[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020060293A1 - 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지 - Google Patents

겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2020060293A1
WO2020060293A1 PCT/KR2019/012245 KR2019012245W WO2020060293A1 WO 2020060293 A1 WO2020060293 A1 WO 2020060293A1 KR 2019012245 W KR2019012245 W KR 2019012245W WO 2020060293 A1 WO2020060293 A1 WO 2020060293A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
gel polymer
composition
carbon atoms
group
Prior art date
Application number
PCT/KR2019/012245
Other languages
English (en)
French (fr)
Inventor
박솔지
안경호
한준혁
이철행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/272,581 priority Critical patent/US20210359342A1/en
Priority to EP19863683.9A priority patent/EP3826096B1/en
Priority to CN201980053959.2A priority patent/CN112567557B/zh
Publication of WO2020060293A1 publication Critical patent/WO2020060293A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery comprising a composition for a gel polymer electrolyte and a gel polymer electrolyte formed therefrom.
  • the lithium secondary battery can be divided into a lithium ion battery using a liquid electrolyte and a lithium polymer battery using a polymer electrolyte according to the applied electrolyte.
  • the lithium ion battery has an advantage of high capacity, but because it uses a liquid electrolyte containing a lithium salt, there is a risk of leakage and explosion, and there is a disadvantage in that the battery design is complicated due to the preparation.
  • the lithium polymer battery is a solid polymer electrolyte or a gel polymer electrolyte containing a liquid electrolyte, and thus has stability and flexibility, so it can be developed in various forms, such as a small or thin film type.
  • the secondary battery to which the gel polymer electrolyte is applied can be manufactured by the following two methods.
  • an electrolyte composition is prepared by mixing a polymerization initiator and a polymerizable monomer or oligomer in a liquid electrolyte solution in which a lithium salt is dissolved in a non-aqueous organic solvent, and then injecting it into a battery containing an electrode assembly and gelling at an appropriate temperature and time condition ( Crosslinking).
  • the method has a disadvantage in that it is not easy to secure mechanical strength even after gelation due to poor wetting in the cell due to high viscosity and surface tension of the solution before injection.
  • the electrolyte composition is coated on one surface of one of the electrodes and the separator, and cured (gelled) using heat or UV to form a gel polymer electrolyte, and then the electrode and / or the gel polymer electrolyte is formed.
  • the electrode assembly may be manufactured by winding or laminating a separator, and inserting it into a battery case, and then re-injecting an existing liquid electrolyte.
  • the present invention is to provide a composition for a gel polymer electrolyte comprising a polymerizable oligomer having a polymerizable substituent having a specific structure, including a glyme-based solvent as a non-aqueous organic solvent.
  • the present invention is to be formed by thermal polymerization of the composition for the gel polymer electrolyte, to provide a gel polymer electrolyte having improved mechanical strength and electrochemical stability.
  • the present invention is to provide a lithium secondary battery with improved electrochemical stability by including the gel polymer electrolyte.
  • Non-aqueous organic solvent containing a glyme-based solvent containing a glyme-based solvent
  • composition for a gel polymer electrolyte comprising a polymerization initiator.
  • R 1 is an alkylene group having 1 to 5 carbon atoms or -R 1 '-O-, wherein R 1 ' is an alkylene group having 1 to 5 carbon atoms,
  • R 2 is an alkylene group having 1 to 5 carbon atoms or -OR 2 '-, wherein R 2 ' is an alkylene group having 1 to 5 carbon atoms,
  • R 4 , R 5 , R 6 , and R 7 are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms,
  • R and R 3 are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • R 8 and R 9 are each an alkylene group having 1 to 5 carbon atoms
  • R a , R b , R c and R d are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms,
  • x, y, z and o are each independently an integer from 1 to 100,
  • c and c1 are each independently an integer from 1 to 3,
  • d and d1 are each independently an integer of 0 to 2.
  • another embodiment of the present invention provides a gel polymer electrolyte formed by thermal polymerization of the composition for a gel polymer electrolyte of the present invention.
  • a lithium secondary battery including a positive electrode, a negative electrode, a separator, and a gel polymer electrolyte of the present invention is provided.
  • the oligomer represented by the formula (1) included in the composition for a gel polymer electrolyte of the present invention includes a hydrophilic part acrylate group and a hydrophobic part siloxane group and a urethane group in the structure, thereby providing a surfactant inside the battery, thereby providing a gel polymer electrolyte. Impregnating property of the solvent composition can be improved.
  • the composition for a gel polymer electrolyte of the present invention may include a glyme-based solvent as a non-aqueous organic solvent, thereby preventing side reaction with a metal electrode and improving gas generation and capacity reduction effects.
  • composition for a gel polymer electrolyte of the present invention comprising the glyme-based solvent and an oligomer represented by Chemical Formula 1
  • a lithium secondary battery having a gel polymer electrolyte having improved mechanical properties and electrochemical stability can be realized.
  • an alkylene group having 1 to 5 carbon atoms means an alkylene group containing 1 to 5 carbon atoms, ie -CH 2- , -CH 2 CH 2- , -CH 2 CH 2 CH 2 -,- CH 2 (CH 2 ) CH-, -CH (CH 2 ) CH 2 -and -CH (CH 2 ) CH 2 CH 2- .
  • alkylene group means a branched or unbranched divalent unsaturated hydrocarbon group.
  • the alkylene group may be substituted or unsubstituted.
  • the alkylene group includes, but is not limited to, methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, tert-butylene group, pentylene group, 3-pentylene group, etc. It can be optionally substituted in other embodiments.
  • substitution means that at least one hydrogen bonded to carbon is substituted with an element other than hydrogen, unless otherwise defined, for example, an alkyl group having 1 to 5 carbon atoms or a fluorine element. Means substituted with.
  • glycol-based solvent is an ether-based solvent in the form of an alkylene group, a cycloalkylene group, or an arylene group connected to an ether group, by having a high boiling point by volatile gas Excellent solvent in terms of battery stability due to low internal pressure generation, dimethoxyethane (mono-glyme, DME), di-glyme (digylme), tri-glyme (Triglyme), and tetra-glyme (TEGDME) It is preferably at least one selected from the group consisting of.
  • molecular weight means a weight average molecular weight (Mw) unless otherwise defined, and the weight average molecular weight (Mw) of the polymer or oligomer of the present invention is gel permeable unless otherwise defined. It can be measured using chromatography (Gel Permeation Chromatography: GPC).
  • ion conductivity may be measured using an AC impedance measurement method. Specifically, it can be measured in the frequency band 100MHz to 0.1 Hz using a VMP3 measurement equipment and a precision impedance analyzer (4294A).
  • electrochemical (oxidation) stability was measured according to Linear sweep voltammetry (LSV).
  • Potentiostat EG & G, model 270A was used as a measuring device, and the measuring temperature was 60 ° C.
  • the tensile strength was measured using Lloyd LR-10K at a rate of 5 mm per minute at 25 ° C. and a relative humidity of about 30% of the electrolyte specimens prepared in bulk through ASTM standard D638 (Type V specimens).
  • composition for a gel polymer electrolyte according to the present invention is a composition for a gel polymer electrolyte according to the present invention.
  • Non-aqueous organic solvent containing a glyme-based solvent containing a glyme-based solvent
  • It includes a polymerization initiator.
  • R 1 is an alkylene group having 1 to 5 carbon atoms or -R 1 '-O-, wherein R 1 ' is an alkylene group having 1 to 5 carbon atoms,
  • R 2 is an alkylene group having 1 to 5 carbon atoms or -OR 2 '-, wherein R 2 ' is an alkylene group having 1 to 5 carbon atoms,
  • R 4 , R 5 , R 6 , and R 7 are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms,
  • R and R 3 are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • R 8 and R 9 are each an alkylene group having 1 to 5 carbon atoms
  • R a , R b , R c and R d are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms,
  • x, y, z and o are each independently an integer from 1 to 100,
  • c and c1 are each independently an integer from 1 to 3,
  • d and d1 are each independently an integer of 0 to 2.
  • the lithium salt various lithium salts in which an electrolyte for a lithium secondary battery is commonly used can be used without limitation.
  • the lithium salt is in, and anions including Li + as the cation F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, ClO 4 -, BF 4 -, B 10 Cl 10 -, AlO 4 - , AlCl 4 -, PF 6 -, CF 3 SO 3 -, CH 3 CO 2 -, CH 3 SO 3 -, CF 3 CO 2 -, AsF 6 -, SbF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (FSO)
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiAlO 4 , LiAlCl 4 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCH 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiFSI (Lithium bis (fluorosulfonyl) imide, LiN (SO 2 F) 2 ), LiBETI (lithium bisperfluoroethanesulfonimide, LiN (SO 2 CF 2 CF 3 ) 2 and LiTFSI (lithium (bis) trifluoromethanesulfonimide , LiN (SO 2 CF 3 ) 2 ) It may include a single substance or a mixture of two or more selected from the group consisting of, specifically, at least one of LiPF 6 , LiFSI and LiTFSI.
  • the lithium salt can be appropriately changed within a range that can be used normally, but in order to obtain an effect of forming a film for preventing corrosion of the electrode surface, 1.0M to 6.0M, specifically 1.5M to 4.0M concentration in the composition for gel polymer electrolyte It can be included as
  • the concentration of the lithium salt satisfies the above range, due to the increase in lithium cations present in the composition for a gel polymer electrolyte, the ion transport properties of high lithium cations (Li + ) are improved (ie, cation transport number). It is possible to reduce the resistance during diffusion of lithium ions, thereby improving cycle capacity characteristics.
  • the composition for a gel polymer electrolyte by containing a lithium salt of 1.0M or more, it is possible to impart ion conductivity and reduce resistance due to depletion of lithium ions during high rate charging and discharging. If the concentration of the lithium salt is 1.0 M or less, cycle life characteristics and capacity characteristics of the lithium secondary battery may be deteriorated. In addition, when the maximum concentration of the lithium salt exceeds 6.0M, since the viscosity of the composition for a gel polymer electrolyte is excessively increased, the wettability of the electrolyte decreases, the overall performance of the secondary battery may deteriorate.
  • the viscosity of the electrolyte may increase, but as described below, a portion of the oligomer contained in the composition for the gel polymer electrolyte acts as a surfactant and lowers the surface tension. It can prevent that the impregnation property of a solvent composition falls.
  • the non-aqueous organic solvent may include a glyme-based solvent.
  • a glyme-based solvent having a high dielectric constant and a low surface tension as a non-aqueous organic solvent compared to a linear carbonate-based organic solvent, it is possible to increase the lithium salt content, and the effect of improving the output by increasing the lithium salt content and Reactivity with a metal electrode due to the use of a glyme solvent can be suppressed.
  • Such a glyme solvent is at least selected from the group consisting of dimethoxyethane (mono-glyme, DME), di-glyme (digylme), tri-glyme (Triglyme), and tetra-glyme (TEGDME). It may include one or more.
  • the non-aqueous organic solvent may further include a carbonate-based organic solvent.
  • the carbonate-based organic solvent may include a cyclic carbonate-based organic solvent, a linear carbonate-based organic solvent, or a mixed organic solvent thereof.
  • the cyclic carbonate-based organic solvent is a high-viscosity organic solvent, and has a high dielectric constant and is an organic solvent capable of dissociating lithium salts in the electrolyte well.
  • ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene It may include at least one organic solvent selected from the group consisting of carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and vinylene carbonate, and among them, ethylene carbonate And propylene carbonate.
  • the linear carbonate-based organic solvent is an organic solvent having low viscosity and low dielectric constant, and representative examples thereof include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and ethylmethyl carbonate ( EMC), methylpropyl carbonate and at least one organic solvent selected from the group consisting of ethylpropyl carbonate may be used, and may specifically include at least one of dimethyl carbonate and ethylmethyl carbonate (EMC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • EMC ethylmethyl carbonate
  • the cyclic carbonate-based organic solvent linear carbonate-based organic solvent may be used in a volume ratio of 0:10 to 2: 8, specifically 0:10 to 1: 9 by volume.
  • the volume ratio of the cyclic carbonate-based organic solvent and the linear carbonate-based organic solvent may have an important effect on improving ion conductivity, low temperature and room temperature output, and improving capacity characteristics after high temperature storage.
  • charge / discharge The effect of improving the output characteristics and the effect of improving the life characteristics can be implemented.
  • the carbonate-based organic solvent has high reactivity with metal at high voltage and is sensitive to side reactions, when using it as a non-aqueous organic solvent when applying a methyl electrode, by-products and gas generation due to chemical reactions increase, resulting in cell swelling. This increases, and the high temperature storage stability may deteriorate.
  • the glyme-based solvent and the carbonate-based organic solvent are in a weight ratio of 1: 9 to 9: 1, preferably 3: 7 to 9 It can be used in a: 1 weight ratio, more preferably in a 5: 5 to 9: 1 weight ratio.
  • the weight ratio of the carbonate-based organic solvent and the glyme-based solvent satisfies the above range, a synergy effect by mixing the two organic solvents may be expressed. If the relative weight ratio of the glyme-based solvent to the carbonate-based organic solvent is less than 1, the viscosity of the electrolyte increases, the impregnation property of the electrolyte decreases, and the reactivity between the carbonate-based organic solvent and the metal electrode increases, resulting in a decrease in cell stability. And swelling may increase.
  • the relative weight ratio of the glyme-based solvent to the carbonate-based organic solvent is 5 or more, since an increase in viscosity of the electrolyte can be suppressed, an increase in the lithium salt content is possible, so that the cell output can be further improved.
  • the weight ratio of the glyme-based solvent is 10 or less, since the metal reactivity becomes stable and the capacity retention rate is improved, life characteristics can be further improved.
  • the glyme-based solvent is included in 10 wt% to 100 wt%, specifically 30 wt% to 90 wt%, more specifically 50 wt% to 90 wt%, based on the total weight of the non-aqueous organic solvent.
  • the content of the critical solvent satisfies the above range, it is possible to improve the metal stabilization and power improvement effect.
  • the viscosity of the electrolyte increases, the impregnation property of the electrolyte decreases, and the side reaction is promoted due to the reaction between the carbonate-based organic solvent and the metal electrode, resulting in a decrease in cell capacity and The stability lowering effect may be lowered.
  • the gel polymer electrolyte composition according to the present invention to improve stability, decomposition by oxidation / reduction reactions, etc. in the process of charging and discharging of the secondary battery can be minimized, and an organic solvent capable of exerting desired properties with additives. It may further include.
  • the organic solvent may be used alone or in combination of two or more of an ester-based solvent, an acetate-based solvent, or a nitrile-based solvent. At this time, at least one halogen element such as F, Cl, Br, and I may be substituted in each solvent.
  • ester-based solvent may include at least one compound selected from the group consisting of linear ester compounds or cyclic ester compounds.
  • the linear ester compound may be any one or two selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate.
  • the above mixture may be used as a representative, but is not limited thereto.
  • the cyclic ester compound may include at least one of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, or ⁇ -caprolactone.
  • the nitrile solvent is acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, 4-fluorobenzonitrile , Difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, may be one or more selected from the group consisting of 4-fluorophenylacetonitrile, one embodiment of the present invention Acetonitrile may be used as the non-aqueous solvent according to the example.
  • ester-based solvent, acetate-based solvent, or nitrile-based solvent may be included in a small amount to be 50% by weight or less, specifically 30% by weight or less based on the total weight of the non-aqueous organic solvent.
  • composition for a gel polymer electrolyte of the present invention is a compound having a crosslinkable substituent capable of forming a polymer matrix which is a basic skeleton of a gel polymer electrolyte while being oxidized by a polymerization reaction when the temperature rises, and containing at least one acrylate group at the terminal It includes an oligomer represented by the following formula (1).
  • R 1 is an alkylene group having 1 to 5 carbon atoms or -R 1 '-O-, wherein R 1 ' is an alkylene group having 1 to 5 carbon atoms,
  • R 2 is an alkylene group having 1 to 5 carbon atoms or -OR 2 '-, wherein R 2 ' is an alkylene group having 1 to 5 carbon atoms,
  • R 4 , R 5 , R 6 , and R 7 are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms,
  • R and R 3 are each independently an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • R 8 and R 9 are each an alkylene group having 1 to 5 carbon atoms
  • R a , R b , R c and R d are each independently hydrogen or an alkyl group having 1 to 3 carbon atoms,
  • x, y, z and o are each independently an integer from 1 to 100,
  • c and c1 are each independently an integer from 1 to 3,
  • d and d1 are each independently an integer of 0 to 2.
  • R 1 is -R 1 '-O-, where R 1 ' is an alkylene group having 1 to 5 carbon atoms, R 2 is -OR 2 '-, and R 2 ' is carbon number Is an alkylene group of 1 to 5, R 4 , R 5 , R 6 , and R 7 are each independently an alkyl group having 1 to 3 carbon atoms, R 8 and R 9 are each independently an alkylene group having 1 to 3 carbon atoms, R a , R b , R c and R d may each independently be hydrogen.
  • R 1 is -R 1 '-O-, wherein R 1 ' is an alkylene group having 2 to 5 carbon atoms, R 2 is -OR 2 '-, and R 2 ' is An alkylene group having 2 to 5 carbon atoms, R 4 , R 5 , R 6 , and R 7 each independently being an alkyl group having 1 to 3 carbon atoms, R 8 and R 9 each independently being an alkylene group having 1 or 2 carbon atoms, , R a , R b , R c and R d may each independently be hydrogen.
  • R and R 3 may be at least one aliphatic hydrocarbon group selected from the group consisting of alicyclic hydrocarbon groups and linear hydrocarbon groups.
  • the alicyclic hydrocarbon group is a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms; A substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms; A substituted or unsubstituted cycloalkenylene group having 4 to 20 carbon atoms; And it may be at least one selected from the group consisting of a substituted or unsubstituted heterocycloalkylene group having 2 to 20 carbon atoms, of which is preferably a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms.
  • the linear hydrocarbon group is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms; A substituted or unsubstituted alkylene group having 1 to 20 carbon atoms; A substituted or unsubstituted alkoxyl group having 1 to 20 carbon atoms; A substituted or unsubstituted alkenylene group having 2 to 20 carbon atoms; And it may be at least one selected from the group consisting of a substituted or unsubstituted alkynylene group having 2 to 20 carbon atoms.
  • R and R 3 may be aromatic hydrocarbon groups.
  • the aromatic hydrocarbon group is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms; And it may be at least one selected from the group consisting of a substituted or unsubstituted heteroarylene group having 4 to 20 carbon atoms.
  • the oligomer represented by Formula 1 may be at least one selected from the group consisting of compounds represented by Formula 1a and Formula 1b.
  • x1, y1, z1 and o1 are each independently an integer of 1 to 100.
  • x2, y2, z2 and o2 are each independently an integer of 1 to 100.
  • the oligomer represented by Chemical Formula 1 includes an acrylate group as a hydrophilic part and a siloxane group (-[Si-O]-) as a hydrophobic part and a urethane group in the structure, a hydrophilic part inside the battery (anode, separator (SRS layer))
  • SRS layer anode, separator
  • the hydrophobic portion negative electrode, separation membrane fabric
  • it can exhibit a balance of affinity, it can impart a surfactant role. Therefore, it is possible to improve the impregnation property of the composition for a gel polymer electrolyte by lowering the surface tension of the electrode and the separator.
  • the oligomer represented by Chemical Formula 1 is electrochemically stable and has high reduction stability, and also possesses the ability to dissociate a lithium salt, thereby minimizing the reduction reaction on the negative electrode surface and improving lithium ion mobility. have.
  • composition for a gel polymer electrolyte of the present invention compared with a composition for a gel polymer electrolyte comprising a polymer having a polymer having an alkylene oxide skeleton, side reactions with the electrode are reduced, mechanical strength is high, and between the electrode and the electrolyte.
  • the interfacial stability effect can produce an improved gel polymer electrolyte.
  • the oligomer represented by Chemical Formula 1 may be included in an amount of 0.1% to 80% by weight, specifically 2% to 80% by weight, and more specifically 3% to 50% by weight based on the total weight of the composition for gel polymer electrolyte. .
  • the content of the oligomer represented by Chemical Formula 1 is included in the above range, that is, in the range of 0.1% to 80% by weight, a polymer network having excellent mechanical strength can be formed, so that a gel polymer electrolyte with improved performance can be prepared.
  • the content of the oligomer is 2% by weight, specifically, 3% by weight or more, the polymer matrix by the oligomer can be easily formed, and by a stable network structure, physical properties such as mechanical strength of the gel polymer electrolyte can be secured. have.
  • the weight average molecular weight (MW) of the oligomer represented by Formula 1 is 1,000 g / mol to 100,000 g / mol, specifically 1,000 g / mol to 50,000 g / mol, and more specifically 1,000 g / mol to 10,000 g / It may be mol, and more specifically, may be 3,000 g / mol to 7,000 g / mol, and its range may be controlled by the number of repeating units.
  • the weight average molecular weight of the oligomer is within the above range, it is possible to effectively improve the mechanical strength of the non-aqueous electrolyte solution containing the same.
  • the weight average molecular weight of the oligomer represented by Chemical Formula 1 is less than 1,000 g / mol, proper mechanical strength cannot be expected, and the use of a polymerization initiator is required, or the formation of a gel polymer electrolyte is required because a complicated additional polymerization process is required. There is a disadvantage that the process is complicated. On the other hand, when the weight average molecular weight exceeds 100,000 g / mol, since the oligomer properties themselves are rigid, and the affinity with the electrolyte solvent is low, dissolution becomes difficult, it is not expected to form a uniform and excellent gel polymer electrolyte.
  • the weight-average molecular weight can be measured using Agilent's 1200 series under Gel Permeation Chromatography (GPC) conditions. For example, after preparing a sample sample of a certain concentration, the GPC measurement system alliance 4 device is stabilized, and when the device is stabilized, a standard sample and a sample sample are injected into the device to obtain a chromatogram, and the molecular weight can be calculated according to the analysis method. Yes (System: Alliance 4, Column: Ultrahydrogel linearX2, eluent: 0.1M NaNO 3 (pH 7.0 phosphate buffer, flow rate: 0.1 mL / min, solvent: THF, temp: 40 °C, injection: 100 ⁇ L)
  • composition for a gel polymer electrolyte of the present invention may include a polymerization initiator in order to perform a radical reaction required when preparing a gel polymer electrolyte.
  • the polymerization initiator may be a conventional thermal or photo polymerization initiator known in the art.
  • the polymerization initiator may be decomposed by heat to form radicals, and may react with an oligomer represented by Chemical Formula 1 by free radical polymerization to form a gel polymer electrolyte.
  • non-limiting examples of the polymerization initiator are benzoyl peroxide, acetyl peroxide, dilauryl peroxide, di-tert-butyl peroxide (di-tert-) organics such as butyl peroxide, t-butyl peroxy-2-ethyl-hexanoate, cumyl hydroperoxide and hydrogen peroxide Peroxides or hydroperoxides, 2,2'-azobis (2-cyanobutane), 2,2'-azobis (methylbutyronitrile), 2,2'-azobis (isobutyronitrile) ( AIBN; 2,2'-Azobis (iso-butyronitrile)) and 2,2'-azobisdimethyl-valeronitrile (AMVN; 2,2'-Azobisdimethyl-Valeronitrile). And the like, but is not limited thereto.
  • the polymerization initiator is decomposed by heat in a battery, for example, without limitation, from 30 ° C to 100 ° C, or decomposed at room temperature (5 ° C to 30 ° C) to form radicals, and polymerizable oligomers are acrylated by free radical polymerization. It can react with a system-based compound to form a gel polymer electrolyte.
  • the polymerization initiator may be included in an amount of 0.01 to 20 parts by weight, specifically 0.1 to 10 parts by weight based on 100 parts by weight of the oligomer represented by Chemical Formula 1.
  • the gel polymer conversion rate can be increased to secure gel gel polymer electrolyte properties, prevent pre-gel reaction, and improve the impregnation property of the composition for gel polymer electrolyte to the electrode. I can do it.
  • composition for a gel polymer electrolyte of the present invention may further include an oxygen scavenger as an additive.
  • the composition for a gel polymer electrolyte of the present invention may further include an oxygen scavenger in order to control the gelation reactivity under normal temperature and oxygen atmosphere to improve the characteristics of liquid injection.
  • an oxygen scavenger in order to control the gelation reactivity under normal temperature and oxygen atmosphere to improve the characteristics of liquid injection.
  • the oxygen scavenger may include at least one of trisalkylsilylphosphite-based compounds and trisarylsilylphosphite-based compounds. That is, the trisalkylsilylphosphite-based compound or trisarylsilylphosphite-based compound included as the oxygen scavenger scavenge oxygen while the phosphite structure is converted to a phosphate structure, and radicals generated from the polymerization initiator are added to oxygen. Can be prevented from being removed.
  • trisalkylsilylphosphite-based compound examples include tris-2,2,2-trifluoroethyl phosphite (TFEPi), tris (methylsilyl) phosphite (TMSPi, Tris (methylsilyl) phosphite), and tris (ethyl) Silyl) phosphite (TESPi), tris (propylsilyl) phosphite (TPSPi) and tris (butylsilyl) phosphite.
  • the trisarylsilylphosphite-based compound may include trisphenylsilyl phosphite. At this time, it is preferable to avoid using a fluorine-based oxygen scavenger containing fluorine element as the oxygen scavenger.
  • composition for a gel polymer electrolyte of the present invention has an advantage that a pre-gel reaction does not occur even at room temperature by including an oxygen scavenger.
  • the oxygen scavenger may be included in an amount of 0.01 to 10% by weight based on the total weight of the composition for gel polymer electrolyte.
  • the oxygen scavenger is included in the range of 0.01 wt% to 10 wt%, specifically 0.5 wt% to 10 wt%, the conversion rate of the polymerization reaction in the presence of room temperature and oxygen can be reduced to suppress gelation.
  • the content of the oxygen scavenger is 0.01% by weight or more, since the oxygen scavenging effect is excellent, the conversion rate of the polymerization reaction can be increased, so that the mechanical strength of the gel polymer electrolyte can be improved.
  • it is 10% by weight or less, it is possible to prevent an increase in resistance due to residual additives.
  • composition for a gel polymer electrolyte of the present invention prevents the cathodic collapse from being decomposed in a high-power environment during the preparation of the gel polymer electrolyte, or prevents low-temperature high-rate discharge characteristics, high-temperature stability, overcharge prevention, high-temperature swelling, resistance reduction, and lifetime improvement , In order to further improve the gas reduction effect and the like, additional additives may be additionally included as necessary.
  • VC vinylene carbonate
  • VEC vinylethylene carbonate
  • ESA ethylene sulfate
  • TMS trimethylene sulfate
  • FEC fluoroethylene carbonate
  • Lithium difluoro (bisoxalato) phosphate lithium difluorophosphate, lithium oxalyl difluoroborate, LiBr, LiF, LiI, succinyl anhydride, CsNO 3 , In (TFSI) 3 , Tris (2,2,2-trifluoroethyl) phosphate (TFEPa) and 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether, F3
  • vinylene carbonate, vinylethylene carbonate, or succinonitrile can form a stable SEI coating on the surface of the negative electrode together with lithium difluorophosphate during the initial activation process of the secondary battery.
  • the LiBF 4 is added to a lithium secondary battery to suppress the generation of gas that may be generated due to decomposition of the composition for gel polymer electrolyte at high temperature, thereby improving the high temperature stability of the secondary battery.
  • the additional additives may be included in an amount of 0.01 to 5% by weight, specifically 0.1 to 3% by weight, based on the total amount of the composition for gel polymer electrolyte by mixing at least one or more, and preferably 0.5 to 3% by weight.
  • the content of the additive is less than 0.01% by weight, the effect of improving the low temperature output of the battery and improving the high temperature storage characteristic and the high temperature life characteristic is negligible, and when the content of the additional additive exceeds 5% by weight, charge and discharge of the battery There is a possibility that side reactions in the composition for the gel polymer electrolyte are excessive.
  • the SEI film-forming additives when added in excess, they do not decompose sufficiently at high temperatures, and may remain unreacted or precipitated in the composition for a gel polymer electrolyte at room temperature. Accordingly, a side reaction may occur in which the life or resistance characteristics of the secondary battery are deteriorated.
  • the present invention provides a gel polymer electrolyte formed by polymerization of the composition for a gel polymer electrolyte.
  • the polymerization method for producing the gel polymer electrolyte of the present invention can be used without limitation a conventional polymerization method.
  • a composition for a gel polymer electrolyte comprising a lithium salt, an organic solvent, a polymerization initiator, an oligomer represented by the formula (1), and optionally an oxygen scavenger and / or additional additives, is then poured into a battery
  • a gel polymer electrolyte containing a polymer matrix can be prepared.
  • a polymer matrix is formed by performing a polymerization reaction on the oligomer represented by Chemical Formula 1 in the presence of a polymerization initiator inside an electrochemical device, and then prepared by further impregnating a non-aqueous electrolyte solution containing a lithium salt and an organic solvent. It might be.
  • the polymerization reaction may be performed through heat, e-beam, and gamma ray processes, and specifically, a heat polymerization method of heating at 50 to 100 ° C. for about 1 to 8 hours is preferable.
  • the radical polymerization reaction for the gelation may be performed under an inert condition having a low oxygen concentration, which is a radical scavenger.
  • a polymerization reaction for preparing the gel polymer electrolyte in the presence of general air or oxygen may be performed. That is, since the oxygen scavenger contained in the gel polymer electrolyte during the polymerization reaction decreases the influence of oxygen and improves the reactivity of the oligomers, the polymerization reaction progresses to such an extent that there is hardly any large amount of unreacted monomer even under a general air or oxygen atmosphere. (extent of reaction).
  • the oxygen scavenger may further impart a flame retardant enhancing effect of the gel polymer electrolyte by containing a flame retardant functional group.
  • a lithium secondary battery including the positive electrode, the negative electrode, the separator, and the gel polymer electrolyte of the present invention may be provided.
  • the lithium secondary battery of the present invention can be prepared by injecting the composition for the gel polymer electrolyte of the present invention into an electrode assembly consisting of a positive electrode, a negative electrode, and a separator selectively interposed between the positive electrode and the negative electrode, sequentially stacked, and then curing. .
  • the positive electrode, the negative electrode, and the separator forming the electrode assembly may be used in a conventional method when manufacturing a lithium secondary battery.
  • the positive electrode may be manufactured by forming a positive electrode mixture layer on a positive electrode current collector.
  • the positive electrode material mixture layer may be formed by coating a positive electrode active material slurry containing a positive electrode active material, a binder, a conductive material, and a solvent on a positive electrode current collector, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , Surface treatment with nickel, titanium, silver, or the like can be used.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, may include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide is lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxide (eg, LiCoO 2, etc.), lithium-nickel oxide (E.g., LiNiO 2, etc.), lithium-nickel-manganese oxide (e.g., LiNi 1-Y Mn Y O 2 (where 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( Here, 0 ⁇ Z ⁇ 2), etc.), lithium-nickel-cobalt oxide (for example, LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.), lithium-manganese-cobalt System oxide
  • the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li (Ni 1/3 Mn 1/3 Co 1) in that the capacity and stability of the battery can also be improved. / 3 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2, etc.), or lithium nickel cobalt aluminum oxide (e.g., Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.).
  • the positive electrode active material may be included in 80% to 99% by weight based on the total weight of solids in the positive electrode active material slurry.
  • the binder is a component that assists in bonding the active material and the conductive material and the like to the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode active material slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Roethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene monomer
  • EPDM ethylene-propylene-diene monomer
  • sulfonated EPDM st
  • the conductive material is usually added in 1 to 30% by weight based on the total weight of solids in the positive electrode active material slurry.
  • the conductive material is not particularly limited as long as it does not cause a chemical change in the battery and has conductivity.
  • carbon black acetylene black (or denka black), ketjen black, channel black, furnace black, lamp black, Or carbon powder such as thermal black;
  • Graphite powder such as natural graphite, artificial graphite, or graphite, which has a very developed crystal structure;
  • Conductive fibers such as carbon fibers and metal fibers;
  • Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder;
  • Conductive whiskers such as zinc oxide and potassium titanate;
  • Conductive metal oxides such as titanium oxide;
  • Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that becomes a desirable viscosity when the positive electrode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the solid content concentration in the slurry containing the positive electrode active material and, optionally, the binder and the conductive material may be included to be 50% to 95% by weight, preferably 70% to 90% by weight.
  • the negative electrode may be a metal electrode using a metal or metalloid thin film alone, or may have a structure in which the metal or metalloid thin film is stacked on the negative electrode current collector.
  • the metal or semimetal is Li, Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, It may be at least one selected from the group consisting of Sn, Ag, Pt and Au.
  • the negative electrode may be used by using a metal electrode alone, or by forming a negative electrode mixture layer on a negative electrode current collector in addition to a structure in which a metal or a metal thin film is laminated on the negative electrode current collector.
  • the negative electrode mixture layer may be formed by coating a slurry containing a negative electrode active material, a binder, a conductive material and a solvent on a negative electrode current collector, followed by drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, or the like, aluminum-cadmium alloy, etc. may be used.
  • it is also possible to form a fine unevenness on the surface to enhance the bonding force of the negative electrode active material and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the negative electrode active material is at least selected from the group consisting of a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal composite oxide, a material capable of doping and dedoping lithium, and a transition metal oxide. It may further include one or more.
  • any carbon-based negative electrode active material generally used in lithium ion secondary batteries may be used without particular limitation, and representative examples thereof include crystalline carbon, Amorphous carbon or these can be used together.
  • the crystalline carbon include graphite such as amorphous, plate-like, flake-like, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon). Or hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • the metal composite oxide includes PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), and Sn x Me 1-x Me ' y O z (Me: Mn, Fe , Pb, Ge; Me ': Al, B, P, Si, Group 1, 2, 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) Any one selected from the group can be used.
  • Materials capable of doping and dedoping the lithium include Si, SiO x (0 ⁇ x ⁇ 2), and Si-Y alloys (where Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, Rare earth elements and elements selected from the group consisting of a combination thereof, not Si), Sn, SnO 2 , Sn-Y (the above Y is alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth) Element, and an element selected from the group consisting of a combination of these, and not Sn), and may also be used by mixing at least one of them with SiO 2 .
  • the elements Y are Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, and lithium vanadium oxide.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of solids in the negative electrode slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of solids in the negative electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Roethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene monomer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added at 1 to 20% by weight based on the total weight of solids in the negative electrode slurry.
  • the conductive material may be the same as or different from the conductive material used in the manufacture of the positive electrode, for example, carbon black, acetylene black (or denka black), ketjen black, channel black, furnace black, lamp black, or thermal black.
  • Carbon powders such as; Graphite powder such as natural graphite, artificial graphite, or graphite, which has a very developed crystal structure; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include water or an organic solvent such as NMP and alcohol, and may be used in an amount that becomes a desirable viscosity when the negative electrode active material and optionally a binder and a conductive material are included.
  • the solid content concentration in the slurry containing the negative electrode active material and, optionally, the binder and the conductive material may be included to be 50% to 95% by weight, preferably 70% to 90% by weight.
  • the separator serves to block the internal short circuit of both electrodes and impregnate the electrolyte.
  • a separator composition is prepared by mixing a polymer resin, a filler, and a solvent, and then the coating and drying the separator composition directly on the electrode After forming a separator film or casting and drying the separator composition on a support, the separator film peeled from the support may be formed by lamination on the electrode.
  • the separator is a porous polymer film that is commonly used, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer.
  • the polymer film may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a high melting point glass fiber, a polyethylene terephthalate fiber, or the like may be used, but is not limited thereto.
  • the pore diameter of the porous separator is generally 0.01 to 50 ⁇ m, porosity may be 5 to 95%.
  • the thickness of the porous separator may generally range from 5 to 300 ⁇ m.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape or a coin shape using a can.
  • a positive electrode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 ; NCM
  • NMP N-methyl-2-pyrrolidone
  • a conductive material carbon black
  • a binder polyvinylidene fluoride PVDF
  • the positive electrode active material slurry was coated on an aluminum (Al) thin film having a thickness of about 20 ⁇ m and dried, and then rolled with a roll press to prepare a positive electrode.
  • Li metal 10 ⁇ m thick Cu was used as the negative electrode current collector, and Li metal was rolled thereon with a roll press to adjust the thickness to 20 ⁇ m, thereby producing a Li metal electrode having a total thickness of 30 ⁇ m.
  • the positive electrode and a separator made of three layers of polypropylene / polyethylene / polypropylene (PP / PE / PP) and a Li metal electrode are sequentially stacked to prepare an electrode assembly, and then the assembled electrode assembly is stored in a battery case. After pouring the composition for the gel polymer electrolyte, it was aged for 2 days. Subsequently, a lithium secondary battery including a gel polymer electrolyte thermally polymerized by curing at 70 ° C. for 5 hours was prepared.
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the gel polymer electrolyte composition for Example 1 was used instead of the composition for gel polymer electrolyte.
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the gel polymer electrolyte composition for Example 1 was used instead of the composition for gel polymer electrolyte.
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the gel polymer electrolyte composition for Example 1 was used instead of the composition for gel polymer electrolyte.
  • TFEPi 2,2-trifluoroethyl phosphite
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the gel polymer electrolyte composition for Example 1 was used instead of the composition for gel polymer electrolyte.
  • a composition for a polymer electrolyte was prepared (see Table 1 below).
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the gel polymer electrolyte composition for Example 1 was used instead of the composition for gel polymer electrolyte.
  • a composition for a polymer electrolyte was prepared (see Table 1 below).
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the composition for gel polymer electrolyte was used instead of the composition for gel polymer electrolyte of Example 1.
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the gel polymer electrolyte composition for Example 1 was used instead of the composition for gel polymer electrolyte.
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the composition for gel polymer electrolyte prepared above was used.
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the gel polymer electrolyte composition for Example 1 was used instead of the composition for gel polymer electrolyte.
  • LiFSI was dissolved to 2.8M to prepare a non-aqueous organic solvent.
  • a gel polymer electrolyte composition was prepared by adding 3 g of ethylene oxide monomer (weight average molecular weight (Mw) 5,000) and AIBN 0.006 g as a polymerization initiator to 96.994 g of the non-aqueous organic solvent (see Table 1 below).
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Comparative Example 1, except that the composition for gel polymer electrolyte prepared above was used.
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Comparative Example 1, except that the composition for gel polymer electrolyte prepared above was used.
  • a non-aqueous organic solvent was prepared by dissolving LiFSI in dimethoxyethane (mono-glyme, DME) to 3.4M. Subsequently, instead of the oligomer represented by Chemical Formula 1a to 96.994 g of the non-aqueous organic solvent, 3 g of ethylene oxide monomer (weight average molecular weight (Mw) 5,000) and 0.006 g of AIBN were added to prepare a composition for a gel polymer electrolyte (see Table 1 below). ).
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the composition for gel polymer electrolyte prepared above was used.
  • a lithium secondary battery including a gel polymer electrolyte was prepared in the same manner as in Example 1, except that the composition for gel polymer electrolyte prepared above was used.
  • the specimens were prepared in bulk through ASTM standard D638 (Type V specimens), and tensile strength was measured using Lloyd LR-10K at a rate of 5 mm per minute at a relative humidity of 25 ° C and about 30%. The results are shown in Table 3 below.
  • Example 1 2.4
  • Example 2 1.9
  • Example 4 9 Example 5 5
  • Example 6 3.2
  • Example 7 1.2
  • Example 8 2.3 Comparative Example 1 0.6 Comparative Example 2 0.7 Comparative Example 3 0.75 Comparative Example 4 0.9
  • the tensile strength of the gel polymer electrolyte specimens prepared in Comparative Examples 1 to 4 is mostly 1 MPa or less
  • the tensile strength of the gel polymer electrolyte specimens prepared in Examples 1, 2 and 4 to 8 is It can be confirmed that it is 1.2 MPa or more.
  • Example 4 when the content of the oligomer is high, it can be seen that the tensile strength of the gel polymer electrolyte specimen is improved.
  • the gel polymer electrolytes prepared in Examples 1, 2 and 4 to 8 of the present invention have improved mechanical strengths than the gel polymer electrolytes prepared in Comparative Examples 1 to 4.
  • Specimens were prepared using the composition for gel polymer electrolytes of Examples 1 to 9 and the composition for gel polymer electrolytes of Comparative Examples 1 to 5. The specimens were prepared in bulk through ASTM standard D638 (Type V specimens).
  • a gold (Au) electrode on the specimen was coated with a 1 mm diameter circle using a sputter method, and measured using an AC impedance measurement method at 25 ° C.
  • the ion conductivity of the VMP3 measurement equipment and a precision impedance analyzer (4294A) was measured in a frequency band of 100 MHz to 0.1 Hz. The measurement results are shown in Table 4 below.
  • the gel polymer electrolytes prepared in Examples 1 to 8 have an ionic conductivity of 5.3 mS / cm or higher, compared to the gel polymer electrolytes prepared in Comparative Examples 1 to 5.
  • the secondary battery of Example 9 which has a higher content of carbonate-based solvent than the glyme-based solvent, it can be seen that the ion conductivity is lower than that of the secondary batteries of Examples 1 to 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지에 관한 것으로, 구체적으로 리튬염, 유기용매, 중합 가능한 치환기를 가지는 화학식 1로 표시되는 올리고머 및 중합개시제를 포함하는 겔 폴리머 전해질용 조성물 및 이를 중합하여 제조된 겔 폴리머 전해질을 포함하는 리튬 이차전지에 관한 것이다.

Description

겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2018년 09월 21일자 한국 특허 출원 제2018-0114101호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지에 관한 것이다.
최근 전기, 전자, 통신 및 컴퓨터 산업이 급속히 발전함에 따라 고성능, 고안정성 이차전지에 대한 수요가 점차 증가되고 있다. 특히, 이들 전자 및 통신 기기의 소형화 및 경량화 추세에 따라, 이 분야의 핵심부품인 리튬 이차전지의 박막화 및 소형화가 요구되고 있다.
리튬 이차전지는 적용되는 전해질에 따라 액체 전해질을 사용하는 리튬 이온전지와 폴리머 전해질을 사용하는 리튬 폴리머 전지로 나눌 수 있다.
상기 리튬 이온전지는 고용량이라는 장점이 있으나 리튬염을 함유한 액체 전해질을 이용하기 때문에 누액 및 폭발의 위험성이 있고, 이에 대한 대비책으로 인해 전지 설계가 복잡해지는 단점이 있다.
반면에, 리튬 폴리머 전지는 전해질로 고체 폴리머 전해질이나 액체 전해액이 함유된 겔 폴리머 전해질을 사용하기 때문에 안정성 향상과 동시에 유연성을 가지므로, 소형 또는 박막형 등 다양한 형태로 개발이 가능하다.
상기 겔 폴리머 전해질을 적용한 이차전지는 다음과 같이 2 가지 방법에 의해 제조될 수 있다.
우선, 비수계 유기용매에 리튬염을 용해한 액체 전해액에 중합개시제와 중합 가능한 단량체 또는 올리고머를 혼합하여 전해질 조성물을 제조한 후, 전극 조립체가 수납된 전지에 주액하고, 적절한 온도와 시간 조건에서 겔화(가교)시켜 제조할 수 있다.
그러나, 상기 방법의 경우 주액 전 용액의 높은 점도 및 표면 장력 문제로 셀 내 함침성(wetting)이 좋지 않아 겔화 후에도 기계적 강도 확보가 쉽지 않다는 단점이 있다.
또 다른 방법으로는, 상기 전해질 조성물을 전극 및 분리막 중 하나의 일면에 코팅하고, 열이나 UV를 이용하여 경화(겔화)시켜 겔 폴리머 전해질을 형성한 다음, 이러한 겔 폴리머 전해질이 형성된 전극 및/또는 분리막을 권취 또는 적층하여 전극 조립체를 제조하고, 이를 전지 케이스에 삽입한 후 기존 액체 전해액을 재주액하여 제조할 수도 있다.
그러나 이 방법은 겔화시키기 위한 열 또는 UV를 조사하는 공정이 필요하고, 겔이 코팅된 분리막의 경우 수분을 흡수하여 전지의 성능 및 안정성을 저하시키는 문제가 있다. 더욱이 종래 분리막으로 사용되던 폴리에틸렌 분리막 등은 열수축율이 높기 때문에 온도가 상승하는 비정상적 조건에서 사용할 때 양극과 음극 사이에서 단락이 발생하여 전지의 안정성이 저하되는 단점이 있다.
이에, 기계적 강도와 이온전달능력을 확보하는 동시에, 고온에서의 안정성이 향상된 겔 폴리머 전해질을 제조할 수 있는 방법에 대한 개발이 필요한 실정이다.
선행기술문헌
한국 특허공개공보 제2018-0026358호
본 발명은 상기와 같은 문제점을 해결하기 위하여, 비수계 유기용매로 글라임계 용매를 포함하고, 특정 구조를 갖는 중합 가능한 치환기를 가지는 중합성 올리고머를 포함하는 겔 폴리머 전해질용 조성물을 제공하고자 한다.
또한, 본 발명은 상기 겔 폴리머 전해질용 조성물의 열중합에 의해 형성되어, 기계적 강도 및 전기화학적 안정성이 향상된 겔 폴리머 전해질을 제공하고자 하다.
또한, 본 발명은 상기 겔 폴리머 전해질을 포함함으로써 전기화학적 안정성이 향상된 리튬 이차전지를 제공하고자 한다.
구체적으로, 본 발명의 일 실시예에서는
리튬염,
글라임계 용매를 포함하는 비수계 유기용매,
하기 화학식 1로 표시되는 올리고머, 및
중합개시제를 포함하는 것인 겔 폴리머 전해질용 조성물을 제공한다.
[화학식 1]
Figure PCTKR2019012245-appb-I000001
상기 화학식 1에서,
R1은 탄소수 1 내지 5의 알킬렌기 또는 -R1'-O-이고, 이때 R1'은 탄소수 1 내지 5의 알킬렌기이고,
R2는 탄소수 1 내지 5의 알킬렌기 또는 -O-R2'-이고, 이때 R2'는 탄소수 1 내지 5의 알킬렌기이며,
R4, R5, R6, 및 R7은 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
R 및 R3은 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이고,
R8 및 R9는 각각 탄소수 1 내지 5의 알킬렌기이고,
Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이며,
x, y, z 및 o는 각각 독립적으로 1 내지 100 중 어느 하나의 정수이고,
c 및 c1은 각각 독립적으로 1 내지 3 중 어느 하나의 정수이며,
d 및 d1은 각각 독립적으로 0 내지 2 중 어느 하나의 정수이다.
또한, 본 발명의 다른 일 실시예에서는 본 발명의 겔 폴리머 전해질용 조성물의 열중합에 의해 형성된 겔 폴리머 전해질을 제공한다.
또한, 본 발명의 또 다른 일 실시예에서는 양극, 음극, 분리막 및 본 발명의 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제공한다.
본 발명의 겔 폴리머 전해질용 조성물에 포함되는 화학식 1로 표시되는 올리고머는 구조 내에 친수성 부분인 아크릴레이트기와 소수성 부분인 실록산기 및 우레탄기를 포함하여, 전지 내부에서 계면활성제 역할을 부여함으로써, 겔 폴리머 전해질용 조성물의 함침성을 향상시킬 수 있다. 또한, 본 발명의 겔 폴리머 전해질용 조성물은 비수계 유기용매로 글라임계 용매를 포함함으로써, 메탈 전극과의 부반응을 방지하여 가스 발생 및 용량 저감 효과를 개선할 수 있다. 따라서, 상기 글라임계 용매와 화학식 1로 표시되는 올리고머를 함께 포함하는 본 발명의 겔 폴리머 전해질용 조성물을 사용하면, 기계적 물성 및 전기화학적 안정성이 향상된 겔 폴리머 전해질을 구비한 리튬 이차전지를 구현할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
한편, 본 발명을 설명하기에 앞서, 명세서 내에서 "탄소수 a 내지 b"의 기재에 있어서, "a" 및 "b"는 구체적인 작용기에 포함되는 탄소 원자의 개수를 의미한다. 즉, 상기 작용기는 "a" 내지 "b" 개의 탄소원자를 포함할 수 있다. 예를 들어, "탄소수 1 내지 5의 알킬렌기"는 탄소수 1 내지 5의 탄소 원자를 포함하는 알킬렌기, 즉 -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2(CH2)CH-, -CH(CH2)CH2- 및 -CH(CH2)CH2CH2- 등을 의미한다.
또한, 본 명세서에서, 상기 "알킬렌기"라는 용어는 분지된 또는 분지되지 않은 2가의 불포화 탄화수소기를 의미한다. 일 구현예에서, 상기 알킬렌기는 치환 또는 비치환될 수 있다. 상기 알킬렌기는 메틸렌기, 에틸렌기, 프로필렌기, 이소프로필렌기, 부틸렌기, 이소부틸렌기, tert-부틸렌기, 펜틸렌기, 3-펜틸렌기 등을 포함하나, 이들로 한정되지 않으며, 이들 각각은 다른 구현예에서 선택적으로 치환될 수 있다.
또한, 본 명세서에서, "치환"이란 별도의 정의가 없는 한, 탄소에 결합된 적어도 하나 이상의 수소가 수소 이외의 원소로 치환된 것을 의미하며, 예를 들면, 탄소수 1 내지 5의 알킬기 또는 불소 원소로 치환된 것을 의미한다.
또한, 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 명세서에서, "글라임계 용매 (glyme-based solvent)"란, 알킬렌기, 사이클로알킬렌기, 또는 아릴렌기가 에테르기로 연결되는 형태의 에테르계 용매로서, 고비점을 가짐으로써 휘발성 기체에 의한 내압 발생이 적기 때문에 전지의 안정성 측면에서 우수한 용매로, 디메톡시에탄 (모노-글라임, DME), 디-글라임 (digylme), 트리-글라임(Triglyme), 및 테트라-글라임 (TEGDME)으로 이루어진 군으로부터 선택된 적어도 하나 이상인 것이 바람직하다.
한편, 본 명세서에서, "분자량"이란 이란 별도의 정의가 없는 한, 중량평균분자량(Mw)을 의미하며, 본 발명의 폴리머 또는 올리고머의 중량평균분자량(Mw)은 별도의 정의가 없는 한 겔투과크로마토그래피(Gel Permeation Chromatography: GPC)를 이용하여 측정할 수 있다.
한편, 본 명세서에서 이온전도도는 교류 임피던스 측정법을 사용하여 측정할 수 있다. 구체적으로, VMP3 측정 장비와 정밀 임피던스 분석기(4294A)를 사용하여 주파수 대역 100MHz 내지 0.1 Hz에서 측정할 수 있다.
본 명세서에서 전기화학적 (산화)안정성은 선형 주사 전위법(Linear sweep voltammetry, LSV)에 따라 측정하였다. 측정 장치로는 potentiostat(EG&G사, model 270A)를 사용하였으며, 측정온도는 60℃였다.
본 발명에서 인장강도는 ASTM standard D638 (Type V specimens)을 통해 일괄적으로 제작한 전해질 시편을 25℃, 약 30%의 상대습도에서 분당 5 mm의 속도로 Lloyd LR-10K을 이용하여 측정하였다.
겔 폴리머 전해질용 조성물
본 발명에 따른 겔 폴리머 전해질용 조성물은
리튬염,
글라임계 용매를 포함하는 비수계 유기용매,
하기 화학식 1로 표시되는 올리고머 및
중합개시제를 포함한다.
[화학식 1]
Figure PCTKR2019012245-appb-I000002
상기 화학식 1에서,
R1은 탄소수 1 내지 5의 알킬렌기 또는 -R1'-O-이고, 이때 R1'은 탄소수 1 내지 5의 알킬렌기이고,
R2는 탄소수 1 내지 5의 알킬렌기 또는 -O-R2'-이고, 이때 R2'는 탄소수 1 내지 5의 알킬렌기이며,
R4, R5, R6, 및 R7은 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
R 및 R3은 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이고,
R8 및 R9는 각각 탄소수 1 내지 5의 알킬렌기이고,
Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이며,
x, y, z 및 o는 각각 독립적으로 1 내지 100 중 어느 하나의 정수이고,
c 및 c1은 각각 독립적으로 1 내지 3 중 어느 하나의 정수이며,
d 및 d1은 각각 독립적으로 0 내지 2 중 어느 하나의 정수이다.
(1) 리튬염
상기 리튬염으로는, 리튬 이차전지용 전해질이 통상적으로 사용되는 다양한 리튬염들이 제한 없이 사용될 수 있다. 예를 들어, 상기 리튬염은 양이온으로 Li+를 포함하고, 음이온으로 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, ClO4 -, BF4 -, B10Cl10 -, AlO4 -, AlCl4 -, PF6 -, CF3SO3 -, CH3CO2 -, CH3SO3 -, CF3CO2 -, AsF6 -, SbF6 -, BF2C2O4 -, BC4O8 - , (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, C4F9SO3 -, CF3CF2SO3 -, (FSO2)2N-, (CF3SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있으며, 이들 외에도 리튬 이차전지의 전해액에 통상적으로 사용되는 리튬염이 제한 없이 사용할 수 있다.
구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiAlO4, LiAlCl4, LiPF6, LiCF3SO3, LiCH3CO2, LiCH3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiFSI (Lithium bis(fluorosulfonyl)imide, LiN(SO2F)2), LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2 및 LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있으며, 구체적으로 LiPF6, LiFSI 및 LiTFSI 중 적어도 하나 이상을 들 수 있다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 겔 폴리머 전해질용 조성물 내에 1.0M 내지 6.0M, 구체적으로 1.5M 내지 4.0M 농도로 포함될 수 있다.
상기 리튬염의 농도가 상기 범위를 만족하는 경우, 겔 폴리머 전해질용 조성물 중에 존재하는 리튬 양이온의 증가로 인해 높은 리튬 양이온 (Li+)의 이온전달 특성 (즉, 양이온 수송률 (transference number))을 향상시킬 수 있고, 리튬 이온 확산 시에 저항 감소 효과를 가져와 사이클 용량 특성을 개선할 수 있다.
즉, 겔 폴리머 전해질용 조성물의 경우, 1.0M 이상의 리튬염을 포함함으로써, 이온전도성을 부여하는 동시에, 고율 충방전 시 리튬 이온의 고갈에 의한 저항을 감소시킬 수 있다. 만약, 리튬염의 농도가 1.0M 이하이면, 리튬 이차전지의 사이클 수명 특성 및 용량 특성이 저하될 수 있다. 또한, 리튬염의 최대 농도가 6.0M을 초과하면, 겔 폴리머 전해질용 조성물의 점도가 과도하게 증가되어 전해질 젖음 특성이 저하되기 때문에, 이차전지의 제반 성능이 저하될 수 있다.
한편, 리튬염의 농도가 4M 이상인 경우, 전해질의 점도가 상승할 수는 있으나, 후술하는 바와 같이 겔 폴리머 전해질용 조성물에 포함된 올리고머 일부분이 계면 활성제로 작용하면서, 표면 장력을 낮추기 때문에, 겔 폴리머 전해질용 조성물의 함침성 저하되는 것을 방지할 수 있다.
(2) 비수계 유기용매
상기 비수계 유기용매는 글라임계 용매를 포함할 수 있다.
즉, 본 발명에서는 비수계 유기용매로 선형 카보네이트계 유기용매에 비해 높은 유전율 및 낮은 표면 장력을 가지는 글라임계 용매를 사용함으로써, 리튬염 함량 증량이 가능하며, 리튬염 함량 증가에 따른 출력 개선 효과와 글라임 용매 사용으로 인한 메탈 전극과의 반응성을 억제할 수 있다.
이러한 글라임계 용매는 그 대표적인 예로 디메톡시에탄 (모노-글라임, DME), 디-글라임 (digylme), 트리-글라임(Triglyme), 및 테트라-글라임 (TEGDME)으로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
또한, 본 발명에서는 상기 비수계 유기용매로 카보네이트계 유기용매를 더 포함할 수 있다.
상기 카보네이트계 유기용매는 환형 카보네이트계 유기용매, 선형 카보네이트계 유기용매 또는 이들의 혼합 유기용매를 포함할 수 있다.
상기 환형 카보네이트계 유기용매는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있는 유기용매로서, 그 구체적인 예로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 포함할 수 있으며, 이 중에서도 에틸렌 카보네이트 및 프로필렌 카보네이트 중 적어도 하나 이상을 포함할 수 있다.
또한, 상기 선형 카보네이트계 유기용매는 저점도 및 저유전율을 가지는 유기용매로서, 그 대표적인 예로 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 사용할 수 있으며, 구체적으로 디메틸 카보네이트 및 에틸메틸 카보네이트(EMC) 중 적어도 하나 이상을 포함할 수 있다.
상기 환형 카보네이트계 유기용매:선형 카보네이트계 유기용매는 0:10 내지 2:8 부피비, 구체적으로 0:10 내지 1:9 부피비로 사용될 수 있다.
즉, 환형 카보네이트계 유기용매와 선형 카보네이트계 유기용매의 부피비는 이온전도도 개선, 저온 및 상온 출력, 고온 저장 후 용량 특성을 향상시키는데 중요한 영향을 미칠 수 있는데, 상기와 같은 범위로 포함되는 경우 충방전 출력 특성 향상 효과 및 수명 특성 개선 효과를 구현할 수 있다.
한편, 상기 카보네이트계 유기용매는 고전압에서 메탈과의 반응성이 높아 부반응에 민감하기 때문에, 메틸 전극 적용 시에 비수계 유기용매로 이를 사용하는 경우 화학 반응에 의한 부산물 및 가스 발생이 증가하여, 셀 팽윤이 증가하고, 고온 저장 안정성이 열화될 수 있다.
본 발명의 겔 폴리머 전해질용 조성물 내에 글라임계 용매와 카보네이트계 유기용매를 혼합하여 사용하는 경우에, 글라임계 용매와 카보네이트계 유기용매는 1:9 내지 9:1 중량비, 바람직하게 3:7 내지 9:1 중량비, 보다 바람직하게는 5:5 내지 9:1 중량비로 사용할 수 있다.
상기 카보네이트계 유기용매와 글라임계 용매의 중량비가 상기 범위를 만족하는 경우 두 유기 용매의 혼용에 의한 시너지 효과가 발현될 수 있다. 만약, 상기 카보네이트계 유기용매에 대한 글라임계 용매의 상대적인 중량비가 1 미만이면 전해질의 점도가 상승하여, 전해질의 함침성이 저하되고, 카보네이트계 유기용매와 메탈 전극의 반응성이 증가하여 셀 안정성이 저하되고, 팽윤이 증가할 수 있다.
반면에, 상기 카보네이트계 유기용매에 대한 글라임계 용매의 상대적인 중량 비가 5 이상이면, 전해질의 점도 상승을 억제할 수 있기 때문에, 리튬염 함량의 증량이 가능하기 때문에 셀 출력을 보다 개선할 수 있다. 또한, 상기 글라임계 용매의 중량비가 10 이하일 경우, 메탈 반응성이 안정해져 용량 유지율이 향상되기 때문에, 수명 특성이 보다 개선될 수 있다.
즉, 상기 글라임계 용매는 비수계 유기용매 전체 중량을 기준으로 10 중량% 내지 100 중량%, 구체적으로 30 중량% 내지 90 중량%, 더욱 구체적으로 50 중량% 내지 90 중량%로 포함되며, 상기 글라임계 용매의 함량이 상기 범위를 만족할 경우, 금속 안정화 및 출력 개선 효과를 향상시킬 수 있다.
만약, 상기 글라임계 용매의 함량이 10 중량% 미만인 경우에는 전해질의 점도가 상승하여, 전해질의 함침성이 저하되고, 카보네이트계 유기용매와 메탈 전극과의 반응으로 인해 부반응이 촉진되어 셀 용량 저하 및 안정성 저하 효과가 저하될 수 있다.
한편, 본 발명에 따른 겔 폴리머 전해질용 조성물은 안정성 향상을 위하여, 이차전지의 충방전 과정에서 산화/환원 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 유기용매를 더 포함할 수 있다. 상기 유기용매는 그 대표적인 예로 에스테르계 용매, 아세테이트계 용매, 또는 니트릴계 용매 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 이때, 각 용매에는 F, Cl, Br, I 등의 할로겐 원소가 적어도 하나 이상 치환되어 있을 수 있다.
또한, 상기 에스테르계 용매는 선형 에스테르 화합물 또는 환형 에스테르 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함할 수 있다.
상기 선형 에스테르 화합물은 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 환형 에스테르 화합물은 그 구체적인 예로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 또는 ε-카프로락톤 중 적어도 하나 이상을 포함할 수 있다.
상기 니트릴계 용매는 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 1종 이상인 것일 수 있으며, 본 발명의 일 실시예에 따른 비수성 용매는 아세토니트릴을 이용할 수 있다.
이때, 상기 에스테르계 용매, 아세테이트계 용매, 또는 니트릴계 용매 등은 비수계 유기용매 전체 중량을 기준으로 50 중량% 이하, 구체적으로 30 중량% 이하가 되도록 소량으로 포함될 수 있다.
(3) 올리고머
본 발명의 겔 폴리머 전해질용 조성물은 온도 상승 시 중합 반응에 의해 산화되면서 겔 폴리머 전해질의 기본 골격인 고분자 매트릭스를 형성할 수 있는 가교 결합 가능한 치환기를 가진 화합물로서, 말단에 하나 이상의 아크릴레이트기를 함유하는 하기 화학식 1로 표시되는 올리고머를 포함한다.
[화학식 1]
Figure PCTKR2019012245-appb-I000003
상기 화학식 1에서,
R1은 탄소수 1 내지 5의 알킬렌기 또는 -R1'-O-이고, 이때 R1'은 탄소수 1 내지 5의 알킬렌기이고,
R2는 탄소수 1 내지 5의 알킬렌기 또는 -O-R2'-이고, 이때 R2'는 탄소수 1 내지 5의 알킬렌기이며,
R4, R5, R6, 및 R7은 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
R 및 R3은 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이고,
R8 및 R9는 각각 탄소수 1 내지 5의 알킬렌기이고,
Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이며,
x, y, z 및 o는 각각 독립적으로 1 내지 100 중 어느 하나의 정수이고,
c 및 c1은 각각 독립적으로 1 내지 3 중 어느 하나의 정수이며,
d 및 d1은 각각 독립적으로 0 내지 2 중 어느 하나의 정수이다.
구체적으로, 상기 화학식 1에서, R1은 -R1'-O-이고, 이때 R1'은 탄소수 1 내지 5의 알킬렌기이고, R2는 -O-R2'-이고, 이때 R2'는 탄소수 1 내지 5의 알킬렌기이며, R4, R5, R6, 및 R7은 각각 독립적으로 탄소수 1 내지 3의 알킬기이고, R8 및 R9는 각각 독립적으로 탄소수 1 내지 3의 알킬렌기이며, Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소일 수 있다.
더욱 구체적으로, 상기 화학식 1에서, R1은 -R1'-O-이고, 이때 R1'은 탄소수 2 내지 5의 알킬렌기이고, R2는 -O-R2'-이고, 이때 R2'는 탄소수 2 내지 5의 알킬렌기이며, R4, R5, R6, 및 R7은 각각 독립적으로 탄소수 1 내지 3의 알킬기이고, R8 및 R9는 각각 독립적으로 탄소수 1 또는 2의 알킬렌기이며, Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소일 수 있다.
또한, 상기 화학식 1에서, R 및 R3는 지환족 탄화수소기 및 선형 탄화수소기로 이루어진 군으로부터 선택된 적어도 하나인 지방족 탄화수소기일 수 있다.
상기 지환족 탄화소수기는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 치환 또는 비치환된 탄소수 4 내지 20의 시클로알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기로 이루어진 군으로부터 선택된 적어도 하나일 수 있으며, 이 중에서 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기인 것이 바람직하다.
상기 선형 탄화수소기는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환 또는 비치환된 탄소수 1 내지 20의 알콕실렌기; 치환 또는 비치환된 탄소수 2 내지 20의 알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 알키닐렌기로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
또한, 상기 화학식 1에서, R 및 R3는 방향족 탄화수소기일 수 있다.
상기 방향족 탄화수소기는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 및 치환 또는 비치환된 탄소수 4 내지 20의 헤테로아릴렌기로 이루어진 군으로부터 선택된 적어도 하나일 수 있다.
더욱 구체적으로, 상기 화학식 1로 표시되는 올리고머는 하기 화학식 1a 및 화학식 1b로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상일 수 있다.
[화학식 1a]
Figure PCTKR2019012245-appb-I000004
상기 화학식 1a에서,
x1, y1, z1 및 o1는 각각 독립적으로 1 내지 100 중 어느 하나의 정수이다.
[화학식 1b]
Figure PCTKR2019012245-appb-I000005
상기 화학식 1b에서,
x2, y2, z2 및 o2는 각각 독립적으로 1 내지 100 중 어느 하나의 정수이다.
상기 화학식 1로 표시되는 올리고머는 구조 내에 친수성 부분인 아크릴레이트기와 소수성 부분인 실록산기(-[Si-O]-) 및 우레탄기를 포함하기 때문에 전지 내부의 친수성 부분(양극, 분리막(SRS층))과 소수성 부분(음극, 분리막 원단)에서 균형적으로 친화성을 나타낼 수 있으므로, 계면활성제 역할을 부여할 수 있다. 따라서, 전극 및 분리막에 대한 표면 장력을 낮춰 겔 폴리머 전해질용 조성물의 함침성을 개선할 수 있다.
한편, 종래 겔 폴리머 전해질 제조 시 사용된 알킬렌 옥사이드 골격을 가지는 폴리머의 경우, 환원 안정성이 낮기 때문에 초기 충전시 음극 표면에 피막을 형성할 수 있다. 하지만, 이러한 피막은 고온에서 쉽게 파괴되어 부반응을 야기하기 때문에, 전극과 겔 폴리머 전해질 사이의 계면 저항을 오히려 증가시키는 단점이 있다.
반면에, 상기 화학식 1로 표시되는 올리고머는 전기화학적으로 안정하여 환원 안정성이 높을 뿐만 아니라, 리튬염을 해리하는 능력을 보유하고 있어 음극 표면에서의 환원 반응을 최소하고, 리튬 이온 이동성을 향상시킬 수 있다.
따라서, 종래 알킬렌 옥사이드 골격을 가지는 폴리머를 포함하는 겔 폴리머 전해질용 조성물과 비교하여 본 발명의 겔 폴리머 전해질용 조성물의 경우, 전극과의 부반응은 감소되고, 기계적 강도는 높으며, 전극과 전해질 사이의 계면 안정성 효과는 향상된 겔 폴리머 전해질을 제조할 수 있다.
상기 화학식 1로 표시되는 올리고머는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.1 중량% 내지 80 중량%, 구체적으로 2 중량% 내지 80 중량%, 보다 구체적으로 3 중량% 내지 50 중량%로 포함될 수 있다.
상기 화학식 1로 표시되는 올리고머의 함량이 상기 범위, 즉 0.1 중량% 내지 80 중량% 범위로 포함되면 기계적 강도가 우수한 고분자 네트워크를 형성할 수 있으므로, 제반 성능이 향상된 겔 폴리머 전해질을 제조할 수 있다. 구체적으로, 올리고머의 함량이 2 중량%, 구체적으로 3 중량% 이상일 경우에 올리고머에 의한 고분자 매트릭스가 용이하게 형성될 수 있고, 안정한 네트워크 구조에 의하여 겔 폴리머 전해질의 기계적 강도와 같은 물성을 확보할 수 있다. 또한, 80 중량% 이하이면, 과량의 올리고머 첨가에 따른 저항 증가 및 리튬 이온의 이동 제한, 예를 들면 이온전도도 감소와 같은 단점을 방지할 수 있고, 겔 폴리머 전해질의 함침성을 확보하는 동시에, 리튬 이온의 이동 효과를 높여 충분한 이온전도도를 확보할 수 있다.
한편, 상기 화학식 1로 표시되는 올리고머의 중량평균분자량(MW)은 1,000 g/mol 내지 100,000 g/mol, 구체적으로 1,000 g/mol 내지 50,000 g/mol, 보다 구체적으로 1,000 g/mol 내지 10,000 g/mol 일 수 있으며, 더욱 구체적으로 3,000 g/mol 내지 7,000 g/mol 일 수 있으며, 반복 단위의 개수에 의해 그 범위를 조절할 수 있다. 상기 올리고머의 중량평균분자량이 상기 범위 내인 경우, 이를 포함하는 비수전해액의 기계적 강도를 효과적으로 개선할 수 있다.
만약, 상기 화학식 1로 표시되는 올리고머의 중량 평균분자량이 1,000 g/mol 미만이면, 적절한 기계적 강도를 기대할 수 없으며, 보다 많은 중합개시제 사용이 요구되거나, 까다로운 추가 중합 공정이 필요하기 때문에 겔 고분자 전해질 형성 과정이 복잡해지는 단점이 있다. 한편, 중량평균분자량이 100,000 g/mol을 초과하면, 올리고머 물성 자체가 경직(rigid)되고, 전해질 용매와 친화성이 낮아져 용해가 어려워지기 때문에 균일하고 우수한 겔 고분자 전해질 형성을 기대할 수 없다.
상기 중량평균분자량은 겔투과크로마토그래피(Gel Permeation Chromatography: GPC)조건으로 Agilent社 1200시리즈를 이용하여 측정할 수 있다. 예컨대, 일정 농도의 샘플 시료를 준비한 후, GPC 측정 시스템 alliance 4 기기를 안정화시키고, 기기가 안정화되면 기기에 표준 시료와 샘플 시료를 주입하여 크로마토그램을 얻어낸 다음, 분석 방법에 따라 분자량을 산출할 수 있다 (시스템: Alliance 4, 컬럼: Ultrahydrogel linearX2, eluent: 0.1M NaNO3 (pH 7.0 phosphate buffer, flow rate: 0.1 mL/min, 용매: THF, temp: 40℃, injection: 100μL)
(4) 중합개시제
본 발명의 겔 폴리머 전해질용 조성물은 겔 폴리머 전해질 제조 시 요구되는 라디칼 반응을 수행하기 위하여 중합개시제를 포함할 수 있다.
상기 중합개시제는 당 업계에 알려진 통상적인 열 또는 광 중합개시제가 사용될 수 있다. 예를 들면, 상기 중합개시제는 열에 의해 분해되어 라디칼을 형성하고, 자유라디칼 중합에 의해 화학식 1로 표시되는 올리고머와 반응하여 겔 폴리머 전해질을 형성할 수 있다.
더욱 구체적으로, 상기 중합개시제의 비제한적인 예로는 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 디라우릴 퍼옥사이드(dilauryl peroxide), 디-tert-부틸 퍼옥사이드(di-tert-butyl peroxide), t-부틸 퍼옥시-2-에틸-헥사노에이트(t-butyl peroxy-2-ethyl-hexanoate), 큐밀 하이드로퍼옥사이드(cumyl hydroperoxide) 및 하이드로겐 퍼옥사이드(hydrogen peroxide) 등의 유기과산화물류나 히드로과산화물류와 2,2'-아조비스(2-시아노부탄), 2,2'-아조비스(메틸부티로니트릴), 2,2'-아조비스(이소부티로니트릴)(AIBN; 2,2'-Azobis(iso-butyronitrile)) 및 2,2'-아조비스디메틸-발레로니트릴(AMVN; 2,2'-Azobisdimethyl-Valeronitrile)로 이루어진 군에서 선택된 1종 이상 아조 화합물류 등이 있으나, 이에 한정하지 않는다.
상기 중합개시제는 전지 내에서 열, 비제한적인 예로 30℃ 내지 100℃의 열에 의해 분해되거나 상온(5℃ 내지 30℃)에서 분해되어 라디칼을 형성하고, 자유라디칼 중합에 의해 중합성 올리고머가 아크릴레이트계 화합물과 반응하여 겔 폴리머 전해질을 형성할 수 있다.
상기 중합개시제는 화학식 1로 표시되는 올리고머 100 중량부를 기준으로 하여 0.01 내지 20 중량부, 구체적으로 0.1 내지 10 중량부로 포함될 수 있다.
상기 중합개시제가 0.01 내지 20 중량부 범위 내인 경우, 겔 고분자 전환율을 높여 겔 겔 폴리머 전해질 특성이 확보할 수 있고, 프리-겔 반응을 방지하여, 전극에 대한 겔 폴리머 전해질용 조성물의 함침성을 향상시킬 수 있다.
(5) 산소 제거제
또한, 본 발명의 겔 폴리머 전해질용 조성물은 첨가제로 산소 제거제를 더 포함할 수 있다.
일반적으로, 겔 폴리머 전해질 제조 시에 요구되는 라디칼 반응은 산소 존재하에서 실시하면, 산소에 의해 소광(quenching)하여 반응이 안정화가 되면서, 연쇄 중합 반응 효율이 감소되어 단량체 및/또는 올리고머의 겔(gel) 전환율이 저감되는 것으로 알려져 있다. 즉, 중합개시제로부터 발생된 라디칼(radical)은 산소와 쉽게 반응하여 소모되기 때문에, 산소 존재하에서는 라디칼 중합 반응성이 저하된다.
이에, 본 발명의 겔 폴리머 전해질용 조성물은 상온 및 산소 분위기하에서 겔화 반응성을 제어하여 주액 특성을 향상시키기 위하여, 산소 제거제를 더 포함할 수 있다. . 이러한 구성의 겔 폴리머 전해질 조성물이 경우, 산소 분위기에서 겔화를 실시하는 경우에도 산소의 영향성을 감소시켜, 중합 반응 효과를 높일 수 있다.
상기 산소 제거제는 트리스알킬실릴포스파이트계 화합물 및 트리스아릴실릴포스파이트계 화합물 중 적어도 하나 이상을 들 수 있다. 즉, 상기 산소 제거제로 포함되는 트리스알킬실릴포스파이트계 화합물 또는 트리스아릴실릴포스파이트계 화합물은 포스파이트 구조가 포스페이트 구조로 변환되면서 산소를 소모(scavenge)시켜, 중합개시제로부터 발생된 라디칼이 산소에 의해 제거되는 것을 방지할 수 있다.
상기 트리스알킬실릴포스파이트계 화합물은 그 대표적인 예로 트리스-2,2,2-트리플루오로에틸 포스파이트 (TFEPi), 트리스(메틸실릴) 포스파이트 (TMSPi, Tris(methylsilyl) phosphite), 트리스(에틸실릴) 포스파이트 (TESPi), 트리스(프로필실릴) 포스파이트 (TPSPi) 및 트리스(부틸실릴) 포스파이트로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 또한, 상기 트리스아릴실릴포스파이트계 화합물로는 트리스페닐실릴 포스파이트를 들 수 있다. 이때, 상기 산소 제거제로 불소 원소를 함유하는 불소계 산소 제거제의 사용은 지양하는 것이 바람직하다.
본 발명의 겔 폴리머 전해질용 조성물은 산소 제거제를 포함함으로써, 상온에서도 프리-겔 반응이 발생하지 않는다는 장점이 있다.
상기 산소 제거제는 겔 폴리머 전해질용 조성물의 전체 중량을 기준으로 0.01 내지 10 중량%로 포함될 수 있다. 상기 산소 제거제가 0.01 중량% 내지 10 중량%, 구체적으로 0.5 중량% 내지 10 중량% 범위로 포함되면 상온 및 산소 존재하에서 중합 반응 전환율을 감소시켜, 겔화 현상을 억제할 수 있다. 구체적으로, 산소 제거제의 함량이 0.01 중량% 이상인 경우 산소 제거 효과가 우수하여 중합 반응 전환율을 높일 수 있으므로, 겔 폴리머 전해질의 기계적 강도를 향상시킬 수 있다. 또한, 10 중량% 이하인 경우 잔류 첨가제에 의한 저항 증가를 방지할 수 있다.
(7) 부가적 첨가제
본 발명의 겔 폴리머 전해질용 조성물은 겔 폴리머 전해질 제조 시에 고출력의 환경에서 분해되어 음극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온 부풀음 개선, 저항 저감, 수명 개선, 가스 저감 효과 등을 더욱 향상시키기 위하여, 필요에 따라 부가적 첨가제들을 추가 포함할 수 있다.
이러한 부가적 첨가제로는 그 구체적인 예로 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS), 1,3-프로판 설톤(PS), 숙시노니트릴(SN), 아디포니트릴(Adn), 에틸렌 설파이트, 1,3-프로펜 설톤(PRS), 플루오로에틸렌 카보네이트(FEC), 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 리튬 옥살릴디플루오로보레이트, LiBr, LiF, LiI, 숙시닐 무수물 (succinyl anhydride), CsNO3, In(TFSI)3, 트리스(2,2,2-트리플루오로에틸)포스페이트 (TFEPa) 및 1,1,2,2-테트라플루오로에틸 2,2,2-트리플루오로에틸 에테르, F3-EMC (2,2,2-트리플루오로에틸 메틸 카보네이트), 디플루오로에틸 아세테이트(di-FEC), 플루오로벤젠, 디플루오로벤젠, 헥사플루오로벤젠 및 LiBF4로 이루어진 군에서 선택되는 적어도 하나 이상을 들 수 있다.
이러한 부가적 첨가제 중, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 또는 숙시노니트릴은 이차전지의 초기 활성화 공정시 리튬 디플루오로포스페이트와 함께 음극 표면에 안정한 SEI 피막을 형성할 수 있다.
상기 LiBF4는 리튬 이차전지에 첨가되어, 고온시의 겔 폴리머 전해질용 조성물 의 분해로 인하여 생성될 수 있는 가스 발생을 억제하여, 이차전지의 고온 안정성을 향상시킬 수 있다.
상기 부가적 첨가제들은 적어도 하나 이상이 혼합되어 겔 폴리머 전해질용 조성물 총량을 기준으로 0.01 내지 5 중량%, 구체적으로 0.1 내지 3 중량%로 포함될 수 있으며, 바람직하게는 0.5 내지 3 중량% 일 수 있다. 상기 부가적 첨가제의 함량이 0.01 중량% 보다 적으면 전지의 저온 출력 개선 및 고온 저장 특성 및 고온 수명 특성 개선의 효과가 미미하고, 상기 부가적 첨가제의 함량이 5 중량%를 초과하면 전지의 충방전시 겔 폴리머 전해질용 조성물 내의 부반응이 과도하게 발생할 가능성이 있다. 특히, 상기 SEI 막 형성용 첨가제들이 과량으로 첨가될 시에 고온에서 충분히 분해되지 못하여, 상온에서 겔 폴리머 전해질용 조성물 내에서 미반응물 또는 석출된 채로 존재하고 있을 수 있다. 이에 따라 이차전지의 수명 또는 저항특성이 저하되는 부반응이 발생될 수 있다.
겔 폴리머 전해질
또한, 본 발명에서는 상기 겔 폴리머 전해질용 조성물의 중합에 의해 형성된 겔 폴리머 전해질을 제공한다.
본 발명의 겔 폴리머 전해질을 제조하기 위한 중합 방법은 통상적인 중합 방법이 제한 없이 사용될 수 있다.
예를 들면, i) 리튬염, 유기용매, 중합개시제, 화학식 1로 표시되는 올리고머 및 선택적으로 산소 제거제 및/또는 부가적 첨가제들을 포함하는 겔 폴리머 전해질용 조성물을 제조한 다음, 이를 전지 내에 주액하고 열 중합 반응을 실시하여 고분자 매트릭스를 포함하는 겔 폴리머 전해질을 제조할 수 있다.
또는, ii) 전기화학소자 내부에서 중합개시제 존재하에서 화학식 1로 표시되는 올리고머에 대한 중합 반응을 실시하여 고분자 매트릭스를 형성한 다음, 리튬염 및 유기용매를 포함하는 비수전해액을 추가로 함침시켜 제조할 수도 있다.
이때, 상기 중합 반응은 열, e-빔 및 감마선 공정을 통해 실시할 수 있으며, 구체적으로 50 내지 100℃에서 약 1 시간 내지 8시간 가열하는 열중합 방법이 바람직하다.
상기 겔화를 위한 라디칼(radical) 중합 반응은 라디칼 소멸제인 산소 농도가 낮은 비활성 조건(inert condition) 하에서 실시할 수 있다. 또는, 본 발명의 겔 폴리머 전해질 조성물에 산소 제거제가 추가로 포함된 경우, 일반적인 공기 또는 산소 존재하에서 겔 폴리머 전해질 제조를 위한 중합 반응을 실시할 수 있다. 즉, 중합 반응 시에 겔 폴리머 전해질 내에 포함된 산소 제거제가 산소의 영향력을 감소시켜, 올리고머들의 반응성을 향상시키므로, 일반적인 공기 또는 산소 분위기하에서도 다량의 미반응 단량체가 거의 존재하지 않을 정도로 중합 반응 진척도(extent of reaction)를 증대시킬 수 있다. 그 결과, 종래 미반응 단량체가 전지 내부에 잔존하면서 야기되던 충방전 성능 저하와 같은 단점을 개선할 수 있다. 특히, 상기 산소 제거제는 난연성 관능기를 함유함으로써, 겔 폴리머 전해질의 난연성 강화 효과를 추가로 부여할 수 있다.
리튬 이차전지
또한, 본 발명의 일 실시예에서는 양극, 음극, 분리막 및 본 발명의 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제공할 수 있다.
이때, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 선택적으로 개재된 분리막이 순차적으로 적층되어 이루어진 전극조립체에 본 발명의 겔 폴리머 전해질용 조성물을 주입한 후 경화하여 제조할 수 있다.
이때, 상기 전극조립체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조 시에 통상적인 방법으로 제조된 것이 사용될 수 있다.
(1) 양극
먼저, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 활물질 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다)) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물 (예를 들면 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등)일 수 있다.
상기 양극 활물질은 양극 활물질 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 모노머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 통상적으로 양극 활물질 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
(2) 음극
또한, 상기 음극은 금속 또는 준금속 박막을 단독으로 사용한 메탈 전극이거나, 또는 음극 집전체 상에 상기 금속 또는 준금속 박막이 적층된 구조로 이루어진 것 일 수 있다.
이때, 상기 금속 또는 준금속은 Li, Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn, Ag, Pt 및 Au으로 이루어진 군으로부터 선택되는 적어도 하나일 수 있다.
한편, 상기 음극은 메탈 전극을 단독으로 사용하거나, 또는 음극 집전체 상에 금속 또는 준금속 박막이 적층된 구조로 이루어진 외에도, 음극 집전체 상에 음극 합제층을 형성하여 제조한 것을 이용할 수도 있다.
이러한 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질, 및 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 더 포함할 수도 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다.  이러한 도전재는 양극 제조 시 사용된 도전재와 동일하거나, 상이한 것을 사용할 수 있으며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
(3) 분리막
또한, 상기 분리막은 양 전극의 내부 단락을 차단하고 전해질을 함침하는 역할을 하는 것으로, 고분자 수지, 충진제 및 용매를 혼합하여 분리막 조성물을 제조한 다음, 상기 분리막 조성물을 전극 상부에 직접 코팅 및 건조하여 분리막 필름을 형성하거나, 상기 분리막 조성물을 지지체 상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리된 분리막 필름을 전극 상부에 라미네이션하여 형성할 수 있다.
상기 분리막은 통상적으로 사용되는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이때, 상기 다공성 분리막의 기공 직경은 일반적으로 0.01 내지 50㎛이고, 기공도는 5 내지 95%일 수 있다. 또한 상기 다공성 분리막의 두께는 일반적으로 5 내지 300㎛ 범위일 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1.
(겔 폴리머 전해질용 조성물 제조)
카보네이트계 유기용매 (EC:DMC=1:9부피비)와 디메톡시에탄(모노-글라임, DME)를 1:9 중량비로 혼합한 후에 LiFSI가 2.8M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 3g과 중합개시제로서 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
용매인 N-메틸-2-피롤리돈(NMP)에 양극 활물질(LiNi1/3Co1/3Mn1/3O2; NCM), 도전재 (카본 블랙) 및 바인더 (폴리비닐리덴플루오라이드; PVDF)를 94:3:3 중량 비율로 첨가하여 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포 및 건조한 후, 롤 프레스(roll press)로 압연하여 양극을 제조하였다.
음극 집전체로 10 ㎛ 두께의 Cu를 사용하고, 그 위에 Li 메탈을 롤 프레스로 압연하여 20 ㎛ 두께로 조절하여, 총 두께 30㎛의 Li 메탈 전극을 제조하였다.
상기 양극과 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막 및 Li 메탈 전극을 순차적으로 적층하여 전극조립체를 제조한 다음, 전지 케이스 내에 상기 조립된 전극조립체를 수납하고, 상기 겔 폴리머 전해질용 조성물을 주액한 후 2일 동안 에이징(aging)하였다. 이후, 70℃에서 5시간 경화(curing)하여 열중합된 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
실시예 2.
(겔 폴리머 전해질용 조성물 제조)
카보네이트계 유기용매 (EC:DMC=1:9부피비)와 디메톡시에탄(모노-글라임, DME)를 9:1 중량비로 혼합한 후에 LiFSI가 2.8M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 3g과 중합개시제로서 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
실시예 1의 겔 폴리머 전해질용 조성물 대신 상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
실시예 3.
(겔 폴리머 전해질용 조성물 제조)
디메틸 카보네이트(DMC)와 디메톡시에탄(모노-글라임, DME)를 1:9 중량비로 혼합한 후에 LiFSI가 3.4M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 99.8998g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 0.1g과 중합개시제로서 AIBN 0.0002g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조) .
(이차전지 제조)
실시예 1의 겔 폴리머 전해질용 조성물 대신 상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
실시예 4.
(겔 폴리머 전해질용 조성물 제조)
디메틸 카보네이트(DMC)와 디메톡시에탄(모노-글라임, DME)를 1:9 중량비로 혼합한 후에 LiFSI가 3.4M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 19.84g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 80g 및 AIBN 0.16g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
실시예 1의 겔 폴리머 전해질용 조성물 대신 상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
실시예 5.
(겔 폴리머 전해질용 조성물 제조)
디메톡시에탄(모노-글라임, DME)에 LiFSI가 3.4M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 93.99g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 5g과 산소제거제로 트리스-2,2,2-트리플루오로에틸 포스파이트 (TFEPi) 1g 및 AIBN 0.01g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
실시예 1의 겔 폴리머 전해질용 조성물 대신 상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
실시예 6.
(겔 폴리머 전해질용 조성물 제조)
테트라-글라임(TEGDME)에 LiFSI가 3.4M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 3g과 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
실시예 1의 겔 폴리머 전해질용 조성물 대신 상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
실시예 7.
(겔 폴리머 전해질용 조성물 제조)
디메톡시에탄(모노-글라임, DME)에 LiFSI가 3.4M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 화학식 1b로 표시되는 올리고머(중량평균분자량(Mw) 5,300, z1=10, x1=10, y1=5, o1=2) 3g과 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
실시예 1의 겔 폴리머 전해질용 조성물 대신 상기 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지를 제조하였다.
실시예 8.
(겔 폴리머 전해질용 조성물 제조)
디메틸 카보네이트(DMC)와 디메톡시에탄(모노-글라임, DME)를 5:5 중량비로 혼합한 후에 LiFSI가 3.4M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 3g과 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
실시예 1의 겔 폴리머 전해질용 조성물 대신 상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
실시예 9.
(겔 폴리머 전해질용 조성물 제조)
카보네이트계 유기용매 (EC:DMC=1:9부피비)와 디메톡시에탄(모노-글라임, DME)를 99:1 중량비로 혼합한 후에 LiFSI가 2.8M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 3g과 중합개시제로서 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
비교예 1.
(겔 폴리머 전해질용 조성물 제조)
에틸렌 카보네이트 및 디메틸 카보네이트를 1:9 부피비로 혼합한 후에 LiFSI가 2.8M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 3g과 중합개시제로서 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
실시예 1의 겔 폴리머 전해질용 조성물 대신 상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
비교예 2.
(겔 폴리머 전해질용 조성물 제조)
에틸렌 카보네이트 및 디메틸 카보네이트를 1:9 부피비로 혼합한 후에 LiFSI가 2.8M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 에틸렌 옥사이드 단량체 (중량평균분자량(Mw) 5,000) 3g과 중합개시제로서 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 비교예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
비교예 3.
(겔 폴리머 전해질용 조성물 제조)
카보네이트계 유기용매 (EC:DMC= 3:7부피비)와 메틸 아세테이트(MA)를 5:5 중량비로 혼합한 후에 LiFSI가 2.8M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 3g과 중합개시제로서 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 비교예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
비교예 4.
(겔 폴리머 전해질용 조성물 제조)
디메톡시에탄(모노-글라임, DME)에 LiFSI가 3.4M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 화학식 1a로 표시되는 올리고머 대신 에틸렌 옥사이드 단량체 (중량평균분자량(Mw) 5,000) 3g과 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
비교예 5.
(겔 폴리머 전해질용 조성물 제조)
카보네이트계 유기용매 (EC:DMC=1:9부피비)와 디메톡시에탄(모노-글라임, DME) 및 디옥소란을 3:3:4 중량비로 혼합한 후에 LiFSI가 2.8M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 이후, 상기 비수성 유기용매 96.994g에 화학식 1a로 표시되는 올리고머(중량평균분자량(Mw) 6,000, z1=10, x1=10, y1=5, o1=2) 3g과 중합개시제로서 AIBN 0.006g을 첨가하여 겔 폴리머 전해질용 조성물을 제조하였다 (하기 표 1 참조).
(이차전지 제조)
상기 제조된 겔 폴리머 전해질용 조성물을 사용하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 겔 폴리머 전해질을 포함하는 리튬 이차전지를 제조하였다.
하기 표 1에서, 화합물의 약칭은 각각 이하의 의미이다.
EC: 에틸렌 카보네이트
DMC: 디메틸 카보네이트
DME : 디메톡시에탄 (모노-글라임)
TEGDME: 테트라-글라임
MA: 메틸 아세테이트
EO : 에틸렌 옥사이드
Figure PCTKR2019012245-appb-T000001
실험예
실험예 1: 산화 안정성 평가
실시예 1 내지 9에서 제조된 이차전지와 비교예 1 내지 5에서 제조된 이차 전지에 대하여, 선형 주사 전위법(Linear sweep voltammetry, LSV)에 따른 전기화학적 (산화)안정성을 측정하였다. 측정 장치로는 potentiostat(EG&G사, model 270A)를 사용하였으며, 측정온도는 60℃였다. 그 결과를 하기 표 2에 나타내었다.
산화 안정성(V) @ 60℃
실시예 1 4.77
실시예 2 4.72
실시예 3 4.64
실시예 4 5.24
실시예 5 4.91
실시예 6 4.86
실시예 7 4.69
실시예 8 4.69
실시예 9 4.52
비교예 1 4.39
비교예 2 3.88
비교예 3 4.27
비교예 4 3.96
비교예 5 4.35
상기 표 2를 참조하면, 본원발명의 실시예 1 내지 9에서 제조된 이차전지는 약 4.52V 이상에서 산화 개시 전압을 보여 우수한 산화 안정성을 나타내는 것을 확인하였다. 반면에, 비교예 1 내지 5의 이차전지는 산화 개시 전압이 모두 실시예 1 내지 9의 이차전지 보다 낮은 약 4.39V 미만에서 나타나는 것을 알 수 있다.
이러한 결과로부터 본원발명의 겔 폴리머 전해질을 포함하는 실시예 1 내지 9의 이차전지의 경우, 비교예 1 내지 5의 이차전지보다 산화안정성이 향상되었음을 확인할 수 있다.
한편, 글라임계 용매에 비해 카보네이트계 용매의 함량이 높은 실시예 9의 이차전지의 경우, 실시예 1 내지 8의 이차전지에 비하여 산화 안정성이 상대적으로 낮은 것을 알 수 있다.
실험예 2. 인장 강도 (tensile strength) 평가
실시예 1, 2 및 4 내지 8의 겔 폴리머 전해질용 조성물과 비교예 1 내지 4의 겔 폴리머 전해질용 조성물을 이용하여 시편을 제작한 다음, 이들 시편의 인장강도를 측정하였다.
상기 시편은 ASTM standard D638 (Type V specimens)을 통해 일괄적으로 제작하였으며, 25℃, 약 30%의 상대습도에서 분당 5 mm의 속도로 Lloyd LR-10K을 이용하여 인장강도를 측정하였다. 그 결과를 하기 표 3에 나타내었다.
인장 강도 (MPa)
실시예 1 2.4
실시예 2 1.9
실시예 4 9
실시예 5 5
실시예 6 3.2
실시예 7 1.2
실시예 8 2.3
비교예 1 0.6
비교예 2 0.7
비교예 3 0.75
비교예 4 0.9
상기 표 3을 참조하면, 비교예 1 내지 4에서 제조된 겔 폴리머 전해질 시편의 인장 강도는 대부분 1 MPa 이하인 반면에, 실시예 1, 2 및 4 내지 8에서 제조된 겔 폴리머 전해질 시편의 인장 강도는 1.2 MPa 이상인 것을 확인할 수 있다. 더욱이, 상기 실시예 4와 같이 올리고머의 함량이 높은 경우에는, 겔 폴리머 전해질 시편의 인장 강도가 보다 향상된 것을 알 수 있다.
따라서, 본 발명의 실시예 1, 2 및 4 내지 8에서 제조된 겔 폴리머 전해질은 비교예 1 내지 4에서 제조된 겔 폴리머 전해질보다 기계적 강도가 향상된 것을 알 수 있다.
실험예 3. 이온전도도 평가
실시예 1 내지 9의 겔 폴리머 전해질용 조성물과 비교예 1 내지 5의 겔 폴리머 전해질용 조성물을 이용하여 시편을 제작하였다. 상기 시편은 ASTM standard D638 (Type V specimens)을 통해 일괄적으로 제작하였다.
이어서, 상기 시편 상부에 금(Au) 전극을 1 mm 지름의 원형으로 스퍼터(sputter)법을 사용하여 코팅하고, 25℃에서 교류 임피던스 측정법을 사용하여 측정하였다. 상기 이온전도도는 VMP3측정 장비와 정밀 임피던스 분석기(4294A)를 주파수 대역 100MHz 내지 0.1Hz에서 측정하였다. 측정 결과를 하기 표 4에 나타내었다.
이온전도도 (mS/cm)
실시예 1 6.6
실시예 2 6.2
실시예 3 7.1
실시예 4 5.3
실시예 5 6.5
실시예 6 6.8
실시예 7 6.95
실시예 8 6.3
실시예 9 4.8
비교예 1 4.4
비교예 2 2.3
비교예 3 3.9
비교예 4 3.4
비교예 5 4.9
상기 표 4를 살펴보면, 실시예 1 내지 8에서 제조된 겔 폴리머 전해질이 이온전도도는 5.3 mS/cm 이상으로, 비교예 1 내지 5에서 제조된 겔 폴리머 전해질에 비하여 향상된 것을 알 수 있다. 한편, 글라임계 용매에 비해 카보네이트계 용매의 함량이 높은 실시예 9의 이차전지의 경우, 실시예 1 내지 8의 이차전지에 비하여 이온전도도가 낮은 것을 알 수 있다.
이상에서 설명한 것은 본 발명에 따른 겔 폴리머 전해질 및 이를 포함하는 이차전지를 제조하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 사상에 포함된다.

Claims (13)

  1. 리튬염,
    글라임계 용매를 포함하는 비수계 유기용매,
    하기 화학식 1로 표시되는 올리고머, 및
    중합개시제를 포함하는 겔 폴리머 전해질용 조성물:
    [화학식 1]
    Figure PCTKR2019012245-appb-I000006
    상기 화학식 1에서,
    R1은 탄소수 1 내지 5의 알킬렌기 또는 -R1'-O-이고, 이때 R1'은 탄소수 1 내지 5의 알킬렌기이고,
    R2는 탄소수 1 내지 5의 알킬렌기 또는 -O-R2'-이고, 이때 R2'는 탄소수 1 내지 5의 알킬렌기이며,
    R4, R5, R6, 및 R7은 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고,
    R 및 R3은 각각 독립적으로 지방족 탄화수소기 또는 방향족 탄화수소기이고,
    R8 및 R9는 각각 탄소수 1 내지 5의 알킬렌기이고,
    Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이며,
    x, y, z 및 o는 각각 독립적으로 1 내지 100 중 어느 하나의 정수이고,
    c 및 c1은 각각 독립적으로 1 내지 3 중 어느 하나의 정수이며,
    d 및 d1은 각각 독립적으로 0 내지 2 중 어느 하나의 정수이다.
  2. 청구항 1에 있어서,
    상기 글라임계 용매는 디메톡시에탄 (모노-글라임), 디-글라임, 트리-글라임 및 테트라-글라임으로 이루어진 군으로부터 선택된 적어도 하나 이상인 것인 겔 폴리머 전해질용 조성물.
  3. 청구항 1에 있어서,
    상기 비수계 유기용매는 카보네이트계 유기용매를 더 포함하는 것인 겔 폴리머 전해질용 조성물.
  4. 청구항 3에 있어서,
    상기 글라임계 용매:카보네이트계 용매의 중량비는 1:9 내지 9:1인 것인 겔 폴리머 전해질용 조성물.
  5. 청구항 1에 있어서,
    상기 화학식 1에서, R1은 -R1'-O-이고, 이때 R1'은 탄소수 1 내지 5의 알킬렌기이고, R2는 -O-R2'-이고, 이때 R2'는 탄소수 1 내지 5의 알킬렌기이며, R4, R5, R6, 및 R7은 각각 독립적으로 탄소수 1 내지 3의 알킬기이고, R8 및 R9는 각각 독립적으로 탄소수 1 내지 3의 알킬렌기이며, Ra, Rb, Rc 및 Rd는 수소인 것인 겔 폴리머 전해질용 조성물.
  6. 청구항 1에 있어서,
    상기 화학식 1에서, R1은 -R1'-O-이고, 이때 R1'은 탄소수 2 내지 5의 알킬렌기이고, R2는 -O-R2'-이고, 이때 R2'는 탄소수 2 내지 5의 알킬렌기이며, R4, R5, R6, 및 R7은 각각 독립적으로 탄소수 1 내지 3의 알킬기이고, R8 및 R9는 각각 독립적으로 탄소수 1 또는 2의 알킬렌기이며, Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소인 것인 겔 폴리머 전해질용 조성물.
  7. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 올리고머는 하기 화학식 1a 및 화학식 1b로 표시되는 화합물들로 이루어진 군으로부터 선택된 적어도 하나 이상인 것인 겔 폴리머 전해질용 조성물.
    [화학식 1a]
    Figure PCTKR2019012245-appb-I000007
    상기 화학식 1a에서,
    x1, y1, z1 및 o1는 각각 독립적으로 1 내지 100 중 어느 하나의 정수이다.
    [화학식 1b]
    Figure PCTKR2019012245-appb-I000008
    상기 화학식 1b에서,
    x2, y2, z2 및 o2는 각각 독립적으로 1 내지 100 중 어느 하나의 정수이다.
  8. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 올리고머는 겔 폴리머 전해질용 조성물 전체 중량을 기준으로 0.1 중량% 내지 80 중량%로 포함되는 것인 겔 폴리머 전해질용 조성물.
  9. 청구항 1에 있어서,
    상기 겔 폴리머 전해질용 조성물은 산소 제거제를 더 포함하는 것인 겔 폴리머 전해질용 조성물.
  10. 청구항 1의 폴리머 전해질용 조성물을 중합하여 제조된 겔 폴리머 전해질.
  11. 양극, 음극, 분리막 및 청구항 10의 겔 폴리머 전해질을 포함하는 리튬 이차전지.
  12. 청구항 11에 있어서,
    상기 음극은 금속 또는 준금속 박막을 단독으로 사용한 메탈 전극이거나, 또는 음극 집전체 상에 상기 금속 또는 준금속 박막이 적층된 구조로 이루어진 것인 리튬 이차전지.
  13. 청구항 12에 있어서,
    상기 금속 또는 준금속은 Li, Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, Sn, Ag, Pt 및 Au으로 이루어진 군으로부터 선택되는 적어도 하나인 것인 리튬 이차전지.
PCT/KR2019/012245 2018-09-21 2019-09-20 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지 WO2020060293A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/272,581 US20210359342A1 (en) 2018-09-21 2019-09-20 Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom
EP19863683.9A EP3826096B1 (en) 2018-09-21 2019-09-20 Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom
CN201980053959.2A CN112567557B (zh) 2018-09-21 2019-09-20 用于凝胶聚合物电解质的组合物和包括由该组合物形成的凝胶聚合物电解质的锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0114101 2018-09-21
KR20180114101 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020060293A1 true WO2020060293A1 (ko) 2020-03-26

Family

ID=69887626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012245 WO2020060293A1 (ko) 2018-09-21 2019-09-20 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US20210359342A1 (ko)
EP (1) EP3826096B1 (ko)
KR (1) KR102544259B1 (ko)
CN (1) CN112567557B (ko)
HU (1) HUE067067T2 (ko)
WO (1) WO2020060293A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170774A4 (en) * 2021-01-15 2024-01-24 LG Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY INCLUDING SAME
CN117525573A (zh) * 2023-12-25 2024-02-06 中国科学院长春应用化学研究所 一种耐低温凝胶聚合物电解质及应用该凝胶聚合物电解质的锂离子电池
US20240283017A1 (en) * 2023-02-16 2024-08-22 Anthro Energy, Inc. Gel electrolyte composition for a battery and a method of implementation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230261260A1 (en) * 2020-09-18 2023-08-17 Lg Energy Solution, Ltd. Composition for gel polymer electrolyte and lithium secondary battery including gel polymer electrolyte formed therefrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050089240A (ko) * 2004-03-04 2005-09-08 삼성에스디아이 주식회사 리튬 이차 전지용 고분자 전해질, 이로부터 제조되는고분자 전해질 및 이를 포함하는 리튬 이차 전지
KR20120000399A (ko) * 2010-06-25 2012-01-02 삼성에스디아이 주식회사 첨가제를 포함하는 리튬 이차 전지용 겔 전해질 및 이를 포함하는 리튬 이차 전지
KR20120007281A (ko) * 2010-07-14 2012-01-20 주식회사 엘지화학 아미드 화합물을 포함하는 전해질 및 이를 구비한 전기화학소자
US20130040207A1 (en) * 2011-08-12 2013-02-14 Neeraj Gupta Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers
KR20160040128A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR20180026358A (ko) 2016-09-02 2018-03-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508130A (en) * 1992-07-22 1996-04-16 Golovin; Milton N. Solid electrolytes containing LiN(SO2 CF3)2 and a triglyme-carbonate solvent, and electrochemical cells produced therefrom
JP3748995B2 (ja) * 1997-09-10 2006-02-22 昭和電工株式会社 高分子固体電解質及びその用途
JP3976529B2 (ja) * 2001-09-18 2007-09-19 シャープ株式会社 リチウムポリマー二次電池およびその製造方法
JP4156481B2 (ja) * 2003-09-19 2008-09-24 日東電工株式会社 ゲル電解質とその製造方法とその利用
US10128540B2 (en) * 2012-11-22 2018-11-13 Lg Chem, Ltd. Lithium secondary battery
KR20140066567A (ko) * 2012-11-23 2014-06-02 주식회사 엘지화학 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US10361456B2 (en) * 2014-09-26 2019-07-23 Samsung Electronics Co., Ltd. Electrolyte, method of preparing the electrolyte, and secondary battery including the electrolyte
CN107078342B (zh) * 2014-10-02 2019-10-15 株式会社Lg化学 凝胶聚合物电解质和包括该凝胶聚合物电解质的锂二次电池
WO2016053064A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR101648465B1 (ko) * 2015-02-17 2016-08-16 주식회사 제낙스 겔 고분자 전해질, 이의 제조 방법 및 이를 포함하는 전기화학 소자
KR102618538B1 (ko) * 2015-08-31 2023-12-28 삼성전자주식회사 리튬 금속 음극을 포함한 리튬금속전지, 상기 리튬 금속 음극을 보호하는 방법 및 그 방법에 따라 제조된 보호막
WO2018080259A1 (ko) * 2016-10-31 2018-05-03 주식회사 엘지화학 이차전지용 고분자 전해질 및 이를 포함하는 이차전지
CN111344890A (zh) * 2018-01-03 2020-06-26 株式会社Lg化学 凝胶聚合物电解质组合物、由该凝胶聚合物电解质组合物制备的凝胶聚合物电解质以及包括该凝胶聚合物电解质的锂二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050089240A (ko) * 2004-03-04 2005-09-08 삼성에스디아이 주식회사 리튬 이차 전지용 고분자 전해질, 이로부터 제조되는고분자 전해질 및 이를 포함하는 리튬 이차 전지
KR20120000399A (ko) * 2010-06-25 2012-01-02 삼성에스디아이 주식회사 첨가제를 포함하는 리튬 이차 전지용 겔 전해질 및 이를 포함하는 리튬 이차 전지
KR20120007281A (ko) * 2010-07-14 2012-01-20 주식회사 엘지화학 아미드 화합물을 포함하는 전해질 및 이를 구비한 전기화학소자
US20130040207A1 (en) * 2011-08-12 2013-02-14 Neeraj Gupta Siloxane copolymer and solid polymer electrolyte comprising such siloxane copolymers
KR20160040128A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR20180026358A (ko) 2016-09-02 2018-03-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3826096A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170774A4 (en) * 2021-01-15 2024-01-24 LG Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY INCLUDING SAME
US20240283017A1 (en) * 2023-02-16 2024-08-22 Anthro Energy, Inc. Gel electrolyte composition for a battery and a method of implementation
CN117525573A (zh) * 2023-12-25 2024-02-06 中国科学院长春应用化学研究所 一种耐低温凝胶聚合物电解质及应用该凝胶聚合物电解质的锂离子电池
CN117525573B (zh) * 2023-12-25 2024-06-04 中国科学院长春应用化学研究所 一种耐低温凝胶聚合物电解质及应用该凝胶聚合物电解质的锂离子电池

Also Published As

Publication number Publication date
KR102544259B1 (ko) 2023-06-16
EP3826096A4 (en) 2021-10-27
US20210359342A1 (en) 2021-11-18
HUE067067T2 (hu) 2024-09-28
CN112567557A (zh) 2021-03-26
KR20200034635A (ko) 2020-03-31
EP3826096A1 (en) 2021-05-26
CN112567557B (zh) 2024-04-16
EP3826096B1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2021034141A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020060295A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2020067779A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2018106078A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2019203622A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2020060293A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2020096343A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2020009436A1 (ko) 고온 특성이 향상된 리튬 이차전지
WO2019107921A1 (ko) 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지
WO2020055110A1 (ko) 리튬 이차전지용 열경화성 전해질 조성물, 이로부터 제조된 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2019013501A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2019108032A1 (ko) 겔 폴리머 전해질 조성물 및 이를 포함하는 리튬 이차전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021025521A1 (ko) 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지
WO2019108031A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2019135624A1 (ko) 겔 폴리머 전해질 조성물, 이에 의해 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2021015535A1 (ko) 리튬 이차전지
WO2019039903A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019088733A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2020055122A1 (ko) 리튬 이차전지용 열경화성 전해질 조성물, 이로부터 제조된 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2019093862A1 (ko) 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2022055307A1 (ko) 고분자 전해질용 전구체 조성물 및 이로부터 형성된 젤 고분자 전해질
WO2019098612A1 (ko) 양극 슬러리 조성물, 이를 포함하는 이차전지용 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019863683

Country of ref document: EP

Effective date: 20210218

NENP Non-entry into the national phase

Ref country code: DE