WO2020056928A1 - 一种显示面板及显示器 - Google Patents
一种显示面板及显示器 Download PDFInfo
- Publication number
- WO2020056928A1 WO2020056928A1 PCT/CN2018/119178 CN2018119178W WO2020056928A1 WO 2020056928 A1 WO2020056928 A1 WO 2020056928A1 CN 2018119178 W CN2018119178 W CN 2018119178W WO 2020056928 A1 WO2020056928 A1 WO 2020056928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- septum
- substrate
- display panel
- auxiliary
- color
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
Definitions
- the present application belongs to the field of display technology, and particularly relates to a display panel and a display which increase the step difference of the spacers.
- a liquid crystal cell is an important structure of a liquid crystal display. It is mainly formed by a color filter (CF) component and a thin film transistor (TFT) component connected at a certain distance and sealing the periphery. The liquid crystal molecules are filled in the cell. There is a spacer in the liquid crystal box.
- the spacer is usually a columnar spacer (PS). It is not excluded to use a spherical spacer. The spacer is used to maintain the TFT module 1 and the CF module 2 The gap between them keeps the cell thickness of the liquid crystal cell stable.
- the CF component is a key material for realizing the color display of the TFT-LCD.
- the CF component also affects the optical characteristics such as brightness and contrast of the TFT-LCD.
- the main structure of the CF module includes a glass substrate (GS), a black matrix (BM), red, green, and blue primary color resists (CR), ITO, and PS.
- GS glass substrate
- BM black matrix
- CR red, green, and blue primary color resists
- ITO indium tungsten oxide
- PS primary color resists
- PS there are generally two types of PS in a liquid crystal cell. One is the main PS which maintains the thickness of the liquid crystal cell under normal circumstances. . Under abnormal conditions, for example, when the temperature is too high, the liquid crystal volume expands, the main PS support force decreases, and the liquid crystal will locally gather together after the expansion of the liquid.
- Gravity Mura (uneven brightness and specks due to gravity) is defined as the occurrence of gravity.
- Mura's boundary liquid crystal volume is L1; when the temperature is too low, the liquid crystal volume shrinks, the cell thickness becomes smaller, and the auxiliary PS generates a supporting force to prevent the LCD cell thickness from further decreasing.
- the local space may still have a vacuum due to no liquid crystal Bubble, defines the amount of liquid crystal at the boundary where the vacuum bubble appears as L2.
- the amount of liquid crystal between L1 and L2 is called LC margin (liquid crystal redundancy), and gravity mura and vacuum bubbles will not appear in this range.
- the main PS and the auxiliary PS produce a PS step difference.
- the step difference is too small, it is not guaranteed that the liquid crystal cell can still be filled after the liquid crystal is cold-shrinked, and it is easy to generate vacuum bubbles, which makes the LC margin too small.
- a proper segment difference is necessary to ensure a sufficiently large LC margin. Conditions are also an important factor in improving the quality of liquid crystal display panels. Therefore, it is necessary to provide a new scheme for increasing the PS segment difference to increase the LC margin.
- An object of the present application is to provide a display panel including, but not limited to, increasing the spacer segment difference to increase the LC margin of the display panel and improve the quality of the panel.
- a display panel includes a first component and a second component.
- the first component includes:
- the main septum and the auxiliary septum are disposed on the first substrate;
- the second component includes:
- a dielectric layer disposed on a side of the second substrate close to the first substrate
- the medium layer is provided with a slot corresponding to the auxiliary septum, and the sum of the height difference between the main septum and the auxiliary septum and the depth of the slot constitutes a difference in the septum.
- the height of the primary septum is greater than or equal to the height of the secondary septum.
- the step difference of the septum is 0.4-0.8 mm.
- the second component further includes a driving circuit disposed on the second substrate, the dielectric layer includes a first insulating layer and a second insulating layer, and the driving circuit includes a driving circuit disposed on the substrate.
- the pixel electrodes on the surface, the pixel electrodes, the scanning lines, and the data lines are all electrically connected to the semiconductor device, and the pixel electrodes are electrically connected to the semiconductor device through the vias of the second insulating layer.
- the dielectric layer is an inorganic material dielectric layer, and the depth of the groove is consistent with the depth of the via hole.
- the dielectric layer is an organic material dielectric layer, and the depth of the groove is the same as or greater than the depth of the via hole.
- a depth of the groove is consistent with a thickness of the dielectric layer.
- an upper alignment film is provided on a surface of the pixel electrode, and the upper alignment film covers an inner surface of the pixel electrode and the groove.
- the first component further includes a first optical film disposed on the first substrate, the first optical film includes a plurality of groups of pixel color resistance, and a group of the pixel color resistance is at least Includes three color blocks of different colors.
- the number of the main septum and the auxiliary septum is plural, and they are respectively arranged on different color resist blocks.
- a set of the pixel color resists includes at least a red light resistive block, a green light resistive block, and a blue light resistive block
- the main spacer is disposed on the red light resistive block or The green color block or the blue color block
- the auxiliary septum is disposed on the red color block or the green color block or the blue color block.
- the main septum and the auxiliary septum are integrally formed with the color block.
- the first component further includes a grid-like black matrix disposed on the first substrate, and the color resistance block is disposed at least in a hollowed-out area of the black matrix, and the different colors are different.
- the blocks are separated by the black matrix, and the main septum and the auxiliary septum are disposed on the black matrix.
- the main septum and the auxiliary septum are integrally formed with the black matrix.
- a color resist electrode is provided on a surface of the first optical film, and a surface of the color resist electrode is covered with a lower alignment film.
- Another object of the present application is to provide a display panel including a first component and a second component
- the first component includes:
- the main septum and the auxiliary septum are disposed on the first substrate at a distance from each other, and the height of the main septum is greater than the height of the auxiliary septum;
- the second component includes:
- a dielectric layer disposed on a side of the second substrate close to the first substrate
- the driving circuit is arranged in layers on the inside and the surface of the dielectric layer, and the dielectric layer is provided with vias, and the vias are configured to conduct a part of the driving circuit inside and on the surface of the dielectric layer;
- the medium layer is provided with a slot corresponding to the auxiliary septum, and the depth of the slot is consistent with the depth of the via hole, and the height difference between the main septum and the auxiliary septum is different from the The sum of the depths of the grooves constitutes a difference in the septum.
- Another object of the present application is to provide a display including a display panel and a backlight module for providing illumination to the display panel;
- the display panel includes a first component and a second component, and the first component includes :
- the main septum and the auxiliary septum are disposed on the first substrate;
- the second component includes:
- a dielectric layer disposed on a side of the second substrate close to the first substrate
- the medium layer is provided with a slot corresponding to the auxiliary septum, and the sum of the height difference between the main septum and the auxiliary septum and the depth of the slot constitutes a difference in the septum.
- the display panel is a liquid crystal panel
- the first component further includes a color filter film disposed on the first substrate, and the main septum and the auxiliary septum are disposed on the substrate.
- the color filter is integrally formed with the color filter.
- the color filter includes a plurality of sets of pixel color blocks, and a group of pixel color blocks includes at least three color block blocks of different colors, and the main septum and the auxiliary septum correspond to different colors. Color block settings.
- the number of the main septa and the sub septa is the same, and the main septa and the sub septa are evenly distributed on the first substrate, respectively.
- the display panel provided in the present application is grooved on the dielectric layer on the second substrate, and the groove corresponds to the auxiliary spacer of the first substrate.
- the top and The distance between the two substrates is increased, that is, the effective spacer difference increases.
- the cell thickness becomes thinner with the shrinkage of the liquid crystal molecules.
- the spacer difference increases, the space for thinning the cell thickness is increased. Large, it can change with the thickness of the liquid crystal molecules, thereby increasing the LC margin and improving the quality of the display panel and the liquid crystal display.
- FIG. 1 is a schematic cross-sectional view of a first display panel with an increased step provided by an embodiment of the present application
- FIG. 2 is a schematic cross-sectional view of a second display panel with an increased step provided by an embodiment of the present application
- FIG. 3 is a schematic cross-sectional view of a third display panel with an increased step provided by an embodiment of the present application
- FIG. 4 is a schematic cross-sectional view of a fourth display panel with an increased step provided by an embodiment of the present application
- FIG. 5 is a schematic view of slotting an inorganic material dielectric layer according to an embodiment of the present application.
- FIG. 6 is a schematic diagram of slotting an organic material dielectric layer according to an embodiment of the present application.
- FIG. 7 is a schematic diagram of a pixel electrode structure of a display panel according to an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of a display provided by an embodiment of the present application.
- an embodiment of the present application provides a display panel 100 capable of increasing a gap between spacers.
- the display panel 100 includes a first component 10 and a second component 20.
- the first component 10 includes at least a first component 10.
- the substrate 11 and the main septum 13 and the auxiliary septum 14 provided on the first substrate 11 may further include a first optical film 12, and the main septum 13 and the auxiliary septum 14 may be disposed on the first optical film 12 may be provided on the first substrate 11 at a distance from the first optical film 12 or adjacent to the first optical film 12.
- the second component 20 includes at least a second substrate 21 and a dielectric layer 22 disposed on the second substrate 21.
- the dielectric layer 22 is provided with a groove 24 at a portion corresponding to the auxiliary septum 14, the main septum 13 and the auxiliary septum.
- the sum of the height difference D1 of the object 14 and the depth D2 of the groove 24 constitutes the difference in the spacer segment.
- the height difference D1 between the main septum 13 and the auxiliary septum 14 refers to the vertical distance between the top of the main septum 13 and the top of the auxiliary septum 14.
- the display panel 100 in this embodiment may be a liquid crystal display panel.
- the first component 10 may be a CF component
- the second component may be a TFT component
- the first optical film 12 may be, but is not limited to, a color filter film.
- the first substrate 11 and the second substrate 21 may be glass substrates or other substrates with good light transmission, insulation, high mechanical strength, and high and low temperature resistance.
- the first substrate 11 in this embodiment is mainly used to provide a part of the support of the liquid crystal cell and the color of the pixel block
- the second substrate 21 is mainly used to provide the other part of the liquid crystal cell to support and control the deflection of the liquid crystal molecules to combine the first
- the optical film 12 adjusts the color and brightness of the pixel blocks.
- the first optical film 12 is generally composed of a series of regularly arranged pixel blocks.
- the “pixel block” described here is a color resist structure that provides color, and each pixel block includes a different The color resistance 121 of the color is provided with the color resistance electrode 16 on the color resistance 121.
- a driving circuit 23 should be provided on the second substrate 21, and the driving circuit 23 is arranged in layers in the second substrate 21 and the dielectric layer 22 to drive.
- the circuit 23 includes a pixel electrode 231 corresponding to the color resistance 121, and the pixel electrode 231 and the color resistance electrode 16 cooperate to control the deflection state of the liquid crystal molecules between the two to realize the modulation of the light transmittance, and further, for each pixel The blocks perform color and brightness control.
- a groove 24 is formed in the dielectric layer 22 on the second substrate 21, and the groove 24 corresponds to the auxiliary spacer 14 of the first substrate 11.
- the distance between the top of the secondary spacer 14 and the second substrate 21 increases, that is, the effective spacer difference increases.
- the cell thickness becomes thinner as the liquid crystal molecules shrink.
- Increasing the thickness makes the thinning space of the box thicker, which can change with the thickness of the liquid crystal molecules, thereby increasing the LC margin and improving the quality of the display panel and the liquid crystal display.
- the deformation amount of the second substrate 21 and the first substrate 11 has a certain critical value, that is, the space for changing the box thickness must have a certain limit.
- the second The substrate 21 and the first substrate 11 reach the maximum deformation and cannot continue to be compressed.
- vacuum bubbles may appear.
- the auxiliary spacer 14 is still not in contact with the second substrate 21, it cannot play the role of supporting the gap of the liquid crystal cell, and further, the role of the auxiliary spacer 14 becomes invalid.
- the difference between the spacers should not be too large, and it should be satisfied that when the deformation amount of the second substrate 21 and the first substrate 11 is the largest, the auxiliary spacer can support the first substrate 11 and the second substrate 12 To avoid the appearance of vacuum bubbles.
- the range of the septum difference can be 0.4-0.8 mm.
- the height of the main septum 13 is higher than the height of the auxiliary septum 14, so as to make the step difference of the septum as large as possible.
- the main and auxiliary septa 14 of different heights can be formed at one time by a special mask plate.
- the structures of the mask plate corresponding to the positions of the main septum 13 and the auxiliary septum 14 have different structures with different ultraviolet transmittance, so that the septum Different materials have different etching depths to form spacers of different heights.
- a gray scale mask GTM
- a slit mask SSM
- a semi-permeable mask HTM
- GTM gray scale mask
- SSM slit mask
- HTM semi-permeable mask
- the height of the main septum 13 can be the same as the height of the auxiliary septum 14, which is easier to make, and the step difference will have a certain height loss, which is suitable for accurately controlling the step difference of the septum, or Circumstances where septum height is required.
- the main septum 13 and the auxiliary septum 14 may specifically adopt a gray-tone mask (GTM), a single-slit mask (SSM), or a semi-permeable mask (half- (Tone mask, HTM) production, by reducing the local ultraviolet transmittance, designed to achieve local thinning of the spacer material according to a predetermined height.
- GTM gray-tone mask
- SSM single-slit mask
- HTM semi-permeable mask
- the grooves 24 in the dielectric layer 22 there can be several ways to make the grooves 24 in the dielectric layer 22.
- the grooves with bottoms, that is, the dielectric layer 22 with a partial thickness remaining, and the grooves with the dielectric layer 22 with a partial thickness as the bottom, as shown in FIGS. 3 to 5, the specific depth of the grooves are also divided into several types.
- the slot structure is related to the material and process of the dielectric layer.
- the dielectric layer 22 and the driving circuit 23 are two main structures of the second component 20.
- the dielectric layer 22 mainly includes a first insulating layer 221 and a second insulating layer 222
- the driving circuit 23 mainly includes an arrangement.
- the semiconductor array is specifically composed of a plurality of arrayed semiconductor devices 234.
- the semiconductor devices include a source electrode, a gate electrode, and a drain electrode, and the pixel electrode 231, the scan line 232, and the data line 233 are directly or indirectly connected to A source, a gate, and a drain of the semiconductor device to apply a predetermined voltage to the pixel electrode 231.
- the pixel electrodes 231, the scan lines 232, and the data lines 233 in different layers may be connected to the semiconductor device through conductive vias in the corresponding insulating layers.
- a via 25 may be formed on the second insulating layer 222 for conducting the pixel electrode 231 and the semiconductor device 234.
- the first insulating layer 221 and the second insulating layer 222 are mainly used to space and protect different layers of functional devices and conductive structures.
- the first insulating layer 221 is formed on a scan line.
- Two insulating layers 222 are formed on the data lines.
- the first insulating layer 221 and the second insulating layer 222 may be sequentially formed by the same or different insulating materials through a film formation process.
- the insulating material may be a transparent organic material or an inorganic material (such as SiNx) with good thermal conductivity.
- the thickness of the first insulating layer 221 and the thickness of the second insulating layer 222 may be the same or different, and this embodiment is not strictly limited.
- the structure of the groove 24 may have the following types: First, when the dielectric layer 22 is an inorganic material dielectric layer, the groove 24 penetrates the second insulating layer 222 and uses the first insulating layer 221 as a bottom.
- the groove that is, the depth of the groove is equal to the thickness of the second insulating layer 222 and the depth of the via hole in the second insulating layer 222, as shown in FIG. 2.
- the process of the slot 24 mainly includes:
- a second driving circuit 23 and a dielectric layer 22 are provided on the second substrate 21;
- a mask is placed above the photoresist 25, and the photoresist 25 is exposed and developed based on the mask, and the material of the photoresist 25 corresponding to the slot 24 is removed;
- the dielectric layer 22 is dry-etched to remove the dielectric layer material corresponding to the portion where the photoresist material is removed, and then the photoresist 25 is removed to complete the slotting.
- the second insulating layer 222 of the dielectric layer 22 needs to have vias 25 to connect the pixel electrode 231 and the semiconductor device 234, and the inorganic materials need to be grooved and vias by dry etching.
- the dry etching method is used to etch different depths. There is a certain degree of difficulty, and the process of etching the same depth is easier to implement. Therefore, the via hole 25 and the groove 24 are suitable for being formed in the same process and have the same depth. Therefore, the groove 24 is a groove penetrating the second insulating layer 222.
- the depth of the groove is the same as the depth of the via hole, which is beneficial for one-time molding in the process of via hole. It is not necessary to control the depth of the groove separately, which can improve efficiency. Of course, in other embodiments, it is not excluded that the depth of the groove 24 is greater than the depth of the via hole, which may be specifically implemented through different processes.
- the dielectric layer 22 is an organic material dielectric layer
- the organic material itself can be used as a photoresist
- the groove 24 and the via hole 25 can be formed by a wet etching process, and the depth of the hole and the depth of the groove 24 are relatively easy Control, so there are multiple options for slot depth.
- the groove 24 may be a through groove penetrating the first insulating layer 221 and the second insulating layer 222, that is, the depth of the opening 24 is equal to the thickness of the entire dielectric layer 22, as shown in FIG. 1. This can maximize the depth of the groove 24 and increase the step as much as possible.
- opening the groove may cause the circuit structure on the surface of the second substrate 21 to be exposed. In subsequent processes, it may be covered by other layer structures (such as alignment films). And protect this part of the exposed circuit structure.
- the groove 24 may also be a groove with the first insulating layer 221 as a bottom, that is, the depth of the groove is equal to the thickness of the second insulating layer 222, that is, consistent with the depth of the via hole, as shown in FIG. 2,
- the slot depth is the same as the slot depth of the above-mentioned inorganic material dielectric layer, and the depth of the slot is the same as the depth of the via hole, which is more convenient for implementation in the process.
- the groove 24 may also be a groove with a portion of the thickness of the second insulating layer 222 as the bottom, that is, the depth of the slot is smaller than the thickness of the second insulating layer 222, as shown in FIG. It is small and can meet the requirements of the step difference, this structure can be selected, and on the basis of solving the problem of insufficient step difference, the dielectric layer is retained as much as possible to ensure its integrity and the protection function of the second substrate.
- the groove 24 can also be a groove with a portion of the thickness of the first insulating layer 221 as the bottom, that is, the groove depth is greater than the thickness of the second insulating layer 222 and smaller than the thickness of the entire dielectric layer 22, as shown in the figure. 4.
- the depth of the groove is greater than the depth of the via hole, which is suitable for the situation where the step difference cannot be met when the depth of the groove 24 and the via hole 25 is not satisfied.
- the depth of the groove is further deepened, but the first The insulating layer 221 guarantees the integrity of the dielectric layer and the protective effect on the second substrate 21 under the condition that the step difference requirement is met.
- the process of slotting 24 of the organic material medium layer mainly includes:
- a driving circuit 23 and a dielectric layer 22 are provided on the second substrate 21;
- a mask is placed on the dielectric layer 22, and the dielectric layer 22 is exposed and developed to complete grooving.
- the etching process may specifically adopt a gray-tone mask (GTM), a single-slit mask (SSM), or a half-tone mask (HTM).
- GTM gray-tone mask
- SSM single-slit mask
- HTM half-tone mask
- the ultraviolet transmittance is grooved according to a predetermined depth to achieve a corresponding degree of thinning of the dielectric layer 22 to obtain grooves and vias. This method is convenient for controlling the depth of exposure and development, and the depth of the grooves is more controllable.
- the slotting process can be performed simultaneously with the via process, that is, no additional process, no mask, no cost increase, and the original production efficiency can be guaranteed.
- an open slot may be optionally selected, thereby further increasing the step difference of the spacer.
- the optional slot depth is consistent with the via depth of the second insulating layer 222, which improves efficiency.
- the first optical film 12 is a color filter including a plurality of sets of pixel color resists, that is, the aforementioned “pixel blocks”.
- Each set of pixel resists includes Three color blocks 121 (red, green, blue) or four color blocks 121 (red, green, blue, white).
- a set of pixel color resists includes a red light resistive block, a green light resistive block, and a blue light resistive block.
- a color resist electrode 16 is further provided on the pixel color resist. Referring to the schematic diagram of the pixel electrode structure in FIG.
- a group of pixel electrodes includes a red light pixel electrode 2311, a green light pixel electrode 2312 and a blue light pixel electrode 2313, or further includes a white light pixel electrode.
- a set of three primary color resist blocks 121 and corresponding color resist electrodes 16, pixel electrodes 231, and liquid crystal molecules constitute a pixel.
- the number of the main septum 13 and the auxiliary septum 14 are multiple, and at most one main septum 13 is arranged on one color block 121. Or auxiliary septum 14.
- the main septum 13 and the auxiliary septum 14 are respectively disposed on different color blocking blocks 121.
- the main septum 13 is placed on the red color block, and the auxiliary septum 14 is placed on the green color block or the blue color block; or the main septum 13 is placed on the green color block
- the auxiliary septum 14 is placed on the red light blocking block or the blue light blocking block; or, the main septum 13 is placed on the blue light blocking block, and the auxiliary septum 14 is placed on the red color blocking block Or on the green color block and so on.
- different main spacers 13 can also be arranged on the color resist blocks 121 of different colors.
- different auxiliary spacers 14 can also be arranged on the color resist blocks 121 of different colors.
- the numbers of the main septa 13 and the auxiliary septa 14 are the same, and the main septa 13 and the auxiliary septa 14 are evenly distributed on the first substrate, respectively.
- the first substrate 11 is further provided with a grid-like black matrix 15.
- the color resist blocks 121 are arranged at least in the hollowed-out area of the black matrix 15. Different color resist blocks 121 pass through The black matrix 15 is separated, and the black matrix 15 is usually prepared by using a black ink.
- the above-mentioned main septum 13 and auxiliary septum 14 may be disposed on the black matrix 15 and formed integrally with the black matrix 15. In other embodiments, the main septum 13 and the auxiliary septum 14 may be disposed on the color resist block 121 and formed integrally with the color resist block 121.
- an upper alignment film is further provided on the surface of the pixel electrode 231, and a lower alignment film is further provided on the surface of the color resist electrode 16.
- the upper alignment film and the lower alignment film are used to limit the alignment of the liquid crystal molecules.
- the upper alignment film covers the surface of the groove 24 of the dielectric layer 22 at the same time.
- the main septum 13 and the auxiliary septum 14 can be a circular truncated structure.
- the diameter of the end connected to the first optical film 12 is larger, and the diameter of the end near the second substrate 21 is smaller, which is convenient. Preparation and good structural strength and stability.
- the primary septum 13 and the secondary septum 14 may also be cylindrical with the same diameter.
- the main septum 13 and the auxiliary septum 14 may also be pyramid-shaped or prism-shaped, or the like.
- the shape of the groove 24 is adapted to the shape of the auxiliary septum 14, and the cross-sectional size of the groove 24 is slightly larger than the cross-sectional size of the auxiliary septum 14.
- the display panel 100 provided in the embodiment of the present application is mainly used for the liquid crystal display 200, and the liquid crystal display 200 including the display panel 100 is also within the protection scope of the present application.
- the liquid crystal display 200 further includes a backlight module 300 for providing lighting.
- the backlight module 300 may be a side-type backlight module or a direct-type backlight module.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Abstract
一种显示面板(100)及显示器,显示面板(100)包括第一组件(10)和第二组件(20),第一组件(10)包括第一基板(11)、设置于第一基板(11)上的主隔垫物(13)和辅隔垫物(14),第二组件(20)包括第二基板(21)以及设置于第二基板(21)上的介质层(22);介质层(22)对应辅隔垫物(14)的部位开设有槽(24),主隔垫物(13)和辅隔垫物(14)的高度差与槽(24)的深度之和构成隔垫物段差。
Description
本申请要求于2018年9月21日提交中国专利局,申请号为201821557687.9,发明名称为“一种增大隔垫物段差的显示面板及显示器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于显示技术领域,特别涉及一种增加隔垫物段差的显示面板及显示器。
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。液晶盒是液晶显示器的重要结构,其主要由彩色滤膜(Color Filter,CF)组件和薄膜晶体管(Thin Film Transistor,TFT)组件间隔一定距离对接且密封周边形成,盒内填充液晶分子。液晶盒内设有隔垫物(Spacer),隔垫物通常为柱状隔垫物(Post Spacer,PS),也不排除采用球状隔垫物,隔垫物用于维持TFT组件1与CF组件2之间的间隙,即维持液晶盒的盒厚稳定。
其中,CF组件是实现TFT-LCD色彩显示的关键材料,CF组件除了影响色彩外,还影响TFT-LCD的亮度、对比度等光学特性。CF组件的主要结构包括玻璃基板(Glass Substrate,GS)、黑矩阵(Black Matrix,BM)、红/绿/蓝三原色色阻(Color Resist,CR)、ITO和PS。液晶盒内一般有两种PS,一种是正常情况下维持液晶盒厚的主PS(Main-PS),另外一种是在液晶盒厚变小时起到支撑作用的辅PS(Sub-PS)。在非正常情况下,例如当温度过高时,液晶体积膨胀,主PS支撑力减小,液晶膨胀后会局部聚集在一起出现重力Mura(因重力产生的亮度不均、斑点),定义出现重力Mura的边界液晶量为L1;当温度过低时, 液晶体积缩小,盒厚变小,辅PS产生支撑力,阻止液晶盒厚的进一步下降,此时局部空间仍有可能因无液晶而出现真空气泡,定义出现真空气泡的边界液晶量为L2。在L1与L2之间的液晶量,称为LC margin(液晶冗余),在此范围内不会出现重力mura与真空气泡。
主PS与辅PS产生PS段差,当段差过小时,无法保证液晶冷缩后仍能够充满液晶盒,进而易产生真空气泡,使得LC margin过小,合适的段差是保证足够大的LC margin的必要条件,也是提升液晶显示面板品质的重要因素。因此,需要提供新的增大PS段差的方案,以增大LC margin。
申请内容
本申请的一个目的在于提供一种显示面板,包括但不限于增大间隔物段差以增大显示面板的LC margin,提升面板品质。
本申请是这样实现的,一种显示面板,包括第一组件和第二组件,所述第一组件包括:
第一基板;
主隔垫物和辅隔垫物,设置于所述第一基板上;
所述第二组件包括:
第二基板,与所述第一基板相对设置;
介质层,设置于所述第二基板靠近所述第一基板的一侧;
其中,所述介质层对应所述辅隔垫物的部位开设有槽,所述主隔垫物和辅隔垫物的高度差与所述槽的深度之和构成隔垫物段差。
在一个实施例中,其中,所述主隔垫物的高度大于或等于所述辅隔垫物的高度。
在一个实施例中,其中,所述隔垫物段差为0.4-0.8mm。
在一个实施例中,其中,所述第二组件还包括设置于所述第二基板上的驱 动电路,所述介质层包括第一绝缘层和第二绝缘层,所述驱动电路包括设置于所述第二基板和第一绝缘层之间的扫描线、设置于所述第一绝缘层和第二绝缘层之间的数据线和阵列排布的半导体器件,以及设置于所述第二绝缘层表面的画素电极,所述画素电极、扫描线和数据线均与所述半导体器件电连接,所述画素电极通过所述第二绝缘层的过孔与所述半导体器件电连接。
在一个实施例中,其中,所述介质层为无机材料介质层,所述槽的深度与所述过孔的深度一致。
在一个实施例中,其中,所述介质层为有机材料介质层,所述槽的深度与所述过孔的深度相同或大于所述过孔的深度。
在一个实施例中,其中,所述槽的深度与所述介质层的厚度一致。
在一个实施例中,其中,在所述画素电极的表面设有上配向膜,所述上配向膜覆盖所述画素电极和所述槽的内表面。
在一个实施例中,其中,所述第一组件还包括设置于所述第一基板上的第一光学膜,所述第一光学膜包括多组画素色阻,一组所述画素色阻至少包括三种不同颜色的色阻块。
在一个实施例中,其中,所述主隔垫物和辅隔垫物的数量为多个,分设于不同的所述色阻块上。
在一个实施例中,其中,一组所述画素色阻至少包括红光色阻块、绿光色阻块和蓝光色阻块,所述主隔垫物设于所述红光色阻块或绿光色阻块或蓝光色阻块上,所述辅隔垫物设于所述红光色阻块或绿光色阻块或蓝光色阻块上。
在一个实施例中,其中,所述主隔垫物和辅隔垫物与所述色阻块一体成型。
在一个实施例中,其中,所述第一组件还包括设置于所述第一基板上的网格状的黑矩阵,所述色阻块至少设置于黑矩阵的镂空区域,不同的所述色阻块 通过所述黑矩阵隔开,所述主隔垫物和辅隔垫物设置于所述黑矩阵上。
在一个实施例中,其中,所述主隔垫物和辅隔垫物和所述黑矩阵一体成型。
在一个实施例中,其中,所述第一光学膜的表面设有色阻电极,所述色阻电极的表面覆盖有下配向膜。
本申请的另一目的在于提供一种显示面板,包括第一组件和第二组件;
所述第一组件包括:
第一基板;
主隔垫物和辅隔垫物,彼此间隔地设置于所述第一基板上,所述主隔垫物的高度大于所述辅隔垫物的高度;
所述第二组件包括:
第二基板;
介质层,设置于所述第二基板靠近所述第一基板的一侧;
驱动电路,分层设置于所述介质层的内部和表面,所述介质层设有过孔,所述过孔设置为将所述驱动电路位于所述介质层内部和表面的部分导通;
其中,所述介质层对应所述辅隔垫物的部位开设有槽,所述槽的深度与所述过孔的深度一致,所述主隔垫物和辅隔垫物的高度差与所述槽的深度之和构成隔垫物段差。
本申请的另一目的在于提供一种显示器,包括显示面板以及用于为所述显示面板提供照明的背光模组;所述显示面板,包括第一组件和第二组件,所述第一组件包括:
第一基板;
主隔垫物和辅隔垫物,设置于所述第一基板上;
所述第二组件包括:
第二基板,与所述第一基板相对设置;
介质层,设置于所述第二基板靠近所述第一基板的一侧;
其中,所述介质层对应所述辅隔垫物的部位开设有槽,所述主隔垫物和辅隔垫物的高度差与所述槽的深度之和构成隔垫物段差。
在一个实施例中,其中,所述显示面板为液晶面板,所述第一组件还包括设置于所述第一基板上的彩色滤膜,所述主隔垫物和辅隔垫物设置于所述彩色滤膜上,与所述彩色滤膜一体成型。
在一个实施例中,其中,所述彩色滤膜包括多组画素色阻,一组画素色阻包括至少三个不同颜色的色阻块,所述主隔垫物和辅隔垫物对应不同颜色的色阻块设置。
在一个实施例中,其中,所述主隔垫物和辅隔垫物的数量相同,所述主隔垫物和辅隔垫物分别均匀分布于所述第一基板上。
本申请提供的显示面板在第二基板上的介质层上开槽,该槽与第一基板的辅隔垫物对应,这样,相对于未开槽结构而言,辅隔垫物的顶部和第二基板的距离增大,即有效隔垫物段差增大,在液晶分子低温收缩时,盒厚随液晶分子的收缩变薄,由于隔垫物段差增大,使得盒厚的变薄空间得以增大,能够随液晶分子发生较大幅度的厚度变化,进而增大LC margin,提升显示面板及液晶显示器的品质。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性 劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的第一种增大段差的显示面板的截面示意图;
图2是本申请实施例提供的第二种增大段差的显示面板的截面示意图;
图3是本申请实施例提供的第三种增大段差的显示面板的截面示意图;
图4是本申请实施例提供的第四种增大段差的显示面板的截面示意图;
图5是本申请实施例提供的对无机材料介质层开槽的示意图;
图6是本申请实施例提供的对有机材料介质层开槽的示意图;
图7是本申请实施例提供的显示面板的画素电极结构示意图;
图8是本申请实施例提供的显示器的结构示意图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
请参阅图1和图2,本申请实施例提供一种能够增大隔垫物段差的显示面板100,该显示面板100包括第一组件10和第二组件20,第一组件10至少包括第一基板11以及设置于第一基板11上的主隔垫物13和辅隔垫物14,还可以包括第一光学膜12,主隔垫物13和辅隔垫物14可以设置于第一光学膜12上,也可以和第一光学膜12相间隔地、或者相邻接地设置于第一基板11上。第二组件20至少包括第二基板21以及设置于第二基板21上的介质层22;其中,介质层22对应辅隔垫物14的部位开设有槽24,主隔垫物13和辅隔垫物14的高度差D1与槽24的深度D2之和构成隔垫物段差。主隔垫物13和辅隔垫物14的高度差D1指主隔垫物13的顶部和辅隔垫物14的顶部之间的垂直距离。
本实施例中的显示面板100可以是液晶显示面板,相应地,该第一组件10可以是CF组件,第二组件可以是TFT组件,第一光学膜12可以但不限于是彩色滤膜,第一基板11和第二基板21可以选择玻璃基板,或者其他透光性好、绝缘、机械强度高、耐高低温的基板。本实施例中的第一基板11及主要用于提供液晶盒的一部分支撑以及像素块的色彩,第二基板21主要用于提供液晶盒的另一部分支撑以及控制液晶分子的偏转,以结合第一光学膜12调节像素块的色彩及明暗。当然,作为完整的液晶盒,第一基板11和第二基板21的侧边需要通过密封结构进行密封。具体地,在液晶显示面板中,第一光学膜12一般由一系列规则排布的像素块构成,此处所述的“像素块”为提供色彩的色阻结构,每个像素块均包括不同颜色的色阻121,色阻121上设有色阻电极16,相应地,第二基板21上还应设置驱动电路23,该驱动电路23分层设 置于第二基板21和介质层22中,驱动电路23包含与该色阻121对应的画素电极231,画素电极231与色阻电极16配合工作控制二者之间的液晶分子的偏转状态,以实现透光度的调制,进而,对每个像素块进行颜色和亮度的控制。
本申请实施例中的显示面板100,在第二基板21上的介质层22上开槽24,该槽24与第一基板11的辅隔垫物14对应,这样,相对于未开槽结构而言,辅隔垫物14的顶部和第二基板21的距离增大,即有效隔垫物段差增大,在液晶分子低温收缩时,盒厚随液晶分子的收缩变薄,由于隔垫物段差增大,使得盒厚的变薄空间得以增大,能够随液晶分子发生较大幅度的厚度变化,进而增大LC margin,提升显示面板及液晶显示器的品质。
在本实施例中,可以理解的是,第二基板21和第一基板11的变形量存在一定临界值,即盒厚的变化空间必然具有一定界限,当液晶分子收缩到一定程度时,第二基板21和第一基板11达到最大变形量,无法继续压缩,此时随着液晶分子的进一步收缩,可能出现真空气泡。在这种情况下,辅隔垫物14若仍然未接触第二基板21,则不能起到支撑液晶盒间隙的作用,进而,辅隔垫物14的作用失效。因此,本实施例中,隔垫物段差也不宜过大,应满足:当第二基板21和第一基板11的变形量最大时,辅隔垫物能够支撑第一基板11和第二基板12,以避免真空气泡的出现。一般地,该隔垫物段差的范围可以是0.4-0.8mm。
在一个实施例中,主隔垫物13的高度高于辅隔垫物14的高度,进而可以使隔垫物段差尽可能大。不同高度的主辅隔垫物14可以通过特殊掩膜版一次成型,例如在掩膜版上对应主隔垫物13和辅隔垫物14的位置设置紫外线透过率不同的结构,使得隔垫物材料的蚀刻深度不同,形成不同高度的隔垫物。具体地,可以采用灰阶掩膜板(GTM)、狭缝掩膜板(SSM)或半透膜掩膜板 (HTM),通过减低局部紫外线透过率,按照预定的主隔垫物13和辅隔垫物14的高度,蚀刻掉预定厚度的隔垫物材料,形成预定高度的主隔垫物13和辅隔垫物14。
在其他实施例中,主隔垫物13的高度可以和辅隔垫物14的高度相同,这样比较便于制作,而段差会有一定的高度损失,适用于精准控制隔垫物段差的情况,或者要求隔垫物高度一致的情况。
主隔垫物13和辅隔垫物14具体可以采用灰阶掩膜板(gray tone mask,GTM)、狭缝掩膜板(single-slit mask,SSM)或半透膜掩膜板(half-tone mask,HTM)制作,通过减低局部紫外线透过率,按照预定高度设计实现间隔物材料局部减薄。
在本实施例中,在介质层22上开槽24可以有几种方式,其一,开通槽,即贯通介质层22的通槽,如图2。其二,开有底的凹槽,即保留部分厚度的介质层22,以部分厚度的介质层22为底的凹槽,如图3至图5,凹槽的具体深度亦分为若干种。开槽结构与介质层的材质和制程有关。
参考图5和图7,介质层22和驱动电路23是第二组件20的两大主体结构,其中,介质层22主要包括第一绝缘层221和第二绝缘层222,驱动电路23主要包括设置于第二基板21和第一绝缘层221之间的扫描线232、设置于第一绝缘层221和第二绝缘层222之间的数据线233和半导体阵列,以及设置于第二绝缘层222表面的画素电极231。其中,半导体阵列具体是由多个阵列排布的半导体器件234构成的,半导体器件包括源极、栅极和漏极,而画素电极231、扫描线232和数据线233则分别直接或间接连接于半导体器件的源极、栅极和漏极,以为画素电极231施加预定的电压。具体地,处于不同层的画素电极231、扫描线232和数据线233可以通过相应绝缘层的导电过孔与半导体 器件连接。在一个实施例中,可以在第二绝缘层222上开设有用于导通画素电极231和半导体器件234的过孔25。
在本实施例中,第一绝缘层221和第二绝缘层222主要用于间隔及保护不同层的功能器件及导电结构,通常,第一绝缘层221形成于扫描线(Gate)之上,第二绝缘层222形成于数据线(Date)之上。第一绝缘层221和第二绝缘层222可以是由相同或者不同的绝缘材料通过成膜工艺依次形成的,该绝缘材料可以选择导热性好的透明的有机材料或无机材料(例如SiNx)。另外,第一绝缘层221的厚度和第二绝缘层222的厚度可以相同,也可以不同,本实施例不进行严格限制。
基于上述介质层结构,该槽24的结构可以有以下几种:第一种,介质层22为无机材料介质层时,槽24为贯通第二绝缘层222并以第一绝缘层221为底的凹槽,即开槽深度等于第二绝缘层222的厚度,同时等于第二绝缘层222上过孔的深度,如图2。
具体地,参考图5,当介质层22为无机材料介质层时,开槽24的流程主要包括:
取第二基板21;
在第二基板21上设置第二驱动电路23以及介质层22;
在介质层22上设置光阻25;
在光阻25上方放置掩膜版,基于该掩膜版对光阻25进行曝光、显影,将光阻25对应待开槽24部位的材料去除;
干刻介质层22,将去除光阻材料的部位所对应的介质层材料去除,然后去光阻25,完成开槽。
由于上述介质层22的第二绝缘层222需要开设过孔25以导通画素电极 231和半导体器件234,而无机材料需通过干刻法开槽和过孔,干刻法在刻蚀不同深度时存在一定难度,而刻蚀相同深度的工艺则较容易实现,因此,过孔25和槽24适合在同一制程中形成且深度一致,因此该槽24为贯通第二绝缘层222的凹槽,该凹槽深度与过孔深度一致,有利于在过孔制程一次成型,不需另外控制凹槽的深度,可以提高效率。当然,在其他实施例中,不排除槽24的深度大于过孔的深度,具体可以通过不同的制程实现。
第二种,当介质层22为有机材料介质层时,由于有机材料本身可作为光阻,可采用湿法蚀刻工艺开槽24和过孔25,并且,孔的深度和槽24的深度较容易控制,因此开槽深度有多种选择。
作为第一种实施例,槽24可以为贯通第一绝缘层221和第二绝缘层222的通槽,即开槽24深度等于整个介质层22的厚度,如图1。这样可以使槽24的深度最大化,尽可能的增大段差,当然,开通槽可能导致第二基板21表面的电路结构外露,在后续的制程中,可以通过其他层结构(例如配向膜)覆盖而保护这部分外露的电路结构。
作为第二种实施例,槽24也可以为以第一绝缘层221为底的凹槽,即开槽深度等于第二绝缘层222的厚度,也即与过孔深度一致,如图2,此时开槽深度和上述无机材料介质层的开槽深度相同,槽的深度和过孔深度一致,比较便于工艺上的实施。
作为第三种实施例,槽24也可以为以部分厚度的第二绝缘层222为底的凹槽,即开槽深度小于第二绝缘层222的厚度,如图3,此时开槽深度较小,在能够满足段差要求的情况下,可以选择此种结构,在解决段差不足问题的基础上尽可能多的保留介质层,保证其完整性和对第二基板的保护功能。
作为第四种实施例,槽24还可以为以部分厚度的第一绝缘层221为底的 凹槽,即开槽深度大于第二绝缘层222的厚度并小于整个介质层22的厚度,如图4,这种情况下,开槽深度大于过孔的深度,适用于当槽24与过孔25深度时无法满足段差要求的情况,此时进一步加深凹槽的深度,但保留一定厚度的第一绝缘层221,在满足段差要求的情况下,保证介质层的完整性和对第二基板21的保护作用。
具体地,参考图6,有机材料介质层开槽24的流程主要包括:
取第二基板21;
在第二基板21上设置驱动电路23以及介质层22;
在介质层22上放置掩膜版,对介质层22进行曝光和显影,完成开槽。
蚀刻制程具体可以采用灰阶掩膜板(gray tone mask,GTM)、狭缝掩膜板(single-slit mask,SSM)或半透膜掩膜板(half-tone mask,HTM),通过减低局部紫外线透过率,按照预定深度开槽,实现介质层22局部的相应程度的减薄,获得槽和过孔,该方法便于控制曝光显影的深度,进而槽的深度可控性较好。
不论介质层22采用有机材料亦或无机材料,开槽制程均可以和过孔制程同时进行,即不增加制程,不增加掩膜版,不增加成本,能够保证原有的制作效率。
在本实施例中,对于有机材料介质层,可选开通槽,进而最大程度的增大隔垫物段差。对于无机材料介质层,可选开槽深度与第二绝缘层222的过孔深度一致,提高效率。
参考图1和图7,作为第一光学膜12的一种实施例,第一光学膜12为彩色滤膜,包括多组画素色阻,即前述的“像素块”,每组画素色阻包括三个色阻块121(红、绿、蓝)或四个色阻块121(红、绿、蓝、白)。以三原色色阻 为例,一组画素色阻包括一个红光色阻块、一个绿光色阻块和一个蓝光色阻块。在画素色阻之上还设有色阻电极16。同时参考图5的画素电极结构示意图,与上述画素色阻对应地,一组画素电极包括一个红光画素电极2311、一个绿光画素电极2312和蓝光画素电极2313,或者进一步包括一白光画素电极。其中,一组三原色色阻块121及与其对应的色阻电极16、画素电极231和液晶分子构成了一个画素。
作为主隔垫物13和辅隔垫物14的一种实施例,主隔垫物13和辅隔垫物14的数量均为多个,一个色阻块121上至多设置一个主隔垫物13或辅隔垫物14。主隔垫物13和辅隔垫物14分别设于不同的色阻块121上。例如,主隔垫物13置于红光色阻块上,辅隔垫物14置于绿光色阻块上或者蓝光色阻块上;或者,主隔垫物13置于绿光色阻块上,辅隔垫物14置于红光色阻块上或者蓝光色阻块上;或者,主隔垫物13置于蓝光色阻块上,辅隔垫物14置于红光色阻块上或者绿光色阻块上等等。
在其他实施例中,不同的主隔垫物13还可以分设于不同颜色的色阻块121上,同样地,不同的辅隔垫物14也可以设置于不同颜色的色阻块121上。在一个实施例中,主隔垫物13和辅隔垫物14的数量相同,主隔垫物13和辅隔垫物14分别均匀分布于第一基板上。
在一个实施例中,第一基板11上还设有网格状的黑矩阵15,在显示面板的观看方向,色阻块121至少设置于黑矩阵15的镂空区域,不同的色阻块121通过黑矩阵15隔开,该黑矩阵15通常采用黑色油墨制备。
在一个实施例中,上述主隔垫物13和辅隔垫物14可以设置于该黑矩阵15上,和黑矩阵15一体成型。在其他实施例中,主隔垫物13和辅隔垫物14可以设置于色阻块121上,和色阻块121一体成型。
在一个实施例中,在画素电极231的表面还设有上配向膜,在色阻电极16的表面还设有下配向膜,上配向膜和下配向膜用于限制液晶分子的取向。其中,上配向膜同时覆盖了介质层22的槽24的表面。
在本实施例中,主隔垫物13和辅隔垫物14可选为圆台形结构,其与第一光学膜12连接的一端直径较大,靠近第二基板21的一端直径较小,便于制备且结构强度和稳定性较好。在其他实施例中,主隔垫物13和辅隔垫物14也可以是直径一致的圆柱形。在其他实施例中,主隔垫物13和辅隔垫物14也可以是棱台形或者棱柱形等等。可选地,槽24的形状和辅隔垫物14的形状适配,并且槽24的横截面尺寸略大于辅隔垫物14的横截面尺寸。本申请实施例提供的显示面板100主要用于液晶显示器200,包含该显示面板100的液晶显示器200也在本申请的保护范围内。该液晶显示器200还包括背光模组300,用于提供照明,该背光模组300可以是侧入式背光模组,也可以是直下式背光模组。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (20)
- 一种显示面板,包括第一组件和第二组件,所述第一组件包括:第一基板;主隔垫物和辅隔垫物,设置于所述第一基板上;所述第二组件包括:第二基板,与所述第一基板相对设置;介质层,设置于所述第二基板靠近所述第一基板的一侧;其中,所述介质层对应所述辅隔垫物的部位开设有槽,所述主隔垫物和辅隔垫物的高度差与所述槽的深度之和构成隔垫物段差。
- 如权利要求1所述的显示面板,其中,所述主隔垫物的高度大于或等于所述辅隔垫物的高度。
- 如权利要求1所述的显示面板,其中,所述隔垫物段差为0.4-0.8mm。
- 如权利要求1所述的显示面板,其中,所述第二组件还包括设置于所述第二基板上的驱动电路,所述介质层包括第一绝缘层和第二绝缘层,所述驱动电路包括设置于所述第二基板和第一绝缘层之间的扫描线、设置于所述第一绝缘层和第二绝缘层之间的数据线和阵列排布的半导体器件,以及设置于所述第二绝缘层表面的画素电极,所述画素电极、扫描线和数据线均与所述半导体器件电连接,所述画素电极通过所述第二绝缘层的过孔与所述半导体器件电连接。
- 如权利要求4所述的显示面板,其中,所述介质层为无机材料介质层, 所述槽的深度与所述过孔的深度一致。
- 如权利要求4所述的显示面板,其中,所述介质层为有机材料介质层,所述槽的深度与所述过孔的深度相同或大于所述过孔的深度。
- 如权利要求6所述的显示面板,其中,所述槽的深度与所述介质层的厚度一致。
- 如权利要4所述的显示面板,其中,在所述画素电极的表面设有上配向膜,所述上配向膜覆盖所述画素电极和所述槽的内表面。
- 如权利要求1所述的显示面板,其中,所述第一组件还包括设置于所述第一基板上的第一光学膜,所述第一光学膜包括多组画素色阻,一组所述画素色阻至少包括三种不同颜色的色阻块。
- 如权利要求9所述的显示面板,其中,所述主隔垫物和辅隔垫物的数量为多个,分设于不同的所述色阻块上。
- 如权利要求10所述的显示面板,其中,一组所述画素色阻至少包括红光色阻块、绿光色阻块和蓝光色阻块,所述主隔垫物设于所述红光色阻块或绿光色阻块或蓝光色阻块上,所述辅隔垫物设于所述红光色阻块或绿光色阻块或蓝光色阻块上。
- 如权利要求11所述的显示面板,其中,所述主隔垫物和辅隔垫物与所述色阻块一体成型。
- 如权利要求9所述的显示面板,其中,所述第一组件还包括设置于所 述第一基板上的网格状的黑矩阵,所述色阻块至少设置于黑矩阵的镂空区域,不同的所述色阻块通过所述黑矩阵隔开,所述主隔垫物和辅隔垫物设置于所述黑矩阵上。
- 如权利要求13所述的显示面板,其中,所述主隔垫物和辅隔垫物和所述黑矩阵一体成型。
- 如权利要9所述的显示面板,其中,所述第一光学膜的表面设有色阻电极,所述色阻电极的表面覆盖有下配向膜。
- 显示面板,包括第一组件和第二组件;所述第一组件包括:第一基板;主隔垫物和辅隔垫物,彼此间隔地设置于所述第一基板上,所述主隔垫物的高度大于所述辅隔垫物的高度;所述第二组件包括:第二基板;介质层,设置于所述第二基板靠近所述第一基板的一侧;驱动电路,分层设置于所述介质层的内部和表面,所述介质层设有过孔,所述过孔设置为将所述驱动电路位于所述介质层内部和表面的部分导通;其中,所述介质层对应所述辅隔垫物的部位开设有槽,所述槽的深度与所述过孔的深度一致,所述主隔垫物和辅隔垫物的高度差与所述槽的深度之和构成隔垫物段差。
- 一种显示器,包括显示面板以及用于为所述显示面板提供照明的背光 模组;所述显示面板,包括第一组件和第二组件,所述第一组件包括:第一基板;主隔垫物和辅隔垫物,设置于所述第一基板上;所述第二组件包括:第二基板,与所述第一基板相对设置;介质层,设置于所述第二基板靠近所述第一基板的一侧;其中,所述介质层对应所述辅隔垫物的部位开设有槽,所述主隔垫物和辅隔垫物的高度差与所述槽的深度之和构成隔垫物段差。
- 如权利要17所述的显示器,其中,所述显示面板为液晶面板,所述第一组件还包括设置于所述第一基板上的彩色滤膜,所述主隔垫物和辅隔垫物设置于所述彩色滤膜上,与所述彩色滤膜一体成型。
- 如权利要18所述的显示器,其中,所述彩色滤膜包括多组画素色阻,一组画素色阻包括至少三个不同颜色的色阻块,所述主隔垫物和辅隔垫物对应不同颜色的色阻块设置。
- 如权利要17所述的显示器,其中,所述主隔垫物和辅隔垫物的数量相同,所述主隔垫物和辅隔垫物分别均匀分布于所述第一基板上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821557687.9U CN208737161U (zh) | 2018-09-21 | 2018-09-21 | 一种增大隔垫物段差的显示面板及显示器 |
CN201821557687.9 | 2018-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020056928A1 true WO2020056928A1 (zh) | 2020-03-26 |
Family
ID=66034418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/119178 WO2020056928A1 (zh) | 2018-09-21 | 2018-12-04 | 一种显示面板及显示器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN208737161U (zh) |
WO (1) | WO2020056928A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111766733A (zh) * | 2020-07-31 | 2020-10-13 | 京东方科技集团股份有限公司 | 透明显示面板及其制备方法、显示装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101452158A (zh) * | 2007-12-07 | 2009-06-10 | 索尼株式会社 | 液晶显示装置和液晶显示装置的制造方法 |
CN202472188U (zh) * | 2012-02-06 | 2012-10-03 | 京东方科技集团股份有限公司 | 一种液晶显示器 |
CN103676259A (zh) * | 2012-09-10 | 2014-03-26 | 群康科技(深圳)有限公司 | 液晶显示装置 |
CN103926747A (zh) * | 2013-01-11 | 2014-07-16 | 瀚宇彩晶股份有限公司 | 液晶显示面板 |
US20150268504A1 (en) * | 2014-03-20 | 2015-09-24 | Japan Display Inc. | Liquid crystal display device |
-
2018
- 2018-09-21 CN CN201821557687.9U patent/CN208737161U/zh active Active
- 2018-12-04 WO PCT/CN2018/119178 patent/WO2020056928A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101452158A (zh) * | 2007-12-07 | 2009-06-10 | 索尼株式会社 | 液晶显示装置和液晶显示装置的制造方法 |
CN202472188U (zh) * | 2012-02-06 | 2012-10-03 | 京东方科技集团股份有限公司 | 一种液晶显示器 |
CN103676259A (zh) * | 2012-09-10 | 2014-03-26 | 群康科技(深圳)有限公司 | 液晶显示装置 |
CN103926747A (zh) * | 2013-01-11 | 2014-07-16 | 瀚宇彩晶股份有限公司 | 液晶显示面板 |
US20150268504A1 (en) * | 2014-03-20 | 2015-09-24 | Japan Display Inc. | Liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
CN208737161U (zh) | 2019-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020207255A1 (zh) | 阵列基板及其制备方法、液晶显示面板、液晶显示装置 | |
TWI398711B (zh) | 畫素結構及顯示面板 | |
US10642089B2 (en) | Liquid crystal display panel, liquid crystal display apparatus and method for manufacturing same | |
TWI228187B (en) | MVA-LCD device with color filters on a TFT array substrate | |
US11719983B2 (en) | Display panel, manufacturing method thereof and display device | |
US20090231522A1 (en) | Liquid crystal display panel and method for manufacturing the same | |
CN107688254B (zh) | Coa型液晶显示面板及其制作方法 | |
KR20090041337A (ko) | 액정 디스플레이 패널 | |
JP2019525256A (ja) | 液晶表示パネル及び液晶表示装置 | |
US20190049804A1 (en) | Active switch array substrate, manufacturing method therfor, and display panel | |
US9116297B2 (en) | Color filter substrate, manufacturing method thereof and liquid crystal panel | |
JP2007226232A (ja) | 液晶表示パネル | |
WO2020124896A1 (zh) | 液晶显示面板 | |
US11119350B2 (en) | Display panel and display apparatus | |
CN210181342U (zh) | 一种液晶显示组件及液晶显示器 | |
WO2020056928A1 (zh) | 一种显示面板及显示器 | |
WO2018120506A1 (zh) | 液晶显示面板及其制造方法 | |
US20190049803A1 (en) | Active switch array substrate, manufacturing method therefor same, and display device using same | |
US7528411B2 (en) | Display panel and method of manufacturing the same | |
WO2018113061A1 (zh) | 阵列基板、彩膜基板及液晶面板 | |
CN111176024A (zh) | 一种显示模组及显示设备 | |
US20210041743A1 (en) | Display panel, method for manufacturing same, and display device | |
CN113985662B (zh) | 显示面板、阵列基板及其制造方法 | |
WO2020056945A1 (zh) | 一种显示面板及显示装置 | |
US20170261795A1 (en) | Method for manufacturing liquid crystal display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18933822 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18933822 Country of ref document: EP Kind code of ref document: A1 |