method, and program | |
JP2021164535A (en) | Image processing device, image processing method and program | |
JP7254682B2 (en) | Image processing device, image processing method, and program | |
JP2021069667A (en) | Image processing device, image processing method and program | |
JP2020146433A (en) | Image processing apparatus, image processing method, and program | |
JP7488934B2 (en) | IMAGE PROCESSING APPARATUS, OPERATION METHOD OF IMAGE PROCESSING APPARATUS, AND PROGRAM | |
JP2023010308A (en) | Image processing device and image processing method | |
JP2022121202A (en) | Image processing device and image processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19870498 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19870498 Country of ref document: EP Kind code of ref document: A1 |