[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020056766A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020056766A1
WO2020056766A1 PCT/CN2018/107108 CN2018107108W WO2020056766A1 WO 2020056766 A1 WO2020056766 A1 WO 2020056766A1 CN 2018107108 W CN2018107108 W CN 2018107108W WO 2020056766 A1 WO2020056766 A1 WO 2020056766A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
physical resource
information
resource block
terminal device
Prior art date
Application number
PCT/CN2018/107108
Other languages
English (en)
French (fr)
Inventor
李铮
李振宇
张武荣
李汉涛
吴毅凌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880094657.5A priority Critical patent/CN112292826B/zh
Priority to PCT/CN2018/107108 priority patent/WO2020056766A1/zh
Publication of WO2020056766A1 publication Critical patent/WO2020056766A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and in particular, to a communication method and device.
  • IoT devices are low cost, easy to deploy, and maintenance-free. Compared with licensed spectrum, IoT devices can transmit data on unlicensed spectrum, which can effectively reduce network costs.
  • Unlicensed Spectrum Internet of Things is an IoT narrowband communication technology that works on unlicensed spectrum. Its main purpose is to achieve long-distance, low-cost, low-power IoT communications. Its uplink transmission uses non-adaptive frequency hopping, and the main operating frequency is 1GHz, which can also be extended to other unlicensed spectrum.
  • Bluetooth communication is authenticated by frequency-hopping communication.
  • the sequence of transmitter carrier frequency hopping is determined by a pseudo-random frequency hopping sequence.
  • Each piconet has a unique frequency hopping sequence.
  • Bluetooth uses the 2.4GHz industrial scientific medical (ISM) frequency band, which is divided into 2.79GHz channels from 2.402GHz to 2.480GHz (the bandwidth of each channel is 1MHz), and the average rate is 1600 hops / second.
  • ISM industrial scientific medical
  • the digital modulation authentication corresponding to the frequency hopping communication authentication.
  • the Internet of Things device adopts the digital modulation authentication, there is no widely used solution for how the Internet of Things device communicates with the network device.
  • a communication method may include: a network device determines a first channel, and uses the first channel to send first information to a terminal device.
  • the first channel occupies three physical resource blocks in the frequency domain, which are a first physical resource block, a second physical resource block, and a third physical resource block, respectively.
  • the first information includes at least a synchronization signal and a master signal.
  • the first physical resource block is used to carry the synchronization signal and a broadcast channel
  • the broadcast channel carries the main information block
  • the second physical resource block And used to carry the first downlink information
  • the third physical resource block is used to carry the system message.
  • the time domain resource occupied by the first channel is 20 ms.
  • the network device sending the first information to the terminal device by using the first channel may include: the network device periodically sends the first information to all terminals in the first channel according to a first period.
  • the terminal device sends the first information, and the contents of the first information sent in different periods are the same or different, and the first period is 80 ms.
  • the method further includes: determining, by the network device, a second channel, where the second channel includes N subframes in the time domain, where N is a positive integer;
  • the terminal device sends a ratio of an uplink subframe to a downlink subframe, and the ratio of the uplink subframe to the downlink subframe refers to a subframe for uplink data transmission and a subframe for downlink data transmission in the second channel.
  • a ratio of subframes and the network device performs data transmission with the terminal device based on the second channel according to a ratio of the uplink subframe and the downlink subframe.
  • the ratio of the uplink subframe to the downlink subframe is N
  • the network device is based on the ratio of the uplink subframe to the downlink subframe, based on the second channel and the
  • the data transmission by the terminal device includes: the network device receiving uplink data sent by the terminal device on N subframes included in the second channel.
  • the second channel occupies one physical resource block in the frequency domain, and the occupied time domain resource is 60 ms.
  • the present application provides a communication method, including: a terminal device determining a first channel; wherein the first channel occupies three physical resource blocks in a frequency domain, which are a first physical resource block and a second physical A resource block and a third physical resource block; the terminal device uses the first channel to receive first information sent by a network device; wherein the first information includes at least a synchronization signal, a main information block, and a first downlink Information and system messages, the first physical resource block is used to carry the synchronization signal and a broadcast channel, the broadcast channel carries the main information block, and the second physical resource block is used to carry the first Downlink information, the third physical resource block is used to carry the system message.
  • using the first channel by the terminal device to receive the first information sent by the network device includes: the terminal device detecting the synchronization signal on the first physical resource block; the After detecting the synchronization signal, the terminal device receives the main information block on the first physical resource block and processes the main information block; when the terminal device finishes processing the main information block When receiving the system message on the third physical resource block and processing the system message; when the terminal device finishes processing the system message, it receives on the second physical resource block The first downlink information.
  • the time domain resource occupied by the first channel is 20 ms.
  • the use of the first channel by the terminal device to receive the first information sent by the network device includes: the terminal device periodically receives the first information on the first channel according to a first period.
  • the first information received in different periods is the same or different, and the first period is 80 ms.
  • the method further includes: determining, by the terminal device, a second channel, where the second channel includes N subframes in the time domain, where N is a positive integer; and the terminal device receives The ratio of the uplink subframe to the downlink subframe from the network device, and the ratio of the uplink subframe to the downlink subframe refers to the subframe for uplink data transmission and the downlink data transmission in the second channel.
  • the terminal device performs data transmission with the network device based on the second channel according to the ratio of the uplink subframe to the downlink subframe.
  • the ratio of the uplink subframe to the downlink subframe is N
  • the terminal device is based on the ratio of the uplink subframe to the downlink subframe, based on the second channel and the
  • the data transmission by the network device includes: the terminal device sending uplink data to the network device on N subframes included in the second channel.
  • the second channel occupies one physical resource block in the frequency domain and 60 ms in the time domain.
  • the present application provides a communication device for a terminal device or a chip of a terminal device, including: a unit or a means for performing each step of the second aspect above.
  • the present application provides a communication device for a network device or a chip of a network device, including: a unit or a means for performing each step of the above first aspect.
  • the present application provides a communication device for a terminal device or a chip of a terminal device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store a program and data, and the at least one A processing element is used to perform the method provided by the second aspect of the present application.
  • the present application provides a communication device for a network device or a chip of a network device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store a program and data, and the at least one A processing element is configured to perform the method provided by the first aspect of the present application.
  • the present application provides a communication device for a terminal device including at least one processing element (or chip) for performing the method in the second aspect above.
  • the present application provides a communication device for a network device, including at least one processing element (or chip) for performing the method in the first aspect above.
  • the present application provides a computer program product including computer instructions that, when executed by a computer, cause the computer to execute the method of any of the above aspects.
  • the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions are executed by a computer, the computer is caused to execute the method of any of the above aspects.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an anchor segment and a data segment in a time domain according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of an anchor segment and a data segment in a time domain according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of an anchor segment in a frequency domain according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication system 100 may include a network device 101 and a terminal device 102.
  • the communication system 100 may adopt various radio access technologies (radio access technology, RAT), such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division Multiple access (frequency, multiple access, FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA), etc.
  • RAT radio access technology
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division Multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the network device 101 may be a device in a network that connects a terminal device to a wireless network.
  • the network device is a node in a radio access network, and may also be called a base station, and may also be called a radio access network (RAN) node (or device).
  • RAN radio access network
  • some examples of network equipment are: gNB, transmission reception point (TRP), evolved Node B (eNB), home base station (e.g., home NodeB, or home NodeB, HNB) Baseband unit (BBU), or WiFi access point (AP).
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node. This structure separates the protocol layer of the eNB in a long term evolution (LTE) system. Some protocol layer functions are centrally controlled by the CU. The remaining part or all of the protocol layer functions are distributed in the DU. Centralized control of DU.
  • LTE long term evolution
  • Terminal device 102 also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice and / or data connectivity to users Devices, for example, hand-held devices with wireless connection function, in-vehicle devices, etc.
  • terminals are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the network device 101 and the terminal device 102 can work in a licensed frequency band, and can also work in an unlicensed frequency band.
  • the unlicensed frequency band may include 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
  • the Communication Commission stipulates different certification regulations, such as frequency hopping certifications (FHSs), digital modulation certifications (DTSs) ) And hybrid authentication (Hybird), which is a combination of frequency hopping authentication and data modulation authentication.
  • FHSs frequency hopping certifications
  • DTSs digital modulation certifications
  • Hybird hybrid authentication
  • the main regulatory requirements include channel bandwidth, maximum transmit power, and adjacent channel power leakage, as follows:
  • the present application provides a communication method, which can meet the requirements of DTSs regulations.
  • the network device in the communication method may be the network device 101 in FIG. 1, and the terminal device may be the terminal device 102 in FIG. 1.
  • the functions of the network device may also be implemented by a chip applied to the network device, and the functions of the terminal device may also be implemented by a chip applied to the terminal device.
  • the process is specifically:
  • the network device determines a first channel.
  • the first channel may occupy three physical resource blocks (PRBs) in the frequency domain, and the time domain resources occupied by the first channel are 20 ms.
  • the three PRBs may be a first PRB, a second PRB, and a third PRB. Each PRB may occupy a bandwidth of 180 kHz in the frequency domain.
  • the first PRB may be used for synchronization and broadcast of a common channel, and the second PRB may be The downlink data channel is occupied, and a physical downlink data channel (physical downlink link channel (PDSCH)) and a physical downlink control channel (physical downlink control channel (PDCCH)) can be transmitted.
  • the third PRB may be a system message of a common channel, such as a system message block (system information block, SIB).
  • the first PRB, the second PRB, and the third PRB are only used to distinguish three PRBs, and are not intended to limit the present application.
  • the first, second, and third may be indexes of three PRBs, and the indexes may be numbered starting from 1, the first PRB, the second PRB, and the third PRB, etc., and the indexes may also be numbered starting from 0. They are PRB # 0, PRB # 1, PRB # 2, etc.
  • S202 The network device sends the first information by using the first channel.
  • the first information includes at least a synchronization signal, a master information block (MIB), first downlink information, and a system message.
  • the first PRB may be used to carry the synchronization signal and a broadcast channel.
  • the broadcast channel carries the MIB
  • the second PRB may be used to carry the first downlink information
  • the first downlink information may include at least one of downlink data information and downlink control information.
  • the third PRB block may be used to carry the system message.
  • S203 The terminal device receives the first information by using the first channel.
  • the terminal device may first detect the synchronization signal on the first PRB, and after detecting the synchronization signal, the terminal device may receive a main information block on the first PRB, and The main information block is processed; when the main information block is processed, a system message may be received on the third PRB and the system message is processed; when the system message processing is completed, The first downlink information may be received on the second PRB.
  • the network device may periodically send the first information to the terminal device in the first channel according to a first cycle, and the content of the first information sent in different cycles is the same or Differently, the first period may be, but is not limited to, 80 ms. Accordingly, the terminal device may periodically receive the first information on the first channel according to a first period.
  • the first channel may also be referred to as an anchor channel (anchor channel) or an anchor segment (anchor segment).
  • the network device in the communication method may be the network device 101 in FIG. 1, and the terminal device may be the terminal device 102 in FIG. 1.
  • the process is specifically:
  • the network device determines a second channel.
  • the second channel may also be referred to as a data segment.
  • the second channel may occupy 1 PRB in the frequency domain, and the time domain resource occupied is 60 ms.
  • the second channel may be included in the time domain.
  • a plurality of n frames, for each n frame, may include N subframes, where N is a positive integer.
  • the time domain resources occupied by the second channel may be 3 nframes, and each nframe may include 20 subframes in the time domain, and each subframe occupies 1 ms in the time domain.
  • the network device sends the ratio of the uplink subframe to the downlink subframe, and the ratio of the uplink subframe to the downlink subframe refers to the subframe used for uplink data transmission and the data used for downlink data transmission in the second channel. Ratio of subframes;
  • the ratio of the uplink subframe to the downlink subframe may be N, that is, all subframes in the nframe are used for uplink, and the terminal device may use the second channel.
  • Upstream data is sent on the included N subframes.
  • the network device may receive uplink data on the N subframes included on the second channel.
  • S303 The terminal device receives the ratio of the uplink subframe to the downlink subframe.
  • the network device performs data transmission with the terminal device based on the second channel according to the ratio of the uplink subframe to the downlink subframe.
  • the network device may perform at least one of uplink data transmission and downlink data transmission with the terminal device based on the second channel according to the ratio of the uplink subframe to the downlink subframe. If all the subframes are allocated for uplink, the network device may perform uplink data transmission with the terminal device based on the second channel, and if all the subframes are allocated for downlink, the network device may communicate with the terminal based on the second channel. The device performs downlink data transmission. If a part of the subframe is allocated for uplink and another part is allocated for downlink, the network device may simultaneously perform uplink data transmission and downlink data transmission with the terminal device based on the second channel.
  • the time domain resource occupied by the first channel can be called anchor, and the value of anchor can be 20ms.
  • the time domain resource occupied by the second channel can be called data, and the value of data segmenter can be 60ms, achor segments and data segments are adjacent in the time domain.
  • the period of the anchor segment can be 80ms
  • the anchor portion can be composed of the first two radio frames
  • the data segment can be composed of the remaining six radio frames.
  • Each radio frame is at the time Occupies 10ms on the domain.
  • the anchor segment may be composed of three PRBs.
  • the three PRBs may be referred to as nPRB # 0, nPRB # 1, and nPRB # 2.
  • Each PRB occupies 180kHz bandwidth in the frequency domain
  • nPRB # 0 is a low-frequency band
  • nPRB # 1 occupies a high-frequency position 180kHz adjacent to nPRB # 0,
  • nPRB # 2 occupies a high-frequency position 180khz adjacent to nPRB # 1, or
  • n PRB # 0 is a high-frequency band
  • nPRB # 1 occupies a low-frequency position 180kHz adjacent to nPRB #
  • nPRB # 2 occupies a low-frequency position 180kHz adjacent to nPRB # 1, and so on.
  • the anchor segment can be used only for downlink data transmission.
  • the terminal equipment can assume that anchors are used to transmit synchronization signals, physical broadcast channels, physical downlink control channels, and physical downlink data channels.
  • the data segment can include 3 nframes, each nframe can occupy 20ms. Each nframe may include 20 subframes, and each subframe may occupy 1 ms.
  • the nframe can be used for at least one of uplink transmission and downlink data.
  • the uplink / downlink transmission ratio can be used to control the uplink and downlink transmission of segment data.
  • this application provides an example of an uplink / downlink transmission configuration (Uplink-downlink configuration).
  • Nframe is used as an example for description.
  • one Nframe may include 20 subframes, and the index numbers are 0 to 19.
  • all 0 to 19 subframes may be used for uplink data transmission, and may also be used for downlink data transmission, and may also be used for both uplink data transmission and downlink data transmission.
  • D may represent a subframe for downlink data transmission
  • U may represent a subframe for uplink data transmission
  • S may indicate that the subframe is included DwPTS and GP (Guard Period) are two special subframes.
  • DwPTS and GP Guard Period
  • subframes 0 to 4 can be used for downlink data transmission
  • subframe 5 can be used as a special subframe including two parts of DwPTS and GP
  • subframes 6 to Subframe 19 may be used for uplink data transmission.
  • subframes 0 to 19 are used for uplink data transmission.
  • the present application provides a communication device 700.
  • the communication device 700 may include a processing unit 701 and a transceiver unit 702.
  • the communication device 700 may be applied to a network device, and is configured to execute the steps in the process shown in FIG. 2 or FIG. 3 with the network device as an execution subject.
  • the processing unit 701 may be configured to determine a first channel, where the first channel occupies three physical resource blocks in the frequency domain, which are a first physical resource block, a second physical resource block, and a third physical resource block;
  • Unit 702 may be configured to send first information to a terminal device by using the first channel, where the first information includes at least a synchronization signal, a main information block, first downlink information, and a system message, and the first physical resource A block is used to carry the synchronization signal and a broadcast channel, the broadcast channel carries the main information block, the second physical resource block is used to carry the first downlink information, and the third physical resource block And used to carry the system message.
  • the communication device 700 may be applied to a terminal device, and is configured to execute the steps shown in FIG. 2 or FIG. 3 with the terminal device as an execution subject.
  • the processing unit 701 may be configured to determine a first channel, where the first channel occupies 3 physical resource blocks in the frequency domain, which are a first physical resource block, a second physical resource block, and a third physical resource block;
  • the unit 702 may be configured to receive first information sent by a network device by using the first channel, where the first information includes at least a synchronization signal, a main information block, first downlink information, and a system message.
  • a physical resource block is used to carry the synchronization signal and a broadcast channel, the broadcast channel carries the main information block, the second physical resource block is used to carry the first downlink information, and the third The physical resource block is used to carry the system message.
  • processing unit 701 and the transceiving unit 702 For specific functions of the processing unit 701 and the transceiving unit 702, reference may be made to the description of the process shown in FIG. 2 or FIG. 3 above, and details are not described herein again.
  • the present application further provides a communication device 800.
  • the communication device 800 can be applied to a network device or a chip of a network device.
  • the communication device 800 can be used to execute the above-mentioned FIG. 2 or FIG.
  • the network device is the main step.
  • the processor 801 may be configured to determine a first channel, where the first channel occupies three physical resource blocks in the frequency domain, which are a first physical resource block, a second physical resource block, and a third physical resource block; sending
  • the transmitter 805 may be configured to send first information to a terminal device by using the first channel, where the first information includes at least a synchronization signal, a main information block, first downlink information, and a system message.
  • the first physical resource A block is used to carry the synchronization signal and a broadcast channel, the broadcast channel carries the main information block, the second physical resource block is used to carry the first downlink information, and the third physical resource block And used to carry the system message.
  • the communication device 800 may be used for a terminal device or a chip in a terminal device.
  • the communication device 800 may be used to execute the process shown in FIG. 2 or FIG.
  • the processor 801 may be configured to determine a first channel, where the first channel occupies three physical resource blocks in the frequency domain, which are a first physical resource block, a second physical resource block, and a third physical resource block;
  • the receiver 804 may be configured to receive the first information sent by the network device by using the first channel.
  • the network device in each of the foregoing device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding module or unit performs the corresponding steps, such as the sending module (transmitter) method execution method implementation
  • the receiving module executes the steps received in the method embodiment.
  • Other steps than sending and receiving can be performed by the processing module (processor).
  • the sending module and the receiving module can form a transceiver module, and the transmitter and the receiver can form a transceiver to realize the transmitting and receiving function together; the processor can be one or more.
  • the embodiment of the present application further provides a communication system, which includes the foregoing network device and terminal device.
  • an embodiment of the present application further provides a computer storage medium.
  • a software program is stored in the storage medium, and the software program can implement any one or more of the foregoing when read and executed by one or more processors.
  • the computer storage medium may include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • an embodiment of the present application further provides a chip that includes a processor, and is configured to implement a function involved in any one or more of the foregoing embodiments, such as obtaining or processing information involved in the foregoing method, or Message.
  • the chip further includes a memory, which is configured to store program instructions and data executed by the processor.
  • the chip can also include chips and other discrete devices.
  • the processor may be a central processing unit (CPU), and the processor may also be another general-purpose processor, a digital signal processor (DSP), or a special-purpose integration.
  • Circuit application-specific integrated circuit, ASIC
  • ready-made programmable gate array field programmable gate array, FPGA
  • a general-purpose processor may be a microprocessor, or any conventional processor or the like.
  • the memory may include read-only memory and random access memory, and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as a bus system in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • "at least one” means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship between related objects, and indicates that there can be three kinds of relationships. For example, A and / or B can indicate: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related object is an "or” relationship; in the formula of this application, the character "/" indicates that the related object is a "divide” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法可包括:网络设备确定第一信道;其中,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块、第二物理资源块以及第三物理资源块;所述网络设备利用所述第一信道,向终端设备发送第一信息;其中,所述第一信息中至少包括同步信号、主信息块、第一下行信息以及系统消息,所述第一物理资源块用于承载所述同步信号以及广播信道,所述广播信道上承载有所述主信息块,所述第二物理资源块用于承载所述第一下行信息,所述第三物理资源块用于承载所述系统消息。采用本申请的方法及装置,可解决网络设备与终端设备通信的问题。

Description

一种通信方法及装置 技术领域
本申请涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
随着移动互联网和物联网产业的发展,越来越多的移动终端相互连接并分享更加丰富的数据。物联网设备具有成本低、易部署以及免维护等特点。相对于授权频谱,物联网设备在非授权频谱上传输数据,能够有效降低网络成本。
非授权频谱物联网(Internet of Things on unlicensed spectrum,IoT-U)是工作在非授权频谱上的一种物联网窄带通信技术。其主要目的是实现长距离、低成本、低功耗的物联网通信。其上行发送采用非自适应跳频,主要工作频点是Sub 1GHz,也可以扩展到其他非授权频谱上。
由于频谱是无线通信的基础,为了保证对频谱的公平使用,各个国家制定了不同的法律规则。为了避免物联网设备在非授权频谱上无规律,无限制的发送数据,通信委员会在非授权频谱上规定了不同的认证法规,其中,可包括跳频认证、数字调制认证以及跳频认证与数字调制认证相混合的混合认证等。
蓝牙通信就是采用跳频通信认证的,其发射机载波跳频的顺序由伪随机的跳频序列来确定,每个微微网(Piconet)都有唯一的一个跳频序列。蓝牙采用2.4GHz的工业科学医学(industrial scientific medical,ISM)频段,从2.402GHz到2.480GHz划分为79个信道(每个信道的带宽为1MHz),平均速率为1600跳/秒。
其中,与跳频通信认证相对应的数字调制认证,当物联网设备采用数字调制认证时,物联网设备如何与网络设备进行通信,并没有广泛使用的解决方案。
发明内容
本申请实施例提供了一种通信方法及装置,用以解决网络设备与终端设备通信的问题。第一方面,提供一种通信方法,该方法可包括:网络设备确定第一信道,利用第一信道,向终端设备发送第一信息。其中,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块、第二物理资源块以及第三物理资源块,所述第一信息中至少包括同步信号、主信息块、第一下行信息以及系统消息,所述第一物理资源块用于承载所述同步信号以及广播信道,所述广播信道上承载有所述主信息块,所述第二物理资源块用于承载所述第一下行信息,所述第三物理资源块用于承载所述系统消息。
在一种可能的实现方式中,所述第一信道占用的时域资源为20ms。
在一种可能的实现方式中,所述网络设备利用所述第一信道,向终端设备发送第一信息,可包括:所述网络设备按照第一周期,在所述第一信道中周期性向所述终端设备发送所述第一信息,不同周期发送的所述第一信息中的内容相同或不同,所述第一周期为80ms。
在一种可能的实现方式中,所述方法还包括:所述网络设备确定第二信道,所述第二信道在时域上包括N个子帧,所述N为正整数;所述网络设备向所述终端设备发送上行子帧与下行子帧的配比,所述上行子帧与下行子帧的配比指所述第二信道中用于上行数据传 输的子帧与用于下行数据传输的子帧的比值;所述网络设备根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述终端设备进行数据传输。
在一种可能的实现方式中,所述上行子帧与下行子帧的配比为N,所述网络设备根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述终端设备进行数据传输,包括:所述网络设备在所述第二信道所包括的N个子帧上,接收所述终端设备发送的上行数据。
在一种可能的实现方式中,所述第二信道在频域上占用1个物理资源块,占用的时域资源为60ms。
第二方面,本申请提供一种通信方法,包括:终端设备确定第一信道;其中,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块,第二物理资源块以及第三物理资源块;所述终端设备利用所述第一信道,接收网络设备发送的第一信息;其中,所述第一信息中至少包括同步信号、主信息块、第一下行信息以及系统消息,所述第一物理资源块用于承载所述同步信号以及广播信道,所述广播信道上承载有所述主信息块,所述第二物理资源块用于承载所述第一下行信息,所述第三物理资源块用于承载所述系统消息。
在一种可能的实现方式中,所述终端设备利用第一信道,接收网络设备发送的第一信息,包括:所述终端设备在所述第一物理资源块上检测所述同步信号;所述终端设备在检测到所述同步信号后,在所述第一物理资源块上接收所述主信息块,且对所述主信息块进行处理;当所述终端设备对所述主信息块处理完成时,在所述第三物理资源块上接收所述系统消息,且对所述系统消息进行处理;当所述终端设备对所述系统消息处理完成时,在所述第二物理资源块上接收所述第一下行信息。
在一种可能的实现方式中,,所述第一信道占用的时域资源为20ms。
在一种可能的实现方式中,所述终端设备利用所述第一信道,接收网络设备发送的第一信息,包括:所述终端设备按照第一周期,在所述第一信道上周期性接收所述第一信息,不同周期所接收的第一信息相同或不同,所述第一周期为80ms。
在一种可能的实现方式中,所述方法还包括:所述终端设备确定第二信道,所述第二信道在时域上包括N个子帧,所述N为正整数;所述终端设备接收来自所述网络设备的上行子帧与下行子帧的配比,所述上行子帧与下行子帧的配比指所述第二信道中用于上行数据传输的子帧与用于下行数据传输的子帧的比值;所述终端设备根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述网络设备进行数据传输。
在一种可能的实现方式中,所述上行子帧与下行子帧的配比为N,所述终端设备根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述网络设备进行数据传输,包括:所述终端设备在所述第二信道所包括的N个子帧上,向所述网络设备发送上行数据。
在一种可能的实现方式中,所述第二信道在频域上占用1个物理资源块,在时域上占用60ms。
第三方面,本申请提供一种通信装置,用于终端设备或终端设备的芯片,包括:包括用于执行以上第二方面各个步骤的单元或手段(means)。
第四方面,本申请提供一种通信装置,用于网络设备或网络设备的芯片,包括:包括用于执行以上第一方面各个步骤的单元或手段(means)。
第五方面,本申请提供一种通信装置,用于终端设备或终端设备的芯片,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述 至少一个处理元件用于执行本申请第二方面提供的方法。
第六方面,本申请提供一种通信装置,用于网络设备或网络设备的芯片,包括至少一个处理元件和至少一个存储元件,其中所述至少一个存储元件用于存储程序和数据,所述至少一个处理元件用于执行本申请第一方面提供的方法。
第七方面,本申请提供一种通信装置,用于终端设备包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
第八方面,本申请提供一种通信装置,用于网络设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
第九方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机指令,当该计算机指令被计算机执行时,使得所述计算机执行以上任一方面的方法。
第十方面,本申请提供了一种计算机可读存储介质,该存储介质存储有计算机指令,当所述计算机指令被计算机执行时,使得所述计算机执行以上任一方面的方法。
附图说明
图1为本申请实施例提供的通信系统的一示意图;
图2为本申请实施例提供的通信方法的一流程示意图;
图3为本申请实施例提供的通信方法的一流程示意图;
图4为本申请实施例提供的anchor segment与data segment在时域的一示意图;
图5为本申请实施例提供的anchor segment与data segment在时域的一示意图;
图6为本申请实施例提供的anchor segement在频域的一示意图;
图7为本申请实施例提供的通信装置的一结构示意图;
图8为本申请实施例提供的通信装置的一结构示意图。
具体实施方式
下面结合附图,对本申请实施例进行介绍。
如图1所示,本申请实施例提供一种通信系统100,该通信系统100可包括网络设备101和终端设备102。
其中,通信系统100,可以采用各种无线接入技术(radio access technology,RAT),例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)等,本申请对通信系统所采用的RAT不做限定。在本申请中,术语“系统”可以和“网络”相互替换。
网络设备101可以是网络中将终端设备接入到无线网络的设备。所述网络设备为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。目前,一些网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或WiFi接入点(access point,AP)等。另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit, CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
终端设备102,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
其中,网络设备101与终端设备102可工作在授权频段上,也可工作在非授权频段上,比如所述非授权频段可包括902-928MHz,2400-2483.5MHz和5725-5850MHz等。为了避免通信设备在非授权频段上无规律,无限制的发送数据,通信委员会规定了不同的认证法规,比如,跳频认证(frequency hopping systems(,FHSs)、数字调制认证(digital transmission systems,DTSs)以及跳频认证与数据调制认证相混合的混合认证(Hybird)等。在DTSs认证中,主要法规需求有信道带宽、最大发送功率、邻道功率泄露等指标,具体如下:
法规要求在数字调制digital modulation,DM)模式下,信道带宽大于500KHz;不能发送无用信息(garbage);信道带宽必须占用宣称的带宽,某个时刻实际使用带宽小于宣称带宽会被质疑,如果被联邦通讯委员会(federal communications commission,FCC)判定不符合法规,则对应的通讯产品无法进行销售,合规性是产品解决方案的首要条件。
基于以上,如图2所示,本申请提供一种通信方法,该通信方法可满足DTSs法规要求。该通信方法中的网络设备可为图1中的网络设备101,终端设备可为图1中的终端设备102。可以理解的是,在本申请实施例中,网络设备的功能也可以通过应用于网络设备的芯片来实现,终端设备的功能也可以通过应用于终端设备的芯片来实现。该流程具体为:
S201:网络设备确定第一信道。
其中,所述第一信道在频域上可占用3个物理资源块(physical resource block,PRB),第一信道占用的时域资源为20ms。3个PRB可分别为第一PRB、第二PRB以及第三PRB,每个PRB在频域上可占用180kHz带宽,所述第一PRB可为公共信道的同步和广播占用,第二PRB可为下行数据信道占用,可传输物理下行数据信道(physical downlink shared channel,PDSCH)和物理下行控制信道(physical downlink control channel,PDCCH)。第三PRB可为公共信道的系统消息,比如系统消息块(system information blocks,SIB)等。需要说明的是,在本申请实施例中,上述第一PRB、第二PRB以及第三PRB,仅为区分三个PRB,并不作为对本申请的限定。第一、第二、第三可为三个PRB的索引,所述索引可以从1开始编号,分别为第一PRB、第二PRB以及第三PRB等,所述索引也可从0开始编号,分别为PRB#0、PRB#1以及PRB#2等。
S202:网络设备利用所述第一信道,发送第一信息。
其中,所述第一信息中至少包括同步信号、主信息块(master information block,MIB)、第一下行信息以及系统消息,所述第一PRB可用于承载所述同步信号以及广播信道,所述 广播信道上承载有所述MIB,所述第二PRB可用于承载所述第一下行信息,所述第一下行信息中可包括下行数据信息和下行控制信息中的至少一个。所述第三PRB块可用于承载所述系统消息。
S203:终端设备利用第一信道,接收第一信息。
在本申请实施例中,终端设备可首先在所述第一PRB上检测所述同步信号,终端设备在检测到所述同步信号后,可在所述第一PRB上接收主信息块,且对所述主信息块进行处理;在对所述主信息块处理完成时,可在所述第三PRB上接收系统消息,且对所述系统消息进行处理;在对所述系统消息处理完成时,可在所述第二PRB上接收所述第一下行信息。
在本申请的一示例中,网络设备可按照第一周期,在所述第一信道中周期性向所述终端设备发送所述第一信息,不同周期发送的所述第一信息中的内容相同或不同,所述第一周期可但不限于为80ms。相应的,终端设备可按照第一周期,在所述第一信道上周期性接收所述第一信息。
在本申请实施例中,所述第一信道还可称为锚信道(anchor信道),或者锚部分(anchor segment)。
需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
基于以上,如图3所示,本申请提供一种通信方法,该通信方法中的网络设备可为图1中的网络设备101,终端设备可为图1中的终端设备102。该流程具体为:
S301:网络设备确定第二信道。
其中,第二信道还可称为数据部分(data segment),所述第二信道在频域上可占用1个PRB,占用的时域资源为60ms,所述第二信道在时域上可包多个n帧(nframe),针对每个nframe,可包括N个子帧(subframe),所述N为正整数。比如,第二信道占用的时域资源可为3个nframe,每个nframe在时域上可包括20个子帧(subframe),每个subframe在时域上占用1ms。
S302:网络设备发送上行子帧与下行子帧的配比,所述上行子帧与下行子帧的配比指所述第二信道中用于上行数据传输的子帧与用于下行数据传输的子帧的比值;
比如,在本申请实施例中,针对任一nframe,所述上行子帧与下行子帧的配比可为N,即该nframe中的所有子帧全部用于上行,终端设备可在第二信道所包括的N个子帧上,发送上行数据,相应的,网络设备可在第二信道所包括的N个子帧上,接收上行数据。
S303:终端设备接收上行子帧与下行子帧的配比。
S304:网络设备根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述终端设备进行数据传输。
在本申请实施例中,网络设备可根据所述上行子帧与下行子帧的配比,基于第二信道与终端设备进行上行数据传输和下行数据传输中的至少一个。如果所述子帧被全部分配用于上行,那么网络设备可基于第二信道与终端设备进行上行数据传输,如果所述子帧被全部分配用于下行,那么网络设备可基于第二信道与终端设备进行下行数据传输,如果所述子帧一部分被分配用于上行,另一部分被分配用于下行,那么网络设备可基于第二信道,与终端设备同时进行上行数据传输和下行数据传输。
需要说明的是,图3所示的流程图,可单独应用,也可与图2所示的流程图结合使用,在此不作限定。
如图4所示,第一信道占用的时域资源可称为anchor segment,anchor segment的取值可为20ms,第二信道占用的时域资源可称为data segment,data segmentr的取值可为60ms,achor segment与data segment在时域上相邻。
如图5所示,在时域,anchor segment的周期可为80ms,anchor部分可由开始的两个无线帧(radio frame)组成,data segment可由剩余的六个无线帧组成,每个无线帧在时域上占用10ms。
如图6所示,在频域,anchor segment可由3个PRB组成,为了方便描述,可将3个PRB称为nPRB#0,nPRB#1,以及nPRB#2等。每个PRB均占用频域180kHz带宽,nPRB#0为低频频段,nPRB#1占用与nPRB#0相邻的高频位置180kHz,nPRB#2占用与nPRB#1相邻的高频位置180khz,或者n PRB#0为高频频段,nPRB#1占用与nPRB#0相邻的低频位置180kHz,nPRB#2占用与nPRB#1相邻的低频位置180kHz等。
在本申请实施例中,anchor segment可仅用于下行数据传输。终端设备可假设anchor segment用于传输同步信号、物理广播信道、物理下行控制信道和物理下行数据信道。
在时域,data segment可包括3个nframe,每个nframe可占用20ms。每个nframe可包括20个子帧,每个子帧可占用1ms。nframe可用于上行传输和下行数据的至少一个,可用上行/下行传输配比控制segment data的上下行传输。
如表1所示,本申请提供一种上行/下行传输配比(Uplink-downlink configuration)的示例,在该示例中,以Nframe为示例进行说明。在本申请实施例中,一个Nframe中可包括20个子帧,索引号为0至19。在本申请实施例中,0至19个子帧可均用于上行数据传输,也可均用于下行数据传输,也可同时用于上行数据传输和下行数据传输。具体的,在表1所示的示例中,“D”可代表一子帧用于下行数据传输,“U”可代表一子帧用于上行数据传输,“S”可表示该子帧为包括DwPTS和GP(Guard Period)两个部分的特殊子帧。比如,在表1中,在索引号为0的Nframe中子帧0至子帧4可用于下行数据传输,子帧5可用作包括DwPTS和GP两个部分的特殊子帧,子帧6至子帧19可用于上行数据传输。索引号为4的Nframe中,子帧0至子帧19均用于上行数据传输。
表1
Figure PCTCN2018107108-appb-000001
采用本申请实施例所公开的方法,在满足数据调制认证的法规前提下,可拥有更多可用的下行数据传输资源,且可有更低的时延。已知频点上接收同步信号,不需要FHSs认证的盲检;更多的数据资源元素,anchor部分占用3个PRB,其中中间位置的PRB仍可以作为数据来使用,而FHSS认证,在anchor部分无法传输数据资源元素。
基于上述构思,如图7所示,本申请提供一种通信装置700,该通信装置700可包括处理单元701和收发单元702。
在本申请的一示例中,所述通信装置700可应用于网络设备,用于执行图2或图3所示流程中,以网络设备为执行主体的步骤。
比如,处理单元701,可用于确定第一信道,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块、第二物理资源块以及第三物理资源块;收发单元702,可用于利用所述第一信道,向终端设备发送第一信息,所述第一信息中至少包括同步信号、主信息块、第一下行信息以及系统消息,所述第一物理资源块用于承载所述同步信号以及广播信道,所述广播信道上承载有所述主信息块,所述第二物理资源块用于承载所述第一下行信息,所述第三物理资源块用于承载所述系统消息。
在本申请的一示例中,所述通信装置700可应用于终端设备,用于执行图2或图3所示流程中,以终端设备为执行主体的步骤。
比如,处理单元701,可用于确定第一信道,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块,第二物理资源块以及第三物理资源块;收发单元702,可用于利用所述第一信道,接收网络设备发送的第一信息;其中,所述第一信息中至少包括同步信号、主信息块、第一下行信息以及系统消息,所述第一物理资源块用于承载所述同步信号以及广播信道,所述广播信道上承载有所述主信息块,所述第二物理资源块用于承载所述第一下行信息,所述第三物理资源块用于承载所述系统消息。
关于处理单元701和收发单元702的具体功能,可参见上述图2或图3所示流程的介绍,在此不再说明。
基于以上构思,如图8所示,本申请还提供一种通信装置800,该通信装置800可应用于网络设备或网络设备的芯片,所述通信装置800可用于执行上述图2或图3所示流程中,以网络设备为执行主体的步骤。比如,处理器801,可用于确定第一信道,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块、第二物理资源块以及第三物理资源块;发送器805,可用于利用所述第一信道,向终端设备发送第一信息,所述第一信息中至少包括同步信号、主信息块、第一下行信息以及系统消息,所述第一物理资源块用于承载所述同步信号以及广播信道,所述广播信道上承载有所述主信息块,所述第二物理资源块用于承载所述第一下行信息,所述第三物理资源块用于承载所述系统消息。
再如,在本申请的一示例中,该通信装置800可用于终端设备或终端设备中的芯片,所述通信装置800可用于执行上述图2或图3所示流程中,以终端设备为执行主体的步骤。比如,处理器801,可用于确定第一信道,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块,第二物理资源块以及第三物理资源块;接收器804,可用于利用所述第一信道,接收网络设备发送的第一信息。
关于处理器801、接收器804以及发送器805的具体功能,可参见上述图2或图3所示流程的介绍,在此不再赘述。
应理解,上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网 络设备和终端设备。
基于以上实施例,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。该计算机存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种芯片,该芯片包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如获取或处理上述方法中所涉及的信息或者消息。可选地,该芯片还包括存储器,该存储器,用于存储处理器所执行的程序指令和数据。该芯片,也可以包含芯片和其他分立器件。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    网络设备确定第一信道;其中,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块、第二物理资源块以及第三物理资源块;
    所述网络设备利用所述第一信道,向终端设备发送第一信息;
    其中,所述第一信息中至少包括同步信号、主信息块、第一下行信息以及系统消息,所述第一物理资源块用于承载所述同步信号以及广播信道,所述广播信道上承载有所述主信息块,所述第二物理资源块用于承载所述第一下行信息,所述第三物理资源块用于承载所述系统消息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信道占用的时域资源为20ms。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络设备利用所述第一信道,向终端设备发送第一信息,包括:
    所述网络设备按照第一周期,在所述第一信道中周期性向所述终端设备发送所述第一信息,不同周期发送的所述第一信息中的内容相同或不同。
  4. 根据权利要求3所述的方法,其特征在于,所述第一周期为80ms。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定第二信道,所述第二信道在时域上包括N个子帧,所述N为正整数;
    所述网络设备向所述终端设备发送上行子帧与下行子帧的配比,所述上行子帧与下行子帧的配比指所述第二信道中用于上行数据传输的子帧与用于下行数据传输的子帧的比值;
    所述网络设备根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述终端设备进行数据传输。
  6. 根据权利要求5所述的方法,其特征在于,所述上行子帧与下行子帧的配比为N,所述网络设备根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述终端设备进行数据传输,包括:
    所述网络设备在所述第二信道所包括的N个子帧上,接收所述终端设备发送的上行数据。
  7. 根据权利要求6所述的方法,其特征在于,所述第二信道在频域上占用1个物理资源块,占用的时域资源为60ms。
  8. 一种通信方法,其特征在于,包括:
    终端设备确定第一信道;
    其中,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块,第二物理资源块以及第三物理资源块;
    所述终端设备利用所述第一信道,接收网络设备发送的第一信息;
    其中,所述第一信息中至少包括同步信号、主信息块、第一下行信息以及系统消息,所述第一物理资源块用于承载所述同步信号以及广播信道,所述广播信道上承载有所述主信息块,所述第二物理资源块用于承载所述第一下行信息,所述第三物理资源块用于承载所述系统消息。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备利用第一信道,接收网 络设备发送的第一信息,包括:
    所述终端设备在所述第一物理资源块上检测所述同步信号;
    所述终端设备在检测到所述同步信号后,在所述第一物理资源块上接收所述主信息块,且对所述主信息块进行处理;
    当所述终端设备对所述主信息块处理完成时,在所述第三物理资源块上接收所述系统消息,且对所述系统消息进行处理;
    当所述终端设备对所述系统消息处理完成时,在所述第二物理资源块上接收所述第一下行信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一信道占用的时域资源为20ms。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述终端设备利用所述第一信道,接收网络设备发送的第一信息,包括:
    所述终端设备按照第一周期,在所述第一信道上周期性接收所述第一信息,不同周期所接收的第一信息相同或不同。
  12. 根据权利要求11所述的方法,其特征在于,所述第一周期为80ms。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定第二信道,所述第二信道在时域上包括N个子帧,所述N为正整数;
    所述终端设备接收来自所述网络设备的上行子帧与下行子帧的配比,所述上行子帧与下行子帧的配比指所述第二信道中用于上行数据传输的子帧与用于下行数据传输的子帧的比值;
    所述终端设备根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述网络设备进行数据传输。
  14. 根据权利要求13所述的方法,其特征在于,所述上行子帧与下行子帧的配比为N,所述终端设备根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述网络设备进行数据传输,包括:
    所述终端设备在所述第二信道所包括的N个子帧上,向所述网络设备发送上行数据。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第二信道在频域上占用1个物理资源块,占用的时域资源为60ms。
  16. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一信道,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块、第二物理资源块以及第三物理资源块;
    收发单元,用于利用所述第一信道,向终端设备发送第一信息,所述第一信息中至少包括同步信号、主信息块、第一下行信息以及系统消息,所述第一物理资源块用于承载所述同步信号以及广播信道,所述广播信道上承载有所述主信息块,所述第二物理资源块用于承载所述第一下行信息,所述第三物理资源块用于承载所述系统消息。
  17. 根据权利要求16所述的装置,其特征在于,所述第一信道占用的时域资源为20ms。
  18. 根据权利要求16或17所述的装置,其特征在于,所述收发单元在利用所述第一信道,向终端设备发送第一信息时,具体用于:
    按照第一周期,在所述第一信道中周期性向所述终端设备发送所述第一信息,不同周期发送的所述第一信息中的内容相同或不同。
  19. 根据权利要求18所述的装置,其特征在于,所述第一周期为80ms。
  20. 根据权利要求16至19任一项所述的装置,其特征在于,
    所述处理单元,还用于确定第二信道,所述第二信道在时域上包括N个子帧,所述N为正整数;
    所述收发单元,还用于向所述终端设备发送上行子帧与下行子帧的配比,所述上行子帧与下行子帧的配比指所述第二信道中用于上行数据传输的子帧与用于下行数据传输的子帧的比值;
    所述处理单元,还用于根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述终端设备进行数据传输。
  21. 根据权利要求20所述的装置,其特征在于,所述上行子帧与下行子帧的配比为N,所述处理单元在根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述终端设备进行数据传输时,具体用于:
    控制所述收发单元在所述第二信道所包括的N个子帧上,接收所述终端设备发送的上行数据。
  22. 根据权利要求21所述的装置,其特征在于,所述第二信道在频域上占用1个物理资源块,占用的时域资源为60ms。
  23. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一信道,所述第一信道在频域上占用3个物理资源块,分别为第一物理资源块,第二物理资源块以及第三物理资源块;
    收发单元,用于利用所述第一信道,接收网络设备发送的第一信息;
    其中,所述第一信息中至少包括同步信号、主信息块、第一下行信息以及系统消息,所述第一物理资源块用于承载所述同步信号以及广播信道,所述广播信道上承载有所述主信息块,所述第二物理资源块用于承载所述第一下行信息,所述第三物理资源块用于承载所述系统消息。
  24. 根据权利要求23所述的装置,其特征在于,所述收发单元在利用第一信道,接收网络设备发送的第一信息时,具体用于:
    在所述第一物理资源块上检测所述同步信号;
    在检测到所述同步信号后,在所述第一物理资源块上接收所述主信息块;
    在所述处理单元对所述主信息块处理完成时,在所述第三物理资源块上接收所述系统消息;
    在所述处理单元对所述系统消息处理完成时,在所述第二物理资源块上接收所述第一下行信息。
  25. 根据权利要求23或24所述的装置,其特征在于,所述第一信道占用的时域资源为20ms。
  26. 根据权利要求23至25任一项所述的装置,其特征在于,所述收发单元在利用所述第一信道,接收网络设备发送的第一信息时,具体包括:
    按照第一周期,在所述第一信道上周期性接收所述第一信息,不同周期所接收的第一信息相同或不同。
  27. 根据权利要求26所述的装置,其特征在于,所述第一周期为80ms。
  28. 根据权利要求23至27任一项所述的装置,其特征在于,
    所述处理单元,还用于确定第二信道,所述第二信道在时域上包括N个子帧,所述N为正整数;
    所述收发单元,还用于接收来自所述网络设备的上行子帧与下行子帧的配比,所述上行子帧与下行子帧的配比指所述第二信道中用于上行数据传输的子帧与用于下行数据传输的子帧的比值;
    所述处理单元,还用于根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述网络设备进行数据传输。
  29. 根据权利要求28所述的装置,其特征在于,所述上行子帧与下行子帧的配比为N,所述处理单元在根据所述上行子帧与下行子帧的配比,基于所述第二信道与所述网络设备进行数据传输时,具体用于:
    所述处理单元控制所述收发单元在所述第二信道所包括的N个子帧上,向所述网络设备发送上行数据。
  30. 根据权利要求28或29所述的装置,其特征在于,所述第二信道在频域上占用1个物理资源块,占用的时域资源为60ms。
  31. 一种装置,其特征在于,包括处理器、存储器和通信接口;
    其中,所述存储器,用于存储程序指令;
    所述处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现权利要求1至15任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1至15任一项所述的方法。
PCT/CN2018/107108 2018-09-21 2018-09-21 一种通信方法及装置 WO2020056766A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880094657.5A CN112292826B (zh) 2018-09-21 2018-09-21 一种通信方法及装置
PCT/CN2018/107108 WO2020056766A1 (zh) 2018-09-21 2018-09-21 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107108 WO2020056766A1 (zh) 2018-09-21 2018-09-21 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2020056766A1 true WO2020056766A1 (zh) 2020-03-26

Family

ID=69888205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107108 WO2020056766A1 (zh) 2018-09-21 2018-09-21 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN112292826B (zh)
WO (1) WO2020056766A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647775A (zh) * 2023-07-27 2023-08-25 哈尔滨凯纳科技股份有限公司 一种用于二次供水泵站的远程数据传输终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294684A (zh) * 2016-04-01 2017-10-24 夏普株式会社 配置非锚物理资源块的方法和基站、确定非锚物理资源块位置的方法和用户设备
WO2018030809A1 (ko) * 2016-08-10 2018-02-15 엘지전자 주식회사 Nb-iot에서 페이징 신호를 수신하는 방법 및 랜덤 액세스 절차를 수행하는 방법
CN108207023A (zh) * 2016-12-18 2018-06-26 上海朗帛通信技术有限公司 一种用于窄带通信的ue、基站中的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370536B (zh) * 2015-12-08 2021-02-09 瑞典爱立信有限公司 网络节点、无线装置、方法和计算机程序
EP3355629B1 (en) * 2017-01-25 2024-07-24 Samsung Electronics Co., Ltd. Method and apparatus for detecting synchronization signal in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294684A (zh) * 2016-04-01 2017-10-24 夏普株式会社 配置非锚物理资源块的方法和基站、确定非锚物理资源块位置的方法和用户设备
WO2018030809A1 (ko) * 2016-08-10 2018-02-15 엘지전자 주식회사 Nb-iot에서 페이징 신호를 수신하는 방법 및 랜덤 액세스 절차를 수행하는 방법
CN108207023A (zh) * 2016-12-18 2018-06-26 上海朗帛通信技术有限公司 一种用于窄带通信的ue、基站中的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647775A (zh) * 2023-07-27 2023-08-25 哈尔滨凯纳科技股份有限公司 一种用于二次供水泵站的远程数据传输终端
CN116647775B (zh) * 2023-07-27 2023-10-20 哈尔滨凯纳科技股份有限公司 一种用于二次供水泵站的远程数据传输终端

Also Published As

Publication number Publication date
CN112292826A (zh) 2021-01-29
CN112292826B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US20220159724A1 (en) Indication Signal Transmission Method And Apparatus
WO2017041601A1 (zh) 一种物理下行控制信道传输方法及装置
TWI577231B (zh) A device-to-device communication method and apparatus
KR101813822B1 (ko) D2d 발견 신호의 송신 방법과 송신 장치
WO2018133631A1 (zh) 一种非授权频谱资源分配方法及装置
US12120063B2 (en) Resource configuration method and apparatus
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
CN116762453A (zh) 资源冲突指示的传输方法及装置、系统
CN112020145A (zh) 一种通信方法及装置
US20210204312A1 (en) Downlink control information transmission method and apparatus
EP4322666A1 (en) Resource selection method and apparatus
CN113366779A (zh) 一种信息传输方法、相关设备及系统
WO2020056766A1 (zh) 一种通信方法及装置
WO2018059460A1 (zh) 一种终端设备到终端设备的干扰测量方法及装置
EP4017086A1 (en) Information transmission method and apparatus
WO2022237468A1 (zh) 一种通信方法及装置
US12120738B2 (en) Multi-user-RTS and CTS frames for a sub-channel selective transmission station
WO2018218539A1 (zh) 一种调度系统信息块的方法及装置
WO2022082767A1 (zh) 一种通信方法及相关设备
WO2018094618A1 (zh) 一种资源分配和传输数据包的方法及设备
WO2021159809A1 (zh) 一种控制信息传输方法及装置
WO2021056361A1 (zh) 检测、发送pdcch的方法以及设备
KR20210116610A (ko) 신호 전송 방법 및 장치
WO2024168640A1 (zh) 传输方法、装置、设备、存储介质及产品
WO2023207774A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933910

Country of ref document: EP

Kind code of ref document: A1