[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020071271A1 - Anisotropic conductive film, connection structure, and method for manufacturing connection structure - Google Patents

Anisotropic conductive film, connection structure, and method for manufacturing connection structure

Info

Publication number
WO2020071271A1
WO2020071271A1 PCT/JP2019/038143 JP2019038143W WO2020071271A1 WO 2020071271 A1 WO2020071271 A1 WO 2020071271A1 JP 2019038143 W JP2019038143 W JP 2019038143W WO 2020071271 A1 WO2020071271 A1 WO 2020071271A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive particles
resin layer
insulating resin
anisotropic conductive
conductive film
Prior art date
Application number
PCT/JP2019/038143
Other languages
French (fr)
Japanese (ja)
Inventor
裕美 久保出
怜司 塚尾
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201980061791.XA priority Critical patent/CN112740483B/en
Priority to KR1020217005129A priority patent/KR20210033513A/en
Priority claimed from JP2019176515A external-priority patent/JP2020095941A/en
Publication of WO2020071271A1 publication Critical patent/WO2020071271A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Definitions

  • the rigidity of the IC chip is much higher than the rigidity of the plastic substrate, so the deformation at the plastic substrate side is increased due to the pressure at the time of connection, and the “wiring of the wiring at the plastic substrate side” or “insufficient pushing of particles”.
  • FIG. 8 a case where heating and pressing are performed to anisotropically conductively connect the bump B of the IC chip and the electrode 21 of the plastic substrate 24 via the anisotropic conductive film ACF.
  • the adhesive layer 23 of the plastic substrate 24 is removed outside the periphery of the bump B of the IC chip and the inverted dome-shaped thin portion 25 is formed (doming phenomenon).
  • An object of the present invention is to solve the above-mentioned conventional problems.
  • an electronic component having a bump such as an image display element or a driving IC chip, is connected to an electrode (for example, a metal such as Ti or Ti / AL).
  • Anisotropic conductive material suitable for anisotropic conductive connection to a flexible plastic substrate on which an electrode, a metal oxide electrode such as ITO, or a metal oxide electrode such as the above is oxidized.
  • Anisotropic conductive film that has good anisotropic conductive connection without forming cracks in the wiring of the plastic substrate during anisotropic conductive connection and realizes high conduction reliability It is to provide a conductive film.
  • the present inventors when performing anisotropic conductive connection using an anisotropic conductive film having a conductive particle dispersion layer composed of at least an insulating resin layer and conductive particles dispersed therein, the conductive particles Focusing on the point that will receive a compressive force in the thickness direction of the film, by controlling the elements that strongly affect the behavior when the conductive particles are subjected to compression, it can meet the object of the present invention By controlling the 20% compression elastic modulus, the compression recovery rate, the average particle diameter, the number density, and the minimum melt viscosity of the insulating resin layer of the conductive particles within specific numerical ranges under the assumption of the present invention, The inventors have found that the object can be achieved, and have completed the present invention.
  • the present invention relates to an anisotropic conductive film having a conductive particle dispersion layer composed of at least an insulating resin layer and conductive particles dispersed therein, and the following conditions (a) to (e): Is provided.
  • the present invention also provides a method for producing the above-described anisotropic conductive film of the present invention, which comprises a step of forming a conductive particle dispersed layer by pushing conductive particles into an insulating resin layer.
  • the conductive particles are held in a predetermined arrangement on the surface of the insulating resin layer, and the conductive particles are pressed into the insulating resin layer with a flat plate or a roller to form a conductive particle dispersion layer.
  • the anisotropic conductive film of the present invention has a conductive particle dispersed layer at least composed of an insulating resin layer and conductive particles dispersed therein.
  • the conductive particles held in the conductive particle dispersion layer those having 20% compression elastic modulus, compression recovery rate and average particle diameter each in a specific numerical range are used.
  • the insulating resin layer holding such conductive particles a resin having a minimum melt viscosity of a specific value or less is used, and the degree of holding the conductive particles in such insulating resin layer (in other words, the number density ) Is set within a specific range.
  • an electronic component having a bump such as an image display element or a driving IC chip is anisotropically mounted on a flexible plastic substrate on which electrodes and wiring are formed.
  • the conductive connection is made, it is possible to prevent cracks from being generated in the wiring of the plastic substrate.
  • FIG. 1A is a plan view showing an arrangement of conductive particles of an anisotropic conductive film 10A of an example.
  • FIG. 1B is a cross-sectional view of the anisotropic conductive film 10A of the example.
  • FIG. 2 is a cross-sectional view of the anisotropic conductive film 10B of the example.
  • FIG. 3 is a cross-sectional view of the anisotropic conductive film 10C of the example.
  • FIG. 4 is a cross-sectional view of the anisotropic conductive film 10D of the example.
  • FIG. 5 is a cross-sectional view of the anisotropic conductive film 10E of the example.
  • FIG. 6 is a cross-sectional view of the anisotropic conductive film 10F of the example.
  • FIG. 7 is a schematic sectional view of a plastic substrate.
  • FIG. 8 is an explanatory diagram when an IC chip is anisotropically conductively connected to a plastic substrate.
  • the anisotropic conductive film of the present invention has a conductive particle dispersed layer at least composed of an insulating resin layer and conductive particles dispersed therein.
  • the condition (a) “20% compression elastic modulus”, the condition (b): “compression recovery”, and the condition (c): “average particle diameter”
  • the condition (d) “lowest melt viscosity” is used in a specific range, and such insulating resin layer is used.
  • FIG. 1A is a plan view illustrating the particle arrangement of the anisotropic conductive film 10A according to one embodiment of the present invention
  • FIG. 1B is a cross-sectional view taken along line XX.
  • 2 and 3-4 are cross-sectional views of the anisotropic conductive films 10B, 10C, and 10D of the embodiment of the present invention, respectively.
  • the anisotropic conductive film of the present invention is not limited to the embodiments disclosed in these drawings.
  • the anisotropic conductive film 10A may be in the form of a long film having a length of, for example, 5 m or more, and may be a wound body wound around a core.
  • the anisotropic conductive film 10A is composed of the conductive particle dispersion layer 3, in which the conductive particles 1 are in non-contact with the insulating resin layer 2.
  • conductive particles 1 are regularly arranged in a state where conductive particles 1 are exposed on one surface of insulating resin layer 2.
  • the conductive particles 1 are not in contact with each other in plan view of the film, and the conductive particles 1 are also present in the film thickness direction without overlapping each other.
  • the conductive particles 1 constitute a single conductive particle layer in which the positions in the film thickness direction are aligned.
  • the ratio (number basis) of the conductive particles that are not in contact with each other is preferably 95% or more, and more preferably 98% or more.
  • a recess 2b may be formed with respect to the tangent plane 2p of the insulating resin layer 2 at the center between adjacent conductive particles ( (FIG. 1B, FIG. 2). Further, the top 1a of the conductive particles 1 may be flush with the surface 2a of the insulating resin layer 2 as shown in FIG. At the time of connection, movement of the conductive particles due to resin flow can be reduced. As described later, in the anisotropic conductive film of the present invention, a recess 2c may be formed on the surface of the insulating resin layer immediately above the conductive particles 1 embedded in the insulating resin layer 2. 3, FIG. 4). In the case of FIG. 3, one point of the top 1a of the conductive particle 1 may be exposed from the insulating resin layer.
  • metal-coated resin particles having a metal layer formed on the surface of the resin core particles can be appropriately selected from the conductive particles used in known anisotropic conductive films.
  • metal-coated resin particles those whose surfaces have been subjected to an insulating coating treatment (for example, an insulating fine particle adhesion treatment, an insulating resin coating treatment, etc.) can also be used. Two or more kinds of metal-coated resin particles can be used in combination.
  • conductive particles conductive particles having conductive protrusions on the surface can also be used.
  • the conductive layer may be two or more layers.
  • the protrusion may be present between the conductive layers.
  • Such a conductive layer can be formed on the surface of the resin core particles by a known film forming method such as electroless plating, electrolytic plating, and sputtering.
  • a method of attaching conductive fine particles there is no particular limitation as long as the conductive particles satisfy the conditions described below and can satisfy conduction performance.
  • the surface of the conductive layer may be subjected to a known insulating treatment. In this case, the size excluding the thickness of the insulating layer formed by the insulating treatment is defined as the particle size of the conductive particles.
  • F is a load value (N) when the conductive particles are compressed and deformed by 20%
  • S is a compressive displacement (mm) when the conductive particles are compressed and deformed by 20%
  • R is a conductive displacement. (Mm).
  • the conductive particles used in the present invention are required to break through the oxide film formed on the surface of the electrode or terminal of the electronic component as described above, a corresponding pressure is applied to the conductive particles during connection. This is expected to flatten the conductive particles. Therefore, after the pressure of the connection is released, the conductive particles are required to be restored after compression in order to secure a sufficient contact area with the facing electrode or terminal surface. From this viewpoint, the lower limit of the compression recovery ratio (X) is 40% or more, preferably 55% or more.
  • the lower limit of the average particle diameter of the conductive particles 1 used in the present invention is 1 ⁇ m or more, and preferably 2.5 ⁇ m or more, from the viewpoint of coping with the variation in wiring height. From the viewpoint of suppressing occurrence of short-circuit, the upper limit is 30 ⁇ m or less, preferably 9 ⁇ m or less.
  • the average particle size can be determined using a general particle size distribution measuring device (for example, FPIA-3000 (Malvern Panicalical)).
  • the number of measurement samples is preferably 1000 or more.
  • the average particle diameter D of the conductive particles in the anisotropic conductive film can be determined using an electron microscope such as a SEM. In this case, the number of measurement samples is preferably 200 or more.
  • the average particle size of the conductive particles in the present invention means an average particle size not including the surface insulating fine particles.
  • the insulating resin layer 2 that holds the conductive particles 1 and functions as a base layer of the anisotropic conductive film may be formed from a curable resin composition as described later. It satisfies the following condition (d).
  • the upper limit thereof is to reduce the pressure at the time of connection, particularly when the substrate is made of plastic, etc. It is 4000 Pa ⁇ s or less, and preferably 3000 Pa ⁇ s or less, from the viewpoint of enabling good pushing of the conductive particles.
  • the lower limit is preferably not particularly limited since it is desirable from the viewpoint of suppressing deformation of the plastic substrate, particularly in connection with the plastic substrate, and may be appropriately adjusted, but the conductive particles to be sandwiched between the terminals during anisotropic conductive connection From the viewpoint of preventing 1 from being excessively flown by the resin flow as well as from the viewpoint of preventing the resin from overflowing when wound into a wound body, preferably 200 Pa ⁇ s or more, more preferably 400 Pa ⁇ s or more It is.
  • the minimum melt viscosity can be obtained by using a rotary rheometer (manufactured by TA Instruments) as an example, using a measurement plate having a diameter of 8 mm, keeping the measurement pressure constant at 5 g, and more specifically, In a temperature range of 30 to 200 ° C., the temperature can be determined by setting the temperature to 10 ° C./min, the measurement frequency to 10 Hz, and the load on the measurement plate to 5 g.
  • the insulating resin layer 2 when the conductive particles 1 are pressed is When the conductive particles 1 are pushed into the insulating resin layer 2 so that the resin particles are exposed from the insulating resin layer 2 with the exposed diameter Lc, the insulating resin layer 2 is plastically deformed and the insulating resin layer around the conductive particles 1 is deformed. 2 or a high-viscosity viscous material such that a recess 2b (FIGS. 1B and 2) is formed, or the conductive particles 1 are buried in the insulating resin layer 2 without being exposed from the insulating resin layer 2.
  • the conductive particles 1 can be connected between terminals during anisotropic conductive connection. Since the resistance received from the insulating resin to the flattening of the conductive particles 1 generated when the conductive particles 1 are pinched is reduced as compared with the case where the recess 2b is not provided, the conductive particles are easily pinched at the terminals, so that conduction is achieved. The performance is improved, and the trapping property is improved.
  • the recess 2c (FIGS. 3 and 4) is formed on the surface of the insulating resin layer 2 immediately above the conductive particles 1 buried without being exposed from the insulating resin layer 2, the recess 2c does not exist. As compared with the case, the pressure at the time of anisotropic conductive connection is more likely to concentrate on the conductive particles 1, and the conductive particles 1 are more easily pinched between the terminals, so that the trapping property is improved and the conduction performance is improved.
  • the ratio (La / D) between the layer thickness La of the insulating resin layer 2 and the average particle diameter D of the conductive particles 1 is 0 if the amount of resin capable of holding the conductive particles is sufficient. 0.3 or more, preferably 0.6 or more, and more preferably 1.0 or more. If La / D is less than 0.3, it may be difficult to precisely maintain the conductive particles 1 in a predetermined particle dispersion state or a predetermined arrangement by the insulating resin layer 2.
  • the average particle diameter D is defined by the size of the metal-coated resin particles (the size of the resin core particles and the conductive layer on the surface thereof).
  • the upper limit of La / D is preferably 8.0 or less, and more preferably 6.0 or less.
  • the insulating resin layer 2 can be formed from a curable resin composition, for example, from a thermopolymerizable composition containing a thermopolymerizable compound and a thermopolymerization initiator.
  • the thermopolymerizable composition may contain a photopolymerization initiator as needed.
  • thermopolymerizable compound When a thermal polymerization initiator and a photopolymerization initiator are used in combination, those that also function as a photopolymerizable compound may be used as the thermopolymerizable compound, and the photopolymerizable compound is contained separately from the thermopolymerizable compound. You may. Preferably, a photopolymerizable compound is contained separately from the thermopolymerizable compound.
  • a cationic polymerization initiator is used as a thermal polymerization initiator
  • an epoxy resin is used as a thermopolymerizable compound
  • photoradical polymerization initiator is used as a photopolymerization initiator
  • an acrylate compound is used as a photopolymerizable compound.
  • the photopolymerization initiator a plurality of types that react to light having different wavelengths may be contained. Thereby, the wavelength used in the photocuring of the resin constituting the insulating resin layer during the production of the anisotropic conductive film and the photocuring of the resin for bonding the electronic components together at the time of the anisotropic conductive connection. You can use them properly.
  • the photocuring at the time of producing the anisotropic conductive film all or a part of the photopolymerizable compound contained in the insulating resin layer can be photocured. Due to this photocuring, the arrangement of the conductive particles 1 in the insulating resin layer 2 is held or fixed, and short-circuit suppression and improvement in capture are expected. In addition, the viscosity of the insulating resin layer in the process of manufacturing the anisotropic conductive film may be appropriately adjusted by the photocuring.
  • thermopolymerizable composition examples include a thermoradical polymerizable acrylate composition containing a (meth) acrylate compound and a thermoradical polymerization initiator, and a thermocation polymerizable epoxy system containing an epoxy compound and a thermocation polymerization initiator. And the like.
  • a thermal anionic polymerizable epoxy composition containing a thermal anionic polymerization initiator may be used instead of the thermal cationic polymerizable epoxy composition containing a thermal cationic polymerization initiator.
  • a plurality of types of polymerizable compositions may be used in combination as long as there is no particular problem. Examples of the combination include a combination of a thermocationically polymerizable composition and a thermoradical polymerizable composition.
  • thermal radical polymerization initiator examples include organic peroxides and azo compounds.
  • organic peroxides that does not generate nitrogen that causes bubbles can be preferably used.
  • the epoxy compound examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, modified epoxy resin thereof, alicyclic epoxy resin and the like, and two or more of these may be used in combination. it can.
  • An oxetane compound may be used in addition to the epoxy compound.
  • thermal cationic polymerization initiator those known as thermal cationic polymerization initiators for epoxy compounds can be employed.
  • thermal cationic polymerization initiators for epoxy compounds can be employed.
  • an iodonium salt, a sulfonium salt, a phosphonium salt, a ferrocene, or the like that generates an acid by heat is used.
  • an aromatic sulfonium salt having a good potential with respect to temperature can be preferably used.
  • the amount of the thermal cationic polymerization initiator is preferably 2 to 60 parts by mass relative to 100 parts by mass of the epoxy compound. Parts, more preferably 5 to 40 parts by mass.
  • the thermopolymerizable composition preferably contains a film-forming resin and a silane coupling agent.
  • the film-forming resin include a phenoxy resin, an epoxy resin, an unsaturated polyester resin, a saturated polyester resin, a urethane resin, a butadiene resin, a polyimide resin, a polyamide resin, and a polyolefin resin. be able to.
  • a phenoxy resin can be preferably used from the viewpoints of film formability, workability, and connection reliability.
  • the weight average molecular weight is preferably 10,000 or more.
  • the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.
  • the thermopolymerizable composition may contain an insulating filler for adjusting the melt viscosity.
  • the insulating filler include silica powder and alumina powder.
  • the size of the insulating filler is preferably 20 to 1000 nm in particle size, and the blending amount is preferably 5 to 50 parts by mass with respect to 100 parts by mass of a thermopolymerizable compound (and a photopolymerizable compound) such as an epoxy compound. .
  • a filler a softener, an accelerator, an antioxidant, a colorant (pigment, dye), an organic solvent, an ion catcher agent and the like different from the above-mentioned insulating filler may be contained.
  • the insulating resin layer 2 having the above-described minimum melt viscosity holds the conductive particles 1 as described above, and the degree of the holding can be evaluated using the number density as an index. That is, in the anisotropic conductive film of the present invention, the following condition (e) is satisfied with respect to the number density of the conductive particles 1.
  • the lower limit of the number density of the conductive particles in the anisotropic conductive film of the present invention in the film plan view is 6000 particles / mm 2 or more, because if the number density is too small, the number of trapped particles may decrease and the conduction resistance may increase. It becomes 7500 pieces / mm 2 or more. If the number density is too high, it is necessary to increase the pressure at the time of connection. If the substrate is made of plastic or the like, there is a concern about deformation, so that the pressure at the time of connection is not excessively increased. 2 or less, preferably 30000 pieces / mm 2 or less.
  • the number density of the conductive particles may be obtained by observing using a metallographic microscope or by measuring the observed image using image analysis software (WinROOF, Mitani Corporation). The observation method and the measurement method are not limited to the above.
  • a rectangular region having one side of 100 ⁇ m or more is arbitrarily set at a plurality of positions (preferably 5 or more, more preferably 10 or more), and the total area of the measurement region is 2 mm. It is preferred to be 2 or more.
  • the size and number of the individual regions may be appropriately adjusted depending on the state of the number density. As an example of a case where the number density for a fine pitch application is relatively large, 200 images (2 mm 2 ) of an area having an area of 100 ⁇ m ⁇ 100 ⁇ m arbitrarily selected from the anisotropic conductive film 10 ⁇ / b > A are observed using a metallographic microscope or the like.
  • a region having an area of 100 ⁇ m ⁇ 100 ⁇ m is a region where one or more bumps are present in a connection target having a space between bumps of 50 ⁇ m or less and an L / S (line / space) of 1 or less.
  • the dispersion state of the conductive particles 1 in the conductive particle dispersion layer 3 of the anisotropic conductive film of the present invention includes a state in which the conductive particles 1 are randomly dispersed and a state in which the conductive particles 1 are dispersed in a regular arrangement. In either case, it is preferable that the positions in the film thickness direction are aligned from the viewpoint of capture stability.
  • that the position of the conductive particles 1 in the film thickness direction is uniform is not limited to that the conductive particles 1 are aligned at a single depth in the film thickness direction, but the front and back interfaces of the insulating resin layer 2 or the vicinity thereof. In which conductive particles are present.
  • the conductive particles 1 are regularly arranged in a plan view of the film from the viewpoint of suppressing a short circuit.
  • the arrangement mode depends on the layout of terminals and bumps, and is not particularly limited.
  • the film can be arranged in a square lattice arrangement as shown in FIG. 1A in plan view.
  • a lattice arrangement such as a rectangular lattice, an oblique lattice, a hexagonal lattice, and a triangular lattice can be given.
  • a plurality of lattices having different shapes may be combined.
  • a particle row in which conductive particles are linearly arranged at predetermined intervals may be arranged in parallel at predetermined intervals.
  • the conductive particles are regularly arranged in a plan view of the film and the positions in the film thickness direction are uniform in order to achieve both capture stability and short-circuit suppression.
  • the conductive particles may be randomly dispersed without being regularly arranged. Even in the case of dispersing, it is preferable that the individual conductive particles are arranged in a non-contact manner (the individual conductive particles are independently present in a non-contact manner) in a plan view of the film.
  • the number ratio may be 75% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more.
  • the lattice axis or the arrangement axis of the arrangement may be parallel to the longitudinal direction of the anisotropic conductive film or a direction perpendicular to the longitudinal direction, and the longitudinal axis of the anisotropic conductive film. It may intersect with the direction, and can be determined according to the terminal width, terminal pitch and the like to be connected.
  • the lattice axis A of the arrangement of the conductive particles 1 is inclined with respect to the longitudinal direction of the anisotropic conductive film 10A.
  • the angle ⁇ between the longitudinal direction (the short direction of the film) of the terminal 200 connected with the anisotropic conductive film 10A and the lattice axis A is 6 ° or more and 84 ° or less, preferably 11 ° or more and 74 ° or less. .
  • the distance between the conductive particles 1 is appropriately determined according to the size and the terminal pitch of the terminals connected by the anisotropic conductive film.
  • the lower limit of the distance between the nearest particles is preferably 50% or more of the average particle diameter D of the conductive particles or 0.2 ⁇ m or more.
  • the upper limit is not particularly limited as long as the condition of the number density can be satisfied.
  • the average particle diameter D of the conductive particles is preferably 30 ⁇ m or less, which is a preferable maximum diameter, or the average particle diameter is relatively small. When the diameter D is small, it is preferably 10 times or less the average particle diameter D.
  • the area occupancy of the conductive particles of the anisotropic conductive film of the present invention in a plan view is an index of the thrust required for the pressing jig for thermocompression bonding the anisotropic conductive film to the electronic component. If the area occupancy is too large, the thrust increases accordingly, and if the substrate is easily deformed such as plastic, it becomes a factor of deformation. Therefore, the upper limit of the area occupancy of the conductive particles is preferably 30% or less, more preferably 26% or less, and even more preferably 23% or less. Further, if the area occupancy is too small, there is a possibility that the device cannot cope with the fine pitch, so that it is preferably 3% or more, more preferably 6% or more, and still more preferably 9% or more.
  • the area occupancy [%] of the conductive particles can be calculated by the following equation.
  • the measurement region of the number density and the area occupancy of the conductive particles may be a rectangular region having a side of 100 ⁇ m or more at a plurality of positions (preferably 5 or more, more preferably 10 or more), and the total area of the measurement regions is preferably 2 mm 2 or more.
  • the size and number of the individual regions may be appropriately adjusted depending on the state of the number density.
  • the position of the conductive particles 1 in the thickness direction of the insulating resin layer 2 may be such that the conductive particles 1 are exposed from the insulating resin layer 2 as described above.
  • the surface 2 a of the insulating resin layer on which the recesses 2 b and 2 c are formed may be buried from the tangent plane 2 p at the center between adjacent conductive particles.
  • the distance Lb at the deepest part of the conductive particles (hereinafter referred to as an embedding amount), and the ratio of the embedding amount Lb to the particle diameter D of the conductive particles 1 [(Lb / D) ⁇ 100] (hereinafter referred to as an embedding rate) Is preferably 60% or more and 105% or less.
  • the conductive particles 1 are maintained in a predetermined particle dispersion state or a predetermined arrangement by the insulating resin layer 2, and by setting the embedding rate to 105% or less, the anisotropic conductive connection is achieved.
  • the amount of resin in the insulating resin layer that acts to flow the conductive particles between the terminals unnecessarily can be reduced.
  • the numerical value of the embedding rate, the numerical value of the embedding rate (Lb / D) is 80% or more, preferably 90% or more, more preferably 90% or more of the total number of conductive particles contained in the anisotropic conductive film.
  • the embedding rate is obtained by arbitrarily extracting 10 or more areas having an area of 30 mm 2 or more from the anisotropic conductive film, observing a part of the cross section of the film with an SEM image, and measuring a total of 50 or more conductive particles. You can ask. In order to further increase the accuracy, it may be obtained by measuring 200 or more conductive particles.
  • the embedding rate can be collectively obtained for a certain number by adjusting the focus in the surface visual field image.
  • a laser type discriminating displacement sensor manufactured by Keyence Corporation may be used for measuring the embedding rate.
  • the anisotropic conductive film of the present invention is, like the anisotropic conductive film 10E shown in FIG. 5, a surface of the conductive particle dispersion layer 3 on which the conductive particles 1 are held (in other words, an insulating resin).
  • a second insulating resin layer 4 (functioning as an insulating adhesive layer) having a lower minimum melt viscosity than that of the insulating resin layer 2 may be laminated on the surface of the layer 2 where the recess 2c is formed.
  • the surface of the conductive particle dispersion layer 3 on the side where the conductive particles 1 are not held (in other words, the recess 2c of the insulating resin layer 2 is formed).
  • a second insulating resin layer 4 (functioning as an insulating adhesive layer) having a lower minimum melt viscosity than the insulating resin layer 2 may be laminated on the non-conductive surface).
  • the second insulating resin layer 4 When the second insulating resin layer 4 is laminated, the second insulating resin layer 4 is added with a tool regardless of whether the second insulating resin layer 4 is on the surface on which the recess 2c is formed. It is preferably on the side of an electronic component such as an IC chip to be pressed (in other words, the insulating resin layer 2 is on the side of an electronic component such as a substrate mounted on a stage). By doing so, unintentional movement of the conductive particles can be avoided, and trapping properties can be improved.
  • the space formed by the electrodes and bumps of the electronic component is more easily filled with the second insulating resin layer 4.
  • the effect of improving the adhesion between electronic components can be expected.
  • the larger the difference the relatively small the amount of movement of the insulating resin layer 2 existing in the conductive particle dispersion layer 3, so that the ability of the terminal to capture the conductive particles can be easily improved.
  • the lowest melt viscosity ratio between the insulating resin layer 2 and the second insulating resin layer 4 is preferably 2 or more, more preferably 5 or more, and further preferably 8 or more.
  • the ratio is too large, when a long anisotropic conductive film is formed into a wound body, there is a possibility that the resin will protrude or block, so that the ratio is preferably 15 or less in practical use.
  • the preferred minimum melt viscosity of the second insulating resin layer 4 can be determined with reference to the description of Japanese Patent No. 6187665 (paragraph 0091).
  • the second insulating resin layer 4 can be formed by adjusting the viscosity of the same resin composition as the insulating resin layer.
  • the layer thickness of the second insulating resin layer 4 is preferably 4 ⁇ m or more and 20 ⁇ m or less. Alternatively, it is preferably 1 to 8 times the conductive particle diameter.
  • the minimum melt viscosity of the entire anisotropic conductive films 10E and 10F including the insulating resin layer 2 and the second insulating resin layer 4 is preferably 200 Pa ⁇ s or more and 4000 Pa ⁇ s or less.
  • the minimum melt viscosity of the second insulating resin layer 4 itself is preferably 2000 Pa ⁇ s or less, more preferably 100 to 2000 Pa ⁇ s, on the assumption that the above-described minimum melt viscosity ratio is satisfied.
  • a third insulating resin layer may be provided on the opposite side of the second insulating resin layer 4 and the insulating resin layer 2 with the insulating resin layer 2 interposed therebetween.
  • the third insulating resin layer or the insulating adhesive layer can function as a tack layer.
  • the second insulating resin layer it may be provided to fill the space formed by the electrodes and bumps of the electronic component.
  • the resin composition, viscosity and thickness of the third insulating resin layer may be the same as or different from those of the second insulating resin layer.
  • the minimum melt viscosity of the anisotropic conductive film including the insulating resin layer 2, the second insulating resin layer 4, and the third insulating resin layer is not particularly limited, but may be 200 to 4000 Pa ⁇ s. it can.
  • the anisotropic conductive film of the present invention can be manufactured by a manufacturing method including a step of forming a conductive particle dispersed layer by injecting conductive particles into an insulating resin layer.
  • the conductive particles are held in a predetermined arrangement on the surface of the insulating resin layer, and the conductive particles are pressed into the insulating resin layer with a flat plate or a roller to form a conductive particle dispersion layer.
  • the insulating resin layer 2 is pressed against the stretched film to transfer the conductive particles to the insulating resin layer 2, thereby holding the conductive particles 1 on the insulating resin layer 2.
  • the lowest melt viscosity of the insulating resin layer may be determined with reference to the description of Japanese Patent No. 6187665 (paragraph 0097). it can. Thereby, the conductive particles can be pushed so that the surface of the insulating resin layer forming the surface of the conductive particle dispersion layer has a recess with respect to the tangent plane of the insulating resin layer at the center between adjacent conductive particles. .
  • the anisotropic conductive film When an anisotropic conductive film having an embedding ratio of more than 100% is manufactured, the anisotropic conductive film may be pressed with a pressing plate so as to have a convex portion corresponding to the conductive particle arrangement.
  • the transfer mold When the conductive particles 1 are held in the insulating resin layer 2 using a transfer mold, examples of the transfer mold include inorganic materials such as silicon, various ceramics, glass, metals such as stainless steel, and various resins.
  • the organic material described above a material in which an opening is formed by a known method for forming an opening such as a photolithographic method or a material to which a printing method is applied can be used.
  • the transfer mold can take a shape such as a plate shape or a roll shape. Note that the present invention is not limited to the above method.
  • a second insulating resin layer having a lower viscosity than the insulating resin layer can be laminated on the surface of the insulating resin layer into which the conductive particles have been pressed, on the surface on which the conductive particles have been pressed, or on the opposite surface.
  • the anisotropic conductive film has a certain length. Therefore, it is preferable that the length of the anisotropic conductive film is specifically 5 m or more. It can also be determined with reference to the description of Japanese Patent No. 6187665 (paragraph 0103).
  • the resin viscosity that is, substantially proportional to the minimum melt viscosity of the film
  • the minimum melt viscosity of the anisotropic conductive film is preferably set to 200 Pa ⁇ s or more. This is the same even if the second insulating resin layer and the third insulating resin layer are laminated.
  • the first electronic component (the side heated by the tool) has relatively high rigidity such as an IC chip or an IC module (for example, from a wafer similar to a general IC chip).
  • the second electronic component (the side to be mounted on the stage) is a flexible material such as a plastic substrate.
  • a first electronic component such as a semiconductor element, an IC chip, an IC module, or an FPC is connected to a second electronic component such as an FPC, a glass substrate, a plastic substrate, a rigid substrate, or a ceramic substrate for anisotropic conductive connection. It does not exclude aspects.
  • IC chips or wafers may be stacked to form a multilayer using the anisotropic conductive film of the present invention.
  • the electronic components connected by the anisotropic conductive film of the present invention are not necessarily limited to the above electronic components. In recent years, it can be used for various diversified electronic components. For example, when an IC chip or an FPC is used as the first electronic component, an OLED plastic substrate can be used as the second electronic component. In particular, when the first electronic component is an IC chip and the second electronic component is a COP structure using a plastic substrate, the present invention particularly exerts its effect.
  • the present invention provides a “connection structure in which the first electronic component and the second electronic component are anisotropically conductively connected via the anisotropic conductive film of the present invention”; And a second electronic component through an anisotropic conductive film of the present invention for anisotropically conductive connection.
  • the anisotropic conductive film is used for the second electronic component such as various substrates.
  • the first electronic component such as an IC chip is provided on the side of the temporarily-bonded anisotropic conductive film where the conductive particles 1 are not embedded in the surface, in which the conductive particles 1 are temporarily embedded and temporarily compressed from the side where the conductive particles 1 are embedded in the surface. And thermocompression bonding.
  • the insulating resin layer of the anisotropic conductive film contains not only the thermal polymerization initiator and the thermopolymerizable compound but also the photopolymerization initiator and the photopolymerizable compound (which may be the same as the thermopolymerizable compound), A pressure bonding method using both light and heat may be used. In this way, unintentional movement of the conductive particles can be minimized.
  • the side where the conductive particles are not embedded may be temporarily attached to the second electronic component for use. Note that the anisotropic conductive film may be temporarily attached to the first electronic component instead of the second electronic component, and then aligned and connected.
  • the conductive particle dispersion layer 3 may be formed of various substrates.
  • the first electronic component such as an IC chip is aligned and placed on the side of the second insulating resin layer 4 of the anisotropically conductive film that has been temporarily bonded and temporarily bonded to the second electronic component. Crimp.
  • the second insulating resin layer 4 side of the anisotropic conductive film may be temporarily attached to the first electronic component. Further, the conductive particle dispersion layer 3 side can be temporarily attached to the first electronic component for use.
  • F is a load value (N) when the conductive particles are compressed and deformed by 20%
  • S is a compressive displacement (mm) when the conductive particles are compressed and deformed by 20%
  • R is a conductive displacement. (Mm).
  • the conductive particles 1, 3 and 4 are conductive particles for the present invention, and the conductive particles 2 are conductive particles for a comparative example.
  • a resin composition for forming the insulating resin layer, the second insulating resin layer or the insulating adhesive layer (Table 1) was coated on a PET film having a film thickness of 50 ⁇ m using a bar coater and dried in an oven at 80 ° C. for 5 minutes to form an insulating resin layer having a thickness shown in Table 3 on the PET film.
  • a second insulating resin layer or an insulating adhesive layer was formed on different PET films at the thicknesses shown in Table 3.
  • the conductive particles 1 have a square lattice arrangement shown in FIG. 1A in plan view, the distance between the particles is equal to the average particle diameter of the conductive particles, and the number density of the conductive particles is as shown in Table 3.
  • a mold was manufactured so as to be as follows.
  • the pattern of the convex portions of the mold is a square lattice array
  • the pitch of the convex portions on the lattice axis is twice the average conductive particle diameter
  • the angle ⁇ between the lattice axis and the lateral direction of the anisotropic conductive film is A mold of 15 ° is produced, and a known transparent resin pellet is melted and poured into the mold, and cooled and solidified to form a resin transfer master having an arrangement pattern as shown in FIG. 1A. did.
  • a two-layer type anisotropic conductive film was prepared by laminating a second insulating resin layer on the conductive particle dispersion layer similarly prepared (Examples 6 and 7). Furthermore, a three-layer type anisotropic conductive film was prepared by laminating an insulating adhesive layer having tackiness on the conductive particle dispersion layer side of the two-layer type anisotropic conductive film similarly prepared (executed). Example 8).
  • the terminal patterns of the evaluation IC and the plastic substrate correspond to each other, and the sizes are as follows.
  • the longitudinal direction of the anisotropic conductive film was aligned with the lateral direction of the bump.
  • Plastic substrate ITO wiring
  • Substrate material Polyethylene terephthalate base film / Polyurethane adhesive / Polyimide film (PET / PU / PI substrate) Outline 30 ⁇ 50mm Thickness 0.5mm Electrode ITO wiring
  • (B) Conduction reliability The conduction resistance after placing the connection for evaluation prepared in (a) in a thermostat at a temperature of 85 ° C. and a humidity of 85% RH for 500 hours was measured in the same manner as the initial conduction resistance.
  • the conduction reliability is practically preferably 5 ⁇ or less, more preferably 2 ⁇ or less.
  • connection object for evaluation prepared in (a) was observed with a metallographic microscope from the plastic substrate side, and it was confirmed whether or not an indentation was observed at the center of the bump end. The case where it was observed was evaluated as good (good), and the case where it was not observed was evaluated as poor (poor).
  • Evaluation standard of particle trapping property A 5 or more B 3 or more and less than 5 C 3 or less
  • the anisotropic conductive film of Comparative Example 1 which exceeded the numerical range of the condition (d), had a problem in “continuity reliability”. There was also a problem with "indentation”.
  • the anisotropic conductive film of Reference Example 1 in which the numerical ranges of the conditions (A) and (B) are slightly deviated downward, has an initial conduction resistance and an initial conduction resistance which are lower than those of Examples 1 to 8.
  • the resistance value in the conduction reliability is slightly high, it is not at a level that causes a problem in practical use.
  • the initial conduction resistance and the resistance value in conduction reliability are low as in Examples 1 to 8.
  • the anisotropic conductive film of the present invention as the conductive particles held in the conductive particle dispersion layer, those having 20% compression elastic modulus, compression recovery rate and average particle diameter each in a specific numerical range are used, As the insulating resin layer holding such conductive particles, a resin having a minimum melt viscosity of a specific value or less is used, and the degree of holding the conductive particles in such insulating resin layer (in other words, the number density ) Is set within a specific range. Therefore, via the anisotropic conductive film of the present invention, an electronic component having a bump such as an image display element or a driving IC chip is anisotropically mounted on a flexible plastic substrate on which electrodes and wiring are formed.
  • the anisotropic conductive film of the present invention is useful for connecting an electronic component (especially an IC chip) to an anisotropic conductive connection not only to a glass substrate but also to a plastic substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

This anisotropic conductive film is suitable for anisotropic conductive connection to a flexible plastic substrate on which are formed an electronic component having a bump, such as an image display element or an IC chip for driving, and a transparent electrode and wiring, the film having at least a conductive particle dispersion layer formed from an insulating resin layer and conductive particles dispersed therein. This anisotropic conductive film satisfies the following conditions. Condition (A): The modulus of elasticity of the conductive particles at 20% compression is 6000-15000 N/mm2. Condition (B): The compression recovery rate of the conductive particles is 40-80%. Condition (C): The average particle diameter of the conductive particles is 1-30 μm. Condition (D): The minimum melt viscosity of the insulating resin layer is 4000 Pa∙s or less. Condition (E): The number density of the conductive particles is 6000-36000/mm2.

Description

異方性導電フィルム、接続構造体、接続構造体の製造方法Anisotropic conductive film, connection structure, and method of manufacturing connection structure
 本発明は、異方性導電フィルムに関する。 The present invention relates to an anisotropic conductive film.
 画像表示パネルの軽量化や曲面化の要請に対し、画像表示素子や駆動用ICチップ等の電子部品を搭載するための基板として、可撓性を有するプラスチック基板が採用されるようになっている。このようなプラスチック基板の代表的なものとしては、熱変形と映り込みとを防止する観点から、図7に示す、ポリエチレンテレフタレートフィルム20と、透明電極21が形成されているポリイミドフィルム22とが、ウレタン系接着剤層23で積層されている構造のプラスチック基板24が挙げられる(特許文献1)。 In response to demands for lighter and more curved image display panels, flexible plastic substrates have been adopted as substrates for mounting electronic components such as image display elements and driving IC chips. . As a typical example of such a plastic substrate, from the viewpoint of preventing thermal deformation and reflection, a polyethylene terephthalate film 20 and a polyimide film 22 on which a transparent electrode 21 is formed as shown in FIG. A plastic substrate 24 having a structure of being laminated with a urethane-based adhesive layer 23 is cited (Patent Document 1).
特開2016-54288号公報JP 2016-54288 A
 ところで、図7に示すような可撓性のプラスチック基板の電極に、絶縁性樹脂バインダーに導電粒子が分散した異方性導電フィルムを介してICチップのバンプを異方性導電接続することが広く行われている。この場合、ICチップにはファインピッチで多数のバンプが設けられており、一方、プラスチック基板の電極表面には酸化皮膜が形成されている。このため、ICチップのバンプでプラスチック基板の電極表面の酸化皮膜を突き破った上で当該バンプと電極とを確実に接続するために、比較的大きな押圧でICチップをプラスチック基板に押し込んでいる。 By the way, it is widely used to anisotropically connect bumps of an IC chip to electrodes of a flexible plastic substrate as shown in FIG. 7 via an anisotropic conductive film in which conductive particles are dispersed in an insulating resin binder. Is being done. In this case, a large number of bumps are provided at a fine pitch on the IC chip, while an oxide film is formed on the electrode surface of the plastic substrate. For this reason, the IC chip is pressed into the plastic substrate with a relatively large pressure in order to reliably connect the bump and the electrode after the bump of the IC chip has penetrated the oxide film on the electrode surface of the plastic substrate.
 このため、ICチップの剛性がプラスチック基板の剛性よりもはるかに高いことから、接続時の押圧によってプラスチック基板側の変形が大きくなり、「プラスチック基板側の配線の断線」や「粒子の押し込み不足」といった問題が生じることが懸念される。具体的には、図8に示すように、異方性導電フィルムACFを介してICチップのバンプBとプラスチック基板24の電極21とを異方性導電接続するために加熱加圧を行った場合、プラスチック基板24の接着剤層23が、ICチップのバンプBの周囲外側に排除され、逆ドーム状の薄部25が形成される現象(ドーミング現象)が生ずる可能性がある。そのようなドーミング現象が生じてしまうと、電極21から伸びている配線21aに、肩部付近26でクラックが生じることも懸念される。また、異方性導電接続の導通信頼性を評価することを目的に、ポリエチレンテレフタレートフィルム20側から電極21とバンプBとの間に挟持されている導電粒子により形成される圧痕を観察し評価することが行われているが、バンプの押圧面のエッジEの近傍で当該バンプBと電極21とで挟持されている導電粒子27aについては良好な接続を示す圧痕が観察されるが、バンプBの押圧面の中央付近Cで当該バンプBと電極21とで挟持されている導電粒子27bについては、良好な接続を示す圧痕(換言すれば、導電粒子の挟持状態)が観察されにくくなることが懸念される。そのような圧痕が観察されない場合には、良好な導通があったとしても、導通特性(初期導通性、導通信頼性など)の評価が低くならざるを得ないという問題がある。 For this reason, the rigidity of the IC chip is much higher than the rigidity of the plastic substrate, so the deformation at the plastic substrate side is increased due to the pressure at the time of connection, and the “wiring of the wiring at the plastic substrate side” or “insufficient pushing of particles”. There is a concern that such a problem may occur. Specifically, as shown in FIG. 8, a case where heating and pressing are performed to anisotropically conductively connect the bump B of the IC chip and the electrode 21 of the plastic substrate 24 via the anisotropic conductive film ACF. In addition, there is a possibility that the adhesive layer 23 of the plastic substrate 24 is removed outside the periphery of the bump B of the IC chip and the inverted dome-shaped thin portion 25 is formed (doming phenomenon). When such a doming phenomenon occurs, there is a concern that a crack may be generated in the vicinity of the shoulder 26 in the wiring 21a extending from the electrode 21. Further, in order to evaluate the conduction reliability of the anisotropic conductive connection, an indentation formed by conductive particles sandwiched between the electrode 21 and the bump B from the polyethylene terephthalate film 20 side is observed and evaluated. Although indentation indicating good connection is observed for the conductive particles 27a sandwiched between the bump B and the electrode 21 near the edge E of the pressing surface of the bump, With regard to the conductive particles 27b sandwiched between the bump B and the electrode 21 near the center C of the pressing surface, there is a concern that indentations indicating good connection (in other words, the sandwiching state of the conductive particles) may not be easily observed. Is done. When such indentations are not observed, there is a problem that even if there is good conduction, the evaluation of conduction characteristics (initial conduction, conduction reliability, etc.) must be low.
 これらの懸念を払拭するために、例えば、(a)異方性導電接続条件を調整するという観点、(b)プラスチック基板の構造や特性を調整するという観点、(c)ICチップの構造や特性を調整するという観点、及び(d)異方性導電フィルムの構造や特性を調整するという観点からアプローチすることが考えられる。しかしながら、(a)の観点からアプローチする場合には、製造設備の改造や新規導入が必要となり、(b)及び(c)の観点からアプローチする場合には、異方性導電接続対象物である電子部品の仕様を変更する必要がある。従って、製造設備の改造や新設、異方性導電接続対象である電子部品の仕様変更を行うことなく、(d)の観点からアプローチすることが求められている。 To eliminate these concerns, for example, (a) the viewpoint of adjusting the anisotropic conductive connection conditions, (b) the viewpoint of adjusting the structure and characteristics of the plastic substrate, and (c) the structure and characteristics of the IC chip And (d) adjusting the structure and properties of the anisotropic conductive film. However, when approaching from the viewpoint of (a), it is necessary to modify or newly introduce a manufacturing facility, and when approaching from the viewpoints of (b) and (c), it is an anisotropic conductive connection object. It is necessary to change the specifications of electronic components. Therefore, it is required to approach from the viewpoint of (d) without remodeling or newly installing a manufacturing facility or changing specifications of an electronic component to be anisotropically connected.
 本発明の目的は、以上の従来の問題を解決しようとするものであり、特に画像表示素子や駆動用ICチップ等のバンプを有する電子部品を、電極(例えば、Ti、Ti/ALなどの金属電極、ITOなどの金属酸化物電極や上記等の金属電極の表面が酸化した金属酸化物電極)が形成されている可撓性のプラスチック基板などに異方性導電接続するのに適した異方性導電フィルムであって、異方性導電接続の際にプラスチック基板の配線にクラックを生ずることなく、良好な異方性導電接続を示す圧痕が形成され、高い導通信頼性を実現できる異方性導電フィルムを提供することである。 An object of the present invention is to solve the above-mentioned conventional problems. In particular, an electronic component having a bump, such as an image display element or a driving IC chip, is connected to an electrode (for example, a metal such as Ti or Ti / AL). Anisotropic conductive material suitable for anisotropic conductive connection to a flexible plastic substrate on which an electrode, a metal oxide electrode such as ITO, or a metal oxide electrode such as the above is oxidized. Anisotropic conductive film that has good anisotropic conductive connection without forming cracks in the wiring of the plastic substrate during anisotropic conductive connection and realizes high conduction reliability It is to provide a conductive film.
 本発明者らは、少なくとも絶縁性樹脂層とそれに分散している導電粒子とから構成されている導電粒子分散層を有する異方性導電フィルムを用いて異方性導電接続を行う場合、導電粒子がフィルムの厚み方向に圧縮力を受けることになる点に着目し、導電粒子が圧縮を受けたときの挙動に強く影響を与える要素をコントロールすることで、本願発明の目的を満たすことができるとの仮定の下、導電粒子の20%圧縮弾性率、圧縮復元率、平均粒子径、個数密度、並びに絶縁性樹脂層の最低溶融粘度をそれぞれ特定の数値範囲内にコントロールすることで、本願発明の目的を達成できることを見出し、本発明を完成させるに至った。 The present inventors, when performing anisotropic conductive connection using an anisotropic conductive film having a conductive particle dispersion layer composed of at least an insulating resin layer and conductive particles dispersed therein, the conductive particles Focusing on the point that will receive a compressive force in the thickness direction of the film, by controlling the elements that strongly affect the behavior when the conductive particles are subjected to compression, it can meet the object of the present invention By controlling the 20% compression elastic modulus, the compression recovery rate, the average particle diameter, the number density, and the minimum melt viscosity of the insulating resin layer of the conductive particles within specific numerical ranges under the assumption of the present invention, The inventors have found that the object can be achieved, and have completed the present invention.
 即ち、本発明は、少なくとも絶縁性樹脂層とそれに分散している導電粒子とから構成されている導電粒子分散層を有する異方性導電フィルムであって、以下の条件(イ)~(ホ)を満足する異方性導電フィルムを提供する。 That is, the present invention relates to an anisotropic conductive film having a conductive particle dispersion layer composed of at least an insulating resin layer and conductive particles dispersed therein, and the following conditions (a) to (e): Is provided.
<条件(イ)>
 導電粒子の20%圧縮弾性率が、6000N/mm以上15000N/mm以下であること;
<条件(ロ)>
 導電粒子の圧縮復元率が、40%以上80%以下であること;
<条件(ハ)>
 導電粒子の平均粒子径が、1μm以上30μm以下であること;
<条件(ニ)>
 絶縁性樹脂層の最低溶融粘度が、4000Pa・s以下であること;及び
<条件(ホ)>
 導電粒子の個数密度が、6000個/mm以上36000個/mm以下であること。
<Conditions (a)>
20% compressive elasticity modulus of the conductive particles, 6000 N / mm 2 or more 15000 N / mm 2 that less is;
<Conditions (b)>
The compression recovery ratio of the conductive particles is 40% or more and 80% or less;
<Condition (C)>
The average particle diameter of the conductive particles is 1 μm or more and 30 μm or less;
<Condition (d)>
The minimum melt viscosity of the insulating resin layer is 4000 Pa · s or less; and <Condition (e)>
The number density of the conductive particles is not less than 6000 / mm 2 and not more than 36000 / mm 2 .
 また、本発明は、上述の本発明の異方性導電フィルムの製造方法であって、絶縁性樹脂層に導電粒子を押し込むことにより導電粒子分散層を形成する工程を有する製造方法を提供する。この工程の好ましい態様としては、絶縁性樹脂層の表面に導電粒子を所定の配列で保持させ、その導電粒子を平板又はローラーで絶縁性樹脂層に押し込むことにより導電粒子分散層を形成する態様や、転写型に導電粒子を充填し、その導電粒子を絶縁性樹脂層に転写することにより絶縁性樹脂層の表面に導電粒子を所定の配置で保持させる態様が挙げられる。 The present invention also provides a method for producing the above-described anisotropic conductive film of the present invention, which comprises a step of forming a conductive particle dispersed layer by pushing conductive particles into an insulating resin layer. In a preferred embodiment of this step, the conductive particles are held in a predetermined arrangement on the surface of the insulating resin layer, and the conductive particles are pressed into the insulating resin layer with a flat plate or a roller to form a conductive particle dispersion layer. A mode in which conductive particles are filled in a transfer mold, and the conductive particles are transferred to the insulating resin layer to hold the conductive particles in a predetermined arrangement on the surface of the insulating resin layer.
 本発明は、更に、第1電子部品、例えばICチップ又はICモジュールと、第2電子部品、例えば可撓性のプラスチック基板とが、前述の本発明の異方性導電フィルムを介して異方性導電接続されている接続構造体を提供する。 According to the present invention, further, the first electronic component, for example, an IC chip or an IC module, and the second electronic component, for example, a flexible plastic substrate are anisotropically formed through the anisotropic conductive film of the present invention. A connection structure is provided that is conductively connected.
 本発明の異方性導電フィルムは、絶縁性樹脂層とそれに分散している導電粒子とから少なくとも構成されている導電粒子分散層を有する。本発明の異方性導電フィルムにおいては、この導電粒子分散層に保持させている導電粒子として、20%圧縮弾性率、圧縮復元率及び平均粒子径がそれぞれ特定の数値範囲のものを使用し、そのような導電粒子を保持する絶縁性樹脂層として、最低溶融粘度が特定数値以下のものを使用し、そして、そのような絶縁性樹脂層に導電粒子を保持させる程度(換言すれば、個数密度)を特定範囲内に設定する。このため、本発明の異方性導電フィルムを介して、画像表示素子や駆動用ICチップ等のバンプを有する電子部品を、電極と配線とが形成されている可撓性のプラスチック基板に異方性導電接続した場合には、プラスチック基板の配線にクラックを生じさせないようにすることができる。また、良好な異方性導電接続を示す圧痕を生成させることができ、異方性導電接続の際に、良好な導通信頼性評価を得ることができる。 異 方 性 The anisotropic conductive film of the present invention has a conductive particle dispersed layer at least composed of an insulating resin layer and conductive particles dispersed therein. In the anisotropic conductive film of the present invention, as the conductive particles held in the conductive particle dispersion layer, those having 20% compression elastic modulus, compression recovery rate and average particle diameter each in a specific numerical range are used, As the insulating resin layer holding such conductive particles, a resin having a minimum melt viscosity of a specific value or less is used, and the degree of holding the conductive particles in such insulating resin layer (in other words, the number density ) Is set within a specific range. Therefore, via the anisotropic conductive film of the present invention, an electronic component having a bump such as an image display element or a driving IC chip is anisotropically mounted on a flexible plastic substrate on which electrodes and wiring are formed. When the conductive connection is made, it is possible to prevent cracks from being generated in the wiring of the plastic substrate. In addition, it is possible to generate an indentation indicating a good anisotropic conductive connection, and it is possible to obtain a good conduction reliability evaluation at the time of the anisotropic conductive connection.
図1Aは、実施例の異方性導電フィルム10Aの導電粒子の配置を示す平面図である。FIG. 1A is a plan view showing an arrangement of conductive particles of an anisotropic conductive film 10A of an example. 図1Bは、実施例の異方性導電フィルム10Aの断面図である。FIG. 1B is a cross-sectional view of the anisotropic conductive film 10A of the example. 図2は、実施例の異方性導電フィルム10Bの断面図である。FIG. 2 is a cross-sectional view of the anisotropic conductive film 10B of the example. 図3は、実施例の異方性導電フィルム10Cの断面図である。FIG. 3 is a cross-sectional view of the anisotropic conductive film 10C of the example. 図4は、実施例の異方性導電フィルム10Dの断面図である。FIG. 4 is a cross-sectional view of the anisotropic conductive film 10D of the example. 図5は、実施例の異方性導電フィルム10Eの断面図である。FIG. 5 is a cross-sectional view of the anisotropic conductive film 10E of the example. 図6は、実施例の異方性導電フィルム10Fの断面図である。FIG. 6 is a cross-sectional view of the anisotropic conductive film 10F of the example. 図7は、プラスチック基板の概略断面図である。FIG. 7 is a schematic sectional view of a plastic substrate. 図8は、プラスチック基板にICチップを異方性導電接続した場合の説明図である。FIG. 8 is an explanatory diagram when an IC chip is anisotropically conductively connected to a plastic substrate.
 本発明の異方性導電フィルムは、絶縁性樹脂層とそれに分散している導電粒子とから少なくとも構成されている導電粒子分散層を有する。この導電粒子分散層に保持させている導電粒子として、条件(イ):“20%圧縮弾性率”、条件(ロ):“圧縮復元率”、及び条件(ハ):“平均粒子径”がそれぞれ特定の数値範囲のものを使用し、そのような導電粒子を保持する絶縁性樹脂層として、条件(ニ):“最低溶融粘度”が特定範囲のものを使用し、そして、そのような絶縁性樹脂層に導電粒子を保持させる程度として、条件(ホ):“個数密度”を特定範囲内に設定している。以下、本発明の異方性導電フィルムの一例について図面を参照しつつ詳細に説明する。なお、後述する図中、同一符号は、同一又は同等の構成要素を表している。 異 方 性 The anisotropic conductive film of the present invention has a conductive particle dispersed layer at least composed of an insulating resin layer and conductive particles dispersed therein. As the conductive particles held in the conductive particle dispersion layer, the condition (a): “20% compression elastic modulus”, the condition (b): “compression recovery”, and the condition (c): “average particle diameter” Each having a specific numerical range is used, and as the insulating resin layer holding such conductive particles, the condition (d): “lowest melt viscosity” is used in a specific range, and such insulating resin layer is used. The condition (e): “number density” is set within a specific range as the extent to which the conductive particles are held in the conductive resin layer. Hereinafter, an example of the anisotropic conductive film of the present invention will be described in detail with reference to the drawings. In the drawings described later, the same reference numerals represent the same or equivalent components.
<異方性導電フィルムの全体構成>
 図1Aは、本発明の一実施例の異方性導電フィルム10Aの粒子配置を説明する平面図であり、図1BはそのX-X断面図である。また、図2、3-4はそれぞれ、本発明の実施例の異方性導電フィルム10B、10C及び10Dの断面図である。本発明の異方性導電フィルムは、これらの図面に開示された態様に限定されるものではない。
<Overall configuration of anisotropic conductive film>
FIG. 1A is a plan view illustrating the particle arrangement of the anisotropic conductive film 10A according to one embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line XX. 2 and 3-4 are cross-sectional views of the anisotropic conductive films 10B, 10C, and 10D of the embodiment of the present invention, respectively. The anisotropic conductive film of the present invention is not limited to the embodiments disclosed in these drawings.
 この異方性導電フィルム10Aは、例えば長さ5m以上の長尺のフィルム形態とすることができ、巻き芯に巻いた巻装体とすることもできる。 The anisotropic conductive film 10A may be in the form of a long film having a length of, for example, 5 m or more, and may be a wound body wound around a core.
 異方性導電フィルム10Aは、導電粒子分散層3から構成されており、導電粒子分散層3では、絶縁性樹脂層2に導電粒子1が互いに非接触な状態にある。好ましくは、絶縁性樹脂層2の片面に導電粒子1が露出した状態で規則的に配置されている。フィルムの平面視にて導電粒子1は互いに接触しておらず、フィルム厚方向にも導電粒子1が互いに重なることなく存在している。好ましくは導電粒子1のフィルム厚方向の位置が揃った単層の導電粒子層を構成している。なお、互いに非接触な状態にある導電粒子の割合(個数基準)は、好ましくは95%以上、より好ましくは98%以上である。 The anisotropic conductive film 10A is composed of the conductive particle dispersion layer 3, in which the conductive particles 1 are in non-contact with the insulating resin layer 2. Preferably, conductive particles 1 are regularly arranged in a state where conductive particles 1 are exposed on one surface of insulating resin layer 2. The conductive particles 1 are not in contact with each other in plan view of the film, and the conductive particles 1 are also present in the film thickness direction without overlapping each other. Preferably, the conductive particles 1 constitute a single conductive particle layer in which the positions in the film thickness direction are aligned. The ratio (number basis) of the conductive particles that are not in contact with each other is preferably 95% or more, and more preferably 98% or more.
 個々の導電粒子1の周囲の絶縁性樹脂層2の表面2aには、隣接する導電粒子間の中央部における絶縁性樹脂層2の接平面2pに対して凹み2bが形成されていてもよい(図1B、図2)。また、導電粒子1の頂部1aが、図2のように、絶縁性樹脂層2の表面2aに面一になっていてもよく、その場合には、図1Bの場合に比べ、異方性導電接続時に樹脂流動による導電粒子の移動を軽減できる。なお、後述するように、本発明の異方性導電フィルムでは、絶縁性樹脂層2に埋め込まれた導電粒子1の直上の絶縁性樹脂層の表面に凹み2cが形成されていてもよい(図3、図4)。図3の場合、導電粒子1の頂部1aの一点で絶縁性樹脂層から露出していてもよい。 On the surface 2a of the insulating resin layer 2 around each conductive particle 1, a recess 2b may be formed with respect to the tangent plane 2p of the insulating resin layer 2 at the center between adjacent conductive particles ( (FIG. 1B, FIG. 2). Further, the top 1a of the conductive particles 1 may be flush with the surface 2a of the insulating resin layer 2 as shown in FIG. At the time of connection, movement of the conductive particles due to resin flow can be reduced. As described later, in the anisotropic conductive film of the present invention, a recess 2c may be formed on the surface of the insulating resin layer immediately above the conductive particles 1 embedded in the insulating resin layer 2. 3, FIG. 4). In the case of FIG. 3, one point of the top 1a of the conductive particle 1 may be exposed from the insulating resin layer.
<導電粒子>
 導電粒子1は、公知の異方性導電フィルムに用いられている導電粒子の中から、樹脂コア粒子の表面に金属層を形成した金属被覆樹脂粒子を適宜選択して使用することができる。このような金属被覆樹脂粒子としては、その表面に絶縁コート処理(例えば、絶縁性微粒子付着処理、絶縁性樹脂被覆処理等)が施されたものも使用することができる。金属被覆樹脂粒子は2種以上を併用することもできる。また、導電粒子1として、表面に導電性の突起を有する導電粒子も使用することができる。例えば、樹脂コア粒子の表面に突起の芯材となる絶縁性粒子を付着させ、全体を導電層で被覆した導電粒子;そのような導電粒子の表面に更に別の導電層で被覆した導電粒子;あるいは、導電層で被覆した樹脂コア粒子の表面に突起の芯材となる絶縁性粒子を付着させ、全体を更に導電層で被覆した導電粒子等も使用することができる。導電層は2層もしくはそれ以上の多層であってもよい。突起は導電層の間に存在していてもよい。このような導電層の形成は、例えば樹脂コア粒子の表面に、無電解メッキ、電解メッキ、スパッタリング等、公知の成膜方法により行うことができる。また、導電性微粒子を付着させる手法などもあり、後述する条件を満たした導電粒子であり、導通性能を満足できれば、特に限定はない。また、導電層の表面には、公知の絶縁処理が施されていてもよい。この場合、絶縁処理により形成された絶縁層の厚さを除いた大きさを導電粒子の粒子径とする。
<Conductive particles>
As the conductive particles 1, metal-coated resin particles having a metal layer formed on the surface of the resin core particles can be appropriately selected from the conductive particles used in known anisotropic conductive films. As such metal-coated resin particles, those whose surfaces have been subjected to an insulating coating treatment (for example, an insulating fine particle adhesion treatment, an insulating resin coating treatment, etc.) can also be used. Two or more kinds of metal-coated resin particles can be used in combination. Further, as the conductive particles 1, conductive particles having conductive protrusions on the surface can also be used. For example, conductive particles in which insulating particles serving as a core material of the protrusions are adhered to the surface of the resin core particles and the whole is coated with a conductive layer; conductive particles in which the surface of such conductive particles is further coated with another conductive layer; Alternatively, conductive particles or the like, in which insulating particles serving as a core material of the projections are adhered to the surface of the resin core particles coated with the conductive layer, and the whole is further coated with the conductive layer, can be used. The conductive layer may be two or more layers. The protrusion may be present between the conductive layers. Such a conductive layer can be formed on the surface of the resin core particles by a known film forming method such as electroless plating, electrolytic plating, and sputtering. In addition, there is also a method of attaching conductive fine particles, and there is no particular limitation as long as the conductive particles satisfy the conditions described below and can satisfy conduction performance. Further, the surface of the conductive layer may be subjected to a known insulating treatment. In this case, the size excluding the thickness of the insulating layer formed by the insulating treatment is defined as the particle size of the conductive particles.
 本発明で使用する導電粒子1は、以下の条件(イ)~(ハ)を満足するものである。 導電 The conductive particles 1 used in the present invention satisfy the following conditions (a) to (c).
<条件(イ)>
 本発明で使用する導電粒子は、電子部品の電極や端子表面に酸化皮膜が形成されていても導電粒子によってその酸化皮膜を突き破るという観点から、その20%圧縮弾性率(K)の下限が、6000N/mm以上、好ましくは10000N/mm以上のものである。ここで、20%圧縮弾性率は、微小圧縮試験機(例えば、フィッシャー社製、フィッシャースコープH-100)を用いて導電粒子に圧縮荷重を加えたとき(例えば、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、圧縮速度2.6mN/秒、及び最大試験荷重10gfの条件下で導電粒子を圧縮したとき)の導電粒子の圧縮変量を測定し、測定して得られた数値を以下の式(1)に適用することにより算出することができる。
<Conditions (a)>
The conductive particles used in the present invention have a lower limit of the 20% compression modulus (K) from the viewpoint that even if an oxide film is formed on the surface of an electrode or a terminal of an electronic component, the conductive particles break through the oxide film. 6000 N / mm 2 or more, preferably 10000 N / mm 2 or more. Here, the 20% compression modulus is determined when a compressive load is applied to the conductive particles using a micro compression tester (for example, Fisher Scope H-100 manufactured by Fischer) (for example, a cylinder (diameter: 50 μm, made of diamond)). Of the conductive particles when the conductive particles are compressed under the conditions of a compression speed of 2.6 mN / sec and a maximum test load of 10 gf) at the end face of the smoothing indenter, and the numerical value obtained by the measurement is as follows: It can be calculated by applying to equation (1).
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 式(1)中、Fは導電粒子が20%圧縮変形したときの荷重値(N)であり、Sは導電粒子が20%圧縮変形したときの圧縮変位(mm)であり、Rは導電粒子の半径(mm)である。 In the formula (1), F is a load value (N) when the conductive particles are compressed and deformed by 20%, S is a compressive displacement (mm) when the conductive particles are compressed and deformed by 20%, and R is a conductive displacement. (Mm).
<条件(ロ)>
 また、本発明で使用する導電粒子は、上述のように電子部品の電極や端子表面に形成された酸化皮膜を突き破ることが求められるため、接続時には導電粒子に相応の圧力が印加される。それにより導電粒子が扁平化することが予想される。従って、接続の圧力が解除された後に導電粒子は対向する電極や端子表面との接触面積を十分に確保させる上で、圧縮後に復元することが求められる。この観点から、その圧縮復元率(X)の下限は40%以上、好ましくは55%以上のものとなる。また、上限が高すぎると、硬化もしくは重合した樹脂によって保持される接続状態の維持に支障をきたす虞があることから高すぎることも望ましくなく、上限が80%以下、好ましくは75%以下のものである。ここで、圧縮復元率は、前述の微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で導電粒子を圧縮し、初期荷重時(荷重0.4mN)から荷重反転時(荷重5mN)までの変位(L2)と、荷重反転時から最終荷重時(荷重0.4mN)までの変位(L1)とを測定し、測定して得られた数値を以下の式(2)に適用することで算出することができる。
<Conditions (b)>
In addition, since the conductive particles used in the present invention are required to break through the oxide film formed on the surface of the electrode or terminal of the electronic component as described above, a corresponding pressure is applied to the conductive particles during connection. This is expected to flatten the conductive particles. Therefore, after the pressure of the connection is released, the conductive particles are required to be restored after compression in order to secure a sufficient contact area with the facing electrode or terminal surface. From this viewpoint, the lower limit of the compression recovery ratio (X) is 40% or more, preferably 55% or more. Further, if the upper limit is too high, there is a risk that the connection state maintained by the cured or polymerized resin may be impaired, so it is not desirable that the upper limit is too high, and the upper limit is 80% or less, preferably 75% or less. It is. Here, the compression recovery rate is determined by compressing the conductive particles on the end face of a smooth indenter of a cylinder (diameter: 50 μm, made of diamond) using the above-mentioned micro-compression tester, and from the initial load (load 0.4 mN) to the load reversal. The displacement (L2) up to (load 5 mN) and the displacement (L1) from load reversal to final load (load 0.4 mN) are measured, and the numerical value obtained by the measurement is expressed by the following equation (2). Can be calculated by applying
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
<条件(ハ)>
 本発明で使用する導電粒子1は、配線高さのばらつきに対応するという観点から、その平均粒子径の下限は1μm以上、好ましくは2.5μm以上のものであり、導通抵抗の上昇を抑制し且つショートの発生を抑制するという観点から、その上限は30μm以下、好ましくは9μm以下のものである。ここで、平均粒子径は、一般的な粒度分布測定装置(例えば、FPIA-3000(マルバーン・パナリティカル社))を用いて求めることができる。測定サンプル数は1000以上が好ましい。また、異方性導電フィルムにおける導電粒子の平均粒子径Dは、SEMなどの電子顕微鏡を用いて求めることができる。この場合、測定サンプル数を200以上とすることが好ましい。なお、導電粒子として、その表面に絶縁性微粒子が付着しているものを使用する場合、本発明における導電粒子の平均粒子径は、表面の絶縁性微粒子を含めない平均粒子径を意味する。
<Condition (C)>
The lower limit of the average particle diameter of the conductive particles 1 used in the present invention is 1 μm or more, and preferably 2.5 μm or more, from the viewpoint of coping with the variation in wiring height. From the viewpoint of suppressing occurrence of short-circuit, the upper limit is 30 μm or less, preferably 9 μm or less. Here, the average particle size can be determined using a general particle size distribution measuring device (for example, FPIA-3000 (Malvern Panicalical)). The number of measurement samples is preferably 1000 or more. The average particle diameter D of the conductive particles in the anisotropic conductive film can be determined using an electron microscope such as a SEM. In this case, the number of measurement samples is preferably 200 or more. In the case where conductive particles having insulating fine particles adhered to the surface thereof are used, the average particle size of the conductive particles in the present invention means an average particle size not including the surface insulating fine particles.
<絶縁性樹脂層2>
 本発明の異方性導電フィルムにおいて、導電粒子1を保持し、異方性導電フィルムのベース層として機能する絶縁性樹脂層2は、後述するように、硬化性樹脂組成物から形成することができ、以下の条件(ニ)を満足するものである。
<Insulating resin layer 2>
In the anisotropic conductive film of the present invention, the insulating resin layer 2 that holds the conductive particles 1 and functions as a base layer of the anisotropic conductive film may be formed from a curable resin composition as described later. It satisfies the following condition (d).
<条件(ニ)>
 本発明の異方性導電フィルムを構成する絶縁性樹脂層2の最低溶融粘度に関し、その上限は、接続時の圧力を低下させることが、特に基板がプラスチックなどの場合には変形の抑制になり、また導電粒子の良好な押し込みを可能にするという観点から、4000Pa・s以下、好ましくは3000Pa・s以下である。また、その下限は、接続に際して、特にプラスチック基板において変形抑制の観点から低いことが望ましいため特に制限はなく、適宜調整すればよいが、異方性導電接続時に端子間で挟持されるべき導電粒子1が樹脂流動により過度に流されてしまうことを防止するという観点並びに巻装体にした際の樹脂のはみ出しを防止する観点から、好ましくは200Pa・s以上、より好ましくは400Pa・s以上のものである。ここで、最低溶融粘度は、一例として回転式レオメータ(TA Instruments社製)を用い、測定圧力5gで一定に保持し、直径8mmの測定プレートを使用し求めることができ、より具体的には、温度範囲30~200℃において、昇温速度10℃/分、測定周波数10Hz、前記測定プレートに対する荷重変動5gとすることにより求めることができる。
<Condition (d)>
With respect to the minimum melt viscosity of the insulating resin layer 2 constituting the anisotropic conductive film of the present invention, the upper limit thereof is to reduce the pressure at the time of connection, particularly when the substrate is made of plastic, etc. It is 4000 Pa · s or less, and preferably 3000 Pa · s or less, from the viewpoint of enabling good pushing of the conductive particles. In addition, the lower limit is preferably not particularly limited since it is desirable from the viewpoint of suppressing deformation of the plastic substrate, particularly in connection with the plastic substrate, and may be appropriately adjusted, but the conductive particles to be sandwiched between the terminals during anisotropic conductive connection From the viewpoint of preventing 1 from being excessively flown by the resin flow as well as from the viewpoint of preventing the resin from overflowing when wound into a wound body, preferably 200 Pa · s or more, more preferably 400 Pa · s or more It is. Here, the minimum melt viscosity can be obtained by using a rotary rheometer (manufactured by TA Instruments) as an example, using a measurement plate having a diameter of 8 mm, keeping the measurement pressure constant at 5 g, and more specifically, In a temperature range of 30 to 200 ° C., the temperature can be determined by setting the temperature to 10 ° C./min, the measurement frequency to 10 Hz, and the load on the measurement plate to 5 g.
 なお、絶縁性樹脂層2に導電粒子1を押し込むことにより異方性導電フィルム10Aの導電粒子分散層3を形成する場合に、導電粒子1を押し込むときの絶縁性樹脂層2は、導電粒子1が絶縁性樹脂層2から露出径Lcで露出するように導電粒子1を絶縁性樹脂層2に押し込んだときに、絶縁性樹脂層2が塑性変形して導電粒子1の周囲の絶縁性樹脂層2に凹み2b(図1B、図2)が形成されるような高粘度な粘性体とするか、あるいは、導電粒子1が絶縁性樹脂層2から露出することなく絶縁性樹脂層2に埋まるように導電粒子1を押し込んだときに、導電粒子1の直上の絶縁性樹脂層2の表面に凹み2c(図3、図4)が形成されるような高粘度な粘性体とする。そのため、絶縁性樹脂層2の60℃における粘度を好ましくは3000~20000Pa・sとする。この測定は最低溶融粘度と同様の測定方法で行い、温度が60℃の値を抽出して求めることができる。 When the conductive particles 1 are pressed into the insulating resin layer 2 to form the conductive particle dispersed layer 3 of the anisotropic conductive film 10A, the insulating resin layer 2 when the conductive particles 1 are pressed is When the conductive particles 1 are pushed into the insulating resin layer 2 so that the resin particles are exposed from the insulating resin layer 2 with the exposed diameter Lc, the insulating resin layer 2 is plastically deformed and the insulating resin layer around the conductive particles 1 is deformed. 2 or a high-viscosity viscous material such that a recess 2b (FIGS. 1B and 2) is formed, or the conductive particles 1 are buried in the insulating resin layer 2 without being exposed from the insulating resin layer 2. When the conductive particles 1 are pushed into the insulating resin layer 2 immediately above the conductive particles 1, a high viscosity viscous body is formed such that a recess 2c (FIGS. 3 and 4) is formed on the surface of the insulating resin layer 2. Therefore, the viscosity at 60 ° C. of the insulating resin layer 2 is preferably set to 3,000 to 20,000 Pa · s. This measurement is carried out in the same manner as the lowest melt viscosity, and can be determined by extracting a value at a temperature of 60 ° C.
 絶縁性樹脂層2に導電粒子1を押し込むときの該絶縁性樹脂層2の具体的な粘度は、特許第6187665号明細書(段落0054)の記載を参考にして決定することができる。 具体 The specific viscosity of the insulating resin layer 2 when the conductive particles 1 are pressed into the insulating resin layer 2 can be determined with reference to the description of Japanese Patent No. 6187665 (paragraph 0054).
 上述したように、絶縁性樹脂層2から露出している導電粒子1の周囲に凹み2b(図1B、図2)が形成されていることにより、異方性導電接続時に導電粒子1が端子間で挟持される際に生じる導電粒子1の扁平化に対して絶縁性樹脂から受ける抵抗が、凹み2bが無い場合に比して低減するため、端子における導電粒子の挟持がされ易くなることで導通性能が向上し、また捕捉性が向上する。 As described above, since the recesses 2b (FIGS. 1B and 2) are formed around the conductive particles 1 exposed from the insulating resin layer 2, the conductive particles 1 can be connected between terminals during anisotropic conductive connection. Since the resistance received from the insulating resin to the flattening of the conductive particles 1 generated when the conductive particles 1 are pinched is reduced as compared with the case where the recess 2b is not provided, the conductive particles are easily pinched at the terminals, so that conduction is achieved. The performance is improved, and the trapping property is improved.
 また、絶縁性樹脂層2から露出することなく埋まっている導電粒子1の直上の絶縁性樹脂層2の表面に凹み2c(図3、図4)が形成されていることにより、凹み2cが無い場合に比して異方性導電接続時の圧力が導電粒子1に集中し易くなり、端子における導電粒子1の挟持がされ易くなることで捕捉性が向上し、導通性能が向上する。 Further, since the recess 2c (FIGS. 3 and 4) is formed on the surface of the insulating resin layer 2 immediately above the conductive particles 1 buried without being exposed from the insulating resin layer 2, the recess 2c does not exist. As compared with the case, the pressure at the time of anisotropic conductive connection is more likely to concentrate on the conductive particles 1, and the conductive particles 1 are more easily pinched between the terminals, so that the trapping property is improved and the conduction performance is improved.
(絶縁性樹脂層の層厚)
 本発明の異方性導電フィルムでは、絶縁性樹脂層2の層厚Laと導電粒子1の平均粒子径Dとの比(La/D)は導電粒子を保持できる樹脂量があれば足りるため0.3以上であればよく、0.6以上が好ましく、1.0以上がより好ましい。La/Dが0.3未満となると、導電粒子1を絶縁性樹脂層2によって所定の粒子分散状態あるいは所定の配列を精密に維持することが困難となる場合がある。ここで、平均粒子径Dは金属被覆樹脂粒子の大きさ(樹脂コア粒子と、その表面の導電層からなる大きさ)で定義されるものである。絶縁性樹脂層2の層厚Laが導電粒子に対して過度に大き過ぎると異方性導電接続時に導電粒子が位置ズレしやすくなり、端子における導電粒子の捕捉性が低下する。そのためLa/Dの上限は8.0以下が好ましく、6.0以下がより好ましい。
(Thickness of insulating resin layer)
In the anisotropic conductive film of the present invention, the ratio (La / D) between the layer thickness La of the insulating resin layer 2 and the average particle diameter D of the conductive particles 1 is 0 if the amount of resin capable of holding the conductive particles is sufficient. 0.3 or more, preferably 0.6 or more, and more preferably 1.0 or more. If La / D is less than 0.3, it may be difficult to precisely maintain the conductive particles 1 in a predetermined particle dispersion state or a predetermined arrangement by the insulating resin layer 2. Here, the average particle diameter D is defined by the size of the metal-coated resin particles (the size of the resin core particles and the conductive layer on the surface thereof). If the layer thickness La of the insulating resin layer 2 is excessively large with respect to the conductive particles, the conductive particles are likely to be displaced during anisotropic conductive connection, and the ability of the terminal to capture the conductive particles is reduced. Therefore, the upper limit of La / D is preferably 8.0 or less, and more preferably 6.0 or less.
(絶縁性樹脂層の組成)
 絶縁性樹脂層2は、硬化性樹脂組成物から形成することができ、例えば、熱重合性化合物と熱重合開始剤とを含有する熱重合性組成物から形成することができる。熱重合性組成物には必要に応じて光重合開始剤を含有させてもよい。
(Composition of insulating resin layer)
The insulating resin layer 2 can be formed from a curable resin composition, for example, from a thermopolymerizable composition containing a thermopolymerizable compound and a thermopolymerization initiator. The thermopolymerizable composition may contain a photopolymerization initiator as needed.
 熱重合開始剤と光重合開始剤を併用する場合に、熱重合性化合物として光重合性化合物としても機能するものを使用してもよく、熱重合性化合物とは別に光重合性化合物を含有させてもよい。好ましくは、熱重合性化合物とは別に光重合性化合物を含有させる。例えば、熱重合開始剤としてカチオン系重合開始剤、熱重合性化合物としてエポキシ樹脂を使用し、光重合開始剤として光ラジカル重合開始剤、光重合性化合物としてアクリレート化合物を使用する。 When a thermal polymerization initiator and a photopolymerization initiator are used in combination, those that also function as a photopolymerizable compound may be used as the thermopolymerizable compound, and the photopolymerizable compound is contained separately from the thermopolymerizable compound. You may. Preferably, a photopolymerizable compound is contained separately from the thermopolymerizable compound. For example, a cationic polymerization initiator is used as a thermal polymerization initiator, an epoxy resin is used as a thermopolymerizable compound, a photoradical polymerization initiator is used as a photopolymerization initiator, and an acrylate compound is used as a photopolymerizable compound.
 光重合開始剤として、波長の異なる光に反応する複数種類を含有させてもよい。これにより、異方性導電フィルムの製造時における、絶縁性樹脂層を構成する樹脂の光硬化と、異方性導電接続時に電子部品同士を接着するための樹脂の光硬化とで使用する波長を使い分けることができる。 複数 As the photopolymerization initiator, a plurality of types that react to light having different wavelengths may be contained. Thereby, the wavelength used in the photocuring of the resin constituting the insulating resin layer during the production of the anisotropic conductive film and the photocuring of the resin for bonding the electronic components together at the time of the anisotropic conductive connection. You can use them properly.
 異方性導電フィルムの製造時の光硬化では、絶縁性樹脂層に含まれる光重合性化合物の全部又は一部を光硬化させることができる。この光硬化により、絶縁性樹脂層2における導電粒子1の配置が保持乃至固定化され、ショートの抑制と捕捉の向上が見込まれる。また、この光硬化により、異方性導電フィルムの製造工程における絶縁性樹脂層の粘度を適宜調整してもよい。 光 In the photocuring at the time of producing the anisotropic conductive film, all or a part of the photopolymerizable compound contained in the insulating resin layer can be photocured. Due to this photocuring, the arrangement of the conductive particles 1 in the insulating resin layer 2 is held or fixed, and short-circuit suppression and improvement in capture are expected. In addition, the viscosity of the insulating resin layer in the process of manufacturing the anisotropic conductive film may be appropriately adjusted by the photocuring.
 絶縁性樹脂層における光重合性化合物の配合量は30質量%以下が好ましく、10質量%以下がより好ましく、2質量%未満が特に好ましい。光重合性化合物が多すぎると接続時の押し込みにかかる推力が増加するためである。 は The content of the photopolymerizable compound in the insulating resin layer is preferably 30% by mass or less, more preferably 10% by mass or less, and particularly preferably less than 2% by mass. This is because if the amount of the photopolymerizable compound is too large, the thrust for pushing in at the time of connection increases.
 熱重合性組成物の例としては、(メタ)アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合性アクリレート系組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合性エポキシ系組成物等が挙げられる。熱カチオン重合開始剤を含む熱カチオン重合性エポキシ系組成物に代えて、熱アニオン重合開始剤を含む熱アニオン重合性エポキシ系組成物を使用してもよい。また、特に支障を来さなければ、複数種の重合性組成物を併用してもよい。併用例としては、熱カチオン重合性組成物と熱ラジカル重合性組成物の併用などが挙げられる。 Examples of the thermopolymerizable composition include a thermoradical polymerizable acrylate composition containing a (meth) acrylate compound and a thermoradical polymerization initiator, and a thermocation polymerizable epoxy system containing an epoxy compound and a thermocation polymerization initiator. And the like. A thermal anionic polymerizable epoxy composition containing a thermal anionic polymerization initiator may be used instead of the thermal cationic polymerizable epoxy composition containing a thermal cationic polymerization initiator. In addition, a plurality of types of polymerizable compositions may be used in combination as long as there is no particular problem. Examples of the combination include a combination of a thermocationically polymerizable composition and a thermoradical polymerizable composition.
 ここで、(メタ)アクリレート化合物としては、従来公知の熱重合型(メタ)アクリレートモノマーを使用することができる。例えば、単官能(メタ)アクリレート系モノマー、二官能以上の多官能(メタ)アクリレート系モノマーを使用することができる。 Here, as the (meth) acrylate compound, a conventionally known thermopolymerizable (meth) acrylate monomer can be used. For example, a monofunctional (meth) acrylate monomer or a bifunctional or higher polyfunctional (meth) acrylate monomer can be used.
 熱ラジカル重合開始剤としては、例えば、有機過酸化物、アゾ系化合物等を挙げることができる。特に、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。 Examples of the thermal radical polymerization initiator include organic peroxides and azo compounds. In particular, an organic peroxide that does not generate nitrogen that causes bubbles can be preferably used.
 熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、(メタ)アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。 If the amount of the thermal radical polymerization initiator is too small, curing will be poor, and if it is too large, the product life will be shortened. Therefore, it is preferably 2 to 60 parts by mass, more preferably 100 parts by mass of the (meth) acrylate compound. It is 5 to 40 parts by mass.
 エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などを挙げることができ、これらの2種以上を併用することができる。また、エポキシ化合物に加えてオキセタン化合物を併用してもよい。 Examples of the epoxy compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, modified epoxy resin thereof, alicyclic epoxy resin and the like, and two or more of these may be used in combination. it can. An oxetane compound may be used in addition to the epoxy compound.
 熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により酸を発生するヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、特に、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。 As the thermal cationic polymerization initiator, those known as thermal cationic polymerization initiators for epoxy compounds can be employed.For example, using an iodonium salt, a sulfonium salt, a phosphonium salt, a ferrocene, or the like that generates an acid by heat is used. In particular, an aromatic sulfonium salt having a good potential with respect to temperature can be preferably used.
 熱カチオン重合開始剤の使用量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。 If the amount of the thermal cationic polymerization initiator is too small, curing tends to be poor, and if it is too large, the product life tends to decrease. Therefore, the amount is preferably 2 to 60 parts by mass relative to 100 parts by mass of the epoxy compound. Parts, more preferably 5 to 40 parts by mass.
 熱重合性組成物は、膜形成樹脂やシランカップリング剤を含有することが好ましい。膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、成膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。重量平均分子量は10000以上であることが好ましい。また、シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。 The thermopolymerizable composition preferably contains a film-forming resin and a silane coupling agent. Examples of the film-forming resin include a phenoxy resin, an epoxy resin, an unsaturated polyester resin, a saturated polyester resin, a urethane resin, a butadiene resin, a polyimide resin, a polyamide resin, and a polyolefin resin. be able to. Among these, a phenoxy resin can be preferably used from the viewpoints of film formability, workability, and connection reliability. The weight average molecular weight is preferably 10,000 or more. Examples of the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.
 熱重合性組成物には、溶融粘度調整のために、絶縁フィラを含有させてもよい。絶縁フィラとしては、シリカ粉やアルミナ粉などが挙げられる。絶縁フィラの大きさは粒径20~1000nmが好ましく、また、配合量はエポキシ化合物等の熱重合性化合物(及び光重合性化合物)100質量部に対して5~50質量部とすることが好ましい。 The thermopolymerizable composition may contain an insulating filler for adjusting the melt viscosity. Examples of the insulating filler include silica powder and alumina powder. The size of the insulating filler is preferably 20 to 1000 nm in particle size, and the blending amount is preferably 5 to 50 parts by mass with respect to 100 parts by mass of a thermopolymerizable compound (and a photopolymerizable compound) such as an epoxy compound. .
 更に、上述の絶縁フィラとは異なる充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを含有させてもよい。 Furthermore, a filler, a softener, an accelerator, an antioxidant, a colorant (pigment, dye), an organic solvent, an ion catcher agent and the like different from the above-mentioned insulating filler may be contained.
<絶縁性樹脂層による導電粒子の保持の程度>
 前述した最低溶融粘度を示す絶縁性樹脂層2は、前述したように導電粒子1を保持するが、その保持の程度は、個数密度を指標として評価することができる。即ち、本発明の異方性導電フィルムにおいては、導電粒子1の個数密度に関し、以下の条件(ホ)を満足する。
<Degree of retention of conductive particles by insulating resin layer>
The insulating resin layer 2 having the above-described minimum melt viscosity holds the conductive particles 1 as described above, and the degree of the holding can be evaluated using the number density as an index. That is, in the anisotropic conductive film of the present invention, the following condition (e) is satisfied with respect to the number density of the conductive particles 1.
<条件(ホ)>
 本発明の異方性導電フィルムにおける導電粒子のフィルム平面視における個数密度は、小さすぎると捕捉数の低下で導通抵抗値の上昇が懸念されることから下限は6000個/mm以上、好ましくは7500個/mm以上となる。また個数密度が大きすぎると接続時の圧力を高くする必要が生じ、基板がプラスチックなどの場合に変形が懸念されることから接続時の圧力を過度に大きくさせないために、上限は36000個/mm以下、好ましくは30000個/mm以下のものである。ここで、導電粒子の個数密度は、金属顕微鏡を用いて観察して求める他、画像解析ソフト(WinROOF、三谷商事(株)等)により観察画像を計測して求めてもよい。観察方法や計測手法は、上記に限定されるものではない。
<Conditions (e)>
The lower limit of the number density of the conductive particles in the anisotropic conductive film of the present invention in the film plan view is 6000 particles / mm 2 or more, because if the number density is too small, the number of trapped particles may decrease and the conduction resistance may increase. It becomes 7500 pieces / mm 2 or more. If the number density is too high, it is necessary to increase the pressure at the time of connection. If the substrate is made of plastic or the like, there is a concern about deformation, so that the pressure at the time of connection is not excessively increased. 2 or less, preferably 30000 pieces / mm 2 or less. Here, the number density of the conductive particles may be obtained by observing using a metallographic microscope or by measuring the observed image using image analysis software (WinROOF, Mitani Corporation). The observation method and the measurement method are not limited to the above.
 なお、導電粒子の個数密度の測定領域としては、1辺が100μm以上の矩形領域を任意に複数箇所(好ましくは5箇所以上、より好ましくは10箇所以上)設定し、測定領域の合計面積を2mm以上とすることが好ましい。個々の領域の大きさや数は、個数密度の状態によって適宜調整すればよい。ファインピッチ用途の比較的個数密度が大きい場合の一例として、異方性導電フィルム10Aから任意に選択した面積100μm×100μmの領域の200箇所(2mm)について、金属顕微鏡などによる観測画像を用いて個数密度を測定し、それを平均することにより上述の式中の「平面視における導電粒子の個数密度」を得ることができる。面積100μm×100μmの領域は、バンプ間スペース50μm以下でL/S(ライン/スペース)が1以下の接続対象物において、1個以上のバンプが存在する領域になる。 In addition, as a measurement region of the number density of the conductive particles, a rectangular region having one side of 100 μm or more is arbitrarily set at a plurality of positions (preferably 5 or more, more preferably 10 or more), and the total area of the measurement region is 2 mm. It is preferred to be 2 or more. The size and number of the individual regions may be appropriately adjusted depending on the state of the number density. As an example of a case where the number density for a fine pitch application is relatively large, 200 images (2 mm 2 ) of an area having an area of 100 μm × 100 μm arbitrarily selected from the anisotropic conductive film 10 </ b > A are observed using a metallographic microscope or the like. By measuring the number density and averaging it, the “number density of the conductive particles in plan view” in the above equation can be obtained. A region having an area of 100 μm × 100 μm is a region where one or more bumps are present in a connection target having a space between bumps of 50 μm or less and an L / S (line / space) of 1 or less.
<絶縁性樹脂層における導電粒子の分散状態>
 本発明の異方性導電フィルムの導電粒子分散層3における導電粒子1の分散状態には、導電粒子1がランダムに分散している状態も規則的な配置に分散している状態も含まれる。どちらの場合においても、フィルム厚方向の位置が揃っていることが捕捉安定性の点から好ましい。ここで、フィルム厚方向の導電粒子1の位置が揃っているとは、フィルム厚方向の単一の深さに揃っていることに限定されず、絶縁性樹脂層2の表裏の界面又はその近傍のそれぞれに導電粒子が存在している態様を含む。
<Dispersion state of conductive particles in insulating resin layer>
The dispersion state of the conductive particles 1 in the conductive particle dispersion layer 3 of the anisotropic conductive film of the present invention includes a state in which the conductive particles 1 are randomly dispersed and a state in which the conductive particles 1 are dispersed in a regular arrangement. In either case, it is preferable that the positions in the film thickness direction are aligned from the viewpoint of capture stability. Here, that the position of the conductive particles 1 in the film thickness direction is uniform is not limited to that the conductive particles 1 are aligned at a single depth in the film thickness direction, but the front and back interfaces of the insulating resin layer 2 or the vicinity thereof. In which conductive particles are present.
 また、導電粒子1はフィルムの平面視にて規則的に配列していることがショート抑制の点から好ましい。配列の態様は、端子およびバンプのレイアウトによるため、特に限定はない。例えば、フィルムの平面視にて図1Aに示したように正方格子配列とすることができる。この他、導電粒子の規則的な配列の態様としては、長方格子、斜方格子、6方格子、3角格子等の格子配列を挙げることができる。異なる形状の格子が、複数組み合わさったものでもよい。また、導電粒子が所定間隔で直線状に並んだ粒子列を所定の間隔で並列させてもよい。導電粒子1を互いに非接触とし、格子状等の規則的な配列にすることにより、異方性導電接続時に各導電粒子1に圧力を均等に加え、導通抵抗のばらつきを低減させることができる。 導電 In addition, it is preferable that the conductive particles 1 are regularly arranged in a plan view of the film from the viewpoint of suppressing a short circuit. The arrangement mode depends on the layout of terminals and bumps, and is not particularly limited. For example, the film can be arranged in a square lattice arrangement as shown in FIG. 1A in plan view. In addition, as an aspect of the regular arrangement of the conductive particles, a lattice arrangement such as a rectangular lattice, an oblique lattice, a hexagonal lattice, and a triangular lattice can be given. A plurality of lattices having different shapes may be combined. Further, a particle row in which conductive particles are linearly arranged at predetermined intervals may be arranged in parallel at predetermined intervals. When the conductive particles 1 are not in contact with each other and are arranged in a regular array such as a lattice, pressure can be uniformly applied to each conductive particle 1 at the time of anisotropic conductive connection, and variation in conduction resistance can be reduced.
 さらに、導電粒子がフィルムの平面視にて規則的に配列し、かつフィルム厚方向の位置が揃っていることが捕捉安定性とショート抑制の両立のためにより好ましい。 こ と が Further, it is more preferable that the conductive particles are regularly arranged in a plan view of the film and the positions in the film thickness direction are uniform in order to achieve both capture stability and short-circuit suppression.
 一方、接続する電子部品の端子間スペースが広くショートが発生しにくい場合などには、導電粒子を規則的に配列させることなくランダムに分散させていてもよい。分散させる場合でも、フィルム平面視において、個々の導電粒子は非接触で配置(個々の導電粒子が非接触で独立して存在)していることが好ましい。端子レイアウトによるため一例であるが、個数割合としては75%以上であればよく、90%以上が好ましく、95%以上がより好ましく、98%以上が更により好ましい。 On the other hand, when the space between the terminals of the electronic components to be connected is large and a short circuit is unlikely to occur, the conductive particles may be randomly dispersed without being regularly arranged. Even in the case of dispersing, it is preferable that the individual conductive particles are arranged in a non-contact manner (the individual conductive particles are independently present in a non-contact manner) in a plan view of the film. Although this is an example because it depends on the terminal layout, the number ratio may be 75% or more, preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more.
 導電粒子を規則的に配列させる場合に、その配列の格子軸又は配列軸は、異方性導電フィルムの長手方向や長手方向と直交する方向に対して平行でもよく、異方性導電フィルムの長手方向と交叉してもよく、接続する端子幅、端子ピッチなどに応じて定めることができる。例えば、ファインピッチ用の異方性導電性フィルムとする場合、図1Aに示したように導電粒子1の配列の格子軸Aを異方性導電フィルム10Aの長手方向に対して斜行させ、異方性導電フィルム10Aで接続する端子200の長手方向(フィルムの短手方向)と格子軸Aとのなす角度θを6°以上84°以下、好ましくは11°以上74°以下にすることが好ましい。 When the conductive particles are regularly arranged, the lattice axis or the arrangement axis of the arrangement may be parallel to the longitudinal direction of the anisotropic conductive film or a direction perpendicular to the longitudinal direction, and the longitudinal axis of the anisotropic conductive film. It may intersect with the direction, and can be determined according to the terminal width, terminal pitch and the like to be connected. For example, in the case of an anisotropic conductive film for fine pitch, as shown in FIG. 1A, the lattice axis A of the arrangement of the conductive particles 1 is inclined with respect to the longitudinal direction of the anisotropic conductive film 10A. It is preferable that the angle θ between the longitudinal direction (the short direction of the film) of the terminal 200 connected with the anisotropic conductive film 10A and the lattice axis A is 6 ° or more and 84 ° or less, preferably 11 ° or more and 74 ° or less. .
 また、導電粒子1の粒子間距離は、異方性導電フィルムで接続する端子の大きさや端子ピッチに応じて適宜定める。一般に、ショート発生の防止の観点から、最近接粒子間距離(即ち、最も近接した粒子間の距離)の下限は、導電粒子の平均粒子径Dの好ましくは50%以上もしくは0.2μm以上のいずれか長い方であり、上限は、個数密度の条件を満たすことができれば特に制限はないが、例えば、導電粒子の平均粒子径Dの好ましい最大径である30μm以下が好ましく、あるいは、比較的平均粒子径Dが小さい場合には、平均粒子径Dの10倍以下が好ましい。 距離 The distance between the conductive particles 1 is appropriately determined according to the size and the terminal pitch of the terminals connected by the anisotropic conductive film. Generally, from the viewpoint of preventing occurrence of short-circuit, the lower limit of the distance between the nearest particles (that is, the distance between the closest particles) is preferably 50% or more of the average particle diameter D of the conductive particles or 0.2 μm or more. The upper limit is not particularly limited as long as the condition of the number density can be satisfied. For example, the average particle diameter D of the conductive particles is preferably 30 μm or less, which is a preferable maximum diameter, or the average particle diameter is relatively small. When the diameter D is small, it is preferably 10 times or less the average particle diameter D.
 また、本発明の異方性導電フィルムの平面視における導電粒子の面積占有率は、異方性導電フィルムを電子部品に熱圧着するために押圧治具に必要とされる推力の指標となる。面積占有率が大きすぎると、推力もそれに応じて高くなり、基板がプラスチックなどの変形し易いものの場合、変形の要因になる。そのため導電粒子の面積占有率の上限は30%以下が好ましく、26%以下がより好ましく、23%以下が更により好ましい。また、面積占有率が少なすぎる場合、ファインピッチに対応できなくなる虞が生じるため、3%以上が好ましく、6%以上がより好ましく、9%以上が更により好ましい。ここで、導電粒子の面積占有率[%]は、以下の式により算出することができる。 The area occupancy of the conductive particles of the anisotropic conductive film of the present invention in a plan view is an index of the thrust required for the pressing jig for thermocompression bonding the anisotropic conductive film to the electronic component. If the area occupancy is too large, the thrust increases accordingly, and if the substrate is easily deformed such as plastic, it becomes a factor of deformation. Therefore, the upper limit of the area occupancy of the conductive particles is preferably 30% or less, more preferably 26% or less, and even more preferably 23% or less. Further, if the area occupancy is too small, there is a possibility that the device cannot cope with the fine pitch, so that it is preferably 3% or more, more preferably 6% or more, and still more preferably 9% or more. Here, the area occupancy [%] of the conductive particles can be calculated by the following equation.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 ここで、導電粒子の個数密度および面積占有率の測定領域としては、既に段落0052で説明したように、1辺が100μm以上の矩形領域を任意に複数箇所(好ましくは5箇所以上、より好ましくは10箇所以上)設定し、測定領域の合計面積を2mm以上とすることが好ましい。個々の領域の大きさや数は、個数密度の状態によって適宜調整すればよい。 Here, as described in the paragraph 0052, the measurement region of the number density and the area occupancy of the conductive particles may be a rectangular region having a side of 100 μm or more at a plurality of positions (preferably 5 or more, more preferably 10 or more), and the total area of the measurement regions is preferably 2 mm 2 or more. The size and number of the individual regions may be appropriately adjusted depending on the state of the number density.
<絶縁性樹脂層の厚さ方向における導電粒子の位置>
 本発明の異方性導電フィルムでは、絶縁性樹脂層2の厚さ方向における導電粒子1の位置は前述のように、導電粒子1が絶縁性樹脂層2から露出していてもよく、露出することなく、絶縁性樹脂層2内に埋め込まれていても良いが、絶縁性樹脂層の凹み2b、2cが形成されている表面2aの、隣接する導電粒子間の中央部における接平面2pからの導電粒子の最深部の距離(以下、埋込量という)Lbと、その埋込量Lbの導電粒子1の粒子径Dに対する割合[(Lb/D)×100](以下、埋込率という)が60%以上105%以下であることが好ましい。
<Position of conductive particles in the thickness direction of insulating resin layer>
In the anisotropic conductive film of the present invention, the position of the conductive particles 1 in the thickness direction of the insulating resin layer 2 may be such that the conductive particles 1 are exposed from the insulating resin layer 2 as described above. Without being buried in the insulating resin layer 2, the surface 2 a of the insulating resin layer on which the recesses 2 b and 2 c are formed may be buried from the tangent plane 2 p at the center between adjacent conductive particles. The distance Lb at the deepest part of the conductive particles (hereinafter referred to as an embedding amount), and the ratio of the embedding amount Lb to the particle diameter D of the conductive particles 1 [(Lb / D) × 100] (hereinafter referred to as an embedding rate) Is preferably 60% or more and 105% or less.
 埋込率を60%以上とすることにより、導電粒子1を絶縁性樹脂層2によって所定の粒子分散状態あるいは所定の配列に維持し、また、105%以下とすることにより、異方性導電接続時に端子間の導電粒子を無用に流動させるように作用する絶縁性樹脂層の樹脂量を低減させることができる。 By setting the embedding rate to 60% or more, the conductive particles 1 are maintained in a predetermined particle dispersion state or a predetermined arrangement by the insulating resin layer 2, and by setting the embedding rate to 105% or less, the anisotropic conductive connection is achieved. In some cases, the amount of resin in the insulating resin layer that acts to flow the conductive particles between the terminals unnecessarily can be reduced.
 なお、本発明において、埋込率の数値は、埋込率(Lb/D)の数値は、異方性導電フィルムに含まれる全導電粒子数の80%以上、好ましくは90%以上、より好ましくは96%以上が、当該埋込率(Lb/D)の数値になっていることをいう。したがって、埋込率が60%以上105%以下とは、異方性導電フィルムに含まれる全導電粒子数の80%以上、好ましくは90%以上、より好ましくは96%以上の埋込率が60%以上105%以下であることをいう。このように全導電粒子の埋込率(Lb/D)が揃っていることにより、押圧の加重が導電粒子に均一にかかるので、端子における導電粒子の捕捉状態が良好になり、導通の安定性が向上する。 In the present invention, the numerical value of the embedding rate, the numerical value of the embedding rate (Lb / D) is 80% or more, preferably 90% or more, more preferably 90% or more of the total number of conductive particles contained in the anisotropic conductive film. Means that 96% or more is the numerical value of the embedding rate (Lb / D). Therefore, an embedding rate of 60% or more and 105% or less means that the embedding rate of 80% or more, preferably 90% or more, more preferably 96% or more of the total number of conductive particles contained in the anisotropic conductive film is 60%. % Or more and 105% or less. Since the embedding ratio (Lb / D) of all the conductive particles is uniform, the pressing force is uniformly applied to the conductive particles, so that the conductive particles are captured well by the terminals, and the stability of conduction is improved. Is improved.
 埋込率は、異方性導電フィルムから面積30mm以上の領域を任意に10箇所以上抜き取り、そのフィルム断面の一部をSEM画像で観察し、合計50個以上の導電粒子を計測することにより求めることができる。より精度を上げるため、200個以上の導電粒子を計測して求めてもよい。 The embedding rate is obtained by arbitrarily extracting 10 or more areas having an area of 30 mm 2 or more from the anisotropic conductive film, observing a part of the cross section of the film with an SEM image, and measuring a total of 50 or more conductive particles. You can ask. In order to further increase the accuracy, it may be obtained by measuring 200 or more conductive particles.
 また、埋込率の計測は、面視野画像において焦点調整することにより、ある程度の個数について一括して求めることができる。もしくは埋込率の計測にレーザー式判別変位センサ((株)キーエンス製など)を用いてもよい。 Further, the embedding rate can be collectively obtained for a certain number by adjusting the focus in the surface visual field image. Alternatively, a laser type discriminating displacement sensor (manufactured by Keyence Corporation) may be used for measuring the embedding rate.
<異方性導電フィルムの変形態様>
(第2の絶縁性樹脂層)
 本発明の異方性導電フィルムは、図5に示す異方性導電フィルム10Eのように、導電粒子分散層3の、導電粒子1が保持されている側の面(換言すれば、絶縁性樹脂層2の凹み2cが形成されている面)に、該絶縁性樹脂層2よりも最低溶融粘度が低い第2の絶縁性樹脂層4(絶縁性接着層として機能)を積層してもよい。また図6に示す異方性導電フィルム10Fのように、導電粒子分散層3の、導電粒子1が保持されていない側の面(換言すれば、絶縁性樹脂層2の凹み2cが形成されていない面)に、該絶縁性樹脂層2よりも最低溶融粘度が低い第2の絶縁性樹脂層4(絶縁性接着層として機能)を積層してもよい。第2の絶縁性樹脂層4の積層により、異方性導電フィルムを用いて電子部品を異方性導電接続するときに、電子部品の電極やバンプによって形成される空間を充填し、接着性を向上させることができる。尚、第2の絶縁性樹脂層4を積層する場合、第2の絶縁性樹脂層4が凹み2cの形成面上にあるか否かに関わらず第2の絶縁性樹脂層4がツールで加圧するICチップ等の電子部品側にある(言い換えると、絶縁性樹脂層2がステージに載置される基板等の電子部品側にある)ことが好ましい。このようにすることで、導電粒子の不本意な移動を避けることができ、捕捉性を向上させることができる。
<Modification of anisotropic conductive film>
(Second insulating resin layer)
The anisotropic conductive film of the present invention is, like the anisotropic conductive film 10E shown in FIG. 5, a surface of the conductive particle dispersion layer 3 on which the conductive particles 1 are held (in other words, an insulating resin). A second insulating resin layer 4 (functioning as an insulating adhesive layer) having a lower minimum melt viscosity than that of the insulating resin layer 2 may be laminated on the surface of the layer 2 where the recess 2c is formed. Also, like the anisotropic conductive film 10F shown in FIG. 6, the surface of the conductive particle dispersion layer 3 on the side where the conductive particles 1 are not held (in other words, the recess 2c of the insulating resin layer 2 is formed). A second insulating resin layer 4 (functioning as an insulating adhesive layer) having a lower minimum melt viscosity than the insulating resin layer 2 may be laminated on the non-conductive surface). By laminating the second insulating resin layer 4, when an electronic component is anisotropically conductively connected using an anisotropic conductive film, the space formed by the electrodes and bumps of the electronic component is filled to improve the adhesiveness. Can be improved. When the second insulating resin layer 4 is laminated, the second insulating resin layer 4 is added with a tool regardless of whether the second insulating resin layer 4 is on the surface on which the recess 2c is formed. It is preferably on the side of an electronic component such as an IC chip to be pressed (in other words, the insulating resin layer 2 is on the side of an electronic component such as a substrate mounted on a stage). By doing so, unintentional movement of the conductive particles can be avoided, and trapping properties can be improved.
 絶縁性樹脂層2と第2の絶縁性樹脂層4との最低溶融粘度は、差があるほど電子部品の電極やバンプによって形成される空間が第2の絶縁性樹脂層4で充填されやすくなり、電子部品同士の接着性を向上させる効果が期待できる。また、この差があるほど導電粒子分散層3中に存在する絶縁性樹脂層2の移動量が相対的に小さくなるため、端子における導電粒子の捕捉性が向上しやすくなる。実用上は、絶縁性樹脂層2と第2の絶縁性樹脂層4との最低溶融粘度比(即ち、[絶縁性樹脂層2の最低溶融粘度]/[第2の絶縁性樹脂層4の最低溶融粘度])は、好ましくは2以上、より好ましくは5以上、さらに好ましくは8以上である。一方、この比が大きすぎると長尺の異方性導電フィルムを巻装体にした場合に、樹脂のはみだしやブロッキングが生じる虞があるので、実用上は15以下が好ましい。第2の絶縁性樹脂層4の好ましい最低溶融粘度は、特許第6187665号明細書(段落0091)の記載を参考にして決定することができる。 As the difference between the minimum melt viscosities of the insulating resin layer 2 and the second insulating resin layer 4 increases, the space formed by the electrodes and bumps of the electronic component is more easily filled with the second insulating resin layer 4. The effect of improving the adhesion between electronic components can be expected. In addition, the larger the difference, the relatively small the amount of movement of the insulating resin layer 2 existing in the conductive particle dispersion layer 3, so that the ability of the terminal to capture the conductive particles can be easily improved. In practice, the lowest melt viscosity ratio between the insulating resin layer 2 and the second insulating resin layer 4 (that is, [minimum melt viscosity of the insulating resin layer 2] / [minimum melt viscosity of the second insulating resin layer 4] Melt viscosity]) is preferably 2 or more, more preferably 5 or more, and further preferably 8 or more. On the other hand, if the ratio is too large, when a long anisotropic conductive film is formed into a wound body, there is a possibility that the resin will protrude or block, so that the ratio is preferably 15 or less in practical use. The preferred minimum melt viscosity of the second insulating resin layer 4 can be determined with reference to the description of Japanese Patent No. 6187665 (paragraph 0091).
 なお、第2の絶縁性樹脂層4は、絶縁性樹脂層と同様の樹脂組成物において、粘度を調整することにより形成することができる。 The second insulating resin layer 4 can be formed by adjusting the viscosity of the same resin composition as the insulating resin layer.
 また、異方性導電フィルム10E、10Fにおいて、第2の絶縁性樹脂層4の層厚は、好ましくは4μm以上20μm以下である。もしくは、導電粒子径に対して、好ましくは1~8倍である。 In the anisotropic conductive films 10E and 10F, the layer thickness of the second insulating resin layer 4 is preferably 4 μm or more and 20 μm or less. Alternatively, it is preferably 1 to 8 times the conductive particle diameter.
 また、絶縁性樹脂層2と第2の絶縁性樹脂層4を合わせた異方性導電フィルム10E、10F全体の最低溶融粘度は、好ましくは200Pa・s以上4000Pa・s以下である。なお、第2の絶縁性樹脂層4自体の最低溶融粘度は、前述の最低溶融粘度比を満たすことを前提に、好ましくは2000Pa・s以下であり、より好ましくは100~2000Pa・sである。 最低 Further, the minimum melt viscosity of the entire anisotropic conductive films 10E and 10F including the insulating resin layer 2 and the second insulating resin layer 4 is preferably 200 Pa · s or more and 4000 Pa · s or less. Note that the minimum melt viscosity of the second insulating resin layer 4 itself is preferably 2000 Pa · s or less, more preferably 100 to 2000 Pa · s, on the assumption that the above-described minimum melt viscosity ratio is satisfied.
(第3の絶縁性樹脂層)
 第2の絶縁性樹脂層4と絶縁性樹脂層2を挟んで反対側に第3の絶縁性樹脂層が設けられていてもよい。例えば、第3の絶縁性樹脂層ないしは絶縁性接着層をタック層として機能させることができる。第2の絶縁性樹脂層と同様に、電子部品の電極やバンプによって形成される空間を充填させるために設けてもよい。
(Third insulating resin layer)
A third insulating resin layer may be provided on the opposite side of the second insulating resin layer 4 and the insulating resin layer 2 with the insulating resin layer 2 interposed therebetween. For example, the third insulating resin layer or the insulating adhesive layer can function as a tack layer. Like the second insulating resin layer, it may be provided to fill the space formed by the electrodes and bumps of the electronic component.
 第3の絶縁性樹脂層の樹脂組成、粘度及び厚みは第2の絶縁性樹脂層と同様でもよく、異なっていても良い。絶縁性樹脂層2と第2の絶縁性樹脂層4と第3の絶縁性樹脂層を合わせた異方性導電フィルムの最低溶融粘度は特に制限はないが、200~4000Pa・sとすることができる。 樹脂 The resin composition, viscosity and thickness of the third insulating resin layer may be the same as or different from those of the second insulating resin layer. The minimum melt viscosity of the anisotropic conductive film including the insulating resin layer 2, the second insulating resin layer 4, and the third insulating resin layer is not particularly limited, but may be 200 to 4000 Pa · s. it can.
<異方性導電フィルムの製造方法>
 本発明の異方性導電フィルムは、絶縁性樹脂層に導電粒子を押し込むことにより導電粒子分散層を形成する工程を有する製造方法により製造することができる。この工程の好ましい態様としては、絶縁性樹脂層の表面に導電粒子を所定の配列で保持させ、その導電粒子を平板又はローラーで絶縁性樹脂層に押し込むことにより導電粒子分散層を形成する態様や、転写型に導電粒子を充填し、その導電粒子を絶縁性樹脂層に転写することにより絶縁性樹脂層の表面に導電粒子を所定の配置で保持させる態様が挙げられる。その他に、絶縁性樹脂層2に導電粒子1を直接散布して保持する態様や、あるいは二軸延伸させることのできるフィルムに導電粒子1を単層で付着させ、そのフィルムを二軸延伸し、その延伸させたフィルムに絶縁性樹脂層2を押圧して導電粒子を絶縁性樹脂層2に転写することにより、絶縁性樹脂層2に導電粒子1を保持させる態様も挙げられる。
<Method for producing anisotropic conductive film>
The anisotropic conductive film of the present invention can be manufactured by a manufacturing method including a step of forming a conductive particle dispersed layer by injecting conductive particles into an insulating resin layer. In a preferred embodiment of this step, the conductive particles are held in a predetermined arrangement on the surface of the insulating resin layer, and the conductive particles are pressed into the insulating resin layer with a flat plate or a roller to form a conductive particle dispersion layer. A mode in which conductive particles are filled in a transfer mold, and the conductive particles are transferred to the insulating resin layer to hold the conductive particles in a predetermined arrangement on the surface of the insulating resin layer. In addition, a mode in which the conductive particles 1 are directly sprayed and held on the insulating resin layer 2 or a single layer of the conductive particles 1 is attached to a film that can be biaxially stretched, and the film is biaxially stretched, There is also an embodiment in which the insulating resin layer 2 is pressed against the stretched film to transfer the conductive particles to the insulating resin layer 2, thereby holding the conductive particles 1 on the insulating resin layer 2.
 絶縁性樹脂層に導電粒子を押し込むことにより導電粒子分散層を形成する態様の場合、絶縁性樹脂層の最低溶融粘度を、特許第6187665号(段落0097)の記載を参考にして決定することができる。これにより、導電粒子分散層の表面をなす絶縁性樹脂層の表面が、隣接する導電粒子間の中央部における絶縁性樹脂層の接平面に対して凹みを有するように導電粒子を押し込むことができる。 In the case of an embodiment in which the conductive particles are formed by pushing the conductive particles into the insulating resin layer, the lowest melt viscosity of the insulating resin layer may be determined with reference to the description of Japanese Patent No. 6187665 (paragraph 0097). it can. Thereby, the conductive particles can be pushed so that the surface of the insulating resin layer forming the surface of the conductive particle dispersion layer has a recess with respect to the tangent plane of the insulating resin layer at the center between adjacent conductive particles. .
 なお、埋込率100%超の異方性導電フィルムを製造する場合に、導電粒子配列に対応した凸部を有するように押し板で押し込んでもよい。 When an anisotropic conductive film having an embedding ratio of more than 100% is manufactured, the anisotropic conductive film may be pressed with a pressing plate so as to have a convex portion corresponding to the conductive particle arrangement.
 また、転写型を使用して絶縁性樹脂層2に導電粒子1を保持させる場合、転写型としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチールなどの金属等の無機材料や、各種樹脂等の有機材料などに対し、フォトリソグラフ法等の公知の開口形成方法によって開口を形成したもの、印刷法を応用したものを使用することができる。また、転写型は、板状、ロール状等の形状をとることができる。なお、本発明は上記の手法で限定されるものではない。 When the conductive particles 1 are held in the insulating resin layer 2 using a transfer mold, examples of the transfer mold include inorganic materials such as silicon, various ceramics, glass, metals such as stainless steel, and various resins. For the organic material described above, a material in which an opening is formed by a known method for forming an opening such as a photolithographic method or a material to which a printing method is applied can be used. Further, the transfer mold can take a shape such as a plate shape or a roll shape. Note that the present invention is not limited to the above method.
 また、導電粒子を押し込んだ絶縁性樹脂層の、導電粒子を押し込んだ側の表面、又はその反対面に、絶縁性樹脂層よりも低粘度の第2の絶縁性樹脂層を積層することができる。 In addition, a second insulating resin layer having a lower viscosity than the insulating resin layer can be laminated on the surface of the insulating resin layer into which the conductive particles have been pressed, on the surface on which the conductive particles have been pressed, or on the opposite surface. .
 異方性導電フィルムを用いて電子部品の接続を経済的に行うには、異方性導電フィルムはある程度の長尺であることが好ましい。そこで異方性導電フィルムは長さを、具体的には5m以上にすることが好ましい。特許第6187665号(段落0103)の記載を参考にして決定することもできる。また、異方性導電フィルムを実用的に用いる場合、リールに巻きつけて巻装体にすることが現実的である。しかしながら、このように巻装体にした場合、樹脂粘度(即ち、フィルムの最低溶融粘度に実質的に比例する)が低すぎるとはみ出しやブロッキングなど、接続を連続的に行うに当り問題が生じることがある。そのため、異方性導電フィルムの最低溶融粘度を好ましくは200Pa・s以上とする。これは、第2の絶縁性樹脂層や第3の絶縁性樹脂層を積層したとしても同様である。 に は In order to economically connect electronic components using an anisotropic conductive film, it is preferable that the anisotropic conductive film has a certain length. Therefore, it is preferable that the length of the anisotropic conductive film is specifically 5 m or more. It can also be determined with reference to the description of Japanese Patent No. 6187665 (paragraph 0103). When an anisotropic conductive film is practically used, it is practical to wind the film around a reel to form a wound body. However, in the case of such a wound body, if the resin viscosity (that is, substantially proportional to the minimum melt viscosity of the film) is too low, problems such as protruding and blocking may occur in continuous connection. There is. Therefore, the minimum melt viscosity of the anisotropic conductive film is preferably set to 200 Pa · s or more. This is the same even if the second insulating resin layer and the third insulating resin layer are laminated.
<異方性導電フィルムの使用方法>
 本発明の異方性導電フィルムは、特に、第1電子部品(ツールで加熱される側)がICチップ、ICモジュールなどの比較的剛性が高いもの(例えば、一般的なICチップに類するウェーハーから作成される半導体素子が挙げられる)であり、第2電子部品(ステージで載置される側)がプラスチック基板などの可撓性の材料である場合に、特に好ましく適用できる。なお、半導体素子、ICチップ、ICモジュール、FPCなどの第1電子部品と、FPC、ガラス基板、プラスチック基板、リジッド基板、セラミック基板などの第2電子部品とからなる組み合わせで異方性導電接続する態様を排除するものではない。また、本発明の異方性導電フィルムを用いてICチップやウェーハーをスタックして多層化してもよい。また、本発明の異方性導電フィルムで接続する電子部品は、上述の電子部品に必ずしも限定されるものではない。近年、多様化している種々の電子部品に使用することができる。例えば、第1電子部品としてICチップやFPCを採用した場合には、第2電子部品としてOLEDプラスチック基板を採用することができる。特に第1電子部品をICチップとし、第2電子部品をプラスチック基板とするCOP構造体とする場合、本発明は特にその効果を発揮する。従って、本発明は、「第1電子部品と第2電子部品とが、本発明の異方性導電フィルムを介して異方性導電接続されている接続構造体」、また、「第1電子部品と第2電子部品とを、本発明の異方性導電フィルムを介して異方性導電接続する、接続構造体の製造方法」も包含する。
<How to use anisotropic conductive film>
In the anisotropic conductive film of the present invention, in particular, the first electronic component (the side heated by the tool) has relatively high rigidity such as an IC chip or an IC module (for example, from a wafer similar to a general IC chip). This is particularly applicable when the second electronic component (the side to be mounted on the stage) is a flexible material such as a plastic substrate. It should be noted that a first electronic component such as a semiconductor element, an IC chip, an IC module, or an FPC is connected to a second electronic component such as an FPC, a glass substrate, a plastic substrate, a rigid substrate, or a ceramic substrate for anisotropic conductive connection. It does not exclude aspects. Further, IC chips or wafers may be stacked to form a multilayer using the anisotropic conductive film of the present invention. The electronic components connected by the anisotropic conductive film of the present invention are not necessarily limited to the above electronic components. In recent years, it can be used for various diversified electronic components. For example, when an IC chip or an FPC is used as the first electronic component, an OLED plastic substrate can be used as the second electronic component. In particular, when the first electronic component is an IC chip and the second electronic component is a COP structure using a plastic substrate, the present invention particularly exerts its effect. Therefore, the present invention provides a “connection structure in which the first electronic component and the second electronic component are anisotropically conductively connected via the anisotropic conductive film of the present invention”; And a second electronic component through an anisotropic conductive film of the present invention for anisotropically conductive connection.
 異方性導電フィルムを用いた電子部品の接続方法としては、異方性導電フィルムが導電粒子分散層3の単層からなる場合、各種基板などの第2電子部品に対し、異方性導電フィルムの導電粒子1が表面に埋め込まれている側から仮貼りして仮圧着し、仮圧着した異方性導電フィルムの導電粒子1が表面に埋め込まれていない側にICチップ等の第1電子部品を合わせ、熱圧着することにより製造することができる。異方性導電フィルムの絶縁性樹脂層に熱重合開始剤と熱重合性化合物だけでなく、光重合開始剤と光重合性化合物(熱重合性化合物と同一でもよい)が含まれている場合、光と熱を併用した圧着方法でもよい。このようにすれば、導電粒子の不本意な移動は最小限に抑えることができる。また、導電粒子が埋め込まれていない側を第2電子部品に仮貼りして使用してもよい。尚、第2電子部品ではなく、第1電子部品に異方性導電フィルムを仮貼りした後にアライメントし、接続することもできる。 As a method for connecting an electronic component using an anisotropic conductive film, when the anisotropic conductive film is formed of a single layer of the conductive particle dispersion layer 3, the anisotropic conductive film is used for the second electronic component such as various substrates. The first electronic component such as an IC chip is provided on the side of the temporarily-bonded anisotropic conductive film where the conductive particles 1 are not embedded in the surface, in which the conductive particles 1 are temporarily embedded and temporarily compressed from the side where the conductive particles 1 are embedded in the surface. And thermocompression bonding. When the insulating resin layer of the anisotropic conductive film contains not only the thermal polymerization initiator and the thermopolymerizable compound but also the photopolymerization initiator and the photopolymerizable compound (which may be the same as the thermopolymerizable compound), A pressure bonding method using both light and heat may be used. In this way, unintentional movement of the conductive particles can be minimized. Alternatively, the side where the conductive particles are not embedded may be temporarily attached to the second electronic component for use. Note that the anisotropic conductive film may be temporarily attached to the first electronic component instead of the second electronic component, and then aligned and connected.
 また、異方性導電フィルムが、導電粒子分散層3と第2の絶縁性樹脂層4(絶縁性接着層として機能)の積層体から形成されている場合、導電粒子分散層3を各種基板などの第2電子部品に仮貼りして仮圧着し、仮圧着した異方性導電フィルムの第2の絶縁性樹脂層4側にICチップ等の第1電子部品をアライメントして載置し、熱圧着する。異方性導電フィルムの第2の絶縁性樹脂層4側を第1電子部品に仮貼りしてもよい。また、導電粒子分散層3側を第1電子部品に仮貼りして使用することもできる。 When the anisotropic conductive film is formed of a laminate of the conductive particle dispersion layer 3 and the second insulating resin layer 4 (functioning as an insulating adhesive layer), the conductive particle dispersion layer 3 may be formed of various substrates. The first electronic component such as an IC chip is aligned and placed on the side of the second insulating resin layer 4 of the anisotropically conductive film that has been temporarily bonded and temporarily bonded to the second electronic component. Crimp. The second insulating resin layer 4 side of the anisotropic conductive film may be temporarily attached to the first electronic component. Further, the conductive particle dispersion layer 3 side can be temporarily attached to the first electronic component for use.
 以下、本発明を実施例により具体的に説明する。
 実施例1~8、比較例1、参考例1
(1)絶縁性樹脂層及び絶縁性接着層を形成するための樹脂組成物の調製
 表1に示した配合で、絶縁性樹脂層、第2の絶縁性樹脂層及び絶縁性接着層を形成する樹脂組成物をそれぞれ調製した。得られた組成物の最低溶融粘度を、回転式レオメータ(TA Instruments社製)を用い、測定圧力5gで一定に保持し、直径8mmの測定プレートを使用し、温度範囲30~200℃において、昇温速度10℃/分、測定周波数10Hz、前記測定プレートに対する荷重変動5gとすることにより求めた。得られた結果を表1に示す。なお、配合B、配合C及び配合Dが、本願発明用の樹脂組成物である。配合A、配合Eが、比較例用の樹脂組成物である。
Hereinafter, the present invention will be described specifically with reference to examples.
Examples 1 to 8, Comparative Example 1, Reference Example 1
(1) Preparation of Resin Composition for Forming Insulating Resin Layer and Insulating Adhesive Layer Insulating resin layer, second insulating resin layer and insulative adhesive layer are formed with the composition shown in Table 1. Each resin composition was prepared. The minimum melt viscosity of the obtained composition was kept constant at a measurement pressure of 5 g using a rotary rheometer (manufactured by TA Instruments) at a temperature of 30 to 200 ° C. using a measurement plate having a diameter of 8 mm. The temperature rate was 10 ° C./min, the measurement frequency was 10 Hz, and the load variation on the measurement plate was 5 g. Table 1 shows the obtained results. In addition, Formula B, Formula C and Formula D are the resin compositions for the present invention. Formulations A and E are resin compositions for comparative examples.
(2)導電粒子の作製
 表2の導電粒子1~4として、積水化学工業(株)製の金属被覆樹脂粒子(Au/Niメッキ、平均粒子径3μm)を用意した。ここで、20%圧縮弾性率及び圧縮復元率は、微小圧縮試験機(フィッシャー社製、フィッシャースコープH-100)を用いて以下に説明するように行った。
(2) Preparation of Conductive Particles Metal-coated resin particles (Au / Ni plating, average particle diameter 3 μm) manufactured by Sekisui Chemical Co., Ltd. were prepared as the conductive particles 1 to 4 in Table 2. Here, the 20% compression elastic modulus and the compression recovery rate were measured using a micro compression tester (Fisher Scope H-100, manufactured by Fisher Co., Ltd.) as described below.
<20%圧縮弾性率>
 微小圧縮試験機を用い、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、圧縮速度2.6mN/秒、及び最大試験荷重10gfの条件下で導電粒子を圧縮したときの導電粒子の圧縮変量を測定し、測定して得られた数値を以下の式(1)に適用することにより算出した。
<20% compression modulus>
Compression variation of conductive particles when the conductive particles are compressed under the conditions of a compression speed of 2.6 mN / sec and a maximum test load of 10 gf using a micro-compression tester on the end face of a cylindrical (diameter: 50 μm, diamond) smooth indenter. Was calculated and the numerical value obtained by the measurement was applied to the following equation (1).
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 式(1)中、Fは導電粒子が20%圧縮変形したときの荷重値(N)であり、Sは導電粒子が20%圧縮変形したときの圧縮変位(mm)であり、Rは導電粒子の半径(mm)である。 In the formula (1), F is a load value (N) when the conductive particles are compressed and deformed by 20%, S is a compressive displacement (mm) when the conductive particles are compressed and deformed by 20%, and R is a conductive displacement. (Mm).
<圧縮復元率>
 微小圧縮試験機を用い、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で導電粒子を圧縮し、初期荷重時(荷重0.4mN)から荷重反転時(荷重5mN)までの変位(L2)と、荷重反転時から最終荷重時(荷重0.4mN)までの変位(L1)とを測定し、測定して得られた数値を以下の式(2)に適用することで算出した。
<Compression restoration ratio>
Using a micro-compression tester, the conductive particles are compressed at the end face of a smooth indenter of a cylinder (diameter: 50 μm, made of diamond), and the displacement (L2) from the initial load (load 0.4 mN) to the load reversal (load 5 mN). The displacement (L1) from the load reversal to the final load (load 0.4 mN) was measured, and the numerical value obtained by the measurement was calculated by applying it to the following equation (2).
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 なお、導電粒子1、導電粒子3、導電粒子4が本願発明用の導電粒子であり、導電粒子2が比較例用の導電粒子である。 The conductive particles 1, 3 and 4 are conductive particles for the present invention, and the conductive particles 2 are conductive particles for a comparative example.
(3)絶縁性樹脂層、第2の絶縁性樹脂層及び絶縁性接着層の形成
 絶縁性樹脂層、第2の絶縁性樹脂層又は絶縁性接着層を形成するための樹脂組成物(表1参照)を、バーコーターでフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に表3に示す厚さの絶縁性樹脂層を形成した。同様に、第2の絶縁性樹脂層又は絶縁性接着層を表3に示す厚さでそれぞれ別のPETフィルム上に形成した。
(3) Formation of insulating resin layer, second insulating resin layer and insulating adhesive layer A resin composition for forming the insulating resin layer, the second insulating resin layer or the insulating adhesive layer (Table 1) Was coated on a PET film having a film thickness of 50 μm using a bar coater and dried in an oven at 80 ° C. for 5 minutes to form an insulating resin layer having a thickness shown in Table 3 on the PET film. Similarly, a second insulating resin layer or an insulating adhesive layer was formed on different PET films at the thicknesses shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(4)樹脂製転写原盤の作製
 導電粒子1が平面視で図1Aに示す正方格子配列で粒子間距離が導電粒子の平均粒子径と等しくなり、導電粒子の個数密度が表3に示す数値となるように金型を作製した。即ち、金型の凸部パターンが正方格子配列で、格子軸における凸部のピッチが平均導電粒子径の2倍であり、格子軸と異方性導電フィルムの短手方向とのなす角度θが15°となる金型を作製し、公知の透明性樹脂のペレットを溶融させた状態で該金型に流し込み、冷やして固めることで、凹みが図1Aに示す配列パターンの樹脂製転写原盤を形成した。
(4) Production of Resin Transfer Master The conductive particles 1 have a square lattice arrangement shown in FIG. 1A in plan view, the distance between the particles is equal to the average particle diameter of the conductive particles, and the number density of the conductive particles is as shown in Table 3. A mold was manufactured so as to be as follows. That is, the pattern of the convex portions of the mold is a square lattice array, the pitch of the convex portions on the lattice axis is twice the average conductive particle diameter, and the angle θ between the lattice axis and the lateral direction of the anisotropic conductive film is A mold of 15 ° is produced, and a known transparent resin pellet is melted and poured into the mold, and cooled and solidified to form a resin transfer master having an arrangement pattern as shown in FIG. 1A. did.
(5)異方性導電フィルムの作製
 表2に示す導電粒子を、表3の導電粒子の個数密度となるような個数の凹みを有する樹脂型の当該凹みに充填し、その上に上述の絶縁性樹脂層を被せ、60℃、0.5MPaで押圧することで貼着させた。そして、型から絶縁性樹脂層を剥離し、絶縁性樹脂層上の導電粒子を、加圧(押圧条件:60~70℃、0.5Mpa)することで絶縁性樹脂層に押し込み、導電粒子分散層の単層からなる異方性導電フィルムを作製した(実施例1~5、比較例1及び参考例1)。導電粒子の埋め込みの状態は、押し込み条件(主として圧力条件と温度条件)でコントロールした。
(5) Preparation of anisotropic conductive film The conductive particles shown in Table 2 are filled in the resin mold having the number of dents corresponding to the number density of the conductive particles shown in Table 3, and the above-described insulating material is placed thereon. The conductive resin layer was covered, and was adhered by pressing at 60 ° C. and 0.5 MPa. Then, the insulating resin layer is peeled from the mold, and the conductive particles on the insulating resin layer are pressed into the insulating resin layer by applying pressure (pressing conditions: 60 to 70 ° C., 0.5 MPa) to disperse the conductive particles. An anisotropic conductive film composed of a single layer was prepared (Examples 1 to 5, Comparative Example 1 and Reference Example 1). The state of embedding of the conductive particles was controlled by pressing conditions (mainly pressure conditions and temperature conditions).
 また、同様に作製した導電粒子分散層に、第2の絶縁性樹脂層を積層することにより2層タイプの異方性導電フィルムを作製した(実施例6、7)。さらに、同様に作製した2層タイプの異方性導電フィルムの導電粒子分散層側に、タック性を有する絶縁性接着層を積層することにより3層タイプの異方性導電フィルムを作製した(実施例8)。 {Circle around (2)} A two-layer type anisotropic conductive film was prepared by laminating a second insulating resin layer on the conductive particle dispersion layer similarly prepared (Examples 6 and 7). Furthermore, a three-layer type anisotropic conductive film was prepared by laminating an insulating adhesive layer having tackiness on the conductive particle dispersion layer side of the two-layer type anisotropic conductive film similarly prepared (executed). Example 8).
(6)評価
 (5)で作製した実施例及び比較例の異方性導電フィルムに対し、以下のようにして(a)初期導通抵抗、(b)導通信頼性、(c)圧痕、(d)粒子捕捉性を測定ないし評価した。結果を表3に示す。
(6) Evaluation With respect to the anisotropic conductive films of the examples and comparative examples produced in (5), (a) initial conduction resistance, (b) conduction reliability, (c) indentation, and (d) ) Particle capture properties were measured or evaluated. Table 3 shows the results.
(a)初期導通抵抗
 各実施例及び比較例の異方導電性フィルムを、導通特性の評価用ICとプラスチック基板との間に挟み、加熱加圧(180℃、60MPa、5秒)して各評価用接続物を得、得られた評価用接続物の導通抵抗を測定した。初期導通抵抗は実用上2Ω以下であることが好ましい。
(A) Initial conduction resistance Each of the anisotropic conductive films of Examples and Comparative Examples was sandwiched between an IC for evaluating conduction characteristics and a plastic substrate, and heated and pressurized (180 ° C., 60 MPa, 5 seconds). The connection for evaluation was obtained, and the conduction resistance of the connection for evaluation was measured. The initial conduction resistance is preferably 2Ω or less for practical use.
 ここで、評価用ICとプラスチック基板は、それらの端子パターンが対応しており、サイズは次の通りである。また、評価用ICとプラスチック基板を接続する際には、異方導電性フィルムの長手方向とバンプの短手方向を合わせた。 端子 Here, the terminal patterns of the evaluation IC and the plastic substrate correspond to each other, and the sizes are as follows. When connecting the evaluation IC to the plastic substrate, the longitudinal direction of the anisotropic conductive film was aligned with the lateral direction of the bump.
導通特性の評価用IC
 外形 1.8×20.0mm
 厚み 0.5mm
 バンプ仕様 サイズ30×85μm、バンプ間距離 50μm、バンプ高さ15μm
IC for evaluating conduction characteristics
1.8 x 20.0mm
Thickness 0.5mm
Bump specifications Size 30 × 85 μm, distance between bumps 50 μm, bump height 15 μm
プラスチック基板(ITO配線)
 基板材質 ポリエチレンテレフタレートベースフィルム/ポリウレタン系接着剤/ポリイミドフィルム(PET/PU/PI基板)
 外形 30×50mm
 厚み 0.5mm
 電極 ITO配線 
Plastic substrate (ITO wiring)
Substrate material Polyethylene terephthalate base film / Polyurethane adhesive / Polyimide film (PET / PU / PI substrate)
Outline 30 × 50mm
Thickness 0.5mm
Electrode ITO wiring
(b)導通信頼性
 (a)で作製した評価用接続物を、温度85℃、湿度85%RHの恒温槽に500時間おいた後の導通抵抗を、初期導通抵抗と同様に測定した。導通信頼性は実用上5Ω以下であることが好ましく、2Ω以下であることがより好ましい。
(B) Conduction reliability The conduction resistance after placing the connection for evaluation prepared in (a) in a thermostat at a temperature of 85 ° C. and a humidity of 85% RH for 500 hours was measured in the same manner as the initial conduction resistance. The conduction reliability is practically preferably 5Ω or less, more preferably 2Ω or less.
(c)圧痕
 (a)で作製した評価用接続物を、プラスチック基板側から、金属顕微鏡観察し、バンプ端部の中央部に圧痕が観察されるかを確認した。観察された場合を良好(good)と評価し、観察されない場合を不良(poor)と評価した。
(C) Indentation The connection object for evaluation prepared in (a) was observed with a metallographic microscope from the plastic substrate side, and it was confirmed whether or not an indentation was observed at the center of the bump end. The case where it was observed was evaluated as good (good), and the case where it was not observed was evaluated as poor (poor).
(d)粒子捕捉性
 粒子捕捉性の評価用ICを使用し、この評価用ICと、端子パターンが対応するプラスチック(PET/PU/PI)基板(ITO配線)とを、アライメントを6μmずらして加熱加圧(180℃、60MPa、5秒)し、評価用ICのバンプと基板の端子とが重なる6μm×66.6μmの領域の100個について導電粒子の捕捉数を計測し、最低捕捉数を求め、次の基準で評価した。実用上、B評価以上であることが好ましい。
(D) Particle trapping property Using the particle trapping property evaluation IC, this evaluation IC and the plastic (PET / PU / PI) substrate (ITO wiring) corresponding to the terminal pattern are heated by shifting the alignment by 6 μm. Pressurization (180 ° C, 60 MPa, 5 seconds), measure the number of captured conductive particles in 100 areas of 6 μm × 66.6 μm where the bump of the evaluation IC and the terminal of the substrate overlap, and find the minimum number of captured. Was evaluated according to the following criteria. In practice, it is preferable that the evaluation is B or more.
 粒子捕捉性の評価用IC
 外形 1.6×29.8mm
 厚み 0.3mm
 バンプ仕様 サイズ12×66.6μm、バンプピッチ22μm(L/S=12μm/10μm)、バンプ高さ12μm
Evaluation IC for particle capture
1.6 x 29.8mm
0.3mm thickness
Bump specifications Size 12 × 66.6 μm, bump pitch 22 μm (L / S = 12 μm / 10 μm), bump height 12 μm
 粒子捕捉性評価基準
 A 5個以上
 B 3個以上5個未満
 C 3個未満
Evaluation standard of particle trapping property A 5 or more B 3 or more and less than 5 C 3 or less
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(考察)
 表3の結果から、以下の条件(イ)~(ホ):
<条件(イ)>
 導電粒子の20%圧縮弾性率が、6000N/mm以上15000N/mm以下であること;
<条件(ロ)>
 導電粒子の圧縮復元率が、40%以上80%以下であること;
<条件(ハ)>
 導電粒子の平均粒子径が、1μm以上30μm以下であること;
<条件(ニ)>
 絶縁性樹脂層の最低溶融粘度が、4000Pa・s以下であること;及び
<条件(ホ)>
 導電粒子の個数密度が、6000個/mm以上36000個/mm以下であること
を満足する実施例1~8の異方性導電フィルムは、(a)初期導通抵抗、(b)導通信頼性、(c)圧痕、(d)粒子捕捉性の各特性について、実用上問題の無いレベル以上の好ましい結果を示した。
(Discussion)
From the results in Table 3, the following conditions (a) to (e) were obtained:
<Conditions (a)>
20% compressive elasticity modulus of the conductive particles, 6000 N / mm 2 or more 15000 N / mm 2 that less is;
<Conditions (b)>
The compression recovery ratio of the conductive particles is 40% or more and 80% or less;
<Condition (C)>
The average particle diameter of the conductive particles is 1 μm or more and 30 μm or less;
<Condition (d)>
The minimum melt viscosity of the insulating resin layer is 4000 Pa · s or less; and <Condition (e)>
The anisotropic conductive films of Examples 1 to 8 satisfying that the number density of the conductive particles is not less than 6000 / mm 2 and not more than 36000 / mm 2 , (a) initial conduction resistance, and (b) conduction reliability. Each of the properties (c) indentation and (d) particle trapping properties showed favorable results that were at or above a level at which there was no practical problem.
 一方、条件(ニ)の数値範囲を上回っている比較例1の異方性導電フィルムは、「導通信頼性」に問題があった。更に「圧痕」にも問題があった。なお、条件(イ)及び(ロ)の数値範囲をわずかに下方に外れている参考例1の異方性導電フィルムは、実施例1~8の異方性導電フィルムに比べて初期導通抵抗や導通信頼性における抵抗値が若干高いが、実用上問題が生ずるレベルではない。ただ、製造時の接続条件の変動などを加味すれば、実施例1~8のように初期導通抵抗や導通信頼性における抵抗値が低いことが好ましい。 On the other hand, the anisotropic conductive film of Comparative Example 1, which exceeded the numerical range of the condition (d), had a problem in “continuity reliability”. There was also a problem with "indentation". Note that the anisotropic conductive film of Reference Example 1, in which the numerical ranges of the conditions (A) and (B) are slightly deviated downward, has an initial conduction resistance and an initial conduction resistance which are lower than those of Examples 1 to 8. Although the resistance value in the conduction reliability is slightly high, it is not at a level that causes a problem in practical use. However, taking into account variations in connection conditions during manufacturing, it is preferable that the initial conduction resistance and the resistance value in conduction reliability are low as in Examples 1 to 8.
 本発明の異方性導電フィルムにおいては、この導電粒子分散層に保持させている導電粒子として、20%圧縮弾性率、圧縮復元率及び平均粒子径がそれぞれ特定の数値範囲のものを使用し、そのような導電粒子を保持する絶縁性樹脂層として、最低溶融粘度が特定数値以下のものを使用し、そして、そのような絶縁性樹脂層に導電粒子を保持させる程度(換言すれば、個数密度)を特定範囲内に設定する。このため、本発明の異方性導電フィルムを介して、画像表示素子や駆動用ICチップ等のバンプを有する電子部品を、電極と配線とが形成されている可撓性のプラスチック基板に異方性導電接続した場合には、プラスチック基板の配線にクラックを生じさせないようにすることができ、また、良好な異方性導電接続を示す圧痕を生成させることができ、異方性導電接続の際に、良好な導通信頼性評価を得ることができる。従って、本発明の異方性導電フィルムは、電子部品(特にICチップ)を、ガラス基板だけでなくプラスチック基板への異方性導電接続する際に有用である。 In the anisotropic conductive film of the present invention, as the conductive particles held in the conductive particle dispersion layer, those having 20% compression elastic modulus, compression recovery rate and average particle diameter each in a specific numerical range are used, As the insulating resin layer holding such conductive particles, a resin having a minimum melt viscosity of a specific value or less is used, and the degree of holding the conductive particles in such insulating resin layer (in other words, the number density ) Is set within a specific range. Therefore, via the anisotropic conductive film of the present invention, an electronic component having a bump such as an image display element or a driving IC chip is anisotropically mounted on a flexible plastic substrate on which electrodes and wiring are formed. In the case of conducting conductive connection, it is possible to prevent cracks from being generated in the wiring of the plastic substrate, and it is possible to generate indentations showing good anisotropic conductive connection. In addition, a good conduction reliability evaluation can be obtained. Therefore, the anisotropic conductive film of the present invention is useful for connecting an electronic component (especially an IC chip) to an anisotropic conductive connection not only to a glass substrate but also to a plastic substrate.
 1 導電粒子
 1a 導電粒子頂部
 2 絶縁性樹脂層
 2a 絶縁性樹脂層の表面
 2b 凹み
 2c 凹み
 2p 接平面
 3 導電粒子分散層
 4 第2の絶縁性樹脂層
10A、10B、10C、10D、10E、10F 実施例の異方性導電フィルム
200 端子
 A 導電粒子の配列の格子軸
 D 導電粒子の平均粒子径
 La 絶縁性樹脂層の層厚
 Lb 埋込量(隣接する導電粒子間の中央部における接平面からの導電粒子の最深部の距離)
 Lc 露出径
 θ 端子の長手方向と導電粒子の配列の格子軸とのなす角度
REFERENCE SIGNS LIST 1 conductive particle 1a conductive particle top 2 insulating resin layer 2a surface of insulating resin layer 2b recess 2c recess 2p tangential plane 3 conductive particle dispersion layer 4 second insulating resin layer 10A, 10B, 10C, 10D, 10E, 10F Anisotropic conductive film 200 of Example Terminal A Lattice axis of array of conductive particles D Average particle size of conductive particles La Layer thickness of insulating resin layer Lb Embedding amount (from tangent plane at center between adjacent conductive particles Distance of the deepest part of the conductive particles)
Lc Exposed diameter θ Angle between the longitudinal direction of the terminal and the lattice axis of the array of conductive particles

Claims (15)

  1.  少なくとも絶縁性樹脂層とそれに分散している導電粒子とから構成されている導電粒子分散層を有する異方性導電フィルムであって、以下の条件(イ)~(ホ):
    <条件(イ)>
     導電粒子の20%圧縮弾性率が、6000N/mm以上15000N/mm以下であること;
    <条件(ロ)>
     導電粒子の圧縮復元率が、40%以上80%以下であること;
    <条件(ハ)>
     導電粒子の平均粒子径が、1μm以上30μm以下であること;
    <条件(ニ)>
     絶縁性樹脂層の最低溶融粘度が、4000Pa・s以下であること;及び
    <条件(ホ)>
     導電粒子の個数密度が、6000個/mm以上36000個/mm以下であること
    を満足する異方性導電フィルム。
    An anisotropic conductive film having a conductive particle-dispersed layer composed of at least an insulating resin layer and conductive particles dispersed therein, and having the following conditions (a) to (e):
    <Conditions (a)>
    20% compressive elasticity modulus of the conductive particles, 6000 N / mm 2 or more 15000 N / mm 2 that less is;
    <Conditions (b)>
    The compression recovery ratio of the conductive particles is 40% or more and 80% or less;
    <Condition (C)>
    The average particle diameter of the conductive particles is 1 μm or more and 30 μm or less;
    <Condition (d)>
    The minimum melt viscosity of the insulating resin layer is 4000 Pa · s or less; and <Condition (e)>
    An anisotropic conductive film that satisfies that the number density of the conductive particles is 6000 / mm 2 or more and 36000 / mm 2 or less.
  2.  絶縁性樹脂層の最低溶融粘度が、200Pa・s以上である請求項1記載の異方性導電フィルム。 The anisotropic conductive film according to claim 1, wherein the minimum melt viscosity of the insulating resin layer is 200 Pa · s or more.
  3.  導電粒子が、絶縁性樹脂層に非接触で配置されている請求項1又は2記載の異方性導電フィルム。 The anisotropic conductive film according to claim 1 or 2, wherein the conductive particles are arranged in non-contact with the insulating resin layer.
  4.  導電粒子が平面視で規則的に配列されている請求項3記載の異方性導電フィルム。 4. The anisotropic conductive film according to claim 3, wherein the conductive particles are regularly arranged in a plan view.
  5.  導電粒子の最近接粒子間距離が、導電粒子の平均粒子径の50%以上もしくは0.2μm以上のいずれか長い方である請求項1~4のいずれかに記載の異方性導電フィルム。 (5) The anisotropic conductive film according to any one of (1) to (4), wherein the distance between the closest particles of the conductive particles is 50% or more of the average particle diameter of the conductive particles or 0.2 μm or more, whichever is longer.
  6.  導電粒子分散層の、導電粒子が保持されている側の面に第2の絶縁性樹脂層が積層されている請求項1~5のいずれかに記載の異方性導電フィルム。 (6) The anisotropic conductive film according to any one of (1) to (5), wherein the second insulating resin layer is laminated on the surface of the conductive particle dispersion layer on the side where the conductive particles are held.
  7.  導電粒子分散層の、導電粒子が保持されていない側の面に第2の絶縁性樹脂層が積層されている請求項1~5のいずれかに記載の異方性導電フィルム。 (6) The anisotropic conductive film according to any one of (1) to (5), wherein the second insulating resin layer is laminated on the surface of the conductive particle dispersion layer on the side where the conductive particles are not held.
  8.  第2の絶縁性樹脂層の最低溶融粘度が絶縁性樹脂層の最低溶融粘度よりも低い請求項6又は7記載の異方性導電フィルム。 8. The anisotropic conductive film according to claim 6, wherein the minimum melt viscosity of the second insulating resin layer is lower than the minimum melt viscosity of the insulating resin layer.
  9.  絶縁性樹脂層と第2の絶縁性樹脂層との最低溶融粘度比が2以上である請求項6~8のいずれかに記載の異方性導電フィルム。 The anisotropic conductive film according to any one of claims 6 to 8, wherein the minimum melt viscosity ratio between the insulating resin layer and the second insulating resin layer is 2 or more.
  10.  請求項1記載の異方性導電フィルムの製造方法であって、絶縁性樹脂層に導電粒子を押し込むことにより導電粒子分散層を形成する工程を有する製造方法。 (4) The method for producing an anisotropic conductive film according to (1), further comprising a step of forming a conductive particle dispersed layer by pushing conductive particles into an insulating resin layer.
  11.  絶縁性樹脂層の表面に導電粒子を所定の配列で保持させ、その導電粒子を平板又はローラーで絶縁性樹脂層に押し込むことにより導電粒子分散層を形成する請求項10記載の製造方法。 11. The method according to claim 10, wherein the conductive particles are held in a predetermined arrangement on the surface of the insulating resin layer, and the conductive particles are pressed into the insulating resin layer with a flat plate or a roller to form a conductive particle dispersion layer.
  12.  転写型に導電粒子を充填し、その導電粒子を絶縁性樹脂層に転写することにより絶縁性樹脂層の表面に導電粒子を所定の配置で保持させる請求項11記載の製造方法。 12. The manufacturing method according to claim 11, wherein the transfer mold is filled with conductive particles, and the conductive particles are transferred to the insulating resin layer so that the conductive particles are held in a predetermined arrangement on the surface of the insulating resin layer.
  13.  第1電子部品と第2電子部品とが、請求項1~9のいずれかに記載の異方性導電フィルムを介して異方性導電接続されている接続構造体。 A connection structure in which the first electronic component and the second electronic component are anisotropically conductively connected via the anisotropic conductive film according to any one of claims 1 to 9.
  14.  第1電子部品がICチップ又はICモジュールであり、第2電子部品がプラスチック基板である請求項13記載の接続構造体。 14. The connection structure according to claim 13, wherein the first electronic component is an IC chip or an IC module, and the second electronic component is a plastic substrate.
  15.  第1電子部品と第2電子部品とを、請求項1~9のいずれかに記載の異方性導電フィルムを介して異方性導電接続する、接続構造体の製造方法。 A method of manufacturing a connection structure, wherein the first electronic component and the second electronic component are anisotropically conductively connected via the anisotropic conductive film according to any one of claims 1 to 9.
PCT/JP2019/038143 2018-10-03 2019-09-27 Anisotropic conductive film, connection structure, and method for manufacturing connection structure WO2020071271A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980061791.XA CN112740483B (en) 2018-10-03 2019-09-27 Anisotropic conductive film, connection structure, and method for producing connection structure
KR1020217005129A KR20210033513A (en) 2018-10-03 2019-09-27 Anisotropic conductive film, connection structure, manufacturing method of connection structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-188024 2018-10-03
JP2018188024 2018-10-03
JP2019176515A JP2020095941A (en) 2018-10-03 2019-09-27 Anisotropic conductive film, connection structure, and method for manufacturing connection structure
JP2019-176515 2019-09-27

Publications (1)

Publication Number Publication Date
WO2020071271A1 true WO2020071271A1 (en) 2020-04-09

Family

ID=70055171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038143 WO2020071271A1 (en) 2018-10-03 2019-09-27 Anisotropic conductive film, connection structure, and method for manufacturing connection structure

Country Status (1)

Country Link
WO (1) WO2020071271A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107800A1 (en) * 2020-11-20 2022-05-27 昭和電工マテリアルズ株式会社 Adhesive film for circuit connection, and connection structure and method for manufacturing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric
JP2004164874A (en) * 2002-11-08 2004-06-10 Osugi Kk Electroconductive fine particle for anisotropic electroconductive adhesive
JP2005327509A (en) * 2004-05-12 2005-11-24 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2007035575A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and joint structural body
JP2007035574A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulates, anisotropic conductive material, and connection structural body
WO2010032854A1 (en) * 2008-09-19 2010-03-25 株式会社日本触媒 Electroconductive particles and anisotropic electroconductive material using the same
JP2013125651A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particle
WO2018101108A1 (en) * 2016-12-01 2018-06-07 デクセリアルズ株式会社 Anisotropic conductive film
WO2018101106A1 (en) * 2016-12-01 2018-06-07 デクセリアルズ株式会社 Anisotropic electroconductive film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216841A (en) * 1999-11-26 2001-08-10 Sekisui Chem Co Ltd Conductive partiulates and conductive connecting fabric
JP2004164874A (en) * 2002-11-08 2004-06-10 Osugi Kk Electroconductive fine particle for anisotropic electroconductive adhesive
JP2005327509A (en) * 2004-05-12 2005-11-24 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2007035575A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate, anisotropic conductive material, and joint structural body
JP2007035574A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulates, anisotropic conductive material, and connection structural body
WO2010032854A1 (en) * 2008-09-19 2010-03-25 株式会社日本触媒 Electroconductive particles and anisotropic electroconductive material using the same
JP2013125651A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particle
WO2018101108A1 (en) * 2016-12-01 2018-06-07 デクセリアルズ株式会社 Anisotropic conductive film
WO2018101106A1 (en) * 2016-12-01 2018-06-07 デクセリアルズ株式会社 Anisotropic electroconductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107800A1 (en) * 2020-11-20 2022-05-27 昭和電工マテリアルズ株式会社 Adhesive film for circuit connection, and connection structure and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6187665B1 (en) Anisotropic conductive film
KR102524169B1 (en) Filler-containing film
WO2017010446A1 (en) Anisotropic conductive film and connection structure
JP7315878B2 (en) Filler containing film
WO2017061539A1 (en) Anisotropic conductive film and connection structure
TWI835252B (en) Film containing filler
JP7274815B2 (en) anisotropic conductive film
JP7081097B2 (en) Filler-containing film
WO2020071271A1 (en) Anisotropic conductive film, connection structure, and method for manufacturing connection structure
JP2019033060A (en) Filler containing film
JP7352114B2 (en) Filler-containing film
KR102649406B1 (en) Filler-containing film
CN112740483B (en) Anisotropic conductive film, connection structure, and method for producing connection structure
WO2017191776A1 (en) Method for manufacturing anisotropic conductive film, and anisotropic conductive film
TW202307162A (en) Anisotropic conductive film
TWI740934B (en) Anisotropic conductive film
JP7319578B2 (en) Filler containing film
JP7194229B2 (en) Method for producing anisotropic conductive film, and anisotropic conductive film
KR20200022510A (en) Anisotropic conductive film
JP2022176967A (en) anisotropic conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869775

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20217005129

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869775

Country of ref document: EP

Kind code of ref document: A1