WO2020073698A1 - 一种带回热循环的利用lng冷能和工业废热的orc发电系统 - Google Patents
一种带回热循环的利用lng冷能和工业废热的orc发电系统 Download PDFInfo
- Publication number
- WO2020073698A1 WO2020073698A1 PCT/CN2019/094302 CN2019094302W WO2020073698A1 WO 2020073698 A1 WO2020073698 A1 WO 2020073698A1 CN 2019094302 W CN2019094302 W CN 2019094302W WO 2020073698 A1 WO2020073698 A1 WO 2020073698A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- heat
- orc
- lng
- industrial waste
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 58
- 239000002440 industrial waste Substances 0.000 title claims abstract description 30
- 230000001172 regenerating effect Effects 0.000 title abstract 2
- 239000012530 fluid Substances 0.000 claims abstract description 95
- 238000002309 gasification Methods 0.000 claims abstract description 21
- 238000003860 storage Methods 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 11
- 238000011084 recovery Methods 0.000 claims description 10
- 230000005494 condensation Effects 0.000 claims description 7
- 238000009833 condensation Methods 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 239000002826 coolant Substances 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims 1
- 239000003949 liquefied natural gas Substances 0.000 description 47
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 238000013475 authorization Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
- F02C1/05—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K27/00—Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
Definitions
- the invention belongs to the field of power engineering, and relates to an LNG cold energy and industrial waste heat utilization system, in particular to an ORC power generation system based on a three-fluid heat exchanger and a regenerator.
- Liquefied natural gas (Liquid Natural Gas, LNG) is a clean energy, which is in line with the international and China's energy structure optimization and the development direction of low-carbon economy. At the same time, global climate change and greenhouse gas emission control have further promoted the development of LNG. LNG is beneficial for storage and transportation, but it must be gasified before being used.
- the storage temperature of LNG is -162 ° C, and the gas temperature required for use is 20 ° C. In the whole gasification process, the cooling capacity released by LNG per unit mass is about 830kJ.
- Organic Rankine Cycle can use the recovery of cold and heat generated in the industrial production process and convert it into electrical energy that is convenient for storage and transmission.
- This technology meets the policy requirements of sustainable development.
- the single-stage cold energy ORC power generation system has the problems of large temperature difference heat transfer, large irreversible loss, and low overall system efficiency. These are the main factors that have troubled the popularization and application of LNG cold energy power generation projects. How to make full use of this high-grade cold energy and reduce the energy consumption of the ORC power generation system is the problem to be solved by the present invention.
- the patent document with the application publication number CN 107605555A discloses a power generation system coupled by two ORCs, characterized in that the two ORC subsystems communicate with each other through a regenerator Coupling, fully recovering the waste heat of the expander, obviously improves the thermal efficiency of the entire system.
- the heat source involved in this system is medium and low temperature industrial waste heat. It is not necessary to clarify the nature of the cold source, nor does it involve the use of LNG cold energy.
- the patent document with the authorized patent number US7577576B2 discloses a two-level ORC power generation system based on the utilization of LNG cold energy, including LNG gasification pipelines sequentially flowing through the first-level ORC circulation circuit
- the ORC secondary circulation circuit provides cooling for the condensation of the working fluid in the ORC.
- a regenerator is placed in front of the evaporator of the primary ORC circulation loop to make full use of the heat of the working fluid at the outlet of the expander.
- the system considers the full use of energy, but the secondary ORC cycle structure is complex and the cycle efficiency affects each other.
- the thermal stress caused by the large temperature difference during the heat exchange between LNG and circulating working fluid is not considered.
- the present invention provides an ORC power generation system with heat recovery cycle suitable for LNG cold energy and industrial waste heat utilization, which can effectively recover LNG gasification cold energy and reduce the large temperature difference during the LNG cold energy recovery process
- the thermal stress caused by heat transfer reduces the heating load of the evaporator, thereby achieving efficient thermoelectric conversion, has significant economic and social benefits, and is in line with the basic national policy of energy conservation and emission reduction.
- An ORC power generation system that utilizes LNG cold energy and industrial waste heat with a heat recovery cycle.
- the system includes an LNG gasification circuit, an ORC power generation circuit, and an industrial waste heat circuit; wherein, the ORC power generation circuit passes through a three-fluid heat exchanger and The regenerator uses the cold energy released by the LNG gasification circuit, and the ORC power generation circuit uses the heat of the industrial waste heat circuit through the evaporator.
- the LNG gasification circuit includes an LNG liquid storage tank, an LNG circulation pump, a flow regulating valve and a three-fluid heat exchanger connected in sequence; the LNG gasification circuit and the ORC power generation circuit pass through the three-fluid heat exchanger Heat exchange is performed; the gas flow in the LNG gasification circuit is determined according to the load demand of the user end, and is controlled by a flow regulating valve.
- the ORC power generation circuit includes an expander, a motor, a gas-liquid separator, a regenerator, a three-fluid heat exchanger, a working fluid circulation pump, a liquid storage tank, and an evaporator connected in sequence to form a closed cycle;
- the outlet is equipped with temperature sensor and pressure sensor; the exhaust steam of the expander enters the regenerator to complete pre-cooling, and then enters the three-fluid heat exchanger for primary condensation; the working fluid that has undergone the primary condensation is pressurized by the working fluid circulation pump and enters the storage Liquid tank; working fluid enters three-fluid heat exchanger, regenerator and evaporator in turn, turns into high-temperature and high-pressure steam, and performs work in the expander, thereby pushing the motor to convert mechanical energy into electrical energy.
- the ORC power generation circuit is provided with a bypass pipeline parallel to the expander pipeline, and the bypass valve controls the flow of working fluid flowing through the expander.
- the industrial waste heat circuit includes an evaporator and a coolant circulation pump connected in sequence.
- the three-fluid heat exchanger is a condenser of an ORC power generation circuit, which is in the form of a wound-tube three-fluid heat exchanger; the first fluid of the three-fluid heat exchanger is LNG, and the second fluid and the third fluid are both It is the ORC circulating working fluid, which flows through the three-fluid heat exchanger twice.
- the regenerator and the evaporator are plate heat exchangers; in the regenerator, high-temperature and low-pressure ORC circulating working fluid is exchanged with low-temperature and high-pressure ORC circulating working fluid; in the evaporator, industrial
- the cooling fluid of the waste heat circuit exchanges heat with the low-temperature and high-pressure ORC circulating working fluid from the regenerator.
- the heat source of the ORC power generation circuit uses industrial waste heat, and its temperature range is 50 ° C to 80 ° C.
- the circulating working fluid used in the ORC power generation circuit is a mixture of methane, ethane and propane.
- the present invention makes full use of the high-grade cold energy and industrial waste heat released during the LNG gasification process, and converts the cold and heat energy into electrical energy that is convenient for storage and transportation through the ORC cycle. Reduced thermal pollution, improved energy utilization, and reduced LNG operating costs.
- the present invention uses a regenerator, which uses the heat of the circulating working fluid at the outlet of the expander to preheat the circulating working fluid entering the evaporator, which not only increases the evaporation temperature of the ORC cycle, but also reduces the load of the evaporator and improves The overall efficiency of the ORC power generation system. 3.
- the present invention particularly adopts a three-fluid heat exchanger as the condenser of the ORC power generation system, in which LNG flows through the three-fluid heat exchanger to exchange heat with the ORC circulating working medium; in this process, the LNG absorbs heat and becomes suitable for users For the natural gas required, the ORC circulating working fluid releases heat to condense into a liquid; in particular, the ORC circulating working fluid flows through the three-fluid heat exchanger twice.
- the present invention uses a mixture of methane, ethane and propane as the ORC cycle working fluid. By adjusting the proportion of each component, the ORC cycle working fluid condensation-gasification curve can be matched with the LNG gasification curve, thereby reducing the cooling and heat exchange process The heat loss in the process improves the ORC power generation efficiency. 5.
- the invention is provided with temperature and pressure sensors before and after the expander, and the measured signals can be transmitted to the central controller in time to realize the intelligent control of the ORC power generation system; the bypass circuit parallel to the expander pipeline ensures reliable and safe operation of the system Stable, easy to implement the project.
- the invention has simple structure and convenient use, and can be widely used in the field of LNG cold energy power generation.
- FIG. 1 is a schematic structural diagram of the present invention.
- 101 represents the LNG storage tank
- 102 represents the LNG circulation pump
- 103 represents the LNG flow regulating valve
- 201 represents the expander
- 202 represents the motor
- 203 represents the gas-liquid separator
- 204 represents the regenerator
- 205 represents the three-fluid heat exchange 206 represents the working fluid circulation pump
- 207 represents the liquid storage tank
- 208 represents the evaporator
- 209 represents the bypass valve
- 301 represents the cooling fluid circulation pump.
- Figure 2 is a schematic diagram of the temperature-enthalpy t-h of the ORC recuperation cycle.
- a represents the LNG inlet
- b represents the LNG outlet
- c represents the primary inlet of the circulating working fluid
- d represents the primary outlet of the circulating working fluid
- e represents the secondary inlet of the circulating working fluid
- f represents the secondary outlet of the circulating working fluid
- g Represents evaporator circulating working fluid inlet
- h represents evaporator circulating working fluid outlet
- g ' represents evaporator circulating working fluid inlet without regenerator
- h' represents evaporator circulating working fluid outlet without regenerator.
- an ORC power generation system with a heat recovery cycle using LNG cold energy and industrial waste heat the system includes an LNG gasification circuit, an ORC power generation circuit, and an industrial waste heat circuit; wherein, the ORC power generation circuit
- the cold source is provided by the cold energy released by the LNG gasification circuit
- the heat source of the ORC power generation circuit is provided by the industrial waste heat circuit.
- the LNG gasification circuit includes an LNG storage tank 101, an LNG circulation pump 102, an LNG flow regulating valve 103, and a three-fluid heat exchanger 205 connected in sequence; the LNG gasification circuit The three-fluid heat exchanger 205 exchanges heat with the ORC power generation circuit; the gas flow in the LNG gasification circuit is determined by the user's load demand, and is controlled by the flow regulating valve 103.
- the ORC power generation circuit includes an expander 201, a motor 202, a gas-liquid separator 203, a regenerator 204, a three-fluid heat exchanger 205, and a working fluid that are sequentially connected to form a closed cycle
- Temperature sensors T-1, T-2 and pressure sensors P-1, P-2 are installed at the inlet and outlet of the expander 201; the exhaust steam of the expander 201 enters the regenerator 204 to complete pre-cooling, and then enters a three-fluid heat exchanger 205 conducts a condensation; the working fluid after the first condensation is pressurized by the working fluid circulation pump 206 and enters the storage tank 207; the working fluid enters the three-fluid heat exchanger 205, the regenerator 204 and the evaporator 208 in turn become high temperature and high pressure The steam does work in the expander 201, thereby pushing the motor 202 to convert mechanical energy into electrical energy.
- the ORC power generation circuit is provided with a bypass line parallel to the expander line, and the bypass valve 209 controls the flow rate of the working fluid flowing through the expander 201.
- the industrial waste heat circuit includes an evaporator 208 and a coolant circulation pump 301 connected in sequence.
- the three-fluid heat exchanger 205 is a condenser of an ORC power generation circuit in the form of a three-fluid heat exchanger with a tube type; the first fluid of the three-fluid heat exchanger 205 is The LNG, the second fluid and the third fluid are all ORC circulating working fluid, and the ORC circulating working fluid flows through the three-fluid heat exchanger 205 twice.
- the regenerator 204 and the evaporator 208 are plate heat exchangers; in the regenerator 204, the high temperature and low pressure ORC cycle working fluid and the low temperature and high pressure ORC circulating working fluid Heat exchange; in the evaporator 208, the cooling liquid of the industrial waste heat circuit exchanges heat with the low-temperature high-pressure ORC circulating working fluid from the regenerator 204.
- the heat source of the ORC power generation circuit uses industrial waste heat, and its temperature range is 50 ° C to 80 ° C.
- the circulating working fluid used in the ORC power generation circuit is a mixture of methane, ethane and propane.
- the working fluids in the three-fluid heat exchanger of the present invention are LNG, ORC circulating working fluid and ORC circulating working fluid.
- the ORC power generation system using a three-fluid heat exchanger and regenerator requires a heating capacity of the evaporator of q, an expander work of w, and an ORC power generation system of efficiency w / q.
- the ORC power generation system without recuperation cycle requires the evaporator heating amount q ', the expander work power w, and the ORC power generation system efficiency w / q'.
- the heating amount q of the evaporator with recuperation cycle is smaller than the heating amount q 'of the evaporator without recuperation cycle. This shows that the recuperation cycle can significantly improve the efficiency of the ORC power generation system.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
一种带回热循环的利用LNG冷能和工业废热的ORC发电系统,包括LNG气化回路,ORC发电回路和工业废热回路,ORC发电回路通过三流体换热器(205)和回热器(204)利用LNG气化回路释放的冷能,ORC发电回路通过蒸发器(208)利用工业废热回路的热量。该发电系统能降低蒸发器的热负荷,提高ORC发电系统的效率。
Description
本发明属于动力工程领域,涉及一种LNG冷能和工业废热利用系统,特别涉及一种基于三流体换热器和回热器的ORC发电系统。
液化天然气(Liquid Nature Gas,LNG)是清洁能源,符合国际和我国能源结构优化和低碳经济的发展方向。同时,全球气候变化和温室气体排放控制进一步促进了LNG的发展。LNG有利于储存和运输,但其在被利用之前必须要经过气化。LNG的储存温度为-162℃,而达到使用要求的气体温度为20℃。在整个气化过程中单位质量的LNG释放的冷量约为830kJ。
有机朗肯循环(Organic Rankine Cycle,ORC)能够利用回收工业生产过程中产生的冷量和热量,将其转化成方便存储和传输的电能,这一技术符合可持续发展的政策要求。然而,单级冷能ORC发电系统中存在大温差传热、不可逆损失大、系统整体效率低等问题,这些是一直困扰LNG冷能发电工程推广应用的主要因素。如何充分利用这部分高品位冷能,同时减少ORC发电系统的能量消耗,是本发明所要解决的问题。
申请公布号为CN 107605555A(申请公布日为2018.01.19)的专利文件中,公开了一种由两个ORC耦合而成的发电系统,其特征在于,两个ORC子系统通过回热器进行相互耦合,充分回收利用膨胀机的乏气余热,明显提升了整个系统的热效率。该系统中所涉及的热 源是中低温工业废热,没用明确冷源性质,没有涉及LNG冷能利用。
授权专利号为US 7574856B2(授权公告日为2009.08.18)的专利文件中,公开了一种基于LNG冷能利用的二级ORC发电系统,包括LNG气化管路依次流经一级ORC循环回路和ORC二级循环回路,为ORC内工质的冷凝提供冷量,特别地,在一级ORC循环回路蒸发器前中设置回热器,充分利用膨胀机出口工质的热量。该系统考虑了能量的充分利用,但是二级ORC循环结构复杂,循环效率互相影响,没有考虑LNG与循环工质换热过程中大温差造成的热应力。
鉴于此,实有必要提供一种可以解决上述技术问题且适用于LNG冷能和工业废热利用的高效ORC发电系统。
发明内容:
针对以上技术问题,本发明提供一种带回热循环的适用于LNG冷能和工业废热利用的ORC发电系统,该系统能够有效回收LNG气化冷能,降低LNG冷能回收过程中的大温差传热造成的热应力,减小蒸发器的加热负荷,从而实现高效热电转换,具有显著的经济效益和社会效益,符合节能减排的基本国策。
本发明采用以下技术方案:
一种带回热循环的利用LNG冷能和工业废热的ORC发电系统,该系统包括LNG气化回路、ORC发电回路和工业废热回路;其中,所述的ORC发电回路通过三流体换热器和回热器利用所述的LNG气化回路释放的冷能,所述的ORC发电回路通过蒸发器利用所述的工业废热回路的热量。
所述的LNG气化回路包括依次连接的LNG储液罐、LNG循环泵、流量调节阀和三流体换热器;所述的LNG气化回路与所述的ORC 发电回路通过三流体换热器进行热量交换;所述的LNG气化回路中的气体流量根据用户端负荷需求确定,通过流量调节阀实现控制。
所述的ORC发电回路包括依次连接并形成一个闭合循环的膨胀机、电动机、气液分离器、回热器、三流体换热器、工质循环泵、储液罐和蒸发器;膨胀机进出口均设置温度传感器和压力传感器;膨胀机的乏汽进入回热器内完成预冷,然后进入三流体换热器进行一次冷凝;经过一次冷凝的工质经工质循环泵加压后进入储液罐;工质依次进入三流体换热器、回热器和蒸发器变成高温高压的蒸汽,在膨胀机内做功,从而推动电动机将机械能转换成电能。
所述的ORC发电回路中设置与膨胀机管路平行的旁通管路,由旁通阀控制流经膨胀机的工质流量。
所述的工业废热回路包括依次连接的蒸发器和冷却液循环泵。
所述的三流体换热器是ORC发电回路的冷凝器,其形式为绕管式三流体换热器;所述的三流体换热器第一流体为LNG,第二流体和第三流体均为ORC循环工质,ORC循环工质两次流经三流体换热器。
所述的回热器和蒸发器是板式换热器;所述的回热器中,高温低压的ORC循环工质与低温高压的ORC循环工质进行热交换;所述的蒸发器中,工业废热回路的冷却液与来自于回热器的低温高压的ORC循环工质进行热交换。
所述的ORC发电回路的热源采用工业废热,其温度范围是50℃~80℃。
所述的ORC发电回路采用的循环工质是甲烷、乙烷和丙烷的混合物。
本发明由于采取以上技术方案,其具有以下优点:1.本发明充 分利用LNG气化过程中释放的高品位冷能和工业废热,通过ORC循环将冷热能转换成方便存储和输送的电能,减少了热污染,提高了能源利用率,降低了LNG的运行成本。2.本发明采用回热器,利用膨胀机出口循环工质的热量对进入蒸发器的循环工质进行预热,既提高了ORC循环的蒸发温度,又减小了蒸发器的负荷,提高了ORC发电系统的整体效率。3.本发明特别采用三流体换热器作为ORC发电系统的冷凝器,其中LNG流经三流体换热器与ORC循环工质进行热量交换;在此过程中,LNG吸收热量变成适用于用户需求的天然气,ORC循环工质释放热量冷凝成液体;特别地,ORC循环工质两次流经三流体换热器,在该过程中三流体换热器各横截面上的温度一致,消除了由于大温差造成的热应力,保证了换热器的运行安全性,同时,减少了ORC循环回路中蒸发器的负荷,进一步提高了ORC发电系统的效率。4.本发明采用甲烷、乙烷和丙烷的混合物作为ORC循环工质,通过调整各组分比例,可以保证ORC循环工质冷凝-气化曲线与LNG气化曲线匹配,进而减少冷热交换过程中的热损失,提高ORC发电效率。5.本发明在膨胀机前后设置温度和压力传感器,所测信号可以及时传递给中央控制器,实现ORC发电系统的智能控制;与膨胀机管路平行的旁通回路保证系统的运行可靠,安全稳定,便于工程实施。本发明结构简单,使用方便,可以广泛应用于LNG冷能发电领域。
图1为本发明的结构示意图。
其中,101代表LNG储液罐,102代表LNG循环泵,103代表LNG流量调节阀;201代表膨胀机,202代表电动机,203代表气液分离器,204代表回热器,205代表三流体换热器,206代表工质循 环泵,207代表储液罐,208代表蒸发器,209代表旁通阀;301代表冷却液循环泵。
图2为ORC回热循环温焓t-h原理图。
其中,a代表LNG进气口,b代表LNG出气口,c代表循环工质一次入口,d代表循环工质一次出口,e代表循环工质二次入口,f代表循环工质二次出口,g代表蒸发器循环工质入口,h代表蒸发器循环工质出口,g’代表无回热器时蒸发器循环工质入口,h’代表无回热器时蒸发器循环工质出口。
以下结合优选实施例和附图对本发明的技术方案作进一步说明。
如图1所示,一种带回热循环的利用LNG冷能和工业废热的ORC发电系统,该系统包括LNG气化回路、ORC发电回路和工业废热回路;其中,所述的ORC发电回路的冷源由所述的LNG气化回路释放的冷能提供,所述的ORC发电回路的热源由所述的工业废热回路提供。
作为本发明的优选实施例,所述的LNG气化回路包括依次连接的LNG储液罐101、LNG循环泵102、LNG流量调节阀103和三流体换热器205;所述的LNG气化回路与所述的ORC发电回路通过三流体换热器205进行热量交换;所述的LNG气化回路中的气体流量由用户端负荷需求确定,通过流量调节阀103实现控制。
作为本发明的优选实施例,所述的ORC发电回路包括依次连接并形成一个闭合循环的膨胀机201、电动机202、气液分离器203、回热器204、三流体换热器205、工质循环泵206、储液罐207和蒸发器208。膨胀机201进出口均设置温度传感器T-1,T-2和压力传感器P-1,P-2;膨胀机201的乏汽进入回热器204内完成预冷,然后进 入三流体换热器205进行一次冷凝;经过一次冷凝的工质经工质循环泵206加压后进入储液罐207;工质依次进入三流体换热器205、回热器204和蒸发器208变成高温高压的蒸汽,在膨胀机201内做功,从而推动电动机202将机械能转换成电能。
作为本发明的优选实施例,所述的ORC发电回路中设置与膨胀机管路平行的旁通管路,由旁通阀209控制流经膨胀机201的工质流量。
作为本发明的优选实施例,所述的工业废热回路包括依次连接蒸发器208和冷却液循环泵301。
作为本发明的优选实施例,所述的三流体换热器205是ORC发电回路的冷凝器,其形式为绕管式三流体换热器;所述的三流体换热器205第一流体为LNG,第二流体和第三流体均为ORC循环工质,ORC循环工质两次流经三流体换热器205。
作为本发明的优选实施例,所述的回热器204和蒸发器208是板式换热器;所述的回热器204中,高温低压的ORC循环工质与低温高压的ORC循环工质进行热交换;所述的蒸发器208中,工业废热回路的冷却液与来自于回热器204的低温高压的ORC循环工质进行热交换。
作为本发明的优选实施例,所述的ORC发电回路的热源采用工业废热,其温度范围是50℃~80℃。
作为本发明的优选实施例,所述的ORC发电回路采用的循环工质是甲烷、乙烷和丙烷的混合物。
如图2(a)所示,本发明的三流体换热器内工质分别为LNG,ORC循环工质和ORC循环工质。如图2(b)所示,采用三流体换热器和回热器的ORC发电系统,所需蒸发器加热量为q,膨胀机做功 为w,ORC发电系统的效率为w/q。如图2(c)所示,不采用回热循环的的ORC发电系统,所需蒸发器加热量为q’,膨胀机做功为w,ORC发电系统的效率为w/q’。膨胀机做功w不变的前提下,带回热循环的蒸发器加热量q比无回热循环的蒸发器加热量q’小。由此可见,回热循环能够显著提高ORC发电系统的效率。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。
Claims (6)
- 一种带回热循环的利用LNG冷能和工业废热的ORC发电系统,其特征在于:包括LNG气化回路、ORC发电回路和工业废热回路;其中,所述的ORC发电回路通过三流体换热器和回热器利用所述的LNG气化回路释放的冷能,所述的ORC发电回路通过蒸发器利用所述的工业废热回路的热量。
- 如权利要求1所述的一种带回热循环的利用LNG冷能和工业废热的ORC发电系统,其特征在于:所述的LNG气化回路包括依次连接的LNG储液罐、LNG循环泵、LNG流量调节阀和三流体换热器。
- 如权利要求1所述的一种带回热循环的利用LNG冷能和工业废热的ORC发电系统,其特征在于:所述的ORC发电回路包括依次连接并形成一个闭合循环的膨胀机、电动机、气液分离器、回热器、三流体换热器、工质循环泵、储液罐和蒸发器;膨胀机进出口均设置温度传感器和压力传感器;膨胀机的乏汽进入回热器内完成预冷,然后进入三流体换热器进行一次冷凝;经过一次冷凝的工质经工质循环泵加压后进入储液罐;工质依次进入三流体换热器、回热器和蒸发器变成高温高压的蒸汽,在膨胀机内做功,从而推动电动机将机械能转换成电能;所述的ORC发电回路中设置与膨胀机管路平行的旁通管路,由旁通阀控制流经膨胀机的工质流量。
- 如权利要求1所述的一种带回热循环的利用LNG冷能和工业废热的ORC发电系统,其特征在于:所述的工业废热回路包括依次连接的蒸发器和冷却液循环泵。
- 如权利要求1或2或3所述的一种带回热循环的利用LNG冷能和 工业废热的ORC发电系统,其特征在于:所述的三流体换热器是ORC发电回路的冷凝器,其形式为绕管式三流体换热器,第一流体为LNG,第二流体和第三流体均为ORC循环工质。
- 如权利要求1或3所述的一种带回热循环的利用LNG冷能和工业废热的ORC发电系统,其特征在于:所述的回热器和蒸发器是板式换热器;所述的回热器中,高温低压的ORC循环工质与低温高压的ORC循环工质进行热交换;所述的蒸发器中,工业废热回路的冷却液与来自于回热器的低温高压的ORC循环工质进行热交换。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/045,019 US20240247610A1 (en) | 2018-10-11 | 2019-07-02 | An Organic Rankine Cycle (ORC) Power Generation System Utilizing LNG Cold Energy and Dual-fuel Marine Engine Waste Heat |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811180495.5 | 2018-10-11 | ||
CN201811180495.5A CN109098809B (zh) | 2018-10-11 | 2018-10-11 | 一种带回热循环的利用lng冷能和工业废热的orc发电系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020073698A1 true WO2020073698A1 (zh) | 2020-04-16 |
Family
ID=64868356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/094302 WO2020073698A1 (zh) | 2018-10-11 | 2019-07-02 | 一种带回热循环的利用lng冷能和工业废热的orc发电系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240247610A1 (zh) |
CN (1) | CN109098809B (zh) |
WO (1) | WO2020073698A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109098809B (zh) * | 2018-10-11 | 2019-09-13 | 上海海事大学 | 一种带回热循环的利用lng冷能和工业废热的orc发电系统 |
CN109826683A (zh) * | 2019-01-03 | 2019-05-31 | 上海海事大学 | 一种可高效利用低温冷能的有机朗肯循环发电系统 |
CN109854320B (zh) * | 2019-01-03 | 2021-12-03 | 上海海事大学 | 一种二氧化碳储能与有机朗肯循环联合发电系统 |
CN109826684B (zh) * | 2019-01-03 | 2022-05-10 | 上海海事大学 | 一种可高效利用低温冷能的低压型有机朗肯循环发电系统 |
CN109826682B (zh) * | 2019-01-03 | 2021-12-03 | 上海海事大学 | 一种可实现冷热电联供的集成型供能系统 |
CN109595131A (zh) * | 2019-01-17 | 2019-04-09 | 苏州良造能源科技有限公司 | 一种太阳能光热和天然气冷能联合动力机发电系统 |
CN110847987B (zh) * | 2019-12-24 | 2024-04-05 | 青岛中稷龙源能源科技有限公司 | 一种混合工质的lng冷能发电和综合利用系统及方法 |
CN112343680A (zh) * | 2020-11-03 | 2021-02-09 | 上海齐耀动力技术有限公司 | 超临界二氧化碳发电系统及其运行控制方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102628402A (zh) * | 2012-04-17 | 2012-08-08 | 西安交通大学 | 基于lng冷能利用的燃料电池和有机朗肯循环联合发电系统 |
US20130160486A1 (en) * | 2011-12-22 | 2013-06-27 | Ormat Technologies Inc. | Power and regasification system for lng |
CN103362579A (zh) * | 2013-08-08 | 2013-10-23 | 华北科技学院 | 一种回收液化天然气冷能的两级膨胀发电装置及方法 |
CN207420649U (zh) * | 2017-08-03 | 2018-05-29 | 中国科学院理化技术研究所 | 一种低温液态空气储能系统 |
CN109098809A (zh) * | 2018-10-11 | 2018-12-28 | 上海海事大学 | 一种带回热循环的利用lng冷能和工业废热的orc发电系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19717267B4 (de) * | 1997-04-24 | 2008-08-14 | Alstom | Verfahren zur Aufbereitung von tiefgekühltem Flüssiggas |
FR2879720B1 (fr) * | 2004-12-17 | 2007-04-06 | Snecma Moteurs Sa | Systeme de compression-evaporation pour gaz liquefie |
KR101434908B1 (ko) * | 2013-05-23 | 2014-08-29 | 포스코에너지 주식회사 | 중저온 폐열을 활용한 난방 열원 또는 전기 생산 시스템, 및 그 제어방법 |
WO2016195968A1 (en) * | 2015-06-01 | 2016-12-08 | Conlon William M | Part load operation of liquid air power and storage system |
-
2018
- 2018-10-11 CN CN201811180495.5A patent/CN109098809B/zh active Active
-
2019
- 2019-07-02 WO PCT/CN2019/094302 patent/WO2020073698A1/zh active Application Filing
- 2019-07-02 US US17/045,019 patent/US20240247610A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130160486A1 (en) * | 2011-12-22 | 2013-06-27 | Ormat Technologies Inc. | Power and regasification system for lng |
CN102628402A (zh) * | 2012-04-17 | 2012-08-08 | 西安交通大学 | 基于lng冷能利用的燃料电池和有机朗肯循环联合发电系统 |
CN103362579A (zh) * | 2013-08-08 | 2013-10-23 | 华北科技学院 | 一种回收液化天然气冷能的两级膨胀发电装置及方法 |
CN207420649U (zh) * | 2017-08-03 | 2018-05-29 | 中国科学院理化技术研究所 | 一种低温液态空气储能系统 |
CN109098809A (zh) * | 2018-10-11 | 2018-12-28 | 上海海事大学 | 一种带回热循环的利用lng冷能和工业废热的orc发电系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109098809A (zh) | 2018-12-28 |
US20240247610A1 (en) | 2024-07-25 |
CN109098809B (zh) | 2019-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020073698A1 (zh) | 一种带回热循环的利用lng冷能和工业废热的orc发电系统 | |
WO2017012129A1 (zh) | 对气体机余热能进行梯级回收的多能量形式输出的能源塔 | |
CN110905747B (zh) | 一种利用高温太阳能和lng冷能的联合动力循环发电系统 | |
CN106089337A (zh) | 用于余热回收的超临界co2与有机朗肯联合循环发电系统 | |
CN103742291B (zh) | 一种余热回收式分布式能源与海洋温差能耦合发电系统 | |
CN107940789B (zh) | 一种基于可移动太阳能集热器的冷热电联合发电系统 | |
CN102094772B (zh) | 一种太阳能驱动的联供装置 | |
CN103061835A (zh) | 一种复叠式有机朗肯循环高效热机 | |
CN205876407U (zh) | 用于余热回收的超临界co2与有机朗肯联合循环系统 | |
WO2023193486A1 (zh) | 一种常温液态压缩二氧化碳混合工质储能系统及方法 | |
CN112577349A (zh) | 一种余热梯级储存和利用的双工质储能系统 | |
CN104454053A (zh) | 一种高效的氨水发电系统 | |
CN205638705U (zh) | 利用lng制冰及以天然气为燃料的冷热电三联供系统 | |
CN104033199A (zh) | 一种使用混合有机工质的内置热泵的有机朗肯循环系统 | |
CN208793051U (zh) | 一种有机朗肯循环与热泵驱动的热电联供系统 | |
CN208982182U (zh) | Lng冷能斯特林发电系统 | |
CN113864017B (zh) | 一种利用lng冷能和地热能的卡琳娜-有机朗肯联合循环发电系统 | |
CN104236161A (zh) | 一种余热回收利用系统 | |
CN210317415U (zh) | 吸收式海水淡化与闭式循环发电系统 | |
CN113540504A (zh) | 热泵式-氢能复合储能发电方法及装置 | |
CN109028269A (zh) | 一种吸收式热泵机组及回收低温水源余热的供热系统 | |
CN210105937U (zh) | 一种lng动力船冷热电联装置 | |
CN208982132U (zh) | Lng冷能斯特林发电耦合膨胀发电机组系统 | |
CN102162397A (zh) | 压水堆核动力燃汽轮机循环发电系统 | |
CN109763870A (zh) | 一种低参数热回收系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19870490 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19870490 Country of ref document: EP Kind code of ref document: A1 |