[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020066548A1 - 内燃機関制御装置 - Google Patents

内燃機関制御装置 Download PDF

Info

Publication number
WO2020066548A1
WO2020066548A1 PCT/JP2019/035137 JP2019035137W WO2020066548A1 WO 2020066548 A1 WO2020066548 A1 WO 2020066548A1 JP 2019035137 W JP2019035137 W JP 2019035137W WO 2020066548 A1 WO2020066548 A1 WO 2020066548A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
internal combustion
combustion engine
flow
frequency
Prior art date
Application number
PCT/JP2019/035137
Other languages
English (en)
French (fr)
Inventor
鈴木 邦彦
赤城 好彦
伸也 眞戸原
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020548327A priority Critical patent/JP6970309B2/ja
Priority to US17/257,782 priority patent/US11365699B2/en
Publication of WO2020066548A1 publication Critical patent/WO2020066548A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Definitions

  • the present disclosure relates to an internal combustion engine control device.
  • Patent Document 1 an invention related to a control device for an internal combustion engine provided with an air flow sensor is known (see Patent Document 1 below).
  • This conventional control device includes an intake air amount calculation unit, a pulsation amplitude ratio calculation unit, a pulsation frequency calculation unit, and a pulsation error calculation unit (see the same document, claim 1 and the like).
  • the intake air amount calculating means calculates an intake air amount based on an output value of the air flow sensor.
  • the pulsation amplitude ratio calculating means calculates a pulsation amplitude ratio from the pulsation amplitude amount of the intake air amount and the average air amount.
  • the pulsation frequency calculation means calculates a pulsation frequency caused by the engine speed.
  • the pulsation error calculation means calculates a pulsation error using the pulsation amplitude ratio calculation means and the pulsation frequency calculation means.
  • This conventional control device is characterized in that the intake air amount is corrected based on the pulsation error correction amount calculated by the pulsation error calculation means.
  • this conventional control device first determines the pulsation frequency from the engine speed. Next, a frequency response correction amount for correcting the frequency response of the hot wire airflow sensor is obtained from the pulsation frequency. Next, a pulsation amplitude ratio is determined from the frequency response correction amount and the airflow sensor output value. Then, the output value of the airflow sensor is corrected so as to obtain the final air amount by using a pulsation error correction map composed of a pulsation frequency and a pulsation amplitude ratio (see the same document, paragraph 0012, etc.).
  • the air amount can be obtained in consideration of the influence of the intake pulsation over a wide rotation range, and the intake air amount can be accurately determined regardless of the magnitude of the intake pulsation or the frequency change. Due to the calculation, the pulsation error can be reduced (see the same document, paragraph 0013, etc.).
  • the control device for the conventional internal combustion engine corrects the output value of the airflow sensor based on the pulsation frequency and the pulsation amplitude ratio, as described above.
  • the present inventors have found that, depending on the operating conditions of the internal combustion engine, an error may occur between the corrected air flow rate and the actual air flow rate only by the correction based on the pulsation frequency and the pulsation amplitude ratio. I found it.
  • the present disclosure corrects the output value of the flow sensor that measures the flow rate of the air flowing through the intake passage of the internal combustion engine more appropriately, and reduces the error between the corrected air flow rate and the actual air flow rate.
  • an internal combustion engine control device capable of reducing the internal combustion engine.
  • One embodiment of the present disclosure is an internal combustion engine control device including an arithmetic device that receives an output value of a flow sensor that measures a flow rate of air flowing through an intake passage, wherein the arithmetic device is configured to rotate the internal combustion engine.
  • a fundamental frequency deriving unit that derives a fundamental frequency that is a frequency of the pulsation waveform of the flow rate according to a speed, and extracts a plurality of high frequencies of the fundamental frequency or more from the pulsation waveform based on the output value of the flow rate sensor as a flow high frequency.
  • An internal combustion engine control device comprising: a flow rate calculation unit that calculates a flow rate of the air using a correction amount.
  • the output value of the flow sensor that measures the flow rate of the air flowing through the intake passage of the internal combustion engine is more appropriately corrected, and the output value between the corrected air flow rate and the actual air flow rate is corrected. It is possible to provide an internal combustion engine control device capable of reducing the error as compared with the related art.
  • FIG. 1 is a schematic configuration diagram of an engine system including an internal combustion engine control device according to a first embodiment of the present disclosure.
  • FIG. 2 is a block diagram of a calculation device included in the internal combustion engine control device according to the first embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram of a flow sensor included in the engine system shown in FIG. 1.
  • 4 is a graph illustrating an operation range of an internal combustion engine in which EGR is introduced.
  • 4 is a graph illustrating an operation range of an internal combustion engine that performs a Miller cycle. Lift pattern of intake and exhaust valves that realizes a late closing mirror cycle. Lift pattern of intake / exhaust valve that realizes the early closing Miller cycle.
  • 2 is a graph showing air pulsation at the position of the flow sensor shown in FIG. 1.
  • FIG. 2 is a graph showing air pulsation at the position of the flow sensor shown in FIG. 1.
  • 2 is a graph showing air pulsation at the position of the flow sensor shown in FIG. 1.
  • 4 is a graph showing the flow rates of a main flow in an intake passage and a bypass flow of a flow sensor.
  • 5 is a graph showing the relationship between the main flow in the intake passage and the average flow velocity of the bypass flow of the flow sensor.
  • 4 is a graph showing a relationship between a main flow in an intake passage and a flow velocity of a bypass flow of a flow sensor.
  • FIG. 9B is a graph similar to FIG. 9A when a late closing mirror cycle is performed. The same graph as FIG. 9A at the time of introducing EGR.
  • FIG. 7 is a graph showing a matching result of an average flow velocity between a bypass flow and a main flow.
  • FIG. 3 is an explanatory diagram of a correction map of a correction amount deriving unit shown in FIG. 2.
  • FIG. 3 is an explanatory diagram of a multidimensional correction map of a correction amount deriving unit shown in FIG. 2.
  • FIG. 2 is a flowchart of a control method of the internal combustion engine using the internal combustion engine control device according to the first embodiment.
  • 7 is a graph showing an example of a flow rate pulsation waveform based on an output value of a flow rate sensor.
  • FIG. 12B is an explanatory diagram of a method of calculating a pulsation feature amount from the pulsation waveform shown in FIG. 12A.
  • FIG. 12A is an explanatory diagram of a method of calculating a pulsation feature amount from the pulsation waveform shown in FIG. 12A.
  • FIG. 4 is a block diagram of an internal combustion engine control device according to a second embodiment of the present disclosure. 4 is a graph showing throttle valve opening, throttle valve downstream pressure, and air flow rate.
  • FIG. 4 is an explanatory diagram of an example in which the internal combustion engine control device uses an output value of a supercharging pressure sensor. Explanatory drawing of an example in which the internal combustion engine control device uses the output value of the differential pressure sensor.
  • FIG. 7 is a flowchart of an internal combustion engine control method using the control device according to the second embodiment.
  • FIG. 14 is an explanatory diagram of a neural network model of a correction amount deriving unit shown in FIG. 13.
  • FIG. 9 is a flowchart of a method for controlling an internal combustion engine using the internal combustion engine control device according to the third embodiment.
  • FIG. 9 is a flowchart of a method for controlling an internal combustion engine using the internal combustion engine control device according to the third embodiment.
  • FIG. 1 is a schematic configuration diagram of an engine system ES including an internal combustion engine control device 60 according to the first embodiment of the present disclosure.
  • FIG. 2 is a block diagram of the arithmetic unit 100 included in the internal combustion engine control device 60 according to an embodiment of the present disclosure.
  • the engine system ES includes, for example, an internal combustion engine 10, an intake passage 20, an exhaust passage 30, a turbocharger 40, an exhaust gas recirculation (EGR) passage 50, and an internal combustion engine control device. 60.
  • the internal combustion engine control device 60 of the present embodiment is, for example, an arithmetic device 100 that is a central processing unit (CPU) or an electronic control unit (Electronic Control Unit: ECU) including a storage device (ROM, RAM, and the like). .
  • the internal combustion engine control device 60 of the present embodiment is a control device including the arithmetic device 100 to which the output value of the flow rate sensor 21 s for measuring the flow rate of the air flowing through the intake passage 20 is input. It is characterized by the following configuration.
  • the arithmetic device 100 includes a fundamental frequency deriving unit 104, a flow amplitude calculating unit 107, a correction amount deriving unit 108, and a flow calculating unit 109.
  • the fundamental frequency deriving unit 104 derives a fundamental frequency that is a frequency of a pulsating waveform of an air flow rate according to the rotation speed of the internal combustion engine 10.
  • the flow amplitude calculating unit 107 extracts high frequencies of a plurality of frequencies equal to or higher than the fundamental frequency from the pulsation waveform based on the output value of the flow sensor 21s as the flow high frequency, and calculates the amplitude of the flow high frequency for each frequency.
  • the correction amount deriving unit 108 derives a correction amount based on the amplitude of the flow rate high frequency for each frequency.
  • the flow rate calculation unit 109 calculates the flow rate of the air flowing through the intake passage 20 using the output value of the flow rate sensor 21s and the correction amount.
  • the internal combustion engine 10 includes, for example, an intake valve 11, an exhaust valve 12, a fuel injection valve 13, a spark plug 14, a knock sensor 15, and a crank angle sensor 16.
  • the internal combustion engine 10 is connected to an intake passage 20 and an exhaust passage 30.
  • Each of the intake valve 11 and the exhaust valve 12 has a variable valve mechanism.
  • the variable valve mechanism includes sensors 11s and 12s for detecting the opening and closing phases of the intake valve 11 and the exhaust valve 12, and has a configuration in which the phases of the intake valve 11 and the exhaust valve 12 are continuously variable.
  • the fuel injection valve 13 is, for example, a direct injection valve that directly injects fuel into a cylinder of the internal combustion engine 10. Note that the fuel injection valve 13 may be a port injection type injection valve that injects fuel into an intake port.
  • the electrode portion of the spark plug 14 is exposed in the cylinder of the internal combustion engine 10 and ignites the combustible mixture by sparking.
  • Knock sensor 15 is provided in a cylinder block of internal combustion engine 10 and detects the presence or absence of knock generated in the combustion chamber.
  • the crank angle sensor 16 is provided on the crankshaft of the internal combustion engine 10 and outputs a signal corresponding to the rotation angle of the crankshaft to the ECU 60 as a signal indicating the rotation speed of the crankshaft for each combustion cycle.
  • the intake passage 20 has, for example, an upstream portion 21, a middle flow portion 22, a downstream portion 23, and a bypass portion 24.
  • the upstream section 21 is a flow path that connects an air cleaner (not shown) and the turbocharger 40.
  • the middle flow section 22 is a flow path that connects the turbocharger 40 and the downstream portion 23 of the intake flow path 20.
  • the downstream portion 23 is an intake manifold connected to the internal combustion engine 10.
  • the bypass part 24 is a flow path that connects the upstream part 21 and the middle part 22.
  • the upstream portion 21 of the intake passage 20 is provided with, for example, a flow sensor 21 s for measuring the flow rate of air flowing through the intake passage 20.
  • the flow rate sensor 21s is, for example, an air flow sensor provided with an intake air temperature sensor.
  • FIG. 3 is an explanatory diagram illustrating an example of the measurement principle of the flow sensor 21s.
  • the flow rate sensor 21s is, for example, a hot wire airflow sensor.
  • the flow rate sensor 21s includes, for example, a bypass passage that is a sub-passage that bypasses air flowing through the intake passage 20 that is a main passage.
  • a sensor element for detecting the flow velocity of air is provided in the bypass passage.
  • the flow rate sensor 21s can prevent dust and water from adhering to the sensor element by devising the shape of the bypass flow path.
  • the shape of the flow field differs between the main passage in which the main flow flows and the bypass passage in which the bypass flow flows. More specifically, for example, the length L and the inside diameter D of the main flow field are different from the length 1 and the inside diameter d of the bypass flow field. Therefore, the shape loss coefficient Cp and the friction loss coefficient Cf of the main flow field are different from the shape loss coefficient cp and the friction loss coefficient cf of the bypass flow field. Therefore, as shown in FIG. 3, the flow field of the main flow and the flow field of the bypass flow are flow fields based on different momentum equations.
  • a hot wire airflow sensor has a heating resistor arranged in an air flow to be measured as a main component, and a current flowing through the heating resistor increases when a large amount of intake air is supplied.
  • the bridge circuit is configured to decrease when the amount is small. That is, the flow rate sensor 21s is configured to extract the amount of air as a voltage signal by, for example, a current flowing through the heating resistor.
  • the flow rate sensor 21s outputs a voltage signal corresponding to the flow rate of the air flowing through the bypass passage by detecting the amount of heat released from the local flow near the sensor element of the air flowing through the bypass passage.
  • an intercooler 22a cools air whose temperature has risen due to adiabatic compression by the compressor 41 of the turbocharger 40 to lower its temperature.
  • the supercharging temperature sensor 22b is disposed downstream of the intercooler 22a, and measures the temperature of the air cooled by the intercooler 22a. The temperature of the air measured by the supercharging temperature sensor 22b is referred to as “supercharging temperature”.
  • the throttle valve 22c is provided downstream of the supercharging temperature sensor 22b, restricts the intake passage 20, and controls the amount of air flowing into the cylinder of the internal combustion engine 10.
  • the throttle valve 22c is formed of, for example, an electronically controlled butterfly valve capable of controlling the valve opening independently of the accelerator pedal depression amount by the driver.
  • a supercharging pressure sensor 23a and a flow enhancement valve 23b are provided in the downstream portion 23 of the intake passage 20, for example.
  • the supercharging pressure sensor 23a is disposed downstream of the throttle valve 22c provided in the middle flow section 22.
  • the downstream portion 23 of the intake passage 20, which is an intake manifold connected to the internal combustion engine 10 may be integrated with the intercooler 22a. In this case, the volume from the downstream of the compressor 41 of the turbocharger 40 to the cylinder of the internal combustion engine 10 can be reduced, so that the acceleration / deceleration responsiveness can be improved.
  • the flow enhancement valve 23b increases the turbulence generated in the flow inside the cylinder of the internal combustion engine 10 by causing a drift in the intake air.
  • the exhaust passage 30 has, for example, an upstream portion 31, a downstream portion 32, and a bypass portion 33.
  • the upstream portion 31 is an exhaust manifold that connects the internal combustion engine 10 and the turbocharger 40.
  • the downstream portion 32 is a flow path that connects the turbocharger 40 and a muffler (not shown).
  • the bypass part 33 is a flow path that connects the upstream part 31 and the downstream part 32 of the exhaust flow path 30.
  • an air-fuel ratio sensor 32a and an exhaust purification catalyst 32b are provided in the downstream portion 32 of the exhaust passage 30, for example.
  • the air-fuel ratio sensor 32a is provided downstream of the turbine 42 of the turbocharger 40, and outputs a signal indicating the detected oxygen concentration, that is, an air-fuel ratio, to the internal combustion engine control device 60.
  • the exhaust gas purification catalyst 32b is provided downstream of the air-fuel ratio sensor 32a and purifies harmful exhaust gas components such as carbon monoxide, nitrogen compounds and unburned hydrocarbons in exhaust gas by a catalytic reaction.
  • the turbocharger 40 includes a compressor 41 and a turbine 42, and includes, for example, an air bypass valve 43 provided in the bypass portion 24 of the intake passage 20 and a waste valve provided in the bypass portion 33 of the exhaust passage 30.
  • a gate valve 44 is provided.
  • the compressor 41 has compressor blades.
  • the upstream portion 21 of the intake passage 20 is connected to the upstream side of the compressor blade, and the midstream portion 22 of the intake passage 20 is connected to the downstream side of the compressor blade.
  • the turbine 42 has turbine blades connected to compressor blades, the upstream part 31 of the exhaust passage 30 is connected to the upstream side of the turbine blade, and the downstream part 32 of the exhaust passage 30 is connected to the downstream side of the turbine blade. Have been.
  • the turbine 42 converts the energy of the exhaust gas flowing through the exhaust flow path 30 into rotational energy by turbine blades.
  • the compressor 41 compresses the air flowing through the intake passage 20 by the rotation of the compressor blade.
  • the air bypass valve 43 prevents the pressure from the downstream of the compressor 41 to the upstream of the throttle valve 22c from excessively increasing under the control of the internal combustion engine control device 60.
  • the air bypass valve 43 is opened under the control of the internal combustion engine control device 60, so that the compressed intake air downstream of the compressor 41 is released from the intake passage 20. Flows upstream of the compressor 41 through the bypass portion 24. As a result, the supercharging pressure can be reduced.
  • the wastegate valve 44 is an electrically operated valve whose valve opening can be freely controlled with respect to the supercharging pressure under the control of the internal combustion engine control device 60.
  • the opening degree of the waste gate valve 44 is adjusted by the internal combustion engine controller 60 based on the supercharging pressure detected by the supercharging pressure sensor 23a provided in the downstream portion 23 of the intake passage 20.
  • EGR passage 50 One end of the EGR passage 50 is connected to the downstream portion 32 of the exhaust passage 30, and the other end is connected to the upstream portion 21 of the intake passage 20. Reflux upstream.
  • EGR cooler 51 cools the exhaust gas.
  • EGR valve 52 is provided downstream of the EGR cooler 51 and controls the flow rate of exhaust gas.
  • the temperature sensor 53 detects the temperature of the exhaust gas upstream of the EGR valve 52.
  • the differential pressure sensor 54 detects a differential pressure between the upstream side and the downstream side of the EGR valve 52.
  • the internal combustion engine control device 60 controls each part of the engine system and executes various data processing.
  • the internal combustion engine control device 60 is connected to the various sensors and various actuators described above.
  • Various actuators drive, for example, a throttle valve, a fuel injection valve 13, an intake valve 11, an exhaust valve 12, and an EGR valve with a variable valve mechanism.
  • the internal combustion engine control device 60 controls the operation of such various actuators. Further, the internal combustion engine control device 60 detects an operation state of the internal combustion engine 10 based on signals input from various sensors, and ignites the ignition plug 14 at a timing determined according to the operation state.
  • FIG. 4 is a graph illustrating an operation region DR1 of the internal combustion engine 10 in which EGR is introduced.
  • the operation region DR1 of the internal combustion engine 10 is, for example, a region defined by the rotation speed and the charging efficiency of the internal combustion engine 10.
  • the charging efficiency is a ratio of the mass of air sucked into the cylinder in one cycle to the mass of air in the standard state corresponding to the volume of the cylinder of the internal combustion engine 10.
  • the operating region DR1 of the internal combustion engine 10 is roughly divided into a non-supercharging region NR and a supercharging region SR.
  • the flow rate of the intake air is equal. Also, the flow rate is higher in the upper curve of the graph, and smaller in the lower curve of the graph.
  • the internal combustion engine control device 60 controls the charging efficiency by the throttle valve 22c in the non-supercharging region NR, opens the throttle valve 22c in the supercharging region SR, and controls the supercharging pressure by the waste gate valve 44. Control filling efficiency. As described above, by switching the means for adjusting the torque between the non-supercharging region NR and the supercharging region SR, the pump loss occurring in the internal combustion engine 10 can be reduced, and fuel-efficient operation can be realized.
  • the internal combustion engine control device 60 controls the EGR cooled by the EGR cooler 51 in the operation region DR1 from the relatively high load condition in the non-supercharged region NR of the internal combustion engine 10 to the supercharged region SR. It is returned to the cylinder of the internal combustion engine 10.
  • EGR which is an inert gas
  • knock illegal combustion
  • FIG. 5 is a graph illustrating an operation region DR2 of the internal combustion engine 10 that performs the Miller cycle.
  • the operation region DR2 of the internal combustion engine 10 is, for example, a region defined by the rotation speed and the charging efficiency of the internal combustion engine 10.
  • the throttle valve 22c is controlled to be more closed in order to reduce the amount of air taken into the cylinder. This tends to increase pump losses.
  • the throttle valve 22c can be set to be more open, and pump loss can be reduced. With such an effect of the Miller cycle and an effect of reducing pump loss, fuel-efficient operation can be realized.
  • FIG. 6A is a lift pattern of an intake valve and an exhaust valve realizing a late closing Miller cycle.
  • FIG. 6B is a lift pattern of the intake valve and the exhaust valve that realizes the early closing Miller cycle.
  • the intake valve 11 is closed while the piston of the internal combustion engine 10 moves from top dead center to bottom dead center, and further moves from bottom dead center to top dead center. Thereby, the gas once sucked into the cylinder of the internal combustion engine 10 is blown back to the intake passage 20 after the bottom dead center of the piston, thereby suppressing the amount of air sucked into the cylinder.
  • the piston of the internal combustion engine 10 moves from the top dead center to the bottom dead center, and the intake valve 11 is closed while air is being sucked into the cylinder. The amount of air taken into the air is suppressed.
  • the mirror variable cycle is realized by using the variable phase mechanism of the intake valve 11, but the lift switching mechanism of the intake valve 11 or the mirror is realized by using the phase / lift continuous variable mechanism. It is also possible to realize a cycle.
  • FIG. 7A, 7B, and 7C are graphs showing air pulsation at the position of the flow sensor 21s in the intake passage 20 shown in FIG.
  • the internal combustion engine 10 performs intermittent intake by performing intake only in the intake stroke of each cylinder. As a result, as shown in FIG. 7A, pulsation occurs in the air flowing through the intake passage 20.
  • the internal combustion engine 10 tends to generate a pulsation having a large pulsation amplitude ratio at a low frequency in a low rotation / high load region.
  • the pulsation amplitude ratio is the pulsation amplitude, which is the difference between the maximum flow rate and the minimum flow rate at the time of pulsation, divided by the average air amount at that time. It is an index to be shown.
  • a pulsation with a large pulsation amplitude ratio at a low frequency causes a deterioration in detection accuracy of the flow rate sensor 21s.
  • the internal combustion engine 10 has a larger pulsation amplitude with respect to the average flow velocity under low rotation and high load conditions. Under such low rotation and high load conditions, there is a timing at which the flow velocity direction indicates a reverse flow.
  • FIG. 7B shows the pulsation of the air when the slow closing Miller cycle is performed in the internal combustion engine 10.
  • the gas once sucked into the cylinder of the internal combustion engine 10 is blown back to the intake passage 20.
  • the throttle valve 22c is set to the open side. Due to these effects, the pulsation generated in the cylinder of the internal combustion engine 10 easily reaches the flow rate sensor 21s.
  • FIG. 7C shows the pulsation of air when EGR is introduced in the internal combustion engine 10.
  • Exhaust flowing through the exhaust passage 30 generates larger pulsation than air flowing through the intake passage 20.
  • the pulsation of the exhaust gas flowing through the exhaust passage 30 propagates through the EGR passage 50 to the air flowing through the intake passage 20. If the EGR valve 52 is set to the open side in order to recirculate more exhaust gas, the pulsation of air at the position of the flow sensor 21s tends to increase.
  • the pulsation of the air flowing through the intake passage 20 when the above-described Miller cycle or EGR is performed is a pulsation having a higher frequency component than the pulsation of the air caused by the intake stroke of the normal cycle. In the pulsation phenomenon, not only the pulsation amplitude ratio but also a pulsation waveform determined by a combination of the pulsation amplitude ratio and the pulsation frequency is important.
  • FIG. 8A is a graph showing the flow velocity of the main flow flowing through the intake passage 20 when pulsation occurs, and the flow velocity of the bypass flow flowing through the bypass passage of the flow sensor 21s.
  • the flow velocity of the main flow is indicated by a broken line
  • the flow velocity of the bypass flow is indicated by a solid line.
  • FIG. 8B shows the average value of the average value of the flow velocity of the main flow, which is the air flowing through the intake passage 20, at the position where the flow sensor 21s is provided, and the average value of the flow velocity of the bypass flow, which is the air flowing through the bypass passage of the flow sensor 21s. It is a graph which shows a relationship.
  • the flow rate sensor 21s is intended to measure the flow rate of the whole air passing through the portion of the intake passage 20 where the flow rate sensor 21s is provided. Therefore, it is necessary to calculate the main flow velocity from the bypass flow velocity flowing through the bypass passage of the flow rate sensor 21s. By matching the relationship between the average flow velocity of the bypass flow and the average flow velocity of the main flow, the flow velocity of the main flow can be calculated from the flow velocity of the bypass flow.
  • FIG. 9A is a graph similar to FIG. 8A showing the relationship between the main flow velocity and the bypass flow velocity.
  • FIG. 9B is a graph similar to FIG. 9A when the late closing mirror cycle shown in FIG. 7B is performed.
  • FIG. 9C is a graph similar to FIG. 9A when the EGR shown in FIG. 7C is introduced.
  • FIG. 9D is a graph showing the results A, B, and C of matching the average value of the flow velocity of the bypass flow shown by the solid line and the average value of the flow velocity of the main flow shown by the broken line in FIGS. 9A to 9C.
  • the average value (dashed-dotted line) and the pulsation amplitude ratio of the main flow velocity indicated by broken lines are the same.
  • the pulsation waveforms of the flow velocity of the main flow are different as shown in FIGS.
  • the matching results A, B, and C between the dotted line and the average value of the main flow velocity (dashed line) are different. Therefore, adaptation results A, B, and C according to the pulsation conditions of the main flow velocity are required.
  • the arithmetic unit 100 constituting the internal combustion engine control device 60 of the present embodiment shown in FIG. 2 will be described in more detail.
  • the arithmetic device 100 includes the fundamental frequency deriving unit 104, the flow amplitude calculating unit 107, the correction amount deriving unit 108, and the flow calculating unit 109.
  • the arithmetic unit 100 includes, for example, an A / D converter 101, a voltage / flow rate converter 102, a rotation speed calculator 103, a high frequency frequency calculator 105, and a pre-correction flow rate calculator 106. I have.
  • the A / D converter 101 converts an analog voltage signal output from the flow sensor 21s into a digital signal by an A / D converter.
  • the voltage / flow rate conversion unit 102 includes, for example, a voltage / flow rate conversion table.
  • the voltage / flow rate conversion table is a table for converting a voltage, which is an output value of the flow rate sensor 21s, into a flow rate of air flowing near a sensor element arranged in a bypass flow path of the flow rate sensor 21s.
  • the voltage / flow rate conversion unit 102 converts, for example, a voltage value, which is an output value of the flow rate sensor 21 s converted into a digital signal, into a flow rate signal corresponding to the output value of the flow rate sensor 21 s, and outputs the signal.
  • the voltage / flow rate conversion table indicates the relationship between the amount of intake air and the output signal of a general hot-wire airflow sensor.
  • the voltage / flow rate curve in the voltage / flow rate conversion table indicates that the flow rate of the air flowing through the intake passage 20, that is, if the intake air amount is small, the voltage of the output signal is low, and if the intake air amount is large, the output signal is low.
  • the voltage is a non-linear curve that increases. The reason for such non-linear characteristics is that the air amount Q when converting the detection signal from the heating resistor constituting the sensor element of the flow rate sensor 21s into the air amount is expressed by the following formula (1) called King's formula. ) Is adopted.
  • Ih is the current value of the heating resistor
  • Rh is the resistance value of the heating resistor
  • Th is the surface temperature of the heating resistor
  • Ta is the temperature of the air
  • Q is the amount of air.
  • ⁇ and ⁇ are constants determined by the specifications of the heating resistor.
  • the current value Ih of the heating resistor is controlled so that (Th ⁇ Ta) becomes constant, the amount of air is detected by converting it into a voltage value V by a voltage drop of the resistor.
  • the voltage value V becomes a quartic function.
  • the curvature of the quartic curve that is, the relationship between the output and the air amount becomes non-linear.
  • the rotation speed calculation unit 103 calculates the rotation speed of the internal combustion engine 10 based on the signal of the crank angle sensor 16.
  • the fundamental frequency deriving unit 104 derives a fundamental frequency that is the frequency of the pulsation amplitude of the air flowing through the intake passage 20 based on, for example, the rotational speed of the internal combustion engine 10 and the number of cylinders. More specifically, the air flow at the position of the flow rate sensor 21s in the intake passage 20 generates pulsation according to the rotation speed and the number of cylinders of the internal combustion engine 10, as shown in FIG. 7A.
  • the basic frequency deriving unit 104 can include, for example, a table or an arithmetic expression that records the relationship between the rotation speed of the internal combustion engine 10 and the frequency of the air flow waveform at the position of the flow sensor 21s in the intake passage 20. Thereby, the fundamental frequency deriving unit 104 can derive the fundamental frequency which is the frequency of the pulsation waveform of the flow rate of the air according to the rotation speed of the internal combustion engine 10.
  • the high frequency frequency calculation unit 105 calculates a high frequency based on the rotation speed of the internal combustion engine 10.
  • the high frequency is, for example, a plurality of frequencies equal to or higher than the fundamental frequency included in the pulsation waveform of the flow rate of the air according to the rotation speed of the internal combustion engine 10.
  • the high-frequency frequency is, for example, a plurality of specific frequencies equal to or higher than the fundamental frequency or a plurality of specific frequency bands.
  • the method for calculating or deriving a plurality of frequencies or a plurality of frequency bands is not particularly limited.
  • a plurality of high frequency frequencies according to the rotation speed and operating conditions of the internal combustion engine 10 are set in advance as a map, and the map can be referred to according to the rotation speed and operating conditions of the internal combustion engine 10.
  • the pre-correction flow rate calculation unit 106 calculates the pre-correction flow rate based on the flow rate signal based on the output value of the flow rate sensor 21 s output from the voltage / flow rate conversion unit 102 and the basic frequency output from the basic frequency derivation unit 104. Calculate the flow rate. More specifically, the pre-correction flow rate calculation unit 106 includes, for example, a low-pass filter that passes a low frequency having a frequency equal to or lower than the fundamental frequency or a low frequency having a frequency lower than the fundamental frequency.
  • the pre-correction flow rate calculation unit 106 extracts a signal having a frequency equal to or lower than the basic frequency from the flow rate signal based on the output value of the flow rate sensor 21s output from the voltage / flow rate conversion unit 102. Is output as the flow rate before correction.
  • the flow amplitude calculation unit 107 extracts a plurality of high frequencies higher than the fundamental frequency from the pulsation waveform based on the output value of the flow sensor 21 s output from the voltage / flow conversion unit 102 as the flow high frequency. Calculate the amplitude. More specifically, the flow amplitude calculating unit 107 can include, for example, a low-pass filter and a plurality of band-pass filters.
  • the low-pass filter passes, for example, a signal having a frequency equal to or lower than the fundamental frequency.
  • the band-pass filter is set, for example, according to the high frequency calculated by the high frequency calculator 105.
  • the ⁇ correction amount deriving unit 108 derives a pulsation correction amount, which is a correction amount, based on the amplitude of the flow rate high frequency for each frequency output from the flow rate amplitude calculation unit 107.
  • the correction amount deriving unit 108 can include, for example, a neural network model to be described later and a correction map as described below.
  • FIG. 10A is an explanatory diagram in the case where the correction amount deriving unit 108 includes the correction map M.
  • the correction map M shown in FIG. 10A is, for example, a table based on the amplitude of the flow rate high frequency for each frequency. More specifically, the correction map M is, for example, a table in which a plurality of correction amounts ⁇ corresponding to a plurality of combinations of a pulsation frequency value and a pulsation amplitude ratio value are recorded.
  • the pulsation amplitude ratio is a value obtained by dividing the amplitude of the flow rate high frequency by the average value of the flow rate high frequency.
  • the pulsation frequency is the frequency of the flow rate high frequency.
  • FIG. 10B is an explanatory diagram in the case where the correction amount deriving unit 108 includes multidimensional correction maps M0, M1, M2, and M3.
  • the intake flow path 20 is moved between the average value of the flow velocity of the bypass flow of the flow sensor 21 s and the position of the flow sensor 21 s.
  • the matching results A, B, and C of the average values of the velocities of the flowing main streams are different.
  • the correction amount deriving unit 108 can include, for example, a correction map M0 under the reference condition, a correction map M1 under the mirror cycle condition, and a correction map M2 under the EGR condition. Since the mirror cycle control and the EGR control have an intermediate state, the correction amount deriving unit 108 needs to appropriately interpolate the intermediate state. In addition, since the outside air condition affects the sound speed, it is an influential factor of the pulsation waveform. Therefore, a correction map M3 according to the outside air condition such as the temperature and the atmospheric pressure may be provided.
  • the flow rate calculation unit 109 uses the pre-correction flow rate calculated from the output value of the flow rate sensor 21 s by the pre-correction flow rate calculation unit 106 and the pulsation correction amount that is the correction amount derived by the correction amount derivation unit 108 to calculate the flow rate.
  • the flow rate of the air flowing through the intake passage 20 at the position of the sensor 21s is calculated. That is, in the flow rate calculation unit 109, the flow rate based on the output value of the flow rate sensor 21s is corrected by the correction amount derived by the correction amount derivation unit 108, and the flow rate of the air flowing through the intake passage 20 at the position of the flow rate sensor 21s is output. Is done.
  • FIG. 11 is a flowchart showing each step of the control method of the internal combustion engine 10 by the internal combustion engine control device 60 of the present embodiment.
  • the arithmetic device 100 of the internal combustion engine control device 60 detects the flow rate of the bypass flow flowing through the bypass flow path of the flow rate sensor 21s in step S101 shown in FIG. As shown in FIG. 2, for example, the arithmetic unit 100 converts the output value of the flow rate sensor 21 s into a digital value by the A / D converter 101, and further converts the output value into a flow rate by the voltage / flow rate converter 102.
  • the flow rate output from the voltage / flow rate conversion unit 102 is input to the pre-correction flow rate calculation unit 106 and the flow rate amplitude calculation unit 107.
  • FIG. 12A is a graph showing an example of a flow rate pulsation waveform based on the output value of the flow rate sensor 21 s output from the voltage / flow rate conversion unit 102.
  • the flow rate of the air flowing through the intake passage 20 at the position of the flow rate sensor 21s is represented by a broken line
  • the flow rate based on the output value of the flow rate sensor 21s output from the voltage / flow rate converter 102 is represented by a solid line.
  • the flow rate and the average value of the air flowing through the intake passage 20 at the position of the flow rate sensor 21s are different from the flow rate and the average value based on the output value of the flow rate sensor 21s.
  • the arithmetic unit 100 detects the rotation speed of the internal combustion engine 10.
  • the arithmetic device 100 calculates the rotation speed of the internal combustion engine 10 based on the crank angle sensor 16 by the rotation speed calculation unit 103, for example.
  • the rotation speed of the internal combustion engine 10 output from the rotation speed calculation unit 103 is input to the fundamental frequency derivation unit 104 and the high frequency frequency calculation unit 105.
  • the arithmetic unit 100 calculates a pulsation feature amount.
  • FIG. 12B is an explanatory diagram of a method of calculating a pulsation feature amount from a pulsation waveform of a flow rate based on the output value of the flow rate sensor 21s shown in FIG. 12A.
  • the arithmetic device 100 derives a fundamental frequency according to the rotation speed of the internal combustion engine 10 by the fundamental frequency deriving unit 104.
  • the fundamental frequency is a frequency corresponding to the rotation speed of the internal combustion engine 10 having a pulsating waveform of the flow rate of the air flowing through the intake passage 20.
  • step S103 the arithmetic device 100 calculates the high frequency based on the rotation speed of the internal combustion engine 10 by the high frequency frequency calculating unit 105. Then, the flow amplitude calculating unit 107 extracts high frequencies of a plurality of frequencies equal to or higher than the fundamental frequency from the pulsation waveform based on the output value of the flow sensor 21s shown in FIG. , ⁇ 3, ⁇ 4,..., ⁇ n are calculated.
  • the flow rate information ⁇ corresponding to the average value in one cycle of the internal combustion engine 10 is obtained from the pulsation waveform based on the output value of the flow rate sensor 21s shown in FIG. Is obtained. Further, from the same pulsation waveform, high-frequency waves having a plurality of frequencies equal to or higher than the fundamental frequency are flow-rated by the band-pass filters BPF-1, BPF-2, BPF-3, BPF-4,. It is possible to extract the high frequency and calculate the amplitude ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4,..., ⁇ n of the flow rate high frequency for each frequency. Thereby, the pulsation amplitude ratio of the flow rate high frequency can be calculated for each frequency.
  • the arithmetic unit 100 calculates the pulsation correction amount.
  • the arithmetic unit 100 is, for example, based on the flow rate information ⁇ corresponding to the average value in one cycle of the internal combustion engine 10 and the amplitudes ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4,.
  • the correction amount deriving unit 108 can derive the correction amount ⁇ from the above-described correction map M, the multidimensional correction maps M0, M1, M2, M3,..., Mn, or a neural network model.
  • the high-frequency flow rate which is the pulsation waveform information separated for each frequency in this way, can be restored by restoring the original pulsation waveform by multiplying all the weights and synthesizing them. That is, by replacing the information of the pulsation waveform with the information of the pulsation frequency and the pulsation amplitude, it is possible to arrange pulsation correction amounts for various pulsation waveforms. According to this concept, the pulsation correction amount can be obtained based on the multidimensional correction maps M0, M1, M2, and M3 using the pulsation amplitude ratio for each pulsation frequency as each axis, as described above.
  • the arithmetic unit 100 corrects the flow pulsation based on the output value of the flow sensor 21s.
  • the arithmetic unit 100 uses, for example, the flow rate calculation unit 109 using the pre-correction flow rate based on the output value of the flow rate sensor 21 s output from the pre-correction flow rate calculation unit 106 and the correction amount ⁇ output from the correction amount derivation unit 108. Then, the flow rate of the air flowing through the intake passage 20 at the position of the flow rate sensor 21s is calculated.
  • the air flow rate calculated by the flow rate calculation unit 109 is input to, for example, an in-cylinder air amount estimating unit that estimates the amount of air in the cylinder.
  • the internal combustion engine control device 60 of the present embodiment includes the arithmetic device 100 and controls the internal combustion engine 10 using the output value of the flow sensor 21 s that measures the flow rate of the air flowing through the intake passage 20. It is.
  • the arithmetic device 100 includes a fundamental frequency deriving unit 104 that derives a fundamental frequency that is a frequency of a pulsating waveform of the flow rate of air according to the rotation speed of the arithmetic device 100, and a pulsation based on an output value of the flow sensor 21s.
  • a high-frequency of a plurality of frequencies equal to or higher than the fundamental frequency is extracted from the waveform as a high-frequency flow, and a flow-amplitude calculation unit 107 that calculates the amplitude of the high-frequency flow for each frequency, and a correction amount is derived based on the amplitude of the high-frequency flow for each frequency
  • a correction amount deriving unit 108 and a flow rate calculating unit 109 that calculates the flow rate of air flowing through the intake passage 20 using the output value of the flow rate sensor 21s and the correction amount are provided.
  • the flow rate based on the output value of the flow sensor 21s can be corrected using the correction amount ⁇ derived based on the amplitude of the flow rate high frequency for each frequency. Therefore, the measurement accuracy of the flow sensor 21s can always be ensured even in an operating condition in which an error due to pulsation easily occurs in the flow sensor 21s in the past. That is, according to the present embodiment, the output value of the flow sensor 21s that measures the flow rate of the air flowing through the intake passage 20 of the internal combustion engine 10 is more appropriately corrected, and the corrected air flow rate and the actual air flow rate are compared. , An internal combustion engine control device 60 capable of reducing the error between the conventional methods can be provided. Thereby, the accuracy of the air-fuel ratio control is improved, and it is possible to prevent the exhaust of the internal combustion engine 10 from being deteriorated.
  • a method in which the voltage signal corresponding to the air amount is output as a voltage value is adopted, but a method in which the voltage signal is converted into a frequency signal by a voltage-frequency conversion circuit and output is performed. It is also possible to adopt.
  • a voltage signal corresponding to the air volume is input as a frequency signal subjected to voltage-frequency conversion
  • the period of the signal is converted into a frequency by measuring the period of the signal at a port input of the CPU.
  • the input value is input, and the air amount conversion table is searched and interpolated from a value stored in advance according to the cycle or frequency, and is converted into a detected air amount.
  • Embodiment 2 Next, an internal combustion engine control device according to Embodiment 2 of the present disclosure will be described with reference to FIGS. 13 to 16 with reference to FIGS. 1 to 9D and FIGS. 12A and 12B.
  • FIG. 13 is a block diagram of a computing device 100A included in the internal combustion engine control device according to Embodiment 2 of the present disclosure.
  • the calculation unit 100A of the present embodiment is different from the calculation unit 100 according to the first embodiment in that the calculation unit 100A mainly includes a pressure amplitude calculation unit 112.
  • Other configurations of the arithmetic device 100A of the present embodiment are the same as those of the arithmetic device 100 according to the above-described first embodiment.
  • the arithmetic device 100A includes an A / D converter 101, a voltage / flow rate converter 102, a rotational speed arithmetic unit 103, a fundamental frequency deriving unit 104, a high frequency frequency arithmetic unit, similarly to the arithmetic device 100 shown in FIG. 105, a flow rate calculation unit 106 before correction, a flow rate amplitude calculation unit 107, and a correction amount derivation unit 108.
  • the arithmetic device 100A further includes, for example, A / D converters 110 and 113, a voltage / pressure converter 111, a pressure amplitude calculator 112, and a valve opening calculator 114.
  • the A / D converter 110 A / D converts a voltage signal as an output value of a supercharging pressure sensor 23a which is a pressure sensor for measuring a pressure of air flowing through the intake passage 20.
  • the voltage / pressure converter 111 converts the digital signal of the output value of the supercharging pressure sensor 23a output from the A / D converter 110 into pressure information.
  • the pressure amplitude calculation unit 112 receives, for example, a fundamental frequency from the high frequency frequency calculation unit 105. Similar to the flow rate amplitude calculation unit 107, the pressure amplitude calculation unit 112 extracts a plurality of frequencies higher than the fundamental frequency as pressure high frequencies from the pulsation waveform based on the output value of the supercharging pressure sensor 23a, Is calculated. The pressure information output from the pressure amplitude calculation unit 112 and the amplitude of the pressure high frequency for each frequency are input to the correction amount derivation unit 108.
  • the A / D converter 113 A / D converts a voltage signal that is an output value of a sensor that detects the opening of the throttle valve 22c.
  • the valve opening calculator 114 converts a digital signal of an output value of a sensor that detects the opening of the throttle valve 22c into valve opening information.
  • the valve opening information output from the valve opening calculating unit 114 is input to the correction amount deriving unit 108.
  • the correction amount deriving unit 108 is a valve that controls the amplitude of the flow high frequency for each frequency, the amplitude of the pressure high frequency for each frequency, and the flow rate of the air flowing through the intake passage between the flow sensor and the pressure sensor.
  • the correction amount ⁇ is derived based on the opening degree 22c.
  • the calculation unit 100A of the present embodiment converts a plurality of high frequencies of a plurality of frequencies equal to or higher than the fundamental frequency from a pulsation waveform based on the output value of the supercharging pressure sensor 23a which is a pressure sensor for measuring the pressure of the air flowing through the intake passage 20.
  • a pressure amplitude calculator 112 is provided for extracting the pressure high frequency and calculating the amplitude of the pressure high frequency for each frequency.
  • the correction amount deriving unit 108 flows through the intake passage 20 between the flow rate sensor 21s and the supercharging pressure sensor 23a as a pressure sensor, and the flow rate high frequency amplitude for each frequency, the pressure high frequency amplitude for each frequency,
  • the correction amount ⁇ is derived based on the opening degree of the throttle valve 22c which is a valve for controlling the flow rate of air.
  • FIG. 14 shows the opening degree of the throttle valve 22c when accelerating from the throttling state to the supercharging state by opening the throttle valve 22c, the pressure downstream of the throttle valve 22c measured by the supercharging pressure sensor 23a, and the intake air.
  • 5 is a graph showing a flow rate of air flowing through a flow path 20.
  • the flow rate calculation unit 109 determines the flow rate of the air using only the output value of the flow rate sensor 21s output from the pre-correction flow rate calculation unit 106 in the transition period TP illustrated in FIG. It is configured to calculate.
  • the transient period TP is a supercharging pressure sensor that is a pressure sensor that measures the pressure of the throttle valve 22c downstream of the throttle valve 22c after the opening of the throttle valve 22c provided in the intake passage 20 increases. This is a period until the output value of 23a reaches the output value corresponding to the atmospheric pressure.
  • FIG. 15A is an explanatory diagram of an example in which the arithmetic unit 100A uses the output value of the pressure sensor that measures the pressure of the air flowing through the intake passage 20.
  • the arithmetic device 100A can detect, for example, the pulsation P of the air generated by the Miller cycle not only by the flow rate sensor 21s but also by the supercharging pressure sensor 23a that is a pressure sensor. In this case, the information on the air pulsation P that changes according to the control state of the Miller cycle can be directly captured by the supercharging pressure sensor 23a.
  • FIG. 15B is an explanatory diagram of an example in which the arithmetic unit 100A uses the output value of the differential pressure sensor that measures the differential pressure of the exhaust gas flowing through the EGR flow path 50.
  • Arithmetic unit 100A can detect pulsation P generated by EGR not only with flow rate sensor 21s but also with differential pressure sensor 54, for example. In this case, information on the pulsation P that changes according to the EGR rate can be directly captured by the differential pressure sensor 54.
  • the responsiveness of the supercharging pressure sensor 23a and the differential pressure sensor 54 is high with respect to the responsiveness of the flow rate sensor 21s, and it is possible to capture a higher frequency pulsating component. Further, since the supercharging pressure sensor 23a and the differential pressure sensor 54, which are pressure sensors, are installed at positions close to the pulsation factor, pulsation correction can be performed without delay.
  • the pulsation detected by the pressure sensor such as the supercharging pressure sensor 23a or the differential pressure sensor 54 is transmitted to the flow sensor 21s through a valve such as the throttle valve 22c or the EGR valve 52 installed between the pressure sensor and the flow sensor 21s. Propagate. Therefore, even if the pulsation detected by the pressure sensor is large, if the valve opening is small, the pulsation does not propagate to the flow sensor 21s. Therefore, in the pulsation correction of the flow sensor 21s based on the pressure pulsation information, it is necessary to consider the valve opening.
  • FIG. 16 is a flowchart showing each step of the control method of the internal combustion engine 10 using the internal combustion engine control device of the present embodiment.
  • step S201 the arithmetic device 100A of the internal combustion engine control device of the present embodiment detects the flow rate of the bypass flow flowing through the bypass flow path of the flow rate sensor 21s.
  • Arithmetic unit 100A for example, converts the output value of flow rate sensor 21s into a digital value by A / D conversion section 101, and further converts it into a flow rate by voltage / flow rate conversion section 102.
  • the flow rate output from the voltage / flow rate conversion unit 102 is input to the pre-correction flow rate calculation unit 106 and the flow rate amplitude calculation unit 107.
  • the arithmetic unit 100A detects the pressure downstream of the throttle valve 22c by the supercharging pressure sensor 23a.
  • Arithmetic unit 100A for example, converts the output value of supercharging pressure sensor 23a to a digital value by A / D converter 110, and further converts the output value to pressure by voltage / pressure converter 111.
  • the pressure output from the voltage / pressure converter 111 is input to the pressure amplitude calculator 112.
  • the arithmetic unit 100A detects a valve opening, which is the opening of the throttle valve 22c, by a sensor that detects the opening of the throttle valve 22c.
  • Arithmetic unit 100A for example, converts the output value of the sensor into a digital value by A / D converter 113, and further converts the output value into a valve opening by valve opening calculator 114.
  • the valve opening output from the valve opening calculating unit 114 is input to the correction amount deriving unit 108.
  • the arithmetic unit 100A detects the rotational speed of the internal combustion engine 10.
  • the arithmetic device 100A calculates the rotation speed of the internal combustion engine 10 based on the crank angle sensor 16 by the rotation speed calculation unit 103, for example.
  • the rotation speed of the internal combustion engine 10 output from the rotation speed calculation unit 103 is input to the fundamental frequency derivation unit 104 and the high frequency frequency calculation unit 105.
  • the arithmetic unit 100A calculates the pulsation feature amount.
  • the arithmetic device 100A derives a basic frequency according to the rotation speed of the internal combustion engine 10 by the basic frequency derivation unit 104, and calculates a high frequency based on the rotation speed of the internal combustion engine 10 by the high frequency frequency calculation unit 105.
  • the flow amplitude calculating unit 107 extracts high frequencies of a plurality of frequencies equal to or higher than the fundamental frequency from the pulsation waveform based on the output value of the flow sensor 21s as the flow high frequency, and calculates the amplitude of the flow high frequency for each frequency.
  • the pressure amplitude calculation unit 112 extracts high frequencies of a plurality of frequencies equal to or higher than the fundamental frequency from the pulsation waveform based on the output value of the pressure sensor such as the supercharging pressure sensor 23a as the pressure high frequency, and calculates the amplitude of the pressure high frequency for each frequency. calculate.
  • arithmetic device 100A calculates a pulsation correction amount.
  • the arithmetic unit 100A uses, for example, the correction amount deriving unit 108 to calculate the flow velocity information ⁇ and the pressure information corresponding to the average value in one cycle of the internal combustion engine 10 and the amplitudes ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4,.
  • a correction amount ⁇ is derived based on ⁇ n, the amplitude of the pressure high frequency for each frequency, and the valve opening.
  • the correction amount deriving unit 108 derives the correction amount ⁇ from, for example, the correction map M, the multidimensional correction maps M0, M1, M2, M3,..., Mn, or a neural network model. Can be.
  • the arithmetic unit 100A determines whether or not to perform pulsation correction on the output value of the flow sensor 21s.
  • Arithmetic unit 100A determines, for example, whether or not it is in transition period TP by flow rate arithmetic unit 109.
  • the transient period TP is a pressure sensor that measures the pressure of the throttle valve 22c downstream of the throttle valve 22c after the opening of the throttle valve 22c provided in the intake passage 20 increases. This is a period until the output value of the pressure sensor 23a reaches an output value corresponding to the atmospheric pressure.
  • the flow rate calculation unit 109 determines that it is not the transition period TP, it determines that pulsation correction is to be performed on the output value of the flow rate sensor 21s (YES), and proceeds to step S208. Further, when determining that the transition period is the transition period TP, the flow rate calculation unit 109 determines that the pulsation correction for the output value of the flow rate sensor 21s is not performed (NO), and determines the flow rate of the air using only the output value of the flow rate sensor 21s. calculate. As a result, unnecessary correction is prevented from being performed during the transition period TP during which no pulsation occurs in the flow rate of the air flowing through the intake passage 20.
  • the arithmetic unit 100A corrects the flow pulsation based on the output value of the flow sensor 21s.
  • Arithmetic unit 100A uses, for example, flow rate calculating section 109, the flow rate before correction based on the output value of flow rate sensor 21s output from flow rate calculating section 106 before correction, and correction amount ⁇ output from correction amount deriving section 108. Then, the flow rate of the air flowing through the intake passage 20 at the position of the flow rate sensor 21s is calculated.
  • the air flow rate calculated by the flow rate calculation unit 109 is input to, for example, an in-cylinder air amount estimating unit that estimates the amount of air in the cylinder.
  • the output value of the flow sensor 21 s that measures the flow rate of the air flowing through the intake passage 20 of the internal combustion engine 10 is more appropriately corrected, and the corrected air
  • an internal combustion engine control device including the arithmetic device 100A that can reduce an error between the flow rate and the actual air flow rate as compared with the related art. Further, even under an operating condition in which an error is likely to occur in the flow sensor 21s due to pulsation, the arithmetic device 100A can always ensure the accuracy of the flow sensor 21s in consideration of the information of the pressure sensor, thereby improving the accuracy of the air-fuel ratio control. As a result, deterioration of exhaust gas can be prevented.
  • FIG. 17 is an explanatory diagram in the case where the correction amount deriving unit 108 includes the neural network model NNM.
  • the internal combustion engine control device of the present embodiment includes an arithmetic unit, and the correction amount deriving unit 108 of the arithmetic unit replaces the correction map M or the multidimensional correction maps M0, M1, M2, and M3 shown in FIGS. 10A and 10B.
  • a neural network model NNM which is different from the arithmetic device 100A of the internal combustion engine control device according to Embodiment 2 described above.
  • Other configurations of the arithmetic device according to the present embodiment are the same as those of the arithmetic device 100A according to the above-described second embodiment, and thus the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • the ⁇ correction amount deriving unit 108 derives a pulsation correction amount, which is the correction amount ⁇ , based on the amplitude of the flow rate high frequency for each frequency output from the flow rate amplitude calculation unit 107.
  • the correction amount deriving unit 108 can include, for example, a neural network model NNM.
  • the neural network model NNM is a mathematical model imitating the mechanism of a human brain neural circuit, and weights and biases are set for each neuron that forms the model.
  • a function called an activation function is defined for the neuron.
  • a logistic function, a ramp function, or the like is appropriately set as the activation function.
  • One layer is formed by a plurality of neurons, and an intermediate layer is set between the input layer and the output layer.
  • the correction amount deriving unit 108 includes the neural network model NNM.
  • a pulsation feature based on the amplitude of the flow rate high frequency for each frequency is set in each unit of the input layer, a weight, a bias, and an activation function are set in each unit of the intermediate layer, and the output layer of the output layer is set.
  • a pulsation correction amount is set in each unit as a correction amount.
  • FIG. 18 is a flowchart showing each step of the control method of the internal combustion engine 10 using the internal combustion engine control device of the present embodiment.
  • the arithmetic unit of the internal combustion engine control device determines whether to perform on-board learning of the pulsation correction amount.
  • the arithmetic device does not perform the on-board learning when, for example, it is determined that it is not the operating regions DR1 and DR2 shown in FIGS. 4 and 5 or it is determined that it is the transition period TP shown in FIG. 14 (NO ) Is determined, and the control is terminated.
  • the arithmetic device performs on-board learning, for example, when it is determined that the vehicle is in the operating regions DR1 and DR2 shown in FIGS. 4 and 5 or when it is determined that it is not the transition period TP shown in FIG. YES), and the process proceeds to step S302.
  • the arithmetic device performs the same processing from step S201 to step 204 by the arithmetic device 100A according to the second embodiment shown in FIG. 16 from step S302 to step S305.
  • the arithmetic device sets the data acquired in steps S302 to S305 in the input layer of the neural network model NNM of the correction amount deriving unit 108.
  • the arithmetic unit detects the exhaust air-fuel ratio by, for example, the air-fuel ratio sensor 32a.
  • the arithmetic unit calculates the amount of fuel injected by the fuel injection valve 13 and the true amount of air sucked into the cylinder from the exhaust air-fuel ratio by, for example, the second flow rate calculating unit. That is, the second flow rate calculation unit uses the output value of the air-fuel ratio sensor 32a provided in the exhaust flow path 30 of the internal combustion engine 10 to determine the true air amount flowing through the intake flow path 20 at the position of the flow rate sensor 21s. Calculate the flow rate. Further, the arithmetic unit calculates a flow error, which is a measurement error of the flow sensor 21s, based on the calculated true air amount and the cylinder intake air amount calculated using the output value of the flow sensor 21s.
  • a flow error which is a measurement error of the flow sensor 21s
  • the arithmetic unit sets the calculated flow rate error in the output layer of the neural network model NNM of the correction amount deriving unit 108, and the weight and bias set for each neuron of the neural network model NNM by the error back propagation method. To learn.
  • the calculation device of the internal combustion engine control device of the present embodiment includes, for example, the second flow rate calculation unit that calculates the flow rate of the air flowing through the intake passage 20 without using the output value of the flow rate sensor 21s. I have. Further, in the arithmetic device of the present embodiment, the correction amount deriving unit 108 calculates the correction amount ⁇ based on the flow rate calculated by the flow rate calculating unit 109 and the flow rate calculated by the second flow rate calculating unit, for example. The correction amount ⁇ is set for each unit of the output layer of the neural network model NNM, and the weight and bias set for each unit of the intermediate layer are updated.
  • the second flow rate calculation unit of the calculation device may calculate the flow rate, which is the true air amount, using the output value of a pressure sensor such as the supercharging pressure sensor 23a provided in the intake passage 20, for example.
  • FIG. 19 is a flowchart showing each step of the control method of the internal combustion engine 10 using the internal combustion engine control device of the present embodiment.
  • the arithmetic unit of the internal combustion engine control device includes an abnormality diagnosis unit, and diagnoses an abnormality of the flow rate sensor 21s using the pulsation correction logic.
  • the arithmetic unit determines in step S401 whether or not the diagnostic condition is satisfied.
  • the arithmetic device proceeds to step S402 if the diagnostic condition is satisfied (YES), and terminates the control if the diagnostic condition is not satisfied (NO).
  • the arithmetic unit acquires a flow rate pulsation waveform corresponding to a diagnosis condition by, for example, the A / D converter 101 and the voltage / flow rate converter 102.
  • the arithmetic unit acquires a pressure pulsation waveform corresponding to the diagnosis condition by, for example, the A / D converter 110 and the voltage / pressure converter 111.
  • the arithmetic unit acquires the valve opening corresponding to the diagnosis condition by, for example, the A / D converter 113 and the valve opening calculator 114.
  • the arithmetic unit acquires, for example, the rotation speed of the internal combustion engine corresponding to the diagnosis condition by the rotation speed calculation unit 103.
  • the high-frequency frequency calculation unit 105, the flow amplitude calculation unit 107, the pressure amplitude calculation unit 112, and the correction amount derivation unit 108 calculate each pulsation feature amount of flow and pressure.
  • the data acquired in steps S402 to S406 is set in the input layer of the neural network model NNM of the correction amount deriving unit 108, and the pulsation correction amount is calculated.
  • the arithmetic unit diagnoses the flow sensor 21s for abnormality based on the absolute value of the correction amount ⁇ , which is the pulsation correction amount, and a preset threshold value by the abnormality diagnosis unit.
  • the arithmetic unit of the internal combustion engine control device of the present embodiment includes the abnormality diagnosis unit that diagnoses the abnormality of the flow rate sensor 21s based on the correction amount ⁇ derived by the correction amount derivation unit 108.
  • the abnormality diagnosis unit that diagnoses the abnormality of the flow rate sensor 21s based on the correction amount ⁇ derived by the correction amount derivation unit 108.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

内燃機関の吸気流路を流れる空気の流量を測定する流量センサの出力値をより適切に補正して、補正後の空気流量と実際の空気流量との間の誤差を、従来よりも低減することが可能な内燃機関制御装置を提供する。このため、本発明の内燃機関制御装置は、基本周波数を導出する基本周波数導出部104と、流量センサの出力値に基づく脈動波形から基本周波数以上の複数の周波数の高周波を流量高周波として抽出し、周波数ごとに流量高周波の振幅を算出する流量振幅演算部107と、周波数ごとの流量高周波の振幅に基づいて補正量を導出する補正量導出部108と、流量センサの出力値と補正量を用いて空気の流量を算出する流量演算部109と、を有する演算装置100を備える。

Description

内燃機関制御装置
 本開示は、内燃機関制御装置に関する。
 従来からエアフローセンサを備えた内燃機関の制御装置に係る発明が知られている(下記特許文献1を参照。)。この従来の制御装置は、吸入空気量演算手段と、脈動振幅比演算手段と、脈動周波数演算手段と、脈動誤差算出手段とを備えている(同文献、請求項1等を参照。)。
 前記吸入空気量演算手段は、エアフローセンサの出力値に基づいて吸入空気量を演算する。前記脈動振幅比演算手段は、吸入空気量の脈動振幅量および平均空気量から脈動振幅比を演算する。前記脈動周波数演算手段は、機関の回転数に起因する脈動周波数を演算する。前記脈動誤差算出手段は、前記脈動振幅比演算手段と前記脈動周波数演算手段とを用いて脈動誤差を算出する。この従来の制御装置は、前記脈動誤差算出手段で算出した脈動誤差補正量に基づいて前記吸入空気量を補正することを特徴としている。
 すなわち、この従来の制御装置は、まず、機関回転数から脈動周波数を求める。次に、この脈動周波数から熱線式エアフローセンサの周波数応答を補正する周波数応答補正量を求める。次にこの周波数応答補正量とエアフローセンサ出力値とから脈動振幅比を求める。そして、脈動周波数と脈動振幅比とから構成される脈動誤差補正マップにより最終的な空気量を求めるようにエアフローセンサ出力値を補正する(同文献、第0012段落等を参照。)。
 この従来の内燃機関の制御装置によれば、広い回転領域に亘って吸気脈動の影響を考慮して空気量を求めることができ、吸気脈動の大きさや周波数変化に関わらず吸入空気量を精度良く演算するため、脈動誤差を低減することができる(同文献、第0013段落等を参照。)。
特開2014‐020212号公報
 前記従来の内燃機関の制御装置は、前述のように、脈動周波数と脈動振幅比とに基づいてエアフローセンサ出力値を補正する。しかしながら、内燃機関の運転条件によっては、脈動周波数と脈動振幅比に基づく補正だけでは、補正後の空気流量と実際の空気流量との間に誤差を生じる場合があることを、本願発明者らは見出した。
 本開示は、内燃機関の吸気流路を流れる空気の流量を測定する流量センサの出力値をより適切に補正して、補正後の空気流量と実際の空気流量との間の誤差を、従来よりも低減することが可能な内燃機関制御装置を提供する。
 本開示の一態様は、吸気流路を流れる空気の流量を測定する流量センサの出力値が入力される演算装置を備えた内燃機関制御装置であって、前記演算装置は、前記内燃機関の回転速度に応じた前記流量の脈動波形の周波数である基本周波数を導出する基本周波数導出部と、前記流量センサの出力値に基づく脈動波形から前記基本周波数以上の複数の周波数の高周波を流量高周波として抽出し、周波数ごとに前記流量高周波の振幅を算出する流量振幅演算部と、前記周波数ごとの前記流量高周波の振幅に基づいて補正量を導出する補正量導出部と、前記流量センサの出力値と前記補正量を用いて前記空気の流量を算出する流量演算部と、を有する、内燃機関制御装置である。
 本開示の一態様によれば、内燃機関の吸気流路を流れる空気の流量を測定する流量センサの出力値をより適切に補正して、補正後の空気流量と実際の空気流量との間の誤差を、従来よりも低減することが可能な内燃機関制御装置を提供することができる。
本開示の実施形態1に係る内燃機関制御装置を備えたエンジンシステムの概略構成図。 本開示の実施形態1に係る内燃機関制御装置に含まれる演算装置のブロック図。 図1に示すエンジンシステムに含まれる流量センサの説明図。 EGRを導入する内燃機関の運転領域を説明するグラフ。 ミラーサイクルを実施する内燃機関の運転領域を説明するグラフ。 遅閉じミラーサイクルを実現する吸排気バルブのリフトパターン。 早閉じミラーサイクルを実現する吸排気バルブのリフトパターン。 図1に示す流量センサの位置における空気の脈動を示すグラフ。 図1に示す流量センサの位置における空気の脈動を示すグラフ。 図1に示す流量センサの位置における空気の脈動を示すグラフ。 吸気流路の主流と流量センサのバイパス流の流速を示すグラフ。 吸気流路の主流と流量センサのバイパス流の平均流速の関係を示すグラフ。 吸気流路の主流と流量センサのバイパス流の流速の関係を示すグラフ。 遅閉じミラーサイクルを実施したときの図9Aと同様のグラフ。 EGRを導入したときの図9Aと同様のグラフ。 バイパス流と主流の平均流速の適合結果を示すグラフ。 図2に示す補正量導出部の補正マップの説明図。 図2に示す補正量導出部の多次元補正マップの説明図。 実施形態1に係る内燃機関制御装置を用いた内燃機関の制御方法のフロー図。 流量センサの出力値に基づく流量の脈動波形の一例を示すグラフ。 図12Aに示す脈動波形から脈動特徴量を演算する方法の説明図。 本開示の実施形態2に係る内燃機関制御装置のブロック図。 スロットル弁開度、スロットル弁下流圧力、および空気の流量を示すグラフ。 内燃機関制御装置が過給圧センサの出力値を用いる例の説明図。 内燃機関制御装置が差圧センサの出力値を用いる例の説明図。 実施形態2に係る制御装置を用いた内燃機関制御方法のフロー図。 図13に示す補正量導出部のニューラルネットワークモデルの説明図。 実施形態3に係る内燃機関制御装置を用いた内燃機関の制御方法のフロー図。 実施形態3に係る内燃機関制御装置を用いた内燃機関の制御方法のフロー図。
 以下、図面を参照して本開示の内燃機関制御装置の実施形態を説明する。
[実施形態1]
 図1は、本開示の実施形態1に係る内燃機関制御装置60を備えたエンジンシステムESの概略構成図である。図2は、本開示の一実施形態に係る内燃機関制御装置60に含まれる演算装置100のブロック図である。
 エンジンシステムESは、たとえば、内燃機関10と、吸気流路20と、排気流路30と、ターボ過給機40と、排気再循環(Exhausted Gas Recirculation:EGR)流路50と、内燃機関制御装置60とを備えている。本実施形態の内燃機関制御装置60は、たとえば、中央演算処理装置(CPU)である演算装置100や、記憶装置(ROM、RAM等)を備えた電子制御ユニット(Electronic Control Unit:ECU)である。
 詳細については後述するが、本実施形態の内燃機関制御装置60は、吸気流路20を流れる空気の流量を測定する流量センサ21sの出力値が入力される演算装置100を備えた制御装置であって、以下の構成を特徴としている。演算装置100は、基本周波数導出部104と、流量振幅演算部107と、補正量導出部108と、流量演算部109と、を備える。基本周波数導出部104は、内燃機関10の回転速度に応じた空気流量の脈動波形の周波数である基本周波数を導出する。流量振幅演算部107は、流量センサ21sの出力値に基づく脈動波形から基本周波数以上の複数の周波数の高周波を流量高周波として抽出し、周波数ごとに流量高周波の振幅を算出する。補正量導出部108は、周波数ごとの流量高周波の振幅に基づいて補正量を導出する。流量演算部109は、流量センサ21sの出力値と補正量を用いて吸気流路20を流れる空気の流量を算出する。
 以下では、まずエンジンシステムESの各部の構成を説明し、次に内燃機関制御装置60による内燃機関10の制御について説明する。
 内燃機関10は、たとえば、吸気バルブ11と、排気バルブ12と、燃料噴射弁13と、点火プラグ14と、ノックセンサ15と、クランク角度センサ16と、を備えている。
内燃機関10は、吸気流路20と排気流路30に接続されている。吸気バルブ11と排気バルブ12は、それぞれ、可変動弁機構を有している。可変動弁機構は、吸気バルブ11と排気バルブ12の開閉位相を検知するセンサ11s,12sを備え、吸気バルブ11と排気バルブ12の位相を連続的に可変とする構成を有している。
 燃料噴射弁13は、たとえば、内燃機関10のシリンダ内に直接燃料を噴射する直接式の噴射弁である。なお、燃料噴射弁13は、吸気ポートに燃料を噴射するポート噴射方式の噴射弁であってもよい。点火プラグ14は、内燃機関10のシリンダ内に電極部が露出され、スパークによって可燃混合気に引火する。ノックセンサ15は、内燃機関10のシリンダブロックに設けられ、燃焼室内で発生するノックの有無を検出する。クランク角度センサ16は、内燃機関10のクランク軸に設けられ、クランク軸の回転角度に応じた信号を、クランク軸の回転速度を示す信号として、ECU60へ燃焼周期ごとに出力する。
 吸気流路20は、たとえば、上流部21と、中流部22と、下流部23と、バイパス部24とを有している。上流部21は、図示を省略するエアクリーナと、ターボ過給機40とを接続する流路である。中流部22は、ターボ過給機40と吸気流路20の下流部23とを接続する流路である。下流部23は、内燃機関10に接続された吸気マニホールドである。バイパス部24は、上流部21と中流部22とを接続する流路である。
 吸気流路20の上流部21には、たとえば、吸気流路20を流れる空気の流量を測定する流量センサ21sが設けられている。流量センサ21sは、たとえば、吸気温度センサを備えたエアフローセンサである。
 図3は、流量センサ21sの測定原理の一例を説明する説明図である。流量センサ21sは、たとえば、熱線式のエアフローセンサである。流量センサ21sは、たとえば、主通路である吸気流路20を流れる空気をバイパスさせる副通路であるバイパス通路を備えている。流量センサ21sは、このバイパス通路内に、空気の流速を検知するためのセンサエレメントが設置されている。流量センサ21sは、バイパス流路の形状を工夫することによって、センサエレメントへのダストや水の付着を防止することができる。
 図3に示すように、主流が流れる主通路と、バイパス流が流れるバイパス通路とでは、流れ場の形状が異なる。より具体的には、たとえば、主流の流れ場の長さLおよび内径Dと、バイパス流の流れ場の長さlおよび内径dとは異なる。そのため、主流の流れ場の形状損失係数Cpや摩擦損失係数Cfは、バイパス流の流れ場の形状損失係数cpや摩擦損失係数cfと異なる。したがって、図3に示すように、主流の流れ場とバイパス流の流れ場とは、異なる運動量方程式に基づく流れ場となる。
 熱線式のエアフローセンサは、測定対象である空気流の中に配置された発熱抵抗体を主要な構成要素とし、発熱抵抗体に流れる電流値は吸入空気量が多い時に増加し、逆に吸入空気量が少ない時には減少するようにブリッジ回路が構成されている。すなわち、流量センサ21sは、たとえば、発熱抵抗体に流れる電流により、空気量を電圧信号として取り出すように構成されている。流量センサ21sは、バイパス通路を流れる空気のセンサエレメント近傍の局所的な流れに起因した放熱量を検出することで、バイパス流路を流れる空気の流量に対応する電圧信号を出力する。
 吸気流路20の中流部22には、たとえば、インタークーラ22aと、過給温度センサ22bと、スロットル弁22cとが設けられている。インタークーラ22aは、ターボ過給機40のコンプレッサ41によって断熱圧縮されて温度が上昇した空気を冷却して温度を低下させる。過給温度センサ22bは、インタークーラ22aの下流に配置され、インタークーラ22aによって冷却された空気の温度を計測する。この過給温度センサ22bによって測定される空気の温度を「過給温度」という。スロットル弁22cは、過給温度センサ22bの下流に設けられ、吸気流路20を絞り、内燃機関10のシリンダに流入する空気量を制御する。スロットル弁22cは、たとえば、運転手によるアクセルペダルの踏量とは独立して弁開度の制御が可能な電子制御式バタフライ弁により構成される。
 吸気流路20の下流部23には、たとえば、過給圧センサ23aと、流動強化弁23bとが設けられている。過給圧センサ23aは、中流部22に設けられたスロットル弁22cの下流側に配置されている。なお、内燃機関10に接続された吸気マニホールドである吸気流路20の下流部23とインタークーラ22aとを一体化させる構成としてもよい。
この場合、ターボ過給機40のコンプレッサ41の下流から内燃機関10のシリンダに至るまでの容積を小さくできるので、加減速の応答性を向上させることが可能になる。流動強化弁23bは、吸入空気に偏流を生じさせることによって、内燃機関10のシリンダの内部の流れに生じる乱れを増大させる。
 排気流路30は、たとえば、上流部31と、下流部32と、バイパス部33と、を有している。上流部31は、内燃機関10とターボ過給機40とを接続する排気マニホールドである。下流部32は、ターボ過給機40と図示を省略するマフラーとを接続する流路である。バイパス部33は、排気流路30の上流部31と下流部32とを接続する流路である。排気流路30の下流部32には、たとえば、空燃比センサ32aと排気浄化触媒32bとが設けられている。
 空燃比センサ32aは、ターボ過給機40のタービン42の下流に設けられ、検出された酸素濃度、すなわち、空燃比を示す信号を、内燃機関制御装置60へ出力する。排気浄化触媒32bは、空燃比センサ32aの下流に設けられ、排ガス中の一酸化炭素、窒素化合物および未燃炭化水素等の有害排出ガス成分を触媒反応によって浄化する。
 ターボ過給機40は、コンプレッサ41とタービン42とによって構成され、たとえば、吸気流路20のバイパス部24に設けられたエアバイパス弁43と、排気流路30のバイパス部33に設けられたウェイストゲート弁44とを備えている。コンプレッサ41は、コンプレッサ翼を有し、コンプレッサ翼の上流側に吸気流路20の上流部21が接続され、コンプレッサ翼の下流側に吸気流路20の中流部22が接続されている。
 タービン42は、コンプレッサ翼に連結されたタービン翼を有し、タービン翼の上流側に排気流路30の上流部31が接続され、タービン翼の下流側に排気流路30の下流部32が接続されている。タービン42は、タービン翼によって排気流路30を流れる排気ガスのエネルギを回転エネルギに変換する。コンプレッサ41は、コンプレッサ翼の回転によって、吸気流路20を流れる空気を圧縮する。
 エアバイパス弁43は、内燃機関制御装置60の制御によって、コンプレッサ41の下流からスロットル弁22cの上流部までの圧力が過剰に上昇することを防止する。過給状態でスロットル弁22cが急激に閉止された場合には、内燃機関制御装置60の制御に従ってエアバイパス弁43が開かれることにより、コンプレッサ41の下流の圧縮された吸入空気が吸気流路20のバイパス部24を通ってコンプレッサ41の上流に逆流する。その結果、過給圧を低下させることが可能となる。
 ウェイストゲート弁44は、内燃機関制御装置60の制御によって、過給圧に対して自由に弁開度が制御可能な電動式の弁である。吸気流路20の下流部23に設けられた過給圧センサ23aによって検知された過給圧に基づいて、内燃機関制御装置60によってウェイストゲート弁44の開度が調整される。排ガスの一部が排気流路30のバイパス部33を通過することにより、排ガスがタービン42に与える仕事を減じることができ、その結果、過給圧を目標圧に保持することができる。
 EGR流路50は、一端が排気流路30の下流部32に接続され、他端が吸気流路20の上流部21に接続され、排気浄化触媒32bの下流から排ガスを分流してコンプレッサ41の上流へ還流させる。EGR流路50には、たとえば、EGRクーラ51と、EGR弁52と、温度センサ53と、差圧センサ54とが設けられている。EGRクーラ51は、排ガスを冷却する。EGR弁52は、EGRクーラ51の下流に設けられ、排ガスの流量を制御する。温度センサ53は、EGR弁52の上流部の排ガスの温度を検出する。差圧センサ54は、EGR弁52の上流側と下流側との差圧を検出する。
 内燃機関制御装置60は、エンジンシステムの各部を制御したり、各種のデータ処理を実行したりする。内燃機関制御装置60は、前述の各種のセンサと各種のアクチュエータに接続されている。各種のアクチュエータは、たとえば、スロットル弁、燃料噴射弁13、可変動弁機構付きの吸気バルブ11と排気バルブ12、EGR弁を駆動させる。内燃機関制御装置60は、このような各種のアクチュエータの動作を制御する。また、内燃機関制御装置60は、各種のセンサから入力された信号に基づいて、内燃機関10の運転状態を検知して、運転状態に応じて決定したタイミングで点火プラグ14を点火させる。
 次に、内燃機関制御装置60による内燃機関10の制御例について説明する。
 図4は、EGRを導入する内燃機関10の運転領域DR1を説明するグラフである。図4に示すように、内燃機関10の運転領域DR1は、たとえば、内燃機関10の回転速度と充填効率とで規定される領域である。充填効率とは、内燃機関10のシリンダの容積に相当する標準状態の空気の質量に対する、一サイクルでシリンダへ吸入される空気質量の割合である。内燃機関10の運転領域DR1は、非過給域NRと過給域SRに大別される。図4に示すグラフにおいて、細い破線で示す各曲線上では、吸入空気の流量が等しい。
また、グラフの上方の曲線ほど流量が大きく、グラフの下方の曲線ほど流量が小さい。
 内燃機関制御装置60は、非過給域NRでは、スロットル弁22cによって充填効率を制御し、過給域SRでは、スロットル弁22cを開き、ウェイストゲート弁44によって過給圧を制御することで、充填効率を制御する。このように、非過給域NRと過給域SRとの間で、トルクを調整する手段を切り替えることによって、内燃機関10に生じるポンプ損失を低減でき、低燃費運転を実現することができる。
 内燃機関制御装置60は、図4に示すように、内燃機関10の非過給域NRの比較的高負荷条件から過給域SRにかけての運転領域DR1において、EGRクーラ51によって冷却されたEGRを内燃機関10のシリンダに還流させる。これにより、内燃機関10のシリンダ内に吸入されるガスを不活性ガスであるEGRで希釈し、高負荷条件で生じやすいノックと呼ばれる不正燃焼を抑制することができる。ノックを抑制できるので、点火時期を適切に進角制御することが可能となり、低燃費運転を実現することができる。
 図5は、ミラーサイクルを実施する内燃機関10の運転領域DR2を説明するグラフである。図5に示すように、内燃機関10の運転領域DR2は、たとえば、内燃機関10の回転速度と充填効率とで規定される領域である。内燃機関10の比較的低流量の運転領域DR2では、シリンダに吸入する空気量を減じるために、スロットル弁22cがより閉じ側に制御される。これによってポンプ損失が増加する傾向がある。
 内燃機関制御装置60によって吸気バルブ11の閉じ時期を下死点からそれよりも早い側または遅い側にずらすことによって、ピストンによる圧縮に必要とされる仕事を低減することができ、ミラーサイクルを実現できる。また、内燃機関制御装置60によって吸気バルブ11が開閉する位相を制御することによって吸入空気量を制御すれば、スロットル弁22cをより開き側に設定でき、ポンプ損失を低減できる。このようなミラーサイクルの効果とポンプ損失の低減効果により、低燃費運転を実現することができる。
 図6Aは、遅閉じミラーサイクルを実現する吸気バルブと排気バルブのリフトパターンである。図6Bは、早閉じミラーサイクルを実現する吸気バルブと排気バルブのリフトパターンである。内燃機関制御装置60によって吸気バルブ11の位相を可変にすることによって、吸気バルブの閉じ時期を、下死点を基点に早い側または遅い側に設定すると、シリンダに吸入される空気量が増減する。
 図6Aに示す遅閉じミラーサイクルでは、内燃機関10のピストンが上死点から下死点まで移動し、さらに下死点から上死点へ移動している途中に吸気バルブ11が閉じられる。これにより、内燃機関10のシリンダ内に一旦吸入されたガスが、ピストンの下死点以降に吸気流路20に吹き戻されることで、シリンダ内への吸入空気量が抑制される。
 一方、図6Bに示す早閉じミラーサイクルでは、内燃機関10のピストンが上死点から下死点へ移動し、シリンダに空気が吸入されている途中に吸気バルブ11が閉じられることによって、シリンダ内への吸入空気量が抑制される。本実施形態のエンジンシステムESでは、吸気バルブ11の位相可変機構を採用してミラーサイクルを実現する構成としているが、吸気バルブ11のリフト切換え機構や、位相・リフト連続可変機構を採用してミラーサイクルを実現することも可能である。
 図7A、図7B、および図7Cは、図1に示す吸気流路20の流量センサ21sの位置における空気の脈動を示すグラフである。内燃機関10は、各シリンダの吸気行程においてのみ吸気を行うことで、断続的な吸気を行っている。これにより、図7Aに示すように、吸気流路20を流れる空気に脈動が生じる。
 内燃機関10は、低回転・高負荷領域において、低周波で脈動振幅比の大きい脈動を生じる傾向がある。脈動振幅比とは、脈動時の最大流量と最小流量の差分である脈動振幅量を、そのときの平均空気量で除したものであり、平均空気量に対してどの程度振幅しているのかを示す指標である。低周波で脈動振幅比の大きい脈動は、流量センサ21sの検出精度を悪化させる要因となる。内燃機関10は、低回転・高負荷条件において、平均流速に対して脈動振幅が大きくなる。このような低回転・高負荷条件では、流速方向が逆流を示すタイミングが存在する。
 図7Bは、内燃機関10において、遅閉じミラーサイクルを実施したときの空気の脈動を示している。前述のように、遅閉じミラーサイクルでは、内燃機関10のシリンダに一旦吸入されたガスが吸気流路20に吹き返される。また、通常サイクルと比較して、スロットル弁22cは開き側に設定される。これらの影響によって、内燃機関10のシリンダで生じた脈動が流量センサ21sに到達しやすい状況となる。
 図7Cは、内燃機関10において、EGRを導入したときの空気の脈動を示している。
排気流路30を流れる排気は、吸気流路20を流れる空気と比較して、より大きい脈動を生じている。この排気流路30を流れる排気の脈動は、EGR流路50を通じて吸気流路20を流れる空気に伝播する。より多くの排気を還流させるために、EGR弁52を開き側に設定すると、流量センサ21sの位置における空気の脈動が大きくなる傾向がある。
前述のミラーサイクルやEGRを実施した際の吸気流路20を流れる空気の脈動は、通常サイクルの吸気行程に起因した空気の脈動に対して、より高周波の周波数成分をもつ脈動である。脈動現象では、脈動振幅比だけではなく、脈動振幅比と脈動周波数の組み合わせによって決まる脈動波形が重要である。
 図8Aは、脈動発生時の吸気流路20を流れる主流の流速と、流量センサ21sのバイパス通路を流れるバイパス流の流速を示すグラフである。図8Aでは、主流の流速を破線で示し、バイパス流の流速を実線で示している。前述のように、流量センサ21sのバイパス通路は、主通路である吸気流路20に対して内径が小さく、曲り形状を含むため、主通路よりも圧力損失が大きい。また、圧力損失の影響は、流速の絶対値が大きいほど大きくなる。そのため、主流とバイパス流の流速の脈動波形は、ピークの近傍で差が生じ、主流とバイパス流の流速の平均値が異なる値を示す。
 図8Bは、流量センサ21sが設けられた位置において吸気流路20を流れる空気である主流の流速の平均値と、流量センサ21sのバイパス通路を流れる空気であるバイパス流の流速の平均値との関係を示すグラフである。流量センサ21sは、吸気流路20の流量センサ21sが設けられた部分を通過する全体の空気の流量を測定することを目的としている。そのため、流量センサ21sのバイパス通路を流れるバイパス流の流速から主流の流速を算出する必要がある。バイパス流の平均流速と主流の平均流速との関係を適合することで、バイパス流の流速から主流の流速を算出することができる。
 図9Aは、主流の流速とバイパス流の流速との関係を示す図8Aと同様のグラフである。図9Bは、図7Bに示す遅閉じミラーサイクルを実施したときの図9Aと同様のグラフである。図9Cは、図7Cに示すEGRを導入したときの図9Aと同様のグラフである。
図9Dは、図9Aから図9Cにおいて、それぞれ実線で示すバイパス流の流速の平均値と、それぞれ破線で示す主流の流速の平均値の適合結果A,B,Cを示すグラフである。
 図9Aから図9Cにおいて、破線で示す主流の流速の平均値(一点鎖線)および脈動振幅比は、同一である。このように、主流の流速の平均値および脈動振幅比が同一であっても、図9Aから図9Dに示すように、主流の流速の脈動波形が異なると、バイパス流の流速の平均値(二点鎖線)と、主流の流速の平均値(一点鎖線)の適合結果A,B,Cは異なる。そのため、主流の流速の脈動条件に応じた適合結果A,B,Cが必要になる。
 次に、図2に示す本実施形態の内燃機関制御装置60を構成する演算装置100について、より詳細に説明する。本実施形態の演算装置100は、前述のように、基本周波数導出部104と、流量振幅演算部107と、補正量導出部108と、流量演算部109と、を備えている。また、演算装置100は、たとえば、A/D変換部101と、電圧/流量変換部102と、回転速度演算部103と、高周波周波数演算部105と、補正前流量演算部106と、を備えている。
 A/D変換部101は、流量センサ21sから出力されるアナログの電圧信号をA/D変換器によってデジタル信号に変換する。
 電圧/流量変換部102は、たとえば、電圧/流量変換テーブルを備えている。電圧/流量変換テーブルは、流量センサ21sの出力値である電圧を、流量センサ21sのバイパス流路に配置されたセンサエレメントの近傍を流れる空気の流量に変換するためのテーブルである。電圧/流量変換部102は、たとえば、デジタル信号に変換された流量センサ21sの出力値である電圧値を、その流量センサ21sの出力値に応じた流量信号に変換して出力する。
 より具体的には、電圧/流量変換テーブルは、一般的な熱線式エアフローセンサの吸入空気量と出力信号との関係を示したものである。電圧/流量変換テーブルにおける電圧/流量曲線は、吸気流路20を流れる空気の流量、すなわち、吸入空気量が少ないと、出力する信号の電圧は低く、吸入空気量が多いと、出力する信号の電圧は高くなる非線形の曲線である。このような非線形の特性となる理由は、流量センサ21sのセンサエレメントを構成する発熱抵抗体からの検出信号を空気量に変換する際の空気量Qは、キングの式と呼ばれる以下の式(1)が採用されているためである。
   Ih・Rh=(α+β・√Q)・(Th-Ta)    (1)
 前記式(1)において、Ihは発熱抵抗体の電流値であり、Rhは発熱抵抗の抵抗値であり、Thは発熱抵抗の表面温度であり、Taは空気の温度であり、Qは空気量であり、α、βはそれぞれ発熱抵抗の仕様で決まる定数である。一般的には、(Th-Ta)が一定になるように発熱抵抗の電流値Ihを制御するので、空気量は抵抗器の電圧降下により電圧値Vに変換して検出する。その結果、電圧値Vは、4次関数式になる。このため、電圧を空気の流量へ変換するときに、4次曲線の曲率すなわち出力と空気量との関係が非線形になる。
 回転速度演算部103は、クランク角度センサ16の信号に基づいて内燃機関10の回転速度を演算する。
 基本周波数導出部104は、たとえば、内燃機関10の回転速度とシリンダ数に基づいて吸気流路20を流れる空気の脈動振幅の周波数である基本周波数を導出する。より具体的には、吸気流路20の流量センサ21sの位置における空気の流れは、図7Aに示すように、内燃機関10の回転速度とシリンダ数に応じた脈動を生じる。基本周波数導出部104は、たとえば、内燃機関10の回転速度と吸気流路20の流量センサ21sの位置における空気の流量波形の周波数との関係を記録したテーブルや演算式を備えることができる。これにより、基本周波数導出部104は、内燃機関10の回転速度に応じた空気の流量の脈動波形の周波数である基本周波数を導出することができる。
 高周波周波数演算部105は、内燃機関10の回転速度に基づいて高周波周波数を演算する。ここで、高周波周波数とは、たとえば、内燃機関10の回転速度に応じた空気の流量の脈動波形に含まれる基本周波数以上の複数の周波数である。この高周波周波数は、たとえば、基本周波数以上の複数の特定の周波数または複数の特定の周波数帯域である。複数の周波数または複数の周波数帯域の演算方法または導出方法は、特に限定されない。一例として、内燃機関10の回転数や運転条件などに応じた複数の高周波周波数をあらかじめマップとして設定しておき、内燃機関10の回転数や運転条件などに応じてマップを参照することができる。
 補正前流量演算部106は、たとえば、電圧/流量変換部102から出力された流量センサ21sの出力値に基づく流量信号と、基本周波数導出部104から出力された基本周波数とに基づいて、補正前流量を演算する。より具体的には、補正前流量演算部106は、たとえば、基本周波数以下の周波数の低周波または基本周波数よりも低い周波数の低周波を通過させる低域通過フィルタを備えている。これにより、補正前流量演算部106は電圧/流量変換部102から出力された流量センサ21sの出力値に基づく流量信号から基本周波数と等しいか、または、基本周波数よりも低い周波数の信号を抽出し、補正前流量として出力する。
 流量振幅演算部107は、電圧/流量変換部102から出力された流量センサ21sの出力値に基づく脈動波形から基本周波数以上の複数の周波数の高周波を流量高周波として抽出し、周波数ごとに流量高周波の振幅を算出する。より具体的には、流量振幅演算部107は、たとえば、低域通過フィルタと、複数の帯域通過フィルタを備えることができる。低域通過フィルタは、たとえば、基本周波数と等しいかまたは基本周波数よりも低い周波数の信号を通過させる。帯域通過フィルタは、たとえば、高周波周波数演算部105によって算出された高周波周波数に応じて設定される。
 補正量導出部108は、流量振幅演算部107から出力された周波数ごとの流量高周波の振幅に基づいて、補正量である脈動補正量を導出する。補正量導出部108は、たとえば、後述するニューラルネットワークモデルや、以下に説明するような補正マップを備えることができる。
 図10Aは、補正量導出部108が補正マップMを備える場合の説明図である。図10Aに示す補正マップMは、たとえば、周波数ごとの流量高周波の振幅に基づくテーブルである。より具体的には、補正マップMは、たとえば、脈動周波数の値と脈動振幅比の値の複数の組み合わせに対応する複数の補正量δを記録したテーブルである。ここで、脈動振幅比は、流量高周波の振幅を、流量高周波の平均値で除した値である。脈動周波数は、流量高周波の周波数である。
 図10Bは、補正量導出部108が多次元の補正マップM0,M1,M2,M3を備える場合の説明図である。図9Aから図9Dを参照して説明したように、たとえば、内燃機関10の運転条件が異なると、流量センサ21sのバイパス流の流速の平均値と、流量センサ21sの位置で吸気流路20を流れる主流の流速の平均値の適合結果A,B,Cが異なる。
 そのため、補正量導出部108は、たとえば、基準条件における補正マップM0と、ミラーサイクル条件に置ける補正マップM1と、EGR条件における補正マップM2とを備えることができる。なお、ミラーサイクル制御やEGR制御は中間状態が存在するため、補正量導出部108は、中間状態を適切に補間する必要がある。また、外気条件は、音速に影響を与えることから、脈動波形の影響因子である。そのため、気温や大気圧などの外気条件に応じた補正マップM3を備えてもよい。
 流量演算部109は、補正前流量演算部106において流量センサ21sの出力値から演算された補正前流量と、補正量導出部108によって導出された補正量である脈動補正量とを用いて、流量センサ21sの位置で吸気流路20を流れる空気の流量を算出する。
すなわち、流量演算部109では、補正量導出部108によって導出された補正量によって流量センサ21sの出力値に基づく流量が補正され、流量センサ21sの位置で吸気流路20を流れる空気の流量が出力される。
 以下、本実施形態の内燃機関制御装置60による内燃機関10の制御方法を説明する。
図11は、本実施形態の内燃機関制御装置60による内燃機関10の制御方法の各ステップを示すフロー図である。
 内燃機関制御装置60の演算装置100は、図11に示すステップS101において、流量センサ21sのバイパス流路を流れるバイパス流の流量を検出する。図2に示すように、演算装置100は、たとえば、A/D変換部101によって流量センサ21sの出力値をデジタル値に変換し、さらに電圧/流量変換部102によって流量に変換する。電圧/流量変換部102から出力された流量は、補正前流量演算部106および流量振幅演算部107に入力される。
 図12Aは、電圧/流量変換部102から出力された流量センサ21sの出力値に基づく流量の脈動波形の一例を示すグラフである。図12Aでは、流量センサ21sの位置において吸気流路20を流れる空気の流量を破線で表し、電圧/流量変換部102から出力された流量センサ21sの出力値に基づく流量を実線で表している。前述のように、流量センサ21sの位置において吸気流路20を流れる空気の流量およびその平均値と、流量センサ21sの出力値に基づく流量およびその平均値とは、異なっている。
 続くステップS102において、演算装置100は、内燃機関10の回転速度を検出する。演算装置100は、たとえば、回転速度演算部103によってクランク角度センサ16に基づいて内燃機関10の回転速度を算出する。回転速度演算部103から出力された内燃機関10の回転速度は、基本周波数導出部104および高周波周波数演算部105に入力される。続くステップS103において、演算装置100は、脈動特徴量の演算を行う。
 図12Bは、図12Aに示す流量センサ21sの出力値に基づく流量の脈動波形から脈動特徴量を演算する方法の説明図である。ステップS103において、演算装置100は、基本周波数導出部104によって、内燃機関10の回転速度に応じた基本周波数を導出する。前述のように基本周波数は、吸気流路20を流れる空気の流量の脈動波形の内燃機関10の回転速度に応じた周波数である。
 また、ステップS103において、演算装置100は、高周波周波数演算部105によって内燃機関10の回転速度に基づいて高周波周波数を演算する。そして、流量振幅演算部107によって、図12Aに示す流量センサ21sの出力値に基づく脈動波形から基本周波数以上の複数の周波数の高周波を流量高周波として抽出し、周波数ごとに流量高周波の振幅σ1,σ2,σ3,σ4,…,σnを算出する。
 より具体的には、たとえば、流量振幅演算部107の低域通過フィルタLPFによって、図12Aに示す流量センサ21sの出力値に基づく脈動波形から内燃機関10の一サイクルにおける平均値相当の流速情報μが得られる。さらに、同じ脈動波形から、流量振幅演算部107の帯域通過フィルタBPF-1,BPF-2,BPF-3,BPF-4,…,BPF-nによって、基本周波数以上の複数の周波数の高周波を流量高周波として抽出し、周波数ごとに流量高周波の振幅σ1,σ2,σ3,σ4,…,σnを算出することができる。これにより、周波数ごとに流量高周波の脈動振幅比を算出することができる。
 続くステップS104において、演算装置100は、脈動補正量の演算を行う。演算装置100は、たとえば、補正量導出部108によって、内燃機関10の一サイクルにおける平均値相当の流速情報μと、周波数ごとの流量高周波の振幅σ1,σ2,σ3,σ4,…,σnに基づいて、補正量δを導出する。補正量導出部108は、たとえば、前述の補正マップMや多次元補正マップM0,M1,M2,M3,…,Mn、または、ニューラルネットワークモデルによって、補正量δを導出することができる。
 このように周波数ごとに分離した脈動波形情報である流量高周波は、すべてに重みを乗じて合成することによって、元の脈動波形を復元することができる。すなわち、脈動波形の情報を脈動周波数と脈動振幅の情報に置き換えることで、種々の脈動波形に対する脈動補正量を整理することが可能である。この考え方に従えば、脈動補正量は、前述のように、脈動周波数ごとの脈動振幅比を各軸とした多次元補正マップM0,M1,M2,M3に基づいて求めることができる。
 続くステップS105において、演算装置100は、流量センサ21sの出力値に基づく流量の脈動を補正する。演算装置100は、たとえば、流量演算部109によって、補正前流量演算部106から出力された流量センサ21sの出力値に基づく補正前流量と、補正量導出部108から出力された補正量δを用い、流量センサ21sの位置で吸気流路20を流れる空気の流量を算出する。流量演算部109によって算出された空気の流量は、たとえば、シリンダ内の空気量を推定する筒内空気量推定部に入力される。
 以上のように、本実施形態の内燃機関制御装置60は、演算装置100を備え、吸気流路20を流れる空気の流量を測定する流量センサ21sの出力値を用いて内燃機関10を制御する装置である。演算装置100は、前述のように、演算装置100の回転速度に応じた空気の流量の脈動波形の周波数である基本周波数を導出する基本周波数導出部104と、流量センサ21sの出力値に基づく脈動波形から基本周波数以上の複数の周波数の高周波を流量高周波として抽出し、周波数ごとに流量高周波の振幅を算出する流量振幅演算部107と、周波数ごとの流量高周波の振幅に基づいて補正量を導出する補正量導出部108と、流量センサ21sの出力値と補正量を用いて吸気流路20を流れる空気の流量を算出する流量演算部109と、を備えている。
 この構成により、周波数ごとの流量高周波の振幅に基づいて導出された補正量δを用いて、流量センサ21sの出力値に基づく流量を補正することができる。そのため、従来は流量センサ21sに脈動による誤差が生じやすかった運転条件においても、常に流量センサ21sによる測定精度を確保することができる。すなわち、本実施形態によれば、内燃機関10の吸気流路20を流れる空気の流量を測定する流量センサ21sの出力値をより適切に補正して、補正後の空気流量と実際の空気流量との間の誤差を、従来よりも低減することが可能な内燃機関制御装置60を提供することができる。これにより、空燃比制御の精度が向上し、内燃機関10の排気が悪化するのを防止することができる。
 なお、本実施形態では、空気量に対応した電圧信号は電圧値として出力される方式を採用しているが、電圧-周波数変換回路によって変換することにより周波数信号に変換されて出力される方式を採用することも可能である。また、図示しないが、空気量に対応した電圧信号が電圧-周波数変換された周波数信号として入力される場合は、信号の周期をCPUのポート入力で計測することによって、周期または周期から周波数に変換された値が入力となり、空気量変換テーブルは周期または周波数に応じてあらかじめ記憶された値から検索補間演算されて検出空気量に変換される。
[実施形態2]
 次に、図1から図9Dならびに図12Aおよび図12Bを援用し、図13から図16を参照して本開示の実施形態2に係る内燃機関制御装置について説明する。
 図13は、本開示の実施形態2に係る内燃機関制御装置が備える演算装置100Aのブロック図である。本実施形態の演算部100Aは、主に、圧力振幅演算部112を備える点で、前述の実施形態1に係る演算部100と異なっている。本実施形態の演算装置100Aのその他の構成は、前述の実施形態1に係る演算装置100と同様であるので、同様の部分には同一の符号を付して説明を省略する。
 演算装置100Aは、図2に示す演算装置100と同様に、A/D変換部101と、電圧/流量変換部102と、回転速度演算部103と、基本周波数導出部104と、高周波周波数演算部105と、補正前流量演算部106と、流量振幅演算部107と、補正量導出部108と、を備えている。
 さらに、演算装置100Aは、たとえば、A/D変換部110,113と、電圧/圧力変換部111と、圧力振幅演算部112と、バルブ開度演算部114とを備えている。
 A/D変換部110は、吸気流路20を流れる空気の圧力を測定する圧力センサである過給圧センサ23aの出力値としての電圧信号を、A/D変換する。電圧/圧力変換部111は、A/D変換部110から出力された過給圧センサ23aの出力値のデジタル信号を、圧力情報に変換する。
 圧力振幅演算部112は、たとえば、高周波周波数演算部105から基本周波数が入力される。流量振幅演算部107と同様に、圧力振幅演算部112は、過給圧センサ23aの出力値に基づく脈動波形から基本周波数以上の複数の周波数の高周波を圧力高周波として抽出し、周波数ごとに圧力高周波の振幅を算出する。圧力振幅演算部112から出力された圧力情報と周波数ごとの圧力高周波の振幅は、補正量導出部108に入力される。
 A/D変換部113は、スロットル弁22cの開度を検出するセンサの出力値である電圧信号をA/D変換する。バルブ開度演算部114は、スロットル弁22cの開度を検出するセンサの出力値のデジタル信号を、バルブ開度情報に変換する。バルブ開度演算部114から出力されたバルブ開度情報は、補正量導出部108に入力される。補正量導出部108は、周波数ごとの流量高周波の振幅と、周波数ごとの圧力高周波の振幅と、流量センサと圧力センサとの間で吸気流路を流れる空気の流量を制御するバルブであるスロットル弁22cの開度とに基づいて、補正量δを導出する。
 すなわち、本実施形態の演算部100Aは、吸気流路20を流れる空気の圧力を測定する圧力センサである過給圧センサ23aの出力値に基づく脈動波形から基本周波数以上の複数の周波数の高周波を圧力高周波として抽出し、周波数ごとに圧力高周波の振幅を算出する圧力振幅演算部112を備えている。そして、補正量導出部108は、周波数ごとの流量高周波の振幅と、周波数ごとの圧力高周波の振幅と、流量センサ21sと圧力センサである過給圧センサ23aとの間で吸気流路20を流れる空気の流量を制御するバルブであるスロットル弁22cの開度と、に基づいて補正量δを導出する。
 図14は、スロットリング状態からスロットル弁22cを開くことで過給状態へと加速する際のスロットル弁22cの開度と、過給圧センサ23aによって測定したスロットル弁22cの下流の圧力と、吸気流路20を流れる空気の流量を示すグラフである。非過給域から過給域に加速する際には、スロットリング状態からスロットル弁22cが開いてからスロットル弁22cの下流に空気が大気圧で充填されるまでの間は、吸気流路20を流れる空気の流量に脈動が生じない。
 そのため、本実施形態の演算装置100Aにおいて、流量演算部109は、図14に示す過渡期間TPにおいて、補正前流量演算部106から出力された流量センサ21sの出力値のみを用いて空気の流量を算出するように構成されている。ここで、過渡期間TPとは、吸気流路20に設けられたスロットル弁22cの開度が増加してからスロットル弁22cの下流でスロットル弁22cの圧力を測定する圧力センサである過給圧センサ23aの出力値が大気圧に対応する出力値に到達するまでの期間である。
 図15Aは、演算装置100Aが吸気流路20を流れる空気の圧力を測定する圧力センサの出力値を用いる例の説明図である。演算装置100Aは、たとえば、ミラーサイクルによって生じる空気の脈動Pを、流量センサ21sだけでなく、圧力センサである過給圧センサ23aによって検出することができる。この場合、ミラーサイクルの制御状態によって変化する空気の脈動Pの情報を過給圧センサ23aによって直接的に捉えることができる。
 図15Bは、演算装置100AがEGR流路50を流れる排ガスの差圧を測定する差圧センサの出力値を用いる例の説明図である。演算装置100Aは、たとえば、EGRによって生じる脈動Pを、流量センサ21sだけでなく、差圧センサ54によって検出することができる。この場合、EGR率によって変化する脈動Pの情報を差圧センサ54によって直接的に捉えることができる。
 一般に、流量センサ21sの応答性に対して、圧力センサである過給圧センサ23aおよび差圧センサ54の応答性は高く、より高周波の脈動成分を捉えることが可能である。
また、圧力センサである過給圧センサ23aおよび差圧センサ54は、脈動要因に近い位置に設置されていることから、脈動補正を遅延なく実施することができる。
 過給圧センサ23aや差圧センサ54などの圧力センサで検出される脈動は、圧力センサと流量センサ21sとの間に設置されているスロットル弁22cやEGR弁52などのバルブを通して流量センサ21sに伝播する。そのため、圧力センサで検出される脈動が大きくても、バルブの開度が小さい場合は、脈動が流量センサ21sに伝播しない。そのため、圧力脈動情報にもとづく流量センサ21sの脈動補正では、バルブ開度を考慮する必要がある。
 以下、本実施形態の内燃機関制御装置による内燃機関10の制御方法を説明する。図16は、本実施形態の内燃機関制御装置を用いた内燃機関10の制御方法の各ステップを示すフロー図である。
 本実施形態の内燃機関制御装置の演算装置100Aは、ステップS201において、流量センサ21sのバイパス流路を流れるバイパス流の流量を検出する。演算装置100Aは、たとえば、A/D変換部101によって流量センサ21sの出力値をデジタル値に変換し、さらに電圧/流量変換部102によって流量に変換する。電圧/流量変換部102から出力された流量は、補正前流量演算部106および流量振幅演算部107に入力される。
 続くステップS202において、演算装置100Aは、過給圧センサ23aによって、スロットル弁22cの下流の圧力を検出する。演算装置100Aは、たとえば、A/D変換部110によって過給圧センサ23aの出力値をデジタル値に変換し、さらに電圧/圧力変換部111によって圧力に変換する。電圧/圧力変換部111から出力された圧力は、圧力振幅演算部112に入力される。
 続くステップS203において、演算装置100Aは、スロットル弁22cの開度を検出するセンサによってスロットル弁22cの開度であるバルブ開度を検出する。演算装置100Aは、たとえば、A/D変換部113によってセンサの出力値をデジタル値に変換し、さらにバルブ開度演算部114によってバルブ開度に変換する。バルブ開度演算部114から出力されたバルブ開度は、補正量導出部108に入力される。
 続くステップS204において、演算装置100Aは、内燃機関10の回転速度を検出する。演算装置100Aは、たとえば、回転速度演算部103によってクランク角度センサ16に基づいて内燃機関10の回転速度を算出する。回転速度演算部103から出力された内燃機関10の回転速度は、基本周波数導出部104および高周波周波数演算部105に入力される。
 続くステップS205において、演算装置100Aは、脈動特徴量の演算を行う。演算装置100Aは、基本周波数導出部104によって、内燃機関10の回転速度に応じた基本周波数を導出し、高周波周波数演算部105によって内燃機関10の回転速度に基づいて高周波周波数を演算する。そして、流量振幅演算部107によって、流量センサ21sの出力値に基づく脈動波形から基本周波数以上の複数の周波数の高周波を流量高周波として抽出し、周波数ごとに流量高周波の振幅を算出する。また、圧力振幅演算部112によって、過給圧センサ23a等の圧力センサの出力値に基づく脈動波形から基本周波数以上の複数の周波数の高周波を圧力高周波として抽出し、周波数ごとに圧力高周波の振幅を算出する。
 続くステップS206において、演算装置100Aは、脈動補正量の演算を行う。演算装置100Aは、たとえば、補正量導出部108によって、内燃機関10の一サイクルにおける平均値相当の流速情報μおよび圧力情報と、周波数ごとの流量高周波の振幅σ1,σ2,σ3,σ4,…,σnおよび周波数ごとの圧力高周波の振幅と、バルブ開度とに基づいて、補正量δを導出する。補正量導出部108は、補正量導出部108は、たとえば、補正マップMや多次元補正マップM0,M1,M2,M3,…,Mn、または、ニューラルネットワークモデルによって、補正量δを導出することができる。
 続くステップS207において、演算装置100Aは、流量センサ21sの出力値に対する脈動補正を行うか否かを判定する。演算装置100Aは、たとえば、流量演算部109によって、過渡期間TPであるか否かを判定する。過渡期間TPとは、前述のように、吸気流路20に設けられたスロットル弁22cの開度が増加してからスロットル弁22cの下流でスロットル弁22cの圧力を測定する圧力センサである過給圧センサ23aの出力値が大気圧に対応する出力値に到達するまでの期間である。
 流量演算部109は、過渡期間TPではないと判定すると、流量センサ21sの出力値に対する脈動補正を行う(YES)と判定し、ステップS208へ進む。また、流量演算部109は、過渡期間TPであると判定すると、流量センサ21sの出力値に対する脈動補正を行わない(NO)と判定し、流量センサ21sの出力値のみを用いて空気の流量を算出する。これにより、吸気流路20を流れる空気の流量に脈動を生じない過渡期間TPにおいて、不要な補正が行われることが防止される。
 ステップ208において、演算装置100Aは、流量センサ21sの出力値に基づく流量の脈動を補正する。演算装置100Aは、たとえば、流量演算部109によって、補正前流量演算部106から出力された流量センサ21sの出力値に基づく補正前流量と、補正量導出部108から出力された補正量δを用い、流量センサ21sの位置で吸気流路20を流れる空気の流量を算出する。流量演算部109によって算出された空気の流量は、たとえば、シリンダ内の空気量を推定する筒内空気量推定部に入力される。
 本実施形態によれば、前述の実施形態1と同様に、内燃機関10の吸気流路20を流れる空気の流量を測定する流量センサ21sの出力値をより適切に補正して、補正後の空気流量と実際の空気流量との間の誤差を、従来よりも低減することが可能な演算装置100Aを備えた内燃機関制御装置を提供することができる。さらに、演算装置100Aは、脈動により流量センサ21sに誤差を生じやすい運転条件においても、圧力センサの情報も加味して常に流量センサ21sの精度を確保することができ、空燃比制御の精度を向上させ、排気の悪化を防止することができる。
[実施形態3]
 次に、図1、図3から図9D、および図12Aから図15Bを援用し、図17および図18を参照して本開示の実施形態3に係る内燃機関制御装置について説明する。図17は、補正量導出部108がニューラルネットワークモデルNNMを備える場合の説明図である。
 本実施形態の内燃機関制御装置は演算装置を備え、その演算装置の補正量導出部108が、図10Aおよび図10Bに示す補正マップMまたは多次元補正マップM0,M1,M2,M3に代えて、ニューラルネットワークモデルNNMを備える点で、前述の実施形態2に係る内燃機関制御装置の演算装置100Aと異なっている。本実施形態の演算装置のその他の構成は、前述の実施形態2に係る演算装置100Aと同様であるので、同様の部分には同一の符号を付して説明を省略する。
 補正量導出部108は、流量振幅演算部107から出力された周波数ごとの流量高周波の振幅に基づいて、補正量δである脈動補正量を導出する。補正量導出部108は、たとえば、ニューラルネットワークモデルNNMを備えることができる。ニューラルネットワークモデルNNMとは、人間の脳神経回路の仕組みを模した数学モデルであり、モデルを構成する各ニューロンには、重みとバイアスが設定されている。また、ニューロンには活性化関数と呼ばれる関数が定義されている。活性化関数には、ロジスティック関数やランプ関数などが適宜設定される。複数のニューロンで一つの層が形成され、入力層と出力層との間には、中間層が設定される。
 ニューロン数や中間層の層数を増加することで、より複雑な入出力関係を近似することができる。近似精度とモデル規模との間にはトレードオフの関係があり、双方の要求を満足する両立点が選定される。脈動周波数ごとの脈動振幅比を入力層に設定し、脈動補正量の適合結果を出力層に設定し、各ニューロンの重みとバイアスを機械学習(教師有り)することによって、入出力関係を近似することができる。機械学習のアルゴリズムには、誤差逆伝播法を適用できる。
 以上のように、本実施形態の演算装置は、補正量導出部108がニューラルネットワークモデルNNMを備えている。そして、ニューラルネットワークモデルNNMは、入力層の各ユニットに周波数ごとの流量高周波の振幅に基づく脈動特徴量が設定され、中間層の各ユニットに重みとバイアスと活性化関数が設定され、出力層の各ユニットに補正量として脈動補正量が設定されている。
 以下、本実施形態の内燃機関制御装置による内燃機関10の制御方法を説明する。
 図18は、本実施形態の内燃機関制御装置を用いた内燃機関10の制御方法の各ステップを示すフロー図である。内燃機関制御装置の演算装置は、ステップS301において、脈動補正量のオンボード学習を行うか否かの判定を行う。演算装置は、たとえば、図4および図5に示す運転領域DR1,DR2ではないと判定した場合や、図14に示す過渡期間TPであると判定した場合に、オンボード学習を行わないこと(NO)を判定し、制御を終了する。一方、演算装置は、たとえば、図4および図5に示す運転領域DR1,DR2であると判定した場合や、図14に示す過渡期間TPではないと判定した場合に、オンボード学習を行うこと(YES)を判定し、ステップS302へ進む。
 演算装置は、ステップS302からステップS305において、図16に示す実施形態2に係る演算装置100AによるステップS201からステップ204と同様の処理を行う。演算装置は、ステップS302からステップS305において取得されたデータを、補正量導出部108のニューラルネットワークモデルNNMの入力層に設定する。続くステップS306において、演算装置は、たとえば空燃比センサ32aによって排気空燃比を検出する。
 続くステップS307において、演算装置は、たとえばその第2流量演算部によって、燃料噴射弁13による燃料噴射量と、排気空燃比からシリンダに吸入される真の空気量を演算する。すなわち、第2流量演算部は、内燃機関10の排気流路30に設けられた空燃比センサ32aの出力値を用いて流量センサ21sの位置において吸気流路20を流れる真の空気量である空気の流量を算出する。さらに演算装置は、算出した真の空気量と、流量センサ21sの出力値を用いて演算されたシリンダの吸入空気量とに基づいて、流量センサ21sによる測定誤差である流量誤差を演算する。
 続くステップS308において、演算装置は、算出した流量誤差を補正量導出部108のニューラルネットワークモデルNNMの出力層に設定し、誤差逆伝播法によりニューラルネットワークモデルNNMの各ニューロンに設定された重みとバイアスを学習する。
 以上のように、本実施形態の内燃機関制御装置の演算装置は、たとえば、流量センサ21sの出力値を用いることなく吸気流路20を流れる空気の流量を算出する第2流量演算部を備えている。また、本実施形態の演算装置において、補正量導出部108は、たとえば、流量演算部109で算出された流量と第2流量演算部によって算出された流量とに基づいて補正量δを算出し、その補正量δをニューラルネットワークモデルNNMの出力層の各ユニットに設定し、中間層の各ユニットに設定された重みとバイアスを更新する。
 このように、演算装置が補正量δをオンボード学習する機能を備えることで、脈動により流量センサ21sの誤差が生じやすい運転条件においても、常に流量センサ21sの精度を確保することができ、空燃比制御の精度を向上させ、排気の悪化を防止することができる。なお、演算装置の第2流量演算部は、たとえば吸気流路20に設けられた過給圧センサ23aなどの圧力センサの出力値を用いて真の空気量である流量を算出してもよい。
 図19は、本実施形態の内燃機関制御装置を用いた内燃機関10の制御方法の各ステップを示すフロー図である。この例において、内燃機関制御装置の演算装置は、異常診断部を備え、脈動補正ロジックを活用して流量センサ21sの異常を診断する。
 演算装置は、ステップS401において、診断条件を満たすか否かを判定する。演算装置は、診断条件を満たす場合(YES)、ステップS402へ進み、診断条件を満たさない場合(NO)、制御を終了する。ステップS402において、演算装置は、たとえば、A/D変換部101および電圧/流量変換部102により、診断条件に対応する流量脈動波形を取得する。
 続くステップS403において、演算装置は、たとえば、A/D変換部110、電圧/圧力変換部111により、診断条件に対応する圧力脈動波形を取得する。続くステップS404において、演算装置は、たとえば、A/D変換部113およびバルブ開度演算部114により、診断条件に対応するバルブ開度を取得する。続くステップS405において、演算装置は、たとえば、回転速度演算部103により、診断条件に対応する内燃機関の回転速度を取得する。
 続くステップS406において高周波周波数演算部105、流量振幅演算部107、圧力振幅演算部112および補正量導出部108により、流量および圧力の各脈動特徴量を演算する。続くステップS407において、ステップS402からステップS406によって取得されたデータを補正量導出部108のニューラルネットワークモデルNNMの入力層に設定し、脈動補正量を演算する。続くステップS408において、演算装置は、異常診断部によって脈動補正量である補正量δの絶対値とあらかじめ設定した閾値とに基づいて流量センサ21sの異常診断を行う。
 以上のように、本実施形態の内燃機関制御装置の演算装置は、補正量導出部108によって導出された補正量δに基づいて流量センサ21sの異常を診断する異常診断部を備えている。これにより、たとえば補正量δの絶対値が閾値よりも大きい場合に、流量センサ21sが異常であると診断することができる。流量センサ21sの脈動補正量は、脈動状態や運転動作点によって変化するため、脈動条件ごとに閾値を設定することで、診断精度を向上することができる。
 以上、図面を用いて本開示に係る内燃機関制御装置の実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。
10   内燃機関
20   吸気流路
21s  流量センサ
22c  スロットル弁(バルブ)
23a  過給圧センサ(圧力センサ)
30   排気流路
32a  空燃比センサ
52   EGR弁(バルブ)
54   差圧センサ(圧力センサ)
60   内燃機関制御装置
100  演算装置
100A 演算装置
104  基本周波数導出部
107  流量振幅演算部
108  補正量導出部
109  流量演算部
112  圧力振幅演算部
NNM  ニューラルネットワークモデル
TP   過渡期間
δ    補正量
σ1   振幅
σ2   振幅
σ3   振幅
σ4   振幅

Claims (8)

  1.  吸気流路を流れる空気の流量を測定する流量センサの出力値が入力される演算装置を備えた内燃機関制御装置であって、
     前記演算装置は、
     前記内燃機関の回転速度に応じた前記流量の脈動波形の周波数である基本周波数を導出する基本周波数導出部と、
     前記流量センサの出力値に基づく脈動波形から前記基本周波数以上の複数の周波数の高周波を流量高周波として抽出し、周波数ごとに前記流量高周波の振幅を算出する流量振幅演算部と、
     前記周波数ごとの前記流量高周波の振幅に基づいて補正量を導出する補正量導出部と、
     前記流量センサの出力値と前記補正量を用いて前記空気の流量を算出する流量演算部と、
     を有する、内燃機関制御装置。
  2.  前記演算装置は、前記吸気流路を流れる空気の圧力を測定する圧力センサの出力値に基づく脈動波形から前記基本周波数以上の複数の周波数の高周波を圧力高周波として抽出し、周波数ごとに前記圧力高周波の振幅を算出する圧力振幅演算部を備え、
     前記補正量導出部は、周波数ごとの前記流量高周波の振幅と、周波数ごとの前記圧力高周波の振幅と、前記流量センサと前記圧力センサとの間で前記吸気流路を流れる空気の流量を制御するバルブの開度とに基づいて補正量を導出する、請求項1に記載の内燃機関制御装置。
  3.  前記流量演算部は、前記吸気流路に設けられたスロットル弁の開度が増加してから該スロットル弁の下流で前記吸気流路の圧力を測定する圧力センサの出力値が大気圧に対応する出力値に到達するまでの過渡期間において、前記流量センサの出力値のみを用いて前記空気の流量を算出する、請求項1に記載の内燃機関制御装置。
  4.  前記補正量導出部は、ニューラルネットワークモデルを備え、
     前記ニューラルネットワークモデルは、入力層の各ユニットに周波数ごとの前記流量高周波の振幅が設定され、中間層の各ユニットに重みとバイアスと活性化関数が設定され、出力層の各ユニットに前記補正量が設定されている、請求項1に記載の内燃機関制御装置。
  5.  前記演算装置は、前記流量センサの出力値を用いることなく前記吸気流路を流れる空気の流量を算出する第2流量演算部を備え、
     前記補正量導出部は、前記流量演算部で算出された前記流量と前記第2流量演算部によって算出された前記流量とに基づいて補正量を算出し、該補正量を前記ニューラルネットワークモデルの前記出力層の各ユニットに設定し、前記重みと前記バイアスを更新する、請求項4に記載の内燃機関制御装置。
  6.  前記第2流量演算部は、前記吸気流路に設けられた圧力センサの出力値を用いて前記流量を算出する、請求項5に記載の内燃機関制御装置。
  7.  前記第2流量演算部は、前記内燃機関の排気流路に設けられた空燃比センサの出力値を用いて前記流量を算出する、請求項5に記載の内燃機関制御装置。
  8.  前記補正量に基づいて前記流量センサの異常を診断する異常診断部を備える、請求項1に記載の内燃機関制御装置。
PCT/JP2019/035137 2018-09-26 2019-09-06 内燃機関制御装置 WO2020066548A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020548327A JP6970309B2 (ja) 2018-09-26 2019-09-06 内燃機関制御装置
US17/257,782 US11365699B2 (en) 2018-09-26 2019-09-06 Internal combustion engine control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180377 2018-09-26
JP2018180377 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066548A1 true WO2020066548A1 (ja) 2020-04-02

Family

ID=69953427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035137 WO2020066548A1 (ja) 2018-09-26 2019-09-06 内燃機関制御装置

Country Status (3)

Country Link
US (1) US11365699B2 (ja)
JP (1) JP6970309B2 (ja)
WO (1) WO2020066548A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021189015A (ja) * 2020-05-29 2021-12-13 日立Astemo株式会社 熱式流量センサ
WO2022130719A1 (ja) * 2020-12-16 2022-06-23 日立Astemo株式会社 電子制御装置及び流量測定システム
WO2024013953A1 (ja) * 2022-07-14 2024-01-18 日立Astemo株式会社 内燃機関の制御装置
WO2024018567A1 (ja) * 2022-07-20 2024-01-25 日立Astemo株式会社 内燃機関の制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019003406T9 (de) * 2018-07-05 2021-05-12 Denso Corporation Messsteuerungsvorrichtung und Strömungsvolumenmessvorrichtung
WO2020110820A1 (ja) * 2018-11-30 2020-06-04 日立オートモティブシステムズ株式会社 物理量測定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264313A (ja) * 1992-03-17 1993-10-12 Nippondenso Co Ltd 内燃機関の吸入空気量検出装置
JP2004234260A (ja) * 2003-01-29 2004-08-19 Hitachi Ltd 安全運転診断方法および省燃費運転診断方法、ならびに装置、安全運転診断プログラムおよび省燃費運転診断プログラム
JP2005121439A (ja) * 2003-10-15 2005-05-12 Horiba Ltd 排ガス流量計測方法およびその装置
JP2009281284A (ja) * 2008-05-22 2009-12-03 Mitsubishi Fuso Truck & Bus Corp エンジン吸気流量検出装置
JP2012112716A (ja) * 2010-11-22 2012-06-14 Denso Corp 空気流量測定装置
JP2013108402A (ja) * 2011-11-18 2013-06-06 Isuzu Motors Ltd 内燃機関の燃焼噴射の異常判定方法と内燃機関

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733803B2 (ja) * 1986-04-30 1995-04-12 マツダ株式会社 電子燃料噴射エンジンの燃料制御装置
DE3925377A1 (de) * 1989-08-01 1991-02-07 Bosch Gmbh Robert Verfahren zur messfehlerkorrektur eines heissfilm-luftmassenmessers
JP2654706B2 (ja) * 1990-02-16 1997-09-17 トヨタ自動車株式会社 熱式吸入空気量センサ
US6131444A (en) * 1998-09-15 2000-10-17 Chrysler Corporation Misfire detection using a dynamic neural network with output feedback
JP3627564B2 (ja) * 1999-03-15 2005-03-09 株式会社日立製作所 吸入空気流量計測装置
EP1195511A1 (en) * 1999-06-15 2002-04-10 Hitachi, Ltd. Air flow measuring device formed integrally with electronically controlled throttle body
DE10064651A1 (de) * 2000-12-22 2002-07-04 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Gasfüllung von Zylindern einer Brennkraftmaschine
DE10234492B4 (de) * 2002-07-29 2005-12-08 Siemens Ag Verfahren zur Ermittlung eines Luftmassenstroms
US7181334B2 (en) * 2003-05-14 2007-02-20 General Motors Corporation Method and apparatus to diagnose intake airflow
EP1508788B1 (en) 2003-08-18 2007-02-14 Horiba, Ltd. Emission flow rate measuring method and apparatus
JP4352830B2 (ja) * 2003-09-19 2009-10-28 トヨタ自動車株式会社 内燃機関の制御装置
US7139655B2 (en) * 2004-04-20 2006-11-21 Nissan Motor Co., Ltd. Intake air parameter estimating device for internal combustion engine
DE102004047786A1 (de) * 2004-10-01 2006-04-06 Robert Bosch Gmbh Verfahren zur Pulsationskorrektur innerhalb eines einen Medienmassenstrom messenden Messgeräts
WO2006051589A1 (ja) * 2004-11-11 2006-05-18 Hitachi, Ltd. 熱式流量測定装置
DE102005007057B4 (de) * 2005-02-15 2014-11-27 Fev Gmbh Verfahren zur Regelung eines Fluidstroms sowie damit gesteuerte Verbrennungskraftmaschine
DE102008001099A1 (de) * 2008-04-09 2009-10-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fehlerdiagnose in einem Motorsystem mit variabler Ventilansteuerung
JP2010101261A (ja) * 2008-10-24 2010-05-06 Toyota Motor Corp エアフロメータの異常検出装置
JP2011027073A (ja) * 2009-07-29 2011-02-10 Denso Corp 内燃機関の異常診断装置
CN103261642B (zh) * 2010-12-27 2017-05-24 日产自动车株式会社 内燃发动机的控制装置
JP5790523B2 (ja) * 2012-02-01 2015-10-07 トヨタ自動車株式会社 空燃比インバランス判定装置
JP2013160121A (ja) * 2012-02-03 2013-08-19 Hitachi Automotive Systems Ltd 内燃機関の空気量計測装置及び空気量計測方法
JP5851358B2 (ja) 2012-07-12 2016-02-03 日立オートモティブシステムズ株式会社 内燃機関の制御装置
EP2927465B1 (en) * 2014-04-02 2021-03-10 MANN+HUMMEL GmbH Method for determining the instantaneous mass flow rate of a gas, corresponding device and computer program
WO2015156013A1 (ja) * 2014-04-11 2015-10-15 日産自動車株式会社 内燃機関の制御装置および制御方法
DE102015209665B4 (de) * 2014-06-25 2022-10-20 Vitesco Technologies GmbH Verfahren zur Identifizierung von Ventilsteuerzeiten eines Verbrennungsmotors
JP6506681B2 (ja) * 2015-11-13 2019-04-24 日立オートモティブシステムズ株式会社 空気流量測定装置
DE102016219582B3 (de) * 2016-10-10 2017-06-08 Continental Automotive Gmbh Verfahren zur kombinierten Identifizierung einer Einlassventilhub-Phasendifferenz und einer Auslassventilhub-Phasendifferenz eines Verbrennungsmotors mit Hilfe von Linien gleicher Amplitude
JP6540743B2 (ja) * 2017-03-30 2019-07-10 株式会社デンソー 空気量算出装置
JP6531774B2 (ja) * 2017-04-14 2019-06-19 株式会社デンソー 空気流量測定装置
DE102017209386B4 (de) * 2017-06-02 2024-05-08 Vitesco Technologies GmbH Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb
JP6763823B2 (ja) * 2017-06-05 2020-09-30 日立オートモティブシステムズ株式会社 空気流量計
DE102017215849B4 (de) * 2017-09-08 2019-07-18 Continental Automotive Gmbh Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb und Motor-Steuerungseinheit
JP2019086439A (ja) * 2017-11-08 2019-06-06 株式会社デンソー 空気流量計測装置、及び空気流量計測システム
CN110714845B (zh) * 2018-07-13 2022-05-03 丰田自动车株式会社 发动机控制装置及发动机控制方法以及记录介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264313A (ja) * 1992-03-17 1993-10-12 Nippondenso Co Ltd 内燃機関の吸入空気量検出装置
JP2004234260A (ja) * 2003-01-29 2004-08-19 Hitachi Ltd 安全運転診断方法および省燃費運転診断方法、ならびに装置、安全運転診断プログラムおよび省燃費運転診断プログラム
JP2005121439A (ja) * 2003-10-15 2005-05-12 Horiba Ltd 排ガス流量計測方法およびその装置
JP2009281284A (ja) * 2008-05-22 2009-12-03 Mitsubishi Fuso Truck & Bus Corp エンジン吸気流量検出装置
JP2012112716A (ja) * 2010-11-22 2012-06-14 Denso Corp 空気流量測定装置
JP2013108402A (ja) * 2011-11-18 2013-06-06 Isuzu Motors Ltd 内燃機関の燃焼噴射の異常判定方法と内燃機関

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021189015A (ja) * 2020-05-29 2021-12-13 日立Astemo株式会社 熱式流量センサ
JP7394021B2 (ja) 2020-05-29 2023-12-07 日立Astemo株式会社 熱式流量センサ
WO2022130719A1 (ja) * 2020-12-16 2022-06-23 日立Astemo株式会社 電子制御装置及び流量測定システム
JP7545492B2 (ja) 2020-12-16 2024-09-04 日立Astemo株式会社 電子制御装置及び流量測定システム
WO2024013953A1 (ja) * 2022-07-14 2024-01-18 日立Astemo株式会社 内燃機関の制御装置
WO2024018567A1 (ja) * 2022-07-20 2024-01-25 日立Astemo株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JPWO2020066548A1 (ja) 2021-05-13
JP6970309B2 (ja) 2021-11-24
US11365699B2 (en) 2022-06-21
US20210270202A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2020066548A1 (ja) 内燃機関制御装置
JP4253339B2 (ja) 内燃機関の制御装置
JP5043899B2 (ja) 内燃機関のegr流量制御装置
JP5929015B2 (ja) 内燃機関の排気還流装置
US9759165B2 (en) Internal combustion engine
US7681442B2 (en) Throttle upstream pressure estimating apparatus and cylinder charged air quantity calculating apparatus for internal combustion engine
US7991536B2 (en) Control system and control method for internal combustion engine equipped with supercharger
JP2005307847A (ja) 内燃機関の空気量算出装置
JP6435361B2 (ja) 内燃機関の制御装置
JP4285141B2 (ja) ディーゼルエンジンの燃料噴射制御装置
JP5865942B2 (ja) 内燃機関のシリンダ吸入空気量推定装置および推定方法
US20230408087A1 (en) Electronic Control Device and Flow Rate Measurement System
WO2014080523A1 (ja) 内燃機関の制御装置
WO2012137331A1 (ja) 内燃機関の制御装置
JP7206407B2 (ja) 内燃機関の制御装置
JP2012519792A (ja) 内燃機関においてガス流量を測定する流量計からの信号を処理する方法
JP2009007940A (ja) 内燃機関の筒内充填空気量演算装置
JP5589687B2 (ja) エンジンの制御装置
JP6515903B2 (ja) 内燃機関の制御装置
WO2024013953A1 (ja) 内燃機関の制御装置
JP4428150B2 (ja) エンジンの吸気制御装置
JP5333254B2 (ja) 内燃機関の制御装置
WO2023100294A1 (ja) 内燃機関の制御装置
JP6686427B2 (ja) エンジン制御装置
JP2000161123A (ja) エンジン制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864146

Country of ref document: EP

Kind code of ref document: A1