[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020066972A1 - 受信装置、および受信方法、並びに、画像処理システム - Google Patents

受信装置、および受信方法、並びに、画像処理システム Download PDF

Info

Publication number
WO2020066972A1
WO2020066972A1 PCT/JP2019/037184 JP2019037184W WO2020066972A1 WO 2020066972 A1 WO2020066972 A1 WO 2020066972A1 JP 2019037184 W JP2019037184 W JP 2019037184W WO 2020066972 A1 WO2020066972 A1 WO 2020066972A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
compression
unit
receiving device
images
Prior art date
Application number
PCT/JP2019/037184
Other languages
English (en)
French (fr)
Inventor
雄生 杉江
雅矢 竹本
真人 山根
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/276,732 priority Critical patent/US12034935B2/en
Publication of WO2020066972A1 publication Critical patent/WO2020066972A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/156Availability of hardware or computational resources, e.g. encoding based on power-saving criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0127Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level by changing the field or frame frequency of the incoming video signal, e.g. frame rate converter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records

Definitions

  • the present disclosure relates to a receiving device, a receiving method, and an image processing system, and more particularly, to a decrease in the resolution of an image that an operator wants to see at high resolution while responding to an increase in the number of connections of medical devices that supply images.
  • the present invention relates to a receiving device, a receiving method, and an image processing system that can suppress the reception.
  • Patent Document 1 For example, a technology has been disclosed in which medical images of a plurality of medical devices are combined into one display image and displayed on a display device (HMD) (see Patent Document 1).
  • the data transmission band may be squeezed.
  • the present disclosure has been made in view of such a situation, and particularly, suppresses a decrease in resolution of an image that an operator wants to view at high resolution while responding to an increase in the number of connections of medical devices that supply images. I do.
  • the receiving device includes an acquiring unit that acquires images from a plurality of devices, and a plurality of units that compresses the image acquired by the acquiring unit by selecting a compression method for each type of the image. And a compression unit.
  • a reception method includes an acquisition process of acquiring images from a plurality of devices, and a compression process of compressing the image acquired by the acquisition process by selecting a compression method for each type of the image. And a receiving method.
  • images are acquired from a plurality of devices, and the acquired images are compressed by selecting a compression method for each type of the images.
  • An image processing system includes an image server configured to store images from a plurality of devices, and a receiving device configured to acquire an image from the image server, output the acquired image to a display unit, and display the image.
  • a processing system wherein the image server includes an output unit that stores images from the plurality of devices and outputs the stored images to the reception device, wherein the reception device is configured to output the plurality of images from the image server.
  • An image processing system comprising: an acquisition unit that acquires an image from a device; and a plurality of compression units that compress the image acquired by the acquisition unit by selecting a compression method for each type of the image.
  • an image server stores images from the plurality of devices, the stored image is output to the receiving device, and the receiving device outputs the plurality of images from the image server.
  • An image is acquired from a device, and the acquired image is compressed by selecting a compression method for each type of the image.
  • FIG. 3 is a diagram illustrating an outline of an IP converter receiving device.
  • FIG. 1 is a diagram illustrating a configuration example of an in-hospital image processing system according to the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a first embodiment of an IP converter receiving device.
  • 4 is a flowchart illustrating a display control process performed by the IP converter receiving device in FIG. 3.
  • FIG. 9 is a diagram illustrating a configuration example of a second embodiment of the IP converter receiving device.
  • 6 is a flowchart illustrating a display control process performed by the IP converter receiving device in FIG. 5.
  • FIG. 14 is a diagram illustrating a configuration example of a third embodiment of the IP converter receiving device.
  • FIG. 3 is a diagram illustrating a format of bit packing.
  • FIG. 1 is a diagram illustrating a configuration example of an in-hospital image processing system according to the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a first embodiment of an IP converter receiving
  • FIG. 3 is a diagram illustrating an example in which a bit packing format is switched according to a processing load of a GPU.
  • 8 is a flowchart illustrating a display control process performed by the IP converter receiving device in FIG. 7.
  • FIG. 2 is a diagram illustrating a configuration example of a general-purpose personal computer. It is a figure showing roughly the whole operating room system composition. It is a figure showing the example of a display of the operation screen in a centralized operation panel. It is a figure showing an example of the situation of the operation to which the operating room system was applied.
  • FIG. 15 is a block diagram illustrating an example of a functional configuration of a camera head and a CCU illustrated in FIG. 14.
  • IPC IP Converter Receiver
  • FIG. 1 shows a configuration example of the IP converter receiving device (IPC-Rx) 11.
  • the IP converter receiving device (IPC-Rx) 11 receives a plurality of images packetized into IP packets, combines them into one image (PinP image), converts the image into an image signal, and outputs it to a monitor for display. Let it.
  • the IP converter receiving device (IPC-Rx) 11 combines an image captured in advance in a hospital or an intraoperative image into a single image to be presented to an operator, and It is converted to an image signal and output to a monitor for display.
  • the IP converter receiver (IPC-Rx) 11 includes an input unit (Network Rx) 31, decoders 32-1 to 32-n, an expansion bus (PCIe (Peripheral Component Interconnect Interconnect Express)) 33, A GPU (Graphics Processing Unit) 34 and an output unit (SDI (Serial Digital Interface) -Tx) 35 are provided.
  • PCIe Peripheral Component Interconnect Interconnect Express
  • GPU Graphics Processing Unit
  • SDI Serial Digital Interface
  • the input unit 31 is a serial interface, and includes a plurality of types of stream images such as an image currently captured during a surgery in addition to an image such as a medical image captured in a hospital in advance, which is IP packetized. Is received via a network, and is output to decoders 32-1 to 32-n for decoding a stream image according to the type.
  • Decoders (Decoder AAA to Decoder ZZZ) 32-1 to 32-n are decoders for decoding stream images according to the type of encoding, and output the decoded stream images to the expansion bus (PCIe) 33. It should be noted that “AAA” to “ZZZ” in “Decoder @ AAA” to “Decoder @ ZZZ” in the drawing represent decoders corresponding to different types of encoding.
  • the expansion bus (PCIe) 33 is a data transmission path between the decoders 32-1 to 32-n and the GPU 34, and between the GPU 34 and the output unit (SDI-Tx) 35, and outputs a plurality of decoded stream images to the GPU 34.
  • the output unit (SDI-Tx) 35 outputs one PinP (Picture in Picture) image generated by the GPU 34.
  • the GPU 34 generates one PinP (Picture in Picture) image by synthesizing a plurality of images, and outputs it to the extension bus 33.
  • PinP Picture in Picture
  • the output unit (SDI-Tx) 35 converts a single PinP image into a predetermined image signal, and provides a monitor provided in an operating room including a display such as an LCD (Liquid Crystal Display) or an organic EL (Electro Luminescence). (Monitor) for display.
  • a display such as an LCD (Liquid Crystal Display) or an organic EL (Electro Luminescence). (Monitor) for display.
  • IP packets such as a surgical field image, an endoscopic image, and a laparoscopic image, which are currently being captured.
  • An input of a stream image is received.
  • the input stream image is decoded for each type, and a plurality of stream images are combined to generate one PinP image, which is converted to a predetermined image signal such as 3G-SDI,
  • the image is supplied to a monitor provided in the operating room and displayed as one image.
  • the types of images input to the IP converter receiver 11 tend to increase year by year, and the band in the expansion bus (PCIe) 33 is compressed, so that the display of the PinP image displayed on the monitor is delayed. There was fear.
  • delays are avoided by limiting the number of input images input to the IP converter receiving device 11 or reducing the size of input images (reducing the resolution).
  • the technique of limiting the number of input images input to the IP converter receiver 11 and reducing the size of the input images (reducing the resolution) is a multi-modality (unifying a plurality of different medical image data in a unified manner). It can be said that this is a method that retreats in response to the progress in image processing technology for achieving higher resolution and in response to management and browsing.
  • the IP converter receiving apparatus of the present disclosure by changing the compression ratio according to the type of image, so that the image of a type that has little effect even at the expense of image quality has a high compression ratio, While receiving an image input, it is possible to suppress a decrease in the resolution of an image that an operator wants to view at a high resolution.
  • the in-hospital image processing system 40 of FIG. 2 records and manages images in the hospital, and combines the recorded and managed images and the images during surgery into one image and presents it to the surgeon. I do.
  • the in-hospital image processing system 40 includes a camera (camera) 50, a camera control unit (CCU (Camera Control Unit)) 51, an IP converter transmitting device (IPC-Tx) 52, a hub 53, and an image management server 54. , An IP converter receiving device (IPC-Rx) 55, and a monitor 56.
  • the camera 50 is an imaging device installed in the operating room, and is controlled by the CCU 51.
  • the camera 50 captures an operation field image, an endoscope image, a laparoscopic image, and the like as a stream image, and a camera control unit (CCU) 51.
  • Output to The camera 50 outputs the captured stream image to the camera control unit (CCU) 51 as an image signal such as 3G-SDI (3 Gbps-Serial Digital Interface) YCC / 422/10 bit or the like.
  • 3G-SDI 3 Gbps-Serial Digital Interface
  • YCC / 422/10 bit or the like.
  • the format of the image signal is not limited to 3G-SDI YCC / 422 / 10bit, but may be other various formats.
  • the camera control unit (CCU) 51 controls the operation of the camera 50 and outputs an image signal of a stream image captured by the camera 50 to the IP converter transmitting device (IPC-Tx) 52.
  • a plurality of cameras 50 may be provided.
  • a medical device capable of supplying a medical image such as a CT (Computed Tomography) image or an MRI (Magnetic Resonance Imaging) image is connected so that the medical image May be supplied.
  • CT Computer Tomography
  • MRI Magnetic Resonance Imaging
  • the IP converter transmission device (IPC-Tx) 52 encodes an image signal forming a stream image into a stream format such as LLVC (Low Latency Video Codec), converts the image signal into an IP packet, and converts it into a network signal via the hub 53.
  • LLVC Low Latency Video Codec
  • the type of encoding of the stream image may be other than LLVC, for example, H264 (MPEG-4 Part 10 Advanced Video Coding), JPEG2000 (Joint Photographic Experts Group 2000), DPCM (Differential Pulse Code Modulation), or the like.
  • H264 MPEG-4 Part 10 Advanced Video Coding
  • JPEG2000 Joint Photographic Experts Group 2000
  • DPCM Differential Pulse Code Modulation
  • the image management server 54 is, for example, an OR (Operation Room) server or the like provided in the hospital, and a CT (Computed Tomography) image, an MRI (Magnetic Resonance Imaging) image, an X-ray image, and the like that are captured in advance in the hospital. (So-called multi-modality images) are acquired via the hub 53, stored and managed, and output to the IP converter receiving device 55 via the hub 53 as necessary.
  • OR Operating Room
  • CT Computer Tomography
  • MRI Magnetic Resonance Imaging
  • X-ray image X-ray image
  • multi-modality images are acquired via the hub 53, stored and managed, and output to the IP converter receiving device 55 via the hub 53 as necessary.
  • the IP converter receiving device 55 processes an image captured by the camera 50 via the hub 53 and various images supplied from the image management server 54 into one image and outputs the processed image to the monitor 56 as an image signal. And display it.
  • the IP converter receiving device 55 provides the operator with a CT image, an MRI image, an X image, and the like, which have been captured in a hospital in advance, and an operation field, an endoscopic image, and a laparoscope.
  • the necessary information is presented to the operator by synthesizing the images and the like, forming one image, and displaying the image on a monitor.
  • LLVC and H264 are visual lossless compression methods
  • JPEG2000 and DPCM are lossless compression methods. Therefore, when they are combined into one PinP image, they are combined as a main image.
  • the encoding method may be JPEG2000 or DPCM for an operation field image, an endoscope image, a laparoscopic image, and the like
  • LLVC or H264 may be used for an image that becomes a sub image.
  • the IP converter receiver (IPC-Rx) 55 includes an input unit (Network @ Rx) 71, decoders (Decoder @ AAA to Decoder @ ZZZ) 72-1 to 72-n, and a bit packing unit (BitPack) 73-1. To 73-n, a bit packing control unit (PackingCtrl) 74, a table (Table) 75, an expansion bus (PCIe (Peripheral Component Interconnect Express)) 76, a GPU (Graphics Processing Unit) 77, and an output unit (SDI (Serial Digital Interface)). )) 78.
  • Network @ Rx 71
  • decoders Decoder @ AAA to Decoder @ ZZZ
  • BitPack bit packing control unit
  • Table table
  • PCIe Peripheral Component Interconnect Express
  • GPU Graphics Processing Unit
  • SDI Serial Digital Interface
  • the input unit (Network @ Rx) 71 includes, in addition to images such as an IP packetized CT image, an MRI image, and an X-ray image, an operation field image, an endoscopic image, a laparoscopic image, and the like which are currently being captured. Is an interface that receives input of a plurality of stream images and outputs the corresponding stream images to decoders 72-1 to 72-n that decode the corresponding stream images according to the corresponding type of decoding method according to the type of image.
  • Decoders (Decoder @ AAA to Decoder @ ZZZ) 72-1 to 72-n are decoders for decoding stream images for each type of encoding, respectively.
  • the decoded stream images are sent to bit packing units 73-1 to 73-n, respectively.
  • Output It should be noted that “AAA” to “ZZZ” in “Decoder @ AAA” to “Decoder @ ZZZ” in the drawing represent decoders corresponding to different types of encoding.
  • the bit packing units (BitPack) 73-1 to 73-n are based on Ancillary Data (for example, IOD (Information Object Definition) data of DICOM (Digital Imaging and Communications in Medicine)) in the image signal of the decoded stream image. Then, the type of the image signal is extracted and recognized, and supplied to a bit packing control unit (PackingCtrl) 74.
  • Ancillary Data for example, IOD (Information Object Definition) data of DICOM (Digital Imaging and Communications in Medicine)
  • the bit packing units (BitPack) 73-1 to 73-n compress the image signal by bit packing in the bit packing system designated by the bit packing control unit (PackingCtrl) 74 according to the type of the image signal. , To the GPU 77 via the expansion bus (PCIe) 76.
  • PCIe expansion bus
  • the bit packing control unit (PackingCtrl) 74 stores information of a bit packing method according to the type of image signal supplied from each of the bit packing units (BitPack) 73-1 to 73-n. Access is made to 75 to read out information of the bit packing method according to the type of the image signal, and output it to each of the bit packing units (BitPack) 73-1 to 73-n.
  • the expansion bus (PCIe (Peripheral Component Interconnect Express)) 76 is a data transmission path from the bit packing units (BitPack) 73-1 to 73-n to the GPU 77, and an output unit (SDI (Serial Digital Interface)) from the GPU 77. ) 78, and outputs a plurality of decoded stream images to the GPU 77, and outputs one PinP image generated by the GPU 34 to the output unit (SDI-Tx) 78.
  • PCIe Peripheral Component Interconnect Express
  • a GPU (Graphics Processing Unit) 77 generates one PinP (Picture in Picture) image by performing image processing of combining a plurality of images transmitted via an expansion bus (PCIe (Peripheral Component Interconnect Express)) 76. Output to the extension bus 76.
  • PCIe Peripheral Component Interconnect Express
  • An output unit (SDI (Serial Digital Interface) -Tx) 78 is a serial interface, converts a PinP image into a predetermined image signal, and performs an operation including a display such as an LCD (Liquid Crystal Display) or an organic EL (Electro Luminescence). The information is output to and displayed on a monitor (Monitor) 56 provided in the room.
  • SDI Serial Digital Interface
  • -Tx Serial Digital Interface
  • the Y signal of the image signal Is set to 10 bits, and a bit packing method for performing compression such that Cb and Cr signals are set to 0 bit is selected.
  • the surgical field image, the endoscopic image, the laparoscope image, and the like are images that are desired by the operator to be high-resolution images, a bit packing method in which the image is uncompressed is selected. You.
  • the bit packing method is selected so that the number of bits of the Y signal and the number of bits of the Cb and Cr signals are switched according to the type of the image signal.
  • the input unit (Network @ Rx) 71 receives inputs of a plurality of types of stream images and outputs the received stream images to decoders 72-1 to 72-n that decode the corresponding stream images according to the type of encoding.
  • the plurality of types of stream images are, for example, images such as an IP packetized CT image or MRI image supplied from the image management server 54 via the hub 53, and a CCU 51, an IP converter (IPC-Tx ) 52 and a hub 53, and are an operation field image, an endoscope image, a laparoscopic image, and the like that are currently being captured.
  • step S12 the decoders (Decoders) 72-1 to 72-n decode the respective types of stream images for each type of encoding, and transmit the decoded stream images to the bit packing units 73-1 to 73-n, respectively. Output.
  • bit packing units (BitPack) 73-1 to 73-n respectively provide information on the type of each image signal based on Ancillary Data (DICOM IOD data) in the image signal of the decoded stream image. Is extracted and recognized, and supplied to a bit packing control unit (PackingCtrl) 74.
  • DIOM IOD data Ancillary Data
  • step S14 the bit packing control unit (PackingCtrl) 74 accesses the table (Table) 75, and sets a bit corresponding to the type of the image signal supplied from each of the bit packing units (BitPack) 73-1 to 73-n.
  • the information of the packing method is read and output to each of the bit packing units (BitPack) 73-1 to 73-n.
  • step S15 the bit packing units (BitPack) 73-1 to 73-n perform bit packing of the image signal by the bit packing method supplied from the bit packing control unit (PackingCtrl) 74 according to the type of the image signal. Compress.
  • step S16 the bit packing units (BitPack) 73-1 to 73-n output the bit-packed image signals to the GPU 77 via the expansion bus (PCIe) 76.
  • PCIe expansion bus
  • step S17 the GPU (Graphics Processing Unit) 77 generates one PinP (Picture in Picture) image by image processing for synthesizing a plurality of images, and outputs it to the output unit 78 via the extension bus 76. I do.
  • PinP Pin in Picture
  • step S18 the output unit (SDI (Serial Digital Interface)) 78 outputs the PinP image signal to the monitor 56 provided in the operating room, which is a display, and displays it.
  • SDI Serial Digital Interface
  • the bit packing method is switched in accordance with the type of the image signal in the stage preceding the expansion bus (PCIe) 76, and even if the image quality is deteriorated due to the reduction in the data amount of the image signal accompanying the compression.
  • PCIe expansion bus
  • the switching of the bit packing method may be a method other than changing the number of bits of the Y signal and the Cb and Cr signals.
  • a component such as YC444, YC422, or YC420 may be used.
  • the bit puncturing method may be switched so as to switch the format.
  • the component amount is reduced (compressed) so as to reduce (compress) the data amount of the image signal which is less affected even if the image quality is deteriorated due to the reduction in the data amount of the image signal accompanying the compression.
  • the compression of the band of the expansion bus (PCIe) 76 can be reduced.
  • bit packing method the same bit packing method may be uniformly switched within a frame, or a specific area within a frame, for example, an endoscope image may be obtained from DICOM IOD data.
  • a bit packing method may be used in which the image signal in an area outside the mask, which is almost black, is greatly reduced.
  • the bit packing method for each area in the frame is switched or the frame rate is switched according to the type of the image signal, so that the data amount of the image signal is reduced.
  • the compression of the band in the expansion bus (PCIe) 76 is suppressed by compressing the data so that the data amount is reduced.
  • bit packing units (BitPack) 73-1 to 73-n extract the type of the image signal based on Ancillary Data (DICOM IOD data) in the image signal of the decoded stream image.
  • DICOM IOD data Ancillary Data
  • the bit packing control unit (PackingCtrl) 74 is supplied, the type of the image signal may be determined by a method other than the DICOM IOD data.
  • the bit packing unit (BitPack) 73 itself analyzes the image to determine the type of the image signal.
  • an image having a round black mask portion on the outer periphery may be determined to be an endoscopic image, and a grayscale image may be an X-ray image or a CT image. May be determined.
  • the type of image may be determined according to the analysis result of the spatial frequency analysis or the dynamic range analysis of each channel of the Y, Cb, and Cr signals, and the bit packing method may be switched according to the determination result.
  • bit packing control unit (PackingCtrl) 74 of the IP converter receiving device 55 according to the type of the DICOM IOD data and the image signal recognized by the image analysis? Has been described, the information indicating is read from the table 75 and the bit packing unit 73 is instructed.
  • a configuration other than the bit packing control unit (PackingCtrl) 74 may be instructed.
  • the image management server 54 may be instructed in accordance with the type of the image signal. May be instructed as to whether or not to use the bit packing method. More specifically, the image management server 54 may be configured to be able to rewrite the information of the bit packing method corresponding to the type of the image signal registered in the table 75, or the same as the bit packing control unit (PackingCtrl) 74. , The bit packing unit 73 may be directly instructed on the bit packing method.
  • FIG. 5 shows a second embodiment of the IP converter receiving apparatus that encodes an image signal according to the type of the image signal and decodes the image signal again in the GPU to generate one PinP image. Is shown. Note that, in the IP converter receiving device 55 of FIG. 5, components having the same functions as those of the configuration of the IP converter receiving device 55 of FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the IP converter receiver 55 of FIG. 5 differs from the IP converter receiver 55 of FIG. 3 in that the bit packing units (BitPack) 73-1 to 73-n, the bit packing control unit (PackingCtrl) 74, and the table ( Table 75 and GPU (Graphics Processing Unit) 77 are replaced by encoders (Enc) 91-1 to 91-n, table 92, and GPU (Graphics Processing Unit) 93.
  • BitPack bit packing units
  • PackingCtrl bit packing control unit
  • Table 75 and GPU Graphics Processing Unit
  • the encoders (Enc) 91-1 to 91-n determine the types of the image signals decoded by the decoders (Dec) 72-1 to 72-n, and the information of the encoding method according to the type of the image signals is stored.
  • the information of the corresponding encoding method is read from the table 92, and the image signal is encoded by the read encoding method and output to the GPU 93 via the expansion bus (PCIe) 76.
  • the encoding method used in the encoder 91 is, for example, JPEG2000 of lossless compression, DPCM of lossless compression, or the like.
  • the GPU (Graphics Processing Unit) 93 includes decoders (Dec) 111-1 to 111-n for decoding encoded image signals corresponding to the encoders (Enc) 91-1 to 91-n, respectively.
  • a single PinP (Picture in Picture) image is generated by image processing for combining a plurality of decoded images, and is output to the extension bus 76.
  • the compression rate is increased for an image that has a small effect even if the encoding method is selected according to the type of the supplied image signal and the data amount of the image signal is reduced.
  • Select an encoding method By reducing the amount of data and compressing an image of a type that has no effect even if the image quality is reduced, it is possible to reduce the compression of the band in the expansion bus (PCIe) 76. .
  • step S31 the input unit (Network @ Rx) 71 receives input of a plurality of types of stream images, and outputs the received stream images to decoders 72-1 to 72-n that decode the corresponding stream images according to the type of encoding. .
  • step S32 the decoders (Decoders) 72-1 to 72-n decode the encoded stream images for each type of encoding, and decode the decoded stream images into encoders (Enc) 91-1 to 91-n, respectively.
  • step S33 the encoders (Enc) 91-1 to 91-n extract and recognize information on the type of each image signal based on Ancillary Data (DICOM data) in the image signal of the decoded stream image. I do.
  • DICOM data Ancillary Data
  • step S34 the encoders (Enc) 91-1 to 91-n access the table (Table) 92 and read out information on the encoding method corresponding to the type of the recognized image signal.
  • step S35 the encoders (Enc) 91-1 to 91-n encode the image signals by the read encoding method.
  • step S36 the encoders (Enc) 91-1 to 91-n output the encoded image signals to the GPU 93 via the expansion bus (PCIe) 76.
  • step S37 the GPU (Graphics Processing Unit) 93 controls each of the decoders (Dec) 111-1 to 111-n and encodes them in a method corresponding to each of the encoders (Enc) 91-1 to 91-n.
  • the decoded image signal is decoded.
  • step S38 the GPU 93 generates one PinP (Picture in Picture) image by image processing for synthesizing a plurality of decoded images, and outputs the generated PinP (Picture in Picture) image to the output unit 78 via the extension bus 76.
  • PinP Pin in Picture
  • step S39 the output unit (SDI (Serial Digital Interface)) 78 outputs the PinP image signal to the monitor 56 provided in the operating room, which is a display, and displays it.
  • SDI Serial Digital Interface
  • the encoding system is switched in accordance with the type of the image signal in the preceding stage of the expansion bus (PCIe) 76, and even if the image signal is encoded, the image quality is degraded due to the reduction in the data amount.
  • PCIe expansion bus
  • the encoder (Enc) 91 of the IP converter receiving device 55 uses the DICOM IOD data or the information indicating what encoding method should be used in accordance with the type of the image signal recognized by the image analysis. Has been described from the table 92 to determine. However, if the encoding method can be determined, it may be determined by a device other than the encoder 91. For example, the image management server 54 instructs the encoder 91 on which encoding method to use in accordance with the type of image signal. You may make it.
  • the processing load of the GPU changes in accordance with the format of the data in the processing of the image signal. That is, when the GPU has a format consisting of 16-bit alignment, the processing load is reduced because no additional computational resources are required to read and interpret the data, so that the image signal is such that the base image quality is reduced. Also, it is possible to perform advanced processing such as recognition processing.
  • the GPU will use computational resources to read and decode it, reducing the image processing that can be performed.
  • bit packing format may be switched according to the GPU load situation.
  • FIG. 7 shows a configuration example of a third embodiment of the IP converter receiving apparatus in which the bit packing format is switched according to the load condition of the GPU. Note that, in the IP converter receiving device 55 of FIG. 7, components having the same functions as those of the configuration of the IP converter receiving device 55 of FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the IP converter receiver 55 of FIG. 7 is different from the IP converter receiver 55 of FIG. 3 in that the bit packing units (BitPack) 73-1 to 73-n, the bit packing control unit (PackingCtrl) 74, and the table ( Table) 75 and a GPU (Graphics @ Processing @ Unit) 77 are replaced with bit packing units (BitPack) 131-1 to 131-n, a bit packing control unit (PackingCtrl) 132, and a GPU (Graphics @ Processing @ Unit) 133. Is a point.
  • BitPack bit packing units
  • PackingCtrl bit packing control unit
  • GPU GPU
  • the bit packing units (BitPack) 131-1 to 131-n convert the decoded image signal in a format according to the processing load of the GPU 133 supplied from the bit packing control unit 132, according to the type of the image signal.
  • the data is packed and output to the GPU 133 via the expansion bus (PCIe) 76.
  • the GPU 133 includes a processor 151, and information on the processing load of the processor 151 is read by the bit packing control unit 132.
  • the bit packing control unit 132 outputs bit packing format information corresponding to the processing load of the processor 151 of the GPU 133 to the bit packing units (BitPack) 131-1 to 131-n.
  • the Y signals represented by Y0, Cb01, and Cr01, and the Cb, Cr signals are each stored in a 16-bit aligned 16-bit packing format composed of 16 bits. Packing is done.
  • each of the Y signal and the Cb and Cr signals has 6 bits from the LSB as surplus bits and the remaining 10 bits as payload.
  • the processor 151 of the GPU 133 that handles floating-point numbers reads data in 16-bit units, so that data access is good and data can be read and read with low load.
  • each of the Y, Cb, and Cr signals since each of the Y, Cb, and Cr signals has 16 bits, the total data amount is 48 bits.
  • YCbCr has a component format of 422, and each signal is data composed of 10 bits.
  • bit packing formats Two types of bit packing formats shown in the lower part of FIG. 8 can be considered.
  • the first bit packing format is such that the Y signal represented by Y0 is 16 bits, and the Cb and Cr signals represented by Cb01 and Cr01 are each 8 bits. Hetero packing format.
  • the Y signal is 16 bits without reduction in the data amount
  • the Cb signal and the Cr signal are each 8 bits, so that the Cb and Cr signals are 16 bits in total.
  • the processing load of the processor 151 in the GPU 133 is low, so that advanced processing such as recognition processing can be performed.
  • the second bit packing format is a high-compression packing format in which each of the Y signal, the Cb, and the Cr signals is 10 bits as shown in the lower right part of FIG.
  • each of the Y signal and the Cb and Cr signals represented by Y0, Cb01, and Cr01 from the LSB is a 10-bit payload, and the remaining bits are the remaining 2 bits. .
  • the Y signal, Cb signal, and Cr signal are all 10 bits
  • the data amount of the Y, Cb, Cr signal is reduced as compared with the hetero packing format. Is compressed with high efficiency by the small amount, and a decrease in the base image quality is suppressed as compared with the hetero packing format.
  • the format in the lower right part of FIG. 8 is data that is not in units of 16 bits, the processing load of the processor 151 in the GPU 133 for reading increases, so that the amount of resources required to read and decode the data is large. , Cannot perform other advanced processing.
  • the processor 151 of the GPU 133 has a large compression of the bandwidth to the normal expansion bus (PCIe) 76 (shown as “NG” in the drawing) shown in the upper part of FIG. If the processing load is lower than a predetermined threshold, the control is performed so that bit puncturing is performed in the high compression packing format shown in the middle part of FIG.
  • the high-compression packing format can reduce the compression of the band to the expansion bus (PCIe) 76 (in the figure, it is described as “OK”), but the processing load of the processor 151 in the GPU 133 is high (Unpack (High load), so that advanced signal processing by the GPU 133 becomes impossible (the GPU signal processing becomes Poor).
  • the processing load of the processor 151 of the GPU 133 is higher than a predetermined threshold, control is performed so as to perform bit puncturing to the hetero packing format shown in the middle part of FIG.
  • the hetero-packing format can reduce the compression of the band to the expansion bus (PCIe) 76 (in the figure, it is described as “OK”) and can read data in 16-bit units.
  • the processing load of the processor 151 is low (Unpack is low load), so that advanced signal processing is possible (GPU signal processing becomes Rich).
  • step S61 the input unit (Network @ Rx) 71 receives input of a plurality of types of stream images, and outputs them to decoders 72-1 to 72-n that decode the corresponding stream images according to the type of encoding. .
  • step S62 the decoders (Decoders) 72-1 to 72-n decode the respective types of stream images for each encoding type, and transmit the decoded stream images to the bit packing units 131-1 to 131-n, respectively. Output.
  • step S63 the bit packing control unit (PackingCtrl) 132 reads the load of the processor 151 of the GPU 133.
  • step S64 the bit packing control unit (PackingCtrl) 132 determines whether the processing load of the processor 151 of the GPU 133 is lower than a predetermined value (threshold). If the processing load is lower than the predetermined value, the process proceeds to step S66. Proceed to.
  • a predetermined value for the predetermined value
  • step S65 the bit packing control unit (PackingCtrl) 132 performs bit packing according to the high-compression packing format described with reference to the lower right part of FIG. 8 so that the bit packing units (BitPack) 131-1 to 131- Instruct n.
  • step S64 when the processing load of the processor 151 of the GPU 133 is not lower than the predetermined threshold, the process proceeds to step S66.
  • step S66 the bit packing control unit (PackingCtrl) 132 performs bit packing using the hetero packing format described with reference to the lower left part of FIG. 8 so that the bit packing units (BitPack) 131-1 to 131-n. To instruct.
  • step S67 the bit packing units (BitPack) 131-1 to 131-n output the bit-packed image signals to the GPU 133 via the expansion bus (PCIe) 76.
  • PCIe expansion bus
  • step S68 the GPU (Graphics Processing Unit) 133 generates one PinP (Picture in Picture) image by image processing using a plurality of images, and outputs it to the output unit 78 via the extension bus 76. I do.
  • PinP Pin in Picture
  • step S69 the output unit (SDI (Serial Digital Interface)) 78 outputs the PinP image signal to the monitor 56 provided in the operating room, which is a display, and displays it.
  • SDI Serial Digital Interface
  • bit packing units (BitPack) 131-1 to 131-n switch the bit packing format according to the processing load of the processor 151 of the GPU 133, and The bit packing method may be switched according to the type of image.
  • bit packing format is switched in accordance with the processing load of the GPU at the previous stage of the expansion bus (PCIe) 76. , The compression of the band in the expansion bus (PCIe) 76 can be suppressed.
  • the expansion bus 76 serving as the data transmission path is PCIe.
  • the present invention can be applied to other configurations as long as it functions as a data transmission path. It may be applied to MIPI (Mobile Industry Processor Interface), GMSL (Gigabit Multimedia Serial Link), etc., which function as a transmission path.
  • MIPI Mobile Industry Processor Interface
  • GMSL Gigabit Multimedia Serial Link
  • the IP converter receiving device (IPC-Rx) 55 converts the image signals for the left and right eyes into a line-by-line image, for example, in front of the expansion bus (PCIe) 76 in accordance with the display function of the monitor 56 to which the IP converter is connected.
  • a signal (progressive image signal), a top-and-bottom image signal (interlaced image signal), or a 2D image signal may be switched and output to the GPU 77.
  • Example of execution by software can be executed by hardware, but can also be executed by software.
  • a program constituting the software can execute various functions by installing a computer built into dedicated hardware or installing various programs. It is installed from a recording medium to a possible general-purpose computer, for example.
  • FIG. 11 shows a configuration example of a general-purpose computer.
  • This personal computer includes a CPU (Central Processing Unit) 1001.
  • An input / output interface 1005 is connected to the CPU 1001 via a bus 1004.
  • a ROM (Read Only Memory) 1002 and a RAM (Random Access Memory) 1003 are connected to the bus 1004.
  • the input / output interface 1005 includes an input unit 1006 including an input device such as a keyboard and a mouse for inputting an operation command by a user, an output unit 1007 for outputting a processing operation screen and an image of a processing result to a display device, A storage unit 1008 including a hard disk drive and the like, a LAN (Local Area Network) adapter and the like, and a communication unit 1009 for executing communication processing via a network represented by the Internet are connected.
  • an input unit 1006 including an input device such as a keyboard and a mouse for inputting an operation command by a user
  • an output unit 1007 for outputting a processing operation screen and an image of a processing result to a display device
  • a storage unit 1008 including a hard disk drive and the like, a LAN (Local Area Network) adapter and the like, and a communication unit 1009 for executing communication processing via a network represented by the Internet are connected.
  • LAN Local Area Network
  • a magnetic disk including a flexible disk
  • an optical disk including a CD-ROM (Compact Disc-Only Memory), a DVD (Digital Versatile Disc)), a magneto-optical disk (including an MD (Mini Disc)), or a semiconductor
  • a drive 1010 that reads and writes data from and to a removable storage medium 1011 such as a memory is connected.
  • the CPU 1001 is read from a program stored in the ROM 1002 or a removable storage medium 1011 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, is installed in the storage unit 1008, and is loaded from the storage unit 1008 to the RAM 1003. Various processes are executed according to the program.
  • the RAM 1003 also appropriately stores data necessary for the CPU 1001 to execute various processes.
  • the CPU 1001 loads, for example, a program stored in the storage unit 1008 into the RAM 1003 via the input / output interface 1005 and the bus 1004 and executes the program. Is performed.
  • the program executed by the computer (CPU 1001) can be provided by being recorded in a removable storage medium 1011 as a package medium or the like, for example. Further, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 1008 via the input / output interface 1005 by attaching the removable storage medium 1011 to the drive 1010.
  • the program can be received by the communication unit 1009 via a wired or wireless transmission medium and installed in the storage unit 1008.
  • the program can be installed in the ROM 1002 or the storage unit 1008 in advance.
  • the program executed by the computer may be a program in which processing is performed in chronological order in the order described in this specification, or may be performed in parallel or at a necessary timing such as when a call is made. It may be a program that performs processing.
  • the CPU 1001 in FIG. 11 includes the decoders 72-1 to 72-n in FIG. 3, the bit packing units 73-1 to 73-n, the bit packing control unit 74, the encoders 91-1 to 91-n in FIG. 7, the functions of the decoders 72-1 to 72-n, the bit packing units 131-1 to 131-n, and the bit packing control unit 132 are realized.
  • a system refers to a set of a plurality of components (devices, modules (parts), and the like), and it does not matter whether all components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device housing a plurality of modules in one housing are all systems. .
  • the present disclosure can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and processed jointly.
  • each step described in the above-described flowchart can be executed by a single device, or can be shared and executed by a plurality of devices.
  • one step includes a plurality of processes
  • the plurality of processes included in the one step may be executed by one device or may be shared and executed by a plurality of devices.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an operating room system.
  • FIG. 12 is a diagram schematically illustrating an overall configuration of an operating room system 5100 to which the technology according to the present disclosure can be applied.
  • an operating room system 5100 is configured by connecting a group of devices installed in an operating room via an audiovisual controller (AV controller) 5107 and an operating room control device 5109 so as to be able to cooperate with each other.
  • AV controller audiovisual controller
  • FIG. 12 As an example, various devices 5101 for endoscopic surgery, a ceiling camera 5187 provided on the ceiling of the operating room to capture an image of the operator, and an operating room provided on the ceiling of the operating room An operation site camera 5189 for capturing an image of the entire situation, a plurality of display devices 5103A to 5103D, a recorder 5105, a patient bed 5183, and a light 5191 are illustrated.
  • the device group 5101 belongs to an endoscope operation system 5113 described below, and includes an endoscope, a display device that displays an image captured by the endoscope, and the like.
  • Each device belonging to the endoscopic surgery system 5113 is also called a medical device.
  • the display devices 5103A to 5103D, the recorder 5105, the patient bed 5183, and the lighting 5191 are devices provided separately from the endoscopic surgery system 5113, for example, in an operating room.
  • Each device that does not belong to the endoscopic surgery system 5113 is also called a non-medical device.
  • the audiovisual controller 5107 and / or the operating room control device 5109 control the operation of these medical devices and non-medical devices in cooperation with each other.
  • the audiovisual controller 5107 controls processing related to image display in the medical device and the non-medical device as a whole.
  • the device group 5101, the ceiling camera 5187, and the operation site camera 5189 have a function of transmitting information to be displayed during the operation (hereinafter, also referred to as display information).
  • It may be a device (hereinafter, also referred to as a source device).
  • the display devices 5103A to 5103D may be devices to which display information is output (hereinafter, also referred to as output destination devices).
  • the recorder 5105 may be a device corresponding to both the source device and the output destination device.
  • the audiovisual controller 5107 has a function of controlling the operation of the transmission source device and the output destination device, acquiring display information from the transmission source device, transmitting the display information to the output destination device, and displaying or recording the display information.
  • the display information includes various images captured during the operation, various information related to the operation (for example, patient's physical information, past test results, information on a surgical procedure, and the like).
  • information about an image of an operation part in a patient's body cavity captured by an endoscope can be transmitted from the device group 5101 as display information.
  • information about an image at hand of the operator captured by the ceiling camera 5187 may be transmitted as display information from the ceiling camera 5187.
  • information on an image indicating a state of the entire operation room captured by the operation site camera 5189 can be transmitted as display information. Note that in the case where another device having an imaging function is present in the operating room system 5100, the audiovisual controller 5107 acquires information about an image captured by the other device from the other device as display information. May be.
  • the recorder 5105 information about these images captured in the past is recorded by the audiovisual controller 5107.
  • the audiovisual controller 5107 can acquire information on the previously captured image from the recorder 5105 as display information. It should be noted that the recorder 5105 may also record in advance various information related to the operation.
  • the audiovisual controller 5107 causes at least one of the display devices 5103A to 5103D, which is an output destination device, to display the acquired display information (that is, images captured during the operation and various information related to the operation).
  • the display device 5103A is a display device suspended from the ceiling of the operating room
  • the display device 5103B is a display device installed on the wall of the operating room
  • the display device 5103C is located in the operating room.
  • the display device is a display device installed on a desk
  • the display device 5103D is a mobile device having a display function (for example, a tablet PC (Personal Computer)).
  • the operating room system 5100 may include a device outside the operating room.
  • the device outside the operating room may be, for example, a server connected to a network established inside or outside the hospital, a PC used by medical staff, a projector installed in a conference room of the hospital, and the like.
  • the audiovisual controller 5107 can display the display information on a display device of another hospital via a video conference system or the like for remote medical care.
  • the operating room control device 5109 controls the processes other than the process related to the image display in the non-medical device in an integrated manner.
  • the operating room control device 5109 controls driving of the patient bed 5183, the ceiling camera 5187, the operation site camera 5189, and the lighting 5191.
  • the IP converter device (IPC) 5110 receives input of a plurality of IP packetized images corresponding to display information transmitted from the transmission source device and output from the audiovisual controller 5107, and decodes each image type. Is a device for converting the image signal into an image signal. At this time, one PinP image may be generated by combining a plurality of images. IP converter device 5110 outputs the image signal to centralized operation panel 5111 and causes it to be displayed. Note that the IP converter device 5110 may have a function of converting an image signal output from the display device into an IP packet.
  • the operating room system 5100 is provided with a centralized operation panel 5111, and the user gives an instruction about image display to the audiovisual controller 5107 via the centralized operation panel 5111, and the operating room control device 5109. Instructions on the operation of the non-medical device can be given to the user.
  • the centralized operation panel 5111 includes a touch panel provided on a display surface of a display device.
  • FIG. 13 is a diagram showing a display example of an operation screen on the centralized operation panel 5111.
  • FIG. 13 illustrates, as an example, an operation screen corresponding to a case where two display devices are provided as output destination devices in the operating room system 5100.
  • operation screen 5193 is provided with a source selection area 5195, a preview area 5197, and a control area 5201.
  • the transmission source selection area 5195 displays a transmission source device provided in the operating room system 5100 and a thumbnail screen representing display information of the transmission source device in association with each other. The user can select display information to be displayed on the display device from any of the transmission source devices displayed in the transmission source selection area 5195.
  • the preview area 5197 displays a preview of a screen displayed on two display devices (Monitor 1 and Monitor 2) which are output destination devices.
  • four images are displayed on one display device as PinP.
  • the four images correspond to display information transmitted from the transmission source device selected in the transmission source selection area 5195. Of the four images, one is displayed relatively large as a main image, and the remaining three are displayed relatively small as sub-images. The user can switch the main image and the sub image by appropriately selecting the area where the four images are displayed.
  • a status display area 5199 is provided below the area where the four images are displayed, and the status related to the operation (for example, the elapsed time of the operation, the patient's physical information, etc.) is appropriately displayed in the area. obtain.
  • the control area 5201 includes a source operation area 5203 in which a GUI (Graphical User Interface) part for operating the source apparatus is displayed, and a GUI part for operating the output destination apparatus. And an output destination operation area 5205 in which is displayed.
  • the source operation area 5203 is provided with a GUI component for performing various operations (pan, tilt, and zoom) on the camera of the source apparatus having an imaging function. The user can operate the operation of the camera in the transmission source device by appropriately selecting these GUI components.
  • the transmission source device selected in the transmission source selection area 5195 is a recorder (ie, in the preview area 5197, an image previously recorded on the recorder is displayed).
  • the source operation area 5203 may be provided with a GUI component for performing operations such as reproduction, reproduction stop, rewind, and fast forward of the image.
  • a GUI component for performing various operations (swap, flip, color adjustment, contrast adjustment, switching between 2D display and 3D display) on display on the display device that is the output destination device is provided. Is provided. The user can operate the display on the display device by appropriately selecting these GUI parts.
  • the operation screen displayed on the centralized operation panel 5111 is not limited to the illustrated example, and the user can use the audiovisual controller 5107 and the operating room control device 5109 provided in the operating room system 5100 via the centralized operation panel 5111. Operation input to each device that can be controlled may be possible.
  • FIG. 13 is a diagram showing an example of a state of an operation to which the operating room system described above is applied.
  • a ceiling camera 5187 and an operating room camera 5189 are provided on the ceiling of the operating room, and can photograph an operator (doctor) 5181 who performs treatment on an affected part of the patient 5185 on the patient bed 5183 and an image of the entire operating room. It is.
  • the ceiling camera 5187 and the operation site camera 5189 may be provided with a magnification adjustment function, a focal length adjustment function, an imaging direction adjustment function, and the like.
  • the lighting 5191 is provided on the ceiling of the operating room and irradiates at least the operator 5181 at hand.
  • the illumination 5191 may be capable of appropriately adjusting the irradiation light amount, the wavelength (color) of the irradiation light, the irradiation direction of the light, and the like.
  • the endoscope operation system 5113, the patient bed 5183, the ceiling camera 5187, the operation site camera 5189, and the illumination 5191 are provided via an audiovisual controller 5107 and an operation room control device 5109 (not shown in FIG. 14). Are connected so that they can cooperate with each other.
  • a centralized operation panel 5111 is provided in the operating room. As described above, the user can appropriately operate these devices existing in the operating room via the centralized operation panel 5111.
  • the endoscope operation system 5113 includes an endoscope 5115, other surgical tools 5131, a support arm device 5141 supporting the endoscope 5115, and various devices for endoscopic surgery. And a cart 5151 on which is mounted.
  • trocars 5139a to 5139d are punctured into the abdominal wall instead of cutting the abdominal wall and opening the abdomen. Then, the lens barrel 5117 of the endoscope 5115 and other surgical tools 5131 are inserted into the body cavity of the patient 5185 from the trocars 5139a to 5139d.
  • an insufflation tube 5133, an energy treatment tool 5135, and forceps 5137 are inserted into the body cavity of the patient 5185 as other surgical tools 5131.
  • the energy treatment device 5135 is a treatment device that performs incision and exfoliation of tissue, sealing of blood vessels, and the like by high-frequency current and ultrasonic vibration.
  • the illustrated surgical tool 5131 is merely an example, and various surgical tools generally used in endoscopic surgery, such as, for example, a retractor and a retractor, may be used.
  • the image of the operative site in the body cavity of the patient 5185 taken by the endoscope 5115 is displayed on the display device 5155.
  • the operator 5181 performs a treatment such as excision of the affected part using the energy treatment tool 5135 and the forceps 5137 while viewing the image of the operation part displayed on the display device 5155 in real time.
  • the insufflation tube 5133, the energy treatment tool 5135, and the forceps 5137 are supported by an operator 5181 or an assistant during the operation.
  • the support arm device 5141 includes an arm portion 5145 extending from the base portion 5143.
  • the arm portion 5145 includes joint portions 5147a, 5147b, 5147c, and links 5149a, 5149b, and is driven by the control of the arm control device 5159.
  • the endoscope 5115 is supported by the arm portion 5145, and its position and posture are controlled. Thereby, stable fixing of the position of the endoscope 5115 can be realized.
  • the endoscope 5115 includes a lens barrel 5117 having a region of a predetermined length from the distal end inserted into the body cavity of the patient 5185, and a camera head 5119 connected to the proximal end of the lens barrel 5117.
  • the endoscope 5115 configured as a so-called rigid endoscope having a hard lens barrel 5117 is illustrated.
  • the endoscope 5115 is configured as a so-called flexible endoscope having a soft lens barrel 5117. Is also good.
  • An opening in which the objective lens is fitted is provided at the tip of the lens barrel 5117.
  • a light source device 5157 is connected to the endoscope 5115, and the light generated by the light source device 5157 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 5117, and the objective The light is radiated toward the observation target in the body cavity of the patient 5185 via the lens.
  • the endoscope 5115 may be a direct view, a perspective view, or a side view.
  • An optical system and an image sensor are provided inside the camera head 5119, and the reflected light (observation light) from the observation target is focused on the image sensor by the optical system.
  • the observation light is photoelectrically converted by the imaging element, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 5153 as RAW data.
  • the camera head 5119 has a function of adjusting the magnification and the focal length by appropriately driving the optical system.
  • a plurality of image pickup devices may be provided in the camera head 5119 in order to support, for example, stereoscopic viewing (3D display).
  • a plurality of relay optical systems are provided inside the lens barrel 5117 to guide observation light to each of the plurality of imaging elements.
  • the CCU 5153 includes a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 5115 and the display device 5155. Specifically, the CCU 5153 performs various image processing for displaying an image based on the image signal, such as a developing process (demosaicing process), for example, on the image signal received from the camera head 5119.
  • the CCU 5153 provides the image signal subjected to the image processing to the display device 5155.
  • the CCU 5153 is connected to an audiovisual controller 5107 shown in FIG.
  • the CCU 5153 also provides the image signal subjected to the image processing to the audiovisual controller 5107.
  • the CCU 5153 sends a control signal to the camera head 5119 and controls its driving.
  • the control signal may include information on imaging conditions such as a magnification and a focal length.
  • the information on the imaging condition may be input via the input device 5161 or may be input via the above-described centralized operation panel 5111.
  • the display device 5155 displays an image based on the image signal processed by the CCU 5153 under the control of the CCU 5153.
  • the endoscope 5115 is compatible with high-resolution shooting such as 4K (3840 horizontal pixels ⁇ 2160 vertical pixels) or 8K (7680 horizontal pixels ⁇ 4320 vertical pixels), and / or 3D display
  • a display device that can display a high-resolution image and / or a device that can display a 3D image may be used as the display device 5155.
  • a display device 5155 having a size of 55 inches or more a more immersive feeling can be obtained.
  • a plurality of display devices 5155 having different resolutions and sizes may be provided according to applications.
  • the light source device 5157 includes a light source such as an LED (light emitting diode), for example, and supplies the endoscope 5115 with irradiation light at the time of imaging the operation site.
  • a light source such as an LED (light emitting diode), for example, and supplies the endoscope 5115 with irradiation light at the time of imaging the operation site.
  • the arm control device 5159 is configured by a processor such as a CPU, for example, and operates according to a predetermined program to control the driving of the arm portion 5145 of the support arm device 5141 according to a predetermined control method.
  • the input device 5161 is an input interface to the endoscopic surgery system 5113.
  • the user can input various kinds of information and input instructions to the endoscopic surgery system 5113 via the input device 5161.
  • the user inputs, via the input device 5161, various types of information related to surgery, such as physical information of a patient and information about a surgical technique.
  • the user issues an instruction to drive the arm unit 5145 via the input device 5161 or an instruction to change imaging conditions (the type of irradiation light, magnification, focal length, and the like) by the endoscope 5115.
  • an instruction to drive the energy treatment tool 5135 is input.
  • the type of the input device 5161 is not limited, and the input device 5161 may be various known input devices.
  • the input device 5161 for example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5171, and / or a lever can be applied.
  • the touch panel may be provided on a display surface of the display device 5155.
  • the input device 5161 is a device worn by a user such as a glasses-type wearable device or an HMD (Head Mounted Display), and various inputs are performed according to a user's gesture or line of sight detected by these devices. Is performed. Further, the input device 5161 includes a camera capable of detecting the movement of the user, and various inputs are performed according to the user's gesture and the line of sight detected from the video imaged by the camera. Further, the input device 5161 includes a microphone capable of collecting a user's voice, and various inputs are performed by voice via the microphone.
  • a user's gesture or line of sight detected by these devices Is performed.
  • the input device 5161 includes a camera capable of detecting the movement of the user, and various inputs are performed according to the user's gesture and the line of sight detected from the video imaged by the camera.
  • the input device 5161 includes a microphone capable of collecting a user's voice, and various inputs are performed by voice via the microphone.
  • the input device 5161 is configured to be capable of inputting various kinds of information in a non-contact manner, a user (eg, an operator 5181) belonging to a clean area can operate a device belonging to a dirty area in a non-contact manner. Becomes possible. In addition, since the user can operate the device without releasing his / her hand from the surgical tool, the convenience for the user is improved.
  • the treatment instrument control device 5163 controls the driving of the energy treatment instrument 5135 for cauterizing, incising a tissue, sealing a blood vessel, and the like.
  • the insufflation device 5165 is provided with an insufflation tube 5133 to inflate the body cavity of the patient 5185 for the purpose of securing the visual field by the endoscope 5115 and securing the working space of the operator.
  • the recorder 5167 is a device that can record various types of information related to surgery.
  • the printer 5169 is a device capable of printing various types of information on surgery in various formats such as text, images, and graphs.
  • the support arm device 5141 includes a base portion 5143 that is a base, and an arm portion 5145 extending from the base portion 5143.
  • the arm 5145 includes a plurality of joints 5147a, 5147b, 5147c, and a plurality of links 5149a, 5149b connected by the joint 5147b.
  • FIG. The configuration of the arm portion 5145 is simplified. Actually, the shapes, numbers and arrangements of the joints 5147a to 5147c and the links 5149a and 5149b, the directions of the rotation axes of the joints 5147a to 5147c, and the like are appropriately set so that the arm 5145 has a desired degree of freedom. obtain.
  • the arm portion 5145 can be preferably configured to have six or more degrees of freedom.
  • the lens barrel 5117 of the endoscope 5115 can be inserted into the body cavity of the patient 5185 from a desired direction. Will be possible.
  • the joints 5147a to 5147c are provided with actuators, and the joints 5147a to 5147c are configured to be rotatable around a predetermined rotation axis by driving the actuators.
  • the drive of the actuator is controlled by the arm control device 5159
  • the rotation angles of the joints 5147a to 5147c are controlled, and the drive of the arm 5145 is controlled.
  • the arm control device 5159 can control the driving of the arm portion 5145 by various known control methods such as force control or position control.
  • the drive of the arm unit 5145 is appropriately controlled by the arm control device 5159 in accordance with the operation input.
  • the position and orientation of the endoscope 5115 may be controlled.
  • the endoscope 5115 at the distal end of the arm 5145 can be moved from an arbitrary position to an arbitrary position, and can be fixedly supported at the position after the movement.
  • the arm 5145 may be operated by a so-called master slave method.
  • the arm unit 5145 can be remotely controlled by the user via the input device 5161 installed at a location away from the operating room.
  • the arm control device 5159 When the force control is applied, the arm control device 5159 receives the external force from the user and controls the actuators of the joints 5147a to 5147c so that the arm 5145 moves smoothly according to the external force. Driving, so-called power assist control may be performed.
  • the arm 5145 when the user moves the arm 5145 while directly touching the arm 5145, the arm 5145 can be moved with a relatively light force. Therefore, the endoscope 5115 can be moved more intuitively and with a simpler operation, and the convenience for the user can be improved.
  • the endoscope 5115 was supported by a doctor called a scopist.
  • the position of the endoscope 5115 can be fixed more reliably without manual operation, so that an image of the operation site can be obtained stably.
  • the operation can be performed smoothly.
  • the arm control device 5159 may not necessarily be provided on the cart 5151. Further, the arm control device 5159 need not necessarily be one device. For example, the arm control device 5159 may be provided in each of the joints 5147a to 5147c of the arm portion 5145 of the support arm device 5141, and the plurality of arm control devices 5159 cooperate with each other to drive the arm portion 5145. Control may be implemented.
  • the light source device 5157 supplies the endoscope 5115 with irradiation light at the time of imaging the operation site.
  • the light source device 5157 includes, for example, a white light source including an LED, a laser light source, or a combination thereof.
  • a white light source including an LED, a laser light source, or a combination thereof.
  • the output intensity and output timing of each color can be controlled with high accuracy. Can be adjusted.
  • laser light from each of the RGB laser light sources is radiated to the observation target in a time-division manner, and the driving of the image pickup device of the camera head 5119 is controlled in synchronization with the irradiation timing, thereby supporting each of the RGB laser light sources. It is also possible to capture the image obtained in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image sensor.
  • the driving of the light source device 5157 may be controlled so as to change the intensity of the output light every predetermined time.
  • the driving of the image pickup device of the camera head 5119 in synchronization with the timing of the change of the light intensity, an image is acquired in a time-division manner, and the image is synthesized, so that high dynamics without so-called blackout and whiteout are obtained. An image of the range can be generated.
  • the light source device 5157 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of the absorption of light in the body tissue, by irradiating light in a narrower band than the irradiation light (ie, white light) at the time of normal observation, the surface of the mucous membrane is exposed.
  • a so-called narrow-band light observation (Narrow Band Imaging) for photographing a predetermined tissue such as a blood vessel with high contrast is performed.
  • fluorescence observation in which an image is obtained by fluorescence generated by irradiating excitation light may be performed.
  • a body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and Irradiation with excitation light corresponding to the fluorescence wavelength of the reagent to obtain a fluorescent image may be performed.
  • the light source device 5157 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 15 is a block diagram showing an example of a functional configuration of the camera head 5119 and the CCU 5153 shown in FIG.
  • the camera head 5119 has a lens unit 5121, an imaging unit 5123, a driving unit 5125, a communication unit 5127, and a camera head control unit 5129 as its functions.
  • the CCU 5153 has a communication unit 5173, an image processing unit 5175, and a control unit 5177 as its functions.
  • the camera head 5119 and the CCU 5153 are communicably connected by a transmission cable 5179.
  • the lens unit 5121 is an optical system provided at a connection with the lens barrel 5117. Observation light taken in from the tip of the barrel 5117 is guided to the camera head 5119 and enters the lens unit 5121.
  • the lens unit 5121 is configured by combining a plurality of lenses including a zoom lens and a focus lens. The optical characteristics of the lens unit 5121 are adjusted so that the observation light is condensed on the light receiving surface of the imaging element of the imaging unit 5123. Further, the zoom lens and the focus lens are configured such that their positions on the optical axis are movable for adjusting the magnification and the focus of the captured image.
  • the imaging unit 5123 is constituted by an imaging element, and is arranged at the subsequent stage of the lens unit 5121.
  • the observation light that has passed through the lens unit 5121 is condensed on the light receiving surface of the image sensor, and an image signal corresponding to the observation image is generated by photoelectric conversion.
  • the image signal generated by the imaging unit 5123 is provided to the communication unit 5127.
  • CMOS Complementary Metal Oxide Semiconductor
  • the imaging element constituting the imaging unit 5123 for example, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor that has a Bayer array and can perform color imaging is used.
  • the image pickup device an image pickup device capable of capturing a high-resolution image of, for example, 4K or more may be used.
  • the image pickup device constituting the image pickup unit 5123 is configured to have a pair of image pickup devices for acquiring right-eye image signals and left-eye image signals corresponding to 3D display. By performing the 3D display, the operator 5181 can more accurately grasp the depth of the living tissue at the operation site.
  • the imaging unit 5123 is configured as a multi-plate system, a plurality of lens units 5121 are provided corresponding to the respective imaging elements.
  • the imaging unit 5123 may not necessarily be provided in the camera head 5119.
  • the imaging unit 5123 may be provided inside the lens barrel 5117 immediately after the objective lens.
  • the drive unit 5125 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 5121 by a predetermined distance along the optical axis under the control of the camera head control unit 5129. Thereby, the magnification and the focus of the image captured by the imaging unit 5123 can be appropriately adjusted.
  • the communication unit 5127 is configured by a communication device for transmitting and receiving various information to and from the CCU 5153.
  • the communication unit 5127 transmits the image signal obtained from the imaging unit 5123 to the CCU 5153 via the transmission cable 5179 as RAW data.
  • the image signal be transmitted by optical communication in order to display a captured image of the operation section with low latency.
  • the operator 5181 performs the operation while observing the state of the affected part with the captured image. For a safer and more reliable operation, a moving image of the operation part is displayed in real time as much as possible. Is required.
  • the communication unit 5127 includes a photoelectric conversion module that converts an electric signal into an optical signal.
  • the image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5153 via the transmission cable 5179.
  • the communication unit 5127 receives a control signal for controlling driving of the camera head 5119 from the CCU 5153.
  • the control signal includes, for example, information indicating that the frame rate of the captured image is specified, information that specifies the exposure value at the time of imaging, and / or information that specifies the magnification and focus of the captured image. Contains information about the condition.
  • the communication unit 5127 provides the received control signal to the camera head control unit 5129.
  • the control signal from the CCU 5153 may also be transmitted by optical communication.
  • the communication unit 5127 is provided with a photoelectric conversion module that converts an optical signal into an electric signal.
  • the control signal is converted into an electric signal by the photoelectric conversion module, and is provided to the camera head control unit 5129.
  • imaging conditions such as the frame rate, the exposure value, the magnification, and the focus are automatically set by the control unit 5177 of the CCU 5153 based on the acquired image signal. That is, a so-called AE (Auto Exposure) function, an AF (Auto Focus) function, and an AWB (Auto White Balance) function are mounted on the endoscope 5115.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Automatic White Balance
  • the camera head controller 5129 controls the driving of the camera head 5119 based on a control signal from the CCU 5153 received via the communication unit 5127.
  • the camera head control unit 5129 controls the driving of the imaging element of the imaging unit 5123 based on the information for specifying the frame rate of the captured image and / or the information for specifying the exposure at the time of imaging.
  • the camera head control unit 5129 appropriately moves the zoom lens and the focus lens of the lens unit 5121 via the driving unit 5125 based on information indicating designation of the magnification and the focus of the captured image.
  • the camera head control unit 5129 may further have a function of storing information for identifying the lens barrel 5117 and the camera head 5119.
  • the camera head 5119 can have resistance to autoclave sterilization.
  • the communication unit 5173 is configured by a communication device for transmitting and receiving various information to and from the camera head 5119.
  • the communication unit 5173 receives an image signal transmitted from the camera head 5119 via the transmission cable 5179.
  • the image signal can be suitably transmitted by optical communication.
  • the communication unit 5173 is provided with a photoelectric conversion module that converts an optical signal into an electric signal in response to optical communication.
  • the communication unit 5173 provides the image signal converted to the electric signal to the image processing unit 5175.
  • the communication unit 5173 transmits a control signal for controlling the driving of the camera head 5119 to the camera head 5119.
  • the control signal may also be transmitted by optical communication.
  • the image processing unit 5175 performs various types of image processing on an image signal that is RAW data transmitted from the camera head 5119.
  • the image processing includes, for example, a developing process, a high-quality process (a band enhancement process, a super-resolution process, a noise reduction (NR) process, and / or a camera shake correction process, etc.), and / or an enlargement process (an electronic zoom process). And various other known signal processing.
  • the image processing unit 5175 performs a detection process on the image signal for performing AE, AF, and AWB.
  • the image processing unit 5175 is configured by a processor such as a CPU and a GPU, and the above-described image processing and detection processing can be performed by the processor operating according to a predetermined program.
  • the image processing unit 5175 includes a plurality of GPUs, the image processing unit 5175 appropriately divides information related to the image signal and performs image processing in parallel by the plurality of GPUs.
  • the control unit 5177 performs various controls related to imaging of the operation site by the endoscope 5115 and display of the captured image. For example, the control unit 5177 generates a control signal for controlling driving of the camera head 5119. At this time, when the imaging condition has been input by the user, the control unit 5177 generates a control signal based on the input by the user. Alternatively, when the AE function, the AF function, and the AWB function are mounted on the endoscope 5115, the control unit 5177 controls the optimal exposure value, the focal length, and the distance in accordance with the result of the detection processing by the image processing unit 5175. The white balance is appropriately calculated and a control signal is generated.
  • the control unit 5177 causes the display device 5155 to display an image of the surgical site based on the image signal on which the image processing is performed by the image processing unit 5175. At this time, the control unit 5177 recognizes various objects in the operative image using various image recognition techniques. For example, the control unit 5177 detects a shape, a color, and the like of an edge of an object included in the operation part image, and thereby detects a surgical tool such as forceps, a specific living body part, bleeding, a mist when using the energy treatment tool 5135, and the like. Can be recognized.
  • the control unit 5177 superimposes and displays various types of surgery support information on the image of the operative site using the recognition result. By superimposing the operation support information and presenting it to the operator 5181, it is possible to proceed with the operation more safely and reliably.
  • the transmission cable 5179 connecting the camera head 5119 and the CCU 5153 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • the communication is performed by wire using the transmission cable 5179, but the communication between the camera head 5119 and the CCU 5153 may be performed wirelessly. If the communication between the two is performed wirelessly, the transmission cable 5179 does not need to be laid in the operating room, and the situation in which the movement of the medical staff in the operating room is hindered by the transmission cable 5179 can be solved.
  • the operating room system 5100 As described above, an example of the operating room system 5100 to which the technology according to the present disclosure can be applied has been described.
  • the case where the medical system to which the operating room system 5100 is applied is the endoscope operating system 5113 has been described, but the configuration of the operating room system 5100 is not limited to this example.
  • the operating room system 5100 may be applied to a flexible endoscope system for examination or a microscopic surgery system instead of the endoscopic surgery system 5113.
  • the technology according to the present disclosure can be suitably applied to the IP converter device (IPC) 5110 among the configurations described above.
  • the IP converter device (IPC) 5110 can be suitably applied by using the IP converter receiving device 55 in FIGS. 3, 5, and 7 of the present disclosure.
  • the technology according to the present disclosure to the IP converter device (IPC) 5110, it is possible to suppress a decrease in the resolution of an image that the operator wants to view at a high resolution while responding to an increase in the number of medical devices that supply images. It is possible to do.
  • the compression unit selects and compresses the image acquired by the acquisition unit by selecting a compression method by performing bit packing by switching a bit packing method for each type of the image.
  • the compression method is such that the image obtained by the obtaining unit is switched for each type of image by switching a component signal format, thereby switching a bit packing method, and performing bit packing.
  • the receiving device according to ⁇ 2>.
  • ⁇ 4> The reception device according to ⁇ 1>, wherein the compression unit selects the compression method and compresses the image acquired by the acquisition unit by switching a frame rate for each type of the image.
  • the compression unit selects and compresses the image acquired by the acquisition unit by selecting a compression method by switching a compression ratio for each type of the image according to a region of the image.
  • ⁇ 6> The receiving device according to ⁇ 1>, wherein the compression unit selects the compression method and compresses the image acquired by the acquisition unit by switching an encoding method for each type of the image.
  • the image is a medical image
  • the compression unit determines the type of the image based on DICOM (Digital Imaging and Communications in Medicine) IOD (Information Object Definition) data attached to the image acquired by the acquisition unit.
  • DICOM Digital Imaging and Communications in Medicine
  • IOD Information Object Definition
  • the receiving device according to the above.
  • the type of the medical image includes at least an operation field image, an endoscope image, a laparoscopic image, a CT (Computed Tomography) image, an MRI (Magnetic Resonance Imaging) image, and an X-ray image.
  • Receiving device ⁇ 9>
  • the image is a medical image
  • the compression unit performs the image analysis based on the analysis result of the spatial frequency analysis of each channel of the Y, Cb, and Cr signals or the analysis result of the dynamic range analysis in the image acquired by the acquisition unit.
  • the receiving device ⁇ 9>, wherein: ⁇ 11>
  • the compression unit determines whether the type of the image is an endoscope image based on whether or not there is a round and black mask on the outer peripheral portion of the image in the analysis result of the image.
  • ⁇ 12> In the analysis of the image, the compression unit determines whether the type of the image is one of an X image and a CT image based on whether the image is a gray scale. 9>.
  • ⁇ 13> a transmission unit that transmits a plurality of images compressed by the plurality of compression units; A generation unit that generates one PinP (Picture in Picture) image by performing image processing of combining a plurality of images compressed by the plurality of compression units transmitted by the transmission unit;
  • the receiving device according to any one of ⁇ 1> to ⁇ 12>, further including an output unit configured to output and display the one PinP (Picture in Picture) image on a display unit via the transmission unit.
  • the compression unit selects a compression method for the image acquired by the acquisition unit for each type of the image by switching a format in bit packing according to a processing load of a processor of the generation unit.
  • the receiving device according to ⁇ 13>.
  • the compression unit changes the format in the bit packing according to the processing load of the processor of the generation unit to a format having a first compression ratio including a format other than 16-bit alignment, or a format of the 16-bit alignment.
  • the receiving device according to ⁇ 14>, wherein the compression method is selected and compressed by switching to one of the formats having a second compression ratio having a compression ratio lower than the first compression ratio composed of a format.
  • the compression unit includes: When the processing load of the processor of the generation unit is lower than a predetermined value, the format in the bit packing is switched to the format of the first compression ratio configured from a format other than the 16-bit alignment, When the processing load of the processor of the generation unit is higher than a predetermined value, the format in the bit packing is changed to a second compression ratio having a compression ratio lower than the first compression ratio composed of the 16-bit aligned format.
  • the receiving device according to ⁇ 15>, wherein the compression method is selected by switching to a format and compressed.
  • the transmission unit is a PCIe (Peripheral Component Interconnect Express).
  • the reception device wherein when the image is a 3D-compatible image, the compression unit selects and compresses the compression method according to a display function of the display unit.
  • acquisition processing for acquiring images from a plurality of devices; A compression process of selecting a compression method for each type of the image and compressing the image acquired by the acquisition process.
  • An image processing system comprising: an image server that stores images from a plurality of devices; and a receiving device that acquires an image from the image server, outputs the image to a display unit, and displays the image.
  • the image server An output unit that stores images from the plurality of devices and outputs the stored images to the receiving device.
  • the receiving device From the image server, an acquisition unit that acquires images from the plurality of devices, A plurality of compression units for selecting a compression method for each type of the image and compressing the image acquired by the acquisition unit.
  • IP converter receiving device IPC-Rx
  • ⁇ 31 ⁇ input unit Network Rx
  • ⁇ 32, 32-1 to 32-n ⁇ decoder Decoder
  • ⁇ 33 ⁇ expansion bus PCIe (Peripheral Component Interconnect Express)
  • ⁇ 34 ⁇ GPU GPU
  • SDI Serial Digital Interface
  • 40 hospital image processing system 50 camera, 51 camera control unit (CCU (Camera Control Unit)), 52 IP converter transmitter (IPC- Tx), ⁇ 71 ⁇ input unit (Network Rx), ⁇ 72, 72-1 to 72-n ⁇ decoder (Decoder), ⁇ 73, 73-1 to 73-n ⁇ bit packing unit (BitPack), ⁇ 74 ⁇ bit packing control unit (PackingCtrl), 75 table, 76 expansion bus (PCIe (Peripheral Component Interconnect Express)), 7 7 GPU (Graphics Processing Unit), ⁇ 78 ⁇ output unit (SDI (Serial Digital Interface)), ⁇ 91, 91-1

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

本開示は、画像を供給する医療機器の接続数の増大に対応しながら、術者が高解像度で見たい画像の解像度の低下を抑制できるようにする受信装置、および受信方法、並びに、画像処理システムに関する。 PCIe等の伝送路の前段において、複数の医療機器から画像を取得して、画像の種類毎に圧縮方法を選択して圧縮して、伝送路に出力する。これにより、CT画像やX画像などのYCbCr信号において、CbCr信号が不要な画像については、Y信号のみとして圧縮し、術野画像などの高解像度画像が必要な画像については圧縮せずに伝送する。これにより、PCIe等の伝送路の帯域の圧迫を抑制することができる。本開示は、病院内画像処理システムに適用することができる。

Description

受信装置、および受信方法、並びに、画像処理システム
 本開示は、受信装置、および受信方法、並びに、画像処理システムに関し、特に、画像を供給する医療機器の接続数の増大に対応しながら、術者が高解像度で見たい画像の解像度の低下を抑制できるようにした受信装置、および受信方法、並びに、画像処理システムに関する。
 近年、複数の医療機器からの医療画像を1つの表示画像に合成し、表示装置に複数の医療画像を同時に表示することで、様々な情報を同時に一読することで手術効率の向上と、表示装置の手術室占有率の減少が図られている。
 例えば、複数の医療機器の医療画像を1枚の表示画像に合成して表示装置(HMD)に表示する技術が開示されている(特許文献1参照)。
特開2015-19679号公報
 しかしながら、複数の医療機器からの医療画像を1つの表示画像に合成し、表示装置に複数の医療画像を同時に表示するためには、複数の医療機器からの複数の医療画像を送受信する必要があるためデータ伝送帯域が圧迫されることがあった。
 そこで、接続する医療機器の数を減らすことでデータ伝送帯域を確保することが考えられるが、接続する医療機器の数を減らすと表示できる画像が減ってしまう。
 また、医療機器から出力されるデータ容量を一律で小さくする方法が考えらえるが、データ容量を一律で小さくしてしまうと術者が高解像度画像として見たい画像の解像度が低下してしまう。
 本開示は、このような状況に鑑みてなされたものであり、特に、画像を供給する医療機器の接続数の増大に対応しながら、術者が高解像度で見たい画像の解像度の低下を抑制する。
 本開示の第1の側面の受信装置は、複数の機器から画像を取得する取得部と、前記取得部により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する複数の圧縮部とを含む受信装置である。
 本開示の第1の側面の受信方法は、複数の機器から画像を取得する取得処理と、前記取得処理により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する圧縮処理とを含む受信方法である。
 本開示の第1の側面においては、複数の機器から画像が取得され、取得された前記画像が、前記画像の種類毎に圧縮方法を選択して圧縮される。
 本開示の第2の側面の画像処理システムは、複数の機器からの画像を記憶する画像サーバと、前記画像サーバからの画像を取得して表示部に出力して表示させる受信装置とからなる画像処理システムであって、前記画像サーバが、前記複数の機器からの画像を記憶し、記憶した画像を前記受信装置に出力する出力部とを含み、前記受信装置が、前記画像サーバより、前記複数の機器からの画像を取得する取得部と、前記取得部により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する複数の圧縮部とを含む画像処理システムである。
 本開示の第2の側面においては、画像サーバにより、前記複数の機器からの画像が記憶され、記憶された画像が前記受信装置に出力され、前記受信装置により、前記画像サーバより、前記複数の機器からの画像が取得され、取得された前記画像が、前記画像の種類毎に圧縮方法が選択されて圧縮される。
 本開示の一側面によれば、特に、画像を供給する医療機器の接続数の増大に対応しながら、術者が高解像度で見たい画像の解像度の低下を抑制することが可能となる。
IPコンバータ受信装置の概要を説明する図である。 本開示の病院内画像処理システムの構成例を説明する図である。 IPコンバータ受信装置の第1の実施の形態の構成例を説明する図である。 図3のIPコンバータ受信装置による表示制御処理を説明するフローチャートである。 IPコンバータ受信装置の第2の実施の形態の構成例を説明する図である。 図5のIPコンバータ受信装置による表示制御処理を説明するフローチャートである。 IPコンバータ受信装置の第3の実施の形態の構成例を説明する図である。 ビットパッキングのフォーマットを説明する図である。 GPUの処理負荷に応じてビットパッキングのフォーマットを切り替える例を説明する図である。 図7のIPコンバータ受信装置による表示制御処理を説明するフローチャートである。 汎用のパーソナルコンピュータの構成例を説明する図である。 手術室システムの全体構成を概略的に示す図である。 集中操作パネルにおける操作画面の表示例を示す図である。 手術室システムが適用された手術の様子の一例を示す図である。 図14に示すカメラヘッド及びCCUの機能構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.IPコンバータ受信装置(IPC)の概要
 2.本開示の病院内画像処理システムの構成例
 3.IPコンバータ受信装置の第1の実施の形態の構成例
 4.IPコンバータ受信装置の第2の実施の形態の構成例
 5.IPコンバータ受信装置の第3の実施の形態の構成例
 6.ソフトウェアにより実行させる例
 7.応用例
 <<1.IPコンバータ受信装置(IPC)の概要>>
 図1を参照して、IP(Interlace Protocol)コンバータ受信装置(IPC)の概要について説明する。
 図1は、IPコンバータ受信装置(IPC-Rx)11の構成例を示している。
 IPコンバータ受信装置(IPC-Rx)11は、IPパケット化された複数の画像を受信して、1枚の画像(PinP画像)に合成し、画像信号に変換して、モニタに出力して表示させる。
 本明細書においては、IPコンバータ受信装置(IPC-Rx)11は、病院内において事前に撮像された画像や術中の画像を、術者に提示するための1枚の画像に合成し、所定の画像信号に変換し、モニタに出力して表示させる。
 より詳細には、IPコンバータ受信装置(IPC-Rx)11は、入力部(Network Rx)31、デコーダ(Decoder)32-1乃至32-n、拡張バス(PCIe(Peripheral Component Interconnect Express))33、GPU(Graphics Processing Unit)34、および出力部(SDI(Serial Digital Interface)-Tx)35を備えている。
 入力部31は、シリアルインターフェイスであり、IPパケット化されている、予め病院内で撮像された医療画像等の画像に加えて、現在手術中に撮像している画像等の複数の種類のストリーム画像の入力を、ネットワーク(Network)を介して受け付けて、種類に応じて、ストリーム画像をデコードするデコーダ32-1乃至32-nに出力する。
 デコーダ(Decoder AAA乃至Decoder ZZZ)32-1乃至32-nは、ストリーム画像をエンコードの種別に応じてデコードするデコーダであり、デコードしたストリーム画像を、拡張バス(PCIe)33に出力する。尚、図中の「Decoder AAA」乃至「Decoder ZZZ」における、「AAA」乃至「ZZZ」が、それぞれ異なる種別のエンコードに対応するデコーダであることを表している。
 拡張バス(PCIe)33は、デコーダ32-1乃至32-nおよびGPU34間、並びに、GPU34および出力部(SDI-Tx)35間のデータ伝送路であり、デコードされた複数のストリーム画像をGPU34に出力するとともに、GPU34により生成された1枚のPinP(Picture in Picture)画像を出力部(SDI-Tx)35に出力する。
 GPU34は、複数の画像を合成することにより、1枚のPinP(Picture in Picture)画像を生成して、拡張バス33に出力する。
 出力部(SDI-Tx)35は、1枚のPinP画像を所定の画像信号に変換して、LCD(Liquid Crystal Display)や有機EL(Electro Luminescence)等のディスプレイからなる手術室内に設けられたモニタ(Monitor)に出力して表示させる。
 このような構成により、まず、CT画像やMRI画像等の画像に加えて、現在撮像している術野画像、内視鏡画像、および腹腔鏡画像等の複数の種類の、IPパケット化されたストリーム画像の入力が受け付けられる。そして、入力されたストリーム画像は、種類ごとにデコードされて、複数のストリーム画像が合成されることにより1枚のPinP画像が生成されて、3G-SDI等の所定の画像信号に変換されて、手術室内に設けられたモニタに供給されて、1枚の画像として表示される。
 ところで、IPコンバータ受信装置11に入力される画像の種類は年々増大する傾向にあり、拡張バス(PCIe)33における帯域が圧迫されることにより、モニタに表示されるPinP画像の表示に遅延が生じる恐れがあった。
 現状においては、IPコンバータ受信装置11に入力される入力画像数を制限したり、入力画像のサイズを小さくしたり(解像度を低減させたり)する対応により遅延の発生を回避している。
 しかしながら、IPコンバータ受信装置11に入力される入力画像数を制限する、および、入力画像のサイズを小さくする(解像度を低減させる)という手法は、マルチモダリティ(複数の異なる医療画像データを一元的に管理・閲覧できるようにすること)への対応や、高解像度化する画像処理技術の進歩に対して後退する手法であるともいえる。
 そこで、本開示のIPコンバータ受信装置は、画質を犠牲にしても影響の少ない種類の画像については高い圧縮率となるように、画像の種類に応じて圧縮率を変化させることで、より多くの画像の入力を受け付けつつ、術者が高解像度で見たい画像の解像度の低下を抑制できるようにする。
 <<2.本開示の病院内画像処理システムの構成例>>
 次に、図2を参照して、本開示の病院内画像処理システムの構成例を説明する。
 図2の病院内画像処理システム40は、病院内における画像を記録および管理すると共に、記録および管理された画像と、手術中の画像とを、1枚の画像に合成して、術者に提示する。
 より詳細には、病院内画像処理システム40は、カメラ(camera)50、カメラコントロールユニット(CCU(Camera Control Unit))51、IPコンバータ送信装置(IPC-Tx)52、ハブ53、画像管理サーバ54、IPコンバータ受信装置(IPC-Rx)55、およびモニタ56を備えている。
 カメラ50は、手術室内に設置される撮像装置であり、CCU51により制御され、例えば、術野画像、内視鏡画像、および腹腔鏡画像等をストリーム画像として撮像し、カメラコントロールユニット(CCU)51に出力する。カメラ50は、撮像したストリーム画像を、例えば、3G-SDI(3Gbps-Serial Digital Interface)のYCC/422/10bit等の画像信号としてカメラコントロールユニット(CCU)51に出力する。尚、画像信号の形式は、3G-SDIのYCC/422/10bitに限定されるものではなく、それ以外の様々な形式であってよい。
 カメラコントロールユニット(CCU)51は、カメラ50の動作を制御すると共に、カメラ50により撮像されたストリーム画像の画像信号をIPコンバータ送信装置(IPC-Tx)52に出力する。
 尚、カメラ50は、図2中においては、1台のみであるが、複数台数設けられていてもよい。また、カメラ50およびカメラコントロールユニット(CCU)51に代えて、CT(Computed Tomography)画像やMRI(Magnetic Resonance Imaging)画像等の医療画像を供給可能な医療機器が接続されるようにして、医療画像の供給を受けられるようにしてもよい。
 IPコンバータ送信装置(IPC-Tx)52は、ストリーム画像を構成する画像信号を、例えば、LLVC(Low Latency Video Codec)等のストリーム形式にエンコードし、IPパケット化してネットワーク信号として、ハブ53を介してIPコンバータ受信装置55、または画像管理サーバ54に出力する。
 ストリーム画像のエンコードの種別は、LLVC以外でもよく、例えば、H264(MPEG-4 Part 10 Advanced Video Coding)、JPEG2000(Joint Photographic Experts Group 2000)、およびDPCM(Differential Pulse Code Modulation)等でもよい。
 画像管理サーバ54は、例えば、病院内に設けられるOR(Operation Room)サーバ等であり、病院内で予め撮像されるCT(Computed Tomography)画像、MRI(Magnetic Resonance Imaging)画像、およびX線画像等の様々な種類の画像(いわゆる、マルチモダリティな画像)を、ハブ53を介して取得すると共に記憶して管理し、必要に応じてハブ53を介してIPコンバータ受信装置55に出力する。
 IPコンバータ受信装置55は、ハブ53を介してカメラ50により撮像された画像や、画像管理サーバ54より供給される様々な画像を、1枚の画像に処理して、画像信号としてモニタ56に出力して表示させる。
 このような構成により、IPコンバータ受信装置55は、術者に対して、予め病院内において撮像されたCT画像、MRI画像、およびX画像等、並びに、術野、内視鏡画像、および腹腔鏡画像等を合成し、1枚の画像にして、モニタに表示することで、術者に対して必要な情報を提示する。ここで、LLVCやH264については、視覚的ロスレスな圧縮方式であり、JPEG2000やDPCMは、ロスレスな圧縮方式であるので、1枚のPinP画像に合成する場合については、メイン画像として合成するような、例えば、術野画像、内視鏡画像、および腹腔鏡画像等については、エンコードの方式をJPEG2000やDPCMとし、サブ画像となるような画像については、LLVCやH264にするようにしてもよい。
 <<3.IPコンバータ受信装置の第1の実施の形態の構成例>>
 次に、図3を参照して、図2のIPコンバータ受信装置(IPC-Rx)55の第1の実施の形態の構成例について説明する。
 より詳細には、IPコンバータ受信装置(IPC-Rx)55は、入力部(Network Rx)71、デコーダ(Decoder AAA乃至Decoder ZZZ)72-1乃至72-n、ビットパッキング部(BitPack)73-1乃至73-n、ビットパッキング制御部(PackingCtrl)74、テーブル(Table)75、拡張バス(PCIe(Peripheral Component Interconnect Express))76、GPU(Graphics Processing Unit)77、および出力部(SDI(Serial Digital Interface))78を備えている。
 入力部(Network Rx)71は、IPパケット化されたCT画像、MRI画像、およびX線画像等の画像に加えて、現在撮像している術野画像、内視鏡画像、および腹腔鏡画像等の複数のストリーム画像の入力を受け付けて、画像の種類に応じて、対応するストリーム画像を、対応する種別のデコード方式でデコードするデコーダ72-1乃至72-nに出力するインタフェースである。
 デコーダ(Decoder AAA乃至Decoder ZZZ)72-1乃至72-nは、それぞれストリーム画像をエンコードの種別毎にデコードするデコーダであり、デコードしたストリーム画像を、それぞれビットパッキング部73-1乃至73-nに出力する。尚、図中の「Decoder AAA」乃至「Decoder ZZZ」における、「AAA」乃至「ZZZ」が、それぞれ異なる種別のエンコードに対応するデコーダであることを表している。
 ビットパッキング部(BitPack)73-1乃至73-nは、デコードされたストリーム画像の画像信号中のAncillary Data(例えば、DICOM(Digital Imaging and Communications in Medicine)のIOD(Information Object Definition)データ)に基づいて、その画像信号の種類を抽出して認識し、ビットパッキング制御部(PackingCtrl)74に供給する。
 ビットパッキング部(BitPack)73-1乃至73-nは、画像信号の種類に応じてビットパッキング制御部(PackingCtrl)74より指定されるビットパッキング方式で、画像信号をビットパッキングすることにより圧縮して、拡張バス(PCIe)76を介してGPU77に出力する。
 ビットパッキング制御部(PackingCtrl)74は、ビットパッキング部(BitPack)73-1乃至73-nのそれぞれより供給される画像信号の種類に応じたビットパッキング方式の情報が記憶されているテーブル(Table)75にアクセスし、画像信号の種類に応じたビットパッキング方式の情報を読み出して、ビットパッキング部(BitPack)73-1乃至73-nのそれぞれに出力する。
 拡張バス(PCIe(Peripheral Component Interconnect Express))76は、ビットパッキング部(BitPack)73-1乃至73-nからGPU77に向けたデータ伝送路であると共に、GPU77から出力部(SDI(Serial Digital Interface))78に向けた伝送路であり、デコードされた複数のストリーム画像をGPU77に出力すると共に、GPU34により生成された1枚のPinP画像を出力部(SDI-Tx)78に出力する。
 GPU(Graphics Processing Unit)77は、拡張バス(PCIe(Peripheral Component Interconnect Express))76を介して伝送される複数の画像を合成する画像処理により、1枚のPinP(Picture in Picture)画像を生成して、拡張バス76に出力する。
 出力部(SDI(Serial Digital Interface)-Tx)78は、シリアルインターフェイスであり、PinP画像を所定の画像信号に変換してLCD(Liquid Crystal Display)や有機EL(Electro Luminescence)等のディスプレイからなる手術室内に設けられたモニタ(Monitor)56に出力して表示させる。
 すなわち、以上のような構成により、例えば、供給されてきた画像信号の種類がCT画像である場合、最終的に生成されるPinP画像内においては、白黒画像となるので、画像信号の、Y信号を10bitとし、Cb,Cr信号を0bitとするような圧縮を掛けるビットパッキング方式が選択される。また、術野画像、内視鏡画像、および腹腔鏡画像等は、高解像度の画像であることが術者に望まれる画像であるので、非圧縮の状態とするようなビットパッキング方式が選択される。
 このように画像信号の種類に応じて、Y信号のビット数と、Cb,Cr信号のビット数を切り替えるようにビットパッキング方式を選択する。これにより、データ量を低減させて、画質を低下させても影響のない種類の画像については圧縮させるようにすることで、拡張バス(PCIe)76の帯域の圧迫を低減させることが可能となる。
 結果として、画像を供給する医療機器の接続数の増大に対応しながら、術者が高解像度で見たい画像の解像度の低下を抑制することが可能となる。
 <図3のIPコンバータ受信装置による表示制御処理>
 次に、図4のフローチャートを参照して、図3のIPコンバータ受信装置55による表示制御処理について説明する。
 ステップS11において、入力部(Network Rx)71は、複数の種類のストリーム画像の入力を受け付けて、エンコードの種別に応じて、対応するストリーム画像をデコードするデコーダ72-1乃至72-nに出力する。複数の種類のストリーム画像は、例えば、画像管理サーバ54よりハブ53を介して供給されるIPパケット化されたCT画像やMRI画像等の画像、並びに、カメラ50よりCCU51、IPコンバータ(IPC-Tx)52、およびハブ53を介して、現在撮像している術野画像、内視鏡画像、および腹腔鏡画像等である。
 ステップS12において、デコーダ(Decoder)72-1乃至72-nは、それぞれの種類のストリーム画像をエンコードの種別毎にデコードし、デコードしたストリーム画像を、それぞれビットパッキング部73-1乃至73-nに出力する。
 ステップS13において、ビットパッキング部(BitPack)73-1乃至73-nは、それぞれデコードされたストリーム画像の画像信号中のAncillary Data(DICOMのIODデータ)に基づいて、個々の画像信号の種類の情報を抽出して認識し、ビットパッキング制御部(PackingCtrl)74に供給する。
 ステップS14において、ビットパッキング制御部(PackingCtrl)74は、テーブル(Table)75にアクセスし、ビットパッキング部(BitPack)73-1乃至73-nのそれぞれより供給される画像信号の種類に応じたビットパッキング方式の情報を読み出して、ビットパッキング部(BitPack)73-1乃至73-nのそれぞれに出力する。
 ステップS15において、ビットパッキング部(BitPack)73-1乃至73-nは、ビットパッキング制御部(PackingCtrl)74より供給された、画像信号の種類に応じたビットパッキング方式で、画像信号をビットパッキング(圧縮)する。
 ステップS16において、ビットパッキング部(BitPack)73-1乃至73-nは、ビットパッキングした画像信号を、拡張バス(PCIe)76を介してGPU77に出力する。
 ステップS17において、GPU(Graphics Processing Unit)77は、複数の画像を合成する画像処理により、1枚のPinP(Picture in Picture)画像を生成して、拡張バス76を介して、出力部78に出力する。
 ステップS18において、出力部(SDI(Serial Digital Interface))78は、PinP画像の画像信号をディスプレイからなる手術室内に設けられたモニタ56に出力して表示させる。
 以上の処理により、拡張バス(PCIe)76の前段において、画像信号の種類に応じて、ビットパッキング方式が切り替えられて、圧縮に伴った画像信号のデータ量の低減による画質の劣化が生じても影響の小さい画像信号については、データ量を低減(圧縮)させることにより、拡張バス(PCIe)76における帯域の圧迫を抑制させることが可能となる。
 結果として、画像を供給する医療機器の接続数の増大に対応しながら、術者が高解像度で見たい画像の解像度の低下を抑制することが可能となる。
 尚、ビットパッキング方式の切り替えについては、Y信号、およびCb,Cr信号のビット数を変更する以外の方式であってもよく、例えば、画像信号の種類に応じて、YC444、YC422、YC420などコンポーネントのフォーマットを切り替えるようにビットパンキング方式を切り替えるようにしてもよい。
 このように画像信号の種類に応じて、圧縮に伴った画像信号のデータ量の低減による画質の劣化が生じても影響の小さい画像信号については、データ量を低減(圧縮)させるように、コンポーネントのフォーマットを切り替えてビットパッキング方式を切り替えるようにすることで、拡張バス(PCIe)76の帯域の圧迫を低減することが可能となる。
 また、以上においては、ビットパッキング方式を切り替えることで、圧縮率を調整する例について説明してきたが、DICOMのIODデータの情報に基づいた画像信号の種類に応じて、CT画像のように、ほぼ静止画でそれほどフレームレートが必要のない画像信号の場合、フレームレートを下げることでデータ量を削減するようにしてもよい。
 このように画像信号の種類に応じて、フレームレートを切り替えるようにすることで、拡張バス(PCIe)76の帯域を低減することが可能となる。
 さらに、ビットパッキング方式については、フレーム内について、一律に同一のビットパッキング方式に切り替えるようにしても良いし、フレーム内の特定の領域、例えば、DICOMのIODデータから内視鏡画像であることが分かっている場合については、ほぼ黒色とされるマスク外となる領域の画像信号を大きく削減するようなビットパッキング方式にしてもよい。
 このように画像信号の種類に応じて、フレーム内の領域ごとにビットパッキング方式を切り替えるようにすることで、拡張バス(PCIe)76の帯域の圧迫を低減することが可能となる。
 いずれにおいても、拡張バス(PCIe)76の前段において、画像信号の種類に応じて、フレーム内の領域毎のビットパッキング方式が切り替えられたり、フレームレートが切り替えられることで、画像信号のデータ量として低減しても影響の小さいものについては、データ量が低減されるように圧縮させることにより、拡張バス(PCIe)76における帯域の圧迫が抑制される。
 さらに、以上においては、ビットパッキング部(BitPack)73-1乃至73-nは、デコードされたストリーム画像の画像信号中のAncillary Data(DICOMのIODデータ)に基づいて、その画像信号の種類を抽出し、ビットパッキング制御部(PackingCtrl)74に供給するようにしていたが、画像信号の種類についてはDICOMのIODデータ以外の手法で判別するようにしてもよい。
 すなわち、画像信号中にDICOMのIODデータが含まれないような画像が供給されてくる場合、ビットパッキング部(BitPack)73自身が、画像を解析することにより、画像信号の種類を判別するようにしてもよい。例えば、外周部に丸く黒いマスク部分が存在する画像については、内視鏡画像であるものと判別するようにしてもよいし、グレイスケール画像である場合については、X線画像やCT画像であるものと判別するようにしてもよい。また、Y,Cb,Cr信号の各チャンネルの空間周波数解析やダイナミックレンジ解析の解析結果に応じて、画像の種類を判別して、判別結果に応じてビットパッキング方式を切り換えるようにしてもよい。
 また、以上においては、IPコンバータ受信装置55のビットパッキング制御部(PackingCtrl)74が、DICOMのIODデータや画像解析により認識される画像信号の種類に応じて、どのようなビットパッキング方式とすべきかを示す情報をテーブル75から読み出して、ビットパッキング部73に指示する例について説明してきた。
 しかしながら、ビットパッキング方式の指示が可能であれば、ビットパッキング制御部(PackingCtrl)74以外の構成が指示するようにしてもよく、例えば、画像管理サーバ54が、画像信号の種類に応じて、いずれのビットパッキング方式とするかについての指示するようにしてもよい。より具体的には、画像管理サーバ54が、テーブル75に登録する、画像信号の種類に対応するビットパッキング方式の情報を書き換えられるようにしてもよいし、ビットパッキング制御部(PackingCtrl)74と同様に機能して、ビットパッキング部73にビットパッキング方式を直接指示するようにしてもよい。
 <<4.IPコンバータ受信装置の第2の実施の形態の構成例>>
 以上においては、画像信号の種類に応じて、ビットパッキング方式を切り替えることにより、画像信号のデータ量として低減しても影響の小さい画像信号については、低減させることで、拡張バス(PCIe)76における帯域の圧迫を抑制する例について説明してきたが、画像信号の種類に応じて、画像信号をエンコードし、GPUにおいて、再びデコードするようにしてもよい。
 図5は、画像信号の種類に応じて、画像信号をエンコードし、GPUにおいて、再びデコードするようにして、1枚のPinP画像を生成するようにしたIPコンバータ受信装置の第2の実施の形態の構成例を示している。尚、図5のIPコンバータ受信装置55において、図3のIPコンバータ受信装置55の構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図5のIPコンバータ受信装置55において、図3のIPコンバータ受信装置55と異なる点は、ビットパッキング部(BitPack)73-1乃至73-n、ビットパッキング制御部(PackingCtrl)74、テーブル(Table)75、およびGPU(Graphics Processing Unit)77に代えて、エンコーダ(Enc)91-1乃至91-n、テーブル(Table)92、およびGPU(Graphics Processing Unit)93を備えた点である。
 エンコーダ(Enc)91-1乃至91-nは、デコーダ(Dec)72-1乃至72-nによりデコードされた画像信号の種類を判定し、画像信号の種類に応じたエンコード方式の情報が記憶されているテーブル92より、対応するエンコード方式の情報を読み出して、読み出したエンコード方式で画像信号をエンコードし、拡張バス(PCIe)76を介して、GPU93に出力する。エンコーダ91において用いるエンコード方式は、例えば、可逆圧縮のJPEG2000や可逆圧縮DPCM等である。
 GPU(Graphics Processing Unit)93は、エンコーダ(Enc)91-1乃至91-nのそれぞれに対応するエンコードされている画像信号をデコードするデコーダ(Dec)111-1乃至111-nを備えており、デコードした複数の画像を合成する画像処理により、1枚のPinP(Picture in Picture)画像を生成して、拡張バス76に出力する。
 すなわち、以上のような構成により、例えば、供給されてきた画像信号の種類に応じたエンコード方式を選択し、画像信号のデータ量として低減しても影響の小さいものについては、圧縮率が高くなるエンコード方式を選択する。これにより、データ量を低減させて、画質を低下させても影響のない種類の画像については圧縮させるようにすることで、拡張バス(PCIe)76における帯域の圧迫を低減させることが可能となる。
 結果として、画像を供給する医療機器の接続数の増大に対応しながら、術者が高解像度で見たい画像の解像度の低下を抑制することが可能となる。
 <図5のIPコンバータ受信装置による表示制御処理>
 次に、図6のフローチャートを参照して、図5のIPコンバータ受信装置による表示制御処理について説明する。
 ステップS31において、入力部(Network Rx)71は、複数の種類のストリーム画像の入力を受け付けて、エンコードの種別に応じて、対応するストリーム画像をデコードするデコーダ72-1乃至72-nに出力する。
 ステップS32において、デコーダ(Decoder)72-1乃至72-nは、それぞれエンコードされたストリーム画像をエンコードの種別毎にデコードし、デコードしたストリーム画像を、それぞれエンコーダ(Enc)91-1乃至91-nに出力する。
 ステップS33において、エンコーダ(Enc)91-1乃至91-nは、デコードされたストリーム画像の画像信号中のAncillary Data(DICOMデータ)に基づいて、個々の画像信号の種類の情報を抽出して認識する。
 ステップS34において、エンコーダ(Enc)91-1乃至91-nは、テーブル(Table)92にアクセスし、認識した画像信号の種類に応じたエンコード方式の情報を読み出す。
 ステップS35において、エンコーダ(Enc)91-1乃至91-nは、読み出したエンコード方式で、画像信号をエンコードする。
 ステップS36において、エンコーダ(Enc)91-1乃至91-nは、エンコードした画像信号を、拡張バス(PCIe)76を介してGPU93に出力する。
 ステップS37において、GPU(Graphics Processing Unit)93は、デコーダ(Dec)111-1乃至111-nのそれぞれを制御して、エンコーダ(Enc)91-1乃至91-nのそれぞれに対応する方式でエンコードされた画像信号をデコードさせる。
 ステップS38において、GPU93は、デコードされた複数の画像を合成する画像処理により、1枚のPinP(Picture in Picture)画像を生成して、拡張バス76を介して、出力部78に出力する。
 ステップS39において、出力部(SDI(Serial Digital Interface))78は、PinP画像の画像信号をディスプレイからなる手術室内に設けられたモニタ56に出力して表示させる。
 以上の処理により、拡張バス(PCIe)76の前段において、画像信号の種類に応じて、エンコード方式が切り替えられて、画像信号がエンコードされることによりデータ量の低減による画質の劣化が生じても影響の小さい画像信号については、データ量を低減(圧縮)させるようにエンコードすることにより、拡張バス(PCIe)76における帯域の圧迫を抑制させることが可能となる。
 結果として、画像を供給する医療機器の接続数の増大に対応しながら、術者が高解像度で見たい画像の解像度の低下を抑制することが可能となる。
 また、以上においては、IPコンバータ受信装置55のエンコーダ(Enc)91が、DICOMのIODデータや画像の解析により認識される画像信号の種類に応じて、どのようなエンコード方式とすべきかを示す情報をテーブル92から読み出して、判別する例について説明してきた。しかしながら、エンコード方式が判別できれば、エンコーダ91以外が判別するようにしてもよく、例えば、画像管理サーバ54が、画像信号の種類に応じて、いずれのエンコード方式とするかについてエンコーダ91に対して指示するようにしてもよい。
 <<5.IPコンバータ受信装置の第3の実施の形態の構成例>>
 以上においては、画像信号の種類に応じて、ビットパッキング方式やエンコード方式を切り替えることにより、画像信号のデータ量として低減しても影響の小さい画像信号については、データ量を低減させるように圧縮することで、拡張バス(PCIe)76における帯域の圧迫を抑制する例について説明してきたが、GPUにおける処理負荷に応じて、ビットパッキングのフォーマットを切り替えるようにしてもよい。
 GPUは、画像信号の処理において、データのフォーマットに応じて処理負荷が変化する。すなわち、GPUは、16bitアラインからなるフォーマットである場合、データを読み解く上での演算リソースを余計に必要としないため、処理負荷が低減されるので、ベース画質は低下するような画像信号であっても、認識処理などに高度な処理を施すことが可能となる。
 一方で、帯域圧縮を優先し、16bitアラインではないフォーマットになる場合、GPUがそれを読み解くために演算リソースを使ってしまうため、実施可能な画像処理が低減してしまう。
 そこで、GPUの負荷状況に応じて、ビットパッキングのフォーマットを切り替えてもよい。
 図7は、GPUの負荷状況に応じて、ビットパッキングのフォーマットを切り替えるようにしたIPコンバータ受信装置の第3の実施の形態の構成例を示している。尚、図7のIPコンバータ受信装置55において、図3のIPコンバータ受信装置55の構成と同一の機能を備えた構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図7のIPコンバータ受信装置55において、図3のIPコンバータ受信装置55と異なる点は、ビットパッキング部(BitPack)73-1乃至73-n、ビットパッキング制御部(PackingCtrl)74、テーブル(Table)75、およびGPU(Graphics Processing Unit)77に代えて、ビットパッキング部(BitPack)131-1乃至131-n、ビットパッキング制御部(PackingCtrl)132、およびGPU(Graphics Processing Unit)133を備えた点である。
 ビットパッキング部(BitPack)131-1乃至131-nは、ビットパッキング制御部132より供給されるGPU133の処理負荷に応じたフォーマットで、デコードされた画像信号を、画像信号の種類に応じて、ビットパッキングし、拡張バス(PCIe)76を介して、GPU133に出力する。
 GPU133は、プロセッサ151を備えており、プロセッサ151の処理負荷の情報が、ビットパッキング制御部132により読み出される。
 ビットパッキング制御部132は、GPU133のプロセッサ151の処理負荷に応じたビットパッキングのフォーマットの情報をビットパッキング部(BitPack)131-1乃至131-nに出力する。
 <ビットパッキングのフォーマット>
 ここで、図8を参照して、GPU133のプロセッサ151の処理負荷に応じたビットパッキングのフォーマットについて説明する。
 通常は、図8の上段で示されるように、Y0、Cb01、およびCr01で表されるY信号、およびCb,Cr信号のそれぞれが16ビットごとに構成される16ビットアラインの16bitパッキングフォーマットでビットパッキングがなされる。
 尚、図8の上段においては、Y信号、およびCb,Cr信号のそれぞれが、LSBから6bit分が余りビットとされ、残りの10bit分がペイロードとされる。
 すなわち、各信号が16ビットアラインとされることにより、浮動小数点数を扱うGPU133のプロセッサ151においては、16bit単位でデータを読み出すので、データのアクセスが良いため低負荷でデータを読み解くことができる。
 ここで、16bitパッキングフォーマットの場合、Y,Cb,Cr信号のそれぞれが16ビットになるため、全部で48ビットのデータ量となる。尚、図8の上段においては、YCbCrが422のコンポーネントフォーマットであり、各信号が10bitからなるデータである。
 このため、各画像について、全てが48bitのデータフォーマットのままでは、画像の種類が増えるほどに、拡張バス(PCIe)76の帯域が圧迫されることになる。
 そこで、図8の下段で示される2種類のビットパッキングのフォーマットが考えられる。
 第1のビットパッキングのフォーマットは、図8の下段左部で示されるように、Y0で表されるY信号を16bitとして、Cb01、およびCr01で表されるCb,Cr信号をそれぞれ8bitずつとするヘテロパッキングフォーマットである。
 図8の下段左部のヘテロパッキングフォーマットでは、Y0で表されるY信号のLSBからの6bit分が余りビットとされ、残りの10bit分がペイロードとされ、Cb01、およびCr01で表されるCb,Cr信号をそれぞれ8bitがペイロードとされる。
 図8の下段左部のヘテロパッキングフォーマットの場合、Y信号はデータ量の低減がなく16bitとされ、Cb信号とCr信号とは、それぞれが8bitずつの合計16bitとされるため、Cb,Cr信号のデータ量が低減する分だけ、ベース画質は低下するものの、GPU133におけるプロセッサ151の処理負荷が低いため、認識処理などに高度な処理を施すことが可能となる。
 一方、第2のビットパッキングのフォーマットは、図8の下段右部で示されるように、Y信号およびCb,Cr信号のそれぞれを10bitずつとする高圧縮パッキングフォーマットである。
 図8の下段右部の高圧縮パッキングフォーマットでは、LSBからY0、Cb01、およびCr01で表されるY信号およびCb,Cr信号のそれぞれが10bit分ずつペイロードとされ、残りが2bitの余りビットとなる。
 図8の下段右部の高圧縮パッキングフォーマットの場合、Y信号、Cb信号、およびCr信号のいずれもが10bitとされるため、ヘテロパッキングフォーマットと比較するとY,Cb,Cr信号のデータ量の低減が小さい分だけ、高効率で圧縮されており、ヘテロパッキングフォーマットに比べると、ベース画質の低下は抑制される。しかしながら、図8の下段右部のフォーマットは、16bit単位ではないデータであるため、読み出しに係るGPU133におけるプロセッサ151の処理負荷が高くなるため、データを読み解くための多くのリソースが必要となる分だけ、他の高度な処理を施すことができない。
 そこで、図9の上段で示される通常の拡張バス(PCIe)76への帯域の圧迫が大きい(図中においては、「NG」と記載されている)16bitパッキングフォーマットに対して、GPU133のプロセッサ151の処理負荷が所定の閾値よりも低い場合は、図9の中段で示される高圧縮パッキングフォーマットでビットパンキングするように制御する。高圧縮パッキングフォーマットは、拡張バス(PCIe)76への帯域の圧迫を低減できる(図中においては、「OK」と記載されている)が、GPU133におけるプロセッサ151の処理負荷が高負荷(Unpackが高負荷)となるため、GPU133による高度な信号処理が不能となる(GPU信号処理がPoorになる)。
 これに対して、GPU133のプロセッサ151の処理負荷が所定の閾値よりも高い場合は、図9の中段で示されるヘテロパッキングフォーマットにビットパンキングするように制御する。ヘテロパッキングフォーマットは、拡張バス(PCIe)76への帯域の圧迫を低減できる(図中においては、「OK」と記載されている)上、16bit単位でのデータの読み出しが可能であるため、GPU133におけるプロセッサ151の処理負荷が低負荷(Unpackが低負荷)となるため、高度な信号処理が可能となる(GPU信号処理がRichになる)。
 <図7のIPコンバータ受信装置による表示制御処理>
 次に、図10のフローチャートを参照して、図7のIPコンバータ受信装置55による表示制御処理について説明する。
 ステップS61において、入力部(Network Rx)71は、複数の種類のストリーム画像の入力を受け付けて、エンコードの種別に応じて、対応するストリーム画像をデコードするデコーダ72-1乃至72-nに出力する。
 ステップS62において、デコーダ(Decoder)72-1乃至72-nは、それぞれの種類のストリーム画像をエンコードの種別毎にデコードし、デコードしたストリーム画像を、それぞれビットパッキング部131-1乃至131-nに出力する。
 ステップS63において、ビットパッキング制御部(PackingCtrl)132は、GPU133のプロセッサ151の負荷を読み出す。
 ステップS64において、ビットパッキング制御部(PackingCtrl)132は、GPU133のプロセッサ151の処理負荷が、所定値(閾値)よりも低いか否かを判定し、所定値よりも低い場合、処理は、ステップS66に進む。
 ステップS65において、ビットパッキング制御部(PackingCtrl)132は、図8の下段右部を参照して説明した、高圧縮パッキングフォーマットによりビットパッキングするように、ビットパッキング部(BitPack)131-1乃至131-nに指示する。
 この指示に基づいて、ビットパッキング部(BitPack)131-1乃至131-nは、高圧縮パッキングフォーマットで画像信号をビットパッキングする。
 一方、ステップS64において、GPU133のプロセッサ151の処理負荷が、所定の閾値よりも低くない場合、処理は、ステップS66に進む。
 ステップS66において、ビットパッキング制御部(PackingCtrl)132は、図8の下段左部を参照して説明した、ヘテロパッキングフォーマットによりビットパッキングするように、ビットパッキング部(BitPack)131-1乃至131-nに指示する。
 この指示に基づいて、ビットパッキング部(BitPack)131-1乃至131-nは、ヘテロパッキングフォーマットで画像信号をビットパッキングする。
 ステップS67において、ビットパッキング部(BitPack)131-1乃至131-nは、ビットパッキングした画像信号を、拡張バス(PCIe)76を介してGPU133に出力する。
 ステップS68において、GPU(Graphics Processing Unit)133は、複数の画像を用いた画像処理により、1枚のPinP(Picture in Picture)画像を生成して、拡張バス76を介して、出力部78に出力する。
 ステップS69において、出力部(SDI(Serial Digital Interface))78は、PinP画像の画像信号をディスプレイからなる手術室内に設けられたモニタ56に出力して表示させる。
 尚、言うまでもないが、ステップS65,S66の処理のいずれにおいても、ビットパッキング部(BitPack)131-1乃至131-nは、GPU133のプロセッサ151の処理負荷に応じて、ビットパッキングフォーマットを切り換えると共に、画像の種類に応じてビットパッキング方式を切り換えるようにしてもよい。
 以上の処理により、拡張バス(PCIe)76の前段において、GPUの処理負荷に応じて、ビットパッキングのフォーマットが切り替えられることにより、画像信号のデータ量として低減しても影響の小さい画像信号については、低減させることにより、拡張バス(PCIe)76における帯域の圧迫を抑制することが可能になる。
 また、GPU133の処理負荷が低く、処理能力を十分に確保できるときは、帯域の圧迫を抑制しつつ、高圧縮ビットパッキングフォーマットによりデータによる画質の低下を抑制することが可能となる。
 さらに、GPU133の処理負荷が高く、処理能力を十分に確保できないときは、ヘテロビットパッキングフォーマットにより、データによる画質の劣化を容認することになるが、GPU133による処理負荷の増大を抑制させることが可能となる。
 結果として、画像を供給する医療機器の接続数の増大に対応しながら、術者が高解像度で見たい画像の解像度の低下を抑制することが可能となる。
 尚、以上においては、GPS133内のプロセッサ151がビットパッキング制御部(PackingCtrl)132を制御する構成について説明してきたが、IPC-Rx55内に別途CPU等のプロセッサが存在し、そのプロセッサがGPU133のレジスタを読んで、その結果に基づいてビットパッキング制御部(PackingCtrl)132を制御するようにしてもよい。
 また、以上においては、データ伝送路である拡張バス76がPCIeである例について説明してきたが、データ伝送路として機能するものであれば、その他の構成にも適用することができ、例えば、データ伝送路として機能する、MIPI(Mobile Industry Processor Interface)やGMSL(Gigabit Multimedia Serial Link)などに適用するようにしてもよい。
 さらに、以上においては、複数の種類の画像信号を合成する画像処理により1枚のPinP画像を生成して術者に提示する例について説明してきたが、少なくとも左右の目用の2枚の画像を提示する3D画像であっても同様の対応により拡張バス(PCIe)76の帯域の圧迫を抑制させることができる。
 このような構成により、例えば、モニタ56が3D表示対応しているか否かについては、カメラ50や病院内の画像管理サーバ54には認識できないので、左右両目用の画像信号をIPコンバータ受信装置(IPC-Rx)55に送信する。
 IPコンバータ受信装置(IPC-Rx)55は、自身が繋がっているモニタ56の表示機能に合わせて、拡張バス(PCIe)76の前段において、左右両目用の画像信号を、例えば、Line by Line画像信号(プログレッシブ画像信号)、Top and Bottom画像信号(インタレース画像信号)、または2D画像信号のそれぞれに切り替えて、GPU77に出力するように制御してもよい。
 <<6.ソフトウェアにより実行させる例>>
 ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のコンピュータなどに、記録媒体からインストールされる。
 図11は、汎用のコンピュータの構成例を示している。このパーソナルコンピュータは、CPU(Central Processing Unit)1001を内蔵している。CPU1001にはバス1004を介して、入出力インタフェース1005が接続されている。バス1004には、ROM(Read Only Memory)1002およびRAM(Random Access Memory)1003が接続されている。
 入出力インタフェース1005には、ユーザが操作コマンドを入力するキーボード、マウスなどの入力デバイスよりなる入力部1006、処理操作画面や処理結果の画像を表示デバイスに出力する出力部1007、プログラムや各種データを格納するハードディスクドライブなどよりなる記憶部1008、LAN(Local Area Network)アダプタなどよりなり、インターネットに代表されるネットワークを介した通信処理を実行する通信部1009が接続されている。また、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、もしくは半導体メモリなどのリムーバブル記憶媒体1011に対してデータを読み書きするドライブ1010が接続されている。
 CPU1001は、ROM1002に記憶されているプログラム、または磁気ディスク、光ディスク、光磁気ディスク、もしくは半導体メモリ等のリムーバブル記憶媒体1011ら読み出されて記憶部1008にインストールされ、記憶部1008からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。
 以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを、入出力インタフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記憶媒体1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブル記憶媒体1011をドライブ1010に装着することにより、入出力インタフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 尚、図11におけるCPU1001が、図3のデコーダ72-1乃至72-n、ビットパッキング部73-1乃至73-n、ビットパッキング制御部74、図5のエンコーダ91-1乃至91-n、または、図7のデコーダ72-1乃至72-n、ビットパッキング部131-1乃至131-n、ビットパッキング制御部132の機能を実現させる。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本開示は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 <<7.応用例>>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、手術室システムに適用されてもよい。
 図12は、本開示に係る技術が適用され得る手術室システム5100の全体構成を概略的に示す図である。図12を参照すると、手術室システム5100は、手術室内に設置される装置群が視聴覚コントローラ(AV Controller)5107及び手術室制御装置5109を介して互いに連携可能に接続されることにより構成される。
 手術室には、様々な装置が設置され得る。図12では、一例として、内視鏡下手術のための各種の装置群5101と、手術室の天井に設けられ術者の手元を撮像するシーリングカメラ5187と、手術室の天井に設けられ手術室全体の様子を撮像する術場カメラ5189と、複数の表示装置5103A~5103Dと、レコーダ5105と、患者ベッド5183と、照明5191と、を図示している。
 ここで、これらの装置のうち、装置群5101は、後述する内視鏡手術システム5113に属するものであり、内視鏡や当該内視鏡によって撮像された画像を表示する表示装置等からなる。内視鏡手術システム5113に属する各装置は医療用機器とも呼称される。一方、表示装置5103A~5103D、レコーダ5105、患者ベッド5183及び照明5191は、内視鏡手術システム5113とは別個に、例えば手術室に備え付けられている装置である。これらの内視鏡手術システム5113に属さない各装置は非医療用機器とも呼称される。視聴覚コントローラ5107及び/又は手術室制御装置5109は、これら医療機器及び非医療機器の動作を互いに連携して制御する。
 視聴覚コントローラ5107は、医療機器及び非医療機器における画像表示に関する処理を、統括的に制御する。具体的には、手術室システム5100が備える装置のうち、装置群5101、シーリングカメラ5187及び術場カメラ5189は、手術中に表示すべき情報(以下、表示情報ともいう)を発信する機能を有する装置(以下、発信元の装置とも呼称する)であり得る。また、表示装置5103A~5103Dは、表示情報が出力される装置(以下、出力先の装置とも呼称する)であり得る。また、レコーダ5105は、発信元の装置及び出力先の装置の双方に該当する装置であり得る。視聴覚コントローラ5107は、発信元の装置及び出力先の装置の動作を制御し、発信元の装置から表示情報を取得するとともに、当該表示情報を出力先の装置に送信し、表示又は記録させる機能を有する。なお、表示情報とは、手術中に撮像された各種の画像や、手術に関する各種の情報(例えば、患者の身体情報や、過去の検査結果、術式についての情報等)等である。
 具体的には、視聴覚コントローラ5107には、装置群5101から、表示情報として、内視鏡によって撮像された患者の体腔内の術部の画像についての情報が送信され得る。また、シーリングカメラ5187から、表示情報として、当該シーリングカメラ5187によって撮像された術者の手元の画像についての情報が送信され得る。また、術場カメラ5189から、表示情報として、当該術場カメラ5189によって撮像された手術室全体の様子を示す画像についての情報が送信され得る。なお、手術室システム5100に撮像機能を有する他の装置が存在する場合には、視聴覚コントローラ5107は、表示情報として、当該他の装置からも当該他の装置によって撮像された画像についての情報を取得してもよい。
 あるいは、例えば、レコーダ5105には、過去に撮像されたこれらの画像についての情報が視聴覚コントローラ5107によって記録されている。視聴覚コントローラ5107は、表示情報として、レコーダ5105から当該過去に撮像された画像についての情報を取得することができる。なお、レコーダ5105には、手術に関する各種の情報も事前に記録されていてもよい。
 視聴覚コントローラ5107は、出力先の装置である表示装置5103A~5103Dの少なくともいずれかに、取得した表示情報(すなわち、手術中に撮影された画像や、手術に関する各種の情報)を表示させる。図示する例では、表示装置5103Aは手術室の天井から吊り下げられて設置される表示装置であり、表示装置5103Bは手術室の壁面に設置される表示装置であり、表示装置5103Cは手術室内の机上に設置される表示装置であり、表示装置5103Dは表示機能を有するモバイル機器(例えば、タブレットPC(Personal Computer))である。
 また、図12では図示を省略しているが、手術室システム5100には、手術室の外部の装置が含まれてもよい。手術室の外部の装置は、例えば、病院内外に構築されたネットワークに接続されるサーバや、医療スタッフが用いるPC、病院の会議室に設置されるプロジェクタ等であり得る。このような外部装置が病院外にある場合には、視聴覚コントローラ5107は、遠隔医療のために、テレビ会議システム等を介して、他の病院の表示装置に表示情報を表示させることもできる。
 手術室制御装置5109は、非医療機器における画像表示に関する処理以外の処理を、統括的に制御する。例えば、手術室制御装置5109は、患者ベッド5183、シーリングカメラ5187、術場カメラ5189及び照明5191の駆動を制御する。
 IPコンバータ装置(IPC)5110は、視聴覚コントローラ5107より出力される、発信元装置から発信された表示情報に対応する、IPパケット化された複数の画像の入力を受け付けて、画像の種類ごとにデコードして画像信号に変換させる装置である。このとき、複数の画像を合成して1枚のPinP画像を生成してもよい。IPコンバータ装置5110は、画像信号を集中操作パネル5111に出力して表示させる。なお、IPコンバータ装置5110は、表示デバイスから出力される画像信号をIPパケット化する機能を有していてもよい。
 手術室システム5100には、集中操作パネル5111が設けられており、ユーザは、当該集中操作パネル5111を介して、視聴覚コントローラ5107に対して画像表示についての指示を与えたり、手術室制御装置5109に対して非医療機器の動作についての指示を与えることができる。集中操作パネル5111は、表示装置の表示面上にタッチパネルが設けられて構成される。
 図13は、集中操作パネル5111における操作画面の表示例を示す図である。図13では、一例として、手術室システム5100に、出力先の装置として、2つの表示装置が設けられている場合に対応する操作画面を示している。図13を参照すると、操作画面5193には、発信元選択領域5195と、プレビュー領域5197と、コントロール領域5201と、が設けられる。
 発信元選択領域5195には、手術室システム5100に備えられる発信元装置と、当該発信元装置が有する表示情報を表すサムネイル画面と、が紐付けられて表示される。ユーザは、表示装置に表示させたい表示情報を、発信元選択領域5195に表示されているいずれかの発信元装置から選択することができる。
 プレビュー領域5197には、出力先の装置である2つの表示装置(Monitor1、Monitor2)に表示される画面のプレビューが表示される。図示する例では、1つの表示装置において4つの画像がPinP表示されている。当該4つの画像は、発信元選択領域5195において選択された発信元装置から発信された表示情報に対応するものである。4つの画像のうち、1つはメイン画像として比較的大きく表示され、残りの3つはサブ画像として比較的小さく表示される。ユーザは、4つの画像が表示された領域を適宜選択することにより、メイン画像とサブ画像を入れ替えることができる。また、4つの画像が表示される領域の下部には、ステータス表示領域5199が設けられており、当該領域に手術に関するステータス(例えば、手術の経過時間や、患者の身体情報等)が適宜表示され得る。
 コントロール領域5201には、発信元の装置に対して操作を行うためのGUI(Graphical User Interface)部品が表示される発信元操作領域5203と、出力先の装置に対して操作を行うためのGUI部品が表示される出力先操作領域5205と、が設けられる。図示する例では、発信元操作領域5203には、撮像機能を有する発信元の装置におけるカメラに対して各種の操作(パン、チルト及びズーム)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、発信元の装置におけるカメラの動作を操作することができる。なお、図示は省略しているが、発信元選択領域5195において選択されている発信元の装置がレコーダである場合(すなわち、プレビュー領域5197において、レコーダに過去に記録された画像が表示されている場合)には、発信元操作領域5203には、当該画像の再生、再生停止、巻き戻し、早送り等の操作を行うためのGUI部品が設けられ得る。
 また、出力先操作領域5205には、出力先の装置である表示装置における表示に対する各種の操作(スワップ、フリップ、色調整、コントラスト調整、2D表示と3D表示の切り替え)を行うためのGUI部品が設けられている。ユーザは、これらのGUI部品を適宜選択することにより、表示装置における表示を操作することができる。
 なお、集中操作パネル5111に表示される操作画面は図示する例に限定されず、ユーザは、集中操作パネル5111を介して、手術室システム5100に備えられる、視聴覚コントローラ5107及び手術室制御装置5109によって制御され得る各装置に対する操作入力が可能であってよい。
 図13は、以上説明した手術室システムが適用された手術の様子の一例を示す図である。シーリングカメラ5187及び術場カメラ5189は、手術室の天井に設けられ、患者ベッド5183上の患者5185の患部に対して処置を行う術者(医者)5181の手元及び手術室全体の様子を撮影可能である。シーリングカメラ5187及び術場カメラ5189には、倍率調整機能、焦点距離調整機能、撮影方向調整機能等が設けられ得る。照明5191は、手術室の天井に設けられ、少なくとも術者5181の手元を照射する。照明5191は、その照射光量、照射光の波長(色)及び光の照射方向等を適宜調整可能であってよい。
 内視鏡手術システム5113、患者ベッド5183、シーリングカメラ5187、術場カメラ5189及び照明5191は、図12に示すように、視聴覚コントローラ5107及び手術室制御装置5109(図14では図示せず)を介して互いに連携可能に接続されている。手術室内には、集中操作パネル5111が設けられており、上述したように、ユーザは、当該集中操作パネル5111を介して、手術室内に存在するこれらの装置を適宜操作することが可能である。
 以下、内視鏡手術システム5113の構成について詳細に説明する。図示するように、内視鏡手術システム5113は、内視鏡5115と、その他の術具5131と、内視鏡5115を支持する支持アーム装置5141と、内視鏡下手術のための各種の装置が搭載されたカート5151と、から構成される。
 内視鏡手術では、腹壁を切って開腹する代わりに、トロッカ5139a~5139dと呼ばれる筒状の開孔器具が腹壁に複数穿刺される。そして、トロッカ5139a~5139dから、内視鏡5115の鏡筒5117や、その他の術具5131が患者5185の体腔内に挿入される。図示する例では、その他の術具5131として、気腹チューブ5133、エネルギー処置具5135及び鉗子5137が、患者5185の体腔内に挿入されている。また、エネルギー処置具5135は、高周波電流や超音波振動により、組織の切開及び剥離、又は血管の封止等を行う処置具である。ただし、図示する術具5131はあくまで一例であり、術具5131としては、例えば攝子、レトラクタ等、一般的に内視鏡下手術において用いられる各種の術具が用いられてよい。
 内視鏡5115によって撮影された患者5185の体腔内の術部の画像が、表示装置5155に表示される。術者5181は、表示装置5155に表示された術部の画像をリアルタイムで見ながら、エネルギー処置具5135や鉗子5137を用いて、例えば患部を切除する等の処置を行う。なお、図示は省略しているが、気腹チューブ5133、エネルギー処置具5135及び鉗子5137は、手術中に、術者5181又は助手等によって支持される。
 (支持アーム装置)
 支持アーム装置5141は、ベース部5143から延伸するアーム部5145を備える。図示する例では、アーム部5145は、関節部5147a、5147b、5147c、及びリンク5149a、5149bから構成されており、アーム制御装置5159からの制御により駆動される。アーム部5145によって内視鏡5115が支持され、その位置及び姿勢が制御される。これにより、内視鏡5115の安定的な位置の固定が実現され得る。
 (内視鏡)
 内視鏡5115は、先端から所定の長さの領域が患者5185の体腔内に挿入される鏡筒5117と、鏡筒5117の基端に接続されるカメラヘッド5119と、から構成される。図示する例では、硬性の鏡筒5117を有するいわゆる硬性鏡として構成される内視鏡5115を図示しているが、内視鏡5115は、軟性の鏡筒5117を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒5117の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡5115には光源装置5157が接続されており、当該光源装置5157によって生成された光が、鏡筒5117の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者5185の体腔内の観察対象に向かって照射される。なお、内視鏡5115は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド5119の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)5153に送信される。なお、カメラヘッド5119には、その光学系を適宜駆動させることにより、倍率及び焦点距離を調整する機能が搭載される。
 なお、例えば立体視(3D表示)等に対応するために、カメラヘッド5119には撮像素子が複数設けられてもよい。この場合、鏡筒5117の内部には、当該複数の撮像素子のそれぞれに観察光を導光するために、リレー光学系が複数系統設けられる。
 (カートに搭載される各種の装置)
 CCU5153は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡5115及び表示装置5155の動作を統括的に制御する。具体的には、CCU5153は、カメラヘッド5119から受け取った画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。CCU5153は、当該画像処理を施した画像信号を表示装置5155に提供する。また、CCU5153には、図12に示す視聴覚コントローラ5107が接続される。CCU5153は、画像処理を施した画像信号を視聴覚コントローラ5107にも提供する。また、CCU5153は、カメラヘッド5119に対して制御信号を送信し、その駆動を制御する。当該制御信号には、倍率や焦点距離等、撮像条件に関する情報が含まれ得る。当該撮像条件に関する情報は、入力装置5161を介して入力されてもよいし、上述した集中操作パネル5111を介して入力されてもよい。
 表示装置5155は、CCU5153からの制御により、当該CCU5153によって画像処理が施された画像信号に基づく画像を表示する。内視鏡5115が例えば4K(水平画素数3840×垂直画素数2160)又は8K(水平画素数7680×垂直画素数4320)等の高解像度の撮影に対応したものである場合、及び/又は3D表示に対応したものである場合には、表示装置5155としては、それぞれに対応して、高解像度の表示が可能なもの、及び/又は3D表示可能なものが用いられ得る。4K又は8K等の高解像度の撮影に対応したものである場合、表示装置5155として55インチ以上のサイズのものを用いることで一層の没入感が得られる。また、用途に応じて、解像度、サイズが異なる複数の表示装置5155が設けられてもよい。
 光源装置5157は、例えばLED(light emitting diode)等の光源から構成され、術部を撮影する際の照射光を内視鏡5115に供給する。
 アーム制御装置5159は、例えばCPU等のプロセッサによって構成され、所定のプログラムに従って動作することにより、所定の制御方式に従って支持アーム装置5141のアーム部5145の駆動を制御する。
 入力装置5161は、内視鏡手術システム5113に対する入力インタフェースである。ユーザは、入力装置5161を介して、内視鏡手術システム5113に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、入力装置5161を介して、患者の身体情報や、手術の術式についての情報等、手術に関する各種の情報を入力する。また、例えば、ユーザは、入力装置5161を介して、アーム部5145を駆動させる旨の指示や、内視鏡5115による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示、エネルギー処置具5135を駆動させる旨の指示等を入力する。
 入力装置5161の種類は限定されず、入力装置5161は各種の公知の入力装置であってよい。入力装置5161としては、例えば、マウス、キーボード、タッチパネル、スイッチ、フットスイッチ5171及び/又はレバー等が適用され得る。入力装置5161としてタッチパネルが用いられる場合には、当該タッチパネルは表示装置5155の表示面上に設けられてもよい。
 あるいは、入力装置5161は、例えばメガネ型のウェアラブルデバイスやHMD(Head Mounted Display)等の、ユーザによって装着されるデバイスであり、これらのデバイスによって検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。また、入力装置5161は、ユーザの動きを検出可能なカメラを含み、当該カメラによって撮像された映像から検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。更に、入力装置5161は、ユーザの声を収音可能なマイクロフォンを含み、当該マイクロフォンを介して音声によって各種の入力が行われる。このように、入力装置5161が非接触で各種の情報を入力可能に構成されることにより、特に清潔域に属するユーザ(例えば術者5181)が、不潔域に属する機器を非接触で操作することが可能となる。また、ユーザは、所持している術具から手を離すことなく機器を操作することが可能となるため、ユーザの利便性が向上する。
 処置具制御装置5163は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具5135の駆動を制御する。気腹装置5165は、内視鏡5115による視野の確保及び術者の作業空間の確保の目的で、患者5185の体腔を膨らめるために、気腹チューブ5133を介して当該体腔内にガスを送り込む。レコーダ5167は、手術に関する各種の情報を記録可能な装置である。プリンタ5169は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 以下、内視鏡手術システム5113において特に特徴的な構成について、更に詳細に説明する。
 (支持アーム装置)
 支持アーム装置5141は、基台であるベース部5143と、ベース部5143から延伸するアーム部5145と、を備える。図示する例では、アーム部5145は、複数の関節部5147a、5147b、5147cと、関節部5147bによって連結される複数のリンク5149a、5149bと、から構成されているが、図14では、簡単のため、アーム部5145の構成を簡略化して図示している。実際には、アーム部5145が所望の自由度を有するように、関節部5147a~5147c及びリンク5149a、5149bの形状、数及び配置、並びに関節部5147a~5147cの回転軸の方向等が適宜設定され得る。例えば、アーム部5145は、好適に、6自由度以上の自由度を有するように構成され得る。これにより、アーム部5145の可動範囲内において内視鏡5115を自由に移動させることが可能になるため、所望の方向から内視鏡5115の鏡筒5117を患者5185の体腔内に挿入することが可能になる。
 関節部5147a~5147cにはアクチュエータが設けられており、関節部5147a~5147cは当該アクチュエータの駆動により所定の回転軸まわりに回転可能に構成されている。当該アクチュエータの駆動がアーム制御装置5159によって制御されることにより、各関節部5147a~5147cの回転角度が制御され、アーム部5145の駆動が制御される。これにより、内視鏡5115の位置及び姿勢の制御が実現され得る。この際、アーム制御装置5159は、力制御又は位置制御等、各種の公知の制御方式によってアーム部5145の駆動を制御することができる。
 例えば、術者5181が、入力装置5161(フットスイッチ5171を含む)を介して適宜操作入力を行うことにより、当該操作入力に応じてアーム制御装置5159によってアーム部5145の駆動が適宜制御され、内視鏡5115の位置及び姿勢が制御されてよい。当該制御により、アーム部5145の先端の内視鏡5115を任意の位置から任意の位置まで移動させた後、その移動後の位置で固定的に支持することができる。なお、アーム部5145は、いわゆるマスタースレイブ方式で操作されてもよい。この場合、アーム部5145は、手術室から離れた場所に設置される入力装置5161を介してユーザによって遠隔操作され得る。
 また、力制御が適用される場合には、アーム制御装置5159は、ユーザからの外力を受け、その外力にならってスムーズにアーム部5145が移動するように、各関節部5147a~5147cのアクチュエータを駆動させる、いわゆるパワーアシスト制御を行ってもよい。これにより、ユーザが直接アーム部5145に触れながらアーム部5145を移動させる際に、比較的軽い力で当該アーム部5145を移動させることができる。従って、より直感的に、より簡易な操作で内視鏡5115を移動させることが可能となり、ユーザの利便性を向上させることができる。
 ここで、一般的に、内視鏡下手術では、スコピストと呼ばれる医師によって内視鏡5115が支持されていた。これに対して、支持アーム装置5141を用いることにより、人手によらずに内視鏡5115の位置をより確実に固定することが可能になるため、術部の画像を安定的に得ることができ、手術を円滑に行うことが可能になる。
 なお、アーム制御装置5159は必ずしもカート5151に設けられなくてもよい。また、アーム制御装置5159は必ずしも1つの装置でなくてもよい。例えば、アーム制御装置5159は、支持アーム装置5141のアーム部5145の各関節部5147a~5147cにそれぞれ設けられてもよく、複数のアーム制御装置5159が互いに協働することにより、アーム部5145の駆動制御が実現されてもよい。
 (光源装置)
 光源装置5157は、内視鏡5115に術部を撮影する際の照射光を供給する。光源装置5157は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成される。このとき、RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置5157において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド5119の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置5157は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド5119の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置5157は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察するもの(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得るもの等が行われ得る。光源装置5157は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 (カメラヘッド及びCCU)
 図15を参照して、内視鏡5115のカメラヘッド5119及びCCU5153の機能についてより詳細に説明する。図15は、図14に示すカメラヘッド5119及びCCU5153の機能構成の一例を示すブロック図である。
 図15を参照すると、カメラヘッド5119は、その機能として、レンズユニット5121と、撮像部5123と、駆動部5125と、通信部5127と、カメラヘッド制御部5129と、を有する。また、CCU5153は、その機能として、通信部5173と、画像処理部5175と、制御部5177と、を有する。カメラヘッド5119とCCU5153とは、伝送ケーブル5179によって双方向に通信可能に接続されている。
 まず、カメラヘッド5119の機能構成について説明する。レンズユニット5121は、鏡筒5117との接続部に設けられる光学系である。鏡筒5117の先端から取り込まれた観察光は、カメラヘッド5119まで導光され、当該レンズユニット5121に入射する。レンズユニット5121は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。レンズユニット5121は、撮像部5123の撮像素子の受光面上に観察光を集光するように、その光学特性が調整されている。また、ズームレンズ及びフォーカスレンズは、撮像画像の倍率及び焦点の調整のため、その光軸上の位置が移動可能に構成される。
 撮像部5123は撮像素子によって構成され、レンズユニット5121の後段に配置される。レンズユニット5121を通過した観察光は、当該撮像素子の受光面に集光され、光電変換によって、観察像に対応した画像信号が生成される。撮像部5123によって生成された画像信号は、通信部5127に提供される。
 撮像部5123を構成する撮像素子としては、例えばCMOS(Complementary Metal Oxide Semiconductor)タイプのイメージセンサであり、Bayer配列を有するカラー撮影可能なものが用いられる。なお、当該撮像素子としては、例えば4K以上の高解像度の画像の撮影に対応可能なものが用いられてもよい。術部の画像が高解像度で得られることにより、術者5181は、当該術部の様子をより詳細に把握することができ、手術をより円滑に進行することが可能となる。
 また、撮像部5123を構成する撮像素子は、3D表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成される。3D表示が行われることにより、術者5181は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部5123が多板式で構成される場合には、各撮像素子に対応して、レンズユニット5121も複数系統設けられる。
 また、撮像部5123は、必ずしもカメラヘッド5119に設けられなくてもよい。例えば、撮像部5123は、鏡筒5117の内部に、対物レンズの直後に設けられてもよい。
 駆動部5125は、アクチュエータによって構成され、カメラヘッド制御部5129からの制御により、レンズユニット5121のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部5123による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部5127は、CCU5153との間で各種の情報を送受信するための通信装置によって構成される。通信部5127は、撮像部5123から得た画像信号をRAWデータとして伝送ケーブル5179を介してCCU5153に送信する。この際、術部の撮像画像を低レイテンシで表示するために、当該画像信号は光通信によって送信されることが好ましい。手術の際には、術者5181が撮像画像によって患部の状態を観察しながら手術を行うため、より安全で確実な手術のためには、術部の動画像が可能な限りリアルタイムに表示されることが求められるからである。光通信が行われる場合には、通信部5127には、電気信号を光信号に変換する光電変換モジュールが設けられる。画像信号は当該光電変換モジュールによって光信号に変換された後、伝送ケーブル5179を介してCCU5153に送信される。
 また、通信部5127は、CCU5153から、カメラヘッド5119の駆動を制御するための制御信号を受信する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。通信部5127は、受信した制御信号をカメラヘッド制御部5129に提供する。なお、CCU5153からの制御信号も、光通信によって伝送されてもよい。この場合、通信部5127には、光信号を電気信号に変換する光電変換モジュールが設けられ、制御信号は当該光電変換モジュールによって電気信号に変換された後、カメラヘッド制御部5129に提供される。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、取得された画像信号に基づいてCCU5153の制御部5177によって自動的に設定される。つまり、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡5115に搭載される。
 カメラヘッド制御部5129は、通信部5127を介して受信したCCU5153からの制御信号に基づいて、カメラヘッド5119の駆動を制御する。例えば、カメラヘッド制御部5129は、撮像画像のフレームレートを指定する旨の情報及び/又は撮像時の露光を指定する旨の情報に基づいて、撮像部5123の撮像素子の駆動を制御する。また、例えば、カメラヘッド制御部5129は、撮像画像の倍率及び焦点を指定する旨の情報に基づいて、駆動部5125を介してレンズユニット5121のズームレンズ及びフォーカスレンズを適宜移動させる。カメラヘッド制御部5129は、更に、鏡筒5117やカメラヘッド5119を識別するための情報を記憶する機能を備えてもよい。
 なお、レンズユニット5121や撮像部5123等の構成を、気密性及び防水性が高い密閉構造内に配置することで、カメラヘッド5119について、オートクレーブ滅菌処理に対する耐性を持たせることができる。
 次に、CCU5153の機能構成について説明する。通信部5173は、カメラヘッド5119との間で各種の情報を送受信するための通信装置によって構成される。通信部5173は、カメラヘッド5119から、伝送ケーブル5179を介して送信される画像信号を受信する。この際、上記のように、当該画像信号は好適に光通信によって送信され得る。この場合、光通信に対応して、通信部5173には、光信号を電気信号に変換する光電変換モジュールが設けられる。通信部5173は、電気信号に変換した画像信号を画像処理部5175に提供する。
 また、通信部5173は、カメラヘッド5119に対して、カメラヘッド5119の駆動を制御するための制御信号を送信する。当該制御信号も光通信によって送信されてよい。
 画像処理部5175は、カメラヘッド5119から送信されたRAWデータである画像信号に対して各種の画像処理を施す。当該画像処理としては、例えば現像処理、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の公知の信号処理が含まれる。また、画像処理部5175は、AE、AF及びAWBを行うための、画像信号に対する検波処理を行う。
 画像処理部5175は、CPUやGPU等のプロセッサによって構成され、当該プロセッサが所定のプログラムに従って動作することにより、上述した画像処理や検波処理が行われ得る。なお、画像処理部5175が複数のGPUによって構成される場合には、画像処理部5175は、画像信号に係る情報を適宜分割し、これら複数のGPUによって並列的に画像処理を行う。
 制御部5177は、内視鏡5115による術部の撮像、及びその撮像画像の表示に関する各種の制御を行う。例えば、制御部5177は、カメラヘッド5119の駆動を制御するための制御信号を生成する。この際、撮像条件がユーザによって入力されている場合には、制御部5177は、当該ユーザによる入力に基づいて制御信号を生成する。あるいは、内視鏡5115にAE機能、AF機能及びAWB機能が搭載されている場合には、制御部5177は、画像処理部5175による検波処理の結果に応じて、最適な露出値、焦点距離及びホワイトバランスを適宜算出し、制御信号を生成する。
 また、制御部5177は、画像処理部5175によって画像処理が施された画像信号に基づいて、術部の画像を表示装置5155に表示させる。この際、制御部5177は、各種の画像認識技術を用いて術部画像内における各種の物体を認識する。例えば、制御部5177は、術部画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具5135使用時のミスト等を認識することができる。制御部5177は、表示装置5155に術部の画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させる。手術支援情報が重畳表示され、術者5181に提示されることにより、より安全かつ確実に手術を進めることが可能になる。
 カメラヘッド5119及びCCU5153を接続する伝送ケーブル5179は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル5179を用いて有線で通信が行われていたが、カメラヘッド5119とCCU5153との間の通信は無線で行われてもよい。両者の間の通信が無線で行われる場合には、伝送ケーブル5179を手術室内に敷設する必要がなくなるため、手術室内における医療スタッフの移動が当該伝送ケーブル5179によって妨げられる事態が解消され得る。
 以上、本開示に係る技術が適用され得る手術室システム5100の一例について説明した。なお、ここでは、一例として手術室システム5100が適用される医療用システムが内視鏡手術システム5113である場合について説明したが、手術室システム5100の構成はかかる例に限定されない。例えば、手術室システム5100は、内視鏡手術システム5113に代えて、検査用軟性内視鏡システムや顕微鏡手術システムに適用されてもよい。
 本開示に係る技術は、以上説明した構成のうち、IPコンバータ装置(IPC)5110に好適に適用され得る。具体的には、IPコンバータ装置(IPC)5110として、本開示の図3,図5,図7におけるIPコンバータ受信装置55が用いられることにより好適に適用され得る。IPコンバータ装置(IPC)5110に本開示に係る技術を適用することにより、画像を供給する医療機器の接続数の増大に対応しながら、術者が高解像度で見たい画像の解像度の低下を抑制することが可能となる。
 尚、本開示は、以下のような構成も取ることができる。
<1> 複数の機器から画像を取得する取得部と、
 前記取得部により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する複数の圧縮部とを含む
 受信装置。
<2> 前記圧縮部は、前記取得部により取得された前記画像を、前記画像の種類毎にビットパッキング方式を切り替えてビットパッキングすることで前記圧縮方法を選択して圧縮する
 <1>に記載の受信装置。
<3> 前記圧縮部は、前記取得部により取得された前記画像を、前記画像の種類毎に、コンポーネント信号のフォーマットを切り替えることで、ビットパッキング方式を切り替えて、ビットパッキングすることで前記圧縮方法を選択して圧縮する
 <2>に記載の受信装置。
<4> 前記圧縮部は、前記取得部により取得された前記画像を、前記画像の種類毎に、フレームレートを切り替えることで前記圧縮方法を選択して圧縮する
 <1>に記載の受信装置。
<5> 前記圧縮部は、前記取得部により取得された前記画像を、前記画像の種類毎に、前記画像の領域に応じて圧縮率を切り替えることで前記圧縮方法を選択して圧縮する
 <1>に記載の受信装置。
<6> 前記圧縮部は、前記取得部により取得された前記画像を、前記画像の種類毎にエンコード方式を切り替えることで前記圧縮方法を選択して圧縮する
 <1>に記載の受信装置。
<7> 前記画像は医療画像であり、
 前記圧縮部は、前記取得部により取得された前記画像に付されたDICOM(Digital Imaging and Communications in Medicine)のIOD(Information Object Definition)データに基づいて、前記画像の種類を判別する
 <1>に記載の受信装置。
<8> 前記医療画像の種類は、術野画像、内視鏡画像、腹腔鏡画像、CT(Computed Tomography)画像、MRI(Magnetic Resonance Imaging)画像、およびX線画像を少なくとも含む
 <7>に記載の受信装置。
<9> 前記画像は医療画像であり、
 前記圧縮部は、前記取得部により取得された前記画像の解析結果に基づいて、前記画像の種類を判別する
 <1>に記載の受信装置。
<10> 前記圧縮部は、前記取得部により取得された前記画像における、Y,Cb,Cr信号の各チャンネルの空間周波数解析の解析結果、または、ダイナミックレンジ解析の解析結果に基づいて、前記画像の種類を判別する
 <9>に記載の受信装置。
<11> 前記圧縮部は、前記画像の解析結果において、前記画像の外周部に、丸く、黒いマスクがあるか否かに基づいて、前記画像の種類が内視鏡画像であるか否かを判別する
 <9>に記載の受信装置。
<12> 前記圧縮部は、前記画像の解析において、前記画像がグレイスケールであるか否かに基づいて、前記画像の種類がX画像およびCT画像のいずれかであるか否かを判別する
 <9>に記載の受信装置。
<13> 前記複数の圧縮部により圧縮された複数の画像を伝送する伝送部と、
 前記伝送部により伝送された前記複数の圧縮部により圧縮された複数の画像を合成する画像処理により1枚のPinP(Picture in Picture)画像を生成する生成部と、
 前記伝送部を介して、前記1枚のPinP(Picture in Picture)画像を表示部に出力して表示させる出力部をさらに含む
 <1>乃至<12>のいずれかに記載の受信装置。
<14> 前記圧縮部は、前記生成部のプロセッサの処理負荷に応じて、ビットパッキングにおけるフォーマットを切り替えることで、前記取得部により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する
 <13>に記載の受信装置。
<15> 前記圧縮部は、前記生成部のプロセッサの処理負荷に応じて、前記ビットパッキングにおけるフォーマットを、16bitアライン以外のフォーマットから構成される第1の圧縮率のフォーマット、または、前記16bitアラインのフォーマットから構成される前記第1の圧縮率よりも圧縮率が低い第2の圧縮率のフォーマットのいずれかに切り替えることで前記圧縮方法を選択して圧縮する
 <14>に記載の受信装置。
<16> 前記圧縮部は、
  前記生成部のプロセッサの処理負荷が所定値よりも低いとき、前記ビットパッキングにおけるフォーマットを、前記16bitアライン以外のフォーマットから構成される前記第1の圧縮率のフォーマットに切り替え、
  前記生成部のプロセッサの処理負荷が所定値よりも高いとき、前記ビットパッキングにおけるフォーマットを、前記16bitアラインのフォーマットから構成される前記第1の圧縮率よりも圧縮率が低い第2の圧縮率のフォーマットに切り替えることで前記圧縮方法を選択して圧縮する
 <15>に記載の受信装置。
<17> 前記伝送部は、PCIe(Peripheral Component Interconnect Express)である
 <13>に記載の受信装置。
<18> 前記圧縮部は、前記画像が3D対応画像である場合、前記表示部の表示機能に応じて、前記圧縮方法を選択して圧縮する
 <13>に記載の受信装置。
<19> 複数の機器から画像を取得する取得処理と、
 前記取得処理により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する圧縮処理とを含む
 受信方法。
<20> 複数の機器からの画像を記憶する画像サーバと、前記画像サーバからの画像を取得して表示部に出力して表示させる受信装置とからなる画像処理システムにおいて、
 前記画像サーバは、
  前記複数の機器からの画像を記憶し、記憶した画像を前記受信装置に出力する出力部とを含み、
 前記受信装置は、
  前記画像サーバより、前記複数の機器からの画像を取得する取得部と、
  前記取得部により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する複数の圧縮部とを含む
 画像処理システム。
 11 IPコンバータ受信装置(IPC-Rx), 31 入力部(Network Rx), 32,32-1乃至32-n デコーダ(Decoder), 33 拡張バス(PCIe(Peripheral Component Interconnect Express)), 34 GPU(Graphics Processing Unit), 35 出力部(SDI(Serial Digital Interface)), 40 病院内画像処理システム, 50 カメラ(camera), 51 カメラコントロールユニット(CCU(Camera Control Unit)), 52 IPコンバータ送信装置(IPC-Tx), 71 入力部(Network Rx), 72,72-1乃至72-n デコーダ(Decoder), 73,73-1乃至73-n ビットパッキング部(BitPack), 74 ビットパッキング制御部(PackingCtrl), 75 テーブル(Table), 76 拡張バス(PCIe(Peripheral Component Interconnect Express)), 77 GPU(Graphics Processing Unit), 78 出力部(SDI(Serial Digital Interface)), 91,91-1乃至91-n エンコーダ(Enc), 92 テーブル(Table), 93 GPU(Graphics Processing Unit), 111,111-1乃至111-n デコーダ(Dec), 131,131-1乃至131-n ビットパッキング部(BitPack), 132 ビットパッキング制御部(PackingCtrl), 133 GPU, 151 プロセッサ

Claims (20)

  1.  複数の機器から画像を取得する取得部と、
     前記取得部により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する複数の圧縮部とを含む
     受信装置。
  2.  前記圧縮部は、前記取得部により取得された前記画像を、前記画像の種類毎にビットパッキング方式を切り替えてビットパッキングすることで前記圧縮方法を選択して圧縮する
     請求項1に記載の受信装置。
  3.  前記圧縮部は、前記取得部により取得された前記画像を、前記画像の種類毎に、コンポーネント信号のフォーマットを切り替えることで、ビットパッキング方式を切り替えて、ビットパッキングすることで前記圧縮方法を選択して圧縮する
     請求項2に記載の受信装置。
  4.  前記圧縮部は、前記取得部により取得された前記画像を、前記画像の種類毎に、フレームレートを切り替えることで前記圧縮方法を選択して圧縮する
     請求項1に記載の受信装置。
  5.  前記圧縮部は、前記取得部により取得された前記画像を、前記画像の種類毎に、前記画像の領域に応じて圧縮率を切り替えることで前記圧縮方法を選択して圧縮する
     請求項1に記載の受信装置。
  6.  前記圧縮部は、前記取得部により取得された前記画像を、前記画像の種類毎にエンコード方式を切り替えることで前記圧縮方法を選択して圧縮する
     請求項1に記載の受信装置。
  7.  前記画像は医療画像であり、
     前記圧縮部は、前記取得部により取得された前記画像に付されたDICOM(Digital Imaging and Communications in Medicine)のIOD(Information Object Definition)データに基づいて、前記画像の種類を判別する
     請求項1に記載の受信装置。
  8.  前記医療画像の種類は、術野画像、内視鏡画像、腹腔鏡画像、CT(Computed Tomography)画像、MRI(Magnetic Resonance Imaging)画像、およびX線画像を少なくとも含む
     請求項7に記載の受信装置。
  9.  前記画像は医療画像であり、
     前記圧縮部は、前記取得部により取得された前記画像の解析結果に基づいて、前記画像の種類を判別する
     請求項1に記載の受信装置。
  10.  前記圧縮部は、前記取得部により取得された前記画像における、Y,Cb,Cr信号の各チャンネルの空間周波数解析の解析結果、または、ダイナミックレンジ解析の解析結果に基づいて、前記画像の種類を判別する
     請求項9に記載の受信装置。
  11.  前記圧縮部は、前記画像の解析結果において、前記画像の外周部に、丸く、黒いマスクがあるか否かに基づいて、前記画像の種類が内視鏡画像であるか否かを判別する
     請求項9に記載の受信装置。
  12.  前記圧縮部は、前記画像の解析において、前記画像がグレイスケールであるか否かに基づいて、前記画像の種類がX画像およびCT画像のいずれかであるか否かを判別する
     請求項9に記載の受信装置。
  13.  前記複数の圧縮部により圧縮された複数の画像を伝送する伝送部と、
     前記伝送部により伝送された前記複数の圧縮部により圧縮された複数の画像を合成する画像処理により1枚のPinP(Picture in Picture)画像を生成する生成部と、
     前記伝送部を介して、前記1枚のPinP(Picture in Picture)画像を表示部に出力して表示させる出力部をさらに含む
     請求項1に記載の受信装置。
  14.  前記圧縮部は、前記生成部のプロセッサの処理負荷に応じて、ビットパッキングにおけるフォーマットを切り替えることで、前記取得部により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する
     請求項13に記載の受信装置。
  15.  前記圧縮部は、前記生成部のプロセッサの処理負荷に応じて、前記ビットパッキングにおけるフォーマットを、16bitアライン以外のフォーマットから構成される第1の圧縮率のフォーマット、または、前記16bitアラインのフォーマットから構成される前記第1の圧縮率よりも圧縮率が低い第2の圧縮率のフォーマットのいずれかに切り替えることで前記圧縮方法を選択して圧縮する
     請求項14に記載の受信装置。
  16.  前記圧縮部は、
      前記生成部のプロセッサの処理負荷が所定値よりも低いとき、前記ビットパッキングにおけるフォーマットを、前記16bitアライン以外のフォーマットから構成される前記第1の圧縮率のフォーマットに切り替え、
      前記生成部のプロセッサの処理負荷が所定値よりも高いとき、前記ビットパッキングにおけるフォーマットを、前記16bitアラインのフォーマットから構成される前記第1の圧縮率よりも圧縮率が低い第2の圧縮率のフォーマットに切り替えることで前記圧縮方法を選択して圧縮する
     請求項15に記載の受信装置。
  17.  前記伝送部は、PCIe(Peripheral Component Interconnect Express)である
     請求項13に記載の受信装置。
  18.  前記圧縮部は、前記画像が3D対応画像である場合、前記表示部の表示機能に応じて、前記圧縮方法を選択して圧縮する
     請求項13に記載の受信装置。
  19.  複数の機器から画像を取得する取得処理と、
     前記取得処理により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する圧縮処理とを含む
     受信方法。
  20.  複数の機器からの画像を記憶する画像サーバと、前記画像サーバからの画像を取得して表示部に出力して表示させる受信装置とからなる画像処理システムにおいて、
     前記画像サーバは、
      前記複数の機器からの画像を記憶し、記憶した画像を前記受信装置に出力する出力部とを含み、
     前記受信装置は、
      前記画像サーバより、前記複数の機器からの画像を取得する取得部と、
      前記取得部により取得された前記画像を、前記画像の種類毎に圧縮方法を選択して圧縮する複数の圧縮部とを含む
     画像処理システム。
PCT/JP2019/037184 2018-09-28 2019-09-24 受信装置、および受信方法、並びに、画像処理システム WO2020066972A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/276,732 US12034935B2 (en) 2018-09-28 2019-09-24 Reception apparatus, reception method, and image processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018183269A JP2021193762A (ja) 2018-09-28 2018-09-28 受信装置、および受信方法、並びに、画像処理システム
JP2018-183269 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066972A1 true WO2020066972A1 (ja) 2020-04-02

Family

ID=69950744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037184 WO2020066972A1 (ja) 2018-09-28 2019-09-24 受信装置、および受信方法、並びに、画像処理システム

Country Status (3)

Country Link
US (1) US12034935B2 (ja)
JP (1) JP2021193762A (ja)
WO (1) WO2020066972A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115757533A (zh) * 2022-10-18 2023-03-07 北京奥星贝斯科技有限公司 用于数据查询的数据过滤方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288157A (ja) * 2004-03-09 2005-10-20 Toshiba Corp 画像保管表示システム、その保守管理システム、及び画像保管表示方法
JP2011130074A (ja) * 2009-12-16 2011-06-30 Sony Corp 画像処理システム、画像処理装置、画像処理方法及びプログラム
US20120081385A1 (en) * 2010-09-30 2012-04-05 Apple Inc. System and method for processing image data using an image signal processor having back-end processing logic
JP2018112716A (ja) * 2017-01-13 2018-07-19 ディーブイエックス株式会社 映像統合システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602981B2 (en) 2004-03-09 2009-10-13 Kabushiki Kaisha Toshiba Image storage and display system, maintenance system therefor, and image storage and display method
US7653252B2 (en) * 2005-09-22 2010-01-26 Compressus, Inc. Method and apparatus for boundary-based image compression
US20070140538A1 (en) * 2005-12-20 2007-06-21 James Doran Method for processing unenhanced medical images
JP2011151607A (ja) * 2010-01-21 2011-08-04 Tomy Co Ltd 画像伝送システム
JP2015019679A (ja) 2013-07-16 2015-02-02 セイコーエプソン株式会社 情報処理装置、情報処理方法、および、情報処理システム
US10511858B2 (en) * 2016-07-13 2019-12-17 Ati Technologies Ulc Bit packing for delta color compression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288157A (ja) * 2004-03-09 2005-10-20 Toshiba Corp 画像保管表示システム、その保守管理システム、及び画像保管表示方法
JP2011130074A (ja) * 2009-12-16 2011-06-30 Sony Corp 画像処理システム、画像処理装置、画像処理方法及びプログラム
US20120081385A1 (en) * 2010-09-30 2012-04-05 Apple Inc. System and method for processing image data using an image signal processor having back-end processing logic
JP2018112716A (ja) * 2017-01-13 2018-07-19 ディーブイエックス株式会社 映像統合システム

Also Published As

Publication number Publication date
US12034935B2 (en) 2024-07-09
US20220046248A1 (en) 2022-02-10
JP2021193762A (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
US20210235089A1 (en) Image processing device, image processing method, and program
EP3534620B1 (en) Signal processing device and method, and program
US11403741B2 (en) Video signal processing apparatus, video signal processing method, and program
US11323679B2 (en) Multi-camera system, camera, processing method of camera, confirmation apparatus, and processing method of confirmation apparatus
WO2019187502A1 (ja) 画像処理装置と画像処理方法およびプログラム
CN110945399B (zh) 信号处理设备、成像设备、信号处理方法和存储器
US11729519B2 (en) Video signal processing apparatus, video signal processing method, and image-capturing apparatus
JP7264051B2 (ja) 画像処理装置および画像処理方法
WO2020066972A1 (ja) 受信装置、および受信方法、並びに、画像処理システム
JP7136093B2 (ja) 情報処理装置、情報処理方法および情報処理プログラム
US11910105B2 (en) Video processing using a blended tone curve characteristic
WO2019003954A1 (ja) 通信システムおよび送信装置
US20210144186A1 (en) Communication system and control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP