[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020065757A1 - 内視鏡用撮像装置、内視鏡、および、内視鏡用撮像装置の製造方法 - Google Patents

内視鏡用撮像装置、内視鏡、および、内視鏡用撮像装置の製造方法 Download PDF

Info

Publication number
WO2020065757A1
WO2020065757A1 PCT/JP2018/035646 JP2018035646W WO2020065757A1 WO 2020065757 A1 WO2020065757 A1 WO 2020065757A1 JP 2018035646 W JP2018035646 W JP 2018035646W WO 2020065757 A1 WO2020065757 A1 WO 2020065757A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
imaging device
pipe
ferrule
tube
Prior art date
Application number
PCT/JP2018/035646
Other languages
English (en)
French (fr)
Inventor
秀治 宮原
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/035646 priority Critical patent/WO2020065757A1/ja
Publication of WO2020065757A1 publication Critical patent/WO2020065757A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an imaging device for an endoscope including an imaging device, a light emitting device, and an optical fiber, an endoscope including the imaging device for an endoscope including an imaging device, a light emitting device, and an optical fiber, and imaging.
  • the present invention relates to a method for manufacturing an endoscope imaging device including an element, a light emitting element, and an optical fiber.
  • the endoscope has an image sensor at the distal end of the elongated insertion section.
  • an image sensor having a high pixel count has been studied.
  • the amount of signals transmitted from the image sensor to a signal processing device (processor) increases.
  • the diameter of the conductor is increased in order to transmit a required signal amount, or a plurality of conductors are used, so that the insertion portion is enlarged.
  • an optical signal instead of an electric signal to transmit an optical signal via an optical fiber.
  • an E / O type optical module including a light emitting element for converting an electric signal into an optical signal
  • an O / E type optical module including a light receiving element for converting an optical signal into an electric signal.
  • Optical module optical-electrical converter
  • the optical fiber is inserted and fixed in the insertion hole of the ferrule (holding member) of the optical module.
  • the optical module disposed at the distal end of the insertion section of the endoscope is ultra-small for minimizing invasiveness. For this reason, it has not been easy to insert the optical fiber into the ferrule of the optical module.
  • the appropriate amount is extremely small, it is not easy to provide.
  • Japanese Patent Application Laid-Open No. 2015-175904 discloses an optical transmission module in which a hollow cylindrical body is joined to a light emitting surface of an optical element, and the hollow cylindrical body is inserted into a through hole of a wiring board on which the optical element is mounted. ing.
  • An object of the embodiments of the present invention is to provide an endoscope imaging device that is easy to manufacture, an endoscope that is easy to manufacture, and a method of manufacturing an endoscope imaging device that is easy to manufacture.
  • An imaging device for an endoscope includes an imaging element that outputs an imaging signal, a driving circuit that outputs a driving signal according to the imaging signal, and the driving signal that is converted to an optical signal, and the optical signal is A light-emitting element that emits light from a light-emitting surface, an optical fiber that transmits the optical signal, a flexible tube into which the optical fiber is inserted, and an insertion hole into which the tube and the optical fiber are inserted. And a ferrule, wherein the fiber tip of the optical fiber projects from the tube tip of the tube, and further comprises a transparent resin covering the fiber tip.
  • the endoscope of the embodiment includes an imaging device for an endoscope, the imaging device for an endoscope, an imaging element that outputs an imaging signal, and a driving circuit that outputs a driving signal according to the imaging signal,
  • the drive signal is converted to an optical signal, a light emitting element that emits the optical signal from a light emitting surface, an optical fiber that transmits the optical signal, and a flexible tube into which the optical fiber is inserted,
  • a ferrule having an insertion hole into which the tube and the optical fiber are inserted, wherein a fiber tip of the optical fiber projects from the tube tip of the tube, and covers the fiber tip. Further comprising a transparent resin.
  • the method for manufacturing an imaging device for an endoscope has a first main surface and a second main surface facing the first main surface, and a plurality of the first main surfaces are provided on the first main surface.
  • Each of the plurality of first electrodes of the wiring board on which the first electrode is provided has a light emitting surface for emitting an optical signal, and the light emitting element has a plurality of bonding electrodes provided on the light emitting surface.
  • the method further includes a fiber insertion step of inserting the optical fiber into the tube in the ferrule after the cable joining step, wherein the optical fiber is not inserted into the tube in the ferrule.
  • an imaging device for an endoscope that is easy to manufacture
  • an endoscope that is easy to manufacture and a method for manufacturing an imaging device for an endoscope that is easy to manufacture.
  • FIG. 3 is a cross-sectional view of the endoscope imaging apparatus according to the embodiment, taken along line III-III of FIG. 2.
  • FIG. 4 is a cross-sectional view of the endoscope imaging apparatus according to the embodiment, taken along line IV-IV of FIG. 2.
  • It is a sectional exploded view of an imaging device for endoscopes of an embodiment.
  • It is a flowchart of the manufacturing method of the imaging device for endoscopes of an embodiment. It is sectional drawing for demonstrating the manufacturing method of the imaging device for endoscopes of embodiment.
  • FIG. 11 is a cross-sectional view of the imaging device for an endoscope of Modification Example 3 of the embodiment, taken along line XII-XII of FIG. 10. It is a flowchart of the manufacturing method of the imaging device for endoscopes of the modification 3 of embodiment.
  • the endoscope 9 of the embodiment shown in FIG. 1 forms a processor 5A, a monitor 5B, and an endoscope system 6. Further, the endoscope imaging apparatus 1 (hereinafter, referred to as “imaging apparatus 1”) of the embodiment is disposed in the endoscope 9.
  • the endoscope 9 includes an insertion portion 3, a grip portion 4 provided at a base end of the insertion portion 3, a universal cord 4B extending from the grip portion 4, and a base portion of the universal cord 4B. And a connector 4C provided.
  • the insertion portion 3 includes a distal end portion 3A, a bending portion 3B extending from the distal end portion 3A and capable of changing the direction of the distal end portion 3A, and a flexible portion 3C extending from the bending portion 3B.
  • the grip part 4 is provided with a rotating angle knob 4A, which is an operation part for the surgeon to operate the bending part 3B.
  • the universal cord 4B is connected to the processor 5A by the connector 4C.
  • the processor 5A controls the entire endoscope system 6, performs signal processing on an image pickup signal, and outputs the image signal as an image signal.
  • the monitor 5B displays an image signal output by the processor 5A as an endoscope image.
  • the endoscope 9 is a flexible endoscope, but may be a rigid endoscope. The endoscope 9 may be for medical use or for industrial use.
  • a small-sized imaging device 1 is provided at the distal end portion 3A of the endoscope 9.
  • the imaging device 1 includes an imaging device 10 and an E / O type optical module including a light emitting device 30 (see FIG. 2) that converts an electric signal into an optical signal.
  • the optical signal is converted into an electric signal again by the O / E type optical module 8 disposed on the holding unit 4 via the optical fiber 61 passing through the insertion unit 3 and transmitted via the conducting wire 61M. . That is, the imaging signal is transmitted through the optical fiber 61 in the small-diameter insertion portion 3 and is not inserted into the body, and in the universal cord 4B having a small outer diameter, the conducting wire 61M is thicker than the optical fiber 61. Is transmitted via
  • the optical fiber 61 has the universal cord 4B inserted therethrough.
  • the imaging device 1 is small and easy to manufacture. Therefore, the endoscope 9 is minimally invasive and easy to manufacture.
  • the imaging apparatus 1 includes an imaging element 10, a drive IC 21 as a driving circuit, a light emitting element 30, a first wiring board 40, an optical fiber 61, and a tube 62. And a ferrule 50 and a transparent resin 70.
  • the first wiring board 40 may be referred to as a wiring board 40.
  • the image sensor 10 is a CCD or CMOS image sensor.
  • a light receiving section 11 is formed on a light receiving surface 10SA of the image sensor 10, and the image sensor 10 images a subject and outputs an image signal.
  • a plurality of external electrodes 12 connected to the light receiving unit 11 are provided on the back surface 10SB facing the light receiving surface 10SA.
  • a cover glass 13 is provided on the light receiving surface 10SA of the image sensor 10.
  • a plurality of semiconductor elements that perform primary processing of an imaging signal may be bonded to the back surface 10SB of the imaging element 10.
  • the drive IC 21 is a drive circuit for driving the light emitting element 30 and outputs a drive signal according to an image signal.
  • the image sensor 10 and the drive IC 21 are mounted on the second wiring board 45.
  • the second wiring board 45 is a three-dimensional wiring board made of MID (Molded Interconnect Device), and the drive IC 21 is housed together with the light emitting element 30 in a concave portion on the back surface side of the surface on which the imaging device 10 is mounted.
  • MID Molded Interconnect Device
  • the light emitting element 30 has a light emitting surface 30SA for emitting an optical signal, and a plurality of bonding electrodes 32 are provided on the light emitting surface 30SA.
  • the plurality of bonding electrodes 32 include a ground potential electrode 32B.
  • a VCSEL having a light emitting element 30 having a diameter of 10 ⁇ m and a plurality of bonding electrodes 32 for supplying a drive signal to the light emitting part 31 on a light emitting surface 30SA is a very small light emitting element 30 having dimensions of 250 ⁇ m ⁇ 250 ⁇ m in plan view. (Vertical Cavity Surface Emitting LASER) or a light emitting diode.
  • the first wiring board 40 having the first main surface 40SA and the second main surface 40SB opposed to the first main surface 40SA is a double-sided wiring board, and the first electrode 41 of the first main surface 40SA. Is connected to the third electrode 44 on the second main surface 40SB via the through wiring 43.
  • the bonding electrode 32 of the light emitting element 30 is bonded to the first electrode 41 of the first wiring board 40.
  • First wiring board 40 is electrically connected to second wiring board 45.
  • the imaging signal output from the imaging element 10 is converted into a driving signal by the drive IC 21 and input to the light emitting element 30 via the first electrode 41 of the first wiring board 40.
  • the substrate of the first wiring board 40 is made of glass, which is a transparent material.
  • the light signal output from the light emitting element 30 to which the drive signal is input passes through the first wiring board 40 and is output from the second main surface 40SB.
  • the optical fiber 61 for transmitting an optical signal has, for example, a core having a diameter of 50 ⁇ m for transmitting an optical signal and a cladding having a diameter of 125 ⁇ m which covers the outer periphery of the core.
  • the tube 62 for protecting the optical fiber 61 is a flexible tube having a hollow inside.
  • the inner diameter R62A of the tube 62 is, for example, 130 ⁇ m, which is slightly larger than the outer diameter R61 of the optical fiber 61, which is 125 ⁇ m. Therefore, before the optical fiber 61 is fixed to the ferrule 50, the optical fiber 61 can move back and forth (in the optical axis direction) inside the tube 62.
  • the tube 62 is made of a flexible resin, for example, PEEK (polyetheretherketone).
  • the ferrule 50 as an optical fiber holding member has a front surface 50SA, a rear surface 50SB facing the front surface 50SA, and four side surfaces 50SS, and is inserted through the front surface 50SA and the rear surface 50SB. There is a hole H50.
  • the ferrule 50 is a rectangular parallelepiped made of ceramic, silicon, or MID having a rectangular cross section orthogonal to the optical axis O.
  • the ferrule 50 may be a cylinder or a polygon having an insertion hole H50.
  • the ferrule 50 has a front surface 50SA fixed to the second main surface 40SB of the first wiring board 40.
  • the ferrule 50 is disposed at a position where the center axis of the insertion hole H50 coincides with the optical axis O of the signal light emitted from the light emitting element 30.
  • the tube 62 and the optical fiber 61 are inserted into the insertion hole H50 of the ferrule 50. That is, the tube 62 into which the optical fiber 61 is inserted is inserted into the insertion hole H50.
  • the inner diameter R50 of the insertion hole H50 is slightly larger than the outer diameter R62B of the tube 62. For example, when the outer diameter R62B of the tube 62 is 160 ⁇ m, the inner diameter R50 of the insertion hole H50 is 165 ⁇ m.
  • the shape of the cross section orthogonal to the optical axis O may be a polygon instead of a circle.
  • the tube 62 is fixed to the ferrule 50 with an adhesive 55.
  • the fiber end of the optical fiber 61 inserted into the insertion hole H50 protrudes from the tube end of the tube 62 by a predetermined length L. That is, the outer peripheral surface of the fiber end portion having the length L is not covered by the tube 62.
  • the tip of the optical fiber 61 is covered with the transparent resin 70. That is, the transparent resin 70 is disposed between the fiber tip and the inner surface of the insertion hole H50. The fiber end surface of the optical fiber 61 is in contact with the second main surface 40SB of the first wiring board 40, and the space therebetween is filled with a transparent resin 70.
  • the transparent resin 70 is a refractive index matching material for preventing interfacial reflection of optical signals, and is a fixing member for fixing the optical fiber 61 to the ferrule 50.
  • the imaging device 1 further includes a plurality of conductive wires (electric cables) 63.
  • Each conductive line 63 is made of a conductor that transmits an electric signal such as power, a drive signal, and a control signal to the image sensor 10.
  • the optical fiber 61 and the plurality of conductive wires 63 form a photoelectric composite cable (composite cable) 60.
  • the composite cable 60 includes an optical fiber 61, a tube 62, a plurality of conductive wires 63, and an insulating member 64. Each of the plurality of conductive wires 63 may be covered with an outer cover made of an insulator. As shown in FIG. 3, the optical fiber 61 is provided at the center of the composite cable 60, and the plurality of conductive wires 63 are provided around the optical fiber 61. Note that the composite cable 60 may include a plurality of optical fibers, and the number of the plurality of conductive wires 63 is not limited to six.
  • the photoelectric composite cable 60 extends through the insertion portion 3 to the grip portion 4.
  • each of the plurality of conductive wires 63 is joined to each of the plurality of relay electrodes 51 using the solder 59 as a joining member.
  • the plurality of relay electrodes 51 are connected to the drive IC 21, the light emitting element 30, or the imaging element 10 via the first wiring boards 40, 45, respectively.
  • the ground potential cable of the plurality of conductive wires 63 is connected to the drive IC 21, the light emitting element 30, and the ground potential electrode of the imaging element 10.
  • the imaging device 1 is easy to manufacture because the optical fiber 61 is inserted into the insertion hole H50 of the ferrule 50 using the flexible tube 62 as a guide, as described later. Further, the heat generated when the conductive wire 63 is joined to the relay electrode 51 of the ferrule 50 using the solder 59 does not degrade the characteristics of the optical fiber 61 whose heat resistance is not high.
  • the transparent resin 70 which is a refractive index matching material, fills the space between the distal end surface of the optical fiber 61 and the second main surface 40SB of the first wiring board 40. Since the distal end surface of the optical fiber 61 is in contact with the second main surface 40SB, the appropriate amount of the transparent resin 70 is extremely small. In the imaging device 1, there is a space corresponding to the thickness of the tube 62 between the outer surface of the fiber tip and the inner surface of the insertion hole H50. Since the transparent resin 70 is accommodated in this space, an excessive amount can be injected. Further, the optical fiber 61 is fixed to the ferrule 50 by the excessively injected transparent resin 70.
  • the imaging device 10 is a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a CCD (Charge Coupled Device), or the like.
  • the cover glass wafer is bonded to the image pickup wafer including the plurality of image pickup devices 10 and then cut, whereby the image pickup device 10 to which the cover glass 13 is adhered is manufactured.
  • the imaging element 10 may further include an optical unit including a plurality of lenses, filters, an optical diaphragm, and the like.
  • the imaging element 10 and the drive IC 21 are mounted on the second wiring board 45.
  • a plurality of chip components such as chip capacitors may be mounted on the second wiring board 45.
  • the base of the second wiring board 45 is made of ceramic, glass, resin, fiber reinforced resin, silicon, or the like.
  • the second wiring board 45 may be composed of a plurality of wiring boards, for example, a flat plate and a frame plate, or may be an MID.
  • each of the plurality of bonding electrodes 32 of the light emitting element 30 is, for example, ultrasonically bonded to each of the plurality of first electrodes 41 on the first main surface 40SA of the first wiring board 40.
  • the imaging device 10 By joining the second wiring board 45 and the first wiring board 40, the imaging device 10, the drive IC 21, and the light emitting element 30 are connected to the third electrode of the second main surface 40SB of the first wiring board 40. 44.
  • the front surface 50SA of the ferrule 50 is fixed to the second main surface 40SB of the first wiring board 40 by, for example, an adhesive.
  • the relay electrode 51 of the ferrule 50 is connected to the second main surface 40SB of the first wiring board 40.
  • the uncured liquid transparent resin 70 is injected into the insertion hole H50 of the ferrule 50.
  • the refractive index of the transparent resin 70 as the refractive index matching material after curing is substantially the same as the refractive index of the core of the optical fiber 61.
  • the transparent resin 70 for example, an acrylic resin, an epoxy resin, a vinyl resin, an ethylene resin, a silicone resin, a urethane resin, a polyamide resin, a fluorine resin, a polybutadiene resin, or a polycarbonate resin is used. be able to. Above all, acrylic resins and epoxy resins are suitable for the transparent resin 70 from the viewpoints of moisture resistance, heat resistance, peel resistance and impact resistance.
  • Tube fixing step The flexible tube 62 is inserted into the insertion hole H50 of the ferrule 50.
  • the tube 62 is inserted at a position where the tube distal end surface has a predetermined length L, for example, 50 ⁇ m from the second main surface 40SB of the first wiring board 40.
  • the tube 62 is fixed to the ferrule 50 by an adhesive 55.
  • the length L is preferably from 10 ⁇ m to 500 ⁇ m. When the length L is within the above range, the excess transparent resin 70 can be accommodated, and the length of the ferrule 50 in the optical axis direction is short, and the length of the imaging device 1 in the optical axis direction is short.
  • the tube 62 is thicker than the optical fiber 61 and is hard to break. Therefore, the insertion of the tube 62 into the insertion hole H50 is easier than that of the optical fiber 61.
  • the opening of the insertion hole H50 may be tapered.
  • each of the plurality of relay electrodes 51 of the ferrule 50 is provided with a plurality of conductive wires 63 made of a conductive material protruding from the end surface of the composite cable 60 by a solder 59. It is joined using.
  • the joining temperature is, for example, 150 ° C. to 250 ° C. at which the solder 59 is melted. Even if the joining is local heating by a laser, the heat applied to the solder 59 conducts heat inside the ferrule 50 and reaches the insertion hole H50. For this reason, although the temperature of the tube 62 rises, the tube 62 is not damaged because it is made of PEEK having excellent heat resistance.
  • the optical fiber 61 is disposed rearward without the fiber end portion being inserted into the insertion hole H50. Therefore, there is no possibility that the optical fiber 61 is damaged by heat.
  • the conductive wire 63 may not be integrated with the optical fiber 61 to form the composite cable 60.
  • the plurality of conductive wires 63 may be a multi-core electric cable different from the optical fiber 61.
  • the excess transparent resin 70 spreads in the space between the tip surface of the fiber tip and the inner surface of the insertion hole H50.
  • the optical fiber 61 is fixed to the ferrule 50 by curing the transparent resin 70.
  • the insertion of the optical fiber 61 and the disposition of the transparent resin 70 are easy, and the optical fiber 61 is not likely to be damaged.
  • the endoscope imaging apparatuses 1A to 1C of the modified examples or the endoscopes 9A to 9C including the endoscope imaging apparatuses 1A to 1C are similar to the endoscope imaging apparatus 1 or the endoscope 9. Therefore, the components having the same function are denoted by the same reference numerals, and description thereof is omitted.
  • the first wiring board 40A of the imaging device 1A shown in FIG. 8 has a base made of an opaque material such as ceramic, resin, or silicon.
  • an optical path hole H40 serving as an optical path of an optical signal is provided at a position facing the light emitting unit 31 of the light emitting element 30.
  • the transparent resin 70 fills the optical path hole H40 and further covers the light emitting part 31 of the light emitting element 30.
  • the optical fiber 61 may be inserted through the optical path hole H40, and the distal end surface of the optical fiber may be in contact with the light emitting surface 30SA of the light emitting element 30.
  • the light emitting element 30 is mounted on the front surface 50SA of the ferrule 50B. That is, the ferrule 50B has the function of the first wiring board 40A (FIG. 8).
  • the imaging device 1B Since the imaging device 1B has a simpler configuration than the imaging device 1A, it is easier to manufacture than the imaging device 1A.
  • the imaging device 1C shown in FIG. 10 further includes an inflexible pipe 80 inserted into the insertion hole H50C of the ferrule 50.
  • the tube 62 and the optical fiber 61 are inserted into a hollow pipe 80.
  • the tip end surface of the pipe 80 is vertically fixed to the light emitting surface 30SA of the light emitting element 30 at a position where the center axis thereof coincides with the optical axis O.
  • the first wiring board 40C has a pipe hole H40C which is an optical path hole and at the same time, a pipe 80 is inserted therethrough.
  • the pipe 80 is provided on the light emitting element 30 as shown in FIG. Then, as shown in FIG. 10, after the pipe 80 is inserted into the pipe hole H40C and the insertion hole H50C, the light emitting element 30 is mounted on the first main surface 40SA of the first wiring board 40C. Since the optical axes of the optical fiber 61 and the light emitting element 30 are automatically aligned by the pipe 80, the imaging device 1C is easy to manufacture.
  • each of the plurality of electric cables 65 of the composite cable 60 ⁇ / b> C includes a conductive wire 63 that is a conductive wire for transmitting an electric signal, a first sheath 65 ⁇ / b> A covering the conductive wire 63, and a ground potential wire.
  • This is a coaxial cable having a shield wire 66 and a second sheath 65B covering the shield wire 66.
  • the pipe 80 is made of a conductive material such as copper.
  • a shield wire 66 which is a ground potential line of the electric cable 65, is joined to the outer surface of the pipe 80 projecting from the rear surface 50SB of the ferrule 50.
  • the pipe tip surface is connected to the ground potential electrode 32B of the light emitting element 30.
  • the shield line 66 may be connected to the ground potential electrode 12B of the imaging device 10 via the pipe 80.
  • the pipe 80 is not limited to the hollow prism shown in FIG. 11, but may be a hollow cylinder or a hollow polygonal pillar.
  • the light emitting element 30 is provided with the pipe 80, and if the insertion hole H50 of the ferrule 50B is a pipe hole through which the pipe 80 is inserted, the imaging device 1C Needless to say, it has the same effect as.
  • the element bonding step S10 includes a pipe fixing step (S12), a pipe insertion step (S14), and a light emitting element mounting step (S16).
  • Step S12> Pipe fixing step An inflexible pipe 80 is attached to the light emitting surface 30SA of the light emitting element 30 having the light emitting surface 30SA for emitting an optical signal and having the plurality of bonding electrodes 32 disposed on the light emitting surface 30SA. Are fixed vertically at a position where the center axis thereof coincides with the optical axis O of the light emitting element 30.
  • Step S14 Pipe Insertion Step A first main surface 40SA and a second main surface 40SB facing the first main surface 40SA are provided, and a plurality of first electrodes 41 are provided on the first main surface 40SA.
  • the pipe 80 is inserted into the pipe hole H40C of the first wiring board 40 which is provided and has the pipe hole H40C.
  • Step S16 Light Emitting Element Mounting Step
  • Each of the bonding electrodes 32 of the light emitting element 30 is bonded to each of the first electrodes 41 of the first wiring board 40.
  • the ferrule fixing step the pipe 80 is inserted into the insertion hole H50C of the ferrule 50. If the inner diameter R50 of the insertion hole H50C is larger than the outer diameter of the pipe 80, there is no need to strictly manage the inner diameter R50.
  • the positioning between the light emitting element 30 and the optical fiber 61 is automatically performed only by performing the positioning when the pipe 80 is provided to the light emitting element 30. Therefore, the manufacturing method of the present modification is easy to manufacture.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)

Abstract

内視鏡用撮像装置(1)は、撮像信号を出力する撮像素子(10)と、前記撮像信号に応じた駆動信号を出力するドライブIC(21)と、前記駆動信号を光信号に変換して、前記光信号を発光面(30SA)から出射する発光素子(30)と、前記光信号を伝送する光ファイバ(61)と、前記光ファイバ(61)が挿入されている、可撓性のチューブ(62)と、前記チューブ(62)および前記光ファイバ(61)が挿入されている挿入孔(H50)のあるフェルール(50)と、を具備しており、前記光ファイバ(61)のファイバ先端部が、前記チューブ(62)のチューブ先端部から突出しており、前記ファイバ先端部を覆っている透明樹脂(70)を、更に具備する。

Description

内視鏡用撮像装置、内視鏡、および、内視鏡用撮像装置の製造方法
 本発明は、撮像素子と発光素子と光ファイバとを具備する内視鏡用撮像装置、撮像素子と発光素子と光ファイバとを具備する内視鏡用撮像装置を含む内視鏡、および、撮像素子と発光素子と光ファイバとを具備する内視鏡用撮像装置の製造方法に関する。
 内視鏡は、細長い挿入部の先端部に、撮像素子を有する。高品質の画像を表示するため、高画素数の撮像素子が検討されている。高画素数の撮像素子を使用すると、撮像素子から信号処理装置(プロセッサ)へ伝送する信号量が増加する。このため、電気信号による導線(電気ケーブル)を経由した電気信号伝送では、必要な信号量を伝送するために導線の線径を太くしたり、複数の導線を用いたりするため、挿入部が太くなるおそれがある。
 挿入部を細径化し内視鏡を低侵襲化するには、電気信号に替えて光信号による光ファイバを経由した光信号伝送が好ましい。光信号伝送には、電気信号を光信号に変換する発光素子を含むE/O型の光モジュール(電気-光変換器)と、光信号を電気信号に変換する受光素子を含むO/E型の光モジュール(光-電気変換器)とが用いられる。光ファイバは光モジュールのフェルール(保持部材)の挿入孔に挿入されて固定されている。
 内視鏡の挿入部の先端部に配設される光モジュールは、低侵襲化のため超小型である。このため、光ファイバを光モジュールのフェルールに挿入することは容易ではなかった。また、伝送効率を向上するために光ファイバのファイバ先端面に屈折率整合樹脂を配設することが好ましいが、適切量は極めて微量であるため、配設することは容易ではなかった。
 日本国特開2015-175904号公報には、光素子の発光面に中空円筒体を接合し、光素子が実装されている配線板の貫通孔に中空円筒体を挿通する光伝送モジュールが開示されている。
特開2015-175904号公報
 本発明の実施形態は、製造が容易な内視鏡用撮像装置、製造が容易な内視鏡、および、製造が容易な内視鏡用撮像装置の製造方法を提供することを目的とする。
 実施形態の内視鏡用撮像装置は、撮像信号を出力する撮像素子と、前記撮像信号に応じた駆動信号を出力する駆動回路と、前記駆動信号を光信号に変換して、前記光信号を発光面から出射する発光素子と、前記光信号を伝送する光ファイバと、前記光ファイバが挿入されている、可撓性のチューブと、前記チューブおよび前記光ファイバが挿入されている挿入孔のあるフェルールと、を具備しており、前記光ファイバのファイバ先端部が、前記チューブのチューブ先端部から突出しており、前記ファイバ先端部を覆っている透明樹脂を、更に具備する。
 実施形態の内視鏡は、内視鏡用撮像装置を含み、前記内視鏡用撮像装置は、撮像信号を出力する撮像素子と、前記撮像信号に応じた駆動信号を出力する駆動回路と、前記駆動信号を光信号に変換して、前記光信号を発光面から出射する発光素子と、前記光信号を伝送する光ファイバと、前記光ファイバが挿入されている、可撓性のチューブと、前記チューブおよび前記光ファイバが挿入されている挿入孔のあるフェルールと、を具備しており、前記光ファイバのファイバ先端部が、前記チューブのチューブ先端部から突出しており、前記ファイバ先端部を覆っている透明樹脂を、更に具備する。
 実施形態の内視鏡用撮像装置の製造方法は、第1の主面と前記第1の主面と対向している第2の主面とを有し、前記第1の主面に複数の第1電極が配設されている配線板の前記複数の第1電極のそれぞれに、光信号を出射する発光面を有し前記発光面に複数の接合電極が配設されている発光素子の前記複数の接合電極のそれぞれを接合する素子実装工程と、前面と前記前面と対向する後面と側面を有し、前記側面に複数の中継電極が配設されており、挿入孔があるフェルールの前記前面を前記配線板の前記第2の主面に固定するフェルール固定工程と、複数の導電線と可撓性のチューブと前記チューブに挿入されている光ファイバとを含む光電複合ケーブルの端面から突出している、前記チューブのチューブ先端部を、前記挿入孔に挿入し固定するチューブ固定工程と、前記フェルールの複数の中継電極のそれぞれに、前記端面から突出している前記複数の導電線のそれぞれを、半田接合するケーブル接合工程と、を具備し、前記ケーブル接合工程においては、前記フェルールの中の前記チューブに前記光ファイバが挿入されておらず、前記ケーブル接合工程の後に、前記フェルールの中の前記チューブに、前記光ファイバを挿通するファイバ挿通工程を更に具備する。
 本発明の実施形態によれば、製造が容易な内視鏡用撮像装置、製造が容易な内視鏡、および、製造が容易な内視鏡用撮像装置の製造方法を提供できる。
実施形態の内視鏡を有する内視鏡システムの構成図である。 実施形態の内視鏡用撮像装置の断面図である。 実施形態の内視鏡用撮像装置の図2のIII-III線に沿った断面図である。 実施形態の内視鏡用撮像装置の図2のIV-IV線に沿った断面図である。 実施形態の内視鏡用撮像装置の断面分解図である。 実施形態の内視鏡用撮像装置の製造方法のフローチャートである。 実施形態の内視鏡用撮像装置の製造方法を説明するための断面図である。 実施形態の変形例1の内視鏡用撮像装置の断面図である。 実施形態の変形例2の内視鏡用撮像装置の断面図である。 実施形態の変形例3の内視鏡用撮像装置の断面図である。 実施形態の変形例3の内視鏡用撮像装置の製造方法を説明するための斜視図である。 実施形態の変形例3の内視鏡用撮像装置の図10の図XII-XII線に沿った断面図である。 実施形態の変形例3の内視鏡用撮像装置の製造方法のフローチャートである。
<内視鏡>
 図1に示す実施形態の内視鏡9は、プロセッサ5Aおよびモニタ5Bと内視鏡システム6を構成している。また、実施形態の内視鏡用撮像装置1(以下、「撮像装置1」という。)は、内視鏡9に配設されている。
 内視鏡9は、挿入部3と、挿入部3の基端部に配設された把持部4と、把持部4から延設されたユニバーサルコード4Bと、ユニバーサルコード4Bの基端部に配設されたコネクタ4Cと、を具備する。挿入部3は、先端部3Aと、先端部3Aから延設された、湾曲自在であり先端部3Aの方向を変えるための湾曲部3Bと、湾曲部3Bから延設された軟性部3Cとを含む。把持部4には術者が湾曲部3Bを操作するための操作部である回動するアングルノブ4Aが配設されている。
 ユニバーサルコード4Bは、コネクタ4Cによってプロセッサ5Aに接続される。プロセッサ5Aは内視鏡システム6の全体を制御するとともに、撮像信号に信号処理を行い画像信号として出力する。モニタ5Bは、プロセッサ5Aが出力する画像信号を内視鏡画像として表示する。なお、内視鏡9は軟性鏡であるが、硬性鏡でもよい。また、内視鏡9は、医療用でも工業用でもよい。
 内視鏡9の先端部3Aには、小型の撮像装置1が配設されている。撮像装置1は、撮像素子10と、電気信号を光信号に変換する発光素子30(図2参照)を含むE/O型光モジュールと、を含む。
 光信号は、挿入部3を挿通する光ファイバ61を経由して把持部4に配設されたO/E型の光モジュール8によって再び電気信号に変換され、導線61Mを経由して伝送される。すなわち、撮像信号は、細径の挿入部3内においては光ファイバ61を経由して伝送され、体内に挿入されず外径の制限の小さいユニバーサルコード4B内においては光ファイバ61よりも太い導線61Mを経由して伝送される。
 なお、O/E型の光モジュール8がコネクタ4Cに配置されている場合には、光ファイバ61はユニバーサルコード4Bを挿通している。
 後述するように、撮像装置1は小型で製造が容易である。このため、内視鏡9は低侵襲で、かつ、製造が容易である。
<内視鏡用撮像装置>
 図2から図5に示すように実施形態の撮像装置1は、撮像素子10と、駆動回路であるドライブIC21と、発光素子30と、第1の配線板40と、光ファイバ61と、チューブ62と、フェルール50と、透明樹脂70と、を具備する。なお、以下、第1の配線板40を、配線板40ということがある。
 なお、以下の説明において、各実施形態に基づく図面は、模式的なものであり、各部分の厚みと幅との関係、夫々の部分の厚みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、一部の構成要素の図示、符号の付与を省略する場合がある。また、被写体方向を「前方向」という。
 撮像素子10は、CCDまたはCMOS撮像素子からなる。撮像素子10の受光面10SAには受光部11が形成されており、撮像素子10は被写体を撮像し撮像信号を出力する。受光面10SAと対向する裏面10SBには、受光部11と接続されている複数の外部電極12が配設されている。
 撮像素子10の受光面10SAにはカバーガラス13が配設されている。撮像素子10の裏面10SBに、撮像信号を一次処理する複数の半導体素子が接合されていてもよい。ドライブIC21は、発光素子30を駆動するための駆動回路であり、撮像信号に応じた駆動信号を出力する。
 撮像素子10およびドライブIC21は、第2の配線板45に実装されている。第2の配線板45は、MID(Molded Interconnect Device)からなる立体配線板であり、ドライブIC21は撮像素子10が実装された面の裏面側の凹部に発光素子30とともに収容されている。
 発光素子30は、光信号を出射する発光面30SAを有し、発光面30SAに複数の接合電極32が配設されている。なお、複数の接合電極32は、接地電位電極32Bを含んでいる。例えば、平面視寸法が250μm×250μmと超小型の発光素子30は、直径が10μmの発光部31と、発光部31に駆動信号を供給する複数の接合電極32と、を発光面30SAに有するVCSEL(Vertical Cavity Surface Emitting LASER)または発光ダイオードである。
 第1の主面40SAと第1の主面40SAと対向する第2の主面40SBとを有する第1の配線板40は、両面配線板であり、第1の主面40SAの第1電極41は貫通配線43を経由して第2の主面40SBの第3電極44と接続されている。
 発光素子30の接合電極32は、第1の配線板40の第1電極41と接合されている。第1の配線板40は第2の配線板45と電気的に接続されている。撮像素子10が出力する撮像信号は、ドライブIC21によって駆動信号に変換され、第1の配線板40の第1電極41を経由して発光素子30に入力される。
 第1の配線板40の基板は、透明材料であるガラスによって構成されている。駆動信号が入力された発光素子30が出射した光信号は、第1の配線板40を透過して第2の主面40SBから出射される。
 光信号を伝送する光ファイバ61は、例えば、光信号を伝送する50μm径のコアと、コアの外周を覆う125μm径のクラッドとを有する。
 光ファイバ61を保護するチューブ62は、内部が空洞の可撓性の管である。チューブ62の内径R62Aは、例えば、130μmであり、125μmである光ファイバ61の外径R61よりも僅かに大きい。このため、光ファイバ61はフェルール50に固定される前には、チューブ62の内部を前後(光軸方向)に移動可能である。
 チューブ62は、可撓性の樹脂、例えば、PEEK(ポリエーテルエーテルケトン)からなる。
 図4および図5に示すように、光ファイバ保持部材であるフェルール50は、前面50SAと前面50SAと対向する後面50SBと4側面50SSを有し、前面50SAと後面50SBとを挿通している挿入孔H50がある。フェルール50は、光軸Oに直交する断面形状が矩形の、セラミック、シリコン、またはMIDからなる直方体である。フェルール50は、挿入孔H50のある円柱または多角柱でもよい。
 フェルール50は、前面50SAが、第1の配線板40の第2の主面40SBに固定されている。フェルール50は挿入孔H50の中心軸が、発光素子30の出射する信号光の光軸Oと一致する位置に配置されている。
 フェルール50の挿入孔H50には、チューブ62および光ファイバ61が挿入されている。すなわち、光ファイバ61が挿入されているチューブ62が、挿入孔H50に挿入されている。挿入孔H50の内径R50は、チューブ62の外径R62Bよりも僅かに大きい。例えばチューブ62の外径R62Bが160μmの場合、挿入孔H50の内径R50は、165μmである。なお、挿入孔H50は、チューブ62が挿入できれば、光軸Oに直交する断面の形状が円ではなく、多角形でもよい。チューブ62は、フェルール50に接着剤55によって固定されている。
 図5に示すように、挿入孔H50に挿入されている光ファイバ61のファイバ先端部は、チューブ62のチューブ先端部から所定長Lだけ突出している。すなわち、長さLのファイバ先端部の外周面は、チューブ62によって覆われていない。
 そして、光ファイバ61のファイバ先端部は、透明樹脂70によって覆われている。すなわち、ファイバ先端部と挿入孔H50の内面との間には、透明樹脂70が配設されている。なお、光ファイバ61のファイバ先端面は、第1の配線板40の第2の主面40SBに当接しているが、両者の間には透明樹脂70が充填されている。
 透明樹脂70は、光信号の界面反射を防止する屈折率整合材であり、かつ、光ファイバ61をフェルール50に固定する固定部材である。
 撮像装置1は、複数の導電線(電気ケーブル)63を更に具備する。各導電線63は、撮像素子10に電力、駆動信号および制御信号等の電気信号を伝送する導体からなる。
 なお、本実施形態の撮像装置1では、光ファイバ61と複数の導電線63とは、光電複合ケーブル(複合ケーブル)60を構成している。複合ケーブル60は、光ファイバ61と、チューブ62と、複数の導電線63と、絶縁部材64と、を含む。複数の導電線63は、それぞれが絶縁体からなる外皮に覆われていてもよい。図3に示すように、光ファイバ61は、複合ケーブル60の中心に配設され、複数の導電線63は光ファイバ61の周囲に配設されている。なお、複合ケーブル60は、複数の光ファイバを含んでいてもよいし、複数の導電線63の数は6本に限られるものではない。
 光電複合ケーブル60は、挿入部3を挿通し把持部4まで延設されている。
 フェルール50の側面50SSには、配線(不図示)を経由して第3電極44と接続されている中継電極51がある。複数の導電線63のそれぞれは、複数の中継電極51のそれぞれと、半田59を接合部材として接合されている。複数の中継電極51は、第1の配線板40、45を経由して、それぞれがドライブIC21、発光素子30または撮像素子10と接続されている。
 なお、複数の導電線63のうちの接地電位ケーブルは、ドライブIC21、発光素子30および撮像素子10の接地電位電極と、接続されている。
 撮像装置1は、後述するように、可撓性のチューブ62をガイドとして、光ファイバ61がフェルール50の挿入孔H50に挿入されるため、製造が容易である。また、導電線63をフェルール50の中継電極51に半田59を用いて接合するときの熱によって、耐熱性が高くはない光ファイバ61の特性が劣化することがない。
 屈折率整合材である透明樹脂70は、光ファイバ61の先端面と第1の配線板40の第2の主面40SBとの間を充填している。光ファイバ61の先端面は第2の主面40SBに当接しているため、適切な透明樹脂70の量は極めて微量である。撮像装置1では、ファイバ先端部の外面と挿入孔H50の内面との間には、チューブ62の厚さに相当する空間がある。透明樹脂70は、この空間に収容されるため、過剰量を注入できる。また、過剰に注入された透明樹脂70によって、光ファイバ61はフェルール50に固定される。
<撮像装置の製造方法>
 図6のフローチャートに沿って撮像装置1の製造方法を説明する。
<ステップS10>素子実装工程
 撮像素子10は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ、または、CCD(Charge Coupled Device)等である。複数の撮像素子10を含む撮像ウエハにカバーガラスウエハが接着されてから切断されることによって、カバーガラス13が接着された撮像素子10が作製される。なお、撮像素子10には、さらに、複数のレンズ、フィルタ、および光学絞り等からなる光学ユニットが配設されていてもよい。
 撮像素子10およびドライブIC21が第2の配線板45に実装される。なお、チップコンデンサ等の複数のチップ部品が第2の配線板45に実装されていてもよい。第2の配線板45の基体は、セラミック、ガラス、樹脂、ファイバ強化樹脂、またはシリコン等からなる。第2の配線板45は、複数の配線板、例えば平板と枠板とによって構成されていてもよいし、MIDであってもよい。
 一方、第1の配線板40の第1の主面40SAの複数の第1電極41のそれぞれに、発光素子30の複数の接合電極32のそれぞれが、例えば超音波接合される。
 第2の配線板45と第1の配線板40とが接合されることによって、撮像素子10、ドライブIC21および発光素子30は、第1の配線板40の第2の主面40SBの第3電極44と接続される。
<ステップS20>フェルール固定工程
 フェルール50の前面50SAが、第1の配線板40の第2の主面40SBに、例えば接着剤によって固定される。そして、フェルール50の中継電極51は、第1の配線板40の第2の主面40SBの44と接続される。
<ステップS30>樹脂注入工程
 フェルール50の挿入孔H50に未硬化の液体の透明樹脂70が注入される。屈折率整合材である透明樹脂70は、硬化後の屈折率が光ファイバ61のコアの屈折率と略同じである。透明樹脂70には、例えば、アクリル系樹脂、エポキシ系樹脂、ビニル系樹脂、エチレン系樹脂、シリコーン系樹脂、ウレタン系樹脂、ポリアミド系樹脂、フッ素系樹脂、ポリブタジエン系樹脂、またはポリカーボネート系樹脂を用いることができる。中でも、アクリル系樹脂およびエポキシ系樹脂は、耐湿性、耐熱性、耐剥離性および耐衝撃性という観点から透明樹脂70に好適である。
<ステップS40>チューブ固定工程
 可撓性のチューブ62が、フェルール50の挿入孔H50に挿入される。チューブ62は、チューブ先端面が、第1の配線板40の第2の主面40SBから所定の長さL、例えば、50μmの位置に挿入される。チューブ62は、接着剤55によってフェルール50に固定される。長さLは、10μm以上500μm以下が好ましい。長さLが、前記範囲内であれば、過剰の透明樹脂70を収容でき、かつフェルール50の光軸方向の長さが短く、撮像装置1の光軸方向の長さが短い、
 チューブ62は、光ファイバ61よりも太く、かつ、破損しにくい。このため、チューブ62は光ファイバ61よりも、挿入孔H50への挿入が容易である。なお、挿入を容易とするため、挿入孔H50の開口にテーパーが形成されていてもよい。
 <ステップS50>ケーブル接合工程
 図7に示すように、フェルール50の複数の中継電極51のそれぞれに、複合ケーブル60の端面から突出している導電材料である複数の導電線63のそれぞれが、半田59を用いて接合される。接合温度は半田59が溶融する、例えば150℃~250℃である。接合がレーザによる局部加熱であっても、半田59に印加された熱はフェルール50の内部を伝熱して挿入孔H50にも到達する。このため、チューブ62は、温度が上昇するが、チューブ62は、耐熱性に優れたPEEKからなるため、損傷することはない。また、光ファイバ61は、ファイバ先端部が、挿入孔H50には挿入されない後方に配置されている。このため、光ファイバ61が熱によって損傷するおそれがない。
 なお、導電線63は、光ファイバ61と一体化され、複合ケーブル60を構成していなくともよい。例えば、複数の導電線63は、光ファイバ61とは別の多芯電気ケーブルであってもよい。
<ステップS60>光ファイバ挿通工程
 ケーブル接合工程の後に、フェルール50の中のチューブ62に、光ファイバ61が挿通され、ファイバ先端面が第1の配線板40の第2の主面40SBと当接する。すなわち、ファイバ先端面がチューブ62の先端から長さLだけ突出する。
 このとき、過剰な透明樹脂70は、ファイバ先端部の先端面と挿入孔H50の内面との間の空間に広がる。透明樹脂70が硬化処理されることによって、光ファイバ61は、フェルール50に固定される。
 本実施形態の撮像装置の製造方法は、すでに説明したように、光ファイバ61の挿入および透明樹脂70の配設が容易であり、光ファイバ61が損傷するおそれがない。
<変形例>
 変形例の内視鏡用撮像装置1A~1C、または、内視鏡用撮像装置1A~1Cを含む内視鏡9A~9Cは、内視鏡用撮像装置1、または内視鏡9と、類似し同じ効果を有するため、同じ機能の構成要素には同じ符号を付し説明は省略する。
<変形例1>
 図8に示す撮像装置1Aの第1の配線板40Aは、セラミック、樹脂またはシリコン等の不透明材料を基体とする。第1の配線板40Aには、発光素子30の発光部31と対向する位置に、光信号の光路となる光路孔H40がある。また、透明樹脂70は、光路孔H40を充填し、さらに、発光素子30の発光部31を覆っている。なお、光ファイバ61が、光路孔H40を挿通し、光ファイバ先端面が発光素子30の発光面30SAと当接していてもよい。
<変形例2>
 図9に示す撮像装置1Bは、発光素子30は、フェルール50Bの前面50SAに実装されている。すなわち、フェルール50Bは、第1の配線板40A(図8)の機能を有している。
 撮像装置1Bは、撮像装置1Aよりも構成が簡単であるため、撮像装置1Aよりも更に製造が容易である。
<変形例3>
 図10に示す撮像装置1Cは、フェルール50の挿入孔H50Cに挿入されている非可撓性のパイプ80を更に具備する。チューブ62および光ファイバ61は、中空体であるパイプ80に挿入されている。
 図11に示すように、パイプ80のパイプ先端面は、発光素子30の発光面30SAに、その中心軸が光軸Oと一致する位置に、垂直に固定されている。図10に示すように、第1の配線板40Cには、光路孔であると同時にパイプ80が挿通しているパイプ孔H40Cがある。
 撮像装置1Cの製造方法では、図11に示すように、最初に発光素子30にパイプ80が配設される。そして、図10に示すように、パイプ80がパイプ孔H40Cおよび挿入孔H50Cに挿通されてから、発光素子30が、第1の配線板40Cの第1の主面40SAに実装される。パイプ80によって、光ファイバ61と発光素子30との光軸合わせが自動的に行われるため、撮像装置1Cは製造が容易である。
 また、図12に示すように、複合ケーブル60Cの複数の電気ケーブル65は、それぞれが、電気信号を伝送する導線である導電線63と、導電線63を覆う第1外皮65Aと、接地電位線であるシールド線66と、シールド線66を覆う第2外皮65Bとを有する同軸線ケーブルである。
 さらに、パイプ80は、銅等の導電性材料からなる。そして、フェルール50の後面50SBから突出しているパイプ80の外面に、電気ケーブル65の接地電位線であるシールド線66が接合されている。パイプ先端面は、発光素子30の接地電位電極32Bと接続されている。シールド線66が、パイプ80を経由して、撮像素子10の接地電位電極12Bと接続されていてもよい。
 第1の配線板40Cを挿通しているパイプ80は、光ファイバ61の位置決め機能だけでなく、接地電位線の機能も有するため、撮像装置1Cは構成が簡単である。
 なお、パイプ80は、図11に示した中空の角柱に限られるものではなく、中空円筒または中空多角柱でもよい。
 また、図9に示した撮像装置1Bにおいても、発光素子30にパイプ80が配設されており、フェルール50Bの挿入孔H50が、パイプ80が挿通しているパイプ孔であれば、撮像装置1Cと同じ効果を有することは言うまでも無い。
<変形例3の撮像装置の製造方法>
 図13のフローチャートに沿って変形例3の撮像装置1Cの製造方法を説明する。撮像装置1Cの製造方法は、撮像装置1の製造方法と類似しているため、大きく異なる工程についてのみ説明する。
<ステップS10>素子実装工程
 撮像装置1Cの製造方法では、素子接合工程S10は、パイプ固定工程(S12)と、パイプ挿通工程(S14)と、発光素子実装工程(S16)と、を含む。
<ステップS12>パイプ固定工程
 光信号を出射する発光面30SAを有し発光面30SAに複数の接合電極32が配設されている発光素子30の発光面30SAに、非可撓性のパイプ80が、その中心軸が発光素子30の光軸Oと一致する位置に、垂直に固定される。
<ステップS14>パイプ挿通工程
 第1の主面40SAと第1の主面40SAと対向している第2の主面40SBとを有し、第1の主面40SAに複数の第1電極41が配設されており、パイプ孔H40Cのある第1の配線板40のパイプ孔H40Cに、パイプ80が挿通される。
<ステップS16>発光素子実装工程
 第1の配線板40の第1電極41のそれぞれに、発光素子30の接合電極32のそれぞれが接合される。
 フェルール固定工程(S20)以降は、同じである。なお、フェルール固定工程では、フェルール50の挿入孔H50Cには、パイプ80が挿入される。挿入孔H50Cの内径R50は、パイプ80の外径よりも大きければ、特に厳密に管理する必要はない。
 本変形例の製造方法によれば、発光素子30にパイプ80を配設するときに位置決めを行うだけで、発光素子30と光ファイバ61との位置決めが自動的に行われる。このため、本変形例の製造方法は製造が容易である。
 本発明は、上述した実施形態および変形例等に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、組み合わせおよび応用が可能である。
1、1A~1C・・・内視鏡用撮像装置
6・・・内視鏡システム
9、9A~9C・・・内視鏡
10・・・撮像素子
10SA・・・受光面
10SB・・・裏面
11・・・受光部
12・・・外部電極
13・・・カバーガラス
30・・・発光素子
30SA・・・発光面
31・・・発光部
32・・・接合電極
40・・・(第1の)配線板
40SA・・・第1の主面
40SB・・・第2の主面
41・・・第1電極
42・・・第2電極
43・・・貫通配線
44・・・第3電極
45・・・第2配線板
50・・・フェルール
50SA・・・前面
50SB・・・後面
50SS・・・側面
51・・・中継電極
55・・・接着剤
59・・・半田
60・・・光電複合ケーブル
61・・・光ファイバ
62・・・チューブ
63・・・導電線
64・・・絶縁部材
65・・・電気ケーブル
66・・・シールド線
70・・・透明樹脂
80・・・パイプ

Claims (13)

  1.  撮像信号を出力する撮像素子と、
     前記撮像信号に応じた駆動信号を出力する駆動回路と、
     前記駆動信号を光信号に変換して、前記光信号を発光面から出射する発光素子と、
     前記光信号を伝送する光ファイバと、
     前記光ファイバが挿入されている、可撓性のチューブと、
     前記チューブおよび前記光ファイバが挿入されている挿入孔のあるフェルールと、を具備しており、
     前記光ファイバのファイバ先端部が、前記チューブのチューブ先端部から突出しており、
     前記ファイバ先端部を覆っている透明樹脂を、更に具備することを特徴とする内視鏡用撮像装置。
  2.  前記撮像素子に電気信号を伝送する複数の導電線を更に具備し、
     前記複数の導電線のそれぞれは、前記フェルールに配設されている複数の中継電極のそれぞれと、半田接合されていることを特徴とする請求項1に記載の内視鏡用撮像装置。
  3.  第1の主面と前記第1の主面と対向する第2の主面とを、有し、前記第1の主面に前記発光素子が実装されており、前記第2の主面に前記フェルールが配設されている配線板を更に具備することを特徴とする請求項1または請求項2に記載の内視鏡用撮像装置。
  4.  前記配線板の基板が透明であることを特徴とする請求項3に記載の内視鏡用撮像装置。
  5.  前記配線板に、光路を構成している光路孔があることを特徴とする請求項3に記載の内視鏡用撮像装置。
  6.  前記発光素子が、前記フェルールに実装されていることを特徴とする請求項1または請求項2に記載の内視鏡用撮像装置。
  7.  前記フェルールの前記挿入孔に挿入されている非可撓性のパイプを更に具備し、
     前記チューブおよび前記光ファイバが前記パイプに挿入されていることを特徴とする請求項3から請求項5のいずれか1項に記載の内視鏡用撮像装置。
  8.  前記配線板に前記パイプが挿通しているパイプ孔があり、
     前記パイプのパイプ先端面が前記発光面に固定されていることを特徴とする請求項7に記載の内視鏡用撮像装置。
  9.  前記パイプが導電性材料からなり、
     前記複数の導電線の接地電位線が、前記発光素子または前記撮像素子の少なくともいずれかと、前記パイプを経由して電気的に接続されていることを特徴とする請求項8に記載の内視鏡用撮像装置。
  10.  請求項1から請求項9のいずれか1項に記載の内視鏡用撮像装置を含むことを特徴とする内視鏡。
  11.  第1の主面と前記第1の主面と対向している第2の主面とを有し、前記第1の主面に複数の第1電極が配設されている配線板の前記複数の第1電極のそれぞれに、光信号を出射する発光面を有し前記発光面に複数の接合電極が配設されている発光素子の前記複数の接合電極のそれぞれを接合する素子実装工程と、
     前面と前記前面と対向する後面と側面を有し、前記側面に複数の中継電極が配設されており、挿入孔があるフェルールの前記前面を前記配線板の前記第2の主面に固定するフェルール固定工程と、
     複数の導電線と可撓性のチューブと前記チューブに挿入されている光ファイバとを含む光電複合ケーブルの端面から突出している、前記チューブのチューブ先端部を、前記挿入孔に挿入し固定するチューブ固定工程と、
     前記フェルールの複数の中継電極のそれぞれに、前記端面から突出している前記複数の導電線のそれぞれを、半田接合するケーブル接合工程と、を具備し、
     前記ケーブル接合工程においては、前記フェルールの中の前記チューブに前記光ファイバが挿入されておらず、
     前記ケーブル接合工程の後に、前記フェルールの中の前記チューブに、前記光ファイバを挿通するファイバ挿通工程を更に具備することを特徴とする内視鏡用撮像装置の製造方法。
  12.  前記ケーブル接合工程の後、前記ファイバ挿通工程の前に、
     前記挿入孔に透明樹脂を注入する樹脂注入工程を更に有することを特徴とする請求項11に記載の内視鏡用撮像装置の製造方法。
  13.  前記素子実装工程が、パイプ固定工程と、パイプ挿通工程と、発光素子実装工程と、を含み、
     前記パイプ固定工程において、前記発光素子の前記発光面に、非可撓性のパイプを、その中心軸が前記発光素子の光軸と一致する位置に、垂直に固定され、
     前記パイプ挿通工程において、パイプ孔のある前記配線板の前記パイプ孔に、前記パイプを挿通され、
     前記発光素子実装工程において、前記配線板の前記複数の第1電極のそれぞれに、前記発光素子の前記複数の接合電極のそれぞれが接合され、
     前記フェルール固定工程において、前記フェルールの前記挿入孔に、前記パイプを挿通した状態において、前記前面が前記配線板の前記第2の主面に固定されることを特徴とする請求項11または請求項12に記載の内視鏡用撮像装置の製造方法。
PCT/JP2018/035646 2018-09-26 2018-09-26 内視鏡用撮像装置、内視鏡、および、内視鏡用撮像装置の製造方法 WO2020065757A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035646 WO2020065757A1 (ja) 2018-09-26 2018-09-26 内視鏡用撮像装置、内視鏡、および、内視鏡用撮像装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035646 WO2020065757A1 (ja) 2018-09-26 2018-09-26 内視鏡用撮像装置、内視鏡、および、内視鏡用撮像装置の製造方法

Publications (1)

Publication Number Publication Date
WO2020065757A1 true WO2020065757A1 (ja) 2020-04-02

Family

ID=69949343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035646 WO2020065757A1 (ja) 2018-09-26 2018-09-26 内視鏡用撮像装置、内視鏡、および、内視鏡用撮像装置の製造方法

Country Status (1)

Country Link
WO (1) WO2020065757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053953A1 (ja) * 2021-10-01 2023-04-06 Hoya株式会社 光送信モジュールおよび内視鏡

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268162A (ja) * 1997-03-25 1998-10-09 Oki Electric Ind Co Ltd 光モジュール
JP2016151684A (ja) * 2015-02-18 2016-08-22 株式会社フジクラ フェルール付光ファイバ及びその製造方法
WO2016185537A1 (ja) * 2015-05-18 2016-11-24 オリンパス株式会社 内視鏡、および光伝送モジュール
JP2016200647A (ja) * 2015-04-07 2016-12-01 フジクラ電装株式会社 光ファイバ付きフェルール、光機器
WO2016189691A1 (ja) * 2015-05-27 2016-12-01 オリンパス株式会社 内視鏡および光伝送モジュール
JP2016218279A (ja) * 2015-05-21 2016-12-22 住友金属鉱山株式会社 ピグテールファイバモジュール
WO2017109930A1 (ja) * 2015-12-25 2017-06-29 オリンパス株式会社 撮像モジュールおよび内視鏡
WO2017141368A1 (ja) * 2016-02-17 2017-08-24 オリンパス株式会社 光伝送モジュールおよび内視鏡
WO2018042715A1 (ja) * 2016-08-30 2018-03-08 オリンパス株式会社 内視鏡用光信号送信モジュール
WO2018092233A1 (ja) * 2016-11-17 2018-05-24 オリンパス株式会社 光モジュール、撮像モジュールおよび内視鏡

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268162A (ja) * 1997-03-25 1998-10-09 Oki Electric Ind Co Ltd 光モジュール
JP2016151684A (ja) * 2015-02-18 2016-08-22 株式会社フジクラ フェルール付光ファイバ及びその製造方法
JP2016200647A (ja) * 2015-04-07 2016-12-01 フジクラ電装株式会社 光ファイバ付きフェルール、光機器
WO2016185537A1 (ja) * 2015-05-18 2016-11-24 オリンパス株式会社 内視鏡、および光伝送モジュール
JP2016218279A (ja) * 2015-05-21 2016-12-22 住友金属鉱山株式会社 ピグテールファイバモジュール
WO2016189691A1 (ja) * 2015-05-27 2016-12-01 オリンパス株式会社 内視鏡および光伝送モジュール
WO2017109930A1 (ja) * 2015-12-25 2017-06-29 オリンパス株式会社 撮像モジュールおよび内視鏡
WO2017141368A1 (ja) * 2016-02-17 2017-08-24 オリンパス株式会社 光伝送モジュールおよび内視鏡
WO2018042715A1 (ja) * 2016-08-30 2018-03-08 オリンパス株式会社 内視鏡用光信号送信モジュール
WO2018092233A1 (ja) * 2016-11-17 2018-05-24 オリンパス株式会社 光モジュール、撮像モジュールおよび内視鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053953A1 (ja) * 2021-10-01 2023-04-06 Hoya株式会社 光送信モジュールおよび内視鏡

Similar Documents

Publication Publication Date Title
US11172812B2 (en) Endoscope
CN109195501B (zh) 电缆连接用电路板、摄像装置、内窥镜和摄像装置的制造方法
JP6625630B2 (ja) 撮像装置、内視鏡システムおよび撮像装置の製造方法
WO2015045630A1 (ja) 撮像モジュールおよび内視鏡装置
JPH0990237A (ja) 撮像装置
US11304599B2 (en) Endoscope having electromagnetic shield
US10972707B2 (en) Endoscope and method of manufacturing endoscope
WO2018150512A1 (ja) 光モジュール、内視鏡、および、光モジュールの製造方法
WO2019176601A1 (ja) 撮像ユニットおよび斜視型内視鏡
WO2018092233A1 (ja) 光モジュール、撮像モジュールおよび内視鏡
WO2016189691A1 (ja) 内視鏡および光伝送モジュール
JP6659826B2 (ja) 光伝送モジュール及び内視鏡
WO2017109930A1 (ja) 撮像モジュールおよび内視鏡
WO2019207650A1 (ja) 内視鏡用撮像装置、内視鏡、および内視鏡用撮像装置の製造方法
WO2018092234A1 (ja) 光モジュール、撮像モジュールおよび内視鏡
WO2020065757A1 (ja) 内視鏡用撮像装置、内視鏡、および、内視鏡用撮像装置の製造方法
CN111918597A (zh) 内窥镜
WO2017072862A1 (ja) 撮像ユニットおよび内視鏡
WO2018139406A1 (ja) 内視鏡および内視鏡の製造方法
US20200237194A1 (en) Endoscope and endoscope system
US20210382250A1 (en) Manufacturing method for image pickup apparatus for endoscope, image pickup apparatus for endoscope, and endoscope
US20210349305A1 (en) Optical transducer for endoscope, image pickup apparatus for endoscope, and endoscope
WO2020075253A1 (ja) 内視鏡用撮像装置、内視鏡、および内視鏡用撮像装置の製造方法
WO2018146806A1 (ja) 光モジュールおよび内視鏡
US20170360284A1 (en) Endoscope device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP