WO2020059775A1 - Liquid-supply-type compressor - Google Patents
Liquid-supply-type compressor Download PDFInfo
- Publication number
- WO2020059775A1 WO2020059775A1 PCT/JP2019/036684 JP2019036684W WO2020059775A1 WO 2020059775 A1 WO2020059775 A1 WO 2020059775A1 JP 2019036684 W JP2019036684 W JP 2019036684W WO 2020059775 A1 WO2020059775 A1 WO 2020059775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- gas
- compressor
- discharge
- rotor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/16—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
Definitions
- the present invention relates to a liquid-supply type compressor, and more particularly, to a liquid-supply type compressor including a gas-liquid separator for separating gas and liquid from discharged gas.
- a compressor or a compressor that compresses a gas such as air while a liquid such as oil or water is supplied to a compression working chamber.
- the casing rotor chamber is provided with male and female screw rotors that reduce the volume of the compression space by meshing the teeth by respective rotations and compress the intake body.
- it has a structure in which oil is supplied to a compression working chamber at the time of compression, compressed air is generated together with gas, and a gas-liquid mixed gas is discharged from a discharge port.
- the discharged gas mixture is pressure-fed to the gas-liquid separator via the discharge path, and the gas and liquid are primarily separated by the action of the centrifugal force of the swirling flow.
- the gas flows from the gas discharge port of the gas-liquid separator to the discharge pipe, and the oil is stored at the bottom of the gas-liquid separator, and is returned to the compressor body again from the recovery path via an oil cooler or the like. ing.
- Patent Literature 1 discloses a refueling type twin screw compressor in which an electric motor and a compressor main body are integrally formed vertically and coaxially, and a discharge pipe rising vertically from a discharge port located below the compressor main body. Disclosed is a configuration for introducing the discharged mixed gas above the gas-liquid separator through the intermediary.
- the discharge flow path from the discharge port of the compressor body to the gas-liquid separator is preferably linear and shorter according to the discharge direction in consideration of the discharge pressure loss. This is a problem that is not always realizable due to the relationship with other element parts.
- Patent Literature 1 discloses that the width of a horizontal direction can be shortened by disposing an electric motor and a compressor main body in a vertical direction, but a discharge flow path to a gas-liquid separator because a discharge port is located below. Is significantly bent or extremely long, and the problem that the discharge efficiency is reduced due to the discharge pressure loss remains.
- the gas mixture discharged from the compressor main body discharge port has a high flow velocity, and the discharge pressure loss has a large effect on the reduction in overall compressor efficiency. A configuration in which the pressure loss is further reduced is desired.
- a compressor body having a rotor for compressing gas sucked in with the liquid supplied to the working chamber, and a casing for housing the rotor, a drive source for supplying a driving force to the rotor, and a gas discharged from the compressor body.
- a liquid-supply type compressor including a gas-liquid separator that separates a compressed gas and the liquid from a liquid mixed gas, wherein the gas-liquid separator has a cylindrical portion through which the gas-liquid mixed gas flows, An opening into which the mixed gas flows, wherein a discharge port of the compressor body and a vertical position of the opening at least partially coincide with each other, and discharge from the discharge port
- a liquid supply type compressor having a discharge flow path for guiding the mixed gas to the opening at an angle of 0 to 90 degrees in the horizontal direction with respect to the discharge direction.
- FIG. 1 is a schematic diagram illustrating a configuration of a refueling compressor according to an embodiment to which the present invention is applied. It is a perspective view showing appearance composition of a compressor main part, a gas-liquid separator, etc. by this embodiment. BRIEF DESCRIPTION OF THE DRAWINGS It is the various arrow view which shows the external appearance structure of the compressor main body, gas-liquid separator, etc. by this embodiment. It is a schematic diagram which shows the flow of the discharge air from the compressor main body by this embodiment to a gas-liquid separator. It is a schematic diagram which shows the modification of the structure by this embodiment.
- FIG. 1 schematically shows a configuration of a refueling screw compressor 100 (hereinafter, may be simply referred to as “compressor 100”) which is an embodiment for carrying out the present invention.
- the compressor 100 includes a compressor body 1, an electric motor 2, a gas-liquid separator 3, an air filter 7, an oil cooler 9, an air cooler 10, a suction filter 13, a suction pipe 14, a suction throttle valve 5, and the like.
- the compressor body 1 includes a screw rotor as a compression mechanism, compresses oil supplied to a compression working chamber and air sucked in through a suction filter and a suction flow path 14, and discharges compressed air of gas-liquid mixture. It is a screw type compressor body.
- the electric motor 2 is a driving source that supplies a rotational driving force to the compressor body 1. It rotates at a predetermined rotation speed under the control of a control device (not shown).
- This embodiment can also be applied to a compressor of variable speed control using an inverter or the like.
- the suction throttle valve is a valve body that opens and closes the suction flow path 14 by, for example, a control pressure or an electric force.
- the suction throttle valve closes when a predetermined discharge pressure is reached, and reduces the load on the electric motor 2 to perform no-load operation. Realize.
- the discharge pipe 15 is a flow path that guides the gas-liquid mixture gas discharged from the discharge port of the compressor body 1 to the gas-liquid separator 3. Details will be described later.
- the gas-liquid separator is a centrifugal gas-liquid separator.
- the gas and liquid mixture flowing from the discharge pipe 15 is swirled on the inner surface of the outer cylinder so that oil and air are primarily separated.
- the separated oil is then stored at the bottom and flows through the oil pipe 17.
- the separated air flows to the air pipe 16 via the inside of the inner cylinder.
- the air filter 2 is a secondary filter for further removing oil from the air primarily separated by the gas-liquid separator 3.
- the air that has passed through the air filter 7 is supplied to the user via a pressure check valve 8 and an air cooler 10 that are arranged downstream.
- the pressure control check valve 8 is a control valve that suppresses the backflow of air in response to pressure fluctuations on the upstream and downstream sides.
- the air cooler 10 is, for example, an air-cooled heat exchanger using a fan or the like or a liquid-cooled heat exchanger using a cooling medium, and cools compressed air to a predetermined temperature.
- the oil pipe 17 branches into two systems via the switching valve 18 on the downstream side of the gas-liquid separator 3.
- the switching valve 18 is, for example, a three-way solenoid valve, and controls the flow of oil to each system according to a command from the control system.
- One of the systems is a system in which oil is cooled through an oil cooler 9, and then the oil is returned to the compressor main body 1 via the air cooler 9 or an oil cooler 9 as a liquid.
- the other system is a system in which oil is returned to the compressor main body 1 via the oil filter 19 without flowing through the oil cooler 9.
- switching of each system is performed according to the oil temperature. For example, if the oil temperature is equal to or higher than a predetermined temperature, the switching valve 18 allows the oil to flow to the oil cooler 9. If the oil temperature is lower than the predetermined temperature, the switching valve 18 restricts the oil to the oil cooler 9. Or, it is prohibited and the oil is directly returned from the other system.
- FIG. 2 is a perspective view showing the external appearance of the compressor body 1, the discharge channel 15, the gas-liquid separator 3, and the like. Further, FIG. 3 shows arrows (A) to (C) when viewed from each direction of A (axial direction), B (upper direction), and C (side direction of the compressor body) shown in FIG. Shown in
- the compressor main body 1 is a twin screw type in which male and female rotors in which tooth grooves mesh with each other are disposed in a main body casing, and the female rotor is disposed vertically above the male rotor.
- the intake opening is arranged on the side surface of the compressor body 1, and a suction throttle valve 5 is arranged in an internal flow passage thereof.
- the discharge side of the compressor body 1 is connected to the opening 20 of the gas-liquid separator 3 from the discharge port via the discharge flow path 15.
- An electric motor 2 is arranged on the suction side of the compressor body 1.
- the drive shaft of the electric motor 2 and the male rotor are connected coaxially. That is, this embodiment will be described as a compressor body integrated with an electric motor.
- the gas-liquid separator 3 has a hole communicating with the inside on any one of the peripheral surfaces from the center to the upper side in the height direction of the outer cylinder.
- This hole has an inner diameter shape substantially matching the outer diameter shape of the hole, and is connected to the introduction pipe 21 extending in the horizontal direction.
- the end of the introduction pipe 21 has an opening 20 connected to the discharge pipe 15 of the compressor body 1.
- the introduction pipe 21 extends toward the inner circumferential direction of the outer cylinder. More specifically, the introduction tube 21 extends in a direction that is 90 ° out of phase with the center of the outer cylinder. That is, since the gas-liquid separator 3 separates the oil and the compressed air by the centrifugal action, the gas-liquid mixed gas can enter in the direction in which the gas-liquid mixed gas easily turns on the inner wall surface of the outer cylinder.
- the discharge flow path 15 forms a flow path that is bent at an angle of 90 degrees with respect to the discharge direction (rotation axis direction) of the discharge port disposed at the axial end of the compression working chamber.
- an internal flow path structure having an R shape from the discharge port to the discharge flow path outlet is provided.
- the outlet of the discharge channel 15 is connected to the opening 20 of the gas-liquid separator 3.
- the compressor body 1 has an axial direction that is horizontal, and a side facing the suction side (the side on which the suction throttle valve 5 is arranged) and facing the gas-liquid separator 3. To place. Also, the height direction position of the discharge pipe 15 of the compressor body 1 and the opening 20 of the gas-liquid separator 3 coincide (when viewed from FIG. 3C, the outlet position of the discharge pipe 15 and the opening The projection plane with the part 20 coincides.) That is, in a configuration in which the gas-liquid separator 3 is used as a base at the bottom thereof, the compressor main body 1 is located above the base and has a spatial arrangement that does not directly contact the base.
- the present invention is not necessarily limited to such a configuration. If at least the horizontal projection planes of the unit 20 coincide with each other, an appropriate effect can be obtained.
- the compressor body 1 is arranged so that the axial direction of the compressor body 1 is horizontal in a direction symmetrical with respect to the opening 20 with respect to the radial center line of the gas-liquid separator 3. ing. That is, as shown in FIGS. 3B and 3C, the axial dimension of the gas-liquid separator 3 and the compressor main body 1 overlap in the axial direction of the compressor main body 1, so that the dimension in the direction becomes shorter.
- FIG. 4 shows a DD section of FIG. 3C.
- the gas-liquid mixed gas discharged from the discharge port flows through the discharge flow path 15 to the gas-liquid separator 3 while being bent by 90 ° with respect to the discharge direction (dotted line X). That is, since the bend is made once at 90 ° before reaching the gas-liquid separator 3 after the discharge, the discharge pressure loss is reduced. Further, since the flow path from the discharge port to the gas-liquid separator 3 is short, such a point also contributes to the reduction of the discharge pressure loss.
- the discharge pressure loss can be reduced. Further, since the gas-liquid separator 3 and the compressor main body 1 are arranged in a direction in which the body projection planes overlap each other in the horizontal direction, the axial dimension of these assemblies can be shortened.
- the discharge pipe 15 is bent by 90 ° and connected to the opening 20 of the gas-liquid separator 3, but the discharge pressure loss reducing effect is not limited to the 90 ° bend. That is, from the discharge port to the opening of the gas-liquid separator 3, the discharge pressure loss is reduced as the discharge flow path is less bent, so that the flow path can be bent at less than 90 °.
- FIG. 5 shows a configuration of the discharge pipe 15 and the like in a modified example.
- FIG. 5 is a schematic view of the compressor main body 1, the gas-liquid separator 3, and the like, observed from above.
- the discharge pipe 15 is configured to be substantially linear in the axial direction and connected to the opening 20.
- the gas-liquid mixture discharged from the discharge port is discharged at approximately 0 ° to the opening 20. That is, the discharge pressure loss can be reduced by bending the discharge pipe 50 from 90 ° as in the above-described embodiment to 0 ° as in the present modification.
- the gas-liquid separator 3 is configured to be connected to the discharge pipe 1 of the compressor body 1 through the introduction pipe 21 and the opening 20, but from the discharge port to the outer cylinder hole of the gas-liquid separator 3.
- the divided components constituting the discharge flow path can be arbitrarily selected (including an integrated component).
- a liquid-supply type compressor is applied, but a compressor using water instead of oil may be used.
- the twin screw compressor main body is applied, but a single screw compressor may be used.
- the compressor main body 1 and the electric motor have a pair of shafts, they may be separated from each other using a belt and a chain, or may be connected via a gear.
- the electric motor may be a drive source using an internal combustion engine or steam energy, or may use a natural energy such as wind power or hydraulic power.
- SYMBOLS 1 Compressor main body, 2 ... Electric motor, 3 ... Gas-liquid separator, 5 ... Suction throttle valve, 7 ... Air filter, 8 ... Pressure check valve, 9 ... Oil cooler, 10 ... Air cooler, 13 ... Suction filter, 14 suction pipe, 15 discharge pipe, 16 air pipe, 17 oil pipe, 18 switching valve, 19 oil filter, 20 opening, 21 introduction pipe
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
This liquid-supply-type compressor comprises: a compressor body having a rotor that compresses a gas drawn in together with a liquid supplied to a working chamber, and a casing that houses the rotor; a drive source that supplies driving force to the rotor; and a gas-liquid separator that separates a compressed gas and the liquid from a gas-liquid mixed gas discharged by the compressor body; wherein the gas-liquid separator has a cylinder part inside of which the gas-liquid mixed gas flows through and an opening part into which the mixed gas flows, the vertical positions of the opening part and a discharge port of the compressor body at least partially coincide, and the compressor has a discharge flow channel that guides the mixed gas horizontally to the opening part at an angle of 0 to 90 degrees relative to the direction of discharge from the discharge port. Discharge pressure loss in the liquid-supply-type compressor is thereby reduced.
Description
本発明は、給液式圧縮機に係り、吐出気体から気体と液体を分離する気液分離器を備える給液式圧縮機に関する。
The present invention relates to a liquid-supply type compressor, and more particularly, to a liquid-supply type compressor including a gas-liquid separator for separating gas and liquid from discharged gas.
圧縮作動室に油や水といった液体が供給された状態で、例えば、空気等の気体を圧縮又は圧縮機が知られている。一例として、給油式のツインスクリュー圧縮機本体を上げれば、ケーシングロータ室に、夫々の回転によって歯部が噛み合うことで圧縮空間の容積を減縮し、吸気体を圧縮する雄雌のスクリューロータを備え、圧縮時に油を圧縮作動室に供給して、気体とともに圧縮空気を生成し、吐出し口から気液混合気体を吐き出す構造を有する。
(4) For example, there is known a compressor or a compressor that compresses a gas such as air while a liquid such as oil or water is supplied to a compression working chamber. As an example, if the lubrication type twin screw compressor body is raised, the casing rotor chamber is provided with male and female screw rotors that reduce the volume of the compression space by meshing the teeth by respective rotations and compress the intake body. In addition, it has a structure in which oil is supplied to a compression working chamber at the time of compression, compressed air is generated together with gas, and a gas-liquid mixed gas is discharged from a discharge port.
吐出された混合気体は、吐出路を介して、気液分離器に圧送され、旋回流の遠心力等の作用で気体と液体が一次分離される。気体は気液分離器の気体吐出口から吐出し配管へと流れ、油は気液分離器の底部に貯留され、回収路からオイルクーラ等を経て、再度圧縮機本体に還流されるようになっている。
混合 The discharged gas mixture is pressure-fed to the gas-liquid separator via the discharge path, and the gas and liquid are primarily separated by the action of the centrifugal force of the swirling flow. The gas flows from the gas discharge port of the gas-liquid separator to the discharge pipe, and the oil is stored at the bottom of the gas-liquid separator, and is returned to the compressor body again from the recovery path via an oil cooler or the like. ing.
特許文献1は、給油式ツインスクリュー圧縮機であって、電動機と圧縮機本体を垂直方向且つ軸同に一体構成し、圧縮機本体の下方に位置する吐出口から垂直方向に立ちあがる吐出管路を介して、気液分離器の上方に吐出混合気体を導入する構成を開示する。
Patent Literature 1 discloses a refueling type twin screw compressor in which an electric motor and a compressor main body are integrally formed vertically and coaxially, and a discharge pipe rising vertically from a discharge port located below the compressor main body. Disclosed is a configuration for introducing the discharged mixed gas above the gas-liquid separator through the intermediary.
ところで、圧縮機本体の吐出口から気液分離器に至る吐出流路は、吐出圧損を考慮すれば、吐出方向により直線的且つ吐出流路がより短い方が好ましが、圧縮機の小型化や他の要素部品との関係から、必ずしも実現し難い課題である。
By the way, the discharge flow path from the discharge port of the compressor body to the gas-liquid separator is preferably linear and shorter according to the discharge direction in consideration of the discharge pressure loss. This is a problem that is not always realizable due to the relationship with other element parts.
特許文献1は、電動機及び圧縮機本体が垂直方向に配置することで、水平方向の幅寸を短くすることができるが、吐出口が下方に位置するために気液分離器までの吐出流路が著しく屈曲し又著しく長くなり、その分吐出圧損による吐出効率の低下という課題が残る。
Patent Literature 1 discloses that the width of a horizontal direction can be shortened by disposing an electric motor and a compressor main body in a vertical direction, but a discharge flow path to a gas-liquid separator because a discharge port is located below. Is significantly bent or extremely long, and the problem that the discharge efficiency is reduced due to the discharge pressure loss remains.
圧縮機本体吐出口からの吐出混合気体は流速が早く、吐出圧損による圧縮機全体の効率低下への影響が大きい。圧損がより低下する構成が望まれる。
混合 The gas mixture discharged from the compressor main body discharge port has a high flow velocity, and the discharge pressure loss has a large effect on the reduction in overall compressor efficiency. A configuration in which the pressure loss is further reduced is desired.
上述の課題を解決するために、例えば、請求項1に記載の構成を適用する。即ち作動室に供給された液体とともに吸気したガスを圧縮するロータ及び該ロータを格納するケーシングとを有する圧縮機本体と、前記ロータに駆動力を供給する駆動源と、前記圧縮機本体が吐き出す気液混合ガスから圧縮ガスと前記液体を分離する気液分離器とを備える給液式圧縮機であって、前記気液分離器が、内部を前記気液混合ガスが流通する筒部と、前記内部に前記混合ガスが流入する開口部とを有するものであり、前記圧縮機本体の吐出口と前記開口部の垂直方向位置が、少なくとも一部で一致するものであり、前記吐出口からの吐出し方向に対して、水平方向で0度~90度の角度で前記混合ガスを前記開口部に案内する吐出流路を有するものである給液式圧縮機である。
構成 In order to solve the above-mentioned problem, for example, the configuration described in claim 1 is applied. That is, a compressor body having a rotor for compressing gas sucked in with the liquid supplied to the working chamber, and a casing for housing the rotor, a drive source for supplying a driving force to the rotor, and a gas discharged from the compressor body. A liquid-supply type compressor including a gas-liquid separator that separates a compressed gas and the liquid from a liquid mixed gas, wherein the gas-liquid separator has a cylindrical portion through which the gas-liquid mixed gas flows, An opening into which the mixed gas flows, wherein a discharge port of the compressor body and a vertical position of the opening at least partially coincide with each other, and discharge from the discharge port A liquid supply type compressor having a discharge flow path for guiding the mixed gas to the opening at an angle of 0 to 90 degrees in the horizontal direction with respect to the discharge direction.
本発明によれば、ガスの吐出に対する抵抗が低減し、圧縮機本体からの吐出圧損が低下する。本発明の他の課題・構成・効果は、以下の構成から明らかになる。
According to the present invention, resistance to gas discharge is reduced, and discharge pressure loss from the compressor body is reduced. Other problems, configurations, and effects of the present invention will be apparent from the following configurations.
以下に、本発明を実施するための形態について詳細に説明する。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
図1に、本発明を実施するための形態例である給油式スクリュー圧縮機100(以下、単に「圧縮機100」と称する場合がある。)の構成を模式的に示す。
FIG. 1 schematically shows a configuration of a refueling screw compressor 100 (hereinafter, may be simply referred to as “compressor 100”) which is an embodiment for carrying out the present invention.
圧縮機100は、圧縮機本体1と、電動機2と、気液分離器3と、エアフィルタ7と、オイルクーラ9と、エアクーラ10と、吸込フィルタ13と、吸込配管14と、吸込絞り弁5と、吐出配管15と、空気配管16と、油配管17と、切替弁18と、オイルフィルタ19とを備え、これらが基台(不図示)に配置してパッケージ筐体50に覆われるようになっている。
The compressor 100 includes a compressor body 1, an electric motor 2, a gas-liquid separator 3, an air filter 7, an oil cooler 9, an air cooler 10, a suction filter 13, a suction pipe 14, a suction throttle valve 5, and the like. , A discharge pipe 15, an air pipe 16, an oil pipe 17, a switching valve 18, and an oil filter 19, which are arranged on a base (not shown) and covered by the package housing 50. Has become.
圧縮機本体1は、圧縮機構としてスクリューロータを備え、圧縮作動室に供給された油と、吸込フィルタ及び吸込流路14を介して吸込んだ空気とを圧縮し、気液混合の圧縮空気を吐き出すスクリュー型の圧縮機本体である。
The compressor body 1 includes a screw rotor as a compression mechanism, compresses oil supplied to a compression working chamber and air sucked in through a suction filter and a suction flow path 14, and discharges compressed air of gas-liquid mixture. It is a screw type compressor body.
電動機2は、圧縮機本体1に回転駆動力を供給する駆動源である。不図示の制御装置の制御によって所定の回転数で回転する。なお、本実施例はインバータ等による可変速制御の圧縮機にも適用できる。
The electric motor 2 is a driving source that supplies a rotational driving force to the compressor body 1. It rotates at a predetermined rotation speed under the control of a control device (not shown). This embodiment can also be applied to a compressor of variable speed control using an inverter or the like.
吸込絞り弁は、例えば制御圧力や電動力によって吸込流路14の開閉を行う弁体であり、例えば、所定吐出圧力に達すると閉弁し、電動機2の負荷を軽減することで無負荷運転を実現する。
The suction throttle valve is a valve body that opens and closes the suction flow path 14 by, for example, a control pressure or an electric force. For example, the suction throttle valve closes when a predetermined discharge pressure is reached, and reduces the load on the electric motor 2 to perform no-load operation. Realize.
吐出配管15は、圧縮機本体1の吐出ポートから吐き出された気液混合気体を気液分離器3に案内する流路である。詳細は後述する。
The discharge pipe 15 is a flow path that guides the gas-liquid mixture gas discharged from the discharge port of the compressor body 1 to the gas-liquid separator 3. Details will be described later.
気液分離器は、遠心型の気液分離器である。二重筒からなり、吐出配管15から流れ込む気液混合気体が外筒の内面を旋回することで油と空気が一次分離されるようになっている。分離された油はその後底部に貯留し、油配管17に流通する。分離されらた空気は、内筒の内部を介して空気配管16に流れる。
The gas-liquid separator is a centrifugal gas-liquid separator. The gas and liquid mixture flowing from the discharge pipe 15 is swirled on the inner surface of the outer cylinder so that oil and air are primarily separated. The separated oil is then stored at the bottom and flows through the oil pipe 17. The separated air flows to the air pipe 16 via the inside of the inner cylinder.
エアフィルタ2は、気液分離器3で一次分離された空気から更に油分を取り除くための二次フィルタである。エアフィルタ7を経由した空気は下流に配置された調圧逆止弁8及びエアクーラ10を介して、使用者側に供給されるようになっている。調圧逆止弁8は、その上流及び下流側の圧力変動に応じて空気の逆流を抑止する調整弁である。エアクーラ10は、例えば、ファン等を用いた空冷式或いは冷却媒体を用いた液冷式の熱交換器であり、圧縮空気を所定温度まで冷却する。
The air filter 2 is a secondary filter for further removing oil from the air primarily separated by the gas-liquid separator 3. The air that has passed through the air filter 7 is supplied to the user via a pressure check valve 8 and an air cooler 10 that are arranged downstream. The pressure control check valve 8 is a control valve that suppresses the backflow of air in response to pressure fluctuations on the upstream and downstream sides. The air cooler 10 is, for example, an air-cooled heat exchanger using a fan or the like or a liquid-cooled heat exchanger using a cooling medium, and cools compressed air to a predetermined temperature.
油配管17は、気液分離機3の下流側で切替弁18を介して2系統に分岐する。切替弁18は例えば三方電磁弁であり、制御系統からの指令に応じて各系統への油の流れを制御するようになっている。一方の系統は、オイルクーラ9に通じて油の冷却が行われ、その後、空冷又は液例のオイルクーラ9を介して圧縮機本体1に油を還流する系統である。他方の系統は、オイルクーラ9を流通せずに、オイルフィルタ19を介して圧縮機本体1に油が還流される系統である。例えば、各系統の切り替えは油温に応じて行われる。例えば、油温が所定温度以上であれば、切替弁18はオイルクーラ9への油の流通を許可し、油温が当該所定温度より低い場合には、オイルクーラ9への油の流通を制限或いは禁止して、他方の系統から直接油を還流するようになっている。
The oil pipe 17 branches into two systems via the switching valve 18 on the downstream side of the gas-liquid separator 3. The switching valve 18 is, for example, a three-way solenoid valve, and controls the flow of oil to each system according to a command from the control system. One of the systems is a system in which oil is cooled through an oil cooler 9, and then the oil is returned to the compressor main body 1 via the air cooler 9 or an oil cooler 9 as a liquid. The other system is a system in which oil is returned to the compressor main body 1 via the oil filter 19 without flowing through the oil cooler 9. For example, switching of each system is performed according to the oil temperature. For example, if the oil temperature is equal to or higher than a predetermined temperature, the switching valve 18 allows the oil to flow to the oil cooler 9. If the oil temperature is lower than the predetermined temperature, the switching valve 18 restricts the oil to the oil cooler 9. Or, it is prohibited and the oil is directly returned from the other system.
次いで、本実施形態の特徴の1つである、圧縮機本体1、吐出流路15及び気液分離器3の構成について詳細に説明する。
Next, the configuration of the compressor body 1, the discharge channel 15, and the gas-liquid separator 3, which are one of the features of the present embodiment, will be described in detail.
図2に、圧縮機本体1、吐出流路15及び気液分離器3等の外観を示す斜視図を示す。また、図3に図2に示すA(軸方向)・B(上方)・C(圧縮機本体側面方向)の各方向から観察した場合の矢視図をそれぞれ図3(a)~(c)に示す。
圧縮機本体1は、互いの歯溝が噛み合う雄雌ロータが本体ケーシングに配置されたツインスクリュー型であり、雌ロータが、雄ロータの鉛直方向で上方に配置する。吸気用の開口は圧縮機本体1の側面に配置し、その内部流路に吸込絞弁5が配置する。圧縮機本体1の吐出側は、吐出ポートから吐出流路15を介して気液分離器3の開口部20と接続する。圧縮機本体1の吸込側には電動機2が配置する。電動機2の駆動軸と、雄ロータとは軸同に接続する。即ち本実施形態は電動機一体の圧縮機本体として説明する。 FIG. 2 is a perspective view showing the external appearance of the compressor body 1, thedischarge channel 15, the gas-liquid separator 3, and the like. Further, FIG. 3 shows arrows (A) to (C) when viewed from each direction of A (axial direction), B (upper direction), and C (side direction of the compressor body) shown in FIG. Shown in
The compressor main body 1 is a twin screw type in which male and female rotors in which tooth grooves mesh with each other are disposed in a main body casing, and the female rotor is disposed vertically above the male rotor. The intake opening is arranged on the side surface of the compressor body 1, and asuction throttle valve 5 is arranged in an internal flow passage thereof. The discharge side of the compressor body 1 is connected to the opening 20 of the gas-liquid separator 3 from the discharge port via the discharge flow path 15. An electric motor 2 is arranged on the suction side of the compressor body 1. The drive shaft of the electric motor 2 and the male rotor are connected coaxially. That is, this embodiment will be described as a compressor body integrated with an electric motor.
圧縮機本体1は、互いの歯溝が噛み合う雄雌ロータが本体ケーシングに配置されたツインスクリュー型であり、雌ロータが、雄ロータの鉛直方向で上方に配置する。吸気用の開口は圧縮機本体1の側面に配置し、その内部流路に吸込絞弁5が配置する。圧縮機本体1の吐出側は、吐出ポートから吐出流路15を介して気液分離器3の開口部20と接続する。圧縮機本体1の吸込側には電動機2が配置する。電動機2の駆動軸と、雄ロータとは軸同に接続する。即ち本実施形態は電動機一体の圧縮機本体として説明する。 FIG. 2 is a perspective view showing the external appearance of the compressor body 1, the
The compressor main body 1 is a twin screw type in which male and female rotors in which tooth grooves mesh with each other are disposed in a main body casing, and the female rotor is disposed vertically above the male rotor. The intake opening is arranged on the side surface of the compressor body 1, and a
気液分離器3は外筒の高さ方向で、中央から上方までのいずれかの周面に、内部と連通する孔を有しする。この孔は、当該孔の外径形状と略一致する内径形状を有して、水平方向に延伸する導入管21と接続する。導入管21の端部には、圧縮機本体1の吐出配管15と接続する開口部20を有する。また、導入管21は、外筒の内周方向に向かって延伸する。より具体的には、外筒の中心に対して90°位相する向きで導入管21は延伸するようになっている。即ち気液分離器3は、遠心分離作用によって油と圧縮空気とを分離することから、気液混合気体が外筒内壁面を旋回しやすい向きで侵入することができる。
The gas-liquid separator 3 has a hole communicating with the inside on any one of the peripheral surfaces from the center to the upper side in the height direction of the outer cylinder. This hole has an inner diameter shape substantially matching the outer diameter shape of the hole, and is connected to the introduction pipe 21 extending in the horizontal direction. The end of the introduction pipe 21 has an opening 20 connected to the discharge pipe 15 of the compressor body 1. Further, the introduction pipe 21 extends toward the inner circumferential direction of the outer cylinder. More specifically, the introduction tube 21 extends in a direction that is 90 ° out of phase with the center of the outer cylinder. That is, since the gas-liquid separator 3 separates the oil and the compressed air by the centrifugal action, the gas-liquid mixed gas can enter in the direction in which the gas-liquid mixed gas easily turns on the inner wall surface of the outer cylinder.
吐出流路15は、圧縮作動室の軸方向端部に配置する吐出ポートの吐出方向(回転軸方向)に対して90度の角度で屈曲する流路を形成する。本実施例では吐出ポートから吐出流路出口までR形状の内部流路構造とする。吐出流路15の出口は、気液分離器3の開口部20と接続する。
The discharge flow path 15 forms a flow path that is bent at an angle of 90 degrees with respect to the discharge direction (rotation axis direction) of the discharge port disposed at the axial end of the compression working chamber. In this embodiment, an internal flow path structure having an R shape from the discharge port to the discharge flow path outlet is provided. The outlet of the discharge channel 15 is connected to the opening 20 of the gas-liquid separator 3.
図2及び図3に示すように、圧縮機本体1は、軸方向を水平とし、吸込み側(吸込絞弁5を配置する側)と反対側側面を気液分離器3に向けた向き且つ近傍に配置する。また、圧縮機本体1の吐出配管15と、気液分離器3の開口部20との高さ方向位置は一致する(図3(c)から観察した場合、吐出配管15の出口位置と、開口部20との投影面が一致する。)。即ち気液分離器3をその底部で基台にする構成において、圧縮機本体1が基台より上方に位置して、基台とは直接接触しない空間配置となる。
As shown in FIGS. 2 and 3, the compressor body 1 has an axial direction that is horizontal, and a side facing the suction side (the side on which the suction throttle valve 5 is arranged) and facing the gas-liquid separator 3. To place. Also, the height direction position of the discharge pipe 15 of the compressor body 1 and the opening 20 of the gas-liquid separator 3 coincide (when viewed from FIG. 3C, the outlet position of the discharge pipe 15 and the opening The projection plane with the part 20 coincides.) That is, in a configuration in which the gas-liquid separator 3 is used as a base at the bottom thereof, the compressor main body 1 is located above the base and has a spatial arrangement that does not directly contact the base.
なお、本実形態では、吐出配管15と開口部20の高さ方向位置が一致するものとして説明するが、本発明は必ずしも係る構成に限定されるものではなく、吐出配管15の出口と、開口部20との水平方向投影面が少なくとも一致すれば、応分の効果を得られるものである。
In the present embodiment, a description will be given assuming that the height position of the discharge pipe 15 coincides with the height direction of the opening 20. However, the present invention is not necessarily limited to such a configuration. If at least the horizontal projection planes of the unit 20 coincide with each other, an appropriate effect can be obtained.
また、圧縮機本体1は、気液分離器3の径方向中心線に対して、開口部20に対して線対称となる方向に圧縮機本体1が軸方向を水平にして配置するようになっている。即ち図3(b)(c)に示すように、圧縮機本体1の軸方向において、気液分離器3と圧縮機本体1の軸寸が重なることから、当該方向での寸法が短くなる。
Further, the compressor body 1 is arranged so that the axial direction of the compressor body 1 is horizontal in a direction symmetrical with respect to the opening 20 with respect to the radial center line of the gas-liquid separator 3. ing. That is, as shown in FIGS. 3B and 3C, the axial dimension of the gas-liquid separator 3 and the compressor main body 1 overlap in the axial direction of the compressor main body 1, so that the dimension in the direction becomes shorter.
以上の構成において、圧縮機本体1から吐き出される気液混合気体が気液分離器3に至るまでの流れを説明する。
図4に、図3(c)のD-D断面を示す。吐出ポートから吐き出された気液混合気体は、吐出流路15で、吐出方向に対して90°曲がって気液分離器3に流れる(点線X)。即ち吐出後に気液分離器3に至るまでに90°に1回曲がるため、吐出圧損が低減される。また、吐出ポートから気液分離器3までの流路が短いことから、かかる点も吐出圧損の低減に寄与する。 In the above configuration, a flow until the gas-liquid mixed gas discharged from the compressor body 1 reaches the gas-liquid separator 3 will be described.
FIG. 4 shows a DD section of FIG. 3C. The gas-liquid mixed gas discharged from the discharge port flows through thedischarge flow path 15 to the gas-liquid separator 3 while being bent by 90 ° with respect to the discharge direction (dotted line X). That is, since the bend is made once at 90 ° before reaching the gas-liquid separator 3 after the discharge, the discharge pressure loss is reduced. Further, since the flow path from the discharge port to the gas-liquid separator 3 is short, such a point also contributes to the reduction of the discharge pressure loss.
図4に、図3(c)のD-D断面を示す。吐出ポートから吐き出された気液混合気体は、吐出流路15で、吐出方向に対して90°曲がって気液分離器3に流れる(点線X)。即ち吐出後に気液分離器3に至るまでに90°に1回曲がるため、吐出圧損が低減される。また、吐出ポートから気液分離器3までの流路が短いことから、かかる点も吐出圧損の低減に寄与する。 In the above configuration, a flow until the gas-liquid mixed gas discharged from the compressor body 1 reaches the gas-
FIG. 4 shows a DD section of FIG. 3C. The gas-liquid mixed gas discharged from the discharge port flows through the
このように、本実施形態によれば、吐出圧損を低減することができる。また、気液分離器3と圧縮機本体1とが、水平方向で互い胴体投影面が重なる方向に配置するため、これら組立体の軸方向寸も短くすることができる。
〔変形例1〕
上記実施形態では、吐出配管15が90°曲がって気液分離器3の開口部20と接続する構成であるが、吐出圧損低減効果は、90°の曲がりに限定されるものではない。即ち吐出ポートから気液分離器3の開口部に至るまでに、吐出流路の曲がりが少ないほど吐出圧損は低減されることから、90°よりも少ない曲がりの流路とすることもできる。 Thus, according to the present embodiment, the discharge pressure loss can be reduced. Further, since the gas-liquid separator 3 and the compressor main body 1 are arranged in a direction in which the body projection planes overlap each other in the horizontal direction, the axial dimension of these assemblies can be shortened.
[Modification 1]
In the above embodiment, thedischarge pipe 15 is bent by 90 ° and connected to the opening 20 of the gas-liquid separator 3, but the discharge pressure loss reducing effect is not limited to the 90 ° bend. That is, from the discharge port to the opening of the gas-liquid separator 3, the discharge pressure loss is reduced as the discharge flow path is less bent, so that the flow path can be bent at less than 90 °.
〔変形例1〕
上記実施形態では、吐出配管15が90°曲がって気液分離器3の開口部20と接続する構成であるが、吐出圧損低減効果は、90°の曲がりに限定されるものではない。即ち吐出ポートから気液分離器3の開口部に至るまでに、吐出流路の曲がりが少ないほど吐出圧損は低減されることから、90°よりも少ない曲がりの流路とすることもできる。 Thus, according to the present embodiment, the discharge pressure loss can be reduced. Further, since the gas-
[Modification 1]
In the above embodiment, the
図5に、変形例における吐出配管15等の構成を示す。図5は、圧縮機本体1及び気液分離器3等を上方から観察した模式図である。本例では、吐出配管15を軸方向に略直線的に構成し、開口部20と接続する構成である。この場合、吐出ポートから吐出された気液混合気体が、開口部20に対して略0°で吐き出されることとなる。つまり、吐出配管50の曲がりは、上記実施形態のように90°から本変形例のように0°の角度の角度であることで、吐出圧損の低減を図ることができる。
FIG. 5 shows a configuration of the discharge pipe 15 and the like in a modified example. FIG. 5 is a schematic view of the compressor main body 1, the gas-liquid separator 3, and the like, observed from above. In this example, the discharge pipe 15 is configured to be substantially linear in the axial direction and connected to the opening 20. In this case, the gas-liquid mixture discharged from the discharge port is discharged at approximately 0 ° to the opening 20. That is, the discharge pressure loss can be reduced by bending the discharge pipe 50 from 90 ° as in the above-described embodiment to 0 ° as in the present modification.
以上、本発明を実施するための形態例及び変形例について説明したが、本発明は上記種々の例に限定されるものではなく、その趣旨に反することのない範囲で種々の変形が可能である。
As described above, the embodiments and the modifications for carrying out the present invention have been described. However, the present invention is not limited to the above-described various examples, and various modifications are possible without departing from the spirit thereof. .
例えば、気液分離器3は、導入管21及び開口部20を介して圧縮機本体1の吐出配管1と接続する構成としたが、吐出ポートから気液分離器3の外筒孔に至るまでの吐出流路を構成する分割部品は任意に選択可能である(一体構成物を含む)。
For example, the gas-liquid separator 3 is configured to be connected to the discharge pipe 1 of the compressor body 1 through the introduction pipe 21 and the opening 20, but from the discharge port to the outer cylinder hole of the gas-liquid separator 3. The divided components constituting the discharge flow path can be arbitrarily selected (including an integrated component).
また、上記例では、給液式の圧縮機を適用したが、油に変えて水を使用する圧縮機であってもよい。また、上記例では、ツインスクリュー圧縮機本体を適用したが、シングルスクリュー圧縮機であってもよい。
Also, in the above example, a liquid-supply type compressor is applied, but a compressor using water instead of oil may be used. In the above example, the twin screw compressor main body is applied, but a single screw compressor may be used.
また、圧縮機本体1と電動機を軸同の一対構成としたが、ベルト、チェーンを利用した
別体式としてもよいし、ギヤを介して接続する構成であってもよい。また、電動機は内燃機関や、蒸気エネルギによる駆動源であってもよいし、風力、水力といった自然エネルギを利用するものであってもよい。 Further, although the compressor main body 1 and the electric motor have a pair of shafts, they may be separated from each other using a belt and a chain, or may be connected via a gear. The electric motor may be a drive source using an internal combustion engine or steam energy, or may use a natural energy such as wind power or hydraulic power.
別体式としてもよいし、ギヤを介して接続する構成であってもよい。また、電動機は内燃機関や、蒸気エネルギによる駆動源であってもよいし、風力、水力といった自然エネルギを利用するものであってもよい。 Further, although the compressor main body 1 and the electric motor have a pair of shafts, they may be separated from each other using a belt and a chain, or may be connected via a gear. The electric motor may be a drive source using an internal combustion engine or steam energy, or may use a natural energy such as wind power or hydraulic power.
1…圧縮機本体、2…電動機、3…気液分離器、5…吸込絞り弁、7…エアフィルタ、8…調圧逆止弁、9…オイルクーラ、10…エアクーラ、13…吸込みフィルタ、14…吸込配管、15…吐出配管、16…空気配管、17…油配管、18…切替弁、19…オイルフィルタ、20…開口部、21…導入管
DESCRIPTION OF SYMBOLS 1 ... Compressor main body, 2 ... Electric motor, 3 ... Gas-liquid separator, 5 ... Suction throttle valve, 7 ... Air filter, 8 ... Pressure check valve, 9 ... Oil cooler, 10 ... Air cooler, 13 ... Suction filter, 14 suction pipe, 15 discharge pipe, 16 air pipe, 17 oil pipe, 18 switching valve, 19 oil filter, 20 opening, 21 introduction pipe
Claims (4)
- 作動室に供給された液体とともに吸気したガスを圧縮するロータ及び該ロータを格納するケーシングとを有する圧縮機本体と、前記ロータに駆動力を供給する駆動源と、前記圧縮機本体が吐き出す気液混合ガスから圧縮ガスと前記液体を分離する気液分離器とを備える給液式圧縮機であって、
前記気液分離器が、内部を前記気液混合ガスが流通する筒部と、前記内部に前記混合ガスが流入する開口部とを有するものであり、
前記圧縮機本体の吐出口と前記開口部の高さ方向位置が、少なくとも一部で一致するものであり、
前記吐出口からの吐出方向に対して、水平方向で0度~90度の角度で前記混合ガスを前記開口部に案内する吐出流路を有するものである給液式圧縮機。 A compressor body having a rotor for compressing gas sucked in with the liquid supplied to the working chamber and a casing for housing the rotor, a drive source for supplying a driving force to the rotor, and gas-liquid discharged from the compressor body A liquid-supply type compressor including a compressed gas and a gas-liquid separator that separates the liquid from the mixed gas,
The gas-liquid separator has a cylindrical portion through which the gas-liquid mixed gas flows, and an opening through which the mixed gas flows into the inside,
The height direction position of the discharge port and the opening of the compressor body is at least partially coincident,
A liquid-supply type compressor having a discharge passage for guiding the mixed gas to the opening at an angle of 0 to 90 degrees in a horizontal direction with respect to a discharge direction from the discharge port. - 請求項1に記載の給液式圧縮機であって、
前記圧縮機本体が、水平方向を軸方向として配置するものである給液式圧縮機。 The liquid supply type compressor according to claim 1,
A liquid-supplying compressor in which the compressor body is arranged with a horizontal direction as an axial direction. - 請求項1に記載の給液式圧縮機であって、
前記ロータが、ツインスクリューロータであり、
一方スクリューロータが、鉛直方向で他方スクリューロータの上方に配置するものであり、
前記吐出口と水平方向で前記ツインスクリューロータを挟んで反対側に、吸気口が配置するものである給液式圧縮機。 The liquid supply type compressor according to claim 1,
The rotor is a twin screw rotor,
One screw rotor is disposed above the other screw rotor in the vertical direction,
A liquid-supply compressor in which an intake port is disposed on the opposite side of the twin screw rotor in a horizontal direction with respect to the discharge port. - 請求項1に記載の給液式圧縮機であって、
前記ロータは、少なくとも1つのスクリューロータを含むものである給液式圧縮機。 The liquid supply type compressor according to claim 1,
The liquid-supply type compressor, wherein the rotor includes at least one screw rotor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020548579A JPWO2020059775A1 (en) | 2018-09-21 | 2019-09-19 | Liquid supply type compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018176792 | 2018-09-21 | ||
JP2018-176792 | 2018-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059775A1 true WO2020059775A1 (en) | 2020-03-26 |
Family
ID=69887645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/036684 WO2020059775A1 (en) | 2018-09-21 | 2019-09-19 | Liquid-supply-type compressor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020059775A1 (en) |
WO (1) | WO2020059775A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003307190A (en) * | 2002-04-15 | 2003-10-31 | Hitachi Industrial Equipment Systems Co Ltd | Oil supply type screw compressor |
JP2015148172A (en) * | 2014-02-05 | 2015-08-20 | 株式会社日立産機システム | Liquid supply type compressor and gas-liquid separator |
-
2019
- 2019-09-19 JP JP2020548579A patent/JPWO2020059775A1/en active Pending
- 2019-09-19 WO PCT/JP2019/036684 patent/WO2020059775A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003307190A (en) * | 2002-04-15 | 2003-10-31 | Hitachi Industrial Equipment Systems Co Ltd | Oil supply type screw compressor |
JP2015148172A (en) * | 2014-02-05 | 2015-08-20 | 株式会社日立産機システム | Liquid supply type compressor and gas-liquid separator |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020059775A1 (en) | 2021-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2418982C2 (en) | Rotor and compressor equipped with such rotor | |
TWI663335B (en) | Two-stage oil-injected screw air compressor | |
JP2007046610A (en) | Multistage motor-compressor for compression of fluid for automobile | |
KR20110104328A (en) | Turbine system | |
JP2013113236A (en) | Oil-free screw compressor | |
US9372022B2 (en) | Compressor waste heat driven cooling system | |
CN103696968A (en) | Integral resonators for roots-type supercharger | |
US20130305723A1 (en) | Compressor system including gear integrated screw expander | |
CN103649550B (en) | Turbo-compressor | |
JP6051271B2 (en) | Oil-free screw compressor | |
WO2020059775A1 (en) | Liquid-supply-type compressor | |
US11708784B2 (en) | Engine system | |
JP2005171957A (en) | Package type compressor | |
US20140086733A1 (en) | Compressing system | |
US20060029510A1 (en) | Motor-driven Roots compressor | |
TW201918629A (en) | Cylindrical symmetric volumetric machine | |
KR20220165507A (en) | Scroll compressor | |
KR102036201B1 (en) | Turbo Compressor | |
JP2005171958A (en) | Package type compressor | |
WO2022065291A1 (en) | Packaged compressor | |
JP2004044606A (en) | Oil-free screw compressor | |
JP7385769B2 (en) | packaged compressor | |
KR20190122608A (en) | Turbo Compressor | |
KR102414968B1 (en) | The rotary air compressor | |
JP2014070521A (en) | Scroll-type compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19861346 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020548579 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19861346 Country of ref document: EP Kind code of ref document: A1 |