[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020052228A1 - 波长转换装置及光源系统 - Google Patents

波长转换装置及光源系统 Download PDF

Info

Publication number
WO2020052228A1
WO2020052228A1 PCT/CN2019/081650 CN2019081650W WO2020052228A1 WO 2020052228 A1 WO2020052228 A1 WO 2020052228A1 CN 2019081650 W CN2019081650 W CN 2019081650W WO 2020052228 A1 WO2020052228 A1 WO 2020052228A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
layer
thermally conductive
conductive substrate
light
Prior art date
Application number
PCT/CN2019/081650
Other languages
English (en)
French (fr)
Inventor
李乾
陈雨叁
王艳刚
许颜正
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020052228A1 publication Critical patent/WO2020052228A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the invention relates to a wavelength conversion device and a light source system, and belongs to the technical field of lighting and display manufacturing.
  • Exciting phosphors with a light source such as a laser or an LED to obtain a predetermined monochromatic light or a multicolor light is a technical solution widely used in the fields of illumination light sources, projection displays and the like. This technical solution often uses laser or LED output light to be incident on a high-speed rotating fluorescent pink wheel to achieve good heat dissipation.
  • the reflective color wheel in the prior art generally includes a substrate, a reflective layer, and a light-emitting layer that are sequentially stacked.
  • the light-emitting layer is radiated by laser or LED to the substrate through the reflective layer, and then the substrate emits heat to the air.
  • Due to the low thermal conductivity of the reflective layer in order to take into account the heat dissipation performance, the reflective layer cannot be designed too thick.
  • the requirements for the reflectivity of the reflective layer have gradually increased.
  • Increasing the thickness of the reflective layer is one of the effective ways to increase its reflectivity. Increasing the thickness of the reflective layer will inevitably increase the thickness of the reflective layer. Thermal resistance reduces heat dissipation.
  • the technical problem to be solved by the present invention is to provide a wavelength conversion device and a light source system with excellent reflectivity and heat dissipation performance in view of the shortcomings of the prior art.
  • the wavelength conversion device for emitting a laser beam under the irradiation of excitation light.
  • the wavelength conversion device includes a wavelength conversion section and a non-wavelength conversion section.
  • the wavelength conversion section includes a plurality of wavelength conversion modules, and each wavelength conversion module A transparent thermally conductive substrate, a wavelength conversion layer, and a reflective layer are provided in this order in the direction of light incidence.
  • the wavelength conversion section includes a first wavelength conversion module and a second wavelength conversion module
  • the first wavelength conversion module includes a first transparent heat-conducting substrate, a first wavelength conversion layer, and a first reflection layer which are sequentially arranged along the incident direction of the excitation light
  • the second wavelength conversion module includes a second transparent heat-conducting substrate, a second wavelength conversion layer, and a second reflection layer which are sequentially arranged along the incident direction of the excitation light.
  • the first wavelength conversion layer includes a first wavelength conversion material and an organic adhesive
  • the first reflective layer includes scattering particles and an organic adhesive
  • the second wavelength conversion layer includes a second wavelength conversion material and an inorganic adhesive
  • the second reflective layer contains scattering particles and an inorganic adhesive.
  • the excitation light incident surfaces of the first transparent thermally conductive substrate and the second transparent thermally conductive substrate are located on the same plane.
  • the wavelength conversion section further includes a third wavelength conversion module
  • the third wavelength conversion module includes a third transparent thermally conductive substrate, a third wavelength conversion layer, and a third reflection layer which are sequentially arranged along the incident direction of the excitation light.
  • the excitation light incident surfaces of the first transparent thermally conductive substrate, the second transparent thermally conductive substrate, and the third transparent thermally conductive substrate are located on the same plane.
  • the third wavelength conversion layer is a fluorescent ceramic layer, or the third wavelength conversion layer includes a third wavelength conversion material and an inorganic adhesive.
  • the first wavelength conversion module further includes a fluorescent ceramic layer, and the fluorescent ceramic layer is disposed between the first transparent thermally conductive substrate and the first wavelength conversion layer.
  • the non-wavelength conversion portion includes a fourth transparent thermally conductive substrate and a fourth reflective layer, and the fourth reflective layer is disposed on an excitation light incident surface of the fourth transparent thermally conductive substrate.
  • a reflection layer is further provided between the wavelength conversion layers of the adjacent wavelength conversion modules.
  • the invention also provides a light source system including the wavelength conversion device.
  • the present invention improves the structure of the wavelength conversion module so that the reflective layer is externally located, and at the same time increases the thickness of the reflective layer, it can also optimize the heat dissipation of the wavelength conversion device; each wavelength conversion module uses different materials and is independently packaged to Fully improve the light efficiency of different color wavelength conversion modules, thereby improving the light output efficiency of the wavelength conversion device; set the excitation light incident surfaces of the transparent thermally conductive substrates of different color wavelength conversion modules on the same plane, so that the collection efficiency at the collection lens in the optical path Consistent.
  • FIG. 1 is a schematic structural diagram of a wavelength conversion device according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a first wavelength conversion module according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a second wavelength conversion module according to a first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a third wavelength conversion module according to a first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a non-wavelength conversion unit according to a first embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the relationship between the particle size and content of the scattering particles and the reflectance
  • FIG. 7 is a cross-sectional view of a third wavelength conversion module according to an embodiment of the present invention after modification
  • FIG. 8 is a flowchart of a manufacturing method of a wavelength conversion device according to a first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a first wavelength conversion module according to a third embodiment of the present invention.
  • the present invention provides a wavelength conversion device for emitting a laser beam under the irradiation of excitation light, which includes a wavelength conversion portion and a non-wavelength conversion portion.
  • the wavelength conversion section includes multiple wavelength conversion modules, each of which has a fan-shaped ring shape.
  • Each wavelength conversion module includes a transparent thermally conductive substrate, a wavelength conversion layer, and a reflection layer which are sequentially arranged along the incident direction of the excitation light.
  • the color of the wavelength conversion layer can be For red, yellow, green, orange or cyan.
  • the first wavelength conversion module includes a first transparent thermally conductive substrate, a first wavelength conversion layer, and a first A reflection layer
  • the second wavelength conversion module includes a second transparent thermally conductive substrate, a second wavelength conversion layer, and a second reflection layer which are sequentially arranged along the incident direction of the excitation light
  • the wavelength conversion section further includes a third wavelength conversion module
  • the third wavelength The conversion module includes a third transparent thermally conductive substrate, a third wavelength conversion layer, and a third reflection layer, which are sequentially arranged along the incident light excitation direction.
  • the present invention does not limit the number of wavelength conversion modules, and those skilled in the art can design according to actual needs.
  • the thickness of the reflective layer in the present invention can be increased to make the reflection The layer has excellent reflectivity.
  • the heat generated when the wavelength conversion layer in the present invention is excited is directly transmitted to the transparent thermally conductive substrate, heat is exchanged with the air through the transparent thermally conductive substrate, and the heat dissipation efficiency is significantly improved.
  • FIG. 1 is a schematic structural diagram of a wavelength conversion device according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a first wavelength conversion module according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a second wavelength conversion module according to a first embodiment of the present invention
  • FIG. 5 is a cross-sectional view of a non-wavelength conversion unit according to the first embodiment of the present invention.
  • the wavelength conversion device includes a wavelength conversion section and a non-wavelength conversion section 400.
  • the wavelength conversion section includes a first wavelength conversion module 100, a second wavelength conversion module 200, and a third wavelength conversion module 300.
  • the first wavelength conversion module 100, the second wavelength conversion module 200, and the third wavelength conversion module 300 are each a transparent thermally conductive substrate, a wavelength conversion layer, and a reflection layer that are sequentially disposed along the incident light incident direction (shown by arrows in the figure).
  • the non-wavelength conversion section 400 includes a fourth transparent thermally conductive substrate 430 and a fourth reflective layer 420.
  • the wavelength conversion layer includes a wavelength conversion material and a binder, and the reflection layer includes scattering particles and an adhesive.
  • the adhesive is an inorganic adhesive or an organic adhesive, the inorganic adhesive may be an inorganic adhesive such as glass, and the organic adhesive may be an organic adhesive such as silica gel, but the present invention is not limited thereto.
  • the first wavelength conversion module 100 is used to convert the excitation light into a red receiving laser
  • the second wavelength conversion module 200 is used to convert the excitation light into a green received laser
  • the third wavelength conversion module is used to convert the excitation light It is yellow by laser.
  • the first wavelength conversion layer 110 of the first wavelength conversion module 100 includes a first wavelength conversion material (red phosphor) and an organic adhesive, and the first reflective layer 120 includes scattering particles and an organic adhesive;
  • the second wavelength The second wavelength conversion layer 210 of the conversion module 200 includes a second wavelength conversion material (green phosphor) and an inorganic adhesive, and the second reflection layer 220 includes scattering particles and an inorganic adhesive;
  • the third of the third wavelength conversion module 300 The wavelength conversion layer 310 includes a third wavelength conversion material (yellow phosphor) and an inorganic adhesive, and the third reflection layer 320 includes scattering particles and an inorganic adhesive.
  • the reflective layer is not located between the wavelength conversion layer and the transparent thermally conductive substrate. Therefore, even if the thickness of the reflective layer is increased, it does not affect the distance between the wavelength conversion layer and the transparent thermally conductive substrate. Heat is transmitted, so the thickness of the reflective layer in the present invention can be increased, so that the reflective layer has excellent reflectivity. At the same time, since the heat generated when the wavelength conversion layer in the present invention is excited is directly transmitted to the transparent thermally conductive substrate, heat is exchanged with the air through the transparent thermally conductive substrate, and the heat dissipation efficiency is significantly improved.
  • wavelength conversion material and the binder of the wavelength conversion layer of the plurality of wavelength conversion modules in the present invention can be selected according to the color of the wavelength conversion module.
  • the first wavelength conversion layer 110 of the first wavelength conversion module 100 contains a red wavelength conversion material. Due to the bottleneck of the red wavelength conversion material, the red wavelength conversion material cannot be encapsulated as a light-emitting inorganic adhesive or The light-emitting ceramic, therefore, in this embodiment, the first wavelength conversion layer of the first wavelength conversion module includes a first wavelength conversion material (such as a red phosphor) and an organic adhesive.
  • a first wavelength conversion material such as a red phosphor
  • the second wavelength conversion layer 210 of the second wavelength conversion module 200 contains a green wavelength conversion material. Since the wavelength conversion layer composed of a green phosphor and an inorganic adhesive has high luminous efficiency, in this embodiment, the second wavelength conversion module The second wavelength conversion layer includes a second wavelength conversion material (such as a green phosphor) and an inorganic adhesive.
  • the third wavelength conversion layer of the third wavelength conversion module 300 contains a yellow wavelength conversion material. Since the wavelength conversion layer composed of a yellow phosphor and an inorganic adhesive has high luminous efficiency, in this embodiment, the wavelength conversion layer includes a third wavelength conversion material (yellow phosphor) and an inorganic adhesive.
  • the reflective layer contains scattering particles and an organic or inorganic adhesive for binding the scattering particles.
  • the material of the scattering particles is one or more of powder materials such as zirconia, magnesia, alumina, titania, and calcium oxide.
  • the relative scattering power of the particle size of the scattering particles in the reflective layer to different colors of light is different.
  • the relative scattering ability of the scattering particles to the blue, green, and red light in the composition of the reflective layer is a function of the particle size. For example, when the particle diameter of the scattering particles is 0.2 ⁇ m, the sum of the relative scattering forces of light at various wavelengths is the largest; when the particle diameter of the scattering particles is increased to between 0.25 ⁇ m and 0.30 ⁇ m, the relative to the blue excitation light is The scattering force decreases rapidly, but the relative scattering force for green and red excitation light is relatively unchanged; when the particle size of the scattering particles is reduced to 0.15 ⁇ m, the relative scattering force for blue excitation light is the largest, and for green and red The relative scattering power of the excitation light is significantly reduced.
  • the relative scattering power of the content of the scattering particles in the reflective layer is different for light of different colors. Therefore, in the present invention, for the wavelength conversion modules of different colors, the
  • the particle diameter of the scattering particles in the third reflection layer of the third wavelength conversion module is 0.25 ⁇ m-0.3 ⁇ m, and the content of the scattering particles is 40% by weight to 60% by weight;
  • the particle diameter of the scattering particles in the reflection layer is 0.25 ⁇ m to 0.35 ⁇ m, and the content of the scattering particles is 40% to 80% by weight;
  • the particle diameter of the scattering particles in the second reflection layer of the second wavelength conversion module is 0.25 ⁇ m to 0.3 ⁇ m.
  • the content of the scattering particles is 40% by weight to 60% by weight; the particle diameter of the scattering particles in the reflective layer of the non-wavelength conversion portion is 0.1 ⁇ m to 0.2 ⁇ m, and the content of the scattering particles is 30% by weight to 50% by weight.
  • FIG. 6 is a schematic diagram showing the relationship between the particle size, content, and reflectance of the scattering particles.
  • FS01 is the reflectance curve of a normal reflective layer
  • FS02 is the reflectance curve of the second and third reflective layers in the present invention
  • FS03 is the reflectance of the first reflective layer in the present invention curve.
  • the first reflective layer has a higher reflectivity for red light
  • the second reflective layer and the third reflective layer have higher reflectance for green light and yellow light.
  • the wavelength conversion device can have a higher reflectance, thereby improving the light efficiency of each wavelength conversion layer.
  • the reflective layer preferably uses an organic adhesive to bind the scattering particles; if the wavelength conversion layer is an inorganic binder, the reflective layer is preferably an inorganic adhesive. The adhesive binds the scattering particles.
  • the reflective layer can select the raw materials and particle diameter ranges suitable for the color segment according to the wavelength properties of the light emitted by each wavelength conversion layer. Flexible combination splicing is performed to fully improve the light efficiency of each wavelength conversion layer, thereby improving the light output efficiency of the entire wavelength conversion device.
  • the excitation light incident surfaces of the transparent thermally conductive substrates of the multiple wavelength conversion modules are on the same plane.
  • the excitation light incident surface of the transparent thermally conductive substrate of the wavelength conversion section is a plane, it is both the excitation light incident surface and the light emitting surface, that is, the first transparent thermally conductive substrate of the first wavelength conversion module 100 and the second
  • the second transparent thermally conductive substrate of the wavelength conversion module 200 and the third transparent thermally conductive substrate 330 of the third wavelength conversion module 300 facing away from the wavelength conversion layer are the same plane.
  • the reflective layer in the fourth wavelength conversion module 400 may be disposed on a light incident surface (a surface where the excitation light is incident) of the fourth transparent thermally conductive substrate 430, or may be disposed on a side far from the light incident surface of the fourth transparent thermally conductive substrate 430.
  • it is a light incident surface, that is, a fourth reflective layer and a fourth transparent thermally conductive substrate are sequentially disposed along the incident light incident direction.
  • the light reflected by the fourth wavelength conversion module 400 is not incident on the fourth transparent heat-conducting substrate 430 vertically, but incident at an angle due to diffuse reflection.
  • the four transparent thermally conductive substrates are different media. When the light enters the fourth transparent thermally conductive substrate 430 from the fourth reflective layer 420, it is refracted, and light at a certain angle cannot be emitted from the light incident surface of the fourth transparent thermally conductive substrate 430.
  • FIG. 7 is a modified cross-sectional view of a third wavelength conversion module according to a first embodiment of the present invention. As shown in FIG. 7, the side of the third wavelength conversion layer 310 of the third wavelength conversion module is wrapped by a third surrounding reflection layer 320 '.
  • FIG. 8 is a flowchart of a method for manufacturing a wavelength conversion device according to a first embodiment of the present invention. As shown in FIG. 8, combined with the foregoing, the method for manufacturing a wavelength conversion device in this embodiment is as follows:
  • step S103 a first light-emitting paste layer is printed on one side of the first transparent thermally conductive substrate, and the first light-emitting paste layer is pre-baked and dried.
  • S105 Print a first reflective paste layer on the surface of the first luminescent paste layer, and dry the first reflective paste layer to form a first wavelength conversion module.
  • S107 Print a second light-emitting paste layer on one side of the second transparent thermally conductive substrate, and dry the second paste layer.
  • S111 Print a third light-emitting paste layer on one side of the third transparent thermally conductive substrate, and dry the third paste layer.
  • S113 Print a third reflective paste layer on the surface of the third light-emitting paste layer, and dry the third reflective paste layer to form a third wavelength conversion module.
  • S115 Print a fourth reflective paste layer on one side of the fourth transparent thermally conductive substrate, and dry the fourth reflective paste layer to form a non-wavelength conversion portion.
  • the manufacturing method of the wavelength conversion device of the present invention does not necessarily strictly follow the above sequence, and the sequence of the above steps may be adjusted or performed simultaneously.
  • the first light-emitting paste layer includes an organic adhesive and a first wavelength conversion material (red phosphor), and the first reflective paste layer includes an organic adhesive and a scattering agent. particle. Because the red phosphor is not heat-resistant, it needs to be pre-dried.
  • a red light-repairing coating layer may be formed on a side of the first transparent thermally conductive substrate away from the first wavelength conversion layer by vacuum evaporation or magnetron sputtering.
  • the function of the red light modification coating layer is to transmit small-angle blue light (light having an incident angle of less than 17 ° and a wavelength of 420nm-460nm) and large-angle red light (wavelength 580nm-700nm), and reflect light in other wavelength bands.
  • the second luminescent paste layer includes an inorganic adhesive and a second wavelength conversion material (green phosphor), and the second reflective paste layer includes an inorganic adhesive and scattering particles.
  • a green light-repairing coating layer may be formed on a side of the second transparent thermally conductive substrate away from the second wavelength conversion layer by vacuum evaporation or magnetron sputtering.
  • the function of the green color correction coating is to transmit small-angle blue-green light (light with an incident angle of less than 17 ° and a wavelength of 420nm-560nm) and reflect light in other wavelength bands.
  • the third light-emitting paste layer includes an inorganic adhesive and a third wavelength conversion material (yellow phosphor), and the third reflective paste layer includes an inorganic adhesive and scattering particles.
  • a yellow light-repairing coating layer may be formed on a side of the third transparent thermally conductive substrate 330 away from the third wavelength conversion layer 310 by vacuum evaporation or magnetron sputtering.
  • the function of the yellow light modification coating layer is to transmit small-angle blue light (light with an incident angle less than 17 ° and a wavelength of 420nm-460nm) and larger-angle yellow light (wavelength 520nm-580nm), and reflect light in other wavelengths.
  • the fourth reflective paste layer contains an inorganic adhesive and scattering particles.
  • the transparent heat-conducting substrate provided with the color-modified coating layer in the present invention has the functions of heat sink heat conduction, supporting the substrate and the color-modifying film.
  • this embodiment is different in that the wavelength conversion layer of the third wavelength conversion module uses yellow fluorescent ceramic.
  • the wavelength conversion layer of the third wavelength conversion module uses yellow fluorescent ceramic.
  • the current YAG: Ce 3+ yellow fluorescent ceramic is relatively mature in preparation technology, its luminous efficiency has surpassed that of the combination of inorganic adhesive and yellow phosphor, which has great advantages in heat resistance, thermal conductivity and reliability.
  • the manufacturing steps of the improved third wavelength conversion module are as follows:
  • a yellow light-repairing coating layer is formed by vacuum evaporation or magnetron sputtering plating.
  • the function of the yellow light modification coating layer is to transmit small-angle blue light (light with an incident angle less than 17 ° and a wavelength of 420nm-460nm) and larger-angle yellow light (wavelength 520nm-580nm), and reflect light in other wavelength bands.
  • Colorless and transparent optical glue is coated on the non-coated side of the third transparent heat-conducting substrate with the polished surface of the yellow fluorescent ceramic, and then bonded and dried.
  • the thickness of the optical glue is within 10 ⁇ m.
  • FIG. 9 is a cross-sectional view of a first wavelength conversion module according to a third embodiment of the present invention. Due to the poor heat resistance of the red phosphor, in order to improve the heat resistance of the first wavelength conversion module, as shown in FIG. 9, in this embodiment, the first wavelength conversion layer 110 and the first transparent heat conduction of the first wavelength conversion module A fluorescent ceramic layer (yellow fluorescent ceramic 310 ') is further provided between the substrates 130, that is, the first wavelength conversion module in this embodiment includes a first transparent thermally conductive substrate 130, yellow fluorescent ceramic 310', The first wavelength conversion layer 110 and the first reflection layer 120.
  • a fluorescent ceramic layer yellow fluorescent ceramic 310 '
  • the packaging process steps of the first wavelength conversion module are as follows:
  • a red light-repairing coating layer is formed by vacuum evaporation or magnetron sputtering plating.
  • the function of the red light modification coating is to transmit small-angle blue light (light with an incident angle of less than 17 ° and a wavelength of 420nm-460nm) and large-angle red light (wavelength of 580nm-700nm), and reflect light in other bands;
  • a colorless and transparent optical glue is coated on the non-coated side of the first transparent heat-conducting substrate and the polished surface of the yellow fluorescent ceramic, and then bonded and dried.
  • the thickness of the optical glue is within 10 ⁇ m.
  • An embodiment of the present invention further provides a light source system including a wavelength conversion device.
  • the wavelength conversion device may have the structures and functions in the foregoing embodiments.
  • the light source system may be applied to a projection device.
  • the present invention improves the structure of the wavelength conversion module so that the reflective layer is externally located, and at the same time increases the thickness of the reflective layer, it can also optimize the heat dissipation of the wavelength conversion device; each wavelength conversion module uses different materials and is independently packaged to Fully improve the light efficiency of different color wavelength conversion modules, thereby improving the light output efficiency of the wavelength conversion device; set the excitation light incident surfaces of the transparent thermally conductive substrates of different color wavelength conversion modules on the same plane, so that the collection efficiency at the collection lens in the optical path Consistent.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)

Abstract

一种波长转换装置及光源系统,该波长转换装置包含波长转换部和非波长转换部(400),波长转换部包含多个波长转换模块(100, 200, 300),每个波长转换模块(100, 200, 300)均包含沿激发光入射方向依次设置的透明导热基板(130, 230, 330)、波长转换层(110, 210, 310)以及反射层(120, 220, 320)。通过改进波长转换模块(100, 200, 300)的结构,使反射层(120, 220, 320)外置,在增加反射层(120, 220, 320)厚度的同时还能优化波长转换装置的散热;每个波长转换模块(100, 200, 300)选用不同的材料独立封装,以充分提升不同颜色波长转换模块(100, 200, 300)的光效,从而提升波长转换装置的出光效率。

Description

波长转换装置及光源系统 技术领域
本发明涉及一种波长转换装置及光源系统,属于照明及显示制造技术领域。
背景技术
利用激光或者LED等光源激发荧光粉以获得预定单色光或者多色光,是一种广泛应用于照明光源、投影显示等领域的技术方案。这种技术方案往往是利用激光或者LED出射光入射到高速旋转的荧光粉色轮上,以实现良好的散热。
现有技术中的反射式色轮一般包括依次层叠设置的基板、反射层和发光层,发光层受激光或者LED照射产生的热量通过反射层传导到基板,再由基板向空气散热。由于反射层的热导率较低,为了兼顾散热性能,反射层不能设计得太厚。但随着光功率的不断增加,对反射层的反射率的要求逐渐增大,增加反射层的厚度是提升其反射率的有效方式之一,而增加反射层的厚度势必会增大反射层的热阻,降低了散热性能。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种反射率及散热性能俱佳的波长转换装置及光源系统。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种波长转换装置,用于在激发光的照射下发出受激光,波长转换装置包含波长转换部和非波长转换部,波长转换部包含多个波长转换模块,每个波长转换模块均包含沿激发光入射方向依次设置的透明导热基板、波长转换层以及反射层。
优选地,波长转换部包含第一波长转换模块和第二波长转换模块, 第一波长转换模块包含沿激发光入射方向依次设置的第一透明导热基板、第一波长转换层以及第一反射层,第二波长转换模块包含沿激发光入射方向依次设置的第二透明导热基板、第二波长转换层以及第二反射层。
优选地,第一波长转换层包含第一波长转换材料和有机粘接剂,第一反射层包含散射粒子和有机粘接剂,第二波长转换层包含第二波长转换材料和无机粘接剂,第二反射层包含散射粒子和无机粘接剂。
优选地,第一透明导热基板和第二透明导热基板的激发光入射面位于同一平面。
优选地,波长转换部还包含第三波长转换模块,第三波长转换模块包含沿激发光入射方向依次设置的第三透明导热基板、第三波长转换层以及第三反射层。
优选地,第一透明导热基板、第二透明导热基板和第三透明导热基板的激发光入射面位于同一平面。
优选地,第三波长转换层为荧光陶瓷层,或者,第三波长转换层包含第三波长转换材料和无机粘接剂。
优选地,第一波长转换模块还包含荧光陶瓷层,荧光陶瓷层设置在第一透明导热基板和第一波长转换层之间。
优选地,非波长转换部包含第四透明导热基板和第四反射层,第四反射层设置在第四透明导热基板的激发光入射面。
优选地,相邻的波长转换模块的波长转换层之间还设有反射层。
本发明还提供一种包括上述波长转换装置的光源系统。
综上所述,本发明通过改进波长转换模块的结构,使反射层外置,在增加反射层厚度的同时还能优化波长转换装置的散热;每个波长转换模块选用不同的材料独立封装,以充分提升不同颜色波长转换模块的光效,从而提升波长转换装置的出光效率;将不同颜色波长转换模块的透明导热基板的激发光入射面设置在同一平面,使得光路中的收集透镜处的收集效率一致。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明实施例一波长转换装置的结构示意图;
图2为本发明实施例一第一波长转换模块的剖视图;
图3为本发明实施例一第二波长转换模块的剖视图;
图4为本发明实施例一第三波长转换模块的剖视图;
图5为本发明实施例一非波长转换部的剖视图;
图6为散射粒子的粒径、含量与反射率之间的关系示意图;
图7为本发明实施例一第三波长转换模块改进后的剖视图;
图8为本发明实施例一波长转换装置制作方法流程图;
图9为本发明实施例三第一波长转换模块的剖视图。
【附图标记说明】
100        第一波长转换模块
200        第二波长转换模块
300        第三波长转换模块
400        非波长转换部
110        第一波长转换层
120        第一反射层
130        第一透明导热基板
210        第二波长转换层
220        第二反射层
230        第二透明导热基板
310        第三波长转换层
320        第三反射层
330        第三透明导热基板
420        第四反射层
430        第四透明导热基板
310’      黄色荧光陶瓷
320’      第三包围反射层
具体实施方式
实施例一
本发明提供一种波长转换装置,用于在激发光的照射下发出受激光,其包含波长转换部和非波长转换部。
波长转换部包含多个波长转换模块,各波长转换模块为扇环形,每个波长转换模块均包含沿激发光入射方向依次设置的透明导热基板、波长转换层以及反射层,波长转换层的颜色可以为红色、黄色、绿色、橙色或青色等。具体来说,当波长转换部包含第一波长转换模块和第二波长转换模块时,第一波长转换模块包含沿激发光入射方向依次设置的第一透明导热基板、第一波长转换层以及第一反射层,第二波长转换模块包含沿激发光入射方向依次设置的第二透明导热基板、第二波长转换层以及第二反射层;当波长转换部还包含第三波长转换模块时,第三波长转换模块包含沿激发光入射方向依次设置的第三透明导热基板、第三波长转换层以及第三反射层。本发明并不限制波长转换模块的数量,本领域技术人员可以根据实际需要进行设计。
由于本发明中反射层并不位于波长转换层和透明导热基板之间,不影响波长转换层和透明导热基板之间的热量传递,因此,本发明中的反射层的厚度可以增加,从而使得反射层具有优良的反射率。同时,由于本发明中的波长转换层受激发时所产生的热量直接传导到透明导热基板后,通过透明导热基板与空气进行热交换,散热效率得到了明显提升。
下面结合附图对本实施例中的波长转换装置作进一步地介绍。
图1为本发明实施例一波长转换装置的结构示意图;图2为本发明实施例一第一波长转换模块的剖视图;图3为本发明实施例一第二波长转换模块的剖视图;图4为本发明实施例一第三波长转换模块的剖视图;图5为本发明实施例一非波长转换部的剖视图。如图1至图5所示,在本实施例中,波长转换装置包含波长转换部和非波长转换部400。波长转换部包含第一波长转换模块100、第二波长转换模块200和第三波长转换模块300。第一波长转换模块100、第二波长转换模块 200和第三波长转换模块300均沿激发光入射方向(如图中箭头所示)依次设置的透明导热基板、波长转换层以及反射层。非波长转换部400包含第四透明导热基板430和第四反射层420。波长转换层包含波长转换材料和粘结剂,反射层包含散射粒子和粘接剂。粘结剂为无机粘接剂或有机粘接剂,无机粘接剂可以为玻璃等无机粘接剂,有机粘接剂可以为硅胶等有机粘接剂,本发明并不以此为限。
本实施例中,第一波长转换模块100用于将激发光转换为红色受激光,第二波长转换模块200用于将激发光转换为绿色受激光,第三波长转换模块用于将激发光转换为黄色受激光。具体地,第一波长转换模块100的第一波长转换层110包含第一波长转换材料(红色荧光粉)和有机粘接剂,第一反射层120包含散射粒子和有机粘接剂;第二波长转换模块200的第二波长转换层210包含第二波长转换材料(绿色荧光粉)和无机粘接剂,第二反射层220包含散射粒子和无机粘接剂;第三波长转换模块300的第三波长转换层310包含第三波长转换材料(黄色荧光粉)和无机粘接剂,第三反射层320包含散射粒子和无机粘接剂。
由图2-图4可见,波长转换模块中,反射层并不位于波长转换层和透明导热基板之间,因而即使增加反射层的厚度,也不会影响波长转换层和透明导热基板之间的热量传递,故本发明中的反射层的厚度可以增加,从而使得反射层具有优良的反射率。同时,由于本发明中的波长转换层受激发时所产生的热量直接传导到透明导热基板后,通过透明导热基板与空气进行热交换,散热效率得到了明显提升。
进一步地,本发明中多个波长转换模块波长转换层的波长转换材料和粘结剂可以根据波长转换模块的颜色进行选择。
本实施例中,第一波长转换模块100的第一波长转换层110含有红色波长转换材料,因受红色波长转换材料自身瓶颈限制,目前红色波长转换材料还不能被封装成发光无机粘接剂或发光陶瓷,因此,本实施例中,第一波长转换模块的第一波长转换层包含第一波长转换材料(如红色荧光粉)和有机粘接剂。
第二波长转换模块200的第二波长转换层210含有绿色波长转换材料,由于绿色荧光粉和无机粘接剂组成的波长转换层发光效率较高,因此,本实施例中,第二波长转换模块的第二波长转换层包含第二波长转换材料(如绿色荧光粉)和无机粘接剂。
第三波长转换模块300的第三波长转换层含有黄色波长转换材料,由于黄色荧光粉和无机粘接剂组成的波长转换层发光效率较高,因此,本实施例中,第三波长转换模块的波长转换层包含第三波长转换材料(黄色荧光粉)和无机粘接剂。
反射层中包含散射粒子和用于粘结散射粒子的有机粘接剂或无机粘接剂。散射粒子的材质为氧化锆、氧化镁、氧化铝、氧化钛、氧化钙等粉体材料中的一种或多种。
反射层中散射粒子的粒径大小对不同颜色的光线的相对散射力不同,在反射层的成份中散射粒子对蓝色、绿色和红色光线的相对散射能力为粒子大小的函数。例如,当散射粒子的粒径为0.2μm时,对各个波长的光的相对散射力的总和最大;当散射粒子的粒径增加至0.25μm和0.30μm之间时,对蓝色激发光的相对散射力迅速减少,但对绿色和红色激发光的相对散射力却相对不变;当散射粒子的粒径减小至0.15μm时,对蓝色激发光的相对散射力最大,而对绿色和红色激发光的相对散射力显著下降。另外,散射粒子在反射层中的含量对不同颜色的光线的相对散射力也不同。因此,在本发明中,对于不同颜色的波长转换模块,其反射层中散射粒子的粒径大小和含量可以均不同。
在本实施例中,第三波长转换模块的第三反射层中散射粒子的粒径为0.25μm-0.3μm,散射粒子的含量为40重量%-60重量%;第一波长转换模块的第一反射层中散射粒子的粒径为0.25μm-0.35μm,散射粒子的含量为40重量%-80重量%;第二波长转换模块的第二反射层中散射粒子的粒径为0.25μm-0.3μm,散射粒子的含量为40重量%-60重量%;非波长转换部的反射层中散射粒子的粒径为0.1μm-0.2μm,散射粒子的含量为30重量%-50重量%。
图6为散射粒子的粒径、含量与反射率之间的关系示意图。如图6所示,FS01为通常的反射层的反射率曲线,FS02是本发明中的第二 反射层和第三反射层的反射率曲线,FS03是本发明中的第一反射层的反射率曲线。从图中可以看出,第一反射层对红光具有较高的反射率,第二反射层和第三反射层对绿光和黄光具有较高的反射率。对于不同波长的光,相较于采用同样的反射层,通过选择适合不同波长光的反射层,能够使波长转换装置具有更高的反射率,从而提升各波长转换层的光效。
需要说明的是,在选用粘结散射粒子的有机粘接剂或无机粘接剂时,可根据激发光功率大小调整,如功率较大,则优选无机粘接剂。另外,若波长转换层的粘结剂采用有机粘接剂时,反射层优选用有机粘接剂粘结散射粒子;若波长转换层的粘结剂采用无机粘接剂时,反射层优选用无机粘接剂粘结散射粒子。
由于各个波长转换模块可根据其技术要求特征,采用最佳材料和工艺实现最佳性能,反射层可根据各波长转换层出射光的波长属性,选择适合该色段的原料及粒子直径范围,并进行灵活组合拼接,以充分提升各波长转换层的光效,从而提升整个波长转换装置的出光效率。
为了保证发光出射面在同一平面上,使得光路中的收集透镜处的收集效率一致,多个波长转换模块的透明导热基板的激发光入射面位于同一平面。此时,由于波长转换部的透明导热基板的激发光入射面为一平面,其既为激发光入射面,同时也是发光出射面,即第一波长转换模块100的第一透明导热基板、第二波长转换模块200的第二透明导热基板和第三波长转换模块300的第三透明导热基板330的背离波长转换层的一面为同一平面。
另外,第四波长转换模块400中的反射层可以设置在第四透明导热基板430的入光面(激发光入射的表面),也可以设置在远离第四透明导热基板430入光面的一面,优选为入光面,也就是说,沿激发光入射方向依次设置第四反射层、第四透明导热基板。设置在入光面时激发光从空气直接进入第四波长转换模块400进行反射,反射的光直接进入空气,不用穿过第四透明基板再进入空气,减少了反射光的损失。如果在背面(远离入光面的一面),第四波长转换模块400反射的 光由于漫反射,不是垂直入射第四透明导热基板430,而是有角度地入射,由于第四反射层420和第四透明导热基板是不同介质,光从第四反射层420进入第四透明导热基板430的时候会折射,部分角度的光无法从第四透明导热基板430的入光面射出。
为了提高波长转换部不同颜色波长转换模块的反射效率,且避免多个不同颜色波长转换模块之间相互干扰,相邻的波长转换模块的波长转换层之间还可以设置反射层。图7为本发明实施例一第三波长转换模块改进后的剖视图。如图7所示,第三波长转换模块的第三波长转换层310的侧面被第三包围反射层320’包裹。
图8为本发明实施例一波长转换装置制作方法流程图,如图8所示,结合上述内容,本实施例中的波长转换装置的制作方法为:
S101,提供第一透明导热基板、第二透明导热基板、第三透明导热基板以及第四透明导热基板。
S103,在第一透明导热基板的一面印刷第一发光浆料层,并将第一发光浆料层预烘烤表干。
S105,在第一发光浆料层的表面印刷第一反射浆料层,并将第一反射浆料层烘干,形成第一波长转换模块。
S107,在第二透明导热基板的一面印刷第二发光浆料层,并将第二浆料层烘干。
S109,在第二发光浆料层的表面印刷第二反射浆料层,并将第二反射浆料层烘干,形成第二波长转换模块。
S111,在第三透明导热基板的一面印刷第三发光浆料层,并将第三浆料层烘干。
S113,在第三发光浆料层的表面印刷第三反射浆料层,并将第三反射浆料层烘干,形成第三波长转换模块。
S115,在第四透明导热基板的一面印刷第四反射浆料层,并将第四反射浆料层烘干,形成非波长转换部。
S117,胶合第一透明导热基板、第二透明导热基板、第三透明导 热基板以及第四透明导热基板。
可以理解,本发明的波长转换装置制作方法不一定严格依照上述顺序,上述步骤的顺序可调整,也可同时进行。
具体地,在第一波长转换模块的制作步骤中,第一发光浆料层包含有机粘接剂和第一波长转换材料(红色荧光粉),第一反射浆料层包含有机粘接剂和散射粒子。由于红色荧光粉不耐热,因此需要采用预烘干的方式。
进一步地,在将第一反射浆料层烘干后,还可以在第一透明导热基板远离第一波长转换层的一面,采用真空蒸镀或磁控溅射镀制红光修色镀膜层。红光修色镀膜层的功能是透射小角度蓝光(入射角小于17°,且波长为420nm-460nm的光)和较大角度的红光(波长为580nm-700nm),反射其它波段光。
在第二波长转换模块的制作步骤中,第二发光浆料层包含无机粘接剂和第二波长转换材料(绿色荧光粉),第二反射浆料层包含无机粘接剂和散射粒子。
进一步地,在将第二反射浆料层烘干后,还可以在第二透明导热基板远离第二波长转换层的一面,采用真空蒸镀或磁控溅射镀制绿光修色镀膜层。绿光修色镀膜层的功能是透射小角度蓝绿光(入射角小于17°,且波长为420nm-560nm的光),反射其它波段光。
在第三波长转换模块的制作步骤中,第三发光浆料层包含无机粘接剂和第三波长转换材料(黄色荧光粉),第三反射浆料层包含无机粘接剂和散射粒子。
进一步地,在将第三反射浆料层烘干后,还可以在第三透明导热基板330远离第三波长转换层310的一面,采用真空蒸镀或磁控溅射镀制黄光修色镀膜层。黄光修色镀膜层的功能是透射小角度蓝光(入射角小于17°,且波长为420nm-460nm的光)和较大角度的黄光(波长为520nm-580nm),反射其它波段光。
第四反射浆料层包含无机粘接剂和散射粒子。
由于修色镀膜层直接镀制于透明导热基板,可实现波长转换装置体积小型化,减小了马达的负载量,降低了封装工艺难度。换句话说, 本发明中设置有修色镀膜层的透明导热基板具有热沉导热、支撑基板和修色膜片的作用。
实施例二
本实施例与实施例一相比,其区别在于第三波长转换模块的波长转换层采用黄色荧光陶瓷。由于目前的YAG:Ce 3+黄色荧光陶瓷制备工艺较为成熟,其发光效率已经赶超无机粘接剂和黄色荧光粉的结合,在耐热性能、导热性和可靠性方面有着较大的优势。
本实施例中,改进的第三波长转换模块的制作步骤如下:
在单面抛光的黄色荧光陶瓷的非抛光表面印刷第三反射浆料层,并将第三反射浆料层烘干;
在第三透明导热基板的一面,采用真空蒸镀或磁控溅射镀制黄光修色镀膜层。黄光修色镀膜层的功能是透射小角度蓝光(入射角小于17°,且波长为420nm-460nm的光)和较大角度的黄光(波长为520nm-580nm),反射其它波段光。
在第三透明导热基板没有镀膜的一面与黄色荧光陶瓷的抛光表面涂覆无色透明的光学胶水后贴合烘干,光学胶水的厚度在10μm以内。
本实施例中的其他结构与实施例一相同,在此不再赘述。
实施例三
本实施例与实施例二相比,其区别在于第一波长转换模块的结构。图9为本发明实施例三第一波长转换模块的剖视图。由于红色荧光粉的耐热性差,为了提高第一波长转换模块的耐热性,如图9所示,在本实施例中,第一波长转换模块的第一波长转换层110与第一透明导热基板130之间还设有荧光陶瓷层(黄色荧光陶瓷310’),即本实施例中第一波长转换模块包含沿激发光入射方向依次设置的第一透明导热基板130、黄色荧光陶瓷310’、第一波长转换层110以及第一反射层120。
第一波长转换模块的封装工艺步骤如下:
在单面抛光的黄色荧光陶瓷的非抛光表面第一发光浆料层,并将 第一发光浆料层预烘烤表干;
在第一发光浆料层的表面印刷第一反射浆料层,并将第一反射浆料层烘干;
在第一透明导热基板的一面,采用真空蒸镀或磁控溅射镀制红光修色镀膜层。红光修色镀膜层的功能是透射小角度蓝光(入射角小于17°,且波长为420nm-460nm的光)和较大角度的红光(波长为580nm-700nm),反射其它波段光;
在第一透明导热基板没有镀膜的一面与黄色荧光陶瓷的抛光表面涂覆无色透明的光学胶水后贴合烘干,光学胶水的厚度在10μm以内。
本实施例中的其他结构与实施例二相同,在此不再赘述。
本发明实施例还提供一种光源系统,包括波长转换装置,该波长转换装置可以具有上述各实施例中的结构与功能,该光源系统可以应用于投影设备。
综上所述,本发明通过改进波长转换模块的结构,使反射层外置,在增加反射层厚度的同时还能优化波长转换装置的散热;每个波长转换模块选用不同的材料独立封装,以充分提升不同颜色波长转换模块的光效,从而提升波长转换装置的出光效率;将不同颜色波长转换模块的透明导热基板的激发光入射面设置在同一平面,使得光路中的收集透镜处的收集效率一致。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种波长转换装置,用于在激发光的照射下发出受激光,其特征在于,所述波长转换装置包含波长转换部和非波长转换部,所述波长转换部包含多个波长转换模块,每个波长转换模块均包含沿激发光入射方向依次设置的透明导热基板、波长转换层以及反射层。
  2. 如权利要求1所述的波长转换装置,其特征在于,所述波长转换部包含第一波长转换模块和第二波长转换模块,所述第一波长转换模块包含沿激发光入射方向依次设置的第一透明导热基板、第一波长转换层以及第一反射层,所述第二波长转换模块包含沿激发光入射方向依次设置的第二透明导热基板、第二波长转换层以及第二反射层。
  3. 如权利要求2所述的波长转换装置,其特征在于,所述第一波长转换层包含第一波长转换材料和有机粘接剂,所述第一反射层包含散射粒子和有机粘接剂,所述第二波长转换层包含第二波长转换材料和无机粘接剂,所述第二反射层包含散射粒子和无机粘接剂。
  4. 如权利要求2所述的波长转换装置,其特征在于,所述第一透明导热基板和所述第二透明导热基板的激发光入射面位于同一平面。
  5. 如权利要求2所述的波长转换装置,其特征在于,所述波长转换部还包含第三波长转换模块,所述第三波长转换模块包含沿激发光入射方向依次设置的第三透明导热基板、第三波长转换层以及第三反射层。
  6. 如权利要求5所述的波长转换装置,其特征在于,所述第一透明导热基板、所述第二透明导热基板和所述第三透明导热基板的激发光入射面位于同一平面。
  7. 如权利要求5所述的波长转换装置,其特征在于,所述第三波 长转换层为荧光陶瓷层,或者,所述第三波长转换层包含第三波长转换材料和无机粘接剂。
  8. 如权利要求2所述的波长转换装置,其特征在于,所述第一波长转换模块还包含荧光陶瓷层,所述荧光陶瓷层设置在所述第一透明导热基板和所述第一波长转换层之间。
  9. 如权利要求2所述的波长转换装置,其特征在于,所述非波长转换部包含第四透明导热基板和第四反射层。
  10. 如权利要求9所述的波长转换装置,其特征在于,所述第四反射层设置在所述第四透明导热基板的激发光入射面。
  11. 如权利要求1所述的波长转换装置,其特征在于,相邻的所述波长转换模块的波长转换层之间还设有反射层。
  12. 一种光源系统,其特征在于,包括如权利要求1-11中任一项所述的波长转换装置。
PCT/CN2019/081650 2018-09-10 2019-04-08 波长转换装置及光源系统 WO2020052228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811049145.5 2018-09-10
CN201811049145.5A CN110887022A (zh) 2018-09-10 2018-09-10 波长转换装置及光源系统

Publications (1)

Publication Number Publication Date
WO2020052228A1 true WO2020052228A1 (zh) 2020-03-19

Family

ID=69744945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081650 WO2020052228A1 (zh) 2018-09-10 2019-04-08 波长转换装置及光源系统

Country Status (2)

Country Link
CN (1) CN110887022A (zh)
WO (1) WO2020052228A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970872A (zh) * 2020-07-24 2022-01-25 中强光电股份有限公司 波长转换元件及投影机
CN112624752A (zh) * 2020-12-22 2021-04-09 新沂市锡沂高新材料产业技术研究院有限公司 一种复合荧光陶瓷及高亮度led照明光源
WO2024008103A1 (zh) * 2022-07-08 2024-01-11 深圳市绎立锐光科技开发有限公司 一种激光合光装置以及光源

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805602A (zh) * 2009-02-18 2010-08-18 绎立锐光科技开发(深圳)有限公司 光波长转换材料的封装方法及结构
US20150261076A1 (en) * 2012-10-01 2015-09-17 Koninklijke Philips N.V. Wavelength converting element comprising ceramic capsule
CN105737103A (zh) * 2014-12-10 2016-07-06 深圳市绎立锐光科技开发有限公司 波长转换装置及相关荧光色轮和投影装置
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置
CN106206904A (zh) * 2015-04-29 2016-12-07 深圳市光峰光电技术有限公司 一种波长转换装置、荧光色轮及发光装置
US20170199451A1 (en) * 2016-01-07 2017-07-13 Seiko Epson Corporation Wavelength conversion element, illumination device, and projector
CN107255865A (zh) * 2017-06-03 2017-10-17 上海午井光电科技有限公司 荧光色轮
CN206817390U (zh) * 2017-03-21 2017-12-29 深圳市光峰光电技术有限公司 光源装置及色轮

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012015254A (ja) * 2010-06-30 2012-01-19 Nitto Denko Corp 蛍光体セラミックスおよび発光装置
JP2013539229A (ja) * 2010-09-29 2013-10-17 コーニンクレッカ フィリップス エヌ ヴェ 波長変換型発光デバイス
JP6059952B2 (ja) * 2012-10-26 2017-01-11 株式会社豊田自動織機 熱変換部材及び熱変換積層体
CN104566230B (zh) * 2013-10-15 2017-07-11 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN104595852B (zh) * 2013-10-30 2016-08-24 深圳市绎立锐光科技开发有限公司 一种波长转换装置、漫反射层、光源系统及投影系统
WO2015135839A1 (en) * 2014-03-10 2015-09-17 Osram Opto Semiconductors Gmbh Wavelength conversion element, light-emitting semiconductor component comprising a wavelength conversion element, method for producing a wavelength conversion element and method for producing a light-emitting semiconductor component comprising a wavelength conversion element
JP2016027613A (ja) * 2014-05-21 2016-02-18 日本電気硝子株式会社 波長変換部材及びそれを用いた発光装置
CN105301878B (zh) * 2014-07-17 2018-04-13 深圳市光峰光电技术有限公司 波长转换装置及其制备方法、相关发光装置和投影系统
TWI584044B (zh) * 2015-08-21 2017-05-21 台達電子工業股份有限公司 螢光色輪與應用其的波長轉換裝置
CN205447345U (zh) * 2016-03-01 2016-08-10 深圳市绎立锐光科技开发有限公司 一种波长转换装置和光源系统
CN107203088B (zh) * 2016-03-18 2019-10-22 中强光电股份有限公司 波长转换结构与投影装置
JP6852976B2 (ja) * 2016-03-29 2021-03-31 日本特殊陶業株式会社 波長変換部材、その製造方法および発光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805602A (zh) * 2009-02-18 2010-08-18 绎立锐光科技开发(深圳)有限公司 光波长转换材料的封装方法及结构
US20150261076A1 (en) * 2012-10-01 2015-09-17 Koninklijke Philips N.V. Wavelength converting element comprising ceramic capsule
CN105737103A (zh) * 2014-12-10 2016-07-06 深圳市绎立锐光科技开发有限公司 波长转换装置及相关荧光色轮和投影装置
CN106206904A (zh) * 2015-04-29 2016-12-07 深圳市光峰光电技术有限公司 一种波长转换装置、荧光色轮及发光装置
US20170199451A1 (en) * 2016-01-07 2017-07-13 Seiko Epson Corporation Wavelength conversion element, illumination device, and projector
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置
CN206817390U (zh) * 2017-03-21 2017-12-29 深圳市光峰光电技术有限公司 光源装置及色轮
CN107255865A (zh) * 2017-06-03 2017-10-17 上海午井光电科技有限公司 荧光色轮

Also Published As

Publication number Publication date
CN110887022A (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
JP6786546B2 (ja) 波長変換装置、発光装置及び投影システム
CN106206904B (zh) 一种波长转换装置、荧光色轮及发光装置
CN203489181U (zh) 色轮及其光源系统、投影系统
US20130126930A1 (en) Light source device
WO2016173525A1 (zh) 一种波长转换装置、发光装置及投影装置
JP2017517771A (ja) 波長変換装置及びその関連発光装置
TWI823976B (zh) 波長轉換元件、製造其之方法、光轉換裝置、及產生白光的方法
WO2020052228A1 (zh) 波长转换装置及光源系统
JP2015523722A (ja) 遠隔蛍光体ledと直接放射ledの組合せを使用するハイブリッド電球
KR102231580B1 (ko) 광변환기판 및 이를 포함하는 발광패키지, 차량용 램프
WO2019104829A1 (zh) 波长转换装置
CN105045022B (zh) 光源系统及其波长转换装置
CN106098900B (zh) 高密度led光源结构及其制备方法
WO2016188460A1 (zh) 波长转换装置、光源系统和投影系统
CN110017435A (zh) 波长转换装置
WO2019071865A1 (zh) 波长转换装置
TWI829671B (zh) 發光裝置
WO2018137312A1 (zh) 一种荧光模块及相关光源
US11962125B2 (en) Wavelength conversion device and light source system
WO2022052616A1 (zh) 透射式波长转换装置及其发光装置
CN102052578A (zh) 发光装置
WO2019061818A1 (zh) 一种波长转换装置及发光装置
CN207938647U (zh) 一种高效荧光轮
CN109282169B (zh) 波长转换装置、包含其的光源及投影装置
CN207316491U (zh) 高显色指数激光白光获得装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860319

Country of ref document: EP

Kind code of ref document: A1