[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020071257A1 - Wire-grid polarizer, polarizing plate, and video display device - Google Patents

Wire-grid polarizer, polarizing plate, and video display device

Info

Publication number
WO2020071257A1
WO2020071257A1 PCT/JP2019/038053 JP2019038053W WO2020071257A1 WO 2020071257 A1 WO2020071257 A1 WO 2020071257A1 JP 2019038053 W JP2019038053 W JP 2019038053W WO 2020071257 A1 WO2020071257 A1 WO 2020071257A1
Authority
WO
WIPO (PCT)
Prior art keywords
ridge
metal layer
wire grid
light
wavelength
Prior art date
Application number
PCT/JP2019/038053
Other languages
French (fr)
Japanese (ja)
Inventor
康宏 池田
拓馬 西坂
賢太 関川
総 石戸
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020550377A priority Critical patent/JPWO2020071257A1/en
Publication of WO2020071257A1 publication Critical patent/WO2020071257A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a wire grid polarizer, a polarizing plate including the wire grid polarizer, and an image display device.
  • the wire grid polarizer has a structure in which a plurality of fine metal wires are arranged parallel to each other on a light transmitting substrate.
  • the obtained light does not include components other than the desired polarized light.
  • Rs / Rp which is the ratio of the reflectance Rs of s-polarized light to the reflectance Rp of p-polarized light, be high.
  • Patent Documents 1 and 2 disclose a wire grid type polarizing plate in which convex lines and concave grooves are alternately provided on the surface of a base material, and metal wires are provided so as to cover a side surface on one side of the convex line and a top of the convex line. Is described.
  • the cross-sectional shape of the ridge is substantially rectangular.
  • the cross-sectional shape of the concave groove is substantially rectangular, and the width of the metal wire on the side surface of the ridge is substantially uniform.
  • An object of one embodiment of the present invention is to provide a wire grid polarizer having a high ratio of Rs / Rp, a polarizing plate including the wire grid polarizer, and an image display device.
  • a light-transmitting substrate having mutually parallel ridges formed at a predetermined pitch on a surface, and a metal layer made of a metal or a metal compound provided on the surface of the light-transmitting substrate.
  • the cross-sectional shape of the ridge which is orthogonal to the length direction, has a width that gradually decreases toward the top, and at least the first side and the second side sandwich the top of the ridge.
  • the entire side surface is covered with the metal layer, and the second side surface has an exposed surface that is not covered with the metal layer.
  • the height from the bottom to the top of the ridge is 80 to 125 nm
  • the minimum value of the thickness of the metal layer covering the first side surface in the width direction of the ridge is Wm
  • the minimum from the bottom to the top of the ridge is The metal layer covering the first side surface on the bottom side with respect to a half of the height of the metal layer
  • the maximum value of the thickness in the width direction of the ridge is Wb
  • the maximum value of the thickness of the metal layer present on the side opposite to the bottom side from the top of the ridge is Wh.
  • the ratio of the Wh to the Wm is 2.2 to 3.0
  • the ratio of the Wb to the Wm is 1.5 to 2.1.
  • a wire grid type polarizer is sandwiched between two antireflection substrates having a reflectance of 0.7% or less at a wavelength of 450 to 650 nm, an incident angle of 5 °, a measuring wavelength of 450 to 650 nm, and a wavelength interval of 1 nm.
  • the s-polarized light reflectance and the p-polarized light reflectance are measured, respectively, and Rs / Rp, which is the ratio of the s-polarized light reflectance to the p-polarized light reflectance, is determined.
  • the x-axis is wavelength
  • the y-axis is Rs / Rp.
  • a light-transmitting substrate having mutually parallel ridges formed at a predetermined pitch on a surface, and a metal layer made of a metal or a metal compound provided on the surface of the light-transmitting substrate.
  • the cross-sectional shape of the ridge which is orthogonal to the length direction, has a width that gradually decreases toward the top, and at least the first side and the second side sandwich the top of the ridge.
  • the entire side surface is covered with the metal layer, and the second side surface has an exposed surface that is not covered with the metal layer, and has a resin layer covering the light transmitting substrate and the metal layer.
  • a wire grid type polarizer is sandwiched between two antireflection substrates having a reflectance of 0.7% or less at a wavelength of 450 to 650 nm, an incident angle of 5 °, a measuring wavelength of 450 to 650 nm, and a wavelength interval of 1 nm.
  • the s-polarized light reflectance and the p-polarized light reflectance are measured, respectively, and Rs / Rp, which is the ratio of the s-polarized light reflectance to the p-polarized light reflectance, is determined.
  • the x-axis is wavelength
  • the y-axis is Rs / Rp.
  • a second support having a first support on the back surface of the light transmissive substrate, and a pressure-sensitive adhesive on a surface of the resin layer opposite to the light transmissive substrate side
  • a polarizing plate including the wire grid polarizer according to any one of [1] to [8].
  • An image display device including the wire grid polarizer according to any one of [1] to [8].
  • a light-transmitting substrate in which mutually parallel ridges and grooves are alternately formed at a predetermined pitch on a surface, and a metal made of a metal or a metal compound provided on the surface of the light-transmitting substrate And a layer,
  • the cross-sectional shape of the ridge, perpendicular to the length direction, the width gradually decreases toward the top, Of the first side surface and the second side surface sandwiching the top of the ridge, at least the entire surface of the first side surface is covered with the metal layer, and the second side surface is covered with the metal layer.
  • Wire-grid polarizer with unexposed exposed surface.
  • a second support having a first support on the back surface of the light transmissive substrate, and a pressure-sensitive adhesive on a surface of the resin layer opposite to the light transmissive substrate side
  • the wire grid polarizer according to [14] or [15] comprising: [17] A first support is provided on the back surface of the light transmitting substrate, and a refractive index adjusting layer is provided on a surface of the resin layer opposite to the light transmitting substrate side, [14]. Or the wire grid polarizer of [15]. [18] A polarizing plate including the wire grid polarizer according to any one of [11] to [17]. [19] An image display device including the wire grid polarizer according to any one of [11] to [17].
  • the wire grid polarizer of the above embodiment has a high ratio of Rs / Rp.
  • the polarizing plate of the above embodiment has a high ratio of Rs / Rp.
  • the image display device of the above aspect includes a polarizer having a high Rs / Rp ratio.
  • FIG. 2 is a top view schematically showing the first embodiment of the wire grid polarizer. It is sectional drawing which shows 1st Embodiment of a wire grid type polarizer typically. It is sectional drawing explaining the measuring method of s-polarized light reflectance and p-polarized light reflectance. It is a figure explaining the measuring method of relative area S1. It is sectional drawing which shows 2nd Embodiment of a wire grid type polarizer typically. It is sectional drawing which shows an example of the manufacturing process of a wire grid type polarizer. It is sectional drawing which shows an example of the manufacturing process of a wire grid type polarizer. It is sectional drawing which shows another example of the manufacturing process of a wire grid type polarizer.
  • FIG. 13 is a cross-sectional view schematically illustrating a wire grid polarizer of Example 10. It is a graph which shows the simulation result of Rp in a reference example. It is a graph which shows the simulation result of Rs in a reference example. It is a graph which shows the simulation result of Rp in a reference example. It is a graph which shows the simulation result of Rs in a reference example. It is a graph which shows the simulation result of Rp in a reference example. It is a graph which shows the simulation result of Rs in a reference example. It is a graph which shows the simulation result of Rp in a reference example. It is a graph which shows the simulation result of Rs in a reference example. It is a graph which shows the simulation result of Rs in a reference example. 4 is a scanning electron microscope image of a cross section of the light transmitting substrate obtained in Production Example 1. 3 is a scanning electron microscope image of a cross section of the wire grid polarizer obtained in Production Example 1.
  • FIG. 1A is a top view schematically illustrating a first embodiment of a wire grid polarizer according to the present invention.
  • FIG. 1B is a sectional view taken along line PQ of FIG. 1A.
  • reference numeral 1 denotes a light-transmitting substrate
  • 2 denotes a metal layer
  • 11 denotes a ridge
  • 11a denotes a top of the ridge 11.
  • FIG. 1A only the ridgeline of the top 11a is shown, and other members are omitted.
  • the length direction of the ridge 11 is referred to as a Z direction
  • the width direction of the ridge 11 in a plane perpendicular to the Z direction is referred to as an X direction
  • the height direction of the ridge 11 in a plane perpendicular to the Z direction is referred to as a Y direction.
  • the X direction and the Y direction are orthogonal.
  • FIGS. 1A and 1B are schematic diagrams based on design values.
  • a shape unavoidable in manufacturing and a nonuniform thickness of a metal layer occur.
  • the dimension of each part of the wire grid polarizer is an average value of measured values at arbitrary five points in a scanning electron microscope image or a transmission electron microscope image of a cross section orthogonal to the Z direction.
  • the light-transmitting substrate 1 is light-transmitting in the wavelength range in which the wire grid polarizer is used.
  • the light transmittance means that the transmittance is 80% or more.
  • the working wavelength range of the wire grid polarizer is preferably in the range of 300 to 2000 nm, more preferably 400 to 1500 nm, and still more preferably 400 to 1000 nm.
  • Examples of the material of the light-transmitting substrate 1 include a light-curing resin, a thermosetting resin, a thermoplastic resin, and glass. From the viewpoint that the ridges 11 can be formed by the imprint method, a photocurable resin or a thermosetting resin is preferable. In particular, a photocurable resin is preferable in terms of excellent workability, heat resistance, and durability. As the photocurable resin, a cured product obtained by photocuring a photocurable composition that can be photocured by photoradical polymerization is preferable from the viewpoint of productivity.
  • the refractive index of the light-transmitting substrate 1 is preferably from 1.1 to 1.6, more preferably from 1.2 to 1.59, even more preferably from 1.25 to 1.58.
  • the photocurable composition is, for example, a composition containing a monomer, a photopolymerization initiator, a solvent, and optional additives (for example, a surfactant and a polymerization inhibitor).
  • a photocurable composition described in paragraphs 0029 to 0074 of WO 2007/116972 can be used.
  • the material of the metal layer 2 may be a conductive metal material, and is preferably a corrosion-resistant material.
  • a metal or metal compound can be exemplified.
  • a simple substance of a metal, an alloy, a metal containing a dopant or an impurity may be mentioned.
  • aluminum, silver, chromium, magnesium, an aluminum alloy, and a silver alloy can be exemplified. These can be used alone or in combination of two or more.
  • the material of the metal layer 2 is preferably aluminum, an aluminum-based alloy, silver, a silver-based alloy, chromium, or magnesium from the viewpoint of high reflectance to visible light, low absorption of visible light, and high conductivity.
  • Aluminum-based alloys and silver-based alloys are more preferred. These can be used alone or in combination of two or more.
  • a plurality of ridges 11 are formed on the surface of the light-transmitting substrate 1.
  • the plurality of ridges 11 extend in the Z direction and are parallel to each other.
  • the shape (cross-sectional shape) of the ridge 11 in a cross section orthogonal to the Z direction is a triangle or a substantially triangle whose width gradually decreases toward the top 11a.
  • the top 11a of the ridge 11 is a portion having the highest height in the Y direction, and forms a line (ridge) in the Z direction.
  • the apex angle including the apex 11a may be an acute angle or a rounded angle.
  • the portion farthest from the top 11a in the Y direction between the adjacent tops 11a is the bottom 12a.
  • a plane that is in contact with the bottom 12a and is orthogonal to the Y direction is defined as a reference plane B
  • the pitch p in the X direction of the ridge 11 on the reference plane B and the pitch p of the ridge 11 from the bottom 12a of the ridge 11 is uniform.
  • the surface from the bottom 12a to the top 11a of the ridge 11 is defined as the side of the ridge 11, and the two sides sandwiching the top 11a of the ridge 11 are defined as a first side 11b1 and a second side 11b2.
  • the metal layer 2 is provided so as to cover at least the entire first side surface 11b1 of the first side surface 11b1 and the second side surface 11b2 of the ridge 11.
  • the first side surface 11b1 of the ridge 11 is covered with the metal layer
  • the second side surface 11b2 near the top 11a of the ridge 11 may be covered with the metal layer 2.
  • the second side surface 11b2 of the ridge 11 is not entirely covered with the metal layer 2, but has an exposed surface on which the light-transmitting substrate 1 is exposed.
  • the wire grid polarizer of the present embodiment uses a photo-imprinting method (method according to the description of FIGS. 5A, 5B, and 6A to 6C) described later to form a ridge on the layer of the photocurable composition. Is formed to form the light-transmitting substrate 1 and the metal layer 2 is provided by a vapor deposition method.
  • the metal layer 2 can be formed on the entire surface of the first side surface 11b1 of the ridge 11 and in the vicinity thereof by using a vacuum evaporation method.
  • a vacuum evaporation method When performing vacuum deposition, an oblique deposition method in which the light-transmitting substrate 1 is arranged obliquely with respect to the deposition source may be used. During oblique deposition, the deposition direction may change over time.
  • a predetermined deposition angle (for example, ⁇ 1, ⁇ 2, the unit is “°”) is orthogonal to or substantially orthogonal to the Z direction and on the first side surface 11b1 side with respect to the Y direction. )
  • a metal or a metal compound is vapor-deposited from a direction inclined (vapor deposition direction) to form the metal layer 2.
  • the metal layer 2 near the top 11a and the bottom 12a of the first side surface 11b1 is thick, and the metal layer 2 is thin between them.
  • a metal layer 2 having a shape having a portion is obtained.
  • the evaporation angle ( ⁇ 1, ⁇ 2) can be continuously changed by a method in which the evaporation source is fixed and the light transmissive substrate 1 is evaporated while being moved in the X0 direction.
  • the absolute value of the change in the deposition angle ( ⁇ 1, ⁇ 2) is preferably 30 ° or less.
  • the minimum value of the thickness in the X direction of the metal layer 2 covering the first side surface 11b1 is Wm.
  • the maximum value of the thickness in the X direction of the metal layer 2 covering the first side surface 11b1 on the side of the bottom 12a from the half of the height Hg of the ridge 11 is defined as Wb.
  • the maximum value of the thickness in the X direction of the metal layer 2 existing above the top 11a of the ridge 11 (on the side opposite to the bottom 12a) is defined as Wh.
  • Wh / Wm representing the ratio of Wh to Wm is 2.2 to 3.0
  • Wb / Wm representing the ratio of Wb to Wm is 1.5 to 2.1
  • Wh / Wm is 2.2 to 2.5
  • Wh / Wm is 2.2 to 2.4
  • Wb / Wm is 1.6 to 2.1
  • Wb / Wm is 1.9 to 2.1.
  • Wh / Wb representing the ratio of Wh to Wb is preferably 1.4 or less, more preferably 1.2 or less, and even more preferably 1.1 or less. When it is not more than the above upper limit, a high Rs / Rp can be obtained.
  • Wh is more preferably from 30 to 55 nm, even more preferably from 35 to 50 nm.
  • Wm is more preferably from 10 to 30 nm, even more preferably from 15 to 25 nm.
  • Wb is more preferably from 20 to 50 nm, even more preferably from 25 to 45 nm.
  • the difference between Wh and Wm is more preferably from 15 to 35 nm, even more preferably from 20 to 30 nm.
  • the difference between Wb and Wm is more preferably 5 to 30 nm, even more preferably 6 to 25 nm.
  • the difference between Wh and Wb is preferably 1 to 25 nm, more preferably 2 to 20 nm.
  • the height Hg of the ridge 11 in the Y direction is preferably 80 to 125 nm, more preferably 85 to 120 nm, and still more preferably 90 to 115 nm.
  • the pitch p of the ridge 11 in the X direction is preferably from 60 to 150 nm, more preferably from 70 to 130 nm, even more preferably from 80 to 110 nm.
  • a resin layer 31, 32 or 33 covering the light-transmitting substrate 1 and the metal layer 2 may be provided as in the third to fifth embodiments described later (see FIGS. 7 to 9).
  • the refractive index n of the resin layer 31, 32, or 33 at a wavelength of 589.3 nm is preferably 1.10 to 1.50, more preferably 1.15 to 1.45, and 1.20 to 1.40. Is more preferred.
  • the height Hg of the ridge 11 in the Y direction and the refractive index n of the resin layer at a wavelength of 589.3 nm satisfy the following expression 1. 450 ⁇ 4 ⁇ n ⁇ Hg ⁇ 650 Equation 1
  • the value of “4 ⁇ n ⁇ Hg” may be 451 to 649, 452 to 648, or 480 to 640.
  • FIG. 2 shows a wire grid type polarized light in which the light transmissive substrate 1 and the metal layer 2 are covered with the resin layer 32 and a part of the resin layer 32 fills the entire space between the adjacent ridges 11. It is an example of a child.
  • the wire grid type polarizer is sandwiched between two anti-reflection substrates 42 that have been subjected to anti-reflection treatment so that the reflectance at a wavelength of 450 to 650 nm is 0.7% or less.
  • the s-polarized light reflectance and the p-polarized light reflectance are each measured.
  • the anti-reflection substrate 42 a glass or a film having a reflectance of 0.7% or less for p-polarized light at a wavelength of 450 to 650 nm with respect to the anti-reflection treated surface can be used.
  • the measurement conditions for the s-polarized light reflectance and the p-polarized light reflectance are an incident angle ⁇ 3 of 5 °, a measurement wavelength of 450 nm to 650 nm, and a wavelength interval of 1 nm.
  • Rs / Rp at each wavelength is obtained, and a graph in which the x-axis is wavelength (unit: nm) and the y-axis is Rs / Rp is created.
  • FIG. 3 is an example of a graph.
  • the relative areas S1 and S2 are obtained by the following method.
  • FIG. 4 is a sectional view schematically showing a second embodiment of the wire grid polarizer of the present invention.
  • reference numeral 1 denotes a light transmitting substrate
  • 2 denotes a metal layer
  • 11 denotes a ridge
  • 12 denotes a concave groove.
  • FIG. 4 is a schematic diagram based on design values. In an actual wire grid polarizer, a shape unavoidable in manufacturing and a nonuniform metal layer thickness are produced.
  • a plurality of ridges 11 and a plurality of grooves 12 are alternately formed on the surface of the light-transmitting substrate 1.
  • the plurality of ridges 11 extend in the Z direction and are parallel to each other.
  • the plurality of concave grooves 12 extend in the Z direction and are parallel to each other.
  • the shape (cross-sectional shape) of the ridge 11 in a cross section orthogonal to the Z direction is a triangle or a substantially triangle whose width gradually decreases toward the top 11a.
  • the top 11a of the ridge 11 is a portion having the highest height in the Y direction, and is continuous with the Z direction to form a line.
  • the apex angle including the apex 11a may be an acute angle or a rounded angle.
  • the cross-sectional shape of the plurality of ridges 11 is uniform.
  • a plane passing through the lower end 11c of the ridge 11 and orthogonal to the Y direction is defined as a reference plane C
  • the width a of the ridge 11 in the X direction in the reference plane C and the pitch of the ridge 11 in the X plane in the reference plane C are defined.
  • b and the design value of the height c in the Y direction from the reference plane C to the top 11a of the ridge 11 are uniform.
  • the height in the Y direction from the reference plane C to the bottom 12a of the groove 12 to the reference plane C is defined as the depth d of the groove.
  • the cross-sectional shape of the concave groove 12 is a V-shape in which the inclination of the tangent to the tapered surface 12b is constant or substantially constant.
  • the bottom 12a may be an acute angle or a rounded corner.
  • the bottom portion 12a extends in the Z direction to form a line.
  • the cross-sectional shape of the plurality of grooves 12 is uniform, and the depth d of the grooves 12 is uniform.
  • the surface from the lower end 11c of the ridge 11 to the top 11a of the ridge 11 is defined as the side surface of the ridge 11.
  • the two side surfaces sandwiching the top 11a of the ridge 11 are referred to as a first side surface 11b1 and a second side surface 11b2.
  • the surface from the lower end 11 c of the ridge 11 to the bottom 12 a of the groove 12 is defined as the side surface of the groove 12.
  • the ridges 11 and the concave grooves 12 are formed on the surface of the integrated light-transmitting substrate 1. That is, the top 11a of the ridge 11, the side of the ridge 11, the side of the groove 12, and the bottom 12a of the groove 12 are made of the same material.
  • the metal layer 2 is provided so as to cover at least the entire first side surface 11b1 of the first side surface 11b1 and the second side surface 11b2 of the ridge 11.
  • the metal layer 2 When the first side surface 11b1 of the ridge 11 is covered with the metal layer, the second side surface 11b2 near the top 11a of the ridge 11 and the side of the concave groove 12 near the lower end 11c of the ridge 11 are covered with the metal layer 2. It may be coated.
  • the second side surface 11b2 of the ridge 11 is not entirely covered with the metal layer 2, but has an exposed surface on which the light-transmitting substrate 1 is exposed.
  • the wire grid polarizer of this embodiment can be manufactured by the following method.
  • a light-curable composition is applied to the surface of a light-transmissive substrate, and the light-transmissible substrate is formed by forming ridges and grooves in the light-curable composition layer using a photo-imprinting method. Is prepared. After the optical imprint method, etching may be performed as necessary.
  • the optical imprint method for example, by combining electron beam drawing and etching, a mold in which a plurality of grooves are formed in parallel with each other and at a predetermined pitch is produced, and the grooves of the mold are applied to the surface of the base material. And transferring the photocurable composition to the cured photocurable composition and simultaneously photocuring the photocurable composition.
  • a mold prepared by electron beam drawing and etching may be used as a master mold (master mold), and a child mold or a grandchild mold replicated by a photo-imprint method may be used for transfer to the photocurable composition.
  • the light-transmitting substrate is made of a glass plate (quartz glass plate, non-alkali glass plate, etc.) and resin (cyclic olefin resin, acrylic resin, triacetyl cellulose resin, polyimide resin, polydimethylsiloxane, transparent fluororesin).
  • resin cyclic olefin resin, acrylic resin, triacetyl cellulose resin, polyimide resin, polydimethylsiloxane, transparent fluororesin.
  • an uncured photocurable composition 22 is applied to the surface of a substrate 21, and irregularities having shapes corresponding to the ridges 11 and the grooves 12 to be obtained are formed.
  • the molded mold 23 is pressed against the photocurable composition 22.
  • the photocurable composition is cured by irradiating radiation (for example, ultraviolet rays or electron beams), and then, as shown in FIG. 5B, the mold 23 is released to obtain the light transmissive substrate 1.
  • a metal layer can be formed on the light transmitting substrate 1 while being integrated with the base material 21.
  • the substrate 21 may be a support described later. If necessary, the light transmissive substrate 1 and the base material 21 may be separated before or after the formation of the metal layer.
  • the light-transmitting substrate 1 can be manufactured by a method using a mold 24 having a different shape from the mold 23. Specifically, first, the mold 24 is pressed against the photocurable composition 22 on the base material 21 to perform photocuring, thereby forming a rectangular ridge 10 larger than the ridge 11 to be obtained. Get things. Thereafter, as shown in FIG. 6C, the ridges 10 of the cured product are etched and processed into ridges 11 having a desired shape to obtain the light-transmitting substrate 1.
  • the wire grid polarizer of the present embodiment can be obtained.
  • the metal layer 2 is preferably formed by vapor deposition.
  • the vapor deposition method include a physical vapor deposition method (PVD) and a chemical vapor deposition method (CVD).
  • PVD physical vapor deposition method
  • CVD chemical vapor deposition method
  • a vacuum deposition method, a sputtering method, or an ion plating method is preferable.
  • the vacuum evaporation method is preferable because the incident direction of the fine particles to be attached to the light transmitting substrate 1 can be easily controlled.
  • the metal layer 2 is deposited on the entire surface of the first side surface 11b1 of the ridge 11 and in the vicinity thereof by using an oblique evaporation method by a vacuum evaporation method.
  • an angle ⁇ (unit is “°”) (evaporation angle) is orthogonal to or substantially orthogonal to the Z direction and on the side of the first side surface 11b1 with respect to the Y direction.
  • the metal layer 2 is formed by vapor-depositing a metal or a metal compound from the direction (deposition direction).
  • the deposition amount is controlled so that a predetermined thickness of the metal layer 2 is obtained.
  • the test piece is placed in the same film-forming environment as the light-transmitting substrate 1, and the deposition amount is controlled so that the thickness of the metal layer formed on the test piece becomes a target value.
  • a glass substrate is used as the test piece.
  • the film thickness is measured by, for example, a stylus type contact film thickness meter.
  • Rs / Rp can be increased.
  • a wire grid polarizer having Rs of 50% or more, Rp of 10% or less, and Rs / Rp of 5 or more can be realized.
  • the wire grid polarizer according to the present embodiment has a configuration in which the cross-sectional shape of the ridge 11 is triangular or substantially triangular, and the concave groove 12 having the tapered surface 12 b is provided between the adjacent ridges 11.
  • the shape of the mold can be easily formed.
  • the pitch b of the ridges 11 in the X direction is preferably 150 nm or less, more preferably 130 nm or less, and even more preferably 100 nm or less.
  • the lower limit of the pitch b is preferably 60 nm or more.
  • the pitch b is preferably from 60 to 150 nm, more preferably from 70 to 130 nm, even more preferably from 80 to 110 nm.
  • a a / b representing the ratio of the width a to the pitch b is preferably 0.8 or less, more preferably 0.7 or less, and still more preferably 0.5 or less.
  • the lower limit of a / b is preferably 0.2 or more.
  • a / b is preferably from 0.2 to 0.8, more preferably from 0.2 to 0.7, and even more preferably from 0.2 to 0.5.
  • the height c of the ridge 11 in the Y direction is preferably 125 nm or less, more preferably 120 nm or less, and even more preferably 115 nm or less.
  • the lower limit of the height c is preferably 80 nm or more.
  • the height c is preferably from 80 to 125 nm, more preferably from 85 to 120 nm, even more preferably from 90 to 115 nm.
  • the depth d of the concave groove 12 is preferably more than zero and 100 nm or less.
  • the deposition angle ⁇ is preferably from 10 to 40 °, more preferably from 15 to 35 °, even more preferably from 20 to 30 °.
  • the thickness e of the metal layer 2 in the X direction at a position of 1 / of the height (c + d) is preferably 20 to 60 nm, more preferably 25 to 55 nm, and further preferably 30 to 50 nm.
  • the ratio (a ′ / e) of the thickness e in the X direction of the metal layer 2 to the width a ′ in the X direction of the ridge 11 at a position 1 / of the height (c + d) is preferably 0.5 to 2. .
  • Qm cross-sectional area of the metal layer 2 in the cross section orthogonal to the Z direction
  • Qs cross-sectional area of the light-transmitting substrate 1 above the bottom 12a of the concave groove 12 is Qs
  • Qm / Qs is 0.2 to 5. preferable.
  • ⁇ Third to fifth embodiments> 7 to 9 are sectional views schematically showing third to fifth embodiments of the wire grid polarizer.
  • the same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
  • the light-transmitting substrate 1 and the metal layer 2 are covered with a resin layer 31, and a part of the resin layer 31 is formed in a part of the space between the adjacent ridges 11. Is filled.
  • the portion of the space not filled with the resin layer 31 is an air layer.
  • the ratio of the height f from the bottom 12a of the groove 12 to the lower end 31a of the resin layer 31 with respect to the height (c + d) from the bottom 12a of the groove 12 to the top 11a of the ridge 11 in the Y direction. Is called “embedding degree (unit is%)”.
  • FIGS. 7 to 9 are schematic diagrams based on design values.
  • the minimum value of the height f between two adjacent ridges is Is the measured value
  • the average value of the measured values at any five points is the height f of the wire grid polarizer.
  • the light-transmitting substrate 1 and the metal layer 2 are covered with the resin layer 32, and a part of the resin layer 32 fills the entire space between the adjacent ridges 11. Have been.
  • the embedding degree in the present embodiment is 0%.
  • the embedding degree in the present embodiment is 100%.
  • the space between the adjacent ridges 11 is not filled with the resin layer 33.
  • a refractive index adjustment layer 41 is provided between them. It may be provided.
  • the resin layers 31, 32, and 33 have optical transparency.
  • the refractive index of the resin layers 31, 32, and 33 at a wavelength of 589.3 nm is preferably 1.10 to 1.50, more preferably 1.15 to 1.40, and further preferably 1.20 to 1.39.
  • the refractive index of the resin layers 31, 32, and 33 is equal to or more than the lower limit of the above range, good resistance to an imprint process or the like is easily obtained. If it is less than the upper limit, good optical characteristics are likely to be obtained.
  • the light-transmitting substrate 1 is manufactured, the metal layer 2 is provided, and the resin layers 31, 32, and 33 are applied. It can be manufactured by a lamination method.
  • the light-transmitting substrate 1 and the metal layer 2 are manufactured in the same manner as in the second embodiment.
  • the resin layers 31, 32, and 33 are formed by, for example, a method of applying and drying a solution containing a resin, or a method of applying and drying a solution containing a resin, followed by UV curing or heat curing.
  • the degree of embedding can be adjusted by, for example, a method of previously cleaning the surface of the metal layer by corona treatment, or a method of reducing the molecular weight of the resin to reduce the molecular size.
  • a solution containing a resin is applied on another glass substrate, dried to form a coating film (refractive index adjusting layer), and the refractive index is adjusted by a method of transferring the coating film onto the metal layer 2 or the like.
  • the layer 41 is formed.
  • the height g from the top 11a of the ridge 11 to the upper end of the resin layer 31 is not particularly limited.
  • the cross-sectional shape of the ridge 11 is triangular or substantially triangular.
  • a trapezoid in which the top 11a is a flat surface orthogonal to the Y direction may be used.
  • the top 11a has a band shape extending in the Z direction. If the width w of the flat surface of the top 11a in the X direction is small, the same effects as those of the first to fifth embodiments can be obtained.
  • the width w of the flat surface of the top 11a in the X direction is preferably 40% or less, more preferably 30% or less, even more preferably 25% or less with respect to the pitch b of the ridges.
  • the width w is zero, that is, the cross-sectional shape of the ridge 11 is most preferably a triangle or a substantially triangle.
  • the cross-sectional shape of the concave groove 12 is V-shaped.
  • the second groove may be formed.
  • the same effects as in the second to sixth embodiments can be obtained.
  • the bottom has a band shape extending in the Z direction.
  • the width of the bottom flat surface in the X direction is preferably 20% or more, more preferably 50% or more, even more preferably 70% or more with respect to the pitch b of the ridges.
  • a concave groove may be formed between the ridges as in the second embodiment.
  • a support made of a thermoplastic resin, glass, or the like (not shown) is provided on the back surface (the surface opposite to the surface on which the ridges and grooves are provided) of the light-transmitting substrate 1. ) May be included.
  • a support (hereinafter, also referred to as a first support) is provided on the back surface of the light transmitting substrate 1.
  • the difference (absolute value) in the refractive index between the support and the light transmitting substrate 1 is preferably 0.1 or less, more preferably 0.05 or less.
  • the difference in the refractive index between the support and the light-transmitting substrate 1 is 0.1 or less, it is easy to reduce the loss of the light amount due to the reflection at the interface.
  • a support (hereinafter, also referred to as a second support) is provided on the surface of the resin layer (the surface opposite to the light-transmitting substrate 1 side). You may.
  • the resin layer and the support (second support) may be attached with an adhesive.
  • the materials of the first support and the second support may be the same or different.
  • Suitable applications of the wire grid polarizer of the present invention include, for example, an image display device and a polarizing plate.
  • Examples of the video display device include a liquid crystal display device and a head-up display device.
  • the wire grid polarizer manufactured in each example was trimmed, embedded in an epoxy resin, and cured.
  • the cured sample room temperature
  • the cured sample was cut with an ultramicrotome (trade name, Ultracut EM UC 6, Leica Microsystems, using a diamond knife) to produce an ultrathin section.
  • the thickness (set value) of the ultrathin section was 50 nm.
  • the prepared ultrathin section was observed using a transmission electron microscope (product name: HT7700, Hitachi High-Technologies Corporation) under the following conditions to obtain an image.
  • FIG. 11 is an example of a TEM image.
  • Acceleration voltage 100 kV
  • filament voltage 27.2 V
  • emission current 8.5 ⁇ A
  • convergent lens movable diaphragm 27.2 V
  • emission current 8.5 ⁇ A
  • convergent lens movable diaphragm 27.2 V
  • emission current 8.5 ⁇ A
  • convergent lens movable diaphragm 27.2 V
  • emission current 8.5 ⁇ A
  • convergent lens movable diaphragm 27.2 V
  • emission current 8.5 ⁇ A
  • convergent lens movable diaphragm 27.2 V
  • emission current 8.5 ⁇ A
  • convergent lens movable diaphragm 27.2 V
  • emission current 8.5 ⁇ A
  • convergent lens movable diaphragm 27.2 V
  • emission current 8.5 ⁇ A
  • convergent lens movable diaphragm 27.2 V
  • emission current 8.5 ⁇ A
  • any five consecutive ridges were measured, and a reference line was defined for each ridge.
  • the reference line was a straight line that was in contact with the two bottoms sandwiching the ridge to be measured, and that had a minimum length where the bottom and the reference line were in contact.
  • the direction parallel to the reference line was defined as the X direction, and the direction orthogonal thereto was defined as the Y direction.
  • B1 is the reference line of the first ridge
  • B4 is the reference line of the fourth ridge.
  • the reference lines of each ridge may not be parallel to each other.
  • the direction parallel to the reference line B1 is defined as the X1 direction
  • the direction orthogonal thereto is defined as the Y1 direction.
  • the direction parallel to the reference line B4 is defined as the X4 direction, and the direction orthogonal thereto is defined as the Y4 direction.
  • the height of the ridge in the Y direction was determined by the following method, and the average was defined as Hg (unit: nm). The average value was rounded up to the nearest decimal point (the same applies hereinafter).
  • the height Hg1 of the first ridge was determined by the following procedure. A straight line that is parallel to the X1 direction and is in contact with the top of the ridge and has the minimum length of the portion in contact with the top is provided, and the distance from the reference line B1 to the straight line in the Y1 direction is set to be convex. It was measured as the height Hg1 of the strip. The heights of the other ridges were determined in the same manner.
  • a straight line that is parallel to the X4 direction and that is in contact with the top of the ridge and that has a minimum length in contact with the top is provided, and a reference line in the Y4 direction is provided.
  • the distance from B4 to the straight line was measured as the height Hg4 of the ridge.
  • the upper maximum value the maximum value of the thickness of the metal layer above the top of the ridge (opposite to the bottom side) (hereinafter, referred to as the upper maximum value) is determined for each of the five ridges by the following method.
  • the average was determined as Wh (unit: nm).
  • the upper-side maximum value Wh1 of the first ridge was determined by the following procedure. In the metal layer above the top of the ridge, two straight lines parallel to the Y1 direction passing through both ends of the metal layer in the X1 direction were provided. The maximum value of the distance between the two straight lines in the X1 direction was measured as the upper maximum value Wh1. For the other ridges, the upper maximum value was determined in the same manner.
  • the fourth ridge two straight lines parallel to the Y4 direction are provided on the metal layer above the top of the ridge, passing through both ends of the metal layer in the X4 direction.
  • the maximum value of the distance between the two straight lines in the X4 direction was measured as the upper maximum value Wh4.
  • the minimum value of the thickness of the metal layer was determined for each of the five ridges by the following method, and the average was defined as Wm (unit: nm).
  • Wm1 of the thickness of the first ridge was determined by the following procedure. Two straight lines parallel to the Y1 direction passing through both ends of the metal layer in the X1 direction were provided. The minimum value of the distance between the two straight lines in the X1 direction was measured as the minimum value Wm1 of the thickness.
  • the minimum value of the thickness was determined in the same manner for other ridges. For example, as for the fourth ridge, two straight lines parallel to the Y4 direction are provided, passing through both ends of the metal layer in the X4 direction. The minimum value of the distance between the two straight lines in the X4 direction was measured as the minimum value Wm4 of the thickness.
  • the maximum value of the thickness of the metal layer on the bottom side from the position 1 / of the height from the bottom to the top of each ridge (hereinafter referred to as the bottom side) The average was taken as Wb (unit: nm).
  • the bottom-side maximum value Wb1 of the first ridge was determined by the following procedure. In the metal layer on the bottom side from the position of half the height from the bottom to the top of the ridge, two straight lines passing through both ends of the metal layer in the X1 direction and parallel to the Y1 direction were provided. The maximum value of the distance between the two straight lines in the X1 direction was measured as the bottom-side maximum value Wb1.
  • the bottom-side maximum value was similarly obtained for the other ridges.
  • the four ridge in the metal layer on the bottom side from a position 1 / of the height from the bottom to the top of the ridge, the two ridges pass through both ends of the metal layer in the X4 direction and are parallel to the Y4 direction. Two straight lines were provided. The maximum value of the distance between the two straight lines in the X4 direction was measured as the bottom-side maximum value Wb4.
  • anti-reflection substrate 42 As the anti-reflection substrate 42 provided on the side where polarized light is incident, anti-reflection treated glass (hereinafter referred to as anti-reflection glass) is used, and the anti-reflection provided on the side where polarized light is emitted (transmitting side)
  • anti-reflection glass As the base material 42, an antireflection-treated film (hereinafter, referred to as an antireflection film) was used.
  • the reflectance of the antireflection glass and the antireflection film was measured in advance by the following method, and it was confirmed that the reflectance was 0.7% or less.
  • a black paint layer was formed on the back surface of the antireflection glass, and in a state where reflection from the back surface was suppressed, p-polarized light having a wavelength of 450 to 650 nm was incident on the surface at an incident angle of 5 ° and the reflectance was measured.
  • an ultraviolet-visible spectrophotometer UH-4150, product name of Hitachi High-Tech Science Corporation
  • the measurement wavelength was 450 nm to 650 nm
  • the wavelength interval was 1 nm
  • the slit was fixed at 4 nm
  • the scan speed was 300 nm / min.
  • glass was bonded to the back surface via an adhesive layer to flatten the film.
  • a black paint layer was formed on the exposed surface of the glass (the side opposite to the adhesive layer) to suppress reflection from the back surface.
  • the reflectance of the surface of the antireflection film was measured under the same conditions as those for the antireflection glass.
  • the s-polarized light reflectance (Rs) was measured using an ultraviolet-visible spectrophotometer (product name: UH-4150, Hitachi High-Tech Science Corporation). Specifically, an attached polarizer is provided between the wire grid polarizer to be measured and the light source, and the length direction (Z direction) of the ridge of the wire grid polarizer and the absorption axis of the polarizer. Were set in orthogonal directions. Polarized light was incident on the surface side (the side on which the ridges were formed) of the wire grid polarizer, and the s-polarized light reflectance was measured. The incident angle ⁇ 3 was 5 °. The measurement wavelength was 450 nm to 650 nm, the wavelength interval was 1 nm, the slit was fixed at 4 nm, and the scan speed was 300 nm / min.
  • ⁇ Preparation Example 1 Preparation of photocurable composition> The following (1) to (4) were mixed to prepare a photocurable composition.
  • (1) 40 g of Monomer 1 (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-DPH, dipentaerythritol hexaacrylate) (2) 60 g of monomer 2 (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-HD-N, hexanediol diacrylate) (3) 4.0 g of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals, IRGACURE907); and (4) a fluorine-containing surfactant (manufactured by Asahi Glass Co., Ltd., fluoroacrylate (CH 2 CHCOO (CH 2 ) 2 (CF)) 2) 8 F) and co-oligomer of butyl acrylate, fluorine content: about 30
  • Examples 1 to 4 are Examples and Examples 5 to 7 are Comparative Examples.
  • a light transmissive substrate 1 was manufactured by using an optical imprinting method, and a metal layer 2 was formed by using an oblique evaporation method, thereby manufacturing a wire grid polarizer.
  • a light-transmitting substrate having the configuration shown in FIGS. 1A, 1B, and 2 was manufactured using the method illustrated in FIGS. 5A and 5B.
  • a cyclic polyolefin film having a thickness of 100 ⁇ m (Zeonor film, 100 mm ⁇ 100 mm, manufactured by Zeon Corporation) was used.
  • the photocurable composition 22 obtained in Preparation Example 1 was applied to the surface of the substrate 21 by spin coating to form a coating film having a thickness of 5 ⁇ m.
  • a quartz mold 23 having a concave portion having a shape corresponding to the ridge to be obtained is pressed at 25 ° C.
  • Aluminum was vapor-deposited on the entire surface of the first side surface 11b1 of the ridge 11 of the light-transmitting substrate 1 and its vicinity using a vacuum vapor deposition device (SEC-16CM, manufactured by Showa Vacuum Co., Ltd.) to form the metal layer 2.
  • the vapor deposition source and the light transmitting substrate 1 were relatively moved so that the vapor deposition angles ( ⁇ 1, ⁇ 2) continuously increased.
  • the height Hg of the ridges 11 of the light-transmitting substrate 1, the range of the deposition angle, and the deposition amount (reference deposition angle and deposition film thickness) are changed as shown in Table 1, and the shape of the metal layer 2 is different.
  • a wire grid polarizer was manufactured.
  • the deposition amount was set so that when a film was formed at a reference deposition angle on a test piece fixed so that the deposition surface was perpendicular to the Y direction, the reference deposition film thickness was obtained.
  • the pitch p of the ridge 11 was constant at 90 nm.
  • Table 1 shows the refractive index (n) of the resin layer 32 of each example at a wavelength of 589.3 nm.
  • Hg, Wh, Wm, and Wb were measured by the above-described method, and values of respective items shown in Table 1 were obtained.
  • Rs / Rp was measured by the above method to obtain a graph shown in FIG. Based on the obtained graph, the areas S1 and S2 were obtained by the above method. Table 1 shows the results.
  • Examples 1 to 4 had larger areas S1 and S2 at wavelengths of 450 to 650 and higher Rs / Rp ratios in the visible light region than Examples 5 to 7.
  • Examples 8 to 25 are reference examples in which performance was simulated based on the design values of the wire grid polarizer.
  • the performance of each of the wire grid polarizers was simulated by rigorous coupled-wave analysis (RCWA).
  • the wavelength of the incident light is 400 to 1000 nm
  • the incident direction is the Y direction
  • the reflectance of p-polarized light (hereinafter also referred to as “Rp”) and the reflectance of s-polarized light (hereinafter also referred to as “Rs”) are calculated.
  • Rp p-polarized light
  • Rs s-polarized light
  • Aluminum was obliquely vapor-deposited at 40 ° on the photocurable resin to form a flat film having a thickness of 30 nm.
  • the flat film was measured and analyzed with an ellipsometer to determine the refractive index and the extinction coefficient.
  • Example 8 a simulation was performed by changing the shape of the ridge in a wire grid type polarizer having a resin layer and having an embedding degree of 0% as shown in FIG.
  • the refractive index adjusting layer 41 is not provided (the same applies hereinafter).
  • the cross-sectional shape of the ridge was Example 8 a triangle shown in FIG. 8, Example 9 a trapezoid shown in FIG. 10 (the width w of the flat surface at the top in the X direction was 10 nm), and Example 10 a rectangle shown in FIG. Tables 2 and 3 show the design values. Table 2 shows common design values in the following examples.
  • FIG. 14 shows the result of Rp
  • FIG. 15 shows the result of Rs.
  • Examples 11 to 15 In this example, simulation was performed by changing the degree of embedding of the resin layer (f / (c + d) ⁇ 100, unit%) in a wire grid polarizer having a resin layer as shown in FIGS. Tables 2 and 3 show the design values. In Examples 11 to 15, a '/ e is 1.21 and Qm / Qs is 0.35. FIG. 16 shows the result of Rp, and FIG. 17 shows the result of Rs. As shown in these results, the wavelength dependence of Rp can be adjusted by the degree of embedding. The influence of the degree of embedding on the wavelength dependence of Rs is small. Rs tends to increase as the degree of embedding approaches zero in all wavelength ranges.
  • Rp when the degree of embedding is around 0% or around 100%, Rp is kept low over the entire wavelength range of 400 to 1000 nm.
  • the embedding degree is 25 to 75%, Rp becomes lower as the wavelength becomes longer, and the Rp reduction effect is particularly excellent on the long wavelength side of 700 nm or more.
  • Examples 16 to 20 a simulation was performed by changing the refractive index (n) of the resin layer in a wire grid polarizer having a resin layer and having a burying degree of 0% as shown in FIG. Tables 2 and 3 show the design values.
  • FIG. 18 shows the result of Rp
  • FIG. 19 shows the result of Rs.
  • the influence of the refractive index of the resin layer on the wavelength dependence of Rs is small. Rs tends to be higher as the refractive index (n) is closer to 1 in the entire wavelength range.
  • Examples 21 to 25> a simulation was performed by changing the pitch b of the ridges in a wire grid polarizer having a resin layer and having an embedding degree of 0% as shown in FIG. The value of a was also changed so that a / b became 0.45. Tables 2 and 3 show the design values.
  • FIG. 20 shows the result of Rp
  • FIG. 21 shows the result of Rs.
  • the influence of pitch on the wavelength dependence of Rs is small. Rs tends to be higher as the pitch is smaller in the entire wavelength range.
  • ⁇ Production Example 1 Production of wire grid type polarizer> After producing the light-transmitting substrate 1 on the substrate 21 in the same procedure as in Example 1, a metal layer was formed by the following method to obtain a wire grid polarizer having the substrate 21 on the back surface. Using a vacuum evaporation apparatus (SEC-16CM, manufactured by Showa Vacuum Co., Ltd.) capable of changing the inclination of the light transmitting substrate 1 facing the evaporation source, aluminum is evaporated on the ridges of the light transmitting substrate 1 by oblique evaporation. Then, a metal layer was formed. The deposition angle ⁇ was 27 °.
  • FIG. 22 shows a scanning electron microscope image of a cross section of the light transmitting substrate 1 before the metal layer is deposited.
  • FIG. 23 shows a scanning electron microscope image of a cross section of the obtained wire grid polarizer.
  • a wire grid polarizer having a high Rs / Rp can be applied to an image display device provided with an optical system using s-polarized light included in reflected light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Projection Apparatus (AREA)

Abstract

This wire-grid polarizer has, on the surface thereof, a light-transmissive substrate on which parallel protruding ridges are formed, and a metal layer covering a side surface of each protruding ridge, wherein, in a cross-section perpendicular to the lengthwise direction of the protruding ridges, the height of each protruding ridge from the bottom to the top thereof is 80-125 nm, and the ratio Wh/Wm is 2.2-3.0 and the ratio Wb/Wm is 1.5-2.1, where Wm is the minimum thickness of the metal layer, Wb is the maximum thickness of the metal layer further toward the bottom in comparison to a location at one-half the height of the corresponding protruding ridge, and Wh is the maximum thickness of the metal layer present further on the opposite side from the bottom side in comparison to the top of the corresponding protruding ridge.

Description

ワイヤグリッド型偏光子、偏光板、映像表示装置Wire grid polarizer, polarizing plate, image display
 本発明は、ワイヤグリッド型偏光子、前記ワイヤグリッド型偏光子を含む偏光板及び映像表示装置に関する。 The present invention relates to a wire grid polarizer, a polarizing plate including the wire grid polarizer, and an image display device.
 ワイヤグリッド型偏光子は、光透過性基板上に複数の金属細線が互いに平行に配列した構造を有する。金属細線のピッチが入射光の波長よりも充分に短い場合、入射光のうち、金属細線に直交する電場ベクトルを有する成分(すなわちp偏光)は透過し、金属細線と平行な電場ベクトルを有する成分(すなわちs偏光)は反射する。 The wire grid polarizer has a structure in which a plurality of fine metal wires are arranged parallel to each other on a light transmitting substrate. When the pitch of the thin metal wire is sufficiently shorter than the wavelength of the incident light, a component of the incident light having an electric field vector orthogonal to the thin metal wire (that is, p-polarized light) is transmitted and a component having an electric field vector parallel to the thin metal wire. (Ie, s-polarized light) is reflected.
 ワイヤグリッド型偏光子でp偏光とs偏光に分離する場合、得られる光は所望の偏光以外の成分を含まないことが望ましい。例えば、プロジェクタ内の偏光ビームスプリッタにおいては、p偏光の反射率Rpに対するs偏光の反射率Rsの比であるRs/Rpが高いことが求められる。反射光に含まれるs偏光をより多くし、p偏光をより少なくすることで、Rs/Rpをより高くできる。 When the light is separated into p-polarized light and s-polarized light by a wire grid polarizer, it is desirable that the obtained light does not include components other than the desired polarized light. For example, in a polarization beam splitter in a projector, it is required that Rs / Rp, which is the ratio of the reflectance Rs of s-polarized light to the reflectance Rp of p-polarized light, be high. By increasing the s-polarized light and decreasing the p-polarized light contained in the reflected light, Rs / Rp can be increased.
 特許文献1、2には、基材表面に凸条と凹溝を交互に設け、凸条の一方向側の側面と凸条の頂部とを覆うように金属ワイヤを設けたワイヤグリッド型偏光板が記載されている。
 特許文献1は凸条の断面形状が略矩形である。特許文献2は凹溝の断面形状が略矩形であり、凸条の側面上の金属ワイヤの幅が略均一である。
Patent Documents 1 and 2 disclose a wire grid type polarizing plate in which convex lines and concave grooves are alternately provided on the surface of a base material, and metal wires are provided so as to cover a side surface on one side of the convex line and a top of the convex line. Is described.
In Patent Document 1, the cross-sectional shape of the ridge is substantially rectangular. In Patent Document 2, the cross-sectional shape of the concave groove is substantially rectangular, and the width of the metal wire on the side surface of the ridge is substantially uniform.
日本国特許第5710151号公報Japanese Patent No. 5710151 日本国特許第5442344号公報Japanese Patent No. 5442344
 特許文献1、2の構造では、Rs/Rpの高さが不充分な場合がある。
 本発明の一態様は、Rs/Rpの比が高いワイヤグリッド型偏光子、前記ワイヤグリッド型偏光子を含む偏光板及び映像表示装置の提供を課題とする。
In the structures of Patent Documents 1 and 2, the height of Rs / Rp may be insufficient.
An object of one embodiment of the present invention is to provide a wire grid polarizer having a high ratio of Rs / Rp, a polarizing plate including the wire grid polarizer, and an image display device.
 本発明は、下記の態様を有する。
 [1] 表面に、互いに平行な凸条が所定のピッチで形成された光透過性基板と、前記光透過性基板の表面上に設けられた、金属又は金属化合物からなる金属層とを有し、前記凸条の、長さ方向に直交する断面形状は、頂部に向かって幅が漸次縮小し、前記凸条の頂部を挟む第1の側面及び第2の側面のうち、少なくとも前記第1の側面の全面は前記金属層で被覆されており、かつ前記第2の側面には前記金属層で被覆されていない露出面が存在し、前記凸条の長さ方向に直交する断面において、前記凸条の底部から頂部までの高さが80~125nmであり、前記第1の側面を覆う前記金属層の前記凸条の幅方向における厚さの最小値をWm、前記凸条の底部から頂部までの高さの1/2の位置より底部側の前記第1の側面を覆う前記金属層の前記凸条の幅方向における厚さの最大値をWb、前記凸条の頂部より前記底部側とは反対側に存在する前記金属層の前記凸条の幅方向における厚さの最大値をWhとするとき、前記Wmに対する前記Whの比が2.2~3.0であり、かつ前記Wmに対する前記Wbの比が1.5~2.1である、ワイヤグリッド型偏光子。
 [2] 前記Wbに対する前記Whの比が1.4以下である、[1]のワイヤグリッド型偏光子。
 [3] 前記光透過性基板及び前記金属層を覆う樹脂層を有する、[1]又は[2]のワイヤグリッド型偏光子。
 [4] 前記凸条の底部から頂部までの高さHg、及び前記樹脂層の波長589.3nmにおける屈折率nが、下式1を満たす、[3]のワイヤグリッド型偏光子。
 450≦4×n×Hg≦650 式1
 [5] 下記の測定方法で得られる、x軸が波長、y軸がRs/Rpであるグラフにおいて、x=450nm、x=451nm、y=0及びy=1で表される4つの直線で囲まれた四角形の面積を1とするとき、x=450nm、x=650nm、y=0及びy=Rs/Rpで表される4つの線で囲まれた領域の相対面積S1が7000以上である、[3]又は[4]のワイヤグリッド型偏光子。
 測定方法:ワイヤグリッド型偏光子を、波長450~650nmにおける反射率が0.7%以下である2枚の反射防止基材で挟み、入射角度5°、測定波長450nm~650nm、波長間隔1nmの条件で、s偏光反射率及びp偏光反射率をそれぞれ測定し、p偏光反射率に対するs偏光反射率の比であるRs/Rpを求め、x軸が波長、y軸がRs/Rpであるグラフを作成する。
 [6] 表面に、互いに平行な凸条が所定のピッチで形成された光透過性基板と、前記光透過性基板の表面上に設けられた、金属又は金属化合物からなる金属層とを有し、前記凸条の、長さ方向に直交する断面形状は、頂部に向かって幅が漸次縮小し、前記凸条の頂部を挟む第1の側面及び第2の側面のうち、少なくとも前記第1の側面の全面は前記金属層で被覆されており、かつ前記第2の側面には前記金属層で被覆されていない露出面が存在し、前記光透過性基板及び前記金属層を覆う樹脂層を有し、下記の測定方法で得られる、x軸が波長、y軸がRs/Rpであるグラフにおいて、x=450nm、x=451nm、y=0及びy=1で表される4つの直線で囲まれた四角形の面積を1とするとき、x=450nm、x=650nm、y=0及びy=Rs/Rpで表される4つの線で囲まれた領域の相対面積S1が7000以上である、ワイヤグリッド型偏光子。
 測定方法:ワイヤグリッド型偏光子を、波長450~650nmにおける反射率が0.7%以下である2枚の反射防止基材で挟み、入射角度5°、測定波長450nm~650nm、波長間隔1nmの条件で、s偏光反射率及びp偏光反射率をそれぞれ測定し、p偏光反射率に対するs偏光反射率の比であるRs/Rpを求め、x軸が波長、y軸がRs/Rpであるグラフを作成する。
 [7] 前記光透過性基板の裏面上に第1の支持体を有し、かつ前記樹脂層の前記光透過性基板側とは反対側の面上に粘着剤を介して第2の支持体を有する、[3]~[6]のいずれかのワイヤグリッド型偏光子。
 [8] 前記光透過性基板の裏面上に第1の支持体を有し、かつ前記樹脂層の前記光透過性基板側とは反対側の面上に屈折率調整層を有する、[3]~[6]のいずれかのワイヤグリッド型偏光子。
 [9] [1]~[8]のいずれかのワイヤグリッド型偏光子を含む偏光板。
 [10] [1]~[8]のいずれかのワイヤグリッド型偏光子を含む映像表示装置。
The present invention has the following aspects.
[1] A light-transmitting substrate having mutually parallel ridges formed at a predetermined pitch on a surface, and a metal layer made of a metal or a metal compound provided on the surface of the light-transmitting substrate. The cross-sectional shape of the ridge, which is orthogonal to the length direction, has a width that gradually decreases toward the top, and at least the first side and the second side sandwich the top of the ridge. The entire side surface is covered with the metal layer, and the second side surface has an exposed surface that is not covered with the metal layer. The height from the bottom to the top of the ridge is 80 to 125 nm, the minimum value of the thickness of the metal layer covering the first side surface in the width direction of the ridge is Wm, and the minimum from the bottom to the top of the ridge is The metal layer covering the first side surface on the bottom side with respect to a half of the height of the metal layer The maximum value of the thickness in the width direction of the ridge is Wb, and the maximum value of the thickness of the metal layer present on the side opposite to the bottom side from the top of the ridge is Wh. Wherein the ratio of the Wh to the Wm is 2.2 to 3.0, and the ratio of the Wb to the Wm is 1.5 to 2.1.
[2] The wire grid polarizer according to [1], wherein a ratio of the Wh to the Wb is 1.4 or less.
[3] The wire grid polarizer according to [1] or [2], further comprising a resin layer covering the light transmitting substrate and the metal layer.
[4] The wire grid polarizer of [3], wherein the height Hg from the bottom to the top of the ridge and the refractive index n of the resin layer at a wavelength of 589.3 nm satisfy the following expression 1.
450 ≦ 4 × n × Hg ≦ 650 Equation 1
[5] In a graph obtained by the following measurement method, in which the x-axis is wavelength and the y-axis is Rs / Rp, four straight lines represented by x = 450 nm, x = 451 nm, y = 0, and y = 1 Assuming that the area of the enclosed rectangle is 1, the relative area S1 of a region surrounded by four lines represented by x = 450 nm, x = 650 nm, y = 0, and y = Rs / Rp is 7000 or more. , [3] or [4].
Measuring method: A wire grid type polarizer is sandwiched between two antireflection substrates having a reflectance of 0.7% or less at a wavelength of 450 to 650 nm, an incident angle of 5 °, a measuring wavelength of 450 to 650 nm, and a wavelength interval of 1 nm. Under the conditions, the s-polarized light reflectance and the p-polarized light reflectance are measured, respectively, and Rs / Rp, which is the ratio of the s-polarized light reflectance to the p-polarized light reflectance, is determined. The x-axis is wavelength, and the y-axis is Rs / Rp. Create
[6] A light-transmitting substrate having mutually parallel ridges formed at a predetermined pitch on a surface, and a metal layer made of a metal or a metal compound provided on the surface of the light-transmitting substrate. The cross-sectional shape of the ridge, which is orthogonal to the length direction, has a width that gradually decreases toward the top, and at least the first side and the second side sandwich the top of the ridge. The entire side surface is covered with the metal layer, and the second side surface has an exposed surface that is not covered with the metal layer, and has a resin layer covering the light transmitting substrate and the metal layer. Then, in a graph obtained by the following measurement method, in which the x-axis is wavelength and the y-axis is Rs / Rp, it is surrounded by four straight lines represented by x = 450 nm, x = 451 nm, y = 0 and y = 1. When the area of the obtained rectangle is 1, x = 450 nm, x = 650 nm, A wire grid polarizer, wherein a relative area S1 of a region surrounded by four lines represented by y = 0 and y = Rs / Rp is 7000 or more.
Measuring method: A wire grid type polarizer is sandwiched between two antireflection substrates having a reflectance of 0.7% or less at a wavelength of 450 to 650 nm, an incident angle of 5 °, a measuring wavelength of 450 to 650 nm, and a wavelength interval of 1 nm. Under the conditions, the s-polarized light reflectance and the p-polarized light reflectance are measured, respectively, and Rs / Rp, which is the ratio of the s-polarized light reflectance to the p-polarized light reflectance, is determined. The x-axis is wavelength, and the y-axis is Rs / Rp. Create
[7] A second support having a first support on the back surface of the light transmissive substrate, and a pressure-sensitive adhesive on a surface of the resin layer opposite to the light transmissive substrate side The wire grid polarizer according to any one of [3] to [6], comprising:
[8] A first support is provided on the back surface of the light transmissive substrate, and a refractive index adjustment layer is provided on a surface of the resin layer opposite to the light transmissive substrate side, [3]. A wire grid polarizer according to any one of [6] to [6].
[9] A polarizing plate including the wire grid polarizer according to any one of [1] to [8].
[10] An image display device including the wire grid polarizer according to any one of [1] to [8].
 [11]表面に、互いに平行な凸条と凹溝が所定のピッチで交互に形成された光透過性基板と、前記光透過性基板の表面上に設けられた、金属又は金属化合物からなる金属層とを有し、
 前記凸条の、長さ方向に直交する断面形状は、頂部に向かって幅が漸次縮小し、
 前記凸条の頂部を挟む第1の側面及び第2の側面のうち、少なくとも前記第1の側面の全面は前記金属層で被覆されており、かつ前記第2の側面には前記金属層で被覆されていない露出面が存在する、ワイヤグリッド型偏光子。
 [12]前記凹溝の、長さ方向に直交する断面形状は、底部に向かって溝幅が漸次縮小するテーパ面を有する、[11]のワイヤグリッド型偏光子。
 [13]前記凸条の、長さ方向に直交する断面形状は、接線の傾きが一定である主側面を有する、[11]又は[12]のワイヤグリッド型偏光子。
 [14]前記光透過性基板及び前記金属層を覆う樹脂層を有する、[11]~[13]のいずれかのワイヤグリッド型偏光子。
 [15]隣り合う前記凸条間の空間の一部又は全部に、前記樹脂層が充填されている、[14]のワイヤグリッド型偏光子。
 [16] 前記光透過性基板の裏面上に第1の支持体を有し、かつ前記樹脂層の前記光透過性基板側とは反対側の面上に粘着剤を介して第2の支持体を有する、[14]又は[15]のワイヤグリッド型偏光子。
 [17] 前記光透過性基板の裏面上に第1の支持体を有し、かつ前記樹脂層の前記光透過性基板側とは反対側の面上に屈折率調整層を有する、[14]又は[15]のワイヤグリッド型偏光子。
 [18] [11]~[17]のいずれかのワイヤグリッド型偏光子を含む偏光板。
 [19] [11]~[17]のいずれかのワイヤグリッド型偏光子を含む映像表示装置。
[11] A light-transmitting substrate in which mutually parallel ridges and grooves are alternately formed at a predetermined pitch on a surface, and a metal made of a metal or a metal compound provided on the surface of the light-transmitting substrate And a layer,
The cross-sectional shape of the ridge, perpendicular to the length direction, the width gradually decreases toward the top,
Of the first side surface and the second side surface sandwiching the top of the ridge, at least the entire surface of the first side surface is covered with the metal layer, and the second side surface is covered with the metal layer. Wire-grid polarizer with unexposed exposed surface.
[12] The wire grid polarizer of [11], wherein a cross-sectional shape of the concave groove orthogonal to the length direction has a tapered surface whose groove width gradually decreases toward a bottom.
[13] The wire grid polarizer according to [11] or [12], wherein a cross-sectional shape of the ridges perpendicular to the length direction has a main side surface with a constant tangent inclination.
[14] The wire grid polarizer according to any one of [11] to [13], further comprising a resin layer covering the light transmitting substrate and the metal layer.
[15] The wire grid polarizer of [14], wherein a part or all of the space between the adjacent ridges is filled with the resin layer.
[16] A second support having a first support on the back surface of the light transmissive substrate, and a pressure-sensitive adhesive on a surface of the resin layer opposite to the light transmissive substrate side The wire grid polarizer according to [14] or [15], comprising:
[17] A first support is provided on the back surface of the light transmitting substrate, and a refractive index adjusting layer is provided on a surface of the resin layer opposite to the light transmitting substrate side, [14]. Or the wire grid polarizer of [15].
[18] A polarizing plate including the wire grid polarizer according to any one of [11] to [17].
[19] An image display device including the wire grid polarizer according to any one of [11] to [17].
 上記態様のワイヤグリッド型偏光子は、Rs/Rpの比が高い。
 上記態様の偏光板は、Rs/Rpの比が高い。
 上記態様の映像表示装置は、Rs/Rpの比が高い偏光子を備える。
The wire grid polarizer of the above embodiment has a high ratio of Rs / Rp.
The polarizing plate of the above embodiment has a high ratio of Rs / Rp.
The image display device of the above aspect includes a polarizer having a high Rs / Rp ratio.
ワイヤグリッド型偏光子の第1の実施形態を模式的に示す上面図である。FIG. 2 is a top view schematically showing the first embodiment of the wire grid polarizer. ワイヤグリッド型偏光子の第1の実施形態を模式的に示す断面図である。It is sectional drawing which shows 1st Embodiment of a wire grid type polarizer typically. s偏光反射率及びp偏光反射率の測定方法を説明する断面図である。It is sectional drawing explaining the measuring method of s-polarized light reflectance and p-polarized light reflectance. 相対面積S1の測定方法を説明する図である。It is a figure explaining the measuring method of relative area S1. ワイヤグリッド型偏光子の第2の実施形態を模式的に示す断面図である。It is sectional drawing which shows 2nd Embodiment of a wire grid type polarizer typically. ワイヤグリッド型偏光子の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of a wire grid type polarizer. ワイヤグリッド型偏光子の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of a wire grid type polarizer. ワイヤグリッド型偏光子の製造工程の他の例を示す断面図である。It is sectional drawing which shows another example of the manufacturing process of a wire grid type polarizer. ワイヤグリッド型偏光子の製造工程の他の例を示す断面図である。It is sectional drawing which shows another example of the manufacturing process of a wire grid type polarizer. ワイヤグリッド型偏光子の製造工程の他の例を示す断面図である。It is sectional drawing which shows another example of the manufacturing process of a wire grid type polarizer. ワイヤグリッド型偏光子の第3の実施形態を模式的に示す断面図である。It is sectional drawing which shows 3rd Embodiment of a wire grid type polarizer typically. ワイヤグリッド型偏光子の第4の実施形態を模式的に示す断面図である。It is sectional drawing which shows 4th Embodiment of a wire grid type polarizer typically. ワイヤグリッド型偏光子の第5の実施形態を模式的に示す断面図である。It is sectional drawing which shows 5th Embodiment of a wire grid polarizer typically. ワイヤグリッド型偏光子の第6の実施形態を模式的に示す断面図である。It is sectional drawing which shows 6th Embodiment of a wire grid type polarizer typically. TEM画像におけるHg、Wh、Wm、Wbの測長方法の説明図である。It is explanatory drawing of the length measurement method of Hg, Wh, Wm, Wb in a TEM image. 例1~7におけるRs/Rpの測定結果を示すグラフである。9 is a graph showing measurement results of Rs / Rp in Examples 1 to 7. 例10のワイヤグリッド型偏光子を模式的に示す断面図である。FIG. 13 is a cross-sectional view schematically illustrating a wire grid polarizer of Example 10. 参考例におけるRpのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of Rp in a reference example. 参考例におけるRsのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of Rs in a reference example. 参考例におけるRpのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of Rp in a reference example. 参考例におけるRsのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of Rs in a reference example. 参考例におけるRpのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of Rp in a reference example. 参考例におけるRsのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of Rs in a reference example. 参考例におけるRpのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of Rp in a reference example. 参考例におけるRsのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result of Rs in a reference example. 製造例1で得た光透過性基板の断面の走査型電子顕微鏡像である。4 is a scanning electron microscope image of a cross section of the light transmitting substrate obtained in Production Example 1. 製造例1で得たワイヤグリッド型偏光子の断面の走査型電子顕微鏡像である。3 is a scanning electron microscope image of a cross section of the wire grid polarizer obtained in Production Example 1.
 以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
「~」で表される数値範囲は、~の前後の数値を下限値及び上限値とする数値範囲を意味する。
 「屈折率」は、波長589.3nmの光に対する屈折率を意味する。
The following term definitions apply throughout the present description and claims.
The numerical range represented by “to” means a numerical range in which the lower and upper limits are the numerical values before and after.
“Refractive index” means the refractive index for light having a wavelength of 589.3 nm.
<第1の実施形態>
 図1Aは、本発明に係るワイヤグリッド型偏光子の第1の実施形態を模式的に示す上面図である。図1Bは、図1AのP-Q線に沿う断面図である。図1A及び図1B中符号1は光透過性基板、2は金属層、11は凸条、11aは凸条11の頂部である。図1Aでは頂部11aの稜線のみを示し、他の部材は省略する。以下、凸条11の長さ方向をZ方向、Z方向に直交する面内における凸条11の幅方向をX方向、Z方向に直交する面内における凸条11の高さ方向をY方向という。X方向とY方向とは直交する。
<First embodiment>
FIG. 1A is a top view schematically illustrating a first embodiment of a wire grid polarizer according to the present invention. FIG. 1B is a sectional view taken along line PQ of FIG. 1A. 1A and 1B, reference numeral 1 denotes a light-transmitting substrate, 2 denotes a metal layer, 11 denotes a ridge, and 11a denotes a top of the ridge 11. In FIG. 1A, only the ridgeline of the top 11a is shown, and other members are omitted. Hereinafter, the length direction of the ridge 11 is referred to as a Z direction, the width direction of the ridge 11 in a plane perpendicular to the Z direction is referred to as an X direction, and the height direction of the ridge 11 in a plane perpendicular to the Z direction is referred to as a Y direction. . The X direction and the Y direction are orthogonal.
 なお、図1A及び図1Bは設計値に基づく模式図であり、実際のワイヤグリッド型偏光子には、製造上不可避の形状の崩れや金属層の厚みの不均一が生じている。本明細書においてワイヤグリッド型偏光子の各部の寸法は、Z方向に直交する断面の走査型電子顕微鏡像又は透過型電子顕微鏡像における、任意の5箇所の測定値の平均値とする。 FIGS. 1A and 1B are schematic diagrams based on design values. In an actual wire grid polarizer, a shape unavoidable in manufacturing and a nonuniform thickness of a metal layer occur. In this specification, the dimension of each part of the wire grid polarizer is an average value of measured values at arbitrary five points in a scanning electron microscope image or a transmission electron microscope image of a cross section orthogonal to the Z direction.
 光透過性基板1は、ワイヤグリッド型偏光子の使用波長範囲において光透過性である。光透過性とは、透過率が80%以上を意味する。 The light-transmitting substrate 1 is light-transmitting in the wavelength range in which the wire grid polarizer is used. The light transmittance means that the transmittance is 80% or more.
 ワイヤグリッド型偏光子の使用波長範囲は、300~2000nmの範囲内が好ましく、400~1500nmがより好ましく、400~1000nmがさらに好ましい。 使用 The working wavelength range of the wire grid polarizer is preferably in the range of 300 to 2000 nm, more preferably 400 to 1500 nm, and still more preferably 400 to 1000 nm.
 光透過性基板1の材料としては、光硬化樹脂、熱硬化樹脂、熱可塑性樹脂、ガラスが例示できる。インプリント法で凸条11を形成できる点から、光硬化樹脂又は熱硬化樹脂が好ましい。特に加工性、耐熱性及び耐久性に優れる点から光硬化樹脂が好ましい。光硬化樹脂としては、生産性の点から、光ラジカル重合により光硬化しうる光硬化性組成物を光硬化した硬化物が好ましい。 材料 Examples of the material of the light-transmitting substrate 1 include a light-curing resin, a thermosetting resin, a thermoplastic resin, and glass. From the viewpoint that the ridges 11 can be formed by the imprint method, a photocurable resin or a thermosetting resin is preferable. In particular, a photocurable resin is preferable in terms of excellent workability, heat resistance, and durability. As the photocurable resin, a cured product obtained by photocuring a photocurable composition that can be photocured by photoradical polymerization is preferable from the viewpoint of productivity.
 光透過性基板1の屈折率は1.1~1.6が好ましく、1.2~1.59がより好ましく、1.25~1.58がさらに好ましい。 は The refractive index of the light-transmitting substrate 1 is preferably from 1.1 to 1.6, more preferably from 1.2 to 1.59, even more preferably from 1.25 to 1.58.
 光硬化性組成物は、例えば、単量体、光重合開始剤、溶剤、及び必要に応じた添加剤(例えば界面活性剤、重合禁止剤)を含む組成物である。例えば国際公開第2007/116972号の段落0029~0074に記載されている光硬化性組成物を使用できる。 (4) The photocurable composition is, for example, a composition containing a monomer, a photopolymerization initiator, a solvent, and optional additives (for example, a surfactant and a polymerization inhibitor). For example, a photocurable composition described in paragraphs 0029 to 0074 of WO 2007/116972 can be used.
 金属層2の材料は、導電性の金属材料であればよく、耐蝕性の材料が好ましい。金属又は金属化合物が例示できる。 材料 The material of the metal layer 2 may be a conductive metal material, and is preferably a corrosion-resistant material. A metal or metal compound can be exemplified.
 例えば、金属単体、合金、ドーパント又は不純物を含む金属が挙げられる。具体的には、アルミニウム、銀、クロム、マグネシウム、アルミニウム系合金、銀系合金が例示できる。これらは1種又は2種以上使用できる。 For example, a simple substance of a metal, an alloy, a metal containing a dopant or an impurity may be mentioned. Specifically, aluminum, silver, chromium, magnesium, an aluminum alloy, and a silver alloy can be exemplified. These can be used alone or in combination of two or more.
 金属層2の材料は、可視光に対する反射率が高く、可視光の吸収が少なく、かつ導電率が高い点から、アルミニウム、アルミニウム系合金、銀、銀系合金、クロム、マグネシウムが好ましく、アルミニウム、アルミニウム系合金、銀系合金がより好ましい。これらは1種又は2種以上使用できる。 The material of the metal layer 2 is preferably aluminum, an aluminum-based alloy, silver, a silver-based alloy, chromium, or magnesium from the viewpoint of high reflectance to visible light, low absorption of visible light, and high conductivity. Aluminum-based alloys and silver-based alloys are more preferred. These can be used alone or in combination of two or more.
 本実施形態において、光透過性基板1の表面には、複数の凸条11が形成されている。複数の凸条11はZ方向に延在し互いに平行である。 In the present embodiment, a plurality of ridges 11 are formed on the surface of the light-transmitting substrate 1. The plurality of ridges 11 extend in the Z direction and are parallel to each other.
 凸条11の、Z方向に直交する断面における形状(断面形状)は、頂部11aに向かって幅が漸次縮小する三角形又は略三角形である。凸条11の頂部11aは、Y方向の高さが最も高い部分であり、Z方向に連なって線(稜線)をなしている。頂部11aを含む頂角は鋭角でもよく、丸みを有する角でもよい。 形状 The shape (cross-sectional shape) of the ridge 11 in a cross section orthogonal to the Z direction is a triangle or a substantially triangle whose width gradually decreases toward the top 11a. The top 11a of the ridge 11 is a portion having the highest height in the Y direction, and forms a line (ridge) in the Z direction. The apex angle including the apex 11a may be an acute angle or a rounded angle.
 複数の凸条11の断面形状において、隣り合う頂部11aの間の、Y方向における位置が頂部11aから最も遠い部分が底部12aである。底部12aに接しY方向に直交する面を基準面Bとするとき、前記基準面Bにおける凸条11のX方向のピッチp、及び凸条11の底部12a(基準面B)から凸条11の頂部11aまでのY方向の高さHgの設計値はそれぞれ均一である。 In the cross-sectional shape of the plurality of ridges 11, the portion farthest from the top 11a in the Y direction between the adjacent tops 11a is the bottom 12a. When a plane that is in contact with the bottom 12a and is orthogonal to the Y direction is defined as a reference plane B, the pitch p in the X direction of the ridge 11 on the reference plane B and the pitch p of the ridge 11 from the bottom 12a of the ridge 11 (reference plane B). The design value of the height Hg in the Y direction up to the top 11a is uniform.
 なお、本明細書において、設計値が均一であっても、実際のワイヤグリッド型偏光子においては、製造上不可避の形状の崩れが生じており、例えば、2nm~最大20nm程度のばらつきは生じうる。 Note that, in this specification, even if the design values are uniform, in an actual wire grid type polarizer, a shape inevitable in manufacturing occurs, and a variation of, for example, about 2 nm to a maximum of about 20 nm may occur. .
 凸条11の底部12aから頂部11aまでの面を、凸条11の側面とし、凸条11の頂部11aを挟む2つの側面を、第1の側面11b1及び第2の側面11b2とする。 面 The surface from the bottom 12a to the top 11a of the ridge 11 is defined as the side of the ridge 11, and the two sides sandwiching the top 11a of the ridge 11 are defined as a first side 11b1 and a second side 11b2.
 金属層2は、凸条11の第1の側面11b1及び第2の側面11b2のうち、少なくとも第1の側面11b1の全面を被覆するように設けられる。凸条11の第1の側面11b1を金属層で被覆する際に、凸条11の頂部11a近傍の第2の側面11b2が金属層2で被覆されてもよい。 The metal layer 2 is provided so as to cover at least the entire first side surface 11b1 of the first side surface 11b1 and the second side surface 11b2 of the ridge 11. When the first side surface 11b1 of the ridge 11 is covered with the metal layer, the second side surface 11b2 near the top 11a of the ridge 11 may be covered with the metal layer 2.
 凸条11の第2の側面11b2は、その全面が金属層2で被覆されることはなく、光透過性基板1が露出している露出面が存在する。 The second side surface 11b2 of the ridge 11 is not entirely covered with the metal layer 2, but has an exposed surface on which the light-transmitting substrate 1 is exposed.
 本実施形態のワイヤグリッド型偏光子は、後述の光インプリント法(図5A、図5B、図6A~図6Cの説明に準じる方法)を用いて、前記光硬化性組成物の層に凸条を形成して光透過性基板1を作製し、蒸着法で金属層2を設ける方法で製造できる。 The wire grid polarizer of the present embodiment uses a photo-imprinting method (method according to the description of FIGS. 5A, 5B, and 6A to 6C) described later to form a ridge on the layer of the photocurable composition. Is formed to form the light-transmitting substrate 1 and the metal layer 2 is provided by a vapor deposition method.
 例えば、真空蒸着法を用いて、凸条11の第1の側面11b1の全面とその近傍に、金属層2を形成できる。真空蒸着する際、光透過性基板1を蒸着源に対して斜めに配置する斜方蒸着法を用いてもよい。斜方蒸着する際、蒸着方向が経時的に変化してもよい。 For example, the metal layer 2 can be formed on the entire surface of the first side surface 11b1 of the ridge 11 and in the vicinity thereof by using a vacuum evaporation method. When performing vacuum deposition, an oblique deposition method in which the light-transmitting substrate 1 is arranged obliquely with respect to the deposition source may be used. During oblique deposition, the deposition direction may change over time.
 例えば、図1A及び図1Bに示すように、Z方向に対して直行又は略直交し、かつY方向に対して第1の側面11b1側に所定の蒸着角度(例えばθ1、θ2、単位は「°」)で傾斜した方向(蒸着方向)から金属又は金属化合物を蒸着して金属層2を形成する。蒸着角度を経時的に増大させることで、図1A及び図1Bに示すような、第1の側面11b1の頂部11a近傍及び底部12a近傍の金属層2が厚く、それらの間に金属層2が薄い部分が存在する形状の金属層2が得られる。例えば、蒸着源を固定し、光透過性基板1をX方向に移動させながら蒸着する方法で、蒸着角度(θ1、θ2)を連続的に変化させることができる。蒸着角度(θ1、θ2)の変化量の絶対値は30°以下が好ましい。 For example, as shown in FIG. 1A and FIG. 1B, a predetermined deposition angle (for example, θ1, θ2, the unit is “°”) is orthogonal to or substantially orthogonal to the Z direction and on the first side surface 11b1 side with respect to the Y direction. )), A metal or a metal compound is vapor-deposited from a direction inclined (vapor deposition direction) to form the metal layer 2. By increasing the deposition angle over time, as shown in FIGS. 1A and 1B, the metal layer 2 near the top 11a and the bottom 12a of the first side surface 11b1 is thick, and the metal layer 2 is thin between them. A metal layer 2 having a shape having a portion is obtained. For example, the evaporation angle (θ1, θ2) can be continuously changed by a method in which the evaporation source is fixed and the light transmissive substrate 1 is evaporated while being moved in the X0 direction. The absolute value of the change in the deposition angle (θ1, θ2) is preferably 30 ° or less.
 Z方向に直交する断面において、第1の側面11b1を覆う金属層2のX方向における厚さの最小値をWmとする。凸条11の高さHgの1/2の位置より底部12a側の第1の側面11b1を覆う金属層2のX方向における厚さの最大値をWbとする。凸条11の頂部11aより上側(底部12a側とは反対側)に存在する金属層2のX方向における厚さの最大値をWhとする。 に お い て In a cross section orthogonal to the Z direction, the minimum value of the thickness in the X direction of the metal layer 2 covering the first side surface 11b1 is Wm. The maximum value of the thickness in the X direction of the metal layer 2 covering the first side surface 11b1 on the side of the bottom 12a from the half of the height Hg of the ridge 11 is defined as Wb. The maximum value of the thickness in the X direction of the metal layer 2 existing above the top 11a of the ridge 11 (on the side opposite to the bottom 12a) is defined as Wh.
 本実施形態において、Wmに対するWhの比を表すWh/Wmは2.2~3.0であり、かつWmに対するWbの比を表すWb/Wmは1.5~2.1である。好ましくはWh/Wmが2.2~2.5であり、より好ましくはWh/Wmが2.2~2.4である。好ましくはWb/Wmが1.6~2.1であり、より好ましくはWb/Wmが1.9~2.1である。 In the present embodiment, Wh / Wm representing the ratio of Wh to Wm is 2.2 to 3.0, and Wb / Wm representing the ratio of Wb to Wm is 1.5 to 2.1. Preferably, Wh / Wm is 2.2 to 2.5, and more preferably, Wh / Wm is 2.2 to 2.4. Preferably, Wb / Wm is 1.6 to 2.1, and more preferably, Wb / Wm is 1.9 to 2.1.
 上記範囲内であると、高いRs/Rpが得られやすいと考えられる。頂部11a近傍の金属層2で反射する偏光と、底部12a近傍の金属層2で反射する偏光との相互作用によるものと考えられる。 と It is considered that a high Rs / Rp is easily obtained when the content is within the above range. This is considered to be due to the interaction between the polarized light reflected by the metal layer 2 near the top 11a and the polarized light reflected by the metal layer 2 near the bottom 12a.
 本実施の形態において、Wbに対するWhの比を表すWh/Wbは1.4以下が好ましく、1.2以下がより好ましく、1.1以下がさらに好ましい。前記上限値以下であると、高いRs/Rpが得られる。 に お い て In the present embodiment, Wh / Wb representing the ratio of Wh to Wb is preferably 1.4 or less, more preferably 1.2 or less, and even more preferably 1.1 or less. When it is not more than the above upper limit, a high Rs / Rp can be obtained.
 本実施形態において、Whは30~55nmがより好ましく、35~50nmがさらに好ましい。 に お い て In the present embodiment, Wh is more preferably from 30 to 55 nm, even more preferably from 35 to 50 nm.
 Wmは10~30nmがより好ましく、15~25nmがさらに好ましい。 Wm is more preferably from 10 to 30 nm, even more preferably from 15 to 25 nm.
 Wbは20~50nmがより好ましく、25~45nmがさらに好ましい。 Wb is more preferably from 20 to 50 nm, even more preferably from 25 to 45 nm.
 WhとWmの差は15~35nmがより好ましく、20~30nmがさらに好ましい。 The difference between Wh and Wm is more preferably from 15 to 35 nm, even more preferably from 20 to 30 nm.
 WbとWmの差は5~30nmがより好ましく、6~25nmがさらに好ましい。 The difference between Wb and Wm is more preferably 5 to 30 nm, even more preferably 6 to 25 nm.
 WhとWbの差は1~25nmがより好ましく、2~20nmがさらに好ましい。 差 The difference between Wh and Wb is preferably 1 to 25 nm, more preferably 2 to 20 nm.
 凸条11のY方向の高さHgは80~125nmが好ましく、85~120nmがより好ましく、90~115nmがさらに好ましい。 Y The height Hg of the ridge 11 in the Y direction is preferably 80 to 125 nm, more preferably 85 to 120 nm, and still more preferably 90 to 115 nm.
 X方向における凸条11のピッチpは60~150nmが好ましく、70~130nmがより好ましく、80~110nmがさらに好ましい。 The pitch p of the ridge 11 in the X direction is preferably from 60 to 150 nm, more preferably from 70 to 130 nm, even more preferably from 80 to 110 nm.
 本実施形態において、後述の第3~5の実施形態と同様に、光透過性基板1及び金属層2を覆う樹脂層31、32又は33を設けてもよい(図7~9参照)。 In this embodiment, a resin layer 31, 32 or 33 covering the light-transmitting substrate 1 and the metal layer 2 may be provided as in the third to fifth embodiments described later (see FIGS. 7 to 9).
 本実施形態において、樹脂層31、32又は33の波長589.3nmにおける屈折率nは1.10~1.50が好ましく、1.15~1.45がより好ましく、1.20~1.40がさらに好ましい。 In the present embodiment, the refractive index n of the resin layer 31, 32, or 33 at a wavelength of 589.3 nm is preferably 1.10 to 1.50, more preferably 1.15 to 1.45, and 1.20 to 1.40. Is more preferred.
 樹脂層31、32又は33を有する場合、凸条11のY方向の高さHg、及び樹脂層の波長589.3nmにおける屈折率nが、下式1を満たすことが好ましい。
 450≦4×n×Hg≦650 式1
When the resin layer 31, 32 or 33 is provided, it is preferable that the height Hg of the ridge 11 in the Y direction and the refractive index n of the resin layer at a wavelength of 589.3 nm satisfy the following expression 1.
450 ≦ 4 × n × Hg ≦ 650 Equation 1
 上式1を満たすと、可視光領域においてより高いRs/Rpが得られる。前記「4×n×Hg」の値は、451~649であってもよく、452~648であってもよく、480~640であってもよい。 を 満 た す When the above expression 1 is satisfied, a higher Rs / Rp can be obtained in the visible light region. The value of “4 × n × Hg” may be 451 to 649, 452 to 648, or 480 to 640.
 樹脂層31、32又は33を有する実施形態によれば、可視光領域において高いRs/Rpが得られやすい。 According to the embodiment having the resin layer 31, 32, or 33, high Rs / Rp is easily obtained in the visible light region.
 具体的には、下記の測定方法で得られる、x軸が波長(単位:nm)、y軸がRs/Rpであるグラフにおいて、x=450nm、x=650nm、y=0及びy=Rs/Rpで表される4つの線で囲まれた領域の相対面積S1が7000以上であるワイヤグリッド型偏光子が得られる。S1は8000以上が好ましく、10000以上がより好ましい。 Specifically, in a graph obtained by the following measurement method, in which the x-axis is wavelength (unit: nm) and the y-axis is Rs / Rp, x = 450 nm, x = 650 nm, y = 0 and y = Rs / A wire grid polarizer having a relative area S1 of 7000 or more in a region surrounded by four lines represented by Rp is obtained. S1 is preferably 8000 or more, more preferably 10,000 or more.
 好ましくは、前記グラフにおいて、x=450nm、x=650nm、y=30及びy=Rs/Rpで表される4つの線で囲まれた領域の相対面積S2が2000以上であるワイヤグリッド型偏光子が得られる。S2は4000以上がより好ましく、10000以上がさらに好ましい。 Preferably, in the graph, a relative area S2 of a region surrounded by four lines represented by x = 450 nm, x = 650 nm, y = 30 and y = Rs / Rp is 2000 or more. Is obtained. S2 is more preferably 4000 or more, and still more preferably 10,000 or more.
 相対面積S1、S2は、x軸が波長(単位:nm)、y軸がRs/Rpであるグラフにおいて、x=450nm、x=451nm、y=0及びy=1で表される4つの直線で囲まれた四角形の面積を1とするときの相対面積である。 The relative areas S1 and S2 are four straight lines represented by x = 450 nm, x = 451 nm, y = 0, and y = 1 in a graph in which the x-axis is wavelength (unit: nm) and the y-axis is Rs / Rp. It is a relative area when the area of the square surrounded by is set to 1.
 相対面積S1、S2の値が大きいほど、可視光領域における反射光の偏光分離能に優れることを意味する。 大 き い The larger the values of the relative areas S1 and S2, the better the polarization separation ability of the reflected light in the visible light region.
 相対面積S1、S2の測定方法を、図2、3を用いて説明する。図2は、光透過性基板1及び金属層2が樹脂層32で覆われており、かつ樹脂層32の一部が隣り合う凸条11間の空間の全部に充填されているワイヤグリッド型偏光子の例である。 測定 A method for measuring the relative areas S1 and S2 will be described with reference to FIGS. FIG. 2 shows a wire grid type polarized light in which the light transmissive substrate 1 and the metal layer 2 are covered with the resin layer 32 and a part of the resin layer 32 fills the entire space between the adjacent ridges 11. It is an example of a child.
 図2に示すように、ワイヤグリッド型偏光子を、波長450~650nmにおける反射率が0.7%以下となるように反射防止処理された2枚の反射防止基材42で挟んだ状態で、s偏光反射率及びp偏光反射率をそれぞれ測定する。反射防止基材42としては、反射防止処理された面に対する、波長450~650nmにおけるp偏光の反射率が0.7%以下のガラスまたはフィルムを用いることができる。 As shown in FIG. 2, in a state where the wire grid type polarizer is sandwiched between two anti-reflection substrates 42 that have been subjected to anti-reflection treatment so that the reflectance at a wavelength of 450 to 650 nm is 0.7% or less, The s-polarized light reflectance and the p-polarized light reflectance are each measured. As the anti-reflection substrate 42, a glass or a film having a reflectance of 0.7% or less for p-polarized light at a wavelength of 450 to 650 nm with respect to the anti-reflection treated surface can be used.
 s偏光反射率及びp偏光反射率の測定条件は、入射角度θ3が5°、測定波長450nm~650nm、波長間隔1nmとする。各波長におけるRs/Rpを求め、x軸が波長(単位:nm)、y軸がRs/Rpであるグラフを作成する。図3はグラフの例である。 The measurement conditions for the s-polarized light reflectance and the p-polarized light reflectance are an incident angle θ3 of 5 °, a measurement wavelength of 450 nm to 650 nm, and a wavelength interval of 1 nm. Rs / Rp at each wavelength is obtained, and a graph in which the x-axis is wavelength (unit: nm) and the y-axis is Rs / Rp is created. FIG. 3 is an example of a graph.
 得られたグラフに基づき、下記の方法で相対面積S1、S2を求める。 相 対 Based on the obtained graph, the relative areas S1 and S2 are obtained by the following method.
 (1)図3に示すように、x=450、x=650、y=0及びy=Rs/Rpで表される4つの線で囲まれた領域を、x軸方向の幅が1nmである長方形の集合に変換する。 (1) As shown in FIG. 3, a region surrounded by four lines represented by x = 450, x = 650, y = 0, and y = Rs / Rp has a width of 1 nm in the x-axis direction. Convert to a set of rectangles.
 具体的には、波長がλ(nm)のときのRs/Rpの値をr1、波長がλ+1(nm)のときのRs/Rpの値をr2とすると、x=λ、x=λ+1、y=0及びy=Rs/Rpで表される4つの線で囲まれる領域を、x=λ、x=λ+1、y=0及びy=(r1+r2)/2で表される4つの直線で囲まれる長方形に変換する。λが450~649である長方形の面積を合計して相対面積S1とする。 Specifically, if the value of Rs / Rp when the wavelength is λ (nm) is r1, and the value of Rs / Rp when the wavelength is λ + 1 (nm) is r2, x = λ, x = λ + 1, y A region surrounded by four lines represented by = 0 and y = Rs / Rp is surrounded by four straight lines represented by x = λ, x = λ + 1, y = 0, and y = (r1 + r2) / 2. Convert to a rectangle. The areas of the rectangles having λ of 450 to 649 are summed to obtain a relative area S1.
 (2)前記(1)において、y=0をy=30に変更して相対面積S2を求める。 (2) In the above (1), y = 0 is changed to y = 30, and the relative area S2 is obtained.
 すなわち、x=450、x=650、y=30及びy=Rs/Rpで表される4つの線で囲まれた領域を、同様にしてx=λ、x=λ+1、y=30及びy=(r1+r2)/2で表される4つの直線で囲まれる長方形に変換する。λが450~649である長方形の面積を合計して相対面積S2とする。 That is, a region surrounded by four lines represented by x = 450, x = 650, y = 30, and y = Rs / Rp is similarly set to x = λ, x = λ + 1, y = 30, and y = It is converted into a rectangle surrounded by four straight lines represented by (r1 + r2) / 2. The areas of the rectangles having λ of 450 to 649 are summed to obtain a relative area S2.
<第2の実施形態>
 図4は、本発明のワイヤグリッド型偏光子の第2の実施形態を模式的に示す断面図である。図4中符号1は光透過性基板、2は金属層、11は凸条、12は凹溝である。
<Second embodiment>
FIG. 4 is a sectional view schematically showing a second embodiment of the wire grid polarizer of the present invention. In FIG. 4, reference numeral 1 denotes a light transmitting substrate, 2 denotes a metal layer, 11 denotes a ridge, and 12 denotes a concave groove.
 なお、図4は設計値に基づく模式図であり、実際のワイヤグリッド型偏光子には、製造上不可避の形状の崩れや金属層の厚みの不均一が生じている。 FIG. 4 is a schematic diagram based on design values. In an actual wire grid polarizer, a shape unavoidable in manufacturing and a nonuniform metal layer thickness are produced.
 本実施形態において、光透過性基板1の表面には、複数の凸条11と複数の凹溝12が交互に形成されている。複数の凸条11はZ方向に延在し互いに平行である。複数の凹溝12はZ方向に延在し互いに平行である。 In the present embodiment, a plurality of ridges 11 and a plurality of grooves 12 are alternately formed on the surface of the light-transmitting substrate 1. The plurality of ridges 11 extend in the Z direction and are parallel to each other. The plurality of concave grooves 12 extend in the Z direction and are parallel to each other.
 凸条11の、Z方向に直交する断面における形状(断面形状)は、頂部11aに向かって幅が漸次縮小する三角形又は略三角形である。凸条11の頂部11aは、Y方向の高さが最も高い部分であり、Z方向に連なって線をなしている。頂部11aを含む頂角は鋭角でもよく、丸みを有する角でもよい。 形状 The shape (cross-sectional shape) of the ridge 11 in a cross section orthogonal to the Z direction is a triangle or a substantially triangle whose width gradually decreases toward the top 11a. The top 11a of the ridge 11 is a portion having the highest height in the Y direction, and is continuous with the Z direction to form a line. The apex angle including the apex 11a may be an acute angle or a rounded angle.
 複数の凸条11の断面形状は均一である。凸条11の下端11cを通りY方向に直交する面を基準面Cとするとき、前記基準面Cにおける凸条11のX方向の幅a、前記基準面Cにおける凸条11のX方向のピッチb、及び基準面Cから凸条11の頂部11aまでのY方向の高さcの設計値はそれぞれ均一である。 断面 The cross-sectional shape of the plurality of ridges 11 is uniform. When a plane passing through the lower end 11c of the ridge 11 and orthogonal to the Y direction is defined as a reference plane C, the width a of the ridge 11 in the X direction in the reference plane C and the pitch of the ridge 11 in the X plane in the reference plane C are defined. b and the design value of the height c in the Y direction from the reference plane C to the top 11a of the ridge 11 are uniform.
 X方向において、隣り合う凸条11の間には凹溝12が存在する。凸条11の下端11cより下の部分が凹溝12である。凹溝12のZ方向に直交する断面における形状(断面形状)は、底部12aに向かって溝幅が漸次縮小するテーパ面12bを有する。Y方向における位置が最も低い部分が底部12aである。 凹 In the X direction, there is a concave groove 12 between adjacent ridges 11. The portion below the lower end 11 c of the ridge 11 is the concave groove 12. The shape (cross-sectional shape) of the concave groove 12 in a cross section orthogonal to the Z direction has a tapered surface 12b whose groove width gradually decreases toward the bottom 12a. The portion having the lowest position in the Y direction is the bottom portion 12a.
 前記基準面Cから凹溝12の底部12aから前記基準面CまでのY方向の高さを、凹溝の深さdとする。 高 The height in the Y direction from the reference plane C to the bottom 12a of the groove 12 to the reference plane C is defined as the depth d of the groove.
 本実施形態において、凹溝12の前記断面形状は、テーパ面12bの接線の傾きが一定又は略一定であるV字状である。底部12aは鋭角でもよく、丸みを有する角でもよい。本実施形態において底部12aはZ方向に連なって線をなしている。 In the present embodiment, the cross-sectional shape of the concave groove 12 is a V-shape in which the inclination of the tangent to the tapered surface 12b is constant or substantially constant. The bottom 12a may be an acute angle or a rounded corner. In the present embodiment, the bottom portion 12a extends in the Z direction to form a line.
 複数の凹溝12の断面形状は均一であり、凹溝12の深さdは均一である。 断面 The cross-sectional shape of the plurality of grooves 12 is uniform, and the depth d of the grooves 12 is uniform.
 凸条11の下端11cから凸条11の頂部11aまでの面を、凸条11の側面とする。凸条11の頂部11aを挟む2つの側面を、第1の側面11b1及び第2の側面11b2とする。凸条11の下端11cから凹溝12の底部12aまでの面を凹溝12の側面とする。 面 The surface from the lower end 11c of the ridge 11 to the top 11a of the ridge 11 is defined as the side surface of the ridge 11. The two side surfaces sandwiching the top 11a of the ridge 11 are referred to as a first side surface 11b1 and a second side surface 11b2. The surface from the lower end 11 c of the ridge 11 to the bottom 12 a of the groove 12 is defined as the side surface of the groove 12.
 本実施形態において、凸条11と凹溝12は一体の光透過性基板1の表面に形成されている。すなわち凸条11の頂部11a、凸条11の側面、凹溝12の側面及び凹溝12の底部12aは同じ材料からなる。 In the present embodiment, the ridges 11 and the concave grooves 12 are formed on the surface of the integrated light-transmitting substrate 1. That is, the top 11a of the ridge 11, the side of the ridge 11, the side of the groove 12, and the bottom 12a of the groove 12 are made of the same material.
 金属層2は、凸条11の第1の側面11b1及び第2の側面11b2のうち、少なくとも第1の側面11b1の全面を被覆するように設けられる。凸条11の第1の側面11b1を金属層で被覆する際に、凸条11の頂部11a近傍の第2の側面11b2、及び凸条11の下端11c近傍の凹溝12側面が金属層2で被覆されてもよい。 The metal layer 2 is provided so as to cover at least the entire first side surface 11b1 of the first side surface 11b1 and the second side surface 11b2 of the ridge 11. When the first side surface 11b1 of the ridge 11 is covered with the metal layer, the second side surface 11b2 near the top 11a of the ridge 11 and the side of the concave groove 12 near the lower end 11c of the ridge 11 are covered with the metal layer 2. It may be coated.
 凸条11の第2の側面11b2は、その全面が金属層2で被覆されることはなく、光透過性基板1が露出している露出面が存在する。 The second side surface 11b2 of the ridge 11 is not entirely covered with the metal layer 2, but has an exposed surface on which the light-transmitting substrate 1 is exposed.
 本実施形態のワイヤグリッド型偏光子は以下の方法で製造できる。 ワ イ ヤ The wire grid polarizer of this embodiment can be manufactured by the following method.
 まず、光透過性の基材の表面に光硬化性組成物を塗布し、光インプリント法を用いて、前記光硬化性組成物の層に凸条及び凹溝を形成して光透過性基板を作製する。光インプリント法の後に、必要に応じてエッチングを行ってもよい。 First, a light-curable composition is applied to the surface of a light-transmissive substrate, and the light-transmissible substrate is formed by forming ridges and grooves in the light-curable composition layer using a photo-imprinting method. Is prepared. After the optical imprint method, etching may be performed as necessary.
 光インプリント法は、例えば、電子線描画とエッチングとの組み合わせにより、複数の溝が互いに平行にかつ所定のピッチで形成されたモールドを作製し、前記モールドの溝を、基材の表面に塗布された光硬化性組成物に転写し、同時に前記光硬化性組成物を光硬化させる方法である。 In the optical imprint method, for example, by combining electron beam drawing and etching, a mold in which a plurality of grooves are formed in parallel with each other and at a predetermined pitch is produced, and the grooves of the mold are applied to the surface of the base material. And transferring the photocurable composition to the cured photocurable composition and simultaneously photocuring the photocurable composition.
 例えば電子線描画及びエッチングにより作製したモールドを親モールド(マスターモールド)として、光インプリント法で複製した子モールドや孫モールドを、前記光硬化性組成物への転写に使用してもよい。 For example, a mold prepared by electron beam drawing and etching may be used as a master mold (master mold), and a child mold or a grandchild mold replicated by a photo-imprint method may be used for transfer to the photocurable composition.
 光透過性の基材としては、ガラス板(石英ガラス板、無アルカリガラス板等)、樹脂(環状オレフィン樹脂、アクリル樹脂、トリアセチルセルロース樹脂、ポリイミド樹脂、ポリジメチルシロキサン、透明フッ素樹脂)からなるフィルムが例示できる。 The light-transmitting substrate is made of a glass plate (quartz glass plate, non-alkali glass plate, etc.) and resin (cyclic olefin resin, acrylic resin, triacetyl cellulose resin, polyimide resin, polydimethylsiloxane, transparent fluororesin). A film can be illustrated.
 例えば、まず、図5Aに示すように、基材21の表面に、未硬化の光硬化性組成物22を塗布し、得ようとする凸条11及び凹溝12に対応する形状の凹凸が形成されたモールド23を、光硬化性組成物22に押しつける。この状態で放射線(例えば紫外線、電子線)を照射して光硬化性組成物を硬化させた後、図5Bに示すように、モールド23を離型して、光透過性基板1を得る。 For example, first, as shown in FIG. 5A, an uncured photocurable composition 22 is applied to the surface of a substrate 21, and irregularities having shapes corresponding to the ridges 11 and the grooves 12 to be obtained are formed. The molded mold 23 is pressed against the photocurable composition 22. In this state, the photocurable composition is cured by irradiating radiation (for example, ultraviolet rays or electron beams), and then, as shown in FIG. 5B, the mold 23 is released to obtain the light transmissive substrate 1.
 光透過性基板1は基材21と一体のまま金属層を形成できる。基材21を後述の支持体としてもよい。必要により金属層の形成前又は形成後に、光透過性基板1と基材21を分離してもよい。 金属 A metal layer can be formed on the light transmitting substrate 1 while being integrated with the base material 21. The substrate 21 may be a support described later. If necessary, the light transmissive substrate 1 and the base material 21 may be separated before or after the formation of the metal layer.
 または、図6A、図6Bに示すように、前記モールド23とは形状が異なるモールド24を用いる方法でも光透過性基板1を製造できる。具体的には、まず、基材21上の光硬化性組成物22にモールド24を押し付けて光硬化させることにより、得ようとする凸条11よりも大きい矩形の凸条10が形成された硬化物を得る。この後、図6Cに示すように、硬化物の凸条10をエッチングして、目的の形状の凸条11に加工して光透過性基板1を得る。 Alternatively, as shown in FIGS. 6A and 6B, the light-transmitting substrate 1 can be manufactured by a method using a mold 24 having a different shape from the mold 23. Specifically, first, the mold 24 is pressed against the photocurable composition 22 on the base material 21 to perform photocuring, thereby forming a rectangular ridge 10 larger than the ridge 11 to be obtained. Get things. Thereafter, as shown in FIG. 6C, the ridges 10 of the cured product are etched and processed into ridges 11 having a desired shape to obtain the light-transmitting substrate 1.
 このようにして作製した光透過性基板1に金属層2を設けることにより、本実施形態のワイヤグリッド型偏光子が得られる。 ワ イ ヤ By providing the metal layer 2 on the light transmitting substrate 1 thus manufactured, the wire grid polarizer of the present embodiment can be obtained.
 金属層2の形成方法は蒸着法が好ましい。蒸着法としては、物理蒸着法(PVD)又は化学蒸着法(CVD)が挙げられる。真空蒸着法、スパッタ法、又はイオンプレーティング法が好ましい。特に、付着させる微粒子の光透過性基板1に対する入射方向の制御が容易である点で、真空蒸着法が好ましい。 蒸 着 The metal layer 2 is preferably formed by vapor deposition. Examples of the vapor deposition method include a physical vapor deposition method (PVD) and a chemical vapor deposition method (CVD). A vacuum deposition method, a sputtering method, or an ion plating method is preferable. In particular, the vacuum evaporation method is preferable because the incident direction of the fine particles to be attached to the light transmitting substrate 1 can be easily controlled.
 本実施形態では、真空蒸着法による斜方蒸着法を用いて、凸条11の第1の側面11b1の全面とその近傍に、金属層2を蒸着させることが好ましい。 In the present embodiment, it is preferable that the metal layer 2 is deposited on the entire surface of the first side surface 11b1 of the ridge 11 and in the vicinity thereof by using an oblique evaporation method by a vacuum evaporation method.
 具体的には、図4に示すように、Z方向に対して直交又は略直交し、かつY方向に対して第1の側面11b1の側にθ(単位は「°」)の角度(蒸着角度)をなす方向(蒸着方向)から金属又は金属化合物を蒸着して金属層2を形成する。 Specifically, as shown in FIG. 4, an angle θ (unit is “°”) (evaporation angle) is orthogonal to or substantially orthogonal to the Z direction and on the side of the first side surface 11b1 with respect to the Y direction. The metal layer 2 is formed by vapor-depositing a metal or a metal compound from the direction (deposition direction).
 蒸着量は、所定の金属層2の厚みが得られるように制御する。具体的には、光透過性基板1と同じ成膜環境下にテストピースを置き、テストピース上に成膜される金属層の厚みが目標値となるように蒸着量を制御する。テストピースとしては例えばガラス基板を使用する。膜厚は例えば触針式接触膜厚計で測定する。 (4) The deposition amount is controlled so that a predetermined thickness of the metal layer 2 is obtained. Specifically, the test piece is placed in the same film-forming environment as the light-transmitting substrate 1, and the deposition amount is controlled so that the thickness of the metal layer formed on the test piece becomes a target value. For example, a glass substrate is used as the test piece. The film thickness is measured by, for example, a stylus type contact film thickness meter.
 本実施形態のワイヤグリッド型偏光子によれば、Rs/Rpを高くできる。例えばRsが50%以上、Rpが10%以下、かつRs/Rpが5以上であるワイヤグリッド型偏光子を実現できる。 According to the wire grid polarizer of the present embodiment, Rs / Rp can be increased. For example, a wire grid polarizer having Rs of 50% or more, Rp of 10% or less, and Rs / Rp of 5 or more can be realized.
 本実施形態のワイヤグリッド型偏光子は、凸条11の断面形状を三角形又は略三角形とし、かつ隣り合う凸条11の間に、テーパ面12bを有する凹溝12を設けたことにより、前記図5A及び図5Bに示す製造方法で光透過性基板1を製造する場合の、モールドの形状が形成容易となる。 The wire grid polarizer according to the present embodiment has a configuration in which the cross-sectional shape of the ridge 11 is triangular or substantially triangular, and the concave groove 12 having the tapered surface 12 b is provided between the adjacent ridges 11. When the light transmitting substrate 1 is manufactured by the manufacturing method shown in FIGS. 5A and 5B, the shape of the mold can be easily formed.
 X方向における凸条11のピッチbは150nm以下が好ましく、130nm以下がより好ましく、100nm以下がさらに好ましい。ピッチbの下限は60nm以上が好ましい。ピッチbは60~150nmが好ましく、70~130nmがより好ましく、80~110nmがさらに好ましい。 The pitch b of the ridges 11 in the X direction is preferably 150 nm or less, more preferably 130 nm or less, and even more preferably 100 nm or less. The lower limit of the pitch b is preferably 60 nm or more. The pitch b is preferably from 60 to 150 nm, more preferably from 70 to 130 nm, even more preferably from 80 to 110 nm.
 前記ピッチbに対する前記幅aの比を表すa/bは、0.8以下が好ましく、0.7以下がより好ましく、0.5以下がさらに好ましい。a/bの下限は0.2以上が好ましい。a/bは0.2~0.8が好ましく、0.2~0.7がより好ましく、0.2~0.5がさらに好ましい。 A a / b representing the ratio of the width a to the pitch b is preferably 0.8 or less, more preferably 0.7 or less, and still more preferably 0.5 or less. The lower limit of a / b is preferably 0.2 or more. a / b is preferably from 0.2 to 0.8, more preferably from 0.2 to 0.7, and even more preferably from 0.2 to 0.5.
 凸条11のY方向の高さcは125nm以下が好ましく、120nm以下がより好ましく、115nm以下がさらに好ましい。高さcの下限は80nm以上が好ましい。高さcは80~125nmが好ましく、85~120nmがより好ましく、90~115nmがさらに好ましい。 高 The height c of the ridge 11 in the Y direction is preferably 125 nm or less, more preferably 120 nm or less, and even more preferably 115 nm or less. The lower limit of the height c is preferably 80 nm or more. The height c is preferably from 80 to 125 nm, more preferably from 85 to 120 nm, even more preferably from 90 to 115 nm.
 凹溝12の深さdはゼロ超、100nm以下が好ましい。 深 The depth d of the concave groove 12 is preferably more than zero and 100 nm or less.
 斜方蒸着法で金属層を形成する際の、蒸着角度θは10~40°が好ましく、15~35°がより好ましく、20~30°がさらに好ましい。 蒸 着 When forming a metal layer by oblique deposition, the deposition angle θ is preferably from 10 to 40 °, more preferably from 15 to 35 °, even more preferably from 20 to 30 °.
 前記高さ(c+d)の1/2の位置における、金属層2のX方向の厚みeは20~60nmが好ましく、25~55nmがより好ましく、30~50nmがさらに好ましい。 厚 み The thickness e of the metal layer 2 in the X direction at a position of 1 / of the height (c + d) is preferably 20 to 60 nm, more preferably 25 to 55 nm, and further preferably 30 to 50 nm.
 前記高さ(c+d)の1/2の位置における、凸条11のX方向の幅a’に対する金属層2のX方向の厚みeの比(a’/e)は0.5~2が好ましい。
 Z方向に直交する断面における、金属層2の断面積をQm、凹溝12の底部12aより上方の光透過性基板1の断面積をQsとしたとき、Qm/Qsは0.2~5が好ましい。
The ratio (a ′ / e) of the thickness e in the X direction of the metal layer 2 to the width a ′ in the X direction of the ridge 11 at a position 1 / of the height (c + d) is preferably 0.5 to 2. .
Assuming that the cross-sectional area of the metal layer 2 in the cross section orthogonal to the Z direction is Qm and the cross-sectional area of the light-transmitting substrate 1 above the bottom 12a of the concave groove 12 is Qs, Qm / Qs is 0.2 to 5. preferable.
<第3~5の実施形態>
 図7~9は、ワイヤグリッド型偏光子の第3~5の実施形態を模式的に示す断面図である。図4と同じ構成要素には同じ符号を付して説明を省略する。
<Third to fifth embodiments>
7 to 9 are sectional views schematically showing third to fifth embodiments of the wire grid polarizer. The same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
 図7に示す第3の実施形態において、光透過性基板1及び金属層2は樹脂層31で覆われており、かつ樹脂層31の一部が隣り合う凸条11間の空間の一部に充填されている。前記空間内の、樹脂層31が充填されていない部分は空気層である。 In the third embodiment shown in FIG. 7, the light-transmitting substrate 1 and the metal layer 2 are covered with a resin layer 31, and a part of the resin layer 31 is formed in a part of the space between the adjacent ridges 11. Is filled. The portion of the space not filled with the resin layer 31 is an air layer.
 以下、Y方向における、凹溝12の底部12aから凸条11の頂部11aまでの高さ(c+d)に対して、凹溝12の底部12aから樹脂層31の下端31aまでの高さfの割合を「埋め込み度(単位は%)」という。 Hereinafter, the ratio of the height f from the bottom 12a of the groove 12 to the lower end 31a of the resin layer 31 with respect to the height (c + d) from the bottom 12a of the groove 12 to the top 11a of the ridge 11 in the Y direction. Is called “embedding degree (unit is%)”.
 なお、図7~9は設計値に基づく模式図である。実際のワイヤグリッド型偏光子において、凹溝12の底部12aから樹脂層31の下端31aまでの高さfが不均一である場合は、隣り合う2つの凸条間における前記高さfの最小値を測定値とし、任意の5箇所の測定値の平均値を、ワイヤグリッド型偏光子における前記高さfとする。 FIGS. 7 to 9 are schematic diagrams based on design values. In an actual wire grid polarizer, when the height f from the bottom 12a of the concave groove 12 to the lower end 31a of the resin layer 31 is not uniform, the minimum value of the height f between two adjacent ridges is Is the measured value, and the average value of the measured values at any five points is the height f of the wire grid polarizer.
 図8に示す第4の実施形態において、光透過性基板1及び金属層2は樹脂層32で覆われており、かつ樹脂層32の一部が隣り合う凸条11間の空間の全部に充填されている。本実施形態における埋め込み度は0%である。 In the fourth embodiment shown in FIG. 8, the light-transmitting substrate 1 and the metal layer 2 are covered with the resin layer 32, and a part of the resin layer 32 fills the entire space between the adjacent ridges 11. Have been. The embedding degree in the present embodiment is 0%.
 図9に示す第5の実施形態において、光透過性基板1及び金属層2を覆う樹脂層33の下端33aは、Y方向において凸条11の頂部11aと同じ位置にあり、f=(c+d)である。本実施形態における埋め込み度は100%である。隣り合う凸条11間の空間に樹脂層33は充填されていない。 In the fifth embodiment shown in FIG. 9, the lower end 33a of the resin layer 33 covering the light transmitting substrate 1 and the metal layer 2 is located at the same position as the top 11a of the ridge 11 in the Y direction, and f = (c + d) It is. The embedding degree in the present embodiment is 100%. The space between the adjacent ridges 11 is not filled with the resin layer 33.
 図7~9に示すように、樹脂層31、32、33と、その上に積層される部材(図示略)との界面における反射を低減するために、これらの間に屈折率調整層41を設けてもよい。 As shown in FIGS. 7 to 9, in order to reduce reflection at the interface between the resin layers 31, 32, and 33 and members (not shown) laminated thereon, a refractive index adjustment layer 41 is provided between them. It may be provided.
 樹脂層31、32、33は光透過性を有する。樹脂層31、32、33の波長589.3nmにおける屈折率は1.10~1.50が好ましく、1.15~1.40がより好ましく、1.20~1.39がさらに好ましい。樹脂層31、32、33の屈折率が前記範囲の下限値以上であるとインプリントプロセスなどへの良好な耐性が得られやすい。上限値以下であると良好な光学特性が得られやすい。 The resin layers 31, 32, and 33 have optical transparency. The refractive index of the resin layers 31, 32, and 33 at a wavelength of 589.3 nm is preferably 1.10 to 1.50, more preferably 1.15 to 1.40, and further preferably 1.20 to 1.39. When the refractive index of the resin layers 31, 32, and 33 is equal to or more than the lower limit of the above range, good resistance to an imprint process or the like is easily obtained. If it is less than the upper limit, good optical characteristics are likely to be obtained.
 第3~5の実施形態のワイヤグリッド型偏光子は、光透過性基板1を作製し、金属層2を設けた後、樹脂層31、32、33で被覆し、さらに屈折率調整層41を積層する方法で製造できる。 In the wire grid polarizers of the third to fifth embodiments, the light-transmitting substrate 1 is manufactured, the metal layer 2 is provided, and the resin layers 31, 32, and 33 are applied. It can be manufactured by a lamination method.
 例えば、まず、第2の実施形態と同様にして、光透過性基板1及び金属層2を作製する。 For example, first, the light-transmitting substrate 1 and the metal layer 2 are manufactured in the same manner as in the second embodiment.
 次に、例えば樹脂を含む溶液を塗布して乾燥させる方法、又は樹脂を含む溶液を塗布し乾燥させた後に、UV硬化または熱硬化する方法などにより、樹脂層31、32、33を形成する。このとき、例えば事前にコロナ処理などで金属層表面を清浄にする方法、樹脂の分子量を低くして分子サイズを低くする方法などによって埋め込み度を調整できる。 Next, the resin layers 31, 32, and 33 are formed by, for example, a method of applying and drying a solution containing a resin, or a method of applying and drying a solution containing a resin, followed by UV curing or heat curing. At this time, the degree of embedding can be adjusted by, for example, a method of previously cleaning the surface of the metal layer by corona treatment, or a method of reducing the molecular weight of the resin to reduce the molecular size.
 この後、別のガラス基板上に、樹脂を含む溶液を塗布し、乾燥させて塗膜(屈折率調整層)を形成し、前記塗膜を金属層2上に転写する方法などで屈折率調整層41を形成する。凸条11の頂部11aから樹脂層31の上端までの高さgは特に限定されない。 Thereafter, a solution containing a resin is applied on another glass substrate, dried to form a coating film (refractive index adjusting layer), and the refractive index is adjusted by a method of transferring the coating film onto the metal layer 2 or the like. The layer 41 is formed. The height g from the top 11a of the ridge 11 to the upper end of the resin layer 31 is not particularly limited.
<第6の実施形態>
 第1~5の実施形態において凸条11の断面形状は三角形又は略三角形あるが、図10に示すような、頂部11aがY方向に直交する平坦面である台形でもよい。この場合、頂部11aはZ方向に延びる帯状をなす。頂部11aの平坦面のX方向の幅wが小さければ、第1~5の実施形態と同様の効果が得られる。
<Sixth embodiment>
In the first to fifth embodiments, the cross-sectional shape of the ridge 11 is triangular or substantially triangular. However, as shown in FIG. 10, a trapezoid in which the top 11a is a flat surface orthogonal to the Y direction may be used. In this case, the top 11a has a band shape extending in the Z direction. If the width w of the flat surface of the top 11a in the X direction is small, the same effects as those of the first to fifth embodiments can be obtained.
 頂部11aの平坦面のX方向の幅wは、凸条のピッチbに対して40%以下が好ましく、30%以下がより好ましく、25%以下がさらに好ましい。前記幅wがゼロ、すなわち凸条11の断面形状は三角形又は略三角形が最も好ましい。 (4) The width w of the flat surface of the top 11a in the X direction is preferably 40% or less, more preferably 30% or less, even more preferably 25% or less with respect to the pitch b of the ridges. The width w is zero, that is, the cross-sectional shape of the ridge 11 is most preferably a triangle or a substantially triangle.
 なお、第2~6の実施形態において凹溝12の断面形状はV字状であるが、テーパ面12bとテーパ面12bの間の底部にY方向に直交する平坦面が存在しても、第2~6の実施形態と同様の効果が得られる。この場合、底部はZ方向に延びる帯状をなす。底部の平坦面のX方向の幅は、凸条のピッチbに対して20%以上が好ましく、50%以上がより好ましく、70%以上がさらに好ましい。 In the second to sixth embodiments, the cross-sectional shape of the concave groove 12 is V-shaped. However, even if a flat surface orthogonal to the Y direction is present at the bottom between the tapered surfaces 12b, the second groove may be formed. The same effects as in the second to sixth embodiments can be obtained. In this case, the bottom has a band shape extending in the Z direction. The width of the bottom flat surface in the X direction is preferably 20% or more, more preferably 50% or more, even more preferably 70% or more with respect to the pitch b of the ridges.
 また、第1の実施形態において、凸条と凸条の間は、第2の実施形態と同様に凹溝になっていてもよい。 Also, in the first embodiment, a concave groove may be formed between the ridges as in the second embodiment.
 第1~6の実施形態において、光透過性基板1の裏面(凸条及び凹溝が設けられている表面とは反対側の面)に、熱可塑性樹脂、ガラス等からなる支持体(図示略)を有してもよい。 In the first to sixth embodiments, a support made of a thermoplastic resin, glass, or the like (not shown) is provided on the back surface (the surface opposite to the surface on which the ridges and grooves are provided) of the light-transmitting substrate 1. ) May be included.
 ワイヤグリッド型偏光子の光学特性の点から、光透過性基板1の裏面上に支持体(以下、第1の支持体ともいう。)を有することが好ましい。支持体と光透過性基板1との屈折率の差(絶対値)は、0.1以下が好ましく、0.05以下がより好ましい。支持体と光透過性基板1との屈折率の差が0.1以下であれば、前記界面での反射による光量の損失を軽減しやすい。 From the viewpoint of the optical characteristics of the wire grid polarizer, it is preferable that a support (hereinafter, also referred to as a first support) is provided on the back surface of the light transmitting substrate 1. The difference (absolute value) in the refractive index between the support and the light transmitting substrate 1 is preferably 0.1 or less, more preferably 0.05 or less. When the difference in the refractive index between the support and the light-transmitting substrate 1 is 0.1 or less, it is easy to reduce the loss of the light amount due to the reflection at the interface.
 さらに樹脂層31、32、33を設ける場合には、樹脂層の表面(光透過性基板1側とは反対側の面)上に支持体(以下、第2の支持体ともいう。)を設けてもよい。樹脂層と支持体(第2の支持体)は粘着剤で貼り付けてもよい。第1の支持体と第2の支持体は、材質が同じであってもよく、異なってもよい。 When the resin layers 31, 32, and 33 are further provided, a support (hereinafter, also referred to as a second support) is provided on the surface of the resin layer (the surface opposite to the light-transmitting substrate 1 side). You may. The resin layer and the support (second support) may be attached with an adhesive. The materials of the first support and the second support may be the same or different.
<用途>
 本発明のワイヤグリッド型偏光子の好適な用途として、例えば、映像表示装置、偏光板が挙げられる。映像表示装置としては、例えば液晶表示装置、ヘッドアップディスプレイ装置等が挙げられる。
<Application>
Suitable applications of the wire grid polarizer of the present invention include, for example, an image display device and a polarizing plate. Examples of the video display device include a liquid crystal display device and a head-up display device.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
<測定方法>
 以下の測定方法を用いた。
<Measurement method>
The following measurement method was used.
[TEM画像におけるHg、Wh、Wm、Wbの測長方法]
 図11を参照して説明する。
[Method of measuring Hg, Wh, Wm, Wb in TEM image]
This will be described with reference to FIG.
 (1)各例で製造したワイヤグリッド型偏光子をトリミングし、エポキシ樹脂で包埋して硬化させた。硬化後の試料(常温)を、ウルトラミクロトーム(ライカマイクロシステムズ社製品名ウルトラカット EM UC 6、ダイヤモンドナイフ使用)で切削して、超薄切片を作製した。超薄切片の厚み(設定値)は50nmとした。
 作製した超薄切片を、透過型電子顕微鏡(日立ハイテクノロジーズ社製品名HT7700)を用い、下記の条件で観察して画像を得た。図11はTEM画像の例である。
 加速電圧:100kV、フィラメント電圧:27.2V、エミッション電流:8.5μA、収束レンズ可動絞り:2、対物可動絞り:3、制限視野絞り:0、撮影モード:HR(高分解能)。
(1) The wire grid polarizer manufactured in each example was trimmed, embedded in an epoxy resin, and cured. The cured sample (room temperature) was cut with an ultramicrotome (trade name, Ultracut EM UC 6, Leica Microsystems, using a diamond knife) to produce an ultrathin section. The thickness (set value) of the ultrathin section was 50 nm.
The prepared ultrathin section was observed using a transmission electron microscope (product name: HT7700, Hitachi High-Technologies Corporation) under the following conditions to obtain an image. FIG. 11 is an example of a TEM image.
Acceleration voltage: 100 kV, filament voltage: 27.2 V, emission current: 8.5 μA, convergent lens movable diaphragm: 2, objective movable diaphragm: 3, limited field diaphragm: 0, shooting mode: HR (high resolution).
 (2)TEM画像上で、任意の連続する5個の凸条を測長対象とし、各凸条について、それぞれ基準線を定めた。基準線は測長対象の凸条を挟む2つの底部に接触し、かつ底部と基準線とが接触する部分の長さが最小となる直線とした。各凸条について、基準線に対して平行方向をX方向、直交方向をY方向とした。
 例えば、図11において、B1は第1の凸条の基準線であり、B4は第4の凸条の基準線である。各凸条の基準線は互いに平行でなくてもよい。基準線B1に対して平行方向をX1方向、直交方向をY1方向とする。基準線B4に対して平行方向をX4方向、直交方向をY4方向とする。
(2) On the TEM image, any five consecutive ridges were measured, and a reference line was defined for each ridge. The reference line was a straight line that was in contact with the two bottoms sandwiching the ridge to be measured, and that had a minimum length where the bottom and the reference line were in contact. For each ridge, the direction parallel to the reference line was defined as the X direction, and the direction orthogonal thereto was defined as the Y direction.
For example, in FIG. 11, B1 is the reference line of the first ridge, and B4 is the reference line of the fourth ridge. The reference lines of each ridge may not be parallel to each other. The direction parallel to the reference line B1 is defined as the X1 direction, and the direction orthogonal thereto is defined as the Y1 direction. The direction parallel to the reference line B4 is defined as the X4 direction, and the direction orthogonal thereto is defined as the Y4 direction.
 (3)以下の方法で、5個の凸条のそれぞれについて、Y方向における凸条の高さを求め、その平均をHg(単位:nm)とした。平均値は小数点以下を切り上げた(以下、同様)。
 例えば、第1の凸条の高さHg1を以下の手順で求めた。X1方向と平行な直線であって、凸条の頂部に接触し、かつ頂部と接触する部分の長さが最小となる直線を設け、Y1方向における基準線B1から前記直線までの距離を、凸条の高さHg1として計測した。
 他の凸条についても、同様にして凸条の高さを求めた。例えば、第4の凸条については、X4方向と平行な直線であって、凸条の頂部に接触し、かつ頂部と接触する部分の長さが最小となる直線を設け、Y4方向における基準線B4から前記直線までの距離を、凸条の高さHg4として計測した。
(3) For each of the five ridges, the height of the ridge in the Y direction was determined by the following method, and the average was defined as Hg (unit: nm). The average value was rounded up to the nearest decimal point (the same applies hereinafter).
For example, the height Hg1 of the first ridge was determined by the following procedure. A straight line that is parallel to the X1 direction and is in contact with the top of the ridge and has the minimum length of the portion in contact with the top is provided, and the distance from the reference line B1 to the straight line in the Y1 direction is set to be convex. It was measured as the height Hg1 of the strip.
The heights of the other ridges were determined in the same manner. For example, for the fourth ridge, a straight line that is parallel to the X4 direction and that is in contact with the top of the ridge and that has a minimum length in contact with the top is provided, and a reference line in the Y4 direction is provided. The distance from B4 to the straight line was measured as the height Hg4 of the ridge.
 (4)以下の方法で、5個の凸条のそれぞれについて、凸条の頂部より上側(底部側とは反対側)における金属層の厚さの最大値(以下、上側最大値という。)を求め、その平均をWh(単位:nm)とした。
 例えば、第1の凸条の上側最大値Wh1を以下の手順で求めた。凸条の頂部より上側の金属層において、X1方向における金属層の両端をそれぞれ通り、Y1方向に平行な2本の直線を設けた。X1方向における前記2本の直線間の距離の最大値を、上側最大値Wh1として計測した。
 他の凸条についても、同様にして上側最大値を求めた。例えば、第4の凸条については、凸条の頂部より上側の金属層において、X4方向における金属層の両端をそれぞれ通り、Y4方向に平行な2本の直線を設けた。X4方向における前記2本の直線間の距離の最大値を、上側最大値Wh4として計測した。
(4) For each of the five ridges, the maximum value of the thickness of the metal layer above the top of the ridge (opposite to the bottom side) (hereinafter, referred to as the upper maximum value) is determined for each of the five ridges by the following method. The average was determined as Wh (unit: nm).
For example, the upper-side maximum value Wh1 of the first ridge was determined by the following procedure. In the metal layer above the top of the ridge, two straight lines parallel to the Y1 direction passing through both ends of the metal layer in the X1 direction were provided. The maximum value of the distance between the two straight lines in the X1 direction was measured as the upper maximum value Wh1.
For the other ridges, the upper maximum value was determined in the same manner. For example, for the fourth ridge, two straight lines parallel to the Y4 direction are provided on the metal layer above the top of the ridge, passing through both ends of the metal layer in the X4 direction. The maximum value of the distance between the two straight lines in the X4 direction was measured as the upper maximum value Wh4.
 (5)以下の方法で、5個の凸条のそれぞれについて、金属層の厚さの最小値を求め、その平均をWm(単位:nm)とした。
 例えば、第1の凸条の前記厚さの最小値Wm1を以下の手順で求めた。X1方向における金属層の両端をそれぞれ通り、Y1方向に平行な2本の直線を設けた。X1方向における前記2本の直線間の距離の最小値を、前記厚さの最小値Wm1として計測した。
 他の凸条についても、同様にして前記厚さの最小値を求めた。例えば、第4の凸条については、X4方向における金属層の両端をそれぞれ通り、Y4方向に平行な2本の直線を設けた。X4方向における前記2本の直線間の距離の最小値を、前記厚さの最小値Wm4として計測した。
(5) The minimum value of the thickness of the metal layer was determined for each of the five ridges by the following method, and the average was defined as Wm (unit: nm).
For example, the minimum value Wm1 of the thickness of the first ridge was determined by the following procedure. Two straight lines parallel to the Y1 direction passing through both ends of the metal layer in the X1 direction were provided. The minimum value of the distance between the two straight lines in the X1 direction was measured as the minimum value Wm1 of the thickness.
The minimum value of the thickness was determined in the same manner for other ridges. For example, as for the fourth ridge, two straight lines parallel to the Y4 direction are provided, passing through both ends of the metal layer in the X4 direction. The minimum value of the distance between the two straight lines in the X4 direction was measured as the minimum value Wm4 of the thickness.
 (6)以下の方法で、5個の凸条のそれぞれについて、凸条の底部から頂部までの高さの1/2の位置より底部側における金属層の厚さの最大値(以下、底部側最大値という。)を求め、その平均をWb(単位:nm)とした。
 例えば、第1の凸条の底部側最大値Wb1を以下の手順で求めた。凸条の底部から頂部までの高さの1/2の位置より底部側の金属層において、X1方向における金属層の両端をそれぞれ通り、Y1方向に平行な2本の直線を設けた。X1方向における前記2本の直線間の距離の最大値を、底部側最大値Wb1として計測した。
 他の凸条についても、同様にして底部側最大値を求めた。例えば、第4の凸条については、凸条の底部から頂部までの高さの1/2の位置より底部側の金属層において、X4方向における金属層の両端をそれぞれ通り、Y4方向に平行な2本の直線を設けた。X4方向における前記2本の直線間の距離の最大値を、底部側最大値Wb4として計測した。
(6) For each of the five ridges, the maximum value of the thickness of the metal layer on the bottom side from the position 1 / of the height from the bottom to the top of each ridge (hereinafter referred to as the bottom side) The average was taken as Wb (unit: nm).
For example, the bottom-side maximum value Wb1 of the first ridge was determined by the following procedure. In the metal layer on the bottom side from the position of half the height from the bottom to the top of the ridge, two straight lines passing through both ends of the metal layer in the X1 direction and parallel to the Y1 direction were provided. The maximum value of the distance between the two straight lines in the X1 direction was measured as the bottom-side maximum value Wb1.
The bottom-side maximum value was similarly obtained for the other ridges. For example, with respect to the fourth ridge, in the metal layer on the bottom side from a position 1 / of the height from the bottom to the top of the ridge, the two ridges pass through both ends of the metal layer in the X4 direction and are parallel to the Y4 direction. Two straight lines were provided. The maximum value of the distance between the two straight lines in the X4 direction was measured as the bottom-side maximum value Wb4.
[Rs/Rp、面積S1、S2の測定方法]
(1)各例で製造したワイヤグリッド型偏光子を、図2に示すように、空気に接する面が反射防止処理された2枚の反射防止基材42で挟んだ状態で、s偏光反射率(単位:%)及びp偏光反射率(単位:%)をそれぞれ測定した。本例では、偏光を入射させる側に設ける反射防止基材42として、反射防止処理されたガラス(以下、反射防止ガラスとする)を用い、偏光が出射する側(透過する側)に設ける反射防止基材42として、反射防止処理されたフィルム(以下、反射防止フィルムとする)を用いた。
 なお予め、反射防止ガラスおよび反射防止フィルムの反射率を以下の方法で測定し、反射率が0.7%以下であることを確認した。
 反射防止ガラスの裏面に黒色塗料層を形成して、裏面からの反射を抑えた状態で、表面に入射角度5°で波長450~650nmのp偏光を入射して反射率を測定した。測定装置は、紫外可視分光光度計(株式会社日立ハイテクサイエンス社製品名UH-4150)を用いた。測定波長は450nm~650nm、波長間隔は1nm、スリットは4nm固定、スキャンスピードは300nm/分とした。
 反射防止フィルムについては、裏面に粘着層を介してガラスを貼り合わせ、フィルムを平坦にした。前記ガラスの露出面(粘着層と反対側)に黒色塗料層を形成して、裏面からの反射を抑えた状態とした。得られた反射防止フィルムとガラスの積層体について、反射防止ガラスと同じ条件で反射防止フィルム表面の反射率を測定した。
[Method of Measuring Rs / Rp and Areas S1 and S2]
(1) As shown in FIG. 2, the s-polarized light reflectance was obtained in a state in which the wire grid polarizer manufactured in each example was sandwiched between two antireflection substrates 42 whose surfaces in contact with air were subjected to antireflection treatment. (Unit:%) and p-polarized light reflectance (unit:%) were measured. In this example, as the anti-reflection substrate 42 provided on the side where polarized light is incident, anti-reflection treated glass (hereinafter referred to as anti-reflection glass) is used, and the anti-reflection provided on the side where polarized light is emitted (transmitting side) As the base material 42, an antireflection-treated film (hereinafter, referred to as an antireflection film) was used.
The reflectance of the antireflection glass and the antireflection film was measured in advance by the following method, and it was confirmed that the reflectance was 0.7% or less.
A black paint layer was formed on the back surface of the antireflection glass, and in a state where reflection from the back surface was suppressed, p-polarized light having a wavelength of 450 to 650 nm was incident on the surface at an incident angle of 5 ° and the reflectance was measured. As a measuring device, an ultraviolet-visible spectrophotometer (UH-4150, product name of Hitachi High-Tech Science Corporation) was used. The measurement wavelength was 450 nm to 650 nm, the wavelength interval was 1 nm, the slit was fixed at 4 nm, and the scan speed was 300 nm / min.
With respect to the antireflection film, glass was bonded to the back surface via an adhesive layer to flatten the film. A black paint layer was formed on the exposed surface of the glass (the side opposite to the adhesive layer) to suppress reflection from the back surface. With respect to the obtained laminate of the antireflection film and the glass, the reflectance of the surface of the antireflection film was measured under the same conditions as those for the antireflection glass.
(2)s偏光反射率(Rs)は、紫外可視分光光度計(株式会社日立ハイテクサイエンス社製品名UH-4150)を用いて測定した。具体的には、測定対象のワイヤグリッド型偏光子と光源との間に、付属の偏光子を、ワイヤグリッド型偏光子の凸条の長さ方向(Z方向)と、偏光子の吸収軸とが直交する向きにセットした。ワイヤグリッド型偏光子の表面側(凸条が形成された側)から偏光を入射して、s偏光反射率を測定した。入射角度θ3は5°とした。測定波長は450nm~650nm、波長間隔は1nm、スリットは4nm固定、スキャンスピードは300nm/分とした。 (2) The s-polarized light reflectance (Rs) was measured using an ultraviolet-visible spectrophotometer (product name: UH-4150, Hitachi High-Tech Science Corporation). Specifically, an attached polarizer is provided between the wire grid polarizer to be measured and the light source, and the length direction (Z direction) of the ridge of the wire grid polarizer and the absorption axis of the polarizer. Were set in orthogonal directions. Polarized light was incident on the surface side (the side on which the ridges were formed) of the wire grid polarizer, and the s-polarized light reflectance was measured. The incident angle θ3 was 5 °. The measurement wavelength was 450 nm to 650 nm, the wavelength interval was 1 nm, the slit was fixed at 4 nm, and the scan speed was 300 nm / min.
(3)前記(2)において、付属の偏光子の向きを、Z方向と偏光子の吸収軸とが平行となる向きに変更した。それ以外は同様にしてp偏光反射率(Rp)を測定した。 (3) In the above (2), the direction of the attached polarizer was changed to a direction in which the Z direction is parallel to the absorption axis of the polarizer. Otherwise, the p-polarized light reflectance (Rp) was measured in the same manner.
(4)各波長におけるRs/Rpを算出し、x軸が波長(単位:nm)、y軸がRs/Rpであるグラフを作成した。 (4) Rs / Rp at each wavelength was calculated, and a graph in which the x-axis was wavelength (unit: nm) and the y-axis was Rs / Rp was created.
(5)得られたグラフに基づき、前述の方法で相対面積S1、S2を求めた。 (5) Based on the obtained graph, the relative areas S1 and S2 were determined by the method described above.
<調製例1:光硬化性組成物の調製>
 以下の(1)~(4)を混合して光硬化性組成物を調製した。
 (1)単量体1(新中村化学工業社製、NK エステル A-DPH、ジペンタエリスリトールヘキサアクリレート)を40g、
 (2)単量体2(新中村化学工業社製、NK エステル A-HD-N、ヘキサンジオールジアクリレート)を60g、
 (3)光重合開始剤(チバスペシャリティーケミカルズ社製、IRGACURE907)を4.0g、及び
 (4)含フッ素界面活性剤(旭硝子社製、フルオロアクリレート(CH=CHCOO(CH(CFF)とブチルアクリレートとのコオリゴマー、フッ素含有量:約30質量%、質量平均分子量:約3000)を0.1g。
<Preparation Example 1: Preparation of photocurable composition>
The following (1) to (4) were mixed to prepare a photocurable composition.
(1) 40 g of Monomer 1 (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-DPH, dipentaerythritol hexaacrylate)
(2) 60 g of monomer 2 (manufactured by Shin-Nakamura Chemical Co., Ltd., NK ester A-HD-N, hexanediol diacrylate)
(3) 4.0 g of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals, IRGACURE907); and (4) a fluorine-containing surfactant (manufactured by Asahi Glass Co., Ltd., fluoroacrylate (CH 2 = CHCOO (CH 2 ) 2 (CF)) 2) 8 F) and co-oligomer of butyl acrylate, fluorine content: about 30 wt%, weight-average molecular weight: about 3000) 0.1 g.
<例1~7>
 例1~4は実施例、例5~7は比較例である。
 光インプリント法を用いて光透過性基板1を作製し、斜方蒸着法を用いて金属層2を形成して、ワイヤグリッド型偏光子を製造した。
<Examples 1 to 7>
Examples 1 to 4 are Examples and Examples 5 to 7 are Comparative Examples.
A light transmissive substrate 1 was manufactured by using an optical imprinting method, and a metal layer 2 was formed by using an oblique evaporation method, thereby manufacturing a wire grid polarizer.
 具体的には、図5A、図5Bに例示する方法を用いて、図1A及び図1B、図2に示す構成を有する光透過性基板を作製した。
 基材21として、厚さ100μmの環状ポリオレフィンフィルム(日本ゼオン社製、ゼオノアフィルム、100mm×100mm)を用いた。
 基材21の表面に、調製例1で得た光硬化性組成物22をスピンコート法により塗布し、厚さ5μmの塗膜を形成した。
 得ようとする凸条に対応する形状の凹部が形成された石英製モールド23を、凹部の全面が光硬化性組成物22に接するように、25℃にて0.5MPa(ゲージ圧)の押圧力で、光硬化性組成物22の塗膜に押しつけた。
 この状態を保持したまま、基材21側から高圧水銀灯(周波数:1.5kHz~2.0kHz、主波長光:255nm、315nm及び365nm、365nmにおける照射エネルギー:1000mJ。)の光を15秒間照射し、光硬化性組成物22を硬化させた後、石英製モールドをゆっくり分離して、基材21上に光透過性基板1を作製した。
Specifically, a light-transmitting substrate having the configuration shown in FIGS. 1A, 1B, and 2 was manufactured using the method illustrated in FIGS. 5A and 5B.
As the substrate 21, a cyclic polyolefin film having a thickness of 100 μm (Zeonor film, 100 mm × 100 mm, manufactured by Zeon Corporation) was used.
The photocurable composition 22 obtained in Preparation Example 1 was applied to the surface of the substrate 21 by spin coating to form a coating film having a thickness of 5 μm.
A quartz mold 23 having a concave portion having a shape corresponding to the ridge to be obtained is pressed at 25 ° C. by 0.5 MPa (gauge pressure) so that the entire surface of the concave portion is in contact with the photocurable composition 22. It was pressed against the coating of the photocurable composition 22 with pressure.
While maintaining this state, light from a high-pressure mercury lamp (frequency: 1.5 kHz to 2.0 kHz, main wavelength light: irradiation energy at 255 nm, 315 nm, 365 nm, 365 nm: 1000 mJ) is irradiated from the substrate 21 side for 15 seconds. After the photo-curable composition 22 was cured, the quartz mold was slowly separated to form the light-transmissive substrate 1 on the substrate 21.
 真空蒸着装置(昭和真空社製、SEC-16CM)を用い、光透過性基板1の凸条11の第1の側面11b1の全面とその近傍に、アルミニウムを蒸着し、金属層2を形成した。蒸着角度(θ1、θ2)が連続的に増大するように、蒸着源と光透過性基板1を相対的に移動させた。
 光透過性基板1の凸条11の高さHg、蒸着角度の範囲、及び蒸着量(基準の蒸着角度及び蒸着膜厚)を表1に示すとおりに変化させて、金属層2の形状が異なるワイヤグリッド型偏光子を製造した。蒸着量は、蒸着面がY方向に対して垂直となるように固定したテストピースに対して、基準の蒸着角度で成膜したときに、基準の蒸着膜厚となるように設定した。凸条11のピッチpは90nmで一定とした。蒸着後は、図11の例で示されるように、第1の側面11b1の全面は金属層2で被覆され、第2の側面11b2には金属層2で被覆されていない露出面が存在した。
Aluminum was vapor-deposited on the entire surface of the first side surface 11b1 of the ridge 11 of the light-transmitting substrate 1 and its vicinity using a vacuum vapor deposition device (SEC-16CM, manufactured by Showa Vacuum Co., Ltd.) to form the metal layer 2. The vapor deposition source and the light transmitting substrate 1 were relatively moved so that the vapor deposition angles (θ1, θ2) continuously increased.
The height Hg of the ridges 11 of the light-transmitting substrate 1, the range of the deposition angle, and the deposition amount (reference deposition angle and deposition film thickness) are changed as shown in Table 1, and the shape of the metal layer 2 is different. A wire grid polarizer was manufactured. The deposition amount was set so that when a film was formed at a reference deposition angle on a test piece fixed so that the deposition surface was perpendicular to the Y direction, the reference deposition film thickness was obtained. The pitch p of the ridge 11 was constant at 90 nm. After the vapor deposition, as shown in the example of FIG. 11, the entire first side surface 11b1 was covered with the metal layer 2, and the second side surface 11b2 had an exposed surface that was not covered with the metal layer 2.
 さらに樹脂層32を設けた。各例の樹脂層32の波長589.3nmにおける屈折率(n)を表1に示す。
 各例で得られたワイヤグリッド型偏光子について、上記の方法で、Hg、Wh、Wm、Wbを測長し、表1に示す各項目の値を求めた。上記の方法でRs/Rpを測定して図12に示すグラフを得た。得られたグラフに基づき、上記の方法で面積S1、S2を求めた。これらの結果を表1に示す。
Further, a resin layer 32 was provided. Table 1 shows the refractive index (n) of the resin layer 32 of each example at a wavelength of 589.3 nm.
With respect to the wire grid polarizer obtained in each example, Hg, Wh, Wm, and Wb were measured by the above-described method, and values of respective items shown in Table 1 were obtained. Rs / Rp was measured by the above method to obtain a graph shown in FIG. Based on the obtained graph, the areas S1 and S2 were obtained by the above method. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果に示されるように、例1~4は例5~7と比較して、波長450~650における面積S1及び面積S2が大きく、可視光領域におけるRs/Rpの比が高かった。 さ れ る As shown in the results in Table 1, Examples 1 to 4 had larger areas S1 and S2 at wavelengths of 450 to 650 and higher Rs / Rp ratios in the visible light region than Examples 5 to 7.
 以下の例8~25は、ワイヤグリッド型偏光子の設計値に基づいて、性能をシミュレーションした参考例である。 例 The following Examples 8 to 25 are reference examples in which performance was simulated based on the design values of the wire grid polarizer.
 各例のワイヤグリッド型偏光子について、厳密結合波解析計算(Rigorous coupled-wave analysis:RCWA)により性能をシミュレーションした。
 入射光の波長は400~1000nm、入射方向はY方向とし、p偏光の反射率(以下、「Rp」ともいう。)及びs偏光の反射率(以下、「Rs」ともいう。)を計算により求めた。
 金属層の材料はアルミニウムとし、金属層2の厚みeは30nmとした。前記計算において金属層の屈折率及び消衰係数は、以下の実測値を用いた。フィルム基材上に光硬化性樹脂を塗布した。前記光硬化性樹脂の上にアルミニウムを40°斜方蒸着し、厚さが30nmの平坦膜を作成した。前記平坦膜をエリプソメーターで測定・解析して屈折率及び消衰係数を求めた。
The performance of each of the wire grid polarizers was simulated by rigorous coupled-wave analysis (RCWA).
The wavelength of the incident light is 400 to 1000 nm, the incident direction is the Y direction, and the reflectance of p-polarized light (hereinafter also referred to as “Rp”) and the reflectance of s-polarized light (hereinafter also referred to as “Rs”) are calculated. I asked.
The material of the metal layer was aluminum, and the thickness e of the metal layer 2 was 30 nm. In the above calculation, the following measured values were used for the refractive index and the extinction coefficient of the metal layer. A photocurable resin was applied on a film substrate. Aluminum was obliquely vapor-deposited at 40 ° on the photocurable resin to form a flat film having a thickness of 30 nm. The flat film was measured and analyzed with an ellipsometer to determine the refractive index and the extinction coefficient.
<例8~10>
 本例では、図8に示すような、樹脂層を有し埋め込み度が0%であるワイヤグリッド型偏光子において、凸条の形状を変化させてシミュレーションした。ただし屈折率調整層41は設けない(以下、同様)。
 凸条の断面形状は、例8が図8に示す三角形、例9が図10に示す台形(頂部の平坦面のX方向の幅wは10nm)、例10が図13に示す矩形とした。設計値を表2、3に示す。表2は以下の例においても共通の設計値である。図14はRpの結果、図15はRsの結果である。
 これらの結果に示されるように、凸条の断面形状が三角形又は台形であると、矩形の場合に比べて、400~1000nmの全波長域でRpを低くできる。またRsの波長依存性に対する断面形状の影響は小さい。したがって、凸条の断面形状が三角形又は台形であるとRsを高く維持しつつ、Rpを低減でき、その結果Rs/Rpの比を高くできる。
<Examples 8 to 10>
In this example, a simulation was performed by changing the shape of the ridge in a wire grid type polarizer having a resin layer and having an embedding degree of 0% as shown in FIG. However, the refractive index adjusting layer 41 is not provided (the same applies hereinafter).
The cross-sectional shape of the ridge was Example 8 a triangle shown in FIG. 8, Example 9 a trapezoid shown in FIG. 10 (the width w of the flat surface at the top in the X direction was 10 nm), and Example 10 a rectangle shown in FIG. Tables 2 and 3 show the design values. Table 2 shows common design values in the following examples. FIG. 14 shows the result of Rp, and FIG. 15 shows the result of Rs.
As shown in these results, when the cross-sectional shape of the ridge is triangular or trapezoidal, Rp can be reduced in the entire wavelength range of 400 to 1000 nm as compared with the case of rectangular. The effect of the cross-sectional shape on the wavelength dependence of Rs is small. Therefore, when the cross-sectional shape of the ridge is triangular or trapezoidal, Rp can be reduced while maintaining Rs high, and as a result, the ratio of Rs / Rp can be increased.
<例11~15>
 本例では、図7~9に示すような、樹脂層を有するワイヤグリッド型偏光子において、樹脂層の埋め込み度(f/(c+d)×100、単位%)を変化させてシミュレーションした。設計値を表2、3に示す。例11~15において、a’/eは1.21、Qm/Qsは0.35である。図16はRpの結果、図17はRsの結果である。
 これらの結果に示されるように、埋め込み度によってRpの波長依存性を調整できる。Rsの波長依存性に対する埋め込み度の影響は小さい。全波長域において埋め込み度がゼロに近いほどRsが高い傾向がある。
 特に、埋め込み度が0%付近又は100%付近であると、400~1000nmの全波長域でRpが低く維持される。また、埋め込み度が25~75%であると、波長が長くなるにしたがってRpが低くなり、特に700nm以上の長波長側でのRp低減効果に優れる。
<Examples 11 to 15>
In this example, simulation was performed by changing the degree of embedding of the resin layer (f / (c + d) × 100, unit%) in a wire grid polarizer having a resin layer as shown in FIGS. Tables 2 and 3 show the design values. In Examples 11 to 15, a '/ e is 1.21 and Qm / Qs is 0.35. FIG. 16 shows the result of Rp, and FIG. 17 shows the result of Rs.
As shown in these results, the wavelength dependence of Rp can be adjusted by the degree of embedding. The influence of the degree of embedding on the wavelength dependence of Rs is small. Rs tends to increase as the degree of embedding approaches zero in all wavelength ranges.
In particular, when the degree of embedding is around 0% or around 100%, Rp is kept low over the entire wavelength range of 400 to 1000 nm. When the embedding degree is 25 to 75%, Rp becomes lower as the wavelength becomes longer, and the Rp reduction effect is particularly excellent on the long wavelength side of 700 nm or more.
<例16~20>
 本例では、図8に示すような、樹脂層を有し埋め込み度が0%であるワイヤグリッド型偏光子において、樹脂層の屈折率(n)を変化させてシミュレーションした。設計値を表2、3に示す。図18はRpの結果、図19はRsの結果である。
 これらの結果に示されるように、550~750nmの波長域において樹脂層の屈折率(n)が1に近いほどRpが低くなる。Rsの波長依存性に対する樹脂層の屈折率の影響は小さい。全波長域において屈折率(n)が1に近いほどRsが高い傾向がある。
<Examples 16 to 20>
In this example, a simulation was performed by changing the refractive index (n) of the resin layer in a wire grid polarizer having a resin layer and having a burying degree of 0% as shown in FIG. Tables 2 and 3 show the design values. FIG. 18 shows the result of Rp, and FIG. 19 shows the result of Rs.
As shown in these results, the closer the refractive index (n) of the resin layer is to 1, the lower the Rp in the wavelength range of 550 to 750 nm. The influence of the refractive index of the resin layer on the wavelength dependence of Rs is small. Rs tends to be higher as the refractive index (n) is closer to 1 in the entire wavelength range.
<例21~25>
 本例では、図8に示すような、樹脂層を有し埋め込み度が0%であるワイヤグリッド型偏光子において、凸条のピッチbを変化させてシミュレーションした。a/bが0.45となるようにaの値も変化させた。設計値を表2、3に示す。図20はRpの結果、図21はRsの結果である。
 これらの結果に示されるように、400nmに近い短波長域ではピッチが狭いほどRpが低く、500nm以上の波長域ではピッチが広いほどRpが低くなる。Rsの波長依存性に対するピッチの影響は小さい。全波長域においてピッチが狭いほどRsが高い傾向がある。
<Examples 21 to 25>
In this example, a simulation was performed by changing the pitch b of the ridges in a wire grid polarizer having a resin layer and having an embedding degree of 0% as shown in FIG. The value of a was also changed so that a / b became 0.45. Tables 2 and 3 show the design values. FIG. 20 shows the result of Rp, and FIG. 21 shows the result of Rs.
As shown in these results, in a short wavelength region near 400 nm, the smaller the pitch, the lower the Rp, and in the wavelength region of 500 nm or more, the wider the pitch, the lower the Rp. The influence of pitch on the wavelength dependence of Rs is small. Rs tends to be higher as the pitch is smaller in the entire wavelength range.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<製造例1:ワイヤグリッド型偏光子の製造>
 例1と同様の手順で基材21上に光透過性基板1を作製した後、下記の方法で金属層を形成し、裏面上に基材21を有するワイヤグリッド型偏光子を得た。
 蒸着源に対向する光透過性基板1の傾きを変更可能な真空蒸着装置(昭和真空社製、SEC-16CM)を用い、光透過性基板1の凸条に斜方蒸着法にてアルミニウムを蒸着させ、金属層を形成した。蒸着角度θは27°とした。
 金属層を蒸着する前の光透過性基板1の断面の走査型電子顕微鏡像を図22に示す。
 得られたワイヤグリッド型偏光子の断面の走査型電子顕微鏡像を図23に示す。
<Production Example 1: Production of wire grid type polarizer>
After producing the light-transmitting substrate 1 on the substrate 21 in the same procedure as in Example 1, a metal layer was formed by the following method to obtain a wire grid polarizer having the substrate 21 on the back surface.
Using a vacuum evaporation apparatus (SEC-16CM, manufactured by Showa Vacuum Co., Ltd.) capable of changing the inclination of the light transmitting substrate 1 facing the evaporation source, aluminum is evaporated on the ridges of the light transmitting substrate 1 by oblique evaporation. Then, a metal layer was formed. The deposition angle θ was 27 °.
FIG. 22 shows a scanning electron microscope image of a cross section of the light transmitting substrate 1 before the metal layer is deposited.
FIG. 23 shows a scanning electron microscope image of a cross section of the obtained wire grid polarizer.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2018年10月1日付で出願された日本特許出願(特願2018-186780)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. This application is based on Japanese Patent Application (No. 2018-186780) filed on Oct. 1, 2018, the entire contents of which are incorporated by reference.
 Rs/Rpが高いワイヤグリッド型偏光子は、反射光に含まれるs偏光を利用する光学系を備えた映像表示装置に適用できる。 ワ イ ヤ A wire grid polarizer having a high Rs / Rp can be applied to an image display device provided with an optical system using s-polarized light included in reflected light.
 1 光透過性基板
 2 金属層
 10 凸条(エッチング前)
 11 凸条
 11a 頂部
 11b1 第1の側面
 11b2 第2の側面
 11c 凸条の下端
 12 凹溝
 12a 底部
 21 基材
 22 光硬化性組成物
 23、24 モールド
 31、32、33 樹脂層
 31a、33a 下端
 41 屈折率調整層
 42 反射防止基材
Reference Signs List 1 light-transmitting substrate 2 metal layer 10 ridge (before etching)
DESCRIPTION OF SYMBOLS 11 Ridge 11a Top 11b1 1st side 11b2 2nd side 11c Lower end of a ridge 12 Concave groove 12a Bottom 21 Substrate 22 Photocurable composition 23, 24 Mold 31, 32, 33 Resin layer 31a, 33a Lower end 41 Refractive index adjusting layer 42 Anti-reflective substrate

Claims (10)

  1.  表面に、互いに平行な凸条が所定のピッチで形成された光透過性基板と、前記光透過性基板の表面上に設けられた、金属又は金属化合物からなる金属層とを有し、
     前記凸条の、長さ方向に直交する断面形状は、頂部に向かって幅が漸次縮小し、前記凸条の頂部を挟む第1の側面及び第2の側面のうち、少なくとも前記第1の側面の全面は前記金属層で被覆されており、かつ前記第2の側面には前記金属層で被覆されていない露出面が存在し、
     前記凸条の長さ方向に直交する断面において、
     前記凸条の底部から頂部までの高さが80~125nmであり、
     前記第1の側面を覆う前記金属層の前記凸条の幅方向における厚さの最小値をWm、
     前記凸条の底部から頂部までの高さの1/2の位置より底部側の前記第1の側面を覆う前記金属層の前記凸条の幅方向における厚さの最大値をWb、
     前記凸条の頂部より前記底部側とは反対側に存在する前記金属層の前記凸条の幅方向における厚さの最大値をWhとするとき、
     前記Wmに対する前記Whの比が2.2~3.0であり、かつ前記Wmに対する前記Wbの比が1.5~2.1である、ワイヤグリッド型偏光子。
    On the surface, a light-transmitting substrate in which mutually parallel ridges are formed at a predetermined pitch, and a metal layer made of a metal or a metal compound, provided on the surface of the light-transmitting substrate,
    The cross-sectional shape of the ridge, which is perpendicular to the length direction, has a width gradually reduced toward the top, and at least the first side of the first side and the second side sandwiching the top of the ridge. Is covered with the metal layer, and there is an exposed surface not covered with the metal layer on the second side surface,
    In a cross section orthogonal to the length direction of the ridge,
    The height from the bottom to the top of the ridge is 80 to 125 nm;
    The minimum value of the thickness in the width direction of the ridge of the metal layer covering the first side surface is Wm,
    The maximum value of the thickness in the width direction of the ridge of the metal layer covering the first side surface on the bottom side from the position of 1/2 of the height from the bottom to the top of the ridge is Wb;
    When the maximum value of the thickness in the width direction of the ridge of the metal layer present on the side opposite to the bottom side from the top of the ridge is Wh,
    A wire grid polarizer, wherein a ratio of the Wh to the Wm is 2.2 to 3.0 and a ratio of the Wb to the Wm is 1.5 to 2.1.
  2.  前記Wbに対する前記Whの比が1.4以下である、請求項1に記載のワイヤグリッド型偏光子。 The wire grid polarizer according to claim 1, wherein the ratio of the Wh to the Wb is 1.4 or less.
  3.  前記光透過性基板及び前記金属層を覆う樹脂層を有する、請求項1又は2に記載のワイヤグリッド型偏光子。 The wire grid polarizer according to claim 1 or 2, further comprising a resin layer that covers the light transmitting substrate and the metal layer.
  4.  前記凸条の底部から頂部までの高さHg、及び前記樹脂層の波長589.3nmにおける屈折率nが、下式1を満たす、請求項3に記載のワイヤグリッド型偏光子。
     450≦4×n×Hg≦650 式1
    The wire grid polarizer according to claim 3, wherein the height Hg from the bottom to the top of the ridge and the refractive index n of the resin layer at a wavelength of 589.3 nm satisfy the following expression 1.
    450 ≦ 4 × n × Hg ≦ 650 Equation 1
  5.  下記の測定方法で得られる、x軸が波長、y軸がRs/Rpであるグラフにおいて、x=450nm、x=451nm、y=0及びy=1で表される4つの直線で囲まれた四角形の面積を1とするとき、x=450nm、x=650nm、y=0及びy=Rs/Rpで表される4つの線で囲まれた領域の相対面積S1が7000以上である、請求項3又は4に記載のワイヤグリッド型偏光子。
     測定方法:ワイヤグリッド型偏光子を、波長450~650nmにおける反射率が0.7%以下である2枚の反射防止基材で挟み、入射角度5°、測定波長450nm~650nm、波長間隔1nmの条件で、s偏光反射率及びp偏光反射率をそれぞれ測定し、p偏光反射率に対するs偏光反射率の比であるRs/Rpを求め、x軸が波長、y軸がRs/Rpであるグラフを作成する。
    In a graph obtained by the following measurement method, in which the x-axis is wavelength and the y-axis is Rs / Rp, it is surrounded by four straight lines represented by x = 450 nm, x = 451 nm, y = 0 and y = 1. The relative area S1 of a region surrounded by four lines represented by x = 450 nm, x = 650 nm, y = 0 and y = Rs / Rp, where the area of the rectangle is 1, is 7000 or more. 5. The wire grid polarizer according to 3 or 4.
    Measuring method: A wire grid type polarizer is sandwiched between two antireflection substrates having a reflectance of 0.7% or less at a wavelength of 450 to 650 nm, an incident angle of 5 °, a measuring wavelength of 450 to 650 nm, and a wavelength interval of 1 nm. Under the conditions, the s-polarized light reflectance and the p-polarized light reflectance are measured, respectively, and Rs / Rp, which is the ratio of the s-polarized light reflectance to the p-polarized light reflectance, is determined. The x-axis is wavelength, and the y-axis is Rs / Rp. Create
  6.  表面に、互いに平行な凸条が所定のピッチで形成された光透過性基板と、前記光透過性基板の表面上に設けられた、金属又は金属化合物からなる金属層とを有し、
     前記凸条の、長さ方向に直交する断面形状は、頂部に向かって幅が漸次縮小し、前記凸条の頂部を挟む第1の側面及び第2の側面のうち、少なくとも前記第1の側面の全面は前記金属層で被覆されており、かつ前記第2の側面には前記金属層で被覆されていない露出面が存在し、
     前記光透過性基板及び前記金属層を覆う樹脂層を有し、
     下記の測定方法で得られる、x軸が波長、y軸がRs/Rpであるグラフにおいて、x=450nm、x=451nm、y=0及びy=1で表される4つの直線で囲まれた四角形の面積を1とするとき、x=450nm、x=650nm、y=0及びy=Rs/Rpで表される4つの線で囲まれた領域の相対面積S1が7000以上である、ワイヤグリッド型偏光子。
     測定方法:ワイヤグリッド型偏光子を、波長450~650nmにおける反射率が0.7%以下である2枚の反射防止基材で挟み、入射角度5°、測定波長450nm~650nm、波長間隔1nmの条件で、s偏光反射率及びp偏光反射率をそれぞれ測定し、p偏光反射率に対するs偏光反射率の比であるRs/Rpを求め、x軸が波長、y軸がRs/Rpであるグラフを作成する。
    On the surface, a light-transmitting substrate in which mutually parallel ridges are formed at a predetermined pitch, and a metal layer made of a metal or a metal compound, provided on the surface of the light-transmitting substrate,
    The cross-sectional shape of the ridge, which is perpendicular to the length direction, has a width gradually reduced toward the top, and at least the first side of the first side and the second side sandwiching the top of the ridge. Is covered with the metal layer, and there is an exposed surface not covered with the metal layer on the second side surface,
    Having a resin layer covering the light transmitting substrate and the metal layer,
    In a graph obtained by the following measurement method, in which the x-axis is wavelength and the y-axis is Rs / Rp, it is surrounded by four straight lines represented by x = 450 nm, x = 451 nm, y = 0 and y = 1. Assuming that the area of the rectangle is 1, a wire grid in which the relative area S1 of a region surrounded by four lines represented by x = 450 nm, x = 650 nm, y = 0, and y = Rs / Rp is 7000 or more Type polarizer.
    Measuring method: A wire grid type polarizer is sandwiched between two antireflection substrates having a reflectance of 0.7% or less at a wavelength of 450 to 650 nm, an incident angle of 5 °, a measuring wavelength of 450 to 650 nm, and a wavelength interval of 1 nm. Under the conditions, the s-polarized light reflectance and the p-polarized light reflectance are measured, respectively, and Rs / Rp, which is the ratio of the s-polarized light reflectance to the p-polarized light reflectance, is determined. The x-axis is wavelength, and the y-axis is Rs / Rp. Create
  7.  前記光透過性基板の裏面上に第1の支持体を有し、かつ前記樹脂層の前記光透過性基板側とは反対側の面上に粘着剤を介して第2の支持体を有する、請求項3~6のいずれか一項に記載のワイヤグリッド型偏光子。 Having a first support on the back surface of the light-transmitting substrate, and having a second support via an adhesive on a surface of the resin layer opposite to the light-transmitting substrate side, The wire grid polarizer according to any one of claims 3 to 6.
  8.  前記光透過性基板の裏面上に第1の支持体を有し、かつ前記樹脂層の前記光透過性基板側とは反対側の面上に屈折率調整層を有する、請求項3~6のいずれか一項に記載のワイヤグリッド型偏光子。 The light-transmitting substrate according to claim 3, further comprising a first support on a back surface of the light-transmitting substrate, and a refractive index adjustment layer on a surface of the resin layer opposite to the light-transmitting substrate. The wire grid polarizer according to claim 1.
  9.  請求項1~8のいずれか一項に記載のワイヤグリッド型偏光子を含む偏光板。 A polarizing plate comprising the wire grid polarizer according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか一項に記載のワイヤグリッド型偏光子を含む映像表示装置。 An image display device including the wire grid polarizer according to any one of claims 1 to 8.
PCT/JP2019/038053 2018-10-01 2019-09-26 Wire-grid polarizer, polarizing plate, and video display device WO2020071257A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020550377A JPWO2020071257A1 (en) 2018-10-01 2019-09-26 Wire grid type polarizer, polarizing plate, image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-186780 2018-10-01
JP2018186780 2018-10-01

Publications (1)

Publication Number Publication Date
WO2020071257A1 true WO2020071257A1 (en) 2020-04-09

Family

ID=70055041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038053 WO2020071257A1 (en) 2018-10-01 2019-09-26 Wire-grid polarizer, polarizing plate, and video display device

Country Status (2)

Country Link
JP (1) JPWO2020071257A1 (en)
WO (1) WO2020071257A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215344A1 (en) * 2020-04-24 2021-10-28 株式会社東海理化電機製作所 Switching display device and method for manufacturing display polarizing plate
KR20210141023A (en) * 2020-05-15 2021-11-23 주식회사 옵트론텍 Optical filter with polarizer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037900A (en) * 2003-06-25 2005-02-10 Sharp Corp Polarizing optical element and display device using the element
JP2005172955A (en) * 2003-12-08 2005-06-30 Hitachi Maxell Ltd Polarizer, manufacturing method thereof, and projection type liquid crystal display device
JP2012108468A (en) * 2010-10-25 2012-06-07 Asahi Kasei E-Materials Corp Wire grid polarization plate
JP2012118438A (en) * 2010-12-03 2012-06-21 Asahi Kasei E-Materials Corp Wire grid polarizer and method for manufacturing wire grid polarizer
WO2012115059A1 (en) * 2011-02-22 2012-08-30 旭硝子株式会社 Fine structure form and liquid-crystal display device comprising fine structure form
JP2018517940A (en) * 2015-06-05 2018-07-05 コーロン インダストリーズ インク Wire grid polarizer and liquid crystal display device including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037900A (en) * 2003-06-25 2005-02-10 Sharp Corp Polarizing optical element and display device using the element
JP2005172955A (en) * 2003-12-08 2005-06-30 Hitachi Maxell Ltd Polarizer, manufacturing method thereof, and projection type liquid crystal display device
JP2012108468A (en) * 2010-10-25 2012-06-07 Asahi Kasei E-Materials Corp Wire grid polarization plate
JP2012118438A (en) * 2010-12-03 2012-06-21 Asahi Kasei E-Materials Corp Wire grid polarizer and method for manufacturing wire grid polarizer
WO2012115059A1 (en) * 2011-02-22 2012-08-30 旭硝子株式会社 Fine structure form and liquid-crystal display device comprising fine structure form
JP2018517940A (en) * 2015-06-05 2018-07-05 コーロン インダストリーズ インク Wire grid polarizer and liquid crystal display device including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215344A1 (en) * 2020-04-24 2021-10-28 株式会社東海理化電機製作所 Switching display device and method for manufacturing display polarizing plate
KR20210141023A (en) * 2020-05-15 2021-11-23 주식회사 옵트론텍 Optical filter with polarizer
KR102429415B1 (en) * 2020-05-15 2022-08-04 주식회사 옵트론텍 Optical filter with polarizer

Also Published As

Publication number Publication date
JPWO2020071257A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
EP2264492B1 (en) Manufacturing method for a wire grid polarizer
JP5636963B2 (en) Wire grid polarizer and method of manufacturing the same
US20130342794A1 (en) Fine structure form and liquid crystal display device comprising the fine structure form
JPWO2009123290A1 (en) Wire grid polarizer and method of manufacturing the same
US8907224B2 (en) Transparent conductive element, input device, and display device
RU2010108321A (en) OPTICAL FILM AND METHOD OF ITS MANUFACTURE, ANTI-Flickering POLARIZER AND DISPLAY DEVICE
WO2011043439A1 (en) Wire grid type polarizer and method for manufacturing same
KR20090123865A (en) Grid polarizer
JPWO2011132649A1 (en) Method for manufacturing wire grid polarizer and liquid crystal display device
WO2020071257A1 (en) Wire-grid polarizer, polarizing plate, and video display device
CN108474894A (en) wire grid polarizer and optical component including the wire grid polarizer
TWI461726B (en) Method for manufacturing optical film
KR20200066360A (en) Construction of optical layers in imprint lithography processes
CN105093380B (en) Inorganic polarizing plate and production method thereof
JP2000304933A (en) Polarizing filter and its manufacture
JP2012058397A (en) Wire grid polarizer, manufacturing method therefor and liquid crystal display device
JP2012078651A (en) Wire grid type polarizer and liquid crystal display device
JP6336660B1 (en) Method for producing antiglare film
JP2009236945A (en) Wire grid polarizer and method for manufacturing the same
WO2020071256A1 (en) Wire grid polarizer
KR20180075968A (en) Nano wire grid polarizer and display device empolying the same
JP2012073484A (en) Wire grid type polarizer and liquid crystal display device
JP2022118069A (en) Optical body, method for manufacturing optical body, and optical device
WO2022030482A1 (en) Optical element and method for producing same
JP2011227130A (en) Method for manufacturing wire grid polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550377

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869465

Country of ref document: EP

Kind code of ref document: A1