[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020045833A1 - 반절연 탄화규소 단결정 잉곳을 성장시키는 방법 및 탄화규소 단결정 잉곳 성장 장치 - Google Patents

반절연 탄화규소 단결정 잉곳을 성장시키는 방법 및 탄화규소 단결정 잉곳 성장 장치 Download PDF

Info

Publication number
WO2020045833A1
WO2020045833A1 PCT/KR2019/009314 KR2019009314W WO2020045833A1 WO 2020045833 A1 WO2020045833 A1 WO 2020045833A1 KR 2019009314 W KR2019009314 W KR 2019009314W WO 2020045833 A1 WO2020045833 A1 WO 2020045833A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal ingot
sic single
sic
reaction vessel
Prior art date
Application number
PCT/KR2019/009314
Other languages
English (en)
French (fr)
Inventor
최정우
김정규
구갑렬
고상기
장병규
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180102822A external-priority patent/KR102090085B1/ko
Priority claimed from KR1020180102806A external-priority patent/KR102090084B1/ko
Priority claimed from KR1020180106272A external-priority patent/KR102088924B1/ko
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to US17/268,189 priority Critical patent/US11846038B2/en
Priority to CN201980056925.9A priority patent/CN112639174B/zh
Publication of WO2020045833A1 publication Critical patent/WO2020045833A1/ko
Priority to US18/169,883 priority patent/US11859305B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/007Apparatus for preparing, pre-treating the source material to be used for crystal growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • C30B23/005Controlling or regulating flux or flow of depositing species or vapour
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • Embodiments are methods for growing a semi-insulated SiC single crystal ingot using a dopant coated with a carbonaceous material or growing a semi-insulated SiC single crystal ingot by solidifying a composition comprising a carbon-containing polymer resin, a solvent, a dopant, and SiC. It is about.
  • the embodiment relates to a SiC single crystal ingot growth apparatus comprising a porous body prepared through the process of carbonizing or graphitizing the SiC composition.
  • Silicon carbide has excellent heat resistance, mechanical strength, strong radiation resistance, and can be produced as a large-diameter substrate, and active research is being conducted as a substrate for next-generation power semiconductor devices.
  • single crystal SiC has a large energy band gap and a superior break field voltage and thermal conductivity than silicon (Si).
  • the carrier mobility of single crystal silicon carbide is comparable to that of silicon, and the saturation drift rate and breakdown voltage of electrons are also large. Therefore, single crystal hydrocarbons are expected to be applied to semiconductor devices that require high power, high efficiency, high breakdown voltage and high capacity.
  • GaN gallium nitride
  • AlN aluminum nitride
  • SiC may bounce toward the seed crystal due to thermal vibration or may interfere with the formation of the SiC Flux pattern. Therefore, the growth of the semi-insulated SiC single crystal ingot may be inhibited and the quality may be degraded.
  • a dopant is charged into a porous graphite container, or a method of embedding the dopant in SiC powder through synthesis has been used.
  • this has the disadvantage that the process is complicated and the cost increases.
  • the doping concentration is difficult to control due to impurities generated in the porous graphite container, it is difficult to improve the quality of the semi-insulated SiC single crystal ingot.
  • the SiC and the dopant is used to grind or have a large particle size, this has the disadvantage that a separate powder heat treatment process is required.
  • the size of the reaction vessel for growing the SiC single crystal ingot has also increased in proportion to the large diameter of the SiC single crystal ingot.
  • the size of the reaction vessel is increased, a large amount of energy is required to heat up to the temperature for growing the SiC single crystal ingot, and there is a disadvantage that the temperature gradient to the center of the reaction vessel is unevenly formed.
  • the supply of raw materials becomes uneven due to the high temperature difference between the edge of the ingot and the center, and the quality of the ingot is reduced, such that the center of the ingot becomes convex or the end of the ingot is lost. Can be degraded.
  • Embodiments provide a semi-insulated SiC single crystal ingot having a uniform doping concentration for each thickness of the SiC single crystal ingot by growing a semi-insulated SiC single crystal ingot using a dopant coated with a carbon-based material.
  • Another embodiment is a high-quality semi-insulating SiC single crystal with a uniform doping concentration of SiC single crystal ingot by growing a semi-insulating SiC single crystal ingot after solidifying a composition comprising a carbon-containing polymer resin, a solvent, a dopant, and SiC. To provide an ingot.
  • Another embodiment includes a porous body prepared through a process of carbonizing or graphitizing a SiC composition, so that SiC can produce high quality SiC single crystal ingots having a uniform doping concentration for each thickness even when the SiC single crystal ingot has a large diameter. It is intended to provide a single crystal ingot growth apparatus.
  • a method of growing a semi-insulated SiC single crystal ingot includes: (1) charging a dopant coated with SiC (silicon carbide) and a carbonaceous material into a reaction vessel equipped with seed crystals; And (2) growing a SiC single crystal ingot on the seed crystals.
  • SiC silicon carbide
  • a method of growing a semi-insulated SiC single crystal ingot may include: (a) charging a composition containing a carbon-containing polymer resin, a solvent, a dopant, and SiC (silicon carbide) to a reaction vessel; (b) solidifying the composition; And (c) growing a SiC single crystal ingot on seed crystals mounted in the reaction vessel.
  • SiC single crystal ingot growth apparatus is a seed crystal having a predetermined diameter; And a reaction vessel for growing an ingot on a surface of the seed crystal in a state where the seed crystal is fixed therein, wherein the reaction vessel forms at least a portion of an upper portion of the reaction vessel, and the seed crystal is fixed at an upper end thereof.
  • a filter part including an opening part forming an inner center and a porous body surrounding the opening part, the filter part being positioned below the seed crystal and forming at least a part of the reaction container;
  • a raw material accommodating part disposed between the porous body and the inner wall of the reaction container to form at least a portion of the lower part of the reaction container and accommodate the raw material of the ingot therein;
  • a blocking unit disposed at an upper end of the raw material accommodating unit and an upper end of the porous body.
  • the dopant is prevented from sublimation before SiC and the quality of the semi-insulated SiC single crystal ingot is improved by minimizing the non-uniformity of doping concentration for each thickness of the SiC single crystal ingot. You can.
  • the method for growing a semi-insulated SiC single crystal ingot according to the embodiment it is easy to control the content of the dopant, it is possible to prevent the aggregation phenomenon in some areas.
  • SiC single crystal ingot growth apparatus can minimize the amount of unreacted raw material, there is a cost saving effect.
  • the SiC single crystal ingot growth apparatus prevents the dopant from subliming first compared to SiC, and minimizes the nonuniformity of the temperature gradient of the ingot growth portion, thereby producing a SiC single crystal ingot with improved shape, growth rate and quality. have.
  • the SiC single crystal ingot growth apparatus can suppress the incorporation of undesired impurities and facilitate doping control.
  • the SiC single crystal ingot growth apparatus according to the embodiment is also suitable for producing large diameter SiC single crystal ingots.
  • FIG. 1 is a cross-sectional view of a reaction vessel for growing a semi-insulated SiC single crystal ingot according to one embodiment.
  • FIG. 2 is a cross-sectional view of a reaction vessel in which a conventional semi-insulated SiC single crystal ingot is grown.
  • FIG. 3 shows the surface image of the semi-insulated SiC single crystal ingot of Example 1.
  • Figure 5 shows the initial doping concentration in the step of growing a semi-insulated SiC single crystal ingot of Example 1.
  • FIG. 6 shows the doping concentration of the medium phase in the step of growing the semi-insulated SiC single crystal ingot of Example 1.
  • Figure 7 shows the doping concentration at the end of the step of growing a semi-insulated SiC single crystal ingot of Example 1.
  • Figure 9 shows the doping concentration of the medium phase in the step of growing a semi-insulated SiC single crystal ingot of Comparative Example 1.
  • FIG. 11 shows UV images of a semi-insulated SiC single crystal ingot of Example 1.
  • FIG. 13 illustrates a cross-sectional view of a reaction vessel in which a semi-insulated SiC single crystal ingot is grown according to another embodiment.
  • FIG. 14 shows a residual powder cross-sectional image of a semi-insulated SiC single crystal ingot of Example 2.
  • FIG. 15 shows a residual powder cross-sectional image of a semi-insulated SiC single crystal ingot of Comparative Example 2.
  • FIG. 16 shows UV images of a semi-insulated SiC single crystal ingot of Example 2.
  • FIG. 17 shows UV images of semi-insulated SiC single crystal ingots of Comparative Example 2.
  • FIG. 18 shows the surface image of the semi-insulated SiC single crystal ingot of Example 2.
  • FIG. 20 shows a cross-sectional view of a SiC single crystal ingot growth apparatus of an embodiment.
  • 21 is a sectional view of a conventional SiC single crystal ingot growth apparatus.
  • Figure 22 shows a filter portion of the SiC single crystal ingot growth apparatus of the embodiment.
  • Figure 23 shows a filter portion of the SiC single crystal ingot growth apparatus of another embodiment.
  • FIG. 24 shows a blockage of an SiC single crystal ingot growth apparatus of an embodiment.
  • FIG. 25 shows UV images of SiC single crystal ingots of Example 3.
  • FIG. 26 shows UV images of SiC single crystal ingots of Comparative Example 3.
  • opening portion 520 porous body
  • D1 diameter of opening part D2: internal diameter of breaking part
  • T1 thickness of the porous body
  • T2 thickness of the blocking portion
  • FIG. 2 is a cross-sectional view of a reaction vessel in which a conventional semi-insulated SiC single crystal ingot is grown.
  • FIG. 2 illustrates a structure of a reaction vessel in which a seed crystal 20 is mounted at an upper upper end thereof, and a porous graphite container 50 loaded with a SiC 10 and a dopant 40 is charged at an inner lower end thereof.
  • the method of growing a semi-insulated SiC single crystal ingot may grow the SiC single crystal ingot using a dopant coated with a carbon-based material, thereby preventing the dopant from subliming first compared to SiC. Therefore, by minimizing the nonuniformity of the doping concentration for each thickness of the SiC single crystal ingot, it is possible to improve the quality of the semi-insulated SiC single crystal ingot.
  • the raw material supply is uniformly made by using the dopant coated with the carbon-based material, it is advantageous to improve the growth rate and quality of the SiC single crystal ingot and also to control the polymorphism. That is, when using 4H-SiC, it is possible to lower the growth rate of 3C, 6H and 15R and to increase the growth rate of 4H.
  • the method of growing a semi-insulated SiC single crystal ingot may provide a semi-insulated SiC single crystal ingot with improved quality of the SiC single crystal ingot while making a semi-insulated state.
  • FIG. 1 illustrates a cross-sectional view of a reaction vessel in which a semi-insulated SiC single crystal ingot of an embodiment is grown.
  • FIG. 1 illustrates a structure of a reaction vessel in which a seed crystal 20 is mounted at an inner upper end and a dopant 30 coated with a SiC 10 and a carbon-based material is charged at an inner lower end thereof.
  • a method of growing a semi-insulated SiC single crystal ingot includes: (1) charging a dopant coated with SiC (silicon carbide) and a carbonaceous material into a reaction vessel equipped with seed crystals; And (2) growing a SiC single crystal ingot on the seed crystals.
  • SiC silicon carbide
  • SiC single crystal Ingot To grow, Seed crystal Charge the dopant coated with SiC and carbonaceous material into the equipped reaction vessel (step (1)).
  • the reaction vessel may be a crucible and may be made of a material having a melting point above the sublimation temperature of SiC.
  • it may be made of graphite, but is not limited thereto.
  • the seed crystal may be mounted on the inner top of the reaction vessel.
  • the seed crystal may be a seed crystal having various crystal structures depending on the type of crystal to be grown, such as 4H-SiC, 6H-SiC, 3C-SiC or 15R-SiC.
  • the dopant coated with the SiC and carbon-based material may be charged to the bottom of the reaction vessel.
  • the reaction vessel loaded with the dopant coated with the SiC and carbon-based material may be sealed. After enclosing the said reaction container with the heat insulation member of one or more layers, it puts into the reaction chamber (ex. Quartz tube etc.) provided with a heating means. The insulation member and the reaction chamber maintain the temperature of the reaction vessel at a SiC single crystal growth temperature.
  • the heating means may be induction heating or resistance heating means.
  • a high frequency induction coil for heating a reaction vessel to heat a dopant coated with SiC and a carbon-based material to a desired temperature by flowing a high frequency current through the high frequency induction coil may be used, but is not limited thereto.
  • the SiC may be in the form of SiC powder.
  • the SiC may be in the form of SiC powder having a particle size of 10 ⁇ m to 5,000 ⁇ m.
  • the size of the SiC particles may be 50 ⁇ m to 3,000 ⁇ m, 50 ⁇ m to 2,000 ⁇ m, 100 ⁇ m to 2,000 ⁇ m, or 100 ⁇ m to 1,000 ⁇ m, but is not limited thereto.
  • the SiC may have a purity of 90% by weight to 99% by weight. Specifically, the SiC may have a purity of 91 wt% to 96 wt% or 92 wt% to 95 wt%, but is not limited thereto.
  • the carbon-based material may be carbon black, graphite or a combination thereof.
  • the dopant coated with the carbonaceous material is dried composition comprising a carbon-containing polymer resin, a solvent and a dopant; Hardening; Carbonization or graphitization; And a process of grinding.
  • the carbon-containing polymer resin includes one or more selected from the group consisting of phenolic resins, polyacrylamide resins and thermosetting resins.
  • the phenolic resin may be at least one selected from the group consisting of novolak resins and resol resins, but is not limited thereto.
  • the polyacrylamide-based resin may be a polyamic acid resin, but is not limited thereto.
  • thermosetting resin may be one or more selected from the group consisting of polyurethane resins, melamine resins, and alkyd resins, but is not limited thereto.
  • the composition may include 1 wt% to 40 wt% of the carbon-containing polymer resin based on the total weight of the composition.
  • the composition may include 5 wt% to 35 wt%, 5 wt% to 30 wt%, or 10 wt% to 30 wt% of the carbon-containing polymer resin based on the total weight of the composition. It is not limited to this.
  • the solvent may be at least one selected from the group consisting of ethanol, methanol, acetone, dimethylformamide and dimethyl sulfoxide.
  • the solvent may be ethanol, but is not limited thereto.
  • the composition may comprise 1 wt% to 20 wt% of the solvent, based on the total weight of the composition.
  • the composition may include 5 wt% to 17 wt%, 5 wt% to 15 wt%, or 10 wt% to 15 wt% of the solvent based on the total weight of the composition, but is not limited thereto. It is not.
  • the dopant may be at least one selected from the group consisting of vanadium (V), chromium (Cr), manganese (Mn) and cobalt (Co).
  • the dopant may be a transition metal or a vanadium.
  • vanadium can form deep levels in any state of donor or acceptor in SiC crystals and compensate for shallow donor or shallow acceptor impurities, resulting in high resistance, i. Can be insulated.
  • the composition may comprise 0.5 wt% to 10 wt% dopant based on the total weight of the composition.
  • the composition may include 0.5 wt% to 8 wt%, 1 wt% to 8 wt%, or 1 wt% to 5 wt% of the dopant based on the total weight of the composition, but is not limited thereto. It is not.
  • the drying may be carried out in a temperature range of 50 °C to 350 °C.
  • the curing may be carried out in a temperature range of 100 °C to 400 °C.
  • the drying may be performed for 1 hour to 5 hours in the temperature range of 50 °C to 350 °C or 50 °C to 300 °C, but is not limited thereto.
  • the curing may be performed for 1 hour to 10 hours in the temperature range of 100 °C to 400 °C or 150 °C to 400 °C, but is not limited thereto.
  • the carbonization or graphitization is carried out at a temperature range of 200 °C to 2,200 °C and pressure conditions of 1 torr to 1500 torr. Specifically, by satisfying the carbonization or graphitization conditions, it is easy to coat the dopant with a carbon-based material.
  • the dopant that has undergone the drying and curing steps is subjected to heat treatment at a temperature range of 300 ° C. to 600 ° C. and a pressure condition of 500 torr to 700 torr, followed by a temperature range of 2,000 ° C. to 2,200 ° C. and a 500 torr to 800 degree. It can be carbonized or graphitized under torr pressure conditions.
  • the carbonization or graphitization may be performed for 2 to 5 hours, but is not limited thereto.
  • the carbonization or graphitization means heat treatment in an inert atmosphere.
  • the inert atmosphere may be a nitrogen atmosphere or an argon atmosphere, but is not limited thereto.
  • the carbonized or graphitized dopant performs a process of grinding.
  • the grinding may be performed by a method of grinding by a top-down, ball mill, jet mill, or the like, but is not limited thereto.
  • the particle size of the dopant coated with the carbon-based material may be 1 ⁇ m to 2,000 ⁇ m.
  • the particle size of the dopant coated with the carbon-based material may be 5 ⁇ m to 1,000 ⁇ m, 10 ⁇ m to 1,000 ⁇ m, or 10 ⁇ m to 500 ⁇ m, but is not limited thereto.
  • each of the particles of the dopant may be coated with the carbon-based material of all or part of the outer surface, respectively.
  • the dopant may be coated with the carbonaceous material on the entirety of the outer surface, or 50% or more of the outer surface with the carbonaceous material.
  • the coating thickness of the portion coated with the carbon-based material is 1 ⁇ m to 100 ⁇ m.
  • the doping concentrations of the dopants in the initial, middle and late stages may be uniform in growing the SiC single crystal ingot.
  • the coating thickness of the portion coated with the carbonaceous material may be 5 ⁇ m to 50 ⁇ m, 5 ⁇ m to 40 ⁇ m, 10 ⁇ m to 40 ⁇ m, 10 ⁇ m to 30 ⁇ m, or 10 ⁇ m to 25 ⁇ m, but is not limited thereto. It doesn't happen.
  • step (2) a SiC single crystal ingot is grown on the seed crystals (step (2)).
  • the step of growing a SiC single crystal ingot in the seed crystal of step (2) is grown on the seed crystal by sublimating the dopant coated with the SiC and carbonaceous material charged in the step (1) This is the step.
  • Sublimation point of the SiC is 2,000 °C to 2,800 °C.
  • the sublimation point of the dopant is 1,800 °C to 2,000 °C
  • the sublimation point of the dopant coated with the carbon-based material is 2,000 °C to 2,500 °C.
  • the sublimation point of the dopant coated with the carbon-based material satisfies the above range, thereby allowing the dopant to be sublimated within a temperature range similar to that of SiC.
  • the sublimation point of the dopant coated with the carbon-based material may be 2,100 ° C to 2,500 ° C or 2,100 ° C to 2,300 ° C, but is not limited thereto.
  • the temperature in step (2) may be 2,000 ° C to 2,500 ° C, 2,200 ° C to 2,500 ° C or 2,250 ° C to 2,300 ° C, but is not limited thereto.
  • the pressure in the step (2) may be 1 torr to 150 torr, 1 torr to 100 torr, or 1 torr to 50 torr, but is not limited thereto.
  • the SiC single crystal ingot may have a specific resistance of 0.1 ⁇ cm to 1 X 10 10 ⁇ cm.
  • the SiC single crystal ingot may have a specific resistance of 0.1 ⁇ cm to 1 X 10 5 ⁇ cm, 1 ⁇ cm to 1 X 10 8 ⁇ cm or 10 ⁇ cm to 1 X 10 5 ⁇ cm, but is not limited thereto. It doesn't happen.
  • the dopant concentration of the SiC single crystal ingot is from 5.5 X 10 16 atoms / cc to 1 X 10 18 atoms / cc.
  • the dopant concentration of the SiC single crystal ingot may be 5.5 X 10 16 atoms / cc to 1.5 X 10 17 atoms / cc or 1 X 10 17 atoms / cc to 5 X 10 17 atoms / cc, but is not limited thereto. no.
  • the SiC single crystal ingot has a purity of 95% to 99.9%.
  • the SiC single crystal ingot may have a purity of 95% to 99.5%, 97% to 99.5%, 98% to 99.5%, and 98% to 99%, but is not limited thereto.
  • FIG. 2 is a cross-sectional view of a reaction vessel in which a conventional semi-insulated SiC single crystal ingot is grown.
  • FIG. 2 illustrates a structure of a reaction vessel in which a seed crystal 20 is mounted at an upper upper end thereof, and a porous graphite container 50 loaded with a SiC 10 and a dopant 40 is charged at an inner lower end thereof.
  • a method of growing a semi-insulated SiC single crystal ingot is a phenomenon in which a dopant is first sublimed compared to SiC by solidifying a composition including a carbon-containing polymer resin, a solvent, a dopant, and SiC, and then growing a SiC single crystal ingot. Can be prevented. Therefore, by minimizing the nonuniformity of the doping concentration for each thickness of the SiC single crystal ingot, it is possible to improve the quality of the semi-insulated SiC single crystal ingot.
  • the growth method of the semi-insulating SiC single crystal ingot according to the embodiment can suppress the incorporation of undesired impurities, facilitate doping control, easily control the content of the dopant, and aggregate in some regions. This can be prevented from occurring.
  • the method of growing a semi-insulated SiC single crystal ingot may provide a semi-insulated SiC single crystal ingot, while making a semi-insulated state and improving the quality of the SiC single crystal ingot.
  • the growth rate and quality of SiC single crystal ingots are improved, as well as polymorphic control. That is, when using 4H-SiC, it is possible to lower the growth rate of 3C, 6H and 15R and to increase the growth rate of 4H.
  • FIG. 13 illustrates a cross-sectional view of a reaction vessel in which a semi-insulated SiC single crystal ingot of an embodiment is grown.
  • FIG. 13 illustrates a structure of a reaction vessel in which a seed crystal 20 is mounted at an inner upper end and a composition 60 solidified at an inner lower end.
  • a method of growing a SiC single crystal ingot may include: (a) charging a composition including a carbon-containing polymer resin, a solvent, a dopant, and SiC (silicon carbide) to a reaction vessel; (b) solidifying the composition; And (c) growing a SiC single crystal ingot on seed crystals mounted in the reaction vessel.
  • SiC single crystal Ingot To grow, charge a composition comprising a carbon-containing polymer resin, a solvent, a dopant, and SiC (silicon carbide) in a reaction vessel (step (a)).
  • the reaction vessel may be a crucible and may be made of a material having a melting point above the sublimation temperature of SiC.
  • it may be made of graphite, but is not limited thereto.
  • the composition may be charged to the bottom of the reaction vessel.
  • the reaction vessel loaded with the composition may be closed. After enclosing the said reaction container with the heat insulation member of one or more layers, it puts into the reaction chamber (ex. Quartz tube etc.) provided with a heating means. The insulation member and the reaction chamber maintain the temperature of the reaction vessel at a SiC single crystal growth temperature.
  • the heating means may be induction heating or resistance heating means.
  • a high frequency induction coil for heating the reaction vessel to a desired temperature may be used, but is not limited thereto.
  • the content of the carbon-containing polymer resin is the same as described above in step (1).
  • the composition may include 1 wt% to 40 wt% of the carbon-containing polymer resin based on the total weight of the composition.
  • the composition may include 5 wt% to 35 wt%, 5 wt% to 30 wt%, or 10 wt% to 30 wt% of the carbon-containing polymer resin based on the total weight of the composition. It is not limited to this.
  • the content of the solvent is the same as described above in step (1).
  • the dopant may be at least one selected from the group consisting of vanadium (V), chromium (Cr), manganese (Mn) and cobalt (Co).
  • the dopant may be a transition metal and may be vanadium.
  • vanadium can form deep levels in any state of donor or acceptor in SiC crystals and compensate for shallow donor or shallow acceptor impurities, resulting in high resistance, i. Can be insulated.
  • the composition may comprise 1 wt% to 20 wt% dopant based on the total weight of the composition.
  • the composition may include 5 wt% to 17 wt%, 5 wt% to 15 wt%, and 10 wt% to 15 wt% of the dopant based on the total weight of the composition, but is not limited thereto. It is not.
  • the content of the SiC is the same as described above in step (1).
  • step (b) SiC single crystal Ingot To grow, the composition is solidified (step (b)).
  • step (b) comprises drying the composition; Hardening; And carbonization or graphitization.
  • the drying may be carried out in a temperature range of 50 °C to 350 °C.
  • the curing may be carried out in a temperature range of 100 °C to 400 °C.
  • the drying may be performed for 1 hour to 5 hours in the temperature range of 50 °C to 350 °C or 50 °C to 300 °C, but is not limited thereto.
  • the curing may be performed for 1 hour to 10 hours in the temperature range of 100 °C to 400 °C or 150 °C to 400 °C, but is not limited thereto.
  • the carbonization or graphitization is carried out at a temperature range of 200 °C to 2,200 °C and pressure conditions of 1 torr to 1,500 torr.
  • the dopant that has undergone the drying and curing steps is subjected to a heat treatment at a temperature range of 300 ° C. to 600 ° C. and a pressure condition of 500 torr to 700 torr, followed by a temperature range of 2,000 ° C. to 2,200 ° C. and a 500 torr to 800 degree. It can be carbonized or graphitized under torr pressure conditions.
  • the carbonization or graphitization may be performed for 2 to 5 hours, but is not limited thereto.
  • the carbonization or graphitization means heat treatment in an inert atmosphere.
  • the inert atmosphere may be a nitrogen atmosphere or an argon atmosphere, but is not limited thereto.
  • the composition passed through step (b) is a solid that fills the entire inner bottom and part of the inner wall of the reaction vessel.
  • the SiC single crystal ingot it is possible to prevent the SiC from sticking to the seed crystal due to the thermal vibration or preventing the formation of the SiC Flux pattern.
  • the composition passed through step (b) may be a pellet-shaped solid.
  • the method may further include charging a pellet-shaped mold (a ') into the reaction vessel before step (a).
  • the pellet shape produced from the pellet-shaped mold may be a cylindrical or polygonal columnar shape.
  • it may be a geometric shape such as a circle, a triangle, a square, a pentagon, a hexagon, an octagon, or a star, but is not limited thereto.
  • a pellet-shaped solid body By separating the solidified composition that has undergone the steps (a '), (a) and (b) in a pellet-shaped mold, a pellet-shaped solid body can be obtained. Since the composition for producing a SiC single crystal ingot can be produced in a pellet-shaped solid body, it is easy to store and can also improve heat resistance and moisture resistance.
  • the SiC is charged to the bottom of the reaction vessel, and then the pellet-shaped solid body may be charged at a desired position.
  • the pellet-shaped solid body may be charged as in the conventional porous graphite container which was charged at the inner bottom of the reaction container in FIG. 2. Therefore, the pellet-shaped solid body is not only easy to doping control, can be freely used regardless of the structure of the reaction vessel, there is an advantage that can be easily stored, as well as heat resistance and moisture resistance.
  • the growth of the SiC single crystal ingot does not occur in step (b).
  • step (c) mounted on the reaction vessel At seed crystal SiC single crystal Ingot Grow.
  • the seed crystal may be mounted on the inner top of the reaction vessel.
  • the seed crystal may be a seed crystal having various crystal structures depending on the type of crystal to be grown, such as 4H-SiC, 6H-SiC, 3C-SiC or 15R-SiC.
  • growing the SiC single crystal ingot in the seed crystals is a step of growing the seed crystals by sublimating the composition passed through step (b).
  • the sublimation point of the composition in step (c) is 2,000 ° C to 2,500 ° C. Specifically, by the sublimation point of the composition satisfying the temperature range, it is possible to sublimate the dopant in a temperature range similar to SiC.
  • the sublimation point of the composition may be 2,100 ° C to 2,500 ° C or 2,100 ° C to 2,300 ° C, but is not limited thereto.
  • the temperature in step (b) may be 2,000 °C to 2,500 °C, 2,200 °C 2,500 °C or 2,250 °C 2,300 °C, but is not limited thereto.
  • the pressure in step (b) may be 1 torr to 150 torr, 1 torr to 100 torr, or 1 torr to 50 torr, but is not limited thereto.
  • the specific resistance, dopant concentration and purity of the SiC single crystal ingot are the same as described above in step (2).
  • FIG. 21 is a sectional view of a conventional SiC single crystal ingot growth apparatus. Specifically, in FIG. 21, a reaction vessel cap 700 ′ is formed at an inner upper end of the reaction vessel 200 ′, and a seed crystal 100 ′ is fixed at the lower end of the reaction vessel cap 700 ′, and the reaction Ingot growth portions 300 'and a raw material accommodating portion 400' are formed at upper and lower portions of the container, respectively, and a porous graphite container 800 'having a dopant loaded therein is formed in the raw material accommodating portion 400'. SiC single crystal ingot growth apparatus is illustrated.
  • the size of the reaction vessel 200 'of the conventional SiC single crystal ingot growth apparatus increases in order to grow a large diameter SiC single crystal ingot, a large amount of energy is required to heat the SiC single crystal ingot to a temperature for growing to a large diameter. do.
  • heat is not transferred well to the center of the ingot growth part 300 ′ where the ingot is grown, the temperature gradient becomes uneven, and the quality of the manufactured SiC single crystal ingot is also degraded.
  • FIG. 20 shows a cross-sectional view of a SiC single crystal ingot growth apparatus of an embodiment.
  • a reaction vessel cap 700 is formed at an inner upper end of the reaction vessel 200, and a seed crystal 100 is fixed at a lower end of the reaction vessel cap 700, and an ingot growth portion is formed on the upper portion of the reaction vessel.
  • a filter unit 500 including the opening portion 510 and the porous body 520 surrounding the opening portion is formed at the bottom of the reaction vessel, and the reaction vessel 300 is formed at the lower portion of the reaction vessel.
  • An SiC single crystal ingot growth apparatus is illustrated in which a raw material accommodating part 400 is formed between inner walls of the reaction vessel, and a blocking part 600 is formed on an upper end of the raw material accommodating part and an upper end of the porous body.
  • the raw material receiving portion 400 is formed between the porous body 520 and the inner wall of the reaction vessel, it is possible to reduce the amount of energy required to grow SiC single crystal ingot It is economical.
  • the SiC single crystal ingot growth apparatus is also suitable for producing a large diameter SiC single crystal ingot.
  • the SiC single crystal ingot growth apparatus is manufactured through a process in which the porous body 520 carbonizes or graphitizes a SiC composition including a carbon-containing polymer resin, SiC, a dopant, and a solvent. 523, a flow path 524, and a pore wall 525, and a blocking part 600 is formed at an upper end of the raw material accommodating part 400 and an upper end of the porous body 520. Therefore, even if heat is applied to the reaction vessel 200, dopants do not sublimate first compared to SiC.
  • the SiC in the solid state in the raw material accommodating portion 400 is sublimated into a gas, moved through the opening portion 510 via the porous body 520. Thereafter, the SiC single crystal ingot is grown while subliming back to a solid at the bottom of the seed crystal 300.
  • the SiC single crystal ingot growth apparatus can minimize the amount of unreacted raw material, thereby reducing the cost.
  • the SiC single crystal ingot growth apparatus may minimize the non-uniformity of the temperature gradient of the ingot growth unit 300, thereby manufacturing a SiC single crystal ingot having improved shape, growth rate, and quality.
  • the shape of the SiC single crystal ingot may be convexly grown.
  • the shape of the ingot may be flatly grown.
  • the raw material supply is made uniform by the uniform temperature gradient, it is advantageous to improve the growth rate and quality of the SiC single crystal ingot as well as to control the polymorphism. That is, when 4H-SiC is used, polymorphic growth such as 3C, 6H, and 15R can be suppressed and growth stability of 4H can be improved.
  • the SiC single crystal ingot growth apparatus can suppress the incorporation of unintended impurities and facilitate doping control.
  • SiC single crystal ingot growth apparatus includes a seed crystal 100 and the reaction vessel 200, the reaction vessel 200, the ingot growth portion 300, the filter portion 500, the raw material accommodating portion 400 and the blocking part 600, and the filter part 500 includes an opening part 510 and a porous body 520.
  • the SiC single crystal ingot growth apparatus includes a seed crystal 100 having a predetermined diameter
  • reaction vessel 200 for growing an ingot on a surface of the seed crystal while the seed crystal is fixed therein.
  • the reaction vessel 200 The reaction vessel 200,
  • An ingot growth part 300 forming at least a part of the upper part of the reaction container and having the seed crystals fixed to an upper end thereof;
  • a filter part 500 including an opening part 510 forming an inner center of the reaction container and a porous body 520 surrounding the opening part, and positioned at the bottom of the seed crystal and forming at least a part of the reaction container bottom part;
  • a raw material accommodating part 400 positioned between the porous body and the inner wall of the reaction container to form at least a portion of the lower part of the reaction container and accommodate the raw material of the ingot therein;
  • a blocking unit 600 positioned at an upper end of the raw material receiving unit and an upper end of the porous body.
  • the SiC single crystal ingot growth apparatus further includes a reaction vessel cap 700 located on the top of the reaction vessel, the seed crystal may be fixed to the bottom of the reaction vessel cap.
  • the seed crystal 100 may be fixed to the inner top of the reaction vessel (400). Specifically, the seed crystal 100 may be fixed to the lower end of the reaction vessel cap 700.
  • the seed crystal 100 may use a seed crystal 100 having various crystal structures according to the type of crystal to be grown, such as 4H-SiC, 6H-SiC, 3C-SiC or 15R-SiC.
  • the diameter (a) of the seed crystal is at least 4 inches.
  • the diameter (a) of the seed crystal may be 4 inches or more and 50 inches or less. More specifically, the diameter (a) of the seed crystal may be 4 inches to 30 inches, 4 inches to 20 inches, 4 inches to 15 inches, 4 inches to 10 inches, or 4 inches to 8 inches, but is not limited thereto. .
  • the diameter of the SiC single crystal ingot grown on the bottom of the seed crystal 100 may be 4 inches or more or 6 inches or more.
  • the diameter of the SiC single crystal ingot grown on the bottom of the seed crystal 100 is 4 inches to 55 inches, 4 inches to 35 inches, 4 inches to 25 inches, 4 inches to 15 inches, 6 inches to 55 inches, 6 inches to 35 inches, 6 inches to 20 inches, 6 inches to 15 inches, or 4 inches to 8 inches, but is not limited thereto.
  • the diameter of the SiC single crystal ingot grown under the seed crystal 100 is equal to or larger than the diameter (a) of the seed crystal.
  • the reaction vessel 200 may be a crucible, and may be made of a material having a melting point of 2,600 ° C. to 3,000 ° C. or more. For example, it may be made of graphite, but is not limited thereto.
  • the reaction vessel 200 has an internal space, the top may be in an open form.
  • SiC single crystal ingot growth apparatus may further include a heat insulating member surrounding the reaction vessel 200.
  • the reaction vessel 200 in which the raw material of the ingot is accommodated may be sealed. After enclosing the reaction vessel 200 with one or more heat insulating members, the reaction vessel 200 is placed in a reaction chamber (eg, a quartz tube) provided with heating means. The insulation member and the reaction chamber maintain the temperature of the reaction vessel 200 at a SiC single crystal growth temperature.
  • a reaction chamber eg, a quartz tube
  • the heating means may be induction heating or resistance heating means.
  • a high frequency induction coil for heating the reaction vessel 200 to heat the raw material to a desired temperature by flowing a high frequency current through the high frequency induction coil may be used, but is not limited thereto.
  • the reaction vessel 200 includes at least a portion of the upper portion of the reaction vessel, the ingot growth portion 300 is fixed to the seed crystal 100 on the top.
  • the SiC in the solid state contained in the raw material accommodating portion 400 is sublimated into a gas, moved through the opening portion 510 through the porous body 520. Afterwards, the SiC single crystal ingot is grown while subliming back to a solid under the ingot growth unit 300.
  • the reaction vessel 200 is located between the porous body 520 and the inner wall of the reaction vessel to form at least a portion of the lower portion of the reaction vessel, the raw material accommodating portion accommodates the raw material of the ingot therein 400.
  • the raw material is SiC powder
  • the average diameter of the powder particles may be 10 ⁇ m to 5,000 ⁇ m.
  • the size of the SiC particles may be 50 ⁇ m to 3,000 ⁇ m or 100 ⁇ m to 1,000 ⁇ m, but is not limited thereto.
  • the SiC may have a purity of 90% by weight to 99% by weight. Specifically, the SiC may have a purity of 91 wt% to 97 wt% or 93 wt% to 95 wt%, but is not limited thereto.
  • the filter part 500 includes an opening part 510 and a porous body 520 surrounding the opening part.
  • the reaction vessel 200 includes an opening portion 510 forming an inner center of the reaction vessel and a porous body 520 surrounding the opening portion 510, and below the seed crystal 100. It includes a filter unit 500 to form at least a portion of the lower portion of the reaction vessel.
  • the filter unit 500 may form a lower center of the reaction vessel 200.
  • the filter unit 500 may have a cylindrical or polygonal columnar shape.
  • the cross section of the filter unit 500 may be a geometric shape such as a circle, a triangle, a rectangle, a pentagon, a hexagon, an octagon, or a star, but is not limited thereto.
  • FIG. 22 shows the filter portion 500 of the SiC single crystal ingot growth apparatus of the embodiment.
  • FIG. 22 illustrates a cylindrical filter part 500 having an opening 510 formed therein and a porous body 520 surrounding the opening 510.
  • Figure 23 shows another filter portion of the SiC single crystal ingot growth apparatus of the embodiment.
  • an open part 510 is formed therein, and a filter part 500 having a square pillar shape having a porous body 520 surrounding the open part 510 is illustrated.
  • the porous body 520 may be prepared from a SiC composition comprising a carbon-containing polymer resin, SiC, dopants and a solvent.
  • the carbon-containing polymer resin may include one or more selected from the group consisting of phenolic resins, polyacrylamide resins and thermosetting resins.
  • the phenolic resin may be at least one selected from the group consisting of novolak resins and resol resins, but is not limited thereto.
  • the polyacrylamide-based resin may be a polyamic acid resin, but is not limited thereto.
  • thermosetting resin may be one or more selected from the group consisting of polyurethane resins, melamine resins, and alkyd resins, but is not limited thereto.
  • the SiC may be in the form of a powder, and the average diameter of the powder particles may be 10 ⁇ m to 5,000 ⁇ m.
  • the size of the SiC particles may be 50 ⁇ m to 3,000 ⁇ m or 100 ⁇ m to 1,000 ⁇ m, but is not limited thereto.
  • the SiC may have a purity of 90% by weight to 99% by weight. Specifically, the SiC may have a purity of 91 wt% to 97 wt% or 93 wt% to 95 wt%, but is not limited thereto.
  • the dopant may include one or more selected from the group consisting of vanadium (V), chromium (Cr), manganese (Mn), and cobalt (Co).
  • the dopant may be a transition metal, specifically vanadium.
  • vanadium can form deep levels in any state of donor or acceptor in SiC crystals and compensate for shallow donor or shallow acceptor impurities, resulting in high resistance to the crystal, i.e. Can be made semi-insulated.
  • the SiC composition may include 1 wt% to 20 wt% dopant based on the total weight of the SiC composition.
  • the SiC composition may include 5 wt% to 17 wt%, 5 wt% to 15 wt%, and 10 wt% to 15 wt% of the dopant based on the total weight of the SiC composition, but It is not limited.
  • the solvent may be at least one selected from the group consisting of ethanol, methanol, acetone, dimethylformamide and dimethyl sulfoxide.
  • the solvent may be ethanol, but is not limited thereto.
  • the SiC composition may include 1 wt% to 20 wt% of solvent based on the total weight of the SiC composition.
  • the SiC composition may include 5 wt% to 17 wt%, 5 wt% to 15 wt%, or 10 wt% to 15 wt% of the solvent, based on the total weight of the SiC composition, but It is not limited.
  • the SiC composition may include 1 wt% to 40 wt% of the carbon-containing polymer resin based on the total weight of the SiC composition.
  • the SiC composition may comprise 5 wt% to 35 wt%, 5 wt% to 30 wt%, or 10 wt% to 30 wt% of the carbon-containing polymer resin based on the total weight of the SiC composition. It may be, but is not limited thereto.
  • the solvent may be at least one selected from the group consisting of ethanol, methanol, acetone, dimethylformamide and dimethyl sulfoxide.
  • the solvent may be ethanol, but is not limited thereto.
  • the SiC composition may include 1 wt% to 20 wt% of solvent based on the total weight of the SiC composition.
  • the SiC composition may include 5 wt% to 17 wt%, 5 wt% to 15 wt%, or 10 wt% to 15 wt% of the solvent, based on the total weight of the SiC composition, but It is not limited.
  • the porous body is prepared through a process of carbonizing or graphitizing the SiC composition.
  • the porous body is dried the SiC composition; Hardening; And it may be prepared through a process of carbonization (graphitization) or graphitization (graphitization).
  • the drying may be carried out in a temperature range of 30 °C to 400 °C or 50 °C to 350 °C.
  • the curing may be carried out in a temperature range of 30 °C to 400 °C or 100 °C to 400 °C.
  • the drying may be performed for 1 hour to 5 hours in the temperature range of 30 °C to 400 °C, 50 °C to 350 °C or 50 °C to 300 °C, but is not limited thereto.
  • the curing may be performed for 1 hour to 10 hours in the temperature range of 30 °C to 400 °C, 100 °C to 400 °C or 150 °C to 400 °C, but is not limited thereto.
  • the carbonization or graphitization is carried out at a temperature range of 200 °C to 2,200 °C and pressure conditions of 1 torr to 1,500 torr. By satisfying the temperature and pressure conditions, it may be advantageous for carbonization or graphitization of the SiC composition.
  • the SiC composition which has undergone the drying and curing steps is subjected to heat treatment at a temperature range of 300 ° C. to 600 ° C. and a pressure condition of 500 torr to 700 torr, followed by a temperature range of 2,000 ° C. to 2,200 ° C. and 500 torr to It can be carbonized or graphitized under pressure conditions of 800torr.
  • the carbonization or graphitization may be performed for 1 hour to 5 hours or 2 hours to 5 hours, but is not limited thereto.
  • the carbonization or graphitization means heat treatment in an inert atmosphere.
  • the inert atmosphere may be a nitrogen atmosphere or an argon atmosphere, but is not limited thereto.
  • the porous body 520 may include a pore 523, a flow path 524 and a pore wall 525. Specifically, since the porous body includes pores 523, flow paths 524, and pore walls 525, the raw material reacted with the dopant may be uniformly moved, and the ratio of C / Si is also increased. Polymorphic stability can also be improved.
  • the diameter (D11) of the pores may be 1 ⁇ m to 500 ⁇ m.
  • the thickness may be 10 ⁇ m to 400 ⁇ m, 25 ⁇ m to 300 ⁇ m, 50 ⁇ m to 200 ⁇ m, or 75 ⁇ m to 100 ⁇ m, but is not limited thereto.
  • the specific surface area of the porous body may be 1,000 m 2 / g to 4,000 m 2 / g.
  • the porous body 520 may include an outer circumferential surface 522 and an inner circumferential surface 521.
  • the thickness T1 of the porous body means an average thickness between the outer circumferential surface 522 and the inner circumferential surface 521 of the porous body.
  • the thickness T1 of the porous body may be 5 mm to 20 mm.
  • the thickness may be 7 mm to 20 mm, 7 mm to 18 mm, 10 mm to 18 mm, or 10 mm to 16 mm, but is not limited thereto.
  • the diameter (D1) of the opening may be 15% to 40% of the diameter (a) of the seed crystals.
  • the diameter (D1) of the opening is 15% to 35%, 17% to 35%, 17% to 33%, 20% to 33%, 20% to 30%, of the diameter (a) of the seed crystals, 23% to 30% or 25% to 30%, but is not limited thereto.
  • the diameter of the opening part of the polygonal column shape means a diameter of a circle converted to the same area as the polygon.
  • the reaction vessel 200 includes a blocking unit 600 located on the top of the raw material receiving unit 400 and the top of the porous body 520.
  • the blocking unit 600 is located at the upper end of the raw material accommodating part 400 and the upper end of the porous body 520, the amount of unreacted raw material can be minimized, thereby reducing costs. In addition, unintentional mixing of impurities can be suppressed, and doping control is also easy.
  • 24 shows a block 600 of an SiC single crystal ingot growth apparatus of an embodiment. 24 illustrates a blocking unit 600 having an internal space.
  • the diameter (D1) of the opening portion is greater than or equal to the inner diameter (D2) of the blocking portion.
  • the ratio of the diameter (D1) of the opening portion and the inner diameter (D2) of the blocking portion may be 1: 0.8 to 1: 1.
  • it may be 1: 0.9 or 1: 1, but is not limited thereto.
  • the blocking unit 600 may include one or more selected from the group consisting of graphite, tantalum (Ta), tantalum carbide (TaC), tungsten (W) and tungsten carbide (WC).
  • the thickness T2 of the blocking unit may be 1 mm to 10 mm.
  • the thickness may be 3 mm to 10 mm, 3 mm to 8 mm, or 5 mm to 8 mm, but is not limited thereto.
  • SiC single crystal ingot growth apparatus further comprises a reaction vessel cap 700 located on the top of the reaction vessel 100, the seed crystal 100 is fixed to the bottom of the reaction vessel cap 700 do.
  • the dopant concentration of the SiC single crystal ingot manufactured by the SiC single crystal ingot growth apparatus is 1 ⁇ 10 15 atoms / cc to 5 ⁇ 10 17 atoms / cc.
  • the dopant concentration of the SiC single crystal ingot may be 5 ⁇ 10 15 atoms / cc to 1 ⁇ 10 17 atoms / cc or 1 ⁇ 10 16 atoms / cc to 5 ⁇ 10 16 atoms / cc, but is not limited thereto. no.
  • the carbon-containing polymer resin was mixed with 80% by weight of phenolic resin (product name: KC-5536, manufacturer: Gangnam Chemical), 18% by weight of ethanol solvent (manufacturer: OCI), and 2% by weight of vanadium dopant. After drying at 200 ° C. for 3 hours, it was cured at 400 ° C. for 2 hours. After heat treatment at 500 ° C. and 700 torr, carbonization or graphitization at 2,000 ° C. and 760 torr for 5 hours, followed by grinding, dopant coated with a carbon-based material having an average particle size of 10 ⁇ m. Was prepared.
  • a dopant coated with SiC powder and the carbonaceous material was charged.
  • the crucible was surrounded by a heat insulating member and placed in a reaction chamber equipped with a heating coil. After the inside of the crucible was vacuumed, argon gas was slowly injected. In addition, the temperature in the crucible was heated up to 2,400 degreeC, and it heated up to 700 torr. Then, after gradually lowering the pressure to reach 30 torr, the SiC single crystal ingot was grown to seed crystals for 50 hours under the above conditions, thereby preparing a semi-insulated SiC single crystal ingot.
  • a semi-insulated SiC single crystal ingot was prepared in the same manner as in Example except that a porous graphite container loaded with a dopant was used instead of a dopant coated with a carbon-based material.
  • the concentration of the dopant of the semi-insulated SiC single crystal ingot prepared according to Example 1 is larger than the concentration of the dopant of the semi-insulated SiC single crystal ingot prepared according to Comparative Example 1.
  • FIG. 3 shows a surface image of the semi-insulated SiC single crystal ingot of Example 1
  • FIG. 4 shows the surface image of the semi-insulated SiC single crystal ingot of Comparative Example 1.
  • the concentration of the dopant was uniformly maintained during the growth of the SiC single crystal ingot so that precipitation of the dopant hardly occurred.
  • the semi-insulated SiC single crystal ingot of Comparative Example 1 the dopant was precipitated by the excessive doping in the step of growing the SiC single crystal ingot.
  • the doping concentration change images of the initial, middle and end stages of growing the SiC single crystal ingot in seed crystals were evaluated using substrate processing.
  • FIGS. 8 to 10 show the steps of growing the semi-insulated SiC single crystal ingot of Comparative Example 1 In do, the doping concentration of the initial, middle and late stages are respectively shown.
  • Example 1 The semi-insulated SiC single crystal ingots prepared in Example 1 and Comparative Example 1 were evaluated by visual inspection using UV lamp irradiation.
  • FIG 11 shows a UV image of the semi-insulated SiC single crystal ingot of Example 1
  • Figure 12 shows a UV image of the semi-insulated SiC single crystal ingot of Comparative Example 1.
  • the polymorphism control can be confirmed through the UV images of FIGS. 11 and 12. Specifically, green represents 4H, red represents 6H, and black represents 15R. Therefore, as shown in FIG. 11, the semi-insulated SiC single crystal ingot prepared according to Example 1 had a desired 4H uniformly formed. On the other hand, as shown in Figure 12, the semi-insulated SiC single crystal ingot prepared according to Comparative Example 1 can be seen that the quality of the SiC single crystal ingot is 4H, 6H and 15R partially formed.
  • the carbon-containing polymer resin was mixed with 80% by weight of phenolic resin (product name: KC-5536, manufacturer: Gangnam Chemical), 18% by weight of ethanol solvent (manufacturer: OCI), and 2% by weight of vanadium dopant. After drying at 200 ° C. for 3 hours, it was cured at 400 ° C. for 2 hours. The heat treatment was performed at 500 ° C. and 700 torr, followed by carbonization or graphitization at 2,000 ° C. and 760 torr for 5 hours to solidify the composition.
  • phenolic resin product name: KC-5536, manufacturer: Gangnam Chemical
  • OCI ethanol solvent
  • vanadium dopant vanadium dopant
  • the crucible was surrounded by a heat insulating member and placed in a reaction chamber equipped with a heating coil. After the inside of the crucible was vacuumed, argon gas was slowly injected. In addition, the temperature in the crucible was heated up to 2,400 degreeC, and it heated up to 700 torr. Then, after gradually lowering the pressure to reach 30 torr, the SiC single crystal ingot was grown to seed crystals for 50 hours under the above conditions, thereby preparing a semi-insulated SiC single crystal ingot.
  • a semi-insulated SiC single crystal ingot was prepared in the same manner as in the above example, except that a porous graphite container loaded with a dopant was used instead of the solidified composition.
  • the concentration of the dopant of the semi-insulated SiC single crystal ingot prepared according to Example 2 is larger than the concentration of the dopant of the semi-insulated SiC single crystal ingot prepared according to Comparative Example 2.
  • Residual powder cross-sectional images were visually evaluated for the semi-insulated SiC single crystal ingots prepared in Example 2 and Comparative Example 2.
  • FIG. 14 shows a residual powder cross-sectional image of the semi-insulated SiC single crystal ingot of Example 2
  • FIG. 15 shows a residual powder cross-sectional image of the semi-insulated SiC single crystal ingot of Comparative Example 2.
  • the semi-insulated SiC single crystal ingots prepared in Example 2 and Comparative Example 2 were evaluated by visual inspection using UV lamp irradiation.
  • FIG. 16 is a UV image of the semi-insulated SiC single crystal ingot of Example 2
  • Figure 17 is a UV image of the semi-insulated SiC single crystal ingot of Comparative Example 2.
  • the polymorphism control can be confirmed through the UV images of FIGS. 16 and 17. Specifically, green represents 4H, red represents 6H, and black represents 15R.
  • the semi-insulated SiC single crystal ingot prepared according to Example 2 had a desired 4H uniformly formed.
  • the semi-insulated SiC single crystal ingot prepared according to Comparative Example 2 can be seen that 4H, 6H and 15R is partially formed, the quality of the SiC single crystal ingot is low.
  • FIG. 18 shows the surface image of the semi-insulated SiC single crystal ingot of Example 2
  • FIG. 19 shows the surface image of the semi-insulated SiC single crystal ingot of Comparative Example 2.
  • Example 2 in the growing of the SiC single crystal ingot, the concentration of the dopant was kept uniform so that precipitation of the dopant hardly occurred. On the other hand, as shown in FIG. 19, in Comparative Example 2, the dopant was precipitated due to excessive doping.
  • SiC single crystal ingots were prepared through a SiC single crystal ingot growth apparatus as shown in FIG. 20.
  • the crucible was surrounded by a heat insulating member and placed in a reaction chamber equipped with a heating coil. After the inside of the crucible was vacuumed, argon gas was slowly injected. In addition, the temperature in the crucible was heated up to 2,400 degreeC, and it heated up to 700 torr. Then, after gradually lowering the pressure to reach 30 torr, the SiC single crystal ingot was grown to seed crystals for 50 hours under the above conditions, thereby preparing a SiC single crystal ingot of about 6 inches in diameter.
  • a SiC single crystal ingot was prepared in the same manner as in the above example, except that a conventional SiC single crystal ingot growth apparatus as shown in FIG. 21 was used.
  • Example 3 The SiC single crystal ingots prepared in Example 3 and Comparative Example 3 were evaluated for the presence of UV images and powders by visual inspection using a UV lamp.
  • the polymorphism control can be confirmed through the UV images of FIGS. 25 and 26. Specifically, green represents 4H, red represents 6H, and black represents 15R. Therefore, as shown in FIG. 25, it can be seen that the SiC single crystal ingot prepared according to Example 3 was formed with the desired 4H uniformly. On the other hand, as shown in Figure 26, the SiC single crystal ingot prepared according to Comparative Example 3 4H, 6H and 15R can be seen that the quality of the SiC single crystal ingot is partially formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

구현예는 반절연 SiC 단결정 잉곳을 성장시키는 방법으로서, (1) 종자정이 장착된 반응 용기에 SiC(탄화규소) 및 탄소계 물질로 코팅된 도펀트를 장입하는 단계; 및 (2) 상기 종자정에 SiC 단결정 잉곳을 성장시키는 단계를 포함하고, 이로써 SiC 단결정 잉곳의 두께별 도핑 농도가 균일한 고품질의 반절연 SiC 단결정 잉곳을 얻을 수 있다. 또한, 구현예는 반절연 SiC 단결정 잉곳을 성장시키는 방법으로서, (a) 반응 용기에 탄소-함유 고분자 수지, 용매, 도펀트 및 SiC(탄화규소)를 포함하는 조성물을 장입하는 단계; (b) 상기 조성물을 고형화하는 단계; 및 (c) 상기 반응 용기에 장착된 종자정에 SiC 단결정 잉곳을 성장시키는 단계를 포함하고, 이로써 SiC 단결정 잉곳의 두께별 도핑 농도가 균일한 고품질의 반절연 SiC 단결정 잉곳을 얻을 수 있다. 또한, 구현예는 SiC 조성물을 탄화 또는 흑연화하는 과정을 거쳐 제조된 다공체를 포함함으로써, SiC 단결정 잉곳의 직경이 큰 경우에도 두께별 도핑 농도가 균일한 고품질의 SiC 단결정 잉곳을 제조할 수 있는 SiC 단결정 잉곳 성장 장치에 관한 것이다.

Description

반절연 탄화규소 단결정 잉곳을 성장시키는 방법 및 탄화규소 단결정 잉곳 성장 장치
구현예는 탄소계 물질로 코팅된 도펀트를 이용하여 반절연 SiC 단결정 잉곳을 성장시키는 방법 또는 탄소-함유 고분자 수지, 용매, 도펀트 및 SiC를 포함하는 조성물을 고형화하여 반절연 SiC 단결정 잉곳을 성장시키는 방법에 관한 것이다.
또한, 구현예는 SiC 조성물을 탄화 또는 흑연화하는 과정을 거쳐 제조된 다공체를 포함하는 SiC 단결정 잉곳 성장 장치에 관한 것이다.
탄화규소(SiC)는 내열성과 기계적 강도가 우수하고 방사선에 강한 성질을 지니며, 대구경의 기판으로도 생산 가능한 장점이 있어, 차세대 전력반도체 소자용 기판으로 활발한 연구가 이루어지고 있다. 특히, 단결정 탄화규소(single crystal SiC)는, 에너지 밴드갭(energy band gap)이 크고, 최대 절연파괴전계(break field voltage) 및 열전도율(thermal conductivity)이 실리콘(Si)보다 우수하다. 또한, 단결정 탄화규소의 캐리어 이동도는 실리콘에 비견되며, 전자의 포화 드리프트 속도 및 내압도 크다. 따라서, 단결정 탄화수소는 고전력, 고효율화, 고내압화 및 대용량화가 요구되는 반도체 디바이스로의 적용이 기대된다.
최근, 고주파 반도체 디바이스용 재료로서 질화갈륨(GaN) 및 질화알루미늄(AlN)이 주목 받고 있다. 이러한 고주파 반도체 디바이스용 기판에 있어서, SiC 기판 결정의 품질 향상과 함께 소자와의 통전현상을 방지하기 위해 기판의 고 저항화(1 X 105 Ω㎝ 이상) 즉, 반절연 상태를 만들어 주는 것은 필수불가결한 요소이다.
종래에는 반절연 SiC 단결정 잉곳을 제작하기 위하여, 도펀트를 SiC와 혼합 및 합성하여 사용하는 방법을 사용해왔다. 그러나, 상기 도펀트와 SiC의 승화온도가 다르므로, 도펀트가 먼저 승화된다. 예를 들어, 바나듐 도펀트의 승화온도는 약 1,910℃이고, SiC의 승화온도는 약 2,700℃이므로, 바나듐이 먼저 승화된다. 따라서, 잉곳 두께에 따른 도핑 농도가 달라지므로, 잉곳 두께에 따라 비저항(resistivity)의 차이가 발생하는 문제점이 있다. 구체적으로, SiC 단결정 잉곳 성장 초기에는 과잉 도핑이 이루어지고, SiC 단결정 잉곳 성장 말기에는 도핑이 덜 이루어짐으로써 SiC 단결정 잉곳의 두께별 도핑 농도가 달라지는 것이다.
또한, SiC 단결정 잉곳의 성장 과정에서, SiC가 열진동으로 인하여 종자정 쪽으로 튀어서 붙거나 SiC Flux 패턴의 형성을 방해할 수 있다. 따라서, 반절연 SiC 단결정 잉곳의 성장이 저해되어 품질이 저하될 수 있다.
상기와 같은 문제점을 해결하고자, 다공성 흑연 컨테이너에 도펀트를 장입하여 사용하거나, 합성을 통해 SiC 분말에 도펀트를 내포시키는 방법을 사용해왔다. 그러나, 이는 공정이 복잡하고, 비용이 상승하는 단점이 있다. 또한, 다공성 흑연 컨테이너에서 발생하는 불순물로 인해 도핑 농도의 제어가 어려우므로, 반절연 SiC 단결정 잉곳의 품질을 향상시키기 어렵다. 또한, 상기와 같은 문제점을 해결하고자, SiC 및 도펀트를 분쇄하거나 입도가 큰 것을 사용하기도 했으나, 이는 별도의 분말 열처리 공정이 필요하다는 단점이 있다.
또한, 최근에는 SiC 단결정 잉곳의 대구경화에 따라 SiC 단결정 잉곳을 성장시키는 반응 용기의 크기도 이에 비례하여 커지고 있다. 그러나, 반응 용기의 크기가 커지게 되면, SiC 단결정 잉곳을 성장시키기 위한 온도까지 가열하는데 많은 에너지가 필요하게 되는 것은 물론, 반응 용기의 중심부까지의 온도 구배가 불균일하게 형성되는 단점이 있다. 이에, 잉곳의 끝(edge) 부분과 중앙(center) 부분의 높은 온도차로 인하여 원료의 공급이 불균일하게 되고, 잉곳의 중앙 부분이 볼록해진 형태가 되거나 잉곳의 끝 부분이 손실되는 등 잉곳의 품질이 저하될 수 있다.
따라서, SiC 단결정 잉곳의 품질을 저하시키지 않으면서, 반절연 상태를 만들어주는 반절연 SiC 단결정 잉곳을 성장시키는 방법 및 SiC 단결정 잉곳 성장 장치에 대한 연구가 계속되고 있다.
구현예는 탄소계 물질로 코팅된 도펀트를 이용하여 반절연 SiC 단결정 잉곳을 성장시킴으로써, SiC 단결정 잉곳의 두께별 도핑 농도가 균일한 고품질의 반절연 SiC 단결정 잉곳을 제공하고자 한다.
다른 구현예는 탄소-함유 고분자 수지, 용매, 도펀트 및 SiC를 포함하는 조성물을 고형화한 후, 반절연 SiC 단결정 잉곳을 성장시킴으로써, SiC 단결정 잉곳의 두께별 도핑 농도가 균일한 고품질의 반절연 SiC 단결정 잉곳을 제공하고자 한다.
또 다른 구현예는 SiC 조성물을 탄화 또는 흑연화하는 과정을 거쳐 제조된 다공체를 포함함으로써, SiC 단결정 잉곳의 직경이 큰 경우에도 두께별 도핑 농도가 균일한 고품질의 SiC 단결정 잉곳을 제조할 수 있는 SiC 단결정 잉곳 성장 장치를 제공하고자 한다.
일 구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 방법은 (1) 종자정이 장착된 반응 용기에 SiC(탄화규소) 및 탄소계 물질로 코팅된 도펀트를 장입하는 단계; 및 (2) 상기 종자정에 SiC 단결정 잉곳을 성장시키는 단계를 포함한다.
다른 구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 방법은 (a) 반응 용기에 탄소-함유 고분자 수지, 용매, 도펀트 및 SiC(탄화규소)를 포함하는 조성물을 장입하는 단계; (b) 상기 조성물을 고형화하는 단계; 및 (c) 상기 반응 용기에 장착된 종자정에 SiC 단결정 잉곳을 성장시키는 단계를 포함한다.
또 다른 구현예에 따른 SiC 단결정 잉곳 성장 장치는 소정의 직경을 갖는 종자정; 및 상기 종자정이 내부에 고정된 상태에서 상기 종자정의 표면에 잉곳을 성장시키는 반응 용기;를 포함하고, 상기 반응 용기는, 상기 반응 용기 상부의 적어도 일부를 형성하고, 상단에 상기 종자정이 고정되는 잉곳 성장부; 내부 중앙을 형성하는 열림부 및 상기 열림부를 감싸는 다공체를 포함하고, 상기 종자정 하부에 위치하면서 상기 반응 용기 하부의 적어도 일부를 형성하는 필터부; 상기 다공체와 상기 반응 용기 내벽 사이에 위치하면서 상기 반응 용기 하부의 적어도 일부를 형성하고, 내부에 상기 잉곳의 원료가 수용되는 원료 수용부; 및 상기 원료 수용부의 상단 및 상기 다공체의 상단에 위치한 차단부;를 포함한다.
구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 방법에 따르면, 도펀트가 SiC 보다 먼저 승화되는 현상을 방지하고, SiC 단결정 잉곳의 두께별 도핑 농도의 불균일성을 최소화하여 반절연 SiC 단결정 잉곳의 품질을 향상시킬 수 있다.
또한, 구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 방법에 따르면, 단순한 공정을 통해 반절연 SiC 단결정 잉곳을 성장시킬 수 있음은 물론, 미반응 원료의 양을 최소화할 수 있으므로, 비용 절감의 효과가 있다.
또한, 구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 방법에 따르면, 의도치 않은 불순물의 혼입을 억제할 수 있으며, 도핑 제어가 용이하다.
또한, 구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 방법에 따르면, 도펀트의 함량을 조절하기 용이하고, 일부 영역에 뭉침 현상이 발생하는 것을 방지할 수 있다.
구현예에 따른 SiC 단결정 잉곳 성장 장치는 미반응 원료의 양을 최소화할 수 있으므로, 비용 절감의 효과가 있다.
또한, 구현예에 따른 SiC 단결정 잉곳 성장 장치는 도펀트가 SiC에 비하여 먼저 승화되는 현상을 방지하고, 잉곳 성장부의 온도 구배의 불균일성을 최소화하여, 형상, 성장률 및 품질이 향상된 SiC 단결정 잉곳을 제조할 수 있다.
또한, 구현예에 따른 SiC 단결정 잉곳 성장 장치는 의도치 않은 불순물의 혼입을 억제할 수 있으며, 도핑 제어가 용이하다.
나아가, 구현예에 따른 SiC 단결정 잉곳 성장 장치는 대구경의 SiC 단결정 잉곳을 제조하는데에도 적합하다.
도 1은 일 구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 반응 용기의 단면도를 나타낸 것이다.
도 2는 종래의 반절연 SiC 단결정 잉곳의 성장시키는 반응 용기의 단면도를 나타낸 것이다.
도 3은 실시예 1의 반절연 SiC 단결정 잉곳의 표면 이미지를 나타낸 것이다.
도 4는 비교예 1의 반절연 SiC 단결정 잉곳의 표면 이미지를 나타낸 것이다.
도 5는 실시예 1의 반절연 SiC 단결정 잉곳을 성장시키는 단계에서 초기의 도핑 농도를 나타낸 것이다.
도 6은 실시예 1의 반절연 SiC 단결정 잉곳을 성장시키는 단계에서 중기의 도핑 농도를 나타낸 것이다.
도 7은 실시예 1의 반절연 SiC 단결정 잉곳을 성장시키는 단계에서 말기의 도핑 농도를 나타낸 것이다.
도 8은 비교예 1의 반절연 SiC 단결정 잉곳을 성장시키는 단계에서 초기의 도핑 농도를 나타낸 것이다.
도 9는 비교예 1의 반절연 SiC 단결정 잉곳을 성장시키는 단계에서 중기의 도핑 농도를 나타낸 것이다.
도 10은 비교예 1의 반절연 SiC 단결정 잉곳을 성장시키는 단계에서 말기의 도핑 농도를 나타낸 것이다.
도 11은 실시예 1의 반절연 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이다.
도 12는 비교예 1의 반절연 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이다.
도 13은 다른 구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 반응 용기의 단면도를 나타낸 것이다.
도 14는 실시예 2의 반절연 SiC 단결정 잉곳의 잔류 분말 단면 이미지를 나타낸 것이다.
도 15는 비교예2의 반절연 SiC 단결정 잉곳의 잔류 분말 단면 이미지를 나타낸 것이다.
도 16은 실시예 2의 반절연 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이다.
도 17은 비교예 2의 반절연 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이다.
도 18은 실시예 2의 반절연 SiC 단결정 잉곳의 표면 이미지를 나타낸 것이다.
도 19는 비교예 2의 반절연 SiC 단결정 잉곳의 표면 이미지를 나타낸 것이다.
도 20은 구현예의 SiC 단결정 잉곳 성장 장치의 단면도를 나타낸 것이다.
도 21은 종래의 SiC 단결정 잉곳 성장 장치의 단면도를 나타낸 것이다.
도 22는 구현예의 SiC 단결정 잉곳 성장 장치의 필터부를 나타낸 것이다.
도 23은 다른 구현예의 SiC 단결정 잉곳 성장 장치의 필터부를 나타낸 것이다.
도 24는 구현예의 SiC 단결정 잉곳 성장 장치의 차단부를 나타낸 것이다.
도 25는 실시예 3의 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이다.
도 26은 비교예 3의 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이다.
<부호의 설명>
10: SiC
20, 100, 100': 종자정
30: 탄소계 물질로 코팅된 도펀트
40: 도펀트
50: 다공성 흑연 컨테이너
60: 고형화된 조성물
70: 다공성 흑연 컨테이너가 있던 위치
200, 200': 반응 용기
300, 300': 잉곳 성장부
400, 400': 원료 수용부
500: 필터부
510: 열림부 520: 다공체
521: 다공체 내주면 522: 다공체 외주면
523: 기공 524: 유로
525: 기공벽
600: 차단부
700, 700': 반응 용기 캡
800': 도펀트가 장입된 다공성 흑연 컨테이너
a: 종자정의 직경
D1: 열림부의 직경 D2: 차단부의 내부 직경
D11: 기공의 직경
T1: 다공체의 두께 T2: 차단부의 두께
이하, 구현예를 통해 발명을 상세하게 설명한다. 구현예는 이하에서 개시된 내용에 한정되는 것이 아니라 발명의 요지가 변경되지 않는 한, 다양한 형태로 변형될 수 있다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 기재된 구성성분의 양, 반응 조건 등을 나타내는 모든 숫자 및 표현은 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로써 수식되는 것으로 이해하여야 한다.
반절연 탄화규소 단결정 잉곳을 성장시키는 방법(1)
종래에는 SiC 단결정 잉곳을 성장시키기 위하여, 다공성 흑연 컨테이너에 도펀트를 장입하여 사용하거나, 합성을 통해 SiC에 도펀트를 내포시키는 방법을 사용해왔다. 도 2는 종래의 반절연 SiC 단결정 잉곳의 성장시키는 반응 용기의 단면도를 나타낸 것이다. 도 2에는 내부 상단에 종자정(20)이 장착되고, SiC(10) 및 도펀트(40)가 장입된 다공성 흑연 컨테이너(50)가 내부 하단에 장입된 반응 용기의 구조가 예시되어 있다.
그러나, 종래 방법에 따르면, 공정이 복잡하고, 비용이 상승하는 단점이 있다. 또한, 다공성 흑연 컨테이너에서 발생하는 불순물로 인해 도핑 농도의 제어가 어려우므로, 반절연 SiC 단결정 잉곳의 품질을 향상시키기 어렵다.
일 구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 방법은 탄소계 물질로 코팅된 도펀트를 이용하여 SiC 단결정 잉곳을 성장시킴으로써, 도펀트가 SiC에 비하여 먼저 승화되는 현상을 방지할 수 있다. 따라서, SiC 단결정 잉곳의 두께별 도핑 농도의 불균일성을 최소화함으로써, 반절연 SiC 단결정 잉곳의 품질을 향상시킬 수 있다.
또한, 탄소계 물질로 코팅된 도펀트를 이용하는 단순한 공정을 통해 반절연 SiC 단결정 잉곳을 성장시킬 수 있음은 물론, 미반응 원료의 양을 최소화할 수 있으므로, 비용 절감의 효과가 있다.
나아가, 탄소계 물질로 코팅된 도펀트를 사용하여 원료 공급도 균일하게 이루어지게 되므로, SiC 단결정 잉곳의 성장률 및 품질 향상은 물론, 다형제어에도 유리하다. 즉, 4H-SiC를 사용하는 경우, 3C, 6H 및 15R 등의 성장률을 낮추고 4H의 성장률을 높일 수 있다.
따라서, 일 구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 방법은 반절연 상태를 만들어주면서, SiC 단결정 잉곳의 품질이 향상된 반절연 SiC 단결정 잉곳을 제공할 수 있다.
도 1은 구현예의 반절연 SiC 단결정 잉곳을 성장시키는 반응 용기의 단면도를 나타낸 것이다. 도 1에는 내부 상단에 종자정(20)이 장착되고, 내부 하단에 SiC(10) 및 탄소계 물질로 코팅된 도펀트(30)가 장입된 반응 용기의 구조가 예시되어 있다.
일 구현예에 따른 반절연 SiC 단결정 잉곳을 성장시키는 방법은 (1) 종자정이 장착된 반응 용기에 SiC(탄화규소) 및 탄소계 물질로 코팅된 도펀트를 장입하는 단계; 및 (2) 상기 종자정에 SiC 단결정 잉곳을 성장시키는 단계를 포함한다.
먼저, SiC 단결정 잉곳을 성장시키기 위하여, 종자정이 장착된 반응 용기에 SiC 및 탄소계 물질로 코팅된 도펀트를 장입한다(단계 (1)).
상기 반응 용기는 도가니일 수 있고, SiC의 승화 온도 이상의 융점을 갖는 물질로 제작될 수 있다. 예를 들어, 그라파이트로 제작될 수 있으나 이에 한정되는 것은 아니다.
상기 종자정은 상기 반응 용기의 내부 상단에 장착될 수 있다. 상기 종자정은 4H-SiC, 6H-SiC, 3C-SiC 또는 15R-SiC 등 성장시키고자 하는 결정의 종류에 따라 다양한 결정구조를 갖는 종자정을 사용할 수 있다.
상기 SiC 및 탄소계 물질로 코팅된 도펀트는 상기 반응 용기의 하단에 장입될 수 있다.
일 구현예에 따르면, 상기 SiC 및 탄소계 물질로 코팅된 도펀트가 장입된 반응 용기는 밀폐될 수 있다. 상기 반응 용기를 1층 이상의 단열 부재로 둘러싼 후, 가열 수단을 구비한 반응 챔버(ex. 석영관 등)에 넣는다. 상기 단열 부재 및 반응 챔버는 상기 반응 용기의 온도를 SiC 단결정 성장 온도로 유지하도록 한다.
상기 가열 수단은 유도가열 또는 저항가열 수단일 수 있다. 예를 들어, 고주파 유도 코일에 고주파 전류를 흐르게 함으로써, 반응 용기를 가열하여 SiC 및 탄소계 물질로 코팅된 도펀트를 원하는 온도로 가열하는 고주파 유도 코일이 사용될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 SiC는 SiC 분말 형태일 수 있다. 예를 들어, 상기 SiC는 입자의 크기가 10 ㎛ 내지 5,000 ㎛인 SiC 분말 형태일 수 있다. 구체적으로, 상기 SiC 입자의 크기는 50 ㎛ 내지 3,000 ㎛, 50 ㎛ 내지 2,000 ㎛, 100 ㎛ 내지 2,000 ㎛ 또는 100 ㎛ 내지 1,000 ㎛일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에서, 상기 SiC는 90 중량% 내지 99 중량%의 순도를 가질 수 있다. 구체적으로, 상기 SiC는 91 중량% 내지 96 중량% 또는 92 중량% 내지 95 중량%의 순도를 가질 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 탄소계 물질은 카본 블랙, 그라파이트 또는 이들의 조합일 수 있다.
상기 탄소계 물질로 코팅된 도펀트는 탄소-함유 고분자 수지, 용매 및 도펀트를 포함하는 조성물을 건조; 경화; 탄화(carbonization) 또는 흑연화(graphitization); 및 분쇄의 과정을 거쳐 제조된다.
일 구현예에 따르면, 상기 탄소-함유 고분자 수지는 페놀계 수지, 폴리아크릴아마이드계 수지 및 열경화성 수지로 이루어진 군으로부터 선택되는 1종 이상을 포함한다.
상기 페놀계 수지는 노볼락 수지 및 레졸 수지로 이루어진 군에서 선택되는 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아크릴아마이드계 수지는 폴리아믹산 수지일 수 있으나, 이에 한정되는 것은 아니다.
상기 열경화성 수지는 폴리우레탄 수지, 멜라민 수지 및 알키드 수지로 이루어진 군에서 선택되는 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 조성물은 상기 조성물의 총 중량을 기준으로, 1 중량% 내지 40 중량%의 탄소-함유 고분자 수지를 포함할 수 있다. 예를 들어, 상기 조성물은 상기 조성물의 총 중량을 기준으로, 5 중량% 내지 35 중량%, 5 중량 % 내지 30 중량% 또는 10 중량% 내지 30 중량%의 탄소-함유 고분자 수지를 포함할 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 용매는 에탄올, 메탄올, 아세톤, 디메틸포름아미드 및 디메틸술폭시드로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 구체적으로, 상기 용매는 에탄올일 수 있으나, 이에 한정되는 것은 아니다.
상기 조성물은 상기 조성물의 총 중량을 기준으로, 1 중량% 내지 20 중량%의 용매를 포함할 수 있다. 예를 들어, 상기 조성물은 상기 조성물의 총 중량을 기준으로, 5 중량% 내지 17 중량%, 5 중량% 내지 15 중량% 또는 10 중량% 내지 15 중량%의 용매를 포함할 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 도펀트는 바나듐(V), 크롬(Cr), 망간(Mn) 및 코발트(Co)로 이루어진 군에서 선택되는 1종 이상일 수 있다. 예를 들어, 상기 도펀트는 전이 금속(transition elements, transition metal)일 수 있으며, 바나듐일 수 있다. 구체적으로, 바나듐은 SiC 결정내에서 도너(donor) 혹은 억셉터(acceptor)의 어느 상태에서도 깊은 준위를 형성할 수 있고, 얕은 도너 또는 얕은 억셉터 불순물을 보상하여, 결정을 고 저항화 즉, 반절연 상태로 만들 수 있다.
상기 조성물은 상기 조성물의 총 중량을 기준으로, 0.5 중량% 내지 10 중량%의 도펀트를 포함할 수 있다. 예를 들어, 상기 조성물은 상기 조성물의 총 중량을 기준으로, 0.5 중량% 내지 8 중량%, 1 중량% 내지 8 중량% 또는 1 중량% 내지 5 중량%의 도펀트를 포함할 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 건조는 50℃ 내지 350℃의 온도 범위에서 수행될 수 있다. 또한, 상기 경화는 100℃ 내지 400℃의 온도 범위에서 수행될 수 있다. 구체적으로, 상기 건조 및 경화 조건을 만족함으로써, 상기 탄소계 물질을 상기 도펀트에 균일하게 코팅하는데 유리할 수 있다. 예를 들어, 상기 건조는 50℃ 내지 350℃ 또는 50℃ 내지 300℃의 온도 범위에서 1 시간 내지 5 시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 경화는 100℃ 내지 400℃ 또는 150℃ 내지 400℃의 온도 범위에서 1 시간 내지 10 시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 탄화 또는 흑연화는 200℃ 내지 2,200℃의 온도 범위 및 1 torr 내지 1500 torr의 압력 조건에서 수행된다. 구체적으로, 상기 탄화 또는 흑연화 조건을 만족함으로써, 탄소계 물질로 도펀트를 코팅하기에 용이하다. 예를 들어, 상기 건조 및 경화 단계를 거친 도펀트는 300℃ 내지 600℃의 온도 범위 및 500 torr 내지 700 torr의 압력 조건에서 열처리를 진행한 후, 2,000℃ 내지 2,200℃의 온도 범위 및 500 torr 내지 800 torr의 압력 조건에서 탄화 또는 흑연화 될 수 있다. 또한, 상기 탄화 또는 흑연화는 2 시간 내지 5 시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 탄화 또는 흑연화는 불활성 분위기에서 열처리하는 것을 의미한다. 상기 불활성 분위기는 질소 분위기 또는 아르곤 분위기일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 탄화 또는 흑연화된 도펀트는 분쇄의 과정을 수행한다.
상기 분쇄는 탑다운(Top-Down), 볼밀 및 제트밀 등에 의한 분쇄 공정의 방법으로 수행될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 탄소계 물질로 코팅된 도펀트의 입자의 크기는 1 ㎛ 내지 2,000 ㎛일 수 있다. 예를 들어, 상기 탄소계 물질로 코팅된 도펀트의 입자의 크기는 5 ㎛ 내지 1,000 ㎛, 10 ㎛ 내지 1,000 ㎛ 또는 10 ㎛ 내지 500 ㎛일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 도펀트의 입자는 각각 외부 표면의 전부 또는 일부가 상기 탄소계 물질로 코팅될 수 있다. 구체적으로, 상기 도펀트는 외부 표면의 전부가 상기 탄소계 물질로 코팅되거나, 외부 표면의 50% 이상이 상기 탄소계 물질로 코팅될 수 있다.
일 구현예에 따르면, 상기 탄소계 물질로 코팅된 부분의 코팅 두께는 1 ㎛ 내지 100 ㎛이다. 구체적으로, 상기 탄소계 물질로 코팅된 부분의 코팅 두께가 상기 두께 범위를 만족함으로써, SiC 단결정 잉곳을 성장시키는 단계에서 초기, 중기 및 말기의 도펀트의 도핑 농도를 균일하게 할 수 있다. 예를 들어, 탄소계 물질로 코팅된 부분의 코팅 두께는 5 ㎛ 내지 50 ㎛, 5 ㎛ 내지 40 ㎛, 10 ㎛ 내지 40 ㎛, 10 ㎛ 내지 30 ㎛ 또는 10 ㎛ 내지 25 ㎛일 수 있으나, 이에 한정되는 것은 아니다.
다음으로, 상기 종자정에 SiC 단결정 잉곳을 성장시킨다(단계 (2)).
일 구현예에 따르면, 상기 단계 (2)의 상기 종자정에 SiC 단결정 잉곳을 성장시키는 단계는, 상기 단계 (1)에서 장입된 SiC 및 탄소계 물질로 코팅된 도펀트를 승화시켜 종자정 상에 성장시키는 단계이다.
상기 SiC의 승화점은 2,000℃ 내지 2,800℃ 이다. 또한, 상기 도펀트의 승화점은 1,800℃ 내지 2,000℃ 이고, 상기 탄소계 물질로 코팅된 도펀트의 승화점은 2,000℃ 내지 2,500℃이다. 구체적으로, 상기 탄소계 물질로 코팅된 도펀트의 승화점이 상기 범위를 만족함으로써, SiC와 유사한 온도 범위 내에서 도펀트를 승화시킬 수 있다. 예를 들어, 상기 탄소계 물질로 코팅된 도펀트의 승화점은 2,100℃ 내지 2,500℃ 또는 2,100℃ 내지 2,300℃일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 단계 (2) 에서의 온도는 2,000℃ 내지 2,500℃, 2,200℃ 내지 2,500℃ 또는 2,250℃ 내지 2,300℃일 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 단계 (2) 에서의 압력은 1 torr 내지 150 torr, 1 torr 내지 100 torr, 또는 1 torr 내지 50 torr일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 SiC 단결정 잉곳은 0.1 Ω㎝ 내지 1 X 1010 Ω㎝의 비저항을 가질 수 있다. 예를 들어, 상기 SiC 단결정 잉곳은 0.1 Ω㎝ 내지 1 X 105 Ω㎝, 1 Ω㎝ 내지 1 X 108 Ω㎝ 또는 10 Ω㎝ 내지 1 X 105 Ω㎝의 비저항을 가질 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 SiC 단결정 잉곳의 도펀트 농도는 5.5 X 1016 atoms/cc 내지 1 X 1018 atoms/cc 이다. 구체적으로, 상기 SiC 단결정 잉곳의 도펀트 농도는 5.5 X 1016 atoms/cc 내지 1.5 X 1017 atoms/cc 또는 1 X 1017 atoms/cc 내지 5 X 1017 atoms/cc 일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 SiC 단결정 잉곳은 95% 내지 99.9%의 순도를 갖는다. 예를 들어, 상기 SiC 단결정 잉곳은 95% 내지 99.5%, 97% 내지 99.5%, 98% 내지 99.5%, 98% 내지 99%의 순도를 가질 수 있으나, 이에 한정되는 것은 아니다.
반절연 탄화규소 단결정 잉곳을 성장시키는 방법(2)
종래에는 SiC 단결정 잉곳을 성장시키기 위하여, 다공성 흑연 컨테이너에 도펀트를 장입하여 사용하거나, 합성을 통해 SiC에 도펀트를 내포시키는 방법을 사용해왔다. 도 2는 종래의 반절연 SiC 단결정 잉곳의 성장시키는 반응 용기의 단면도를 나타낸 것이다. 도 2에는 내부 상단에 종자정(20)이 장착되고, SiC(10) 및 도펀트(40)가 장입된 다공성 흑연 컨테이너(50)가 내부 하단에 장입된 반응 용기의 구조가 예시되어 있다.
그러나, 종래 방법에 따르면, 공정이 복잡하고, 비용이 상승하는 단점이 있으며, 다공성 흑연 컨테이너에서 발생하는 불순물로 인해 도핑 농도의 제어가 어려우므로 반절연 SiC 단결정 잉곳의 품질을 향상시키기 어렵다. 또한, 상기와 같은 문제점을 해결하고자, SiC 및 도펀트를 분쇄하거나 입도가 큰 것을 사용하기도 했으나, 이는 별도의 분말 열처리 공정이 필요하다는 단점이 있다.
일 구현예에 따른 반절연 SiC 단결정 잉곳의 성장 방법은 탄소-함유 고분자 수지, 용매, 도펀트 및 SiC를 포함하는 조성물을 고형화한 후, SiC 단결정 잉곳을 성장시킴으로써, 도펀트가 SiC에 비하여 먼저 승화되는 현상을 방지할 수 있다. 따라서, SiC 단결정 잉곳의 두께별 도핑 농도의 불균일성을 최소화함으로써, 반절연 SiC 단결정 잉곳의 품질을 향상시킬 수 있다.
또한, 일 구현예에 따른 반절연 SiC 단결정 잉곳의 성장 방법은 의도치 않은 불순물의 혼입을 억제할 수 있고, 도핑 제어가 용이할 뿐만 아니라, 도펀트의 함량을 조절하기 용이하고, 일부 영역에 뭉침 현상이 발생하는 것을 방지할 수 있다.
따라서, 일 구현예에 따른 반절연 SiC 단결정 잉곳의 성장 방법은 반절연 상태를 만들어주면서, SiC 단결정 잉곳의 품질도 향상된 반절연 SiC 단결정 잉곳을 제공할 수 있다.
나아가, 균일한 원료 공급을 통하여, SiC 단결정 잉곳의 성장률 및 품질 향상은 물론, 다형 제어에도 유리하다. 즉, 4H-SiC를 사용하는 경우, 3C, 6H 및 15R 등의 성장률을 낮추고 4H의 성장률을 높일 수 있다.
도 13은 구현예의 반절연 SiC 단결정 잉곳을 성장시키는 반응 용기의 단면도를 나타낸 것이다. 도 13에는 내부 상단에 종자정(20)이 장착되고, 내부 하단에 고형화된 조성물(60)이 장입된 반응 용기의 구조가 예시되어 있다.
일 구현예에 따른 SiC 단결정 잉곳을 성장 방법은 (a) 반응 용기에 탄소-함유 고분자 수지, 용매, 도펀트 및 SiC(탄화규소)를 포함하는 조성물을 장입하는 단계; (b) 상기 조성물을 고형화하는 단계; 및 (c) 상기 반응 용기에 장착된 종자정에 SiC 단결정 잉곳을 성장시키는 단계를 포함한다.
먼저, SiC 단결정 잉곳을 성장시키기 위하여, 반응 용기에 탄소-함유 고분자 수지, 용매, 도펀트 및 SiC(탄화규소)를 포함하는 조성물을 장입한다(단계 (a)).
상기 반응 용기는 도가니일 수 있고, SiC의 승화 온도 이상의 융점을 갖는 물질로 제작될 수 있다. 예를 들어, 그라파이트로 제작될 수 있으나 이에 한정되는 것은 아니다.
상기 조성물은 상기 반응 용기의 하단에 장입될 수 있다.
일 구현예에 따르면, 상기 조성물이 장입된 반응 용기는 밀폐될 수 있다. 상기 반응 용기를 1층 이상의 단열 부재로 둘러싼 후, 가열 수단을 구비한 반응 챔버(ex. 석영관 등)에 넣는다. 상기 단열 부재 및 반응 챔버는 상기 반응 용기의 온도를 SiC 단결정 성장 온도로 유지하도록 한다.
상기 가열 수단은 유도가열 또는 저항가열 수단일 수 있다. 예를 들어, 고주파 유도 코일에 고주파 전류를 흐르게 함으로써, 반응 용기를 가열하여 상기 조성물을 원하는 온도로 가열하는 고주파 유도 코일이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 탄소-함유 고분자 수지에 대한 내용은 상기 단계 (1)에서 전술한 바와 동일하다.
상기 조성물은 상기 조성물의 총 중량을 기준으로, 1 중량% 내지 40 중량%의 탄소-함유 고분자 수지를 포함할 수 있다. 예를 들어, 상기 조성물은 상기 조성물의 총 중량을 기준으로, 5 중량% 내지 35 중량%, 5 중량 % 내지 30 중량% 또는 10 중량% 내지 30 중량%의 탄소-함유 고분자 수지를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 용매에 대한 내용은 상기 단계 (1)에서 전술한 바와 동일하다.
일 구현예에 따르면, 상기 도펀트는 바나듐(V), 크롬(Cr), 망간(Mn) 및 코발트(Co)로 이루어진 군에서 선택되는 1종 이상일 수 있다. 예를 들어, 상기 도펀트는 전이 금속일 수 있으며, 바나듐일 수 있다. 구체적으로, 바나듐은 SiC 결정내에서 도너(donor) 혹은 억셉터(acceptor)의 어느 상태에서도 깊은 준위를 형성할 수 있고, 얕은 도너 또는 얕은 억셉터 불순물을 보상하여, 결정을 고 저항화 즉, 반절연 상태로 만들 수 있다.
상기 조성물은 상기 조성물의 총 중량을 기준으로, 1 중량% 내지 20 중량%의 도펀트를 포함할 수 있다. 예를 들어, 상기 조성물은 상기 조성물의 총 중량을 기준으로, 5 중량% 내지 17 중량%, 5 중량% 내지 15 중량%, 10 중량% 내지 15 중량%의 도펀트를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 SiC에 대한 내용은 상기 단계 (1)에서 전술한 바와 동일하다.
다음으로, SiC 단결정 잉곳을 성장시키기 위하여, 상기 조성물을 고형화한다(단계 (b)).
구체적으로, 상기 단계 (b)의 고형화는 상기 조성물을 건조; 경화; 및 탄화(carbonization) 또는 흑연화(graphitization);의 과정을 거친다.
일 구현예에 따르면, 상기 건조는 50℃ 내지 350℃의 온도 범위에서 수행될 수 있다. 또한, 상기 경화는 100℃ 내지 400℃의 온도 범위에서 수행될 수 있다. 구체적으로, 상기 건조 및 경화 조건을 만족함으로써, 조성물의 탄화 또는 흑연화에 유리할 수 있다. 예를 들어, 상기 건조는 50℃ 내지 350℃ 또는 50℃ 내지 300℃의 온도 범위에서 1 시간 내지 5 시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 경화는 100℃ 내지 400℃ 또는 150℃ 내지 400℃의 온도 범위에서 1 시간 내지 10 시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 탄화 또는 흑연화는 200℃ 내지 2,200℃의 온도 범위 및 1 torr 내지 1,500 torr의 압력 조건에서 수행된다. 구체적으로, 상기 온도 및 압력 조건을 만족함으로써, 상기 조성물의 탄화 또는 흑연화에 유리할 수 있다. 예를 들어, 상기 건조 및 경화단계를 거친 도펀트는 300℃ 내지 600℃의 온도 범위 및 500 torr 내지 700 torr의 압력 조건에서 열처리를 진행한 후, 2,000℃ 내지 2,200℃의 온도 범위 및 500 torr 내지 800 torr의 압력 조건에서 탄화 또는 흑연화 될 수 있다. 또한, 상기 탄화 또는 흑연화는 2 시간 내지 5 시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 탄화 또는 흑연화는 불활성 분위기에서 열처리하는 것을 의미한다. 상기 불활성 분위기는 질소 분위기 또는 아르곤 분위기일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 단계 (b)를 거친 조성물은 상기 반응 용기의 내부 바닥면 전체 및 내부 벽면의 일부를 채우는 고형체이다. 이 경우, SiC 단결정 잉곳의 성장 과정에서, SiC가 열진동으로 인하여 종자정 쪽으로 튀어서 붙거나 SiC Flux 패턴의 형성을 방해하는 것을 방지할 수 있다. 또한, 의도치 않은 불순물의 혼입을 억제할 수 있으며, 일부 영역에 뭉침현상이 발생하는 것을 방지할 수 있다.
다른 구현예에 따르면, 상기 단계 (b)를 거친 조성물은 펠렛 형상의 고형체일 수 있다.
또 다른 구현예에 따르면, 상기 단계 (a) 이전에 (a’) 펠렛 형상의 틀을 반응 용기에 장입하는 단계를 더 포함할 수 있다. 상기 펠렛 형상의 틀로부터 제작되는 펠렛 형상은 원통형 또는 다각형의 기둥 형상일 수 있다. 예를 들어, 원형, 삼각형, 사각형, 오각형, 육각형, 팔각형 또는 별과 같은 기하학적 형태일 수 있으나, 이에 한정되는 것은 아니다.
상기 단계 (a'), (a) 및 (b) 단계를 거친 고형화된 조성물을 펠렛 형상의 틀에서 분리함으로써, 펠렛 형상의 고형체를 얻을 수 있다. SiC 단결정 잉곳을 제조하기 위한 조성물을 펠렛 형상의 고형체로 제조할 수 있으므로, 보관이 용이함은 물론, 내열성 및 내습성도 향상시킬 수 있다.
다른 구현예에 따르면, SiC를 반응 용기 하단에 장입한 후, 원하는 위치에 펠렛 형상의 고형체를 장입할 수 있다. 구체적으로, 도 2에서 반응 용기의 내부 하단에 장입 되던 종래의 다공성 흑연 컨테이너와 같이 상기 펠렛 형상의 고형체를 장입할 수 있다. 따라서, 상기 펠렛 형상의 고형체는 도핑 제어가 용이할 뿐만 아니라, 반응 용기의 구조와 상관 없이 자유롭게 사용할 수 있으며, 보관이 용이함은 물론, 내열성 및 내습성도 향상시킬 수 있는 장점이 있다.
일 구현예에 따르면, 상기 단계 (b)에서는 SiC 단결정 잉곳의 성장이 이루어지지 않는다.
다음으로, 상기 반응 용기에 장착된 종자정에 SiC 단결정 잉곳을 성장시킨다(단계 (c)).
상기 종자정은 상기 반응 용기의 내부 상단에 장착될 수 있다. 상기 종자정은 4H-SiC, 6H-SiC, 3C-SiC 또는 15R-SiC 등 성장시키고자 하는 결정의 종류에 따라 다양한 결정구조를 갖는 종자정을 사용할 수 있다.
일 구현예에 따르면, 상기 종자정에 SiC 단결정 잉곳을 성장시키는 단계는, 상기 단계 (b)를 거친 조성물을 승화시켜 종자정 상에 성장시키는 단계이다.
상기 단계 (c)에서 조성물의 승화점은 2,000℃ 내지 2,500℃이다. 구체적으로, 상기 조성물의 승화점이 상기 온도 범위를 만족함으로써, SiC와 유사한 온도 범위 내에서 도펀트를 승화시킬 수 있다. 예를 들어, 상기 조성물의 승화점은 2,100℃ 내지 2,500℃ 또는 2,100℃ 내지 2,300℃일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 단계 (b) 에서의 온도는 2,000℃ 내지 2,500℃, 2,200℃ 내지 2,500℃ 또는 2,250℃ 내지 2,300℃일 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 단계 (b) 에서의 압력은 1 torr 내지 150 torr, 1 torr 내지 100 torr, 또는 1 torr 내지 50 torr일 수 있으나, 이에 한정되는 것은 아니다.
상기 SiC 단결정 잉곳의 비저항, 도펀트 농도 및 순도에 대한 내용은 상기 단계 (2)에서 전술한 바와 동일하다.
탄화규소 단결정 잉곳 성장 장치
종래에는 SiC 단결정 잉곳을 성장시키기 위하여, 다공성 흑연 컨테이너에 도펀트를 장입하여 사용하거나, 합성을 통해 SiC에 도펀트를 내포시키는 방법을 사용해왔다.
도 21은 종래의 SiC 단결정 잉곳 성장 장치의 단면도를 나타낸 것이다. 구체적으로, 도 21에는 반응 용기(200')의 내부 상단에 반응 용기 캡(700')이 형성되고, 상기 반응 용기 캡(700')의 하단에 종자정(100')이 고정되며, 상기 반응 용기의 상부와 하부에 각각 잉곳 성장부(300')와 원료 수용부(400')가 형성되고, 상기 원료 수용부(400')의 내부에 도펀트가 장입된 다공성 흑연 컨테이너(800')가 형성된 SiC 단결정 잉곳 성장 장치가 예시되어 있다.
그러나, 종래 방법에 따르면, 공정이 복잡하고, 비용이 상승하는 단점이 있으며, 다공성 흑연 컨테이너에서 발생하는 불순물로 인해 도핑 농도의 제어가 어려우므로 SiC 단결정 잉곳의 품질을 향상시키기 어렵다. 또한, 상기와 같은 문제점을 해결하고자, SiC 및 도펀트를 분쇄하거나 입도가 큰 것을 사용하기도 했으나, 이는 별도의 분말 열처리 공정이 필요하다는 단점이 있다.
나아가, 대구경의 SiC 단결정 잉곳을 성장시키기 위해 종래의 SiC 단결정 잉곳 성장 장치의 반응 용기(200')의 크기가 커짐에 따라, SiC 단결정 잉곳을 대구경으로 성장시키기 위한 온도까지 가열하는데 많은 에너지가 필요하게 된다. 더욱이, 잉곳이 성장되는 잉곳 성장부(300')의 중심부까지 열이 잘 전달되지 않아 온도 구배가 불균일하게 되고, 제조되는 SiC 단결정 잉곳의 품질도 떨어지는 문제가 있다.
도 20은 구현예의 SiC 단결정 잉곳 성장 장치의 단면도를 나타낸 것이다. 도 20에는 반응 용기(200)의 내부 상단에 반응 용기 캡(700)이 형성되고, 상기 반응 용기 캡(700)의 하단에 종자정(100)이 고정되며, 상기 반응 용기의 상부에 잉곳 성장부(300)가 형성되고, 상기 반응 용기의 내부 중앙을 형성하는 열림부(510) 및 상기 열림부를 감싸는 다공체(520)를 포함하는 필터부(500)가 반응 용기의 하부에 형성되며, 상기 다공체와 상기 반응 용기 내벽 사이에 원료 수용부(400)가 형성되고, 상기 원료 수용부의 상단 및 상기 다공체의 상단에 차단부(600)가 형성되는 SiC 단결정 잉곳 성장 장치가 예시되어 있다.
일 구현에에 따른 SiC 단결정 잉곳 성장 장치에 따르면, 상기 원료 수용부(400)가 상기 다공체(520)와 상기 반응 용기 내벽 사이에 형성됨으로써, SiC 단결정 잉곳을 성장시키는데 필요한 에너지량을 감소시킬 수 있어 경제적이다.
또한, 구현예에 따른 SiC 단결정 잉곳 성장 장치는 대구경의 SiC 단결정 잉곳을 제조하는데에도 적합하다.
나아가, 일 구현에에 따른 SiC 단결정 잉곳 성장 장치는, 상기 다공체(520)가 탄소-함유 고분자 수지, SiC, 도펀트 및 용매를 포함하는 SiC 조성물을 탄화 또는 흑연화하는 과정을 거쳐 제조되고, 기공(523), 유로(524) 및 기공벽(525)을 포함하며, 상기 원료 수용부(400)의 상단 및 다공체(520)의 상단에는 차단부(600)가 형성된다. 따라서, 상기 반응 용기(200)에 열이 가해져도, SiC에 비하여 도펀트가 먼저 승화되지 않는다. 구체적으로, 상기 반응 용기(200)에 열이 가해지면, 상기 원료 수용부(400)에 있던 고체상태의 SiC가 기체로 승화되면서, 상기 다공체(520)를 거쳐 열림부(510)를 통해 이동한 후, 종자정(300)의 하부에서 다시 고체로 승화되면서 SiC 단결정 잉곳이 성장된다.
이로써, 일 구현예에 따른 SiC 단결정 잉곳 성장 장치는 미반응 원료의 양을 최소화할 수 있으므로, 비용 절감의 효과가 있다.
또한, 일 구현예에 따른 SiC 단결정 잉곳 성장 장치는 잉곳 성장부(300)의 온도 구배의 불균일성을 최소화하여, 형상, 성장률 및 품질이 향상된 SiC 단결정 잉곳을 제조할 수 있다. 구체적으로, 상기 잉곳 성장부(300)의 온도 구배가 불균일하면, SiC 단결정 잉곳의 형상이 볼록하게 성장될 수 있다. 그러나, 일 구현예에 따른 SiC 단결정 잉곳 성장 장치는 상기 잉곳 성장부(300)의 온도 구배가 균일하므로, 잉곳의 형상을 편평(flat)하게 성장시킬 수 있다.
나아가, 상기 균일한 온도 구배에 의하여 원료 공급도 균일하게 이루어지게 되므로, SiC 단결정 잉곳의 성장률 및 품질 향상은 물론, 다형제어에도 유리하다. 즉, 4H-SiC를 사용하는 경우, 3C, 6H 및 15R 등의 다형 성장을 억제하고 4H의 성장 안정성을 높일 수 있다.
더욱이, 구현예에 따른 SiC 단결정 잉곳 성장 장치는 의도치 않은 불순물의 혼입을 억제할 수 있으며, 도핑 제어가 용이하다.
일 구현예에 따른 SiC 단결정 잉곳 성장 장치는, 종자정(100) 및 반응 용기(200)를 포함하고, 상기 반응 용기(200)는 잉곳 성장부(300), 필터부(500), 원료 수용부(400) 및 차단부(600)를 포함하며, 상기 필터부(500)는 열림부(510) 및 다공체(520)을 포함한다.
구체적으로, 일 구현예에 따른 SiC 단결정 잉곳 성장 장치는 소정의 직경을 갖는 종자정(100); 및
상기 종자정이 내부에 고정된 상태에서 상기 종자정의 표면에 잉곳을 성장시키는 반응 용기(200);를 포함하고,
상기 반응 용기(200)가,
상기 반응 용기 상부의 적어도 일부를 형성하고, 상단에 상기 종자정이 고정되는 잉곳 성장부(300);
상기 반응 용기의 내부 중앙을 형성하는 열림부(510) 및 상기 열림부를 감싸는 다공체(520)를 포함하고, 상기 종자정 하부에 위치하면서 상기 반응 용기 하부의 적어도 일부를 형성하는 필터부(500);
상기 다공체와 상기 반응 용기 내벽 사이에 위치하면서 상기 반응 용기 하부의 적어도 일부를 형성하고, 내부에 상기 잉곳의 원료가 수용되는 원료 수용부(400); 및
상기 원료 수용부의 상단 및 상기 다공체의 상단에 위치한 차단부(600);를 포함한다.
또한, 다른 구현예에 따른 SiC 단결정 잉곳 성장 장치는 상기 반응 용기의 상단에 위치한 반응 용기 캡(700)을 더 포함하고, 상기 반응 용기 캡의 하단에 상기 종자정이 고정될 수 있다.
종자정(100)
일 구현예에 따르면, 상기 종자정(100)은 상기 반응 용기(400)의 내부 상단에 고정될 수 있다. 구체적으로, 상기 종자정(100)은 상기 반응 용기 캡(700)의 하단에 고정될 수 있다.
또한, 상기 종자정(100)은 4H-SiC, 6H-SiC, 3C-SiC 또는 15R-SiC 등 성장시키고자 하는 결정의 종류에 따라 다양한 결정 구조를 갖는 종자정(100)을 사용할 수 있다.
일 구현예에 따르면, 상기 종자정의 직경(a)은 4 인치 이상이다. 구체적으로, 상기 종자정의 직경(a)은 4 인치 이상 50 인치 이하일 수 있다. 더욱 구체적으로, 상기 종자정의 직경(a)은 4 인치 내지 30 인치, 4 인치 내지 20 인치, 4 인치 내지 15 인치, 4 인치 내지 10 인치 또는 4 인치 내지 8 인치일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 종자정(100)의 하부에 성장되는 SiC 단결정 잉곳의 직경은 4 인치 이상 또는 6 인치 이상일 수 있다. 구체적으로, 상기 종자정(100)의 하부에 성장되는 SiC 단결정 잉곳의 직경은 4 인치 내지 55 인치, 4 인치 내지 35 인치, 4 인치 내지 25 인치, 4 인치 내지 15 인치, 6 인치 내지 55 인치, 6 인치 내지 35 인치, 6 인치 내지 20 인치, 6 인치 내지 15 인치 또는 4 인치 내지 8 인치일 수 있으나, 이에 한정되는 것은 아니다.
다른 구현예에 따르면, 상기 종자정(100)의 하부에 성장되는 SiC 단결정 잉곳의 직경은 상기 종자정의 직경(a)보다 같거나 더 크다.
반응 용기(200)
상기 반응 용기(200)는 도가니일 수 있고, 승화 온도 2,600℃ 내지 3,000℃ 이상의 융점을 갖는 물질로 제작될 수 있다. 예를 들어, 그라파이트로 제작될 수 있으나 이에 한정되는 것은 아니다.
일 구현예에서, 상기 반응 용기(200)는 내부 공간을 가지며, 상단이 개방된 형태일 수 있다.
일 구현예에 따른 SiC 단결정 잉곳 성장 장치는 상기 반응 용기(200)를 감싸는 단열 부재를 더 포함할 수 있다.
다른 구현예에 따르면, 상기 잉곳의 원료가 수용된 반응 용기(200)는 밀폐될 수 있다. 상기 반응 용기(200)를 1층 이상의 단열 부재로 둘러싼 후, 가열 수단을 구비한 반응 챔버(ex. 석영관 등)에 넣는다. 상기 단열 부재 및 반응 챔버는 상기 반응 용기(200)의 온도를 SiC 단결정 성장 온도로 유지하도록 한다.
상기 가열 수단은 유도가열 또는 저항가열 수단일 수 있다. 예를 들어, 고주파 유도 코일에 고주파 전류를 흐르게 함으로써, 반응 용기(200)를 가열하여 상기 원료를 원하는 온도로 가열하는 고주파 유도 코일이 사용될 수 있으나, 이에 한정되는 것은 아니다.
잉곳 성장부(300) 및 원료 수용부(400)
일 구현예에 따르면, 상기 반응 용기(200)는 상기 반응 용기의 상부의 적어도 일부를 형성하고, 상단에 상기 종자정(100)이 고정되는 잉곳 성장부(300)를 포함한다.
구체적으로, 상기 반응 용기(200)에 열이 가해지면, 상기 원료 수용부(400)에 수용된 고체상태의 SiC가 기체로 승화되면서, 상기 다공체(520)를 거쳐 열림부(510)를 통해 이동한 후, 잉곳 성장부(300)의 하부에서 다시 고체로 승화되면서 SiC 단결정 잉곳이 성장된다.
다른 구현예에 따르면, 상기 반응 용기(200)는 상기 다공체(520)와 상기 반응 용기 내벽 사이에 위치하면서 상기 반응 용기 하부의 적어도 일부를 형성하고, 내부에 상기 잉곳의 원료가 수용되는 원료 수용부(400)를 포함한다.
일 구현예에 따르면, 상기 원료는 SiC 분말이고, 상기 분말 입자의 평균 직경이 10 ㎛ 내지 5,000 ㎛일 수 있다. 예를 들어, 상기 SiC 입자의 크기는 50 ㎛ 내지 3,000 ㎛ 또는 100 ㎛ 내지 1,000 ㎛일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에서, 상기 SiC는 90 중량% 내지 99 중량%의 순도를 가질 수 있다. 구체적으로, 상기 SiC는 91 중량% 내지 97 중량% 또는 93 중량% 내지 95 중량%의 순도를 가질 수 있으나, 이에 한정되는 것은 아니다.
필터부(500)
일 구현예에 따르면, 상기 필터부(500)는 열림부(510) 및 상기 열림부를 감싸는 다공체(520)를 포함한다.
구체적으로, 상기 반응 용기(200)는 상기 반응 용기의 내부 중앙을 형성하는 열림부(510) 및 상기 열림부(510)를 감싸는 다공체(520)를 포함하고, 상기 종자정(100)의 하부에 위치하면서 상기 반응 용기 하부의 적어도 일부를 형성하는 필터부(500)를 포함한다.
일 구현예에 따르면, 상기 필터부(500)는 상기 반응 용기(200)의 하부 중앙을 형성할 수 있다.
일 구현예에서, 상기 필터부(500)는 원통형 또는 다각형의 기둥 형상일 수 있다. 예를 들어, 상기 필터부(500)의 단면은 원형, 삼각형, 사각형, 오각형, 육각형, 팔각형 또는 별과 같은 기하학적 형태일 수 있으나, 이에 한정되는 것은 아니다.
도 22는 구현예의 SiC 단결정 잉곳 성장 장치의 필터부(500)를 나타낸 것이다. 도 22에는 내부에 열림부(510)가 형성되어 있고 상기 열림부(510)를 감싸는 다공체(520)가 형성된 원통형의 필터부(500)가 예시되어 있다.
도 23은 구현예의 SiC 단결정 잉곳 성장 장치의 다른 필터부를 나타낸 것이다. 도 23에는 내부에 열림부(510)가 형성되어 있고 상기 열림부(510)를 감싸는 다공체(520)가 형성된 사각 기둥 형태의 필터부(500)가 예시되어 있다.
일 구현예에서, 상기 다공체(520)는 탄소-함유 고분자 수지, SiC, 도펀트 및 용매를 포함하는 SiC 조성물로부터 제조될 수 있다.
상기 탄소-함유 고분자 수지는 페놀계 수지, 폴리아크릴아마이드계 수지 및 열경화성 수지로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
상기 페놀계 수지는 노볼락 수지 및 레졸 수지로 이루어진 군에서 선택되는 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리아크릴아마이드계 수지는 폴리아믹산 수지일 수 있으나, 이에 한정되는 것은 아니다.
상기 열경화성 수지는 폴리우레탄 수지, 멜라민 수지 및 알키드 수지로 이루어진 군에서 선택되는 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
상기 SiC는 분말 형태이고, 상기 분말 입자의 평균 직경이 10 ㎛ 내지 5,000 ㎛일 수 있다. 예를 들어, 상기 SiC 입자의 크기는 50 ㎛ 내지 3,000 ㎛ 또는 100 ㎛ 내지 1,000 ㎛일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에서, 상기 SiC는 90 중량% 내지 99 중량%의 순도를 가질 수 있다. 구체적으로, 상기 SiC는 91 중량% 내지 97 중량% 또는 93 중량% 내지 95 중량%의 순도를 가질 수 있으나, 이에 한정되는 것은 아니다.
상기 도펀트는 바나듐(V), 크롬(Cr), 망간(Mn) 및 코발트(Co)로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 예를 들어, 상기 도펀트는 전이 금속일 수 있으며, 구체적으로 바나듐일 수 있다. 예를 들어, 바나듐은 SiC 결정 내에서 도너(donor) 혹은 억셉터(acceptor)의 어느 상태에서도 깊은 준위를 형성할 수 있고, 얕은 도너 또는 얕은 억셉터 불순물을 보상하여, 결정을 고 저항화 즉, 반절연 상태로 만들 수 있다.
상기 SiC 조성물은 상기 SiC 조성물의 총 중량을 기준으로, 1 중량% 내지 20 중량%의 도펀트를 포함할 수 있다. 예를 들어, 상기 SiC 조성물은 상기 SiC 조성물의 총 중량을 기준으로, 5 중량% 내지 17 중량%, 5 중량% 내지 15 중량%, 10 중량% 내지 15 중량%의 도펀트를 포함할 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 용매는 에탄올, 메탄올, 아세톤, 디메틸포름아미드 및 디메틸술폭시드로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 구체적으로, 상기 용매는 에탄올일 수 있으나, 이에 한정되는 것은 아니다.
상기 SiC 조성물은 상기 SiC 조성물의 총 중량을 기준으로, 1 중량% 내지 20 중량%의 용매를 포함할 수 있다. 예를 들어, 상기 SiC 조성물은 상기 SiC 조성물의 총 중량을 기준으로, 5 중량% 내지 17 중량%, 5 중량% 내지 15 중량% 또는 10 중량% 내지 15 중량%의 용매를 포함할 수 있으나, 이에 한정되는 것은 아니다.
상기 SiC 조성물은 상기 SiC 조성물의 총 중량을 기준으로, 1 중량% 내지 40 중량%의 탄소-함유 고분자 수지를 포함할 수 있다. 예를 들어, 상기 SiC 조성물은 상기 SiC 조성물의 총 중량을 기준으로, 5 중량% 내지 35 중량%, 5 중량 % 내지 30 중량% 또는 10 중량% 내지 30 중량%의 탄소-함유 고분자 수지를 포함할 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 용매는 에탄올, 메탄올, 아세톤, 디메틸포름아미드 및 디메틸술폭시드로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 구체적으로, 상기 용매는 에탄올일 수 있으나, 이에 한정되는 것은 아니다.
상기 SiC 조성물은 상기 SiC 조성물의 총 중량을 기준으로, 1 중량% 내지 20 중량%의 용매를 포함할 수 있다. 예를 들어, 상기 SiC 조성물은 상기 SiC 조성물의 총 중량을 기준으로, 5 중량% 내지 17 중량%, 5 중량% 내지 15 중량% 또는 10 중량% 내지 15 중량%의 용매를 포함할 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에서, 상기 다공체는 상기 SiC 조성물을 탄화 또는 흑연화 하는 과정을 거쳐 제조된다.
구체적으로, 상기 다공체는 상기 SiC 조성물을 건조; 경화; 및 탄화(carbonization) 또는 흑연화(graphitization)하는 과정을 거쳐 제조될 수 있다.
일 구현예에 따르면, 상기 건조는 30℃ 내지 400℃ 또는 50℃ 내지 350℃의 온도 범위에서 수행될 수 있다. 또한, 상기 경화는 30℃ 내지 400℃ 또는 100℃ 내지 400℃의 온도 범위에서 수행될 수 있다. 상기 건조 및 경화 조건을 만족함으로써, 상기 SiC 조성물의 탄화 또는 흑연화에 유리할 수 있다.
예를 들어, 상기 건조는 30℃ 내지 400℃, 50℃ 내지 350℃ 또는 50℃ 내지 300℃의 온도 범위에서 1 시간 내지 5 시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 경화는 30℃ 내지 400℃, 100℃ 내지 400℃ 또는 150℃ 내지 400℃의 온도 범위에서 1 시간 내지 10 시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 탄화 또는 흑연화는 200℃ 내지 2,200℃의 온도 범위 및 1 torr 내지 1,500 torr의 압력 조건에서 수행된다. 상기 온도 및 압력 조건을 만족함으로써, 상기 SiC 조성물의 탄화 또는 흑연화에 유리할 수 있다.
예를 들어, 상기 건조 및 경화 단계를 거친 SiC 조성물은 300℃ 내지 600℃의 온도 범위 및 500 torr 내지 700 torr의 압력 조건에서 열처리를 진행한 후, 2,000℃ 내지 2,200℃의 온도 범위 및 500 torr 내지 800torr의 압력 조건에서 탄화 또는 흑연화 될 수 있다. 또한, 상기 탄화 또는 흑연화는 1 시간 내지 5 시간 또는 2 시간 내지 5 시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 탄화 또는 흑연화는 불활성 분위기에서 열처리하는 것을 의미한다. 상기 불활성 분위기는 질소 분위기 또는 아르곤 분위기일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에서, 상기 다공체(520)는 기공(523), 유로(524) 및 기공벽(525)을 포함할 수 있다. 구체적으로, 상기 다공체는 기공(523), 유로(524) 및 기공벽(525)을 포함함으로써, 도펀트와 반응한 원료 물질이 균일하게 이동할 수 있음은 물론, C/Si의 비율도 종래보다 증가하므로 다형의 안정성도 향상시킬 수 있다.
일 구현예에서, 상기 기공의 직경(D11)은 1 ㎛ 내지 500 ㎛일 수 있다. 예를 들어, 10 ㎛ 내지 400 ㎛, 25 ㎛ 내지 300 ㎛, 50 ㎛ 내지 200 ㎛ 또는 75 ㎛ 내지 100 ㎛일 수 있으나, 이에 한정되는 것은 아니다.
다른 구현예에서, 상기 다공체의 비표면적은 1,000 m2/g 내지 4,000 m2/g일 수 있다. 예를 들어, 1,200 m2/g 내지 3,500 m2/g, 1,300 m2/g 내지 3,000 m2/g, 1,400 m2/g 내지 2,500 m2/g 또는 1,500 m2/g 내지 2,000 m2/g일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에서, 상기 다공체(520)는 외주면(522)과 내주면(521)을 포함할 수 있다. 상기 다공체의 두께(T1)는 상기 다공체의 외주면(522)과 내주면(521) 사이의 평균 두께를 의미한다.
일 구현예에서, 상기 다공체의 두께(T1)는 5 mm 내지 20 mm일 수 있다. 예를 들어, 7 mm 내지 20 mm, 7 mm 내지 18 mm, 10 mm 내지 18 mm 또는 10 mm 내지 16 mm일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에서, 상기 열림부의 직경(D1)은 상기 종자정의 직경(a)의 15% 내지 40%일 수 있다. 예를 들어, 상기 열림부의 직경(D1)은 상기 종자정의 직경(a)의 15% 내지 35%, 17% 내지 35%, 17% 내지 33%, 20% 내지 33%, 20% 내지 30%, 23% 내지 30% 또는 25% 내지 30%일 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 열림부가 다각형 기둥 형태일 경우, 상기 다각형 기둥 형태의 열림부의 직경은 상기 다각형과 동일한 면적으로 변환된 원형의 직경을 의미한다.
차단부(600)
일 구현예에 따르면, 상기 반응 용기(200)는 상기 원료 수용부(400)의 상단 및 상기 다공체(520)의 상단에 위치한 차단부(600)를 포함한다.
상기 차단부(600)가 상기 원료 수용부(400)의 상단 및 상기 다공체(520)의 상단에 위치함으로써, 미반응 원료의 양을 최소화할 수 있으므로, 비용 절감의 효과가 있다. 또한, 의도치 않은 불순물의 혼입을 억제할 수 있으며, 도핑 제어도 용이하다.
도 24는 구현예의 SiC 단결정 잉곳 성장 장치의 차단부(600)를 나타낸 것이다. 도 24에는 내부 공간을 가지고 있는 차단부(600)가 예시되어 있다.
일 구현예에서, 상기 열림부의 직경(D1)은 상기 차단부의 내부 직경(D2)보다 크거나 같다.
일 구현예에서, 상기 열림부의 직경(D1)과 상기 차단부의 내부 직경(D2)의 비율은 1 : 0.8 내지 1 : 1일 수 있다. 예를 들어, 1 : 0.9 또는 1 : 1일 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에서, 상기 차단부(600)는 흑연, 탄탈륨(Ta), 탄탈륨 카바이드(TaC), 텅스텐(W) 및 텅스텐카바이드(WC)로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
일 구현예에서, 상기 차단부의 두께(T2)는 1 mm 내지 10 mm일 수 있다. 예를 들어, 3 mm 내지 10 mm, 3 mm 내지 8 mm 또는 5 mm 내지 8 mm일 수 있으나, 이에 한정되는 것은 아니다.
반응 용기 캡(700)
일 구현예에 따른 SiC 단결정 잉곳 성장 장치는 상기 반응 용기(100)의 상단에 위치한 반응 용기 캡(700)을 더 포함하고, 상기 반응 용기 캡(700)의 하단에 상기 종자정(100)이 고정된다.
상기 SiC 단결정 잉곳의 비저항 및 순도에 대한 내용은 상기 단계 (2)에서 전술한 바와 동일하다.
일 구현예에 따르면, 상기 SiC 단결정 잉곳 성장 장치에 의해 제조된 상기 SiC 단결정 잉곳의 도펀트 농도는 1×1015 atoms/cc 내지 5×1017 atoms/cc 이다. 구체적으로, 상기 SiC 단결정 잉곳의 도펀트 농도는 5×1015 atoms/cc 내지 1×1017 atoms/cc 또는 1×1016 atoms/cc 내지 5×1016 atoms/cc 일 수 있으나, 이에 한정되는 것은 아니다.
이하 실시예에 의해 본 발명을 보다 구체적으로 설명한다. 이하의 실시예들은 본 발명을 예시하는 것일 뿐이며, 본 발명의 범위가 이들로 한정되지는 않는다.
실시예 1
탄소-함유 고분자 수지로 페놀계 수지(제품명: KC-5536, 제조사: 강남화성) 80 중량%, 에탄올 용매(제조사: OCI) 18 중량% 및 바나듐 도펀트 2 중량%를 혼합하였다. 200℃에서 3 시간 동안 건조시킨 후, 400℃에서 2 시간 동안 경화시켰다. 500℃ 및 700 torr의 조건에서 열처리를 진행한 후, 2,000℃ 및 760 torr의 조건에서 5 시간 동안 탄화 또는 흑연화시킨 후, 분쇄하여, 평균 입자의 크기가 10 ㎛인 탄소계 물질로 코팅된 도펀트를 제조하였다.
그라파이트 도가니의 내부 상단에 종자정을 장착한 후, SiC 분말 및 상기 탄소계 물질로 코팅된 도펀트를 장입하였다. 상기 도가니를 단열 부재로 둘러싸고, 가열 코일이 구비된 반응 챔버 내에 넣었다. 도가니 내를 진공 상태로 만든 뒤, 아르곤 가스를 서서히 주입하였다. 이와 함께, 도가니 내의 온도를 2,400℃까지 승온시키고, 700 torr로 승압시켰다. 이후, 압력을 점점 낮추어 30 torr에 도달시킨 후, 상기 조건에서 50시간 동안 SiC 단결정 잉곳을 종자정에 성장시켜, 반절연 SiC 단결정 잉곳을 제조하였다.
비교예 1
탄소계 물질로 코팅된 도펀트 대신에 도펀트가 장입된 다공성 흑연 컨테이너를 사용한 것을 제외하고, 상기 실시예와 동일하게 실험하여 반절연 SiC 단결정 잉곳을 제조하였다.
[평가예 1-1: 도펀트의 농도 측정]
상기 실시예 1 및 비교예 1에서 제조된 반절연 SiC 단결정 잉곳에 대하여, SIMS(Secondary ion mass spectrometry)를 이용해 도펀트의 농도를 측정하여, 그 결과를 하기 표 1에 나타내었다.
구 분 도펀트 농도(atoms/cc)
실시예 1 1.1×1017
비교예 1 5.3×1016
상기 표 1에서 보는 바와 같이, 실시예 1에 따라 제조된 반절연 SiC 단결정 잉곳의 도펀트의 농도가 비교예 1에 따라 제조된 반절연 SiC 단결정 잉곳의 도펀트의 농도에 비하여 큰 것을 확인할 수 있다.
[평가예 1-2: 표면 이미지 평가]
상기 실시예 1 및 비교예 1에서 제조된 반절연 SiC 단결정 잉곳에 대하여, 광학 현미경을 이용하여, 육안으로 표면 이미지를 평가하였다.
도 3은 실시예 1의 반절연 SiC 단결정 잉곳의 표면 이미지를 나타낸 것이고, 도 4는 비교예 1의 반절연 SiC 단결정 잉곳의 표면 이미지를 나타낸 것이다.
상기 도 3에서 보는 바와 같이, 실시예 1에 따라 제조된 반절연 SiC 단결정 잉곳은, SiC 단결정 잉곳을 성장시키는 단계에서 도펀트의 농도가 균일하게 유지되어 도펀트의 석출이 거의 발생하지 않았다. 반면, 도 4에서 보는 바와 같이, 비교예 1의 반절연 SiC 단결정 잉곳은, SiC 단결정 잉곳을 성장시키는 단계에서 과잉 도핑이 이루어져 도펀트가 석출되었다.
[평가예 1-3: 성장단계에서의 도핑 농도의 변화]
상기 실시예 1 및 비교예 1에서 제조된 반절연 SiC 단결정 잉곳에 대하여, 기판 가공을 이용하여, 종자정에 SiC 단결정 잉곳을 성장시키는 단계의 초기, 중기 및 말기의 도핑 농도 변화 이미지를 평가하였다.
도 5 내지 7은 실시예 1의 반절연 SiC 단결정 잉곳을 성장시키는 단계에서 초기, 중기 및 말기의 도핑 농도를 각각 나타낸 것이고, 도 8 내지 10은 비교예 1의 반절연 SiC 단결정 잉곳을 성장시키는 단계에서 초기, 중기 및 말기의 도핑 농도를 각각 나타낸 것이다.
상기 도 5 내지 7에서 보는 바와 같이, 실시예 1에 따라 제조된 반절연 SiC 단결정 잉곳은 기판 전체에 대하여 균일하게 투명한 것을 알 수 있다. 반면, 도 8 내지 10에서 보는 바와 같이, 비교예 1의 반절연 SiC 단결정 잉곳은 부분적으로 짙은 색상 및 불균일한 색상 분포를 갖는 것을 알 수 있다.
[평가예 1-4: 잉곳 표면 및 UV 이미지 평가]
상기 실시예 1 및 비교예 1에서 제조된 반절연 SiC 단결정 잉곳에 대하여, UV Lamp 조사를 이용한 육안 검사 통해, UV 이미지를 평가하였다.
도 11은 실시예 1의 반절연 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이고, 도 12는 비교예 1의 반절연 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이다.
상기 도 11 및 도 12의 UV 이미지를 통해 다형 제어를 확인할 수 있다. 구체적으로, 초록색은 4H, 붉은색은 6H 및 검은색은 15R을 나타낸다. 따라서, 상기 도 11에서 보는 바와 같이, 실시예 1에 따라 제조된 반절연 SiC 단결정 잉곳은 목적하는 4H가 균일하게 형성되었다. 반면, 도 12에서 보는 바와 같이, 비교예 1에 따라 제조된 반절연 SiC 단결정 잉곳은 4H, 6H 및 15R이 부분적으로 형성되어 SiC 단결정 잉곳의 품질이 낮은 것을 알 수 있다.
실시예 2
탄소-함유 고분자 수지로 페놀계 수지(제품명: KC-5536, 제조사: 강남화성) 80 중량%, 에탄올 용매(제조사: OCI) 18 중량% 및 바나듐 도펀트 2 중량%를 혼합하였다. 200℃에서 3 시간 동안 건조시킨 후, 400℃에서 2시간 동안 경화시켰다. 500℃ 및 700 torr의 조건에서 열처리를 진행한 후, 2,000℃ 및 760 torr의 조건에서 5 시간 동안 탄화 또는 흑연화하여, 조성물을 고형화하였다.
그라파이트 도가니의 내부 상단에 종자정을 장착한 후, 상기 도가니를 단열 부재로 둘러싸고, 가열 코일이 구비된 반응 챔버 내에 넣었다. 도가니 내를 진공 상태로 만든 뒤, 아르곤 가스를 서서히 주입하였다. 이와 함께, 도가니 내의 온도를 2,400℃까지 승온시키고, 700 torr로 승압시켰다. 이후, 압력을 점점 낮추어 30 torr에 도달시킨 후, 상기 조건에서 50시간 동안 SiC 단결정 잉곳을 종자정에 성장시켜, 반절연 SiC 단결정 잉곳을 제조하였다.
비교예 2
고형화된 조성물 대신에 도펀트가 장입된 다공성 흑연 컨테이너를 사용한 것을 제외하고, 상기 실시예와 동일하게 실험하여 반절연 SiC 단결정 잉곳을 제조하였다.
[평가예 2-1: 도펀트 농도 측정]
상기 실시예 2 및 비교예 2에서 제조된 반절연 SiC 단결정 잉곳에 대하여, SIMS(Secondary ion mass spectrometry)를 이용해 도펀트의 농도를 측정하여, 그 결과를 하기 표 2에 나타내었다.
구 분 도펀트 농도(atoms/cc)
실시예 1.3×1017
비교예 5.3×1016
상기 표 2에서 보는 바와 같이, 실시예 2에 따라 제조된 반절연 SiC 단결정 잉곳의 도펀트의 농도가 비교예 2에 따라 제조된 반절연 SiC 단결정 잉곳의 도펀트의 농도에 비하여 큰 것을 확인할 수 있다.
[평가예 2-2: 잔류 분말 단면 이미지 평가]
상기 실시예 2 및 비교예 2에서 제조된 반절연 SiC 단결정 잉곳에 대하여, 육안으로 잔류 분말 단면 이미지를 평가하였다.
도 14는 실시예 2의 반절연 SiC 단결정 잉곳의 잔류 분말 단면 이미지를 나타낸 것이고, 도 15는 비교예 2의 반절연 SiC 단결정 잉곳의 잔류 분말 단면 이미지를 나타낸 것이다.
상기 도 14에서 보는 바와 같이, 실시예 2에 따라 제조된 반절연 SiC 단결정 잉곳은 전체 영역에서 균일하게 승화가 일어났음을 알 수 있다. 반면, 도 15에서 보는 바와 같이, 비교예 2의 반절연 SiC 단결정 잉곳은 다공성 컨테이터가 있던 위치(70)에서 승화가 주로 일어났음을 알 수 있다.
[평가예 2-3: UV 이미지 평가]
상기 실시예 2 및 비교예 2에서 제조된 반절연 SiC 단결정 잉곳에 대하여, UV Lamp 조사를 이용한 육안 검사 통해, UV 이미지를 평가하였다.
도 16은 실시예 2의 반절연 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이고, 도 17은 비교예 2의 반절연 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이다.
상기 도 16 및 도 17의 UV 이미지를 통해 다형 제어를 확인할 수 있다. 구체적으로, 초록색은 4H, 붉은색은 6H 및 검은색은 15R을 나타낸다.
따라서, 상기 도 16에서 보는 바와 같이, 실시예 2에 따라 제조된 반절연 SiC 단결정 잉곳은 목적하는 4H가 균일하게 형성되었다. 반면, 도 17에서 보는 바와 같이, 비교예 2에 따라 제조된 반절연 SiC 단결정 잉곳은 4H, 6H 및 15R이 부분적으로 형성되어 SiC 단결정 잉곳의 품질이 낮은 것을 알 수 있다.
[평가예 2-4: 표면 이미지 평가]
상기 실시예 2 및 비교예 2에서 제조된 반절연 SiC 단결정 잉곳에 대하여, 광학 현미경을 이용하여, 표면 이미지를 평가하였다.
도 18은 실시예 2의 반절연 SiC 단결정 잉곳의 표면 이미지를 나타낸 것이고, 도 19는 비교예 2의 반절연 SiC 단결정 잉곳의 표면 이미지를 나타낸 것이다.
상기 도 18에서 보는 바와 같이, 실시예 2는 SiC 단결정 잉곳을 성장시키는 단계에서, 도펀트의 농도가 균일하게 유지되어 도펀트의 석출이 거의 발생하지 않았다. 반면, 도 19에서 보는 바와 같이, 비교예 2는 과잉 도핑이 이루어져 도펀트가 석출되었다.
실시예 3
도 20에 도시된 바와 같은 SiC 단결정 잉곳 성장 장치를 통해 SiC 단결정 잉곳을 제조하였다.
탄소-함유 고분자 수지로 페놀계 수지(제품명: KC-5536, 제조사: 강남화성) 10 중량%, SiC (제품명:NANKO GC 150) 70 중량%, 에탄올 용매(제조사: OCI) 18 중량% 및 바나듐 카바이드 도펀트(제조사 : 씨그마알드리치) 2 중량%를 혼합하였다. 500℃ 및 700 torr의 조건에서 열처리를 진행한 후, 2,000℃ 및 760 torr의 조건에서 5 시간 동안 탄화 또는 흑연화하여, 다공체를 형성하였다.
그라파이트 도가니의 내부 상단에 종자정을 장착한 후, 상기 도가니를 단열 부재로 둘러싸고, 가열 코일이 구비된 반응 챔버 내에 넣었다. 도가니 내를 진공 상태로 만든 뒤, 아르곤 가스를 서서히 주입하였다. 이와 함께, 도가니 내의 온도를 2,400℃까지 승온시키고, 700 torr로 승압시켰다. 이후, 압력을 점점 낮추어 30 torr에 도달시킨 후, 상기 조건에서 50 시간 동안 SiC 단결정 잉곳을 종자정에 성장시켜, 직경 약 6인치의 SiC 단결정 잉곳을 제조하였다.
비교예 3
도 21에 도시된 바와 같은 종래의 SiC 단결정 잉곳 성장 장치를 사용한 것을 제외하고, 상기 실시예와 동일하게 실험하여 SiC 단결정 잉곳을 제조하였다.
<평가예 3-1: UV 이미지 및 분말의 잔류 여부 평가>
상기 실시예 3 및 비교예 3에서 제조된 SiC 단결정 잉곳에 대하여, UV Lamp를 이용한 육안 검사를 이용하여, UV 이미지 및 분말의 잔류 여부를 평가하였다.
도 25는 실시예 3의 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이고, 도 26은 비교예 3의 SiC 단결정 잉곳의 UV 이미지를 나타낸 것이다.
상기 도 25 및 도 26의 UV 이미지를 통해 다형 제어를 확인할 수 있다. 구체적으로, 초록색은 4H, 붉은색은 6H 및 검은색은 15R을 나타낸다. 따라서, 상기 도 25에서 보는 바와 같이, 실시예 3에 따라 제조된 SiC 단결정 잉곳은 목적하는 4H가 균일하게 형성된 것을 알 수 있다. 반면, 도 26에서 보는 바와 같이, 비교예 3에 따라 제조된 SiC 단결정 잉곳은 4H, 6H 및 15R이 부분적으로 형성되어 SiC 단결정 잉곳의 품질이 낮은 것을 알 수 있다.

Claims (20)

  1. (1) 종자정이 장착된 반응 용기에 SiC(탄화규소) 및 탄소계 물질로 코팅된 도펀트를 장입하는 단계; 및
    (2) 상기 종자정에 SiC 단결정 잉곳을 성장시키는 단계를 포함하는, SiC 단결정 잉곳을 성장시키는 방법.
  2. 제1항에 있어서,
    상기 탄소계 물질은 카본 블랙, 그라파이트 또는 이들의 조합인, 방법.
  3. 제1항에 있어서,
    상기 탄소계 물질로 코팅된 도펀트는 탄소-함유 고분자 수지, 용매 및 도펀트를 포함하는 조성물을 건조; 경화; 탄화(carbonization) 또는 흑연화(graphitization); 및 분쇄의 과정을 거쳐 제조되는, 방법.
  4. 제3항에 있어서,
    상기 탄소-함유 고분자 수지는 페놀계 수지, 폴리아크릴아마이드계 수지 및 열경화성 수지로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 방법.
  5. 제3항에 있어서,
    상기 건조는 50℃ 내지 350℃의 온도 범위에서 수행되고, 상기 경화는 100℃ 내지 400℃의 온도 범위에서 수행되는, 방법.
  6. 제3항에 있어서,
    상기 탄화 또는 흑연화는 200℃ 내지 2,200℃의 온도 범위 및 1 torr 내지 1,500 torr의 압력 조건에서 수행되는, 방법.
  7. 제1항에 있어서,
    상기 도펀트는 바나듐(V), 크롬(Cr), 망간(Mn) 및 코발트(Co)로 이루어진 군에서 선택되는 1종 이상을 포함하는, 방법.
  8. 제1항에 있어서,
    상기 탄소계 물질로 코팅된 도펀트의 입자의 크기는 1 ㎛ 내지 2,000 ㎛인, 방법.
  9. (a) 반응 용기에 탄소-함유 고분자 수지, 용매, 도펀트 및 SiC(탄화규소)를 포함하는 조성물을 장입하는 단계;
    (b) 상기 조성물을 고형화하는 단계; 및
    (c) 상기 반응 용기에 장착된 종자정에 SiC 단결정 잉곳을 성장시키는 단계를 포함하는, SiC 단결정 잉곳을 성장시키는 방법.
  10. 제9항에 있어서,
    상기 단계 (b)는 상기 조성물을 건조; 경화; 및 탄화(carbonization) 또는 흑연화(graphitization)하는 과정을 거쳐 제조되는, 방법.
  11. 소정의 직경을 갖는 종자정; 및
    상기 종자정이 내부에 고정된 상태에서 상기 종자정의 표면에 잉곳을 성장시키는 반응 용기;를 포함하고,
    상기 반응 용기가,
    상기 반응 용기 상부의 적어도 일부를 형성하고, 상단에 상기 종자정이 고정되는 잉곳 성장부;
    상기 반응 용기의 내부 중앙을 형성하는 열림부 및 상기 열림부를 감싸는 다공체를 포함하고, 상기 종자정의 하부에 위치하면서 상기 반응 용기 하부의 적어도 일부를 형성하는 필터부;
    상기 다공체와 상기 반응 용기 내벽 사이에 위치하면서 상기 반응 용기 하부의 적어도 일부를 형성하고, 내부에 상기 잉곳의 원료가 수용되는 원료 수용부; 및
    상기 원료 수용부의 상단 및 상기 다공체의 상단에 위치한 차단부;를 포함하는, SiC 단결정 잉곳 성장 장치.
  12. 제11항에 있어서,
    상기 필터부가 상기 반응 용기의 하부 중앙을 형성하는, SiC 단결정 잉곳 성장 장치.
  13. 제11항에 있어서,
    상기 다공체가 탄소-함유 고분자 수지, SiC, 도펀트 및 용매를 포함하는 SiC 조성물로부터 제조된, SiC 단결정 잉곳 성장 장치.
  14. 제13항에 있어서,
    상기 다공체가 상기 SiC 조성물을 탄화(carbonization) 또는 흑연화(graphitization)하는 과정을 거쳐 제조된, SiC 단결정 잉곳 성장 장치.
  15. 제13항에 있어서,
    상기 다공체가 상기 SiC 조성물을 건조; 경화; 및 탄화(carbonization) 또는 흑연화(graphitization)하는 과정을 거쳐 제조된, SiC 단결정 잉곳 성장 장치.
  16. 제11항에 있어서,
    상기 다공체가 기공, 유로 및 기공벽을 포함하고,
    상기 기공의 직경이 1 ㎛ 내지 500 ㎛인, SiC 단결정 잉곳 성장 장치.
  17. 제11항에 있어서,
    상기 다공체의 두께가 5 mm 내지 20 mm이고,
    상기 차단부의 두께가 1 mm 내지 10 mm 인, SiC 단결정 잉곳 성장 장치.
  18. 제11항에 있어서,
    상기 열림부의 직경이 상기 종자정의 직경의 15% 내지 40%인, SiC 단결정 잉곳 성장 장치.
  19. 제11항에 있어서,
    상기 열림부의 직경이 상기 차단부의 내부 직경보다 크거나 같은, SiC 단결정 잉곳 성장 장치.
  20. 제11항에 있어서,
    상기 차단부가 흑연, 탄탈륨(Ta), 탄탈륨 카바이드(TaC), 텅스텐(W) 및 텅스텐카바이드(WC)로 이루어진 군에서 선택되는 1종 이상을 포함하는, SiC 단결정 잉곳 성장 장치.
PCT/KR2019/009314 2018-08-30 2019-07-26 반절연 탄화규소 단결정 잉곳을 성장시키는 방법 및 탄화규소 단결정 잉곳 성장 장치 WO2020045833A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/268,189 US11846038B2 (en) 2018-08-30 2019-07-26 Method of growing semi-insulating silicon carbide single crystal using dopant coated with a carbon-based material
CN201980056925.9A CN112639174B (zh) 2018-08-30 2019-07-26 生长半绝缘碳化硅单晶锭的方法和用于生长碳化硅单晶锭的装置
US18/169,883 US11859305B2 (en) 2018-08-30 2023-02-16 Apparatus for growing a SiC single crystal ingot comprising a filter unit having a porous body surrounding an opening unit that is located under a seed crystal

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2018-0102822 2018-08-30
KR1020180102822A KR102090085B1 (ko) 2018-08-30 2018-08-30 반절연 탄화규소 단결정 잉곳을 성장시키는 방법
KR10-2018-0102806 2018-08-30
KR1020180102806A KR102090084B1 (ko) 2018-08-30 2018-08-30 반절연 탄화규소 단결정 잉곳을 성장시키는 방법
KR10-2018-0106272 2018-09-06
KR1020180106272A KR102088924B1 (ko) 2018-09-06 2018-09-06 탄화규소 단결정 잉곳 성장 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/268,189 A-371-Of-International US11846038B2 (en) 2018-08-30 2019-07-26 Method of growing semi-insulating silicon carbide single crystal using dopant coated with a carbon-based material
US18/169,883 Division US11859305B2 (en) 2018-08-30 2023-02-16 Apparatus for growing a SiC single crystal ingot comprising a filter unit having a porous body surrounding an opening unit that is located under a seed crystal

Publications (1)

Publication Number Publication Date
WO2020045833A1 true WO2020045833A1 (ko) 2020-03-05

Family

ID=69644480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009314 WO2020045833A1 (ko) 2018-08-30 2019-07-26 반절연 탄화규소 단결정 잉곳을 성장시키는 방법 및 탄화규소 단결정 잉곳 성장 장치

Country Status (3)

Country Link
US (2) US11846038B2 (ko)
CN (1) CN112639174B (ko)
WO (1) WO2020045833A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014246A1 (ja) * 2022-07-14 2024-01-18 住友電気工業株式会社 炭化珪素結晶基板、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291899A (ja) * 1997-04-21 1998-11-04 Showa Denko Kk 炭化ケイ素単結晶の製造方法及びその製造装置
JP2000264795A (ja) * 1999-03-23 2000-09-26 Denso Corp 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP2002234800A (ja) * 2001-02-07 2002-08-23 Denso Corp 炭化珪素単結晶の製造方法および炭化珪素単結晶
JP2002293525A (ja) * 2001-03-30 2002-10-09 Bridgestone Corp 炭化ケイ素粉末、その製造方法、炭化ケイ素単結晶
JP2010248025A (ja) * 2009-04-14 2010-11-04 Bridgestone Corp 炭化珪素粉体の製造方法
KR20130074714A (ko) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 잉곳 제조 장치
KR101614325B1 (ko) * 2015-01-21 2016-04-21 한국세라믹기술원 바나듐 함유 탄화규소 분말의 제조방법 및 이에 의해 제조된 고저항 탄화규소 단결정
KR20170073834A (ko) * 2015-12-18 2017-06-29 재단법인 포항산업과학연구원 탄화규소(SiC) 단결정 성장 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821360B1 (ko) 2006-08-23 2008-04-11 신닛뽄세이테쯔 카부시키카이샤 탄화규소 단결정, 탄화규소 단결정 웨이퍼 및 그것의 제조 방법
JP6226959B2 (ja) * 2012-04-20 2017-11-08 トゥー‐シックス・インコーポレイテッド 大口径高品質SiC単結晶、方法、及び装置
WO2015035140A1 (en) * 2013-09-06 2015-03-12 Gtat Corporation Method for producing bulk silicon carbide
KR101633183B1 (ko) 2014-10-27 2016-06-24 오씨아이 주식회사 잉곳 제조 장치
AT14701U1 (de) * 2015-03-19 2016-04-15 Plansee Composite Mat Gmbh Beschichtungsquelle zur Herstellung dotierter Kohlenstoffschichten
CN105161554B (zh) * 2015-08-19 2016-07-06 宁波工程学院 一种P掺杂SiC纳米颗粒薄膜的制备方法
CN207391600U (zh) 2017-10-24 2018-05-22 福建北电新材料科技有限公司 一种碳化硅晶体的生长设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291899A (ja) * 1997-04-21 1998-11-04 Showa Denko Kk 炭化ケイ素単結晶の製造方法及びその製造装置
JP2000264795A (ja) * 1999-03-23 2000-09-26 Denso Corp 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP2002234800A (ja) * 2001-02-07 2002-08-23 Denso Corp 炭化珪素単結晶の製造方法および炭化珪素単結晶
JP2002293525A (ja) * 2001-03-30 2002-10-09 Bridgestone Corp 炭化ケイ素粉末、その製造方法、炭化ケイ素単結晶
JP2010248025A (ja) * 2009-04-14 2010-11-04 Bridgestone Corp 炭化珪素粉体の製造方法
KR20130074714A (ko) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 잉곳 제조 장치
KR101614325B1 (ko) * 2015-01-21 2016-04-21 한국세라믹기술원 바나듐 함유 탄화규소 분말의 제조방법 및 이에 의해 제조된 고저항 탄화규소 단결정
KR20170073834A (ko) * 2015-12-18 2017-06-29 재단법인 포항산업과학연구원 탄화규소(SiC) 단결정 성장 장치

Also Published As

Publication number Publication date
US20230193506A1 (en) 2023-06-22
US11859305B2 (en) 2024-01-02
US11846038B2 (en) 2023-12-19
US20210317595A1 (en) 2021-10-14
CN112639174B (zh) 2022-09-20
CN112639174A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2020022822A1 (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2017142231A1 (ko) 금속판, 증착용마스크 및 이의 제조방법
WO2013032304A2 (ko) 유기전자소자 및 그 제조방법
WO2019112107A1 (ko) 실리콘나이트라이드 음극재 및 이의 제조 방법
WO2011083923A2 (en) Light emitting diode having electrode pads
WO2012060601A2 (en) Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
WO2021162422A1 (ko) 세라믹 부품 및 세라믹 부품의 제조방법
WO2010147318A2 (ko) 아미노 안트라센 유도체 및 이를 이용한 유기 전계 발광 소자
WO2016105161A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2019231164A1 (ko) 식각 특성이 향상된 화학기상증착 실리콘 카바이드 벌크
WO2020105910A1 (ko) 합금 금속판 및 이를 포함하는 증착용 마스크
WO2020045833A1 (ko) 반절연 탄화규소 단결정 잉곳을 성장시키는 방법 및 탄화규소 단결정 잉곳 성장 장치
WO2022265240A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2023243995A1 (ko) 유기 전계 발광 소자용 펠릿 및 이를 이용한 유기 전계 발광 소자
WO2012093861A2 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016013894A2 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2023080733A1 (ko) 탄화규소 웨이퍼의 제조방법 및 탄화규소 잉곳의 제조방법
WO2023101522A1 (ko) 다공성 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2019125052A1 (ko) 에어로겔 복합물 및 그의 제조 방법
WO2023096443A1 (ko) 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질
WO2021246542A1 (ko) 탄화규소 잉곳의 제조방법, 탄화규소 잉곳 및 이의 성장 시스템
WO2022005064A1 (ko) 다공성 실리콘옥시카바이드 제조용 중간체, 이의 제조방법, 이로부터 제조된 다공성 실리콘옥시카바이드를 음극활물질로 포함하는 리튬 이차전지
WO2022124867A1 (ko) 탄소나노튜브 제조장치 및 제조방법
WO2016108398A1 (ko) 유기 13족 전구체 및 이를 이용한 박막 증착 방법
WO2018139822A1 (ko) 반도체 도너 기판과, 반도체 도너 기판의 제조 방법과, 유기 발광 장치의 제조 방법 및 도너 기판 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853877

Country of ref document: EP

Kind code of ref document: A1