[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020054702A1 - 切削インサート、回転工具及び切削加工物の製造方法 - Google Patents

切削インサート、回転工具及び切削加工物の製造方法 Download PDF

Info

Publication number
WO2020054702A1
WO2020054702A1 PCT/JP2019/035502 JP2019035502W WO2020054702A1 WO 2020054702 A1 WO2020054702 A1 WO 2020054702A1 JP 2019035502 W JP2019035502 W JP 2019035502W WO 2020054702 A1 WO2020054702 A1 WO 2020054702A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
rotation axis
cutting
honing
cutting insert
Prior art date
Application number
PCT/JP2019/035502
Other languages
English (en)
French (fr)
Inventor
駿 恩地
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to DE112019004552.0T priority Critical patent/DE112019004552T5/de
Priority to JP2020546023A priority patent/JP7168673B2/ja
Priority to US17/274,826 priority patent/US20220055123A1/en
Priority to CN201980059150.0A priority patent/CN112672840B/zh
Publication of WO2020054702A1 publication Critical patent/WO2020054702A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/08Side or plan views of cutting edges
    • B23B2251/082Curved cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/12Cross sectional views of the cutting edges
    • B23B2251/122Bevelled cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/12Cross sectional views of the cutting edges
    • B23B2251/127Sharp cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/14Configuration of the cutting part, i.e. the main cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/18Configuration of the drill point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/40Flutes, i.e. chip conveying grooves

Definitions

  • This embodiment relates to a rotary tool used in cutting.
  • the rotating tool include a drill and an end mill.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-002617
  • the drill described in Patent Literature 1 has a cutting edge including a thinning cutting edge and a concave arc cutting edge portion. A honing surface for strengthening the cutting edge is applied to the entire area of the cutting edge in Patent Document 1.
  • the width of the honing surface in Patent Document 1 is the smallest at the middle point of the concave arc cutting edge portion. Therefore, a crack may be generated at this intermediate point. In addition, when the width of the honing surface is increased to strengthen the cutting edge, the biting property is reduced.
  • a cutting insert includes a body having a rotation axis, extending from a first end to a second end, a cutting edge located on the first end side of the body, and a cutting edge of the body extending from the cutting edge.
  • a groove extending toward the second end.
  • the cutting blade has a first blade that intersects with the rotation axis when viewed from the front, and a second blade that is located on the outer peripheral side of the first blade and has a positive rake angle. Then, R honing is performed on the first blade, and chamfer honing is performed on the second blade.
  • FIG. 1 is a perspective view showing a non-limiting rotary tool of the present disclosure.
  • FIG. 2 is an enlarged view of a region A1 shown in FIG. 1. It is a front view of the rotary tool shown in FIG. It is the side view which looked at the rotary tool shown in FIG. 3 from B1 direction.
  • FIG. 5 is an enlarged view of a region A2 shown in FIG. 4. It is the side view which looked at the rotary tool shown in FIG. 3 from B2 direction.
  • FIG. 7 is an enlarged view of a region A3 shown in FIG. 6.
  • FIG. 8 is a sectional view of a section taken along line VIII-VIII of the rotary tool shown in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along the line IX-IX of the rotary tool shown in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along the line XX of the rotary tool shown in FIG. 3.
  • 1 is a perspective view showing a non-limiting rotary tool of the present disclosure. It is an enlarged view in area A4 shown in FIG. It is a front view of the rotary tool shown in FIG. It is the side view which looked at the rotary tool shown in FIG. 13 from B3 direction. It is an enlarged view in area A5 shown in FIG. It is the schematic which shows one process of the manufacturing method of the uncut one side cut work in this indication. It is the schematic which shows one process of the manufacturing method of the uncut one side cut work in this indication. It is the schematic which shows one process of the manufacturing method of the uncut one side cut work in this indication.
  • the rotary tool 1 of a plurality of embodiments will be described in detail with reference to the drawings.
  • the rotary tool 1 may include any components not shown in the drawings referred to in this specification.
  • the dimensions of the members in the drawings do not faithfully represent the actual dimensions of the constituent members, the dimensional ratios of the respective members, and the like.
  • ⁇ Rotating tool> An example of the rotary tool 1 is a drill.
  • the rotary tool 1 illustrated in FIG. 1 is a drill.
  • the rotating tool 1 on one side may have a rod-shaped holder 3 rotatable around a rotation axis X1, for example, as shown in FIG.
  • the holder 3 may extend from the front end 3a to the rear end 3b along the rotation axis X1.
  • the lower left end is the tip 3a
  • the upper right end is the rear end 3b.
  • the rotary tool 1 rotates around a rotation axis X1.
  • An arrow X2 in FIG. 1 and the like indicates a rotation direction of the rotary tool 1.
  • the holder 3 may have a rod shape elongated along the rotation axis X1 as shown in FIG. 1, for example.
  • the holder 3 may have a part called a shank 5 and a part called a body 7.
  • the shank 5 is a part that can be gripped by a rotatable spindle or the like in a machine tool.
  • the body 7 may be located closer to the tip 3 a than the shank 5.
  • the outer diameter D of the body 7 (holder 3) is not limited to a specific value.
  • the outer diameter D may be set to 6 mm to 42.5 mm.
  • the body 7 in the holder 3 may have a pocket 9 located on the side of the tip 3a.
  • the number of the pockets 9 may be one or more.
  • the holder 3 in the example shown in FIG. 2 has one pocket 9.
  • the pocket 9 may be opened on the side of the distal end 3a of the holder 3 and on the side of the outer peripheral surface, as in the example shown in FIG.
  • the pocket 9 is a portion where the cutting insert 11 is mounted.
  • the cutting insert 11 may be simply referred to as the insert 11.
  • An insert 11 may be located in the pocket 9. That is, the rotary tool 1 may have the insert 11 located on the side of the tip 3a.
  • the insert 11 may be in direct contact with the pocket 9, or a sheet may be interposed between the insert 11 and the pocket 9.
  • the insert 11 in the embodiment is configured to be detachable from the holder 3.
  • the rotating tool 1 When the rotating tool 1 is configured by the holder 3 and the insert 11 as in the example shown in FIGS. 1 and 2, the rotating tool 1 is generally called a tip exchange tool. Further, when the rotating tool 1 is formed by one member as described later, the rotating tool 1 is generally called a solid tool.
  • the insert 11 may include the main body 13, the cutting blade 15, and the first groove 17.
  • the main body 13 has a rotation axis X1, and may extend from the first end 13a to the second end 13b. In the example shown in FIG. 1, the lower left end is the first end 13a, and the upper right end is the second end 13b.
  • the side of the front end 3a of the holder 3 and the side of the first end 13a of the insert 11 mean the lower left side in FIG. 1, and the side of the rear end 3b of the holder 3 and the second side of the insert 11.
  • the side of the end 13b means the upper right side in FIG.
  • the cutting blade 15 may be located on the side of the first end 13 a of the main body 13.
  • the first groove 17 may extend from the cutting edge 15 toward the second end 13 b of the main body 13.
  • the cutting blade 15 can be used for cutting a work material in a cutting process.
  • the cutting blade 15 may be located near the first end 13a, and at this time, may be located so as to include the first end 13a.
  • the cutting blade 15 may include a first blade 19 and a second blade 21.
  • the first blade 19 may cross the rotation axis X1 when viewed from the front.
  • the first rake angle ⁇ 1 of the first blade 19 may be a negative value.
  • the first blade 19 is also called a chisel edge.
  • the second blade 21 may be located on the outer peripheral side of the first blade 19.
  • the second rake angle ⁇ 2 of the second blade 21 may be a positive value.
  • the front view means the case where the insert 11 is viewed from the tip 3a side.
  • the first rake angle ⁇ 1 of the first blade 19 is a negative value
  • the second rake angle ⁇ 2 of the second blade 21 is a positive value
  • the boundary between the first blade 19 and the second blade 21 may be evaluated by a portion where the rake angle changes from a negative value to a positive value toward the outer peripheral side.
  • the number of the second blades 21 may be only one, or may be plural. As in the example shown in FIG. 2, the cutting blade 15 may have two second blades 21. These two second blades 21 may be connected to the first blade 19, respectively.
  • the rake angle can be evaluated in a cross section that is orthogonal to the target cutting edge 15 when viewed from the front and that is parallel to the rotation axis X1.
  • the evaluation can be made based on an angle between a virtual straight line parallel to the rotation axis X1 and a portion of the first groove 17 along the cutting edge 15.
  • the rake angle is a negative value.
  • the rake angle is a positive value.
  • the first rake angle ⁇ 1 and the second rake angle ⁇ 2 are not limited to specific values.
  • the minimum value of the first rake angle ⁇ 1 can be set to, for example, ⁇ 30 ° to ⁇ 50 °.
  • the maximum value of the second rake angle ⁇ 2 can be set to, for example, 1 ° to 40 °.
  • the minimum value of the first rake angle ⁇ 1 may be rephrased as the maximum value of the absolute value of the first rake angle ⁇ 1.
  • the first rake angle ⁇ 1 and the second rake angle ⁇ 2 are evaluated in a cross section parallel to the rotation axis X1, but the main body 13 does not necessarily have to be cut.
  • the surface shape of the main body 13 may be scanned, and a section parallel to the rotation axis X1 may be virtually evaluated from the scanned data.
  • the shape and position of the cutting blade 15 are not limited to a specific configuration.
  • the cutting blade 15 when the insert 11 is viewed from the front, the cutting blade 15 may have a rotationally symmetric shape of 180 ° with respect to the rotation axis X1.
  • the first blade 19 and the second blade 21 may each have a linear shape or a curved shape when viewed from the front.
  • the first groove 17 can be used to discharge chips generated by the cutting blade 15 to the outside.
  • the insert 11 since the cutting blade 15 has two second blades 21, the insert 11 may have two first grooves 17.
  • the first groove 17 may extend parallel to the rotation axis X1, or may be twisted around the rotation axis X1. In other words, the first groove 17 may extend spirally with respect to the rotation axis X1. Further, from the viewpoint of smoothly discharging chips to the outside, for example, the first groove 17 may have a concave curve shape in a cross section orthogonal to the rotation axis X1.
  • the cutting edge 15 is located on the ridge where the two surfaces intersect, but at this time, it does not have to be located on the ridge in a strict sense from the viewpoint of the durability of the cutting edge. That is, the cutting blade 15 may be subjected to honing. Specifically, R honing may be performed on the first blade 19 and chamfer honing may be performed on the second blade 21.
  • R honing means that a convex curved surface 23 connected to these two surfaces is provided at a ridge line where the two surfaces intersect.
  • chamfer honing means that a plane 25 connected to these two surfaces is provided at a ridge line where the two surfaces intersect.
  • the strength of the cutting blade 15 is particularly high.
  • the flat surface 25 is provided instead of the convex curved surface 23 on the second blade 21 for cutting a work material, the durability of the second blade 21 is further increased and chipping is reduced as compared with the case where R honing is performed. This is because it hardly occurs.
  • the honing width of the first blade 19 and the second blade 21 when viewed from the front is not limited to a specific value.
  • the honing width W11 of the first blade 19 in the direction perpendicular to the first blade 19 may be smaller than the honing width W12 of the second blade 21 in the direction perpendicular to the second blade 21.
  • the honing width W11 is relatively narrow, the biting property of the first blade 19 is improved.
  • the honing width W12 is relatively large, the durability of the second blade 21 is improved.
  • the holder 3 may have a second groove 27 connected to the first groove 17.
  • the first groove 17 may extend in parallel with the rotation axis X1, or may extend helically with the rotation axis X1 as a reference.
  • the torsion angles of the first groove 17 and the second groove 27 may be the same, or may be different from each other.
  • the second groove 27 is not necessarily formed on the shank 5 while being formed on the body 7 of the holder 3.
  • the holder 3 can be stably held by the machine tool.
  • the second blade 21 may have a first portion 29, a second portion 31, and a third portion 33 as in the example shown in FIG.
  • the first portion 29 may have a linear shape.
  • the second portion 31 may be located on the outer peripheral side of the first portion 29 and may have a concave curve shape when viewed from the front.
  • the third portion 33 may be located closer to the outer periphery than the first portion 29 and may have a linear shape.
  • the honing width W22 of the second portion 31 in the direction along the rotation axis X1 is the first portion. 29 may be smaller than the honing width W21 in the direction along the rotation axis X1. In other words, the honing width W21 of the first portion 29 in the direction along the rotation axis X1 may be wider than the honing width W22 of the second portion 31 in the direction along the rotation axis X1.
  • FIG. 5 is a drawing of the second blade 21 viewed from the front in the rotation direction of the rotation axis X1.
  • the first portion 29 Since the first portion 29 has a relatively low cutting speed, chipping is more likely to occur than the second portion 31 having a concave curved surface shape.
  • the honing width W21 at the first portion 29 where the chipping is likely to occur is relatively wide, the durability of the second blade 21 is improved.
  • the honing width W22 of the second portion 31 located on the outer peripheral side of the first portion 29 is relatively narrow, the cutting resistance at the second portion 31 is small. Therefore, chatter vibration can be suppressed. Therefore, processing accuracy is high.
  • the cutting speed of the second portion 31 becomes higher toward the outer peripheral side. Therefore, the cutting resistance of the second portion 31 tends to increase toward the outer peripheral side. Therefore, from the viewpoint of improving the durability of the second portion 31 while keeping the cutting resistance in the second portion 31 small, the second portion 31 has a first region 31a in which the honing width W22 increases toward the outer peripheral side. May be.
  • the second portion 31 may further include a second region 31b located between the first portion 29 and the first region 31a. At this time, the honing width W22 of the second region 31b may be reduced toward the outer peripheral side. When the second portion 31 has the second region 31b, the honing width is unlikely to change abruptly at the boundary between the first portion 29 and the second portion 31. Therefore, the durability of the second blade 21 at the boundary between the first portion 29 and the second portion 31 is high.
  • the honing angle ⁇ 1 in the first region 31a may be constant or may decrease toward the outer peripheral side.
  • the durability becomes higher at the outer peripheral side portion of the first region 31a. Therefore, the durability of the second portion 31 is improved while cutting resistance at the second portion 31 is kept small.
  • the honing angle ⁇ 2 in the second region 31b may be constant or may increase as it goes toward the outer periphery. In other words, the honing angle ⁇ 2 in the second region 31b may decrease as approaching the rotation axis X1. In this case, the honing angle hardly changes abruptly at the boundary between the first portion 29 and the second portion 31. Therefore, the durability of the second blade 21 at the boundary between the first portion 29 and the second portion 31 is high.
  • the above-mentioned honing angle can be evaluated in a cross section that is orthogonal to the target cutting edge 15 when viewed from the front and that is parallel to the rotation axis X1.
  • the evaluation can be made by an acute angle between a virtual straight line parallel to the rotation axis X1 and the plane 25.
  • the third portion The honing width W23 of the first portion 29 in the direction along the rotation axis X1 may be smaller than the honing width W21 of the first portion 29 in the direction along the rotation axis X1.
  • the honing width W23 of the third portion 33 located on the outer peripheral side of the first portion 29 is relatively narrow, the cutting resistance at the third portion 33 is small. Therefore, chatter vibration can be suppressed. Therefore, processing accuracy is high.
  • the honing width W23 in the third portion 33 may be smaller than the honing width W22 in the second portion 31.
  • the honing width W23 of the third portion 33 located on the outer peripheral side of the second portion 31 is relatively narrow, the cutting resistance at the third portion 33 is small. Therefore, chatter vibration can be suppressed. Therefore, processing accuracy is high.
  • the wall surface of the processing hole is formed by the third portion 33.
  • the honing width W23 of the third portion 33 is relatively small and the cutting resistance at the third portion 33 is small, the surface accuracy of the wall surface of the processed hole is high.
  • the second rake angle ⁇ 2 of the second blade 21 is a positive value.
  • the second rake angle ⁇ 2 in the second blade 21 may be constant or may change.
  • the second rake angle ⁇ 22 in the second portion 31 may be larger than the second rake angle ⁇ 21 in the first portion 29. .
  • the second part 31 may be located on the outer peripheral side of the first part 29. Therefore, more chips are more likely to be generated in the second portion 31 than in the first portion 29.
  • the second rake angle ⁇ 22 in the second portion 31 is larger than the second rake angle ⁇ 21 in the first portion 29, chips generated in the second portion 31 easily flow in the first groove 17. In a place where a large amount of chips are likely to be generated, the chips are likely to flow, so that the chips are not easily clogged.
  • a cemented carbide or a cermet may be used as a material of the insert 11 constituting the rotary tool 1.
  • a cemented carbide or a cermet may be used as a material of the insert 11 constituting the rotary tool 1.
  • the composition of the cemented carbide include WC-Co, WC-TiC-Co, and WC-TiC-TaC-Co.
  • WC, TiC, and TaC are hard particles
  • Co is a binder phase.
  • ⁇ ⁇ Cermet is a sintered composite material in which a metal is combined with a ceramic component.
  • the cermet includes a titanium compound containing titanium carbide (TiC) or titanium nitride (TiN) as a main component.
  • the surface of the insert 11 may be coated with a coating using a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the composition of the coating include titanium carbide (TiC), titanium nitride (TiN), titanium carbonitride (TiCN), and alumina (Al 2 O 3 ).
  • a material of the holder 3 constituting the rotary tool for example, steel, cast iron, an aluminum alloy, or the like can be used. Steel is preferred because of its high toughness.
  • the material of this member can be the same as the material of the insert 11.
  • FIG. 11 shows an example where the rotary tool 1A is a solid tool.
  • the rotary tool 1A shown in FIG. 11 is a drill like the rotary tool 1 shown in FIG.
  • the rotary tool 1A may include the base 35, the cutting blade 15A, and the groove 37.
  • the base 35 has a rod shape rotatable around the rotation axis X1, and may extend from the third end 35a to the fourth end 35b.
  • the base 35 in the embodiment is a portion corresponding to the holder 3 and the insert 11 in the example shown in FIG.
  • the side of the third end 35a of the base 35 means the lower left side in FIG. 11, and the side of the fourth end 35b of the base 35 means the upper right side in FIG.
  • the third end 35a in the example shown in FIG. 11 corresponds to the first end 13a in the example shown in FIG.
  • the fourth end 35b in the example shown in FIG. 11 corresponds to the rear end 3b in the example shown in FIG.
  • the cutting blade 15A may be located on the third end 35a side of the base 35. At this time, the cutting blade 15A may be located in a region including the third end 35a.
  • the groove 37 may extend helically from the cutting edge 15A toward the fourth end 35b of the base 35. In other words, the groove 37 may be twisted around the rotation axis X1.
  • the groove 37 in the embodiment is a portion corresponding to the first groove 17 and the second groove 27 in the example shown in FIG.
  • the cutting blade 15A in the embodiment may have a first blade 19A and a second blade 21A, like the cutting blade 15 of the example shown in FIG. Then, as in the example illustrated in FIG. 1, the first blade 19 ⁇ / b> A in the embodiment may be subjected to R honing, and the second blade 21 ⁇ / b> A may be subjected to chamfer honing. Therefore, the first blade 19A may be provided with a convex curved surface 23A, and the second blade 21A may be provided with a flat surface 25A. Therefore, also in the example of the rotary tool 1 ⁇ / b> A shown in FIG. 11, the strength of the cutting blade 15 is high and the biting property is high.
  • the present disclosure is not limited thereto, and it goes without saying that the present invention can be arbitrarily set without departing from the gist of the present disclosure.
  • the second blade 21 has a first portion 29A, a second portion 31A, and a third portion 33A, as in the example rotary tool 1 shown in FIG. You may.
  • the method of manufacturing the cut workpiece 101 may include the following steps (1) to (4).
  • the rotary tool 1 is arranged above the prepared work material 103 (see FIG. 16).
  • This step can be performed, for example, by fixing the work material 103 on a table of a machine tool on which the rotary tool 1 is mounted, and bringing the rotary tool 1 close to the rotary tool in a rotated state.
  • the work material 103 and the rotary tool 1 may be relatively close to each other.
  • the work material 103 may be close to the rotary tool 1.
  • In this step, cutting is performed so that at least a part of the body of the holder is located in the processing hole.
  • the shank of the holder may be set so as to be located outside the processing hole 105.
  • a part of the body on the rear end side may be set so as to be located outside the processing hole 105. It is possible to function a part of the above as a margin area for chip discharge, and it is possible to achieve excellent chip discharge properties through the area.
  • the work material 103 and the rotary tool 1 may be relatively separated from each other.
  • the work material 103 may be separated from the rotary tool 1.
  • the rotary tool 1 In the case where the cutting of the work material 103 as described above is performed a plurality of times, for example, when a plurality of processing holes 105 are formed in one work material 103, the rotary tool 1 The step of bringing the cutting blade of the rotary tool 1 into contact with different portions of the work material 103 while maintaining the state in which is rotated may be repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Drilling Tools (AREA)

Abstract

一態様の切削インサートは、回転軸を有し、第1端から第2端にかけて延びた本体と、前記本体の前記第1端の側に位置する切刃と、前記切刃から前記本体の前記第2端の側に向かって延びた溝とを備える。前記切刃は、正面視した場合に前記回転軸と交差する第1刃と、前記第1刃よりも外周側に位置しており、すくい角が正の値である第2刃とを有する。そして、前記第1刃にRホーニングが施されているとともに、前記第2刃にチャンファーホーニングが施されている。

Description

切削インサート、回転工具及び切削加工物の製造方法 関連出願の相互参照
 本出願は、2018年9月12日に出願された日本国特許出願2018-170315号の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。
 本態様は、切削加工において用いられる回転工具に関する。回転工具としては、例えば、ドリル及びエンドミルなどが挙げられる。
 金属などの被削材を切削加工する際に用いられる回転工具として、例えば特開2016-002617号公報(特許文献1)に記載のドリルが知られている。特許文献1に記載のドリルは、シンニング切れ刃及び凹円弧切れ刃部を含む切れ刃を有する。特許文献1における切れ刃の全域には、刃先強化用のホーニング面が施される。
 特許文献1におけるホーニング面の幅は、凹円弧切れ刃部の中間点において最も小さい。そのため、この中間点において亀裂が生じる恐れがある。また、刃先強化のため、ホーニング面の幅を大きくした場合には、食い付き性が低下する。
 一態様に基づく切削インサートは、回転軸を有し、第1端から第2端にかけて延びた本体と、前記本体の前記第1端の側に位置する切刃と、前記切刃から前記本体の前記第2端の側に向かって延びた溝とを備える。前記切刃は、正面視した場合に前記回転軸と交差する第1刃と、前記第1刃よりも外周側に位置しており、すくい角が正の値である第2刃とを有する。そして、前記第1刃にRホーニングが施されるとともに、前記第2刃にチャンファーホーニングが施される。
本開示における限定されない一面の回転工具を示す斜視図である。 図1に示す領域A1における拡大図である。 図1に示す回転工具の正面図である。 図3に示す回転工具をB1方向から見た側面図である。 図4に示す領域A2における拡大図である。 図3に示す回転工具をB2方向から見た側面図である。 図6に示す領域A3における拡大図である。 図3に示す回転工具におけるVIII-VIII断面の断面図である。 図3に示す回転工具におけるIX-IX断面の断面図である。 図3に示す回転工具におけるX-X断面の断面図である。 本開示における限定されない一面の回転工具を示す斜視図である。 図11に示す領域A4における拡大図である。 図11に示す回転工具の正面図である。 図13に示す回転工具をB3方向から見た側面図である。 図14に示す領域A5における拡大図である。 本開示における限定されない一面の切削加工物の製造方法の一工程を示す概略図である。 本開示における限定されない一面の切削加工物の製造方法の一工程を示す概略図である。 本開示における限定されない一面の切削加工物の製造方法の一工程を示す概略図である。
 以下、複数の実施形態の回転工具1について、図面を用いて詳細に説明する。但し、以下で参照する各図では、説明の便宜上、各実施形態を説明するために必要な主要部材のみが簡略化して示される。従って、回転工具1は、本明細書が参照する各図に示されない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率などを忠実に表したものではない。
 <回転工具>
 回転工具1の一例としてドリルが挙げられる。図1に例示された回転工具1は、ドリルである。回転工具1としては、ドリルの他にも例えばエンドミルなどが挙げられる。
 本開示における限定されない一面の回転工具1は、例えば図1に示すように、回転軸X1の周りで回転可能な棒形状のホルダ3を有してもよい。ホルダ3は、回転軸X1に沿って先端3aから後端3bにかけて延びてもよい。図1に示す一例においては、左下側の端部が先端3aであり、右上側の端部が後端3bである。被削材を切削する際に、回転工具1は、回転軸X1の周りで回転する。なお、図1などにおける矢印X2は、回転工具1の回転方向を示す。
 ホルダ3は、例えば図1に示すように、回転軸X1に沿って細長く伸びた棒形状であってもよい。ホルダ3は、シャンク(shank)5と呼ばれる部位と、ボディ(body)7と呼ばれる部位とを有してもよい。シャンク5は、工作機械における回転可能なスピンドル等で把持されることが可能な部位である。ボディ7は、シャンク5よりも先端3aの側に位置してもよい。
 ボディ7(ホルダ3)の外径Dは特定の値に限定されない。例えば、外径Dは、6mm~42.5mmに設定されてもよい。また、回転軸X1に沿った方向でのホルダ3の長さLは、L=1.5D~12Dに設定されてもよい。
 ホルダ3におけるボディ7は、先端3aの側に位置するポケット9を有してもよい。ポケット9は、1つのみであっても、また、複数であってもよい。図2に示す一例におけるホルダ3は、1つのポケット9を有する。ポケット9は、図1に示す一例のように、ホルダ3の先端3aの側及び外周面の側にそれぞれ開口してもよい。
 ポケット9は、切削インサート11が装着される部分である。切削インサート11は、単にインサート11と言ってもよい。ポケット9には、インサート11が位置してもよい。すなわち、回転工具1は、先端3aの側に位置するインサート11を有してもよい。インサート11はポケット9に直接に接してもよく、また、インサート11及びポケット9の間にシートが挟まれてもよい。実施形態におけるインサート11は、ホルダ3に対して着脱可能な構成である。
 なお、図1及び図2に示す一例のように回転工具1がホルダ3及びインサート11によって構成される場合には、回転工具1は、一般的に先端交換式工具と呼ばれる。また、後述するように回転工具1が1つの部材によって構成される場合には、回転工具1は、一般的にソリッド工具と呼ばれる。
 インサート11は、本体13、切刃15及び第1溝17を備えてもよい。本体13は、回転軸X1を有し、第1端13aから第2端13bにかけて延びてもよい。図1に示す一例においては、左下側の端部が第1端13aであり、右上側の端部が第2端13bである。
 ホルダ3における先端3aの側、及び、インサート11における第1端13aの側は、いずれも図1における左下側を意味し、また、ホルダ3における後端3bの側、及び、インサート11における第2端13bの側は、いずれも図1における右上側を意味する。切刃15は、本体13の第1端13aの側に位置してもよい。第1溝17は、切刃15から本体13の第2端13bの側に向かって延びてもよい。
 切刃15は、切削加工において被削材を切削するために用いることが可能である。切刃15は、第1端13aの近傍に位置してもよく、このとき、第1端13aを含むように位置してもよい。図2に示す一例のように、切刃15は、第1刃19及び第2刃21を有してもよい。第1刃19は、正面視した場合に回転軸X1と交差してもよい。
 第1刃19における第1すくい角θ1は、負の値であってもよい。一般的に、第1刃19は、チゼルエッジとも呼ばれる。第2刃21は、第1刃19よりも外周側に位置してもよい。第2刃21における第2すくい角θ2は、正の値であってもよい。なおここで、正面視とは、インサート11を先端3aの側から見た場合を意味する。
 上記の実施形態においては、第1刃19における第1すくい角θ1が負の値である一方で、第2刃21における第2すくい角θ2が正の値である。このとき、第1刃19及び第2刃21の境界は、外周側に向かうにしたがってすくい角が負の値から正の値に変わる箇所によって評価されてもよい。
 第2刃21は、1つのみであってもよく、また、複数であってもよい。図2に示す一例のように、切刃15は、2つの第2刃21を有してもよい。これら2つの第2刃21は、それぞれ第1刃19に繋がってもよい。
 ここで、すくい角とは、正面視した場合に対象となる切刃15の部分に直交するとともに、回転軸X1に平行な断面において評価できる。例えば、上記の断面において、回転軸X1に平行な仮想直線と、第1溝17のうち切刃15に沿った部分と、のなす角によって評価できる。第1溝17のうち切刃15に沿った部分が切刃15よりも回転方向の前方に位置する場合には、すくい角が負の値である。また、第1溝17のうち切刃15に沿った部分が切刃15よりも回転方向の後方に位置する場合には、すくい角が正の値である。
 第1すくい角θ1及び第2すくい角θ2は、特定の値には限定されない。第1すくい角θ1の最小値は、例えば、-30°~-50°に設定できる。第2すくい角θ2の最大値は、例えば、1°~40°に設定できる。なお、負の値である第1すくい角θ1が負の値である場合に、第1すくい角θ1の最小値は、第1すくい角θ1の絶対値の最大値と言い換えてもよい。
 実施形態では、回転軸X1に平行な断面において第1すくい角θ1及び第2すくい角θ2を評価しているが、必ずしも本体13を切断しなくてもよい。本体13の表面形状をスキャニングして、このスキャニングしたデータから仮想的に回転軸X1に平行な断面を評価してもよい。
 切刃15の形状及び位置は、特定の構成に限定されない。例えば、切刃15は、インサート11を正面視した場合において回転軸X1を基準として180°の回転対称の形状であってもよい。また、第1刃19及び第2刃21は、それぞれ正面視した場合において、直線形状であってもよく、また、曲線形状であってもよい。
 第1溝17は、切刃15で生じた切屑を外部に排出するために用いることが可能である。図2に示す一例においては、切刃15が2つの第2刃21を有することから、インサート11は、2つの第1溝17を有してもよい。第1溝17は、回転軸X1に平行に延びてもよく、また、回転軸X1の周りで捩じれてもよい。言い換えれば、第1溝17は、回転軸X1を基準として、螺旋状に延びてもよい。また、切屑を円滑に外部に排出するという観点から、例えば、第1溝17は、回転軸X1に直交する断面において、凹曲線形状であってもよい。
 切刃15は、2つの面が交わる陵線に位置するが、このとき、刃先の耐久性という観点から厳密な意味での稜線には位置しなくてもよい。すなわち、切刃15にはホーニング加工が施されてもよい。具体的には、第1刃19にRホーニングが施されるとともに、第2刃21にチャンファーホーニングが施されてもよい。
 ここで、Rホーニングとは、2つの面が交わる稜線に、これら2つの面に接続される凸曲面23が設けられることを意味する。また、チャンファーホーニングとは、2つの面が交わる稜線に、これら2つの面に接続される平面25が設けられることを意味する。
 正面視した場合に回転軸X1と交差するように位置する第1刃19にRホーニングが施される場合には、切刃15の強度が高く、且つ、食い付き性が高い。これは、被削材に食いつく第1刃19に平面25ではなく凸曲面23が設けられる場合には、第1刃19が被削材に面接触しにくいからである。
 また、第1刃19よりも外周側に位置する第2刃21にチャンファーホーニングが施される場合には、切刃15の強度が特に高い。被削材を切削する第2刃21に凸曲面23ではなく平面25が設けられる場合には、Rホーニングが施される場合と比較して、第2刃21の耐久性がさらに高く、チッピングが生じにくいからである。
 正面視した場合における、第1刃19及び第2刃21のホーニング幅は特定の値に限定されない。第1刃19における第1刃19に直交する方向でのホーニング幅W11が、第2刃21における第2刃21に直交する方向でのホーニング幅W12より狭くてもよい。ホーニング幅W11が相対的に狭い場合には、第1刃19の食い付き性が向上する。また、ホーニング幅W12が相対的に広い場合には、第2刃21の耐久性が向上する。
 ホルダ3は、第1溝17に接続された第2溝27を有してもよい。ホルダ3が第2溝27を有する場合には、切刃15で生じて第1溝17を流れる切屑を第2溝27へと流すことが可能である。第1溝17は、回転軸X1に平行に延びてもよく、また、回転軸X1を基準として螺旋状に延びてもよい。第1溝17及び第2溝27のねじれ角は、同じであってもよく、また、互いに異なってもよい。
 第2溝27は、ホルダ3におけるボディ7に形成される一方でシャンク5に形成されなくてもよい。第2溝27がシャンク5に形成されない場合には、工作機械で安定してホルダ3を把持することが可能である。
 第2刃21は、図3に示す一例のように、第1部位29、第2部位31及び第3部位33を有してもよい。図3に示す一例のように、第1部位29は、直線形状であってもよい。図3に示す一例のように、第2部位31は、第1部位29よりも外周側に位置して、正面視した場合に凹曲線形状であってもよい。図3に示す一例のように、第3部位33は、第1部位29よりも外周側に位置して、直線形状であってもよい。
 第2刃21が上記の第1部位29及び第2部位31を有する場合において、図5に示すように、第2部位31における回転軸X1に沿った方向でのホーニング幅W22が、第1部位29における回転軸X1に沿った方向でのホーニング幅W21より狭くてもよい。言い換えれば、第1部位29における回転軸X1に沿った方向でのホーニング幅W21が、第2部位31における回転軸X1に沿った方向でのホーニング幅W22より広くてもよい。なお、図5は、回転軸X1の回転方向の前方から第2刃21を見た図面である。
 第1部位29は、切削速度が比較的遅い部位であることから、凹曲面形状である第2部位31と比較してチッピングが生じやすい。このチッピングが生じやすい第1部位29におけるホーニング幅W21が相対的に広い場合には、第2刃21の耐久性が向上する。また、第1部位29よりも外周側に位置する第2部位31のホーニング幅W22が相対的に狭い場合には、第2部位31における切削抵抗が小さい。そのため、ビビり振動を抑制することができる。従って、加工精度が高い。
 なお、第2部位31は外周側に向かうほど切削速度が高くなる。そのため、第2部位31は外周側に向かうほど切削抵抗が大きくなり易い。そこで、第2部位31における切削抵抗を小さく抑えつつ第2部位31の耐久性を向上させる観点から、第2部位31が、外周側に向かうにしたがってホーニング幅W22が広くなる第1領域31aを有してもよい。
 また、第2部位31は、第1部位29及び第1領域31aの間に位置する第2領域31bをさらに有してもよい。このとき、第2領域31bのホーニング幅W22は、外周側に向かうにしたがって狭くなってもよい。第2部位31が第2領域31bを有する場合には、第1部位29及び第2部位31の境界でホーニング幅が急激に変わりにくい。そのため、第1部位29及び第2部位31の境界における第2刃21の耐久性が高い。
 第2部位31が第1領域31aを有する場合において、この第1領域31aにおけるホーニング角φ1は、一定であっても、また、外周側に向かうにしたがって小さくなってもよい。ホーニング角φ1が外周側に向かうにしたがって小さくなる場合には、第1領域31aにおける外周側の部分ほど耐久性が高くなる。そのため、第2部位31における切削抵抗を小さく抑えつつ第2部位31の耐久性が向上する。
 また、第2部位31が第2領域31bを有する場合において、この第2領域31bにおけるホーニング角φ2は、一定であっても、また、外周側に向かうにしたがって大きくなってもよい。言い換えれば、第2領域31bにおけるホーニング角φ2は、回転軸X1に近づくにしたがって小さくなってもよい。この場合には、第1部位29及び第2部位31の境界でホーニング角が急激に変わりにくい。そのため、第1部位29及び第2部位31の境界における第2刃21の耐久性が高い。
 なお、上記したホーニング角とは、正面視した場合に対象となる切刃15の部分に直交するとともに、回転軸X1に平行な断面において評価できる。例えば、上記の断面において、回転軸X1に平行な仮想直線と平面25とのなす鋭角によって評価できる。
 また、第2刃21が上記の第1部位29、第2部位31及び第3部位33を有する場合において、第2刃21を回転軸X1の回転方向の前方から見た際に、第3部位33における回転軸X1に沿った方向でのホーニング幅W23が、第1部位29における回転軸X1に沿った方向でのホーニング幅W21より狭くてもよい。第1部位29よりも外周側に位置する第3部位33のホーニング幅W23が相対的に狭い場合には、第3部位33における切削抵抗が小さい。そのため、ビビり振動を抑制することができる。従って、加工精度が高い。
 さらに、第3部位33におけるホーニング幅W23が、第2部位31におけるホーニング幅W22より狭くてもよい。第2部位31よりも外周側に位置する第3部位33のホーニング幅W23が相対的に狭い場合には、第3部位33における切削抵抗が小さい。そのため、ビビり振動を抑制することができる。従って、加工精度が高い。
 第3部位33が第2刃21における最も外周側に位置する場合には、第3部位33によって加工穴の壁面が形成されることになる。第3部位33のホーニング幅W23が相対的に狭く、第3部位33における切削抵抗が小さい場合には、加工穴の壁面の面精度が高い。
 上記した通り、実施形態のインサート11においては、第2刃21における第2すくい角θ2が正の値である。ここで、第2刃21における第2すくい角θ2が一定であってもよく、また、変化してもよい。例えば、第2刃21が上記の第1部位29及び第2部位31を有する場合において、第2部位31における第2すくい角θ22が、第1部位29における第2すくい角θ21より大きくてもよい。
 第2部位31は第1部位29よりも外周側に位置してもよい。そのため、第1部位29よりも第2部位31において多くの切屑が生じやすい。第2部位31における第2すくい角θ22が、第1部位29における第2すくい角θ21より大きい場合には、第2部位31で生じる切屑が第1溝17において流れ易い。切屑が多く生じやすい場所において、切屑が流れ易くなることから、切屑が詰まりにくい。
 回転工具1を構成するインサート11の材質としては、例えば、超硬合金或いはサーメットなどが挙げられる。超硬合金の組成としては、例えば、WC-Co、WC-TiC-Co及びWC-TiC-TaC-Coが挙げられる。ここで、WC、TiC、TaCは硬質粒子であり、Coは結合相である。
 また、サーメットは、セラミック成分に金属を複合させた焼結複合材料である。具体的には、サーメットとして、炭化チタン(TiC)又は窒化チタン(TiN)を主成分としたチタン化合物が挙げられる。
 インサート11の表面は、化学蒸着(CVD)法、又は物理蒸着(PVD)法を用いて被膜でコーティングされてもよい。被膜の組成としては、炭化チタン(TiC)、窒化チタン(TiN)、炭窒化チタン(TiCN)又はアルミナ(Al23)などが挙げられる。
 また、回転工具1を構成するホルダ3の材質としては、例えば、鋼、鋳鉄又はアルミ合金などを用いることができる。靱性が高いという点では、鋼が好適である。
 なお、ホルダ3及びインサート11が1つの部材によって構成される場合には、この部材の材質としては、インサート11の材質と同様のものを用いることが可能である。
 上記の実施形態の回転工具1が、ホルダ3及びインサート11を有する先端交換式工具である一方で、回転工具1Aは、一般的にソリッド工具と呼ばれる構成であってもよい。図11に回転工具1Aがソリッド工具である場合の一例を示す。図11に示す回転工具1Aは、図1に示す回転工具1と同様に、ドリルである。
 回転工具1Aは、基体35、切刃15A及び溝37を有してもよい。基体35は、回転軸X1の周りで回転可能な棒形状であり、第3端35aから第4端35bにかけて延びてもよい。実施形態における基体35は、図1に示す一例におけるホルダ3及びインサート11に相当する部分である。
 基体35における第3端35aの側は、図11における左下側を意味しており、また、基体35における第4端35bの側は、図11における右上側を意味する。図11に示す一例における第3端35aは、図1に示す一例における第1端13aに相当する。図11に示す一例における第4端35bは、図1に示す一例における後端3bに相当する。
 切刃15Aは、基体35の第3端35aの側に位置してもよい。このとき、切刃15Aは、第3端35aを含む領域に位置してもよい。溝37は、切刃15Aから基体35の第4端35bの側に向かって螺旋状に延びてもよい。言い換えれば、溝37は、回転軸X1の周りで捩じれてもよい。実施形態における溝37は、図1に示す一例における第1溝17及び第2溝27に相当する部分である。
 実施形態における切刃15Aは、図1に示す一例の切刃15と同様に、第1刃19A及び第2刃21Aを有してもよい。そして、図1に示す一例のように、実施形態における第1刃19AにRホーニングが施されるとともに、第2刃21Aにチャンファーホーニングが施されてもよい。そのため、第1刃19Aに凸曲面23Aが設けられ、且つ、第2刃21Aに平面25Aが設けられてもよい。従って、図11に示す一例の回転工具1Aにおいてもまた、切刃15の強度が高く、且つ、食い付き性が高い。
 以上、実施形態の回転工具1、1Aについて例示したが、本開示はこれらに限定されず、本開示の要旨を逸脱しない限り任意のものにできることは言うまでもない。例えば、図13に示す一例の回転工具1Aにおいては、図3に示す一例の回転工具1と同様に、第2刃21が、第1部位29A、第2部位31A及び第3部位33Aを有してもよい。
 <切削加工物(machined product)の製造方法>
 次に、本開示における限定されない一面の切削加工物101の製造方法について、上述の実施形態の回転工具1を用いる場合を例に挙げて詳細に説明する。切削加工物101は、被削材103を切削加工することによって作製され得る。以下、図16~図18を参照しつつ説明する。
 切削加工物101の製造方法は、以下の(1)~(4)の工程を備えてもよい。
 (1)準備された被削材103に対して上方に回転工具1を配置する(図16参照)。
 (2)回転工具1を、回転軸X1を中心に矢印X2の方向に回転させ、被削材103に向かってY1方向に回転工具1を近付ける(図16及び図17参照)。
 本工程は、例えば、被削材103を、回転工具1が取り付けられた工作機械のテーブル上に固定し、回転工具1を回転した状態で近付けることにより行うことができる。なお、本工程では、被削材103と回転工具1とは相対的に近付けばよく、例えば被削材103を回転工具1に近付けてもよい。
 (3)回転工具1をさらに被削材103に近付けることによって、回転する回転工具1の切刃を、被削材103の表面の所望の位置に接触させて、被削材103に加工穴(貫通孔)105を形成する(図17参照)。
 本工程において、ホルダにおけるボディの少なくとも一部が加工穴の中に位置するように切削加工が行われる。このとき、ホルダにおけるシャンクが、加工穴105の外側に位置するように設定してもよい。また、良好な仕上げ面を得る観点から、ボディのうち後端の側の一部が加工穴105の外側に位置するように設定してもよい。上記の一部を切屑排出のためのマージン領域として機能させることが可能であり、当該領域を介して優れた切屑排出性を奏することが可能である。
 (4)回転工具1を被削材103からY2方向に離す(図18参照)。
 本工程においても、上述の(2)の工程と同様に、被削材103及び回転工具1は相対的に離せばよく、例えば被削材103を回転工具1から離してもよい。
 以上のような工程を経ることによって、優れた加工性を発揮することが可能である。
 なお、以上に示したような被削材103の切削加工を複数回行う場合であって、例えば、1つの被削材103に対して複数の加工穴105を形成する場合には、回転工具1を回転させた状態を保持しつつ、被削材103の異なる箇所に回転工具1の切刃を接触させる工程を繰り返せばよい。
  1・・・回転工具
  3・・・ホルダ
  3a・・先端
  3b・・後端
  5・・・シャンク
  7・・・ボディ
  9・・・ポケット
 11・・・切削インサート(インサート)
 13・・・本体
 13a・・第1端
 13b・・第2端
 15、15A・・・切刃
 17・・・第1溝
 19、19A・・・第1刃
 21、21A・・・第2刃
 23、23A・・・凸曲面
 25、25A・・・平面
 27・・・第2溝
 29、29A・・・第1部位
 31、31A・・・第2部位
 31a・・第1領域
 31b・・第2領域
 33、33A・・・第3部位
 35・・・基体
 37・・・溝
101・・・切削加工物
103・・・被削材
105・・・加工穴
 X1・・・回転軸
 X2・・・回転方向
  D・・・外径
  L・・・長さ
φ1、φ2・・・ホーニング角
 θ1・・・第1すくい角
 θ2・・・第2すくい角
W11、W12、W21、W22、W23・・・ホーニング幅

Claims (13)

  1.  回転軸を有し、第1端から第2端にかけて延びた本体と、
     前記本体の前記第1端の側に位置する切刃と、
     前記切刃から前記本体の前記第2端の側に向かって延びた溝とを備え、
     前記切刃は、
      正面視した場合に前記回転軸と交差する第1刃と、
      前記第1刃よりも外周側に位置しており、すくい角が正の値である第2刃とを有し、
     前記第1刃にRホーニングが施されているとともに、前記第2刃にチャンファーホーニングが施されている、切削インサート。
  2.  正面視した場合に、前記第1刃における前記第1刃に直交する方向でのホーニング幅が、前記第2刃における前記第2刃に直交する方向でのホーニング幅よりも狭い、請求項1に記載の切削インサート。
  3.  前記第2刃は、
      直線形状である第1部位と、
      前記第1部位よりも外周側に位置して凹曲線形状である第2部位とを有し、
     前記第2部位における前記回転軸に沿った方向でのホーニング幅が、前記第1部位における前記回転軸に沿った方向でのホーニング幅よりも狭い、請求項1又は2に記載の切削インサート。
  4.  前記第2部位は、外周側に向かうにしたがって前記回転軸に沿った方向でのホーニング幅が広い第1領域を有する、請求項3に記載の切削インサート。
  5.  前記第1領域におけるホーニング角は、外周側に向かうにしたがって小さい、請求項4に記載の切削インサート。
  6.  前記第2部位は、前記第1部位及び前記第1領域の間に位置して、外周側に向かうにしたがってホーニング幅が狭い第2領域をさらに有する、請求項4又は5に記載の切削インサート。
  7.  前記第2領域におけるホーニング角は、外周側に向かうにしたがって大きい、請求項6に記載の切削インサート。
  8.  前記第2刃は、前記第2部位よりも外周側に位置して直線形状である第3部位をさらに有し、
     前記第3部位における前記回転軸に沿った方向でのホーニング幅が、前記第1部位における前記回転軸に沿った方向でのホーニング幅よりも狭い、請求項3~7のいずれか1つに記載の切削インサート。
  9.  前記第3部位における前記回転軸に沿った方向でのホーニング幅が、前記第2部位における前記回転軸に沿った方向でのホーニング幅よりも狭い、請求項8に記載の切削インサート。
  10.  前記第2部位におけるすくい角が、前記第1部位におけるすくい角よりも大きい、請求項3~9のいずれか1つに記載の切削インサート。
  11.  先端側に位置するポケットを有するホルダと、
     前記ポケット内に位置する、請求項1~10のいずれか1つに記載の切削インサートとを有する回転工具。
  12.  回転軸を有し、第1端から第2端にかけて延びた棒形状の基体と、
     前記基体の前記第1端の側に位置する切刃と、
     前記切刃から前記基体の前記第2端の側に向かって螺旋状に延びた溝とを備え、
     前記切刃は、
      正面視した場合に前記回転軸と交差する第1刃と、
      前記第1刃よりも外周側に位置しており、すくい角が正の値である第2刃とを有し、
     前記第1刃にRホーニングが施されているとともに、前記第2刃にチャンファーホーニングが施されている、回転工具。
  13.  被削材を回転させる工程と、
     回転している前記被削材に請求項11又は12に記載の回転工具を接触させる工程と、
     前記回転工具を前記被削材から離す工程とを備えた切削加工物の製造方法。
PCT/JP2019/035502 2018-09-12 2019-09-10 切削インサート、回転工具及び切削加工物の製造方法 WO2020054702A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112019004552.0T DE112019004552T5 (de) 2018-09-12 2019-09-10 Schneideinsatz, rotationswerkzeug und verfahren zur herstellung eines maschinell bearbeiteten produkts
JP2020546023A JP7168673B2 (ja) 2018-09-12 2019-09-10 切削インサート、回転工具及び切削加工物の製造方法
US17/274,826 US20220055123A1 (en) 2018-09-12 2019-09-10 Cutting insert, rotary tool, and method for manufacturing machined product
CN201980059150.0A CN112672840B (zh) 2018-09-12 2019-09-10 切削刀片、旋转工具及切削加工物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018170315 2018-09-12
JP2018-170315 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020054702A1 true WO2020054702A1 (ja) 2020-03-19

Family

ID=69776785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035502 WO2020054702A1 (ja) 2018-09-12 2019-09-10 切削インサート、回転工具及び切削加工物の製造方法

Country Status (5)

Country Link
US (1) US20220055123A1 (ja)
JP (1) JP7168673B2 (ja)
CN (1) CN112672840B (ja)
DE (1) DE112019004552T5 (ja)
WO (1) WO2020054702A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022087171A1 (en) * 2020-10-20 2022-04-28 Tellus Brands, Llc Formulations for cannabinoid permeation enhancement
WO2023181814A1 (ja) * 2022-03-24 2023-09-28 京セラ株式会社 ドリル及び切削加工物の製造方法
JP7380813B1 (ja) 2022-11-29 2023-11-15 株式会社タンガロイ 穴あけ工具
JP7510647B2 (ja) 2021-02-24 2024-07-04 株式会社デンソー 回転工具

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114453606B (zh) * 2021-12-13 2023-12-29 浙江欣兴工具股份有限公司 一种刀头及分体式孔加工刀具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124208A (ja) * 1987-12-14 1990-05-11 Mitsubishi Metal Corp ツイストドリル
WO2014175396A1 (ja) * 2013-04-26 2014-10-30 京セラ株式会社 ドリルおよびそれを用いた切削加工物の製造方法
JP2016002617A (ja) * 2014-06-17 2016-01-12 住友電工ハードメタル株式会社 ドリル
JP2017124475A (ja) * 2016-01-15 2017-07-20 三菱日立ツール株式会社 ドリル
WO2018021335A1 (ja) * 2016-07-26 2018-02-01 京セラ株式会社 切削工具及び切削加工物の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE525336C2 (sv) * 2002-05-17 2005-02-01 Sandvik Ab Borrverktyg för hålborrning i metalliska material
SE533851C2 (sv) * 2009-06-23 2011-02-08 Sandvik Intellectual Property Borrverktyg för spånavskiljande bearbetning samt löstopp och grundkropp härför
JP6606840B2 (ja) * 2014-03-28 2019-11-20 三菱マテリアル株式会社 多結晶ダイヤモンド焼結体付き回転切削工具
US10058934B2 (en) * 2014-06-18 2018-08-28 Kyocera Sgs Precision Tools, Inc. Rotary cutting tool with honed edges
JP6383092B2 (ja) * 2015-03-23 2018-08-29 本田技研工業株式会社 ドリル
JP6685531B2 (ja) * 2015-10-27 2020-04-22 京セラ株式会社 切削インサート、切削工具及び切削加工物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124208A (ja) * 1987-12-14 1990-05-11 Mitsubishi Metal Corp ツイストドリル
WO2014175396A1 (ja) * 2013-04-26 2014-10-30 京セラ株式会社 ドリルおよびそれを用いた切削加工物の製造方法
JP2016002617A (ja) * 2014-06-17 2016-01-12 住友電工ハードメタル株式会社 ドリル
JP2017124475A (ja) * 2016-01-15 2017-07-20 三菱日立ツール株式会社 ドリル
WO2018021335A1 (ja) * 2016-07-26 2018-02-01 京セラ株式会社 切削工具及び切削加工物の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022087171A1 (en) * 2020-10-20 2022-04-28 Tellus Brands, Llc Formulations for cannabinoid permeation enhancement
JP7510647B2 (ja) 2021-02-24 2024-07-04 株式会社デンソー 回転工具
WO2023181814A1 (ja) * 2022-03-24 2023-09-28 京セラ株式会社 ドリル及び切削加工物の製造方法
JP7380813B1 (ja) 2022-11-29 2023-11-15 株式会社タンガロイ 穴あけ工具
JP2024078018A (ja) * 2022-11-29 2024-06-10 株式会社タンガロイ 穴あけ工具

Also Published As

Publication number Publication date
CN112672840A (zh) 2021-04-16
JPWO2020054702A1 (ja) 2021-08-30
CN112672840B (zh) 2023-10-13
US20220055123A1 (en) 2022-02-24
DE112019004552T5 (de) 2021-05-20
JP7168673B2 (ja) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2020054702A1 (ja) 切削インサート、回転工具及び切削加工物の製造方法
JP6892503B2 (ja) 回転工具
US11865630B2 (en) Rotary tool
JPWO2019244796A1 (ja) 回転工具及び切削加工物の製造方法
US11351617B2 (en) Rotating tool
JP7103933B2 (ja) 切削インサート、回転工具及び切削加工物の製造方法
JP6882517B2 (ja) 回転工具
JPWO2018180775A1 (ja) 回転工具
JPWO2018221362A1 (ja) エンドミル及び切削加工物の製造方法
WO2016208772A1 (ja) 切削工具及び切削加工物の製造方法
WO2016186217A1 (ja) ホルダ、切削工具及びこれを用いた切削加工物の製造方法
WO2019088013A1 (ja) ドリル及び切削加工物の製造方法
WO2023277176A1 (ja) 回転工具及び切削加工物の製造方法
JP7386339B2 (ja) ドリル及び切削加工物の製造方法
WO2019139075A1 (ja) ドリル及び切削加工物の製造方法
JP7417707B2 (ja) エンドミル及び切削加工物の製造方法
JPWO2019189415A1 (ja) ドリル及び切削加工物の製造方法
JP2020093374A (ja) 切削インサート、切削工具及び切削加工物の製造方法
JP7145236B2 (ja) 回転工具及び切削加工物の製造方法
JP7279163B2 (ja) 回転工具及び切削加工物の製造方法
JP7060462B2 (ja) 回転工具及び切削加工物の製造方法
JP7465980B2 (ja) 回転工具及び切削加工物の製造方法
WO2024224768A1 (ja) ドリルおよび切削加工物の製造方法
WO2022158514A1 (ja) 回転工具及び切削加工物の製造方法
WO2021153599A1 (ja) 回転工具及び切削加工物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546023

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19860367

Country of ref document: EP

Kind code of ref document: A1