WO2020045720A1 - Device and method for detecting malfunction in multimodal sensor by using artificial neural network - Google Patents
Device and method for detecting malfunction in multimodal sensor by using artificial neural network Download PDFInfo
- Publication number
- WO2020045720A1 WO2020045720A1 PCT/KR2018/010654 KR2018010654W WO2020045720A1 WO 2020045720 A1 WO2020045720 A1 WO 2020045720A1 KR 2018010654 W KR2018010654 W KR 2018010654W WO 2020045720 A1 WO2020045720 A1 WO 2020045720A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- state
- sensors
- neural network
- artificial neural
- output signal
- Prior art date
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims description 9
- 230000007257 malfunction Effects 0.000 title abstract 2
- 239000012491 analyte Substances 0.000 claims abstract description 62
- 238000005259 measurement Methods 0.000 claims abstract description 40
- 230000005856 abnormality Effects 0.000 claims description 49
- 230000032683 aging Effects 0.000 claims description 47
- 238000001514 detection method Methods 0.000 claims description 47
- 238000010521 absorption reaction Methods 0.000 claims description 16
- 238000002835 absorbance Methods 0.000 claims description 9
- 230000002159 abnormal effect Effects 0.000 claims description 5
- 239000000284 extract Substances 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 238000012544 monitoring process Methods 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/0227—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
- G05B23/0235—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Definitions
- the present invention relates to a multimodal sensor abnormality detection apparatus and method using an artificial neural network.
- the conventional technology uses a multi-modal sensor to monitor the situation of an industrial facility in real time, thereby improving safety and efficient maintenance and preventing accidents.
- the multi-modal sensor cannot detect abnormalities. If one of the sensors is abnormal, there is a problem that can not detect the correct situation.
- Japanese Laid-Open Patent Publication No. 1998-019614 is a conventional technique of a multi-sensor system for diagnosing such a problem and a diagnostic method and apparatus.
- the prior art diagnoses an abnormality by comparing the output variable of the sensor, but because the output variable is different for each sensor, there are many output variables to compare, so it is difficult to combine the variables in the case of the non-skilled person, and when the abnormality is determined using the wrong combination, There is a problem.
- the technical problem to be solved by the present invention in real-time monitoring of the situation of the industrial facilities using a multi-modal sensor, to detect the abnormality of the multi-modal sensor in advance so that the failure of the multi-modal sensor can be replaced in advance before failure It is.
- Another technical problem to be solved by the present invention is to accurately and quickly detect an abnormality of a multimodal sensor using an artificial neural network learned about various output variables of a multimodal sensor composed of a plurality of identical sensors or heterogeneous sensors.
- a multi-modal sensor unit consisting of a plurality of sensors for measuring the analyte in the measurement area and generating an output signal; And receiving the output signal through the multi-modal sensor unit, extracting a feature (pattern) of the output signal according to at least one of a new (normal) state, an old state, and a failure state of the plurality of sensors, and extracting the extracted signal.
- a multi-modal sensor abnormality detection apparatus using an artificial neural network, including; an analysis unit for analyzing the state of the plurality of sensors using the learned artificial neural network for the characteristics (patterns) of the output signal.
- the characteristic (pattern) of the output signal is a variable for learning the artificial neural network, the variable is measured according to at least one of the new (normal) state, the old state and the failure state of the plurality of sensors At least one of distance, the analyte concentration, voltage, resistance, current, time, electrical conductivity change amount, pressure change amount, absorption intensity, relative absorbance, and wavelength may be used.
- the apparatus may further include a temperature / humidity measurement unit for measuring temperature and humidity in the measurement area, wherein the analysis unit further receives the temperature and humidity measured by the temperature / humidity measurement unit. Extracts a feature (pattern) of the output signal according to at least one of a (normal) state, the aging state, the fault state, the temperature, and the humidity, and learns about a feature (pattern) of the extracted output signal.
- An artificial neural network may be used to analyze the state of the plurality of sensors.
- the characteristic (pattern) of the output signal is a variable for learning the artificial neural network, wherein the variable is one of the new (normal) state, the old state, the failure state, the temperature and the humidity of the plurality of sensors At least one of the measurement distance, the analyte concentration, the voltage, the resistance, the current, the time, the electrical conductivity change amount, the pressure change amount, the absorption intensity, the relative absorbance and the wavelength according to at least one.
- the plurality of sensors of the multi-modal sensor unit may be two or more identical sensors or heterogeneous sensors.
- the abnormal detection method of the multi-modal sensor abnormality detection apparatus using an artificial neural network the multi-modal sensor unit consisting of a plurality of sensors measuring the analyte in the measurement area and generates an output signal;
- An analysis unit receiving the output signal from the multi-modal sensor unit and extracting a feature (pattern) of the output signal according to at least one of a new (normal) state, an old state, and a failure state of the plurality of sensors; And analyzing the state of the plurality of sensors by using the artificial neural network learned about the feature (pattern) of the extracted output signal by the analysis unit.
- the multi-modal sensor unit consisting of a plurality of sensors measuring the analyte in the detection area and generates an output signal ; Detecting, by a temperature / humidity measurement unit, temperature and humidity in the measurement area; The analysis unit receives the output signal, the measured temperature and the humidity from the multi-modal sensor unit and the temperature / humidity measuring unit, and the new (normal) state, the old state, the fault state, the temperature, and the like. Extracting a feature (pattern) of the output signal according to at least one of the humidity; And analyzing the state of the plurality of sensors by using the artificial neural network learned about the feature (pattern) of the extracted output signal by the analysis unit. Can be.
- the present invention in real-time monitoring of industrial facilities using a multi-modal sensor, detects the abnormality of the multi-modal sensor in advance and can replace the sensor in advance of the failure of the multi-modal sensor in advance before failure to improve safety and maintenance It is effective to prevent accidents by making them more efficient.
- FIG. 1 is a block diagram of a multi-modal sensor abnormality detection device using an artificial neural network according to an embodiment of the present invention.
- 2A and 2B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the measurement distance.
- 3A and 3B are analysis of the characteristics (patterns) of the output signal according to the new (normal) state, the aging state of the plurality of sensors analyzed by the multi-modal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention
- This graph shows water concentration and measurement distance.
- 4A and 4B are characteristics of an output signal according to a new (normal) state, an aging state, a temperature, and a humidity of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention ( A graph showing the analyte concentration in the pattern).
- 5A and 5B are characteristics (patterns) of output signals according to a new (normal) state, an aging state, and a failure state of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the analyte concentration according to voltage and voltage.
- 6A and 6B are characteristics (patterns) of output signals according to a new (normal) state, an aging state, and a failure state of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the current according to the analyte concentration and the analyte concentration.
- 7A and 7B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing resistance and analyte concentration according to resistance.
- 8A and 8B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing absorption intensity according to wavelength and wavelength.
- 9A and 9B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the electric conductivity change and the pressure change.
- FIG. 10 shows wavelengths and relative absorption among characteristics (patterns) of output signals according to the new (normal) state and the aging state of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention. It is a graph which shows a figure.
- FIG. 11 is a flowchart illustrating a multimodal sensor abnormality detection method using an artificial neural network according to another embodiment of the present invention.
- FIG. 12 is a flowchart illustrating a multimodal sensor abnormality detection method using an artificial neural network according to another embodiment of the present invention.
- FIG. 1 is a block diagram of a multi-modal sensor abnormality detection device using an artificial neural network according to an embodiment of the present invention.
- the apparatus 100 for detecting abnormality of multimodal sensors using an artificial neural network includes a multimodal sensor unit 110, an analysis unit 120, and an output unit 130.
- the multi-modal sensor unit 110 is composed of a plurality of sensors to measure the analyte in the measurement area and generate an output signal.
- a plurality of sensors of the multi-modal sensor unit 110 may be composed of two or more identical sensors or heterogeneous sensors.
- the analysis unit 120 receives an output signal through the multi-modal sensor unit 110 connected through a wired or wireless network, and outputs a signal according to at least one of a new (normal) state, an old state, and a fault state of a plurality of sensors. (Pattern) is extracted, and the state of the plurality of sensors is analyzed using the artificial neural network learned about the characteristics (pattern) of the extracted output signal.
- the characteristic (pattern) of the output signal extracted by the analysis unit 120 is a variable for learning the artificial neural network, and the variable is measured according to at least one of a new (normal) state, an old state, and a fault state of a plurality of sensors. At least one of distance, analyte concentration, voltage, resistance, current, time, electrical conductivity change, pressure change, absorption intensity, relative absorbance, and wavelength, and the artificial neural network is learned by classification learning, deep learning, etc. Can be.
- the output unit 130 outputs output signal characteristics (patterns) of the analytes analyzed by the analyzer 120 and the states of the plurality of sensors.
- Multimodal sensor abnormality detection device 100 using an artificial neural network may further include a temperature / humidity measuring unit 140.
- the temperature / humidity measurement unit 140 measures the temperature and humidity in the measurement area and provides the measured temperature and humidity to the analysis unit 130 connected to the wired / wireless network.
- the analyzer 130 further receives the temperature and humidity measured by the temperature / humidity measurement unit 140, according to at least one of the new (normal) state, aging state, failure state, temperature, and humidity of the plurality of sensors.
- a feature (pattern) of the output signal may be extracted, and the state of the plurality of sensors may be analyzed using an artificial neural network learned about the extracted feature (pattern) of the output signal.
- the parameters for learning the artificial neural network are measured distance, analyte concentration, voltage, resistance, current, time according to at least one of the new (normal) state, aging state, failure state, temperature and humidity of the plurality of sensors, It may be at least one of an electrical conductivity change amount, a pressure change amount, an absorption intensity, a relative absorption degree, and a wavelength.
- the concentration of the gas to be detected is generally determined by determining the composition ratio of the elements constituting the gas
- the concentration of the gas to be detected is generally determined by determining the composition ratio of the elements constituting the gas
- the characteristics (patterns) of the output signals are correlated with each other, the correlation of the characteristics (patterns) can be used as variables in the output signals.
- 2A and 2B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the measurement distance.
- 2A is a graph illustrating a measurement distance among characteristics (patterns) of output signals according to a new (normal) state sensor, an aging state, and a failure state of a plurality of sensors of the multimodal sensor unit 110
- FIG. 2B is a multimodal sensor
- a plurality of sensors of the unit 110 are graphs showing time and measurement distance among the characteristics (patterns) of the output signal according to the new (normal) state sensor, the deterioration state, and the failure state.
- the analysis unit 120 receives the output signal of the sensor, the analysis unit 120 extracts the measurement distance feature (pattern) of the output signal to learn and analyzes which sensor is a new (normal) state or an old state or a failure state.
- the analysis unit 120 analyzes that the measurement distance for measuring the analyte is the same as time passes, but as the aging state progresses, the performance of the sensor decreases.
- the measurement distance to measure the analyte will be less, and if the deterioration state is considerably continued, it is possible to analyze that the measurement value does not come out at any moment, so that the analysis unit 120 has some progress in the deterioration state of a certain sensor. To predict when they will reach their end of life.
- FIG. 3A and 3B are analysis of the characteristics (patterns) of the output signal according to the new (normal) state, the aging state of the plurality of sensors analyzed by the multi-modal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention
- This graph shows water concentration and measurement distance.
- FIG. 3A illustrates a case in which a plurality of sensors are exposed when the analyte is exposed to a measurement distance that each sensor can detect when the installation location is different under the same analyte concentration, temperature, and humidity when the same sensor is used.
- the graph shows a window clustering the output signal characteristics (patterns) according to the analyte concentration and the measurement distance when all of them are in a new (normal) state
- 3B shows the same analyte concentration
- the sensor output according to the analyte concentration and the measuring distance to the sensor which is new (normal) and aging
- a graph that shows a window of clustering signal features (patterns).
- the analysis unit 120 analyzes signals measured by the plurality of sensors.
- the clustered windows are the same size and overlap each other.
- the performance should be the same. However, as the aging state progresses, the performance of the sensor decreases, so that the measurement distance and the analyte concentration may be measured. The value is different, and based on the size of the clustered window analyzed by the analyzer 120 analyzing the signals measured by the plurality of sensors, it is predicted to what extent the deteriorated state of which sensor has progressed and when the end of life.
- 4A and 4B are characteristics of an output signal according to a new (normal) state, an aging state, a temperature, and a humidity of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention ( A graph showing the analyte concentration in the pattern).
- 4A is a graph showing analyte concentrations according to temperature among output signal characteristics (patterns) according to the degree of deterioration of a plurality of sensors and when a plurality of sensors are in a new (normal) state under conditions having the same analyte concentration.
- 4B is a graph showing analyte concentration according to humidity among output signal characteristics (patterns) according to the degree of deterioration of a plurality of sensors and when a plurality of sensors are in a new (normal) state under conditions having the same analyte concentration.
- the concentration of the analyte is affected by the temperature, the degradation of the performance of the sensor as the aging state progresses, the effect on temperature is different from the analysis unit based on the new (normal) state sensor and the old state sensor 120 predicts how old the sensor is and how long it has reached its end of life.
- the concentration of the analyte is affected by the humidity
- the performance of the sensor is degraded as the aging state progresses
- the effect of the humidity on the analysis unit based on the difference between the new (normal) state sensor and the old state sensor 120 predicts how old the sensor is and how long it has reached its end of life.
- 5A and 5B are characteristics (patterns) of output signals according to a new (normal) state, an aging state, and a failure state of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the analyte concentration according to voltage and voltage.
- 5A is a graph illustrating voltages according to a new (normal) state sensor, an aging state, and a failure state of the plurality of sensors of the multi-modal sensor unit 110.
- FIG. 5B illustrates a plurality of sensors of the multi-modal sensor unit 110. It is a graph showing the analyte concentration according to the new (normal) state sensor, the aging state and the voltage.
- the voltage applied to the sensor becomes less as the aging becomes less.
- 130 receives the output signal of the sensor and extracts and learns a voltage characteristic (pattern) of the output signal, and analyzes which sensor is new (normal), old, or faulty.
- the concentration of the analyte is influenced by the voltage, and as the aging state progresses, the performance of the sensor decreases and the voltage applied to the sensor decreases. Predict how far it has progressed and when it will reach its end of life.
- FIG. 6A and 6B are characteristics (patterns) of output signals according to a new (normal) state, an aging state, and a failure state of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the current according to the analyte concentration and the analyte concentration.
- FIG. 6A is a graph illustrating analyte concentration according to a new (normal) state sensor, an aging state, and a failure state of a plurality of sensors of the multimodal sensor unit 110.
- FIG. 6B is a plurality of sensors of the multimodal sensor unit 110.
- FIG. The sensor is a graph showing the analyte concentration according to the new (normal) state sensor, aging state and current.
- the analysis unit 120 receives the output signal of the sensor and extracts and analyzes the analyte concentration characteristic (pattern) of the output signal to determine which sensor is new (normal), old, or faulty. Analyze
- the amount of current generated according to the analyte concentration is changed.
- the performance of the sensor decreases, so that the measured analyte concentration is small, and thus the analysis unit 120 is small. Predicts how old the sensor is and how old it is.
- FIG. 7A and 7B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing resistance and analyte concentration according to resistance.
- FIG. 7A is a graph illustrating resistance of a plurality of sensors of the multi-modal sensor unit 110 according to a new (normal) state sensor, an aging state, and a failure state.
- FIG. 7B illustrates a plurality of sensors of the multi-modal sensor unit 110. It is a graph showing the analyte concentration according to the new (normal) state sensor, the aging state and the resistance.
- the resistance of the sensor increases as the age of the analysis unit 130 increases.
- the concentration of the analyte is affected by the resistance.
- the performance of the sensor decreases and the resistance of the sensor increases, so that the analysis unit 120 determines the degree of deterioration of a certain sensor. Progress is made and predicts when the end of life will be reached.
- 8A and 8B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing absorption intensity according to wavelength and wavelength.
- 8A is a graph illustrating wavelengths of a plurality of sensors of the multi-modal sensor unit 110 according to a new (normal) state sensor, an aging state, and a failure state
- FIG. 8B illustrates a plurality of sensors of the multi-modal sensor unit 110. It is a graph showing the absorption intensity according to the new (normal) state sensor, the aging state and the wavelength.
- the analysis unit 130 receives the output signal of the sensor, extracts and learns the wavelength characteristic (pattern) of the output signal, and analyzes which sensor is a new (normal) state, an old state or a failure state.
- the analyzer 120 proceeds to a certain degree of deterioration of a certain sensor. Predict when the end of life.
- FIG. 9A and 9B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the electric conductivity change and the pressure change.
- FIG. 9A is a graph illustrating changes in conductivity of the plurality of sensors of the multimodal sensor unit 110 according to a new (normal) state sensor, an aging state, and a failure state
- FIG. 9B is a diagram of a plurality of sensors of the multimodal sensor unit 110.
- the sensor shows a graph of the pressure change according to the new (normal) state sensor, the aging state and the failure state.
- the semiconductor gas sensor when a plurality of sensors of the multi-modal sensor unit 110 use the same semiconductor gas sensor under conditions having the same analyte concentration, temperature, and humidity, the semiconductor gas sensor is a gas on the ceramic semiconductor surface. If the same sensor is used to measure the amount of change in electrical conductivity that occurs when the contact is made, the amount of change in electrical conductivity should be the same because the performance is the same, but as the sensor gets older, the analysis unit 120 outputs the sensor output. It receives the signal and extracts the electrical conductivity variation feature (pattern) and learns it, and analyzes which sensor is new (normal), old or broken.
- a plurality of sensors of the multi-modal sensor unit 110 under the same analyte concentration, temperature, and humidity may be used to emit light of gas molecules by using a characteristic in which gas molecules absorb light of a specific wavelength, usually infrared rays.
- the analysis unit 120 receives the output signal of the sensor and extracts the pressure variation feature (pattern) of the output signal to learn and analyzes which sensor is in a new (normal) state or an old state or a failure state.
- FIG. 10 shows wavelengths and relative absorption among characteristics (patterns) of output signals according to the new (normal) state and the aging state of a plurality of sensors analyzed by the multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention. It is a graph which shows a figure. 10 (a) is a novel (normal) when a plurality of sensors of the multi-modal sensor unit 110 is a heterogeneous sensor as a carbon monoxide (CO) sensor and a carbon dioxide (CO 2 ) sensor under conditions having the same analyte concentration, temperature, and humidity.
- CO carbon monoxide
- CO 2 carbon dioxide
- Figure 10 (b) is a plurality of sensors of the multi-modal sensor unit 110 and the carbon monoxide (CO) sensor under the conditions having the same analyte concentration, temperature, humidity This is a graph showing the wavelength and the relative absorbance when the carbon dioxide (CO 2 ) sensor is a heterogeneous sensor in the aging state.
- the relative absorption of the carbon dioxide (CO 2 ) sensor is analyzed because the deteriorated state of FIG. 10 (b) is lower than the new (normal) state of FIG. 10 (a).
- the unit 120 analyzes that the carbon dioxide (CO 2 ) sensor is in an aging state.
- FIG. 11 is a flowchart illustrating a multimodal sensor abnormality detection method using an artificial neural network according to another embodiment of the present invention.
- the multimodal sensor unit 110 including a plurality of sensors measures analytes in a measurement area and generates an output signal.
- the analysis unit 120 receives the output signal from the multi-modal sensor unit 110, and thus the characteristics (pattern) of the output signal according to at least one of a new (normal) state, an old state, and a failure state of the plurality of sensors. Extract
- step S1130 the analysis unit 120 analyzes the state of the plurality of sensors using the learned neural network for the feature (pattern) of the extracted output signal.
- the analysis unit 120 may transmit the analyzed result to the output unit 130 and output the result analyzed by the output unit 130 in the analysis unit 120.
- FIG. 12 is a flowchart illustrating a multimodal sensor abnormality detection method using an artificial neural network according to another embodiment of the present invention.
- step S1210 the multi-modal sensor unit 110 composed of a plurality of sensors measures the analyte in the detection area and generates an output signal.
- step S1220 the temperature / humidity measuring unit 140 detects the temperature and humidity in the measurement area.
- step S1230 the analysis unit 120 receives the output signal and the measured temperature and humidity from the multi-modal sensor unit 110 and the temperature / humidity measurement unit 140, and the temperature, humidity, and new (normal) state of the plurality of sensors. Extracts a feature (pattern) of the output signal according to at least one of a deterioration state and a failure state.
- step S1240 the analysis unit 120 analyzes the state of the plurality of sensors using the learned artificial neural network for the feature (pattern) of the extracted output signal.
- the analysis unit 120 may transmit the analyzed result to the output unit 130 and output the result analyzed by the output unit 130 in the analysis unit 120.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
The present invention relates to a device for detecting a malfunction in a multimodal sensor by using an artificial neural network, the device comprising: a multimodal sensor unit comprising a plurality of sensors for measuring an analyte in a measurement area and generating an output signal; and an analysis unit for receiving the output signal through the multimodal sensor unit, extracting a characteristic (pattern) of the output signal according to at least one of a new (normal) state, an obsolescence state, and a fault state of the plurality of sensors, and analyzing a state of the plurality of sensors by using an artificial neural network that is trained by learning about the extracted characteristic (pattern) of the output signal.
Description
본 발명은 인공신경망을 이용한 멀티모달 센서 이상 감지 장치 및 방법에 관한 것이다.The present invention relates to a multimodal sensor abnormality detection apparatus and method using an artificial neural network.
일반적으로 산업시설의 경우 고장이 발생하면, 계통 사고에 의한 대규모 정전, 유독가스 노출 등의 큰 사고로 이어져 큰 손실이 불가피하므로, 산업시설의 모니터링은 사고를 미연에 방치하는 측면에서 매우 중요하다. In general, when a failure occurs in an industrial facility, large losses such as large-scale power outages due to system accidents and exposure to toxic gases are inevitable, and large losses are inevitable. Therefore, monitoring of industrial facilities is very important in terms of preventing accidents in advance.
이런 산업시설에 모니터링을 하는 기술로는 차량 또는 도보로 이동하며 이상 유무를 육안으로 점검/감시하거나, CCTV를 설치 운영해 모니터링하는 방법을 사용하다 최근들어 여러 센서로 구성된 멀티모달 센서를 산업시설에 설치해 분석물을 모니터링하는 방법이 주로 사용되고 있다.As a monitoring technology for these industrial facilities, it is possible to visually check / monitor abnormalities by moving by car or foot, or to monitor and install CCTV. Recently, multimodal sensors composed of several sensors have been installed in industrial facilities. The method of monitoring the analyte is mainly used.
이러한 멀티모달 센서를 이용한 분석물 모니터링의 종래기술로는 한국 등록특허공보 제10-1079846호가 있다.The prior art of analyte monitoring using such a multi-modal sensor is Korea Patent Publication No. 10-1079846.
그러나 종래기술은 멀티모달 센서를 이용해 산업시설의 상황을 실시간 감시함으로써, 안전성을 향상하고 유지 관리를 효율화하여 사고를 미연에 방지할 수 있지만, 이를 위한 멀티모달 센서의 이상을 감지할 수 없어 멀티모달 센서 중 하나가 이상이 생겼을 경우 정확한 상황을 감지할 수 없는 문제점이 있다.However, the conventional technology uses a multi-modal sensor to monitor the situation of an industrial facility in real time, thereby improving safety and efficient maintenance and preventing accidents. However, the multi-modal sensor cannot detect abnormalities. If one of the sensors is abnormal, there is a problem that can not detect the correct situation.
이러한 문제점을 해결하기 위한 멀티 센서 시스템이 진단 방법 및 장치의 종래기술로는 일본 공개특허공보 제1998-019614호가 있다.Japanese Laid-Open Patent Publication No. 1998-019614 is a conventional technique of a multi-sensor system for diagnosing such a problem and a diagnostic method and apparatus.
그러나 종래기술은 센서의 출력변수를 비교해 이상을 진단하지만, 센서마다 출력변수가 틀려 비교할 출력변수가 많기 때문에 비숙지자의 경우 변수의 조합이 어려우며, 잘못된 조합을 이용하여 이상을 판별하는 경우에는 오진할 문제점이 있다.However, the prior art diagnoses an abnormality by comparing the output variable of the sensor, but because the output variable is different for each sensor, there are many output variables to compare, so it is difficult to combine the variables in the case of the non-skilled person, and when the abnormality is determined using the wrong combination, There is a problem.
본 발명이 해결하고자 하는 기술적 과제는, 멀티모달 센서를 이용해 산업시설의 상황을 실시간 감시하는데 있어, 멀티모달 센서의 이상을 미리 감지해 멀티모달 센서 중 이상이 발생한 센서를 고장전에 미리 교체할 수 있도록 하는 것이다.The technical problem to be solved by the present invention, in real-time monitoring of the situation of the industrial facilities using a multi-modal sensor, to detect the abnormality of the multi-modal sensor in advance so that the failure of the multi-modal sensor can be replaced in advance before failure It is.
본 발명이 해결하고자 하는 다른 기술적 과제는, 복수의 동일한 센서 또는 이종 센서로 이루어진 멀티모달 센서의 다양한 출력변수에 대해 학습된 인공신경망을 이용해 정확하고 신속하게 멀티모달 센서의 이상을 감지할 수 있도록 하는 것이다.Another technical problem to be solved by the present invention is to accurately and quickly detect an abnormality of a multimodal sensor using an artificial neural network learned about various output variables of a multimodal sensor composed of a plurality of identical sensors or heterogeneous sensors. will be.
상기와 같은 기술적 과제를 해결하기 위해, 본 발명의 바람직한 일 측면에 따르면, 측정 영역 내의 분석물을 측정하고 출력 신호를 생성하는 복수의 센서로 구성된 멀티모달 센서부; 및 상기 멀티모달 센서부를 통해 상기 출력 신호를 입력 받아 상기 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태 중 적어도 어느 하나에 따른 상기 출력 신호의 특징(패턴)을 추출하고, 상기 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 상기 복수의 센서의 상태를 분석하는 분석부;를 포함하는 인공신경망을 이용한 멀티모달 센서 이상 감지 장치를 제공할 수 있다.In order to solve the above technical problem, according to a preferred aspect of the present invention, a multi-modal sensor unit consisting of a plurality of sensors for measuring the analyte in the measurement area and generating an output signal; And receiving the output signal through the multi-modal sensor unit, extracting a feature (pattern) of the output signal according to at least one of a new (normal) state, an old state, and a failure state of the plurality of sensors, and extracting the extracted signal. It can provide a multi-modal sensor abnormality detection apparatus using an artificial neural network, including; an analysis unit for analyzing the state of the plurality of sensors using the learned artificial neural network for the characteristics (patterns) of the output signal.
여기서, 상기 출력 신호의 특징(패턴)은 상기 인공신경망을 학습시키기 위한 변수로, 상기 변수는 상기 복수의 센서의 상기 신규(정상) 상태, 상기 노후 상태 및 상기 고장 상태 중 적어도 어느 하나에 따른 측정거리, 상기 분석물 농도, 전압, 저항, 전류, 시간, 전기전도도 변화량, 압력 변화량, 흡수강도, 상대 흡수도 및 파장 중 적어도 어느 하나일 수 있다.Here, the characteristic (pattern) of the output signal is a variable for learning the artificial neural network, the variable is measured according to at least one of the new (normal) state, the old state and the failure state of the plurality of sensors At least one of distance, the analyte concentration, voltage, resistance, current, time, electrical conductivity change amount, pressure change amount, absorption intensity, relative absorbance, and wavelength may be used.
또한, 상기 측정 영역 내의 온도와 습도를 측정하는 온도/습도 측정부;를 더 포함하되, 상기 분석부는 상기 온도/습도 측정부를 통해 측정한 상기 온도와 습도를 더 입력 받아 상기 복수의 센서의 상기 신규(정상) 상태, 상기 노후 상태, 상기 고장 상태, 상기 온도 및 상기 습도 중 적어도 어느 하나에 따른 상기 출력 신호의 특징(패턴)을 추출하고, 상기 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 상기 복수의 센서의 상태를 분석할 수 있다.The apparatus may further include a temperature / humidity measurement unit for measuring temperature and humidity in the measurement area, wherein the analysis unit further receives the temperature and humidity measured by the temperature / humidity measurement unit. Extracts a feature (pattern) of the output signal according to at least one of a (normal) state, the aging state, the fault state, the temperature, and the humidity, and learns about a feature (pattern) of the extracted output signal. An artificial neural network may be used to analyze the state of the plurality of sensors.
여기서, 상기 출력 신호의 특징(패턴)은 상기 인공신경망을 학습시키기 위한 변수로, 상기 변수는 상기 복수의 센서의 상기 신규(정상) 상태, 상기 노후 상태, 상기 고장 상태, 상기 온도 및 상기 습도 중 적어도 어느 하나에 따른 측정거리, 상기 분석물 농도, 전압, 저항, 전류, 시간, 전기전도도 변화량, 압력 변화량, 흡수강도, 상대 흡수도 및 파장 중 적어도 어느 하나일 수 있다.Here, the characteristic (pattern) of the output signal is a variable for learning the artificial neural network, wherein the variable is one of the new (normal) state, the old state, the failure state, the temperature and the humidity of the plurality of sensors At least one of the measurement distance, the analyte concentration, the voltage, the resistance, the current, the time, the electrical conductivity change amount, the pressure change amount, the absorption intensity, the relative absorbance and the wavelength according to at least one.
여기서, 상기 멀티모달 센서부의 상기 복수의 센서는 2개 이상의 동일한 센서이거나 이종 센서일 수 있다.Here, the plurality of sensors of the multi-modal sensor unit may be two or more identical sensors or heterogeneous sensors.
본 발명의 바람직한 다른 측면에 따르면, 인공신경망을 이용한 멀티모달 센서 이상 감지 장치의 이상 감지 방법에 있어서, 복수의 센서로 구성된 멀티모달 센서부가 측정 영역 내의 분석물을 측정하고 출력 신호를 생성하는 단계; 분석부가 상기 멀티모달 센서부로부터 상기 출력 신호를 입력 받아 상기 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태 중 적어도 어느 하나에 따른 상기 출력 신호의 특징(패턴)을 추출하는 단계; 및 상기 분석부가 상기 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 상기 복수의 센서의 상태를 분석하는 단계;를 포함하는 인공신경망을 이용한 멀티모달 센서 이상 감지 방법을 제공할 수 있다.According to another preferred aspect of the present invention, the abnormal detection method of the multi-modal sensor abnormality detection apparatus using an artificial neural network, the multi-modal sensor unit consisting of a plurality of sensors measuring the analyte in the measurement area and generates an output signal; An analysis unit receiving the output signal from the multi-modal sensor unit and extracting a feature (pattern) of the output signal according to at least one of a new (normal) state, an old state, and a failure state of the plurality of sensors; And analyzing the state of the plurality of sensors by using the artificial neural network learned about the feature (pattern) of the extracted output signal by the analysis unit. Can be.
본 발명의 바람직한 또 다른 측면에 따르면, 인공신경망을 이용한 멀티모달 센서 이상 감지 장치의 이상 감지 방법에 있어서, 복수의 센서로 구성된 멀티모달 센서부가 검출 영역 내의 분석물을 측정하고 출력 신호를 생성하는 단계; 온도/습도 측정부가 상기 측정 영역 내의 온도와 습도를 검출하는 단계; 분석부가 상기 멀티모달 센서부와 상기 온도/습도 측정부로부터 상기 출력 신호와 상기 측정한 상기 온도와 상기 습도를 입력 받아 상기 복수의 센서의 신규(정상) 상태, 노후 상태, 고장 상태, 상기 온도 및 상기 습도 중 적어도 어느 하나에 따른 상기 출력 신호의 특징(패턴)을 추출하는 단계; 및 상기 분석부가 상기 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 상기 복수의 센서의 상태를 분석하는 단계;를 포함하는 인공신경망을 이용한 멀티모달 센서 이상 감지 방법을 제공할 수 있다.According to another preferred aspect of the present invention, in the abnormal detection method of the multi-modal sensor abnormality detection apparatus using an artificial neural network, the multi-modal sensor unit consisting of a plurality of sensors measuring the analyte in the detection area and generates an output signal ; Detecting, by a temperature / humidity measurement unit, temperature and humidity in the measurement area; The analysis unit receives the output signal, the measured temperature and the humidity from the multi-modal sensor unit and the temperature / humidity measuring unit, and the new (normal) state, the old state, the fault state, the temperature, and the like. Extracting a feature (pattern) of the output signal according to at least one of the humidity; And analyzing the state of the plurality of sensors by using the artificial neural network learned about the feature (pattern) of the extracted output signal by the analysis unit. Can be.
본 발명은 멀티모달 센서를 이용해 산업시설의 상황을 실시간 감시하는데 있어, 멀티모달 센서의 이상을 미리 감지해 멀티모달 센서 중 이상이 발생한 센서를 고장전에 미리 교체할 수 있어 안전성을 향상하고 유지 관리를 효율화하여 사고를 미연에 방지할 수 있는 효과가 있다.The present invention, in real-time monitoring of industrial facilities using a multi-modal sensor, detects the abnormality of the multi-modal sensor in advance and can replace the sensor in advance of the failure of the multi-modal sensor in advance before failure to improve safety and maintenance It is effective to prevent accidents by making them more efficient.
또한, 복수의 동일한 센서 또는 이종 센서로 이루어진 멀티모달 센서의 다양한 출력변수에 대해 학습된 인공신경망을 이용해 정확하고 신속하게 멀티모달 센서의 이상을 감지할 수 있어 사용편의성이 향상되며, 멀티모달 센서의 관리 및 추후 검사시점을 결정할 수 있는 효과가 있다.In addition, it is possible to detect abnormalities of the multi-modal sensor accurately and quickly by using the neural network learned about various output variables of the multi-modal sensor composed of a plurality of same sensors or heterogeneous sensors. It is effective to determine the point of management and later inspection.
도 1은 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치의 구성도이다.1 is a block diagram of a multi-modal sensor abnormality detection device using an artificial neural network according to an embodiment of the present invention.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 측정거리를 나타낸 그래프이다.2A and 2B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the measurement distance.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태에 따른 출력 신호의 특징(패턴) 중 분석물 농도와 측정거리를 나타낸 그래프이다.3A and 3B are analysis of the characteristics (patterns) of the output signal according to the new (normal) state, the aging state of the plurality of sensors analyzed by the multi-modal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention This graph shows water concentration and measurement distance.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태, 온도, 습도에 따른 출력 신호의 특징(패턴) 중 분석물 농도를 나타낸 그래프이다.4A and 4B are characteristics of an output signal according to a new (normal) state, an aging state, a temperature, and a humidity of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention ( A graph showing the analyte concentration in the pattern).
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 전압과 전압에 따른 분석물 농도를 나타낸 그래프이다.5A and 5B are characteristics (patterns) of output signals according to a new (normal) state, an aging state, and a failure state of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the analyte concentration according to voltage and voltage.
도 6a 및 도 6b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 분석물 농도와 분석물 농도에 따른 전류를 나타낸 그래프이다.6A and 6B are characteristics (patterns) of output signals according to a new (normal) state, an aging state, and a failure state of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the current according to the analyte concentration and the analyte concentration.
도 7a 및 도 7b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 저항과 저항에 따른 분석물 농도를 나타낸 그래프이다.7A and 7B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing resistance and analyte concentration according to resistance.
도 8a 및 도 8b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 파장과 파장에 따른 흡수강도를 나타낸 그래프이다.8A and 8B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing absorption intensity according to wavelength and wavelength.
도 9a 및 도 9b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 전기전도도 변화량과 압력 변화량을 나타낸 그래프이다.9A and 9B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the electric conductivity change and the pressure change.
도 10은 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태에 따른 출력 신호의 특징(패턴) 중 파장과 상대흡수도를 나타낸 그래프이다.FIG. 10 shows wavelengths and relative absorption among characteristics (patterns) of output signals according to the new (normal) state and the aging state of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention. It is a graph which shows a figure.
도 11은 본 발명의 다른 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지방법에 순서도이다.11 is a flowchart illustrating a multimodal sensor abnormality detection method using an artificial neural network according to another embodiment of the present invention.
도 12는 본 발명의 또 다른 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지방법에 순서도이다.12 is a flowchart illustrating a multimodal sensor abnormality detection method using an artificial neural network according to another embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 해당 구성요소들은 이와 같은 용어들에 의해 한정되지는 않는다. 이 용어들은 하나의 구성요소들을 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers such as first and second may be used to describe various components, but the components are not limited by the terms. These terms are only used to distinguish one component from another.
어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나, 또는 '접속되어' 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 '직접 연결되어' 있다거나, '직접 접속되어' 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is said to be 'connected' or 'connected' to another component, it may be directly connected to or connected to that other component, but other components may be present in between. It should be understood that. On the other hand, when a component is said to be 'directly connected' or 'directly connected' to another component, it should be understood that there is no other component in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, '포함한다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, the term 'comprises' or 'having' is intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
도 1은 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치의 구성도이다.1 is a block diagram of a multi-modal sensor abnormality detection device using an artificial neural network according to an embodiment of the present invention.
도 1을 참조하면, 인공신경망을 이용한 멀티모달 센서 이상 감지 장치(100)는 멀티모달 센서부(110), 분석부(120) 및 출력부(130)를 포함한다.Referring to FIG. 1, the apparatus 100 for detecting abnormality of multimodal sensors using an artificial neural network includes a multimodal sensor unit 110, an analysis unit 120, and an output unit 130.
멀티모달 센서부(110)는 복수의 센서로 구성되어 측정 영역 내의 분석물을 측정하고 출력 신호를 생성한다. The multi-modal sensor unit 110 is composed of a plurality of sensors to measure the analyte in the measurement area and generate an output signal.
멀티모달 센서부(110)의 복수의 센서는 2개 이상의 동일한 센서 또는 이종 센서로 구성될 수 있다.A plurality of sensors of the multi-modal sensor unit 110 may be composed of two or more identical sensors or heterogeneous sensors.
분석부(120)는 유무선 네트워크를 통해 연결된 멀티모달 센서부(110)를 통해 출력 신호를 입력 받아 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태 중 적어도 어느 하나에 따른 출력 신호의 특징(패턴)을 추출하고, 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 복수의 센서의 상태를 분석한다. The analysis unit 120 receives an output signal through the multi-modal sensor unit 110 connected through a wired or wireless network, and outputs a signal according to at least one of a new (normal) state, an old state, and a fault state of a plurality of sensors. (Pattern) is extracted, and the state of the plurality of sensors is analyzed using the artificial neural network learned about the characteristics (pattern) of the extracted output signal.
분석부(120)에 의해 추출된 출력 신호의 특징(패턴)은 인공신경망을 학습시키기 위한 변수이며, 변수는 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태 중 적어도 어느 하나에 따른 측정거리, 분석물 농도, 전압, 저항, 전류, 시간, 전기전도도 변화량, 압력 변화량, 흡수강도, 상대 흡수도 및 파장 중 적어도 어느 하나일 수 있으며, 인공신경망은 분류학습, 딥러닝 등의 방법으로 학습될 수 있다.The characteristic (pattern) of the output signal extracted by the analysis unit 120 is a variable for learning the artificial neural network, and the variable is measured according to at least one of a new (normal) state, an old state, and a fault state of a plurality of sensors. At least one of distance, analyte concentration, voltage, resistance, current, time, electrical conductivity change, pressure change, absorption intensity, relative absorbance, and wavelength, and the artificial neural network is learned by classification learning, deep learning, etc. Can be.
출력부(130)는 분석부(120)가 분석한 분석물의 출력 신호 특징(패턴) 및 복수의 센서의 상태를 출력한다.The output unit 130 outputs output signal characteristics (patterns) of the analytes analyzed by the analyzer 120 and the states of the plurality of sensors.
인공신경망을 이용한 멀티모달 센서 이상 감지 장치(100)는 온도/습도 측정부(140)를 더 포함할 수 있다.Multimodal sensor abnormality detection device 100 using an artificial neural network may further include a temperature / humidity measuring unit 140.
온도/습도 측정부(140)는 측정 영역 내의 온도와 습도를 측정해 유무선 네트워크로 연결된 분석부(130)에 측정한 온도와 습도를 제공한다.The temperature / humidity measurement unit 140 measures the temperature and humidity in the measurement area and provides the measured temperature and humidity to the analysis unit 130 connected to the wired / wireless network.
분석부(130)는 온도/습도 측정부(140)를 통해 측정한 온도와 습도를 더 입력 받아 복수의 센서의 신규(정상) 상태, 노후 상태, 고장 상태, 온도 및 습도 중 적어도 어느 하나에 따른 상기 출력 신호의 특징(패턴)을 추출하고, 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 복수의 센서의 상태를 분석할 수 도 있다. The analyzer 130 further receives the temperature and humidity measured by the temperature / humidity measurement unit 140, according to at least one of the new (normal) state, aging state, failure state, temperature, and humidity of the plurality of sensors. A feature (pattern) of the output signal may be extracted, and the state of the plurality of sensors may be analyzed using an artificial neural network learned about the extracted feature (pattern) of the output signal.
이때, 인공신경망을 학습시키기 위한 변수는 복수의 센서의 신규(정상) 상태, 노후 상태, 고장 상태, 온도 및 습도 중 적어도 어느 하나에 따른 측정거리, 분석물 농도, 전압, 저항, 전류, 시간, 전기전도도 변화량, 압력 변화량, 흡수강도, 상대 흡수도 및 파장 중 적어도 어느 하나일 수 있다. 여기서, 복수의 센서를 이종 센서를 사용해 가스의 농도를 측정할 경우 일반적으로 가스를 구성하는 원소의 구성비를 판단하여 검출하고자 하는 가스의 농도를 측정하기 때문에 원소 구성이 비슷한 가스의 경우, 같은 원소를 포함하고 있어 출력 신호의 특징(패턴)이 서로 상관성을 보이기 때문에 이 출력 신호에 특징(패턴)의 상관성을 변수로 사용할 수 도 있다. At this time, the parameters for learning the artificial neural network are measured distance, analyte concentration, voltage, resistance, current, time according to at least one of the new (normal) state, aging state, failure state, temperature and humidity of the plurality of sensors, It may be at least one of an electrical conductivity change amount, a pressure change amount, an absorption intensity, a relative absorption degree, and a wavelength. In the case of measuring the gas concentration using a heterogeneous sensor, since the concentration of the gas to be detected is generally determined by determining the composition ratio of the elements constituting the gas, in the case of a gas having a similar element composition, Since the characteristics (patterns) of the output signals are correlated with each other, the correlation of the characteristics (patterns) can be used as variables in the output signals.
도 2a 및 도 2b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 측정거리를 나타낸 그래프이다. 도 2a는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 측정거리를 나타낸 그래프이며, 도 2b는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 시간과 측정거리를 나타낸 그래프이다.2A and 2B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the measurement distance. 2A is a graph illustrating a measurement distance among characteristics (patterns) of output signals according to a new (normal) state sensor, an aging state, and a failure state of a plurality of sensors of the multimodal sensor unit 110, and FIG. 2B is a multimodal sensor A plurality of sensors of the unit 110 are graphs showing time and measurement distance among the characteristics (patterns) of the output signal according to the new (normal) state sensor, the deterioration state, and the failure state.
도 2a를 참조하면, 동일한 분석물 농도, 온도, 습도를 가진 조건에서 멀티모달 센서부(110)의 복수의 센서를 동일한 센서를 사용했을 경우 측정거리가 같게 나와야 하지만, 센서가 노후가 될수록 측정거리가 적어지기 때문에 분석부(120)가 센서의 출력 신호를 입력받아 출력 신호의 측정거리 특징(패턴)을 추출해 학습하여 어느 센서가 신규(정상) 상태인지 노후 상태 또는 고장 상태인지 분석한다.Referring to FIG. 2A, when a plurality of sensors of the multi-modal sensor unit 110 use the same sensor under conditions having the same analyte concentration, temperature, and humidity, the measurement distance should be the same. Since the analysis unit 120 receives the output signal of the sensor, the analysis unit 120 extracts the measurement distance feature (pattern) of the output signal to learn and analyzes which sensor is a new (normal) state or an old state or a failure state.
도 2b를 참조하면, 신규(정상) 상태 센서의 경우 분석부(120)가 시간이 지나도 분석물을 측정할 수 있는 측정거리가 같게 나오는 것으로 분석하지만, 노후 상태가 진행될수록 센서의 성능이 저하되어 분석물을 측정할 수 있는 측정거리가 적어질 것이며, 노후 상태가 상당히 지속된 경우 어느 순간 측정값이 나오지 않는 것을 분석할 수 있어, 분석부(120)가 어느 센서의 노후 상태가 어느 정도 진행이 되었고, 언제 수명이 다하는지 예측한다.Referring to FIG. 2B, in the case of the new (normal) state sensor, the analysis unit 120 analyzes that the measurement distance for measuring the analyte is the same as time passes, but as the aging state progresses, the performance of the sensor decreases. The measurement distance to measure the analyte will be less, and if the deterioration state is considerably continued, it is possible to analyze that the measurement value does not come out at any moment, so that the analysis unit 120 has some progress in the deterioration state of a certain sensor. To predict when they will reach their end of life.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태에 따른 출력 신호의 특징(패턴) 중 분석물 농도와 측정거리를 나타낸 그래프이다. 도 3a는 복수의 센서를 동일한 센서를 사용했을 때 동일한 분석물 농도, 온도와 습도를 가진 조건에서 설치 위치가 다를 때 각 센서가 검출할 수 있는 측정거리에 분석물이 노출될 경우 복수의 센서가 모두 신규(정상) 상태 일 때 분석물 농도와 측정거리에 따른 출력 신호 특징(패턴)을 클러스팅 한 창으로 나타난 그래프이며, 도 3b는 복수의 센서를 동일한 센서를 사용했을 때 동일한 분석물 농도, 온도와 습도를 가진 조건에서 설치 위치가 다를 때 각 센서가 검출할 수 있는 측정거리에 분석물이 노출될 경우 센서가 신규(정상) 상태와 노후 상태인 센서에 분석물 농도와 측정거리에 따른 출력 신호 특징(패턴)을 클러스팅 한 창으로 나타난 그래프이다.3A and 3B are analysis of the characteristics (patterns) of the output signal according to the new (normal) state, the aging state of the plurality of sensors analyzed by the multi-modal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention This graph shows water concentration and measurement distance. FIG. 3A illustrates a case in which a plurality of sensors are exposed when the analyte is exposed to a measurement distance that each sensor can detect when the installation location is different under the same analyte concentration, temperature, and humidity when the same sensor is used. The graph shows a window clustering the output signal characteristics (patterns) according to the analyte concentration and the measurement distance when all of them are in a new (normal) state, and FIG. 3B shows the same analyte concentration, When the analyte is exposed to the measuring distance that each sensor can detect when the installation location is different under the condition of temperature and humidity, the sensor output according to the analyte concentration and the measuring distance to the sensor which is new (normal) and aging A graph that shows a window of clustering signal features (patterns).
도 3a를 참조하면, 멀티모달 센서부(110)의 복수의 센서가 동일한 센서이므로 신규(정상) 상태일 때는 성능이 같기 때문에, 복수의 센서가 측정한 신호를 분석부(120)가 분석한 결과 클러스팅 한 창의 크기가 같아 서로 중첩된 모습을 보인다.Referring to FIG. 3A, since the plurality of sensors of the multi-modal sensor unit 110 are the same sensor, the performance is the same when the sensor is in a new (normal) state. As a result, the analysis unit 120 analyzes signals measured by the plurality of sensors. The clustered windows are the same size and overlap each other.
도 3b를 참조하면, 멀티모달 센서부(110)의 복수의 센서가 동일한 센서이므로 성능이 같아야 하지만, 노후 상태가 진행될수록 센서의 성능이 저하되어 분석물을 측정할 수 있는 측정거리와 분석물 농도값이 달라져 복수의 센서가 측정한 신호를 분석부(120)가 분석한 클러스팅 한 창의 크기를 바탕으로 어느 센서의 노후 상태가 어느 정도 진행이 되었고, 언제 수명이 다하는지 예측한다.Referring to FIG. 3B, since the plurality of sensors of the multi-modal sensor unit 110 are the same sensor, the performance should be the same. However, as the aging state progresses, the performance of the sensor decreases, so that the measurement distance and the analyte concentration may be measured. The value is different, and based on the size of the clustered window analyzed by the analyzer 120 analyzing the signals measured by the plurality of sensors, it is predicted to what extent the deteriorated state of which sensor has progressed and when the end of life.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태, 온도, 습도에 따른 출력 신호의 특징(패턴) 중 분석물 농도를 나타낸 그래프이다. 도 4a는 동일한 분석물 농도를 가진 조건에서 복수의 센서가 신규(정상) 상태일 때와 복수의 센서의 노후 상태 정도에 따른 출력 신호 특징(패턴) 중 온도에 따른 분석물 농도를 나타낸 그래프이며, 도 4b는 동일한 분석물 농도를 가진 조건에서 복수의 센서가 신규(정상) 상태일 때와 복수의 센서의 노후 상태 정도에 따른 출력 신호 특징(패턴) 중 습도에 따른 분석물 농도를 나타낸 그래프이다.4A and 4B are characteristics of an output signal according to a new (normal) state, an aging state, a temperature, and a humidity of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention ( A graph showing the analyte concentration in the pattern). 4A is a graph showing analyte concentrations according to temperature among output signal characteristics (patterns) according to the degree of deterioration of a plurality of sensors and when a plurality of sensors are in a new (normal) state under conditions having the same analyte concentration. 4B is a graph showing analyte concentration according to humidity among output signal characteristics (patterns) according to the degree of deterioration of a plurality of sensors and when a plurality of sensors are in a new (normal) state under conditions having the same analyte concentration.
도 4a를 참조하면, 분석물의 농도는 온도에 영향을 받게 되는데, 노후 상태가 진행될수록 센서의 성능이 저하되어 온도에 대한 영향이 신규(정상) 상태 센서와 노후 상태 센서가 다른 것을 바탕으로 분석부(120)가 어느 센서의 노후 상태가 어느 정도 진행이 되었고, 언제 수명이 다하는지 예측한다.Referring to Figure 4a, the concentration of the analyte is affected by the temperature, the degradation of the performance of the sensor as the aging state progresses, the effect on temperature is different from the analysis unit based on the new (normal) state sensor and the old state sensor 120 predicts how old the sensor is and how long it has reached its end of life.
도 4b를 참조하면, 분석물의 농도는 습도에 영향을 받게 되는데, 노후 상태가 진행될수록 센서의 성능이 저하되어 습도에 대한 영향이 신규(정상) 상태 센서와 노후 상태 센서가 다른 것을 바탕으로 분석부(120)가 어느 센서의 노후 상태가 어느 정도 진행이 되었고, 언제 수명이 다하는지 예측한다.Referring to Figure 4b, the concentration of the analyte is affected by the humidity, the performance of the sensor is degraded as the aging state progresses, the effect of the humidity on the analysis unit based on the difference between the new (normal) state sensor and the old state sensor 120 predicts how old the sensor is and how long it has reached its end of life.
도 5a 및 도 5b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 전압과 전압에 따른 분석물 농도를 나타낸 그래프이다. 도 5a는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 고장 상태에 따른 전압을 나타낸 그래프이며, 도 5b는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 전압에 따른 분석물 농도를 나타낸 그래프이다.5A and 5B are characteristics (patterns) of output signals according to a new (normal) state, an aging state, and a failure state of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the analyte concentration according to voltage and voltage. 5A is a graph illustrating voltages according to a new (normal) state sensor, an aging state, and a failure state of the plurality of sensors of the multi-modal sensor unit 110. FIG. 5B illustrates a plurality of sensors of the multi-modal sensor unit 110. It is a graph showing the analyte concentration according to the new (normal) state sensor, the aging state and the voltage.
도 5a를 참조하면, 동일한 분석물 농도, 온도, 습도를 가진 조건에서 멀티모달 센서부(110)의 복수의 센서를 동일한 센서를 사용했을 경우 센서에 걸리는 전압이 노후가 될수록 적게 걸리기 때문에 분석부(130)가 센서의 출력 신호를 입력받아 출력 신호의 전압 특징(패턴)을 추출해 학습하여 어느 센서가 신규(정상) 상태인지 노후 상태 또는 고장 상태인지 분석한다.Referring to FIG. 5A, when a plurality of sensors of the multimodal sensor unit 110 use the same sensor under conditions having the same analyte concentration, temperature, and humidity, the voltage applied to the sensor becomes less as the aging becomes less. 130 receives the output signal of the sensor and extracts and learns a voltage characteristic (pattern) of the output signal, and analyzes which sensor is new (normal), old, or faulty.
도 5b를 참조하면, 분석물의 농도는 전압에 영향을 받게 되는데, 노후 상태가 진행될수록 센서의 성능이 저하되어 센서에 걸리는 전압이 적어는 것을 바탕으로 분석부(120)가 어느 센서의 노후 상태가 어느 정도 진행이 되었고, 언제 수명이 다하는지 예측한다.Referring to FIG. 5B, the concentration of the analyte is influenced by the voltage, and as the aging state progresses, the performance of the sensor decreases and the voltage applied to the sensor decreases. Predict how far it has progressed and when it will reach its end of life.
도 6a 및 도 6b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 분석물 농도와 분석물 농도에 따른 전류를 나타낸 그래프이다. 도 6a는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 고장 상태에 따른 분석물 농도를 나타낸 그래프이며, 도 6b는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 전류에 따른 분석물 농도를 나타낸 그래프이다.6A and 6B are characteristics (patterns) of output signals according to a new (normal) state, an aging state, and a failure state of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the current according to the analyte concentration and the analyte concentration. FIG. 6A is a graph illustrating analyte concentration according to a new (normal) state sensor, an aging state, and a failure state of a plurality of sensors of the multimodal sensor unit 110. FIG. 6B is a plurality of sensors of the multimodal sensor unit 110. FIG. The sensor is a graph showing the analyte concentration according to the new (normal) state sensor, aging state and current.
도 6a를 참조하면, 동일한 분석물 농도, 온도, 습도를 가진 조건에서 멀티모달 센서부(110)의 복수의 센서를 동일한 센서를 사용했을 경우 성능이 같기 때문에 분석물 농도가 같게 나와야 하지만, 센서가 노후가 될수록 성능이 저하되기 때문에 분석부(120)가 센서의 출력 신호를 입력받아 출력 신호의 분석물 농도 특징(패턴)을 추출해 학습하여 어느 센서가 신규(정상) 상태인지 노후 상태 또는 고장 상태인지 분석한다.Referring to FIG. 6A, when the same sensor is used in a plurality of sensors of the multimodal sensor unit 110 under the same analyte concentration, temperature, and humidity, the analyte concentration should be the same because the performance is the same. As the performance decreases with age, the analysis unit 120 receives the output signal of the sensor and extracts and analyzes the analyte concentration characteristic (pattern) of the output signal to determine which sensor is new (normal), old, or faulty. Analyze
도 6b를 참조하면, 분석물 농도에 따라 발생하는 전류의 양이 변하게 되는데, 노후 상태가 진행될수록 센서의 성능이 저하되어 측정된 분석물 농도가 적어 전류의 양도 적은 것을 바탕으로 분석부(120)가 어느 센서의 노후 상태가 어느 정도 진행이 되었고, 언제 수명이 다하는지 예측한다.Referring to FIG. 6B, the amount of current generated according to the analyte concentration is changed. As the aging state progresses, the performance of the sensor decreases, so that the measured analyte concentration is small, and thus the analysis unit 120 is small. Predicts how old the sensor is and how old it is.
도 7a 및 도 7b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 저항과 저항에 따른 분석물 농도를 나타낸 그래프이다. 도 7a는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 고장 상태에 따른 저항을 나타낸 그래프이며, 도 7b는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 저항에 따른 분석물 농도를 나타낸 그래프이다.7A and 7B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing resistance and analyte concentration according to resistance. FIG. 7A is a graph illustrating resistance of a plurality of sensors of the multi-modal sensor unit 110 according to a new (normal) state sensor, an aging state, and a failure state. FIG. 7B illustrates a plurality of sensors of the multi-modal sensor unit 110. It is a graph showing the analyte concentration according to the new (normal) state sensor, the aging state and the resistance.
도 7a를 참조하면, 동일한 분석물 농도, 온도, 습도를 가진 조건에서 멀티모달 센서부(110)의 복수의 센서를 동일한 센서를 사용했을 경우 센서의 저항이 노후가 될수록 크게 되기 때문에 분석부(130)가 센서의 출력 신호를 입력받아 출력 신호의 저항 특징(패턴)을 추출해 학습하여 어느 센서가 신규(정상) 상태인지 노후 상태 또는 고장 상태인지 분석한다.Referring to FIG. 7A, when a plurality of sensors of the multi-modal sensor unit 110 use the same sensor under conditions having the same analyte concentration, temperature, and humidity, the resistance of the sensor increases as the age of the analysis unit 130 increases. ) Receives the output signal of the sensor and extracts the resistance characteristic (pattern) of the output signal and learns it to analyze which sensor is new (normal), old, or faulty.
도 7b를 참조하면, 분석물의 농도는 저항에 영향을 받게 되는데, 노후 상태가 진행될수록 센서의 성능이 저하되어 센서의 저항이 커지는 것을 바탕으로 분석부(120)가 어느 센서의 노후 상태가 어느 정도 진행이 되었고, 언제 수명이 다하는지 예측한다.Referring to FIG. 7B, the concentration of the analyte is affected by the resistance. As the aging state progresses, the performance of the sensor decreases and the resistance of the sensor increases, so that the analysis unit 120 determines the degree of deterioration of a certain sensor. Progress is made and predicts when the end of life will be reached.
도 8a 및 도 8b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 파장과 파장에 따른 흡수강도를 나타낸 그래프이다. 도 8a는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 고장 상태에 따른 파장을 나타낸 그래프이며, 도 8b는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 파장에 따른 흡수강도를 나타낸 그래프이다.8A and 8B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing absorption intensity according to wavelength and wavelength. 8A is a graph illustrating wavelengths of a plurality of sensors of the multi-modal sensor unit 110 according to a new (normal) state sensor, an aging state, and a failure state, and FIG. 8B illustrates a plurality of sensors of the multi-modal sensor unit 110. It is a graph showing the absorption intensity according to the new (normal) state sensor, the aging state and the wavelength.
도 8a를 참조하면, 동일한 분석물 농도, 온도, 습도를 가진 조건에서 멀티모달 센서부(110)의 복수의 센서를 동일한 파장을 가지는 광원센서를 사용했을 경우 노후가 될수록 광원센서의 출력이 낮아져 파장이 작게 되기 때문에 분석부(130)가 센서의 출력 신호를 입력받아 출력 신호의 파장 특징(패턴)을 추출해 학습하여 어느 센서가 신규(정상) 상태인지 노후 상태 또는 고장 상태인지 분석한다.Referring to FIG. 8A, when a plurality of sensors of the multi-modal sensor unit 110 have the same wavelength under a condition having the same analyte concentration, temperature, and humidity, the output of the light source sensor is lowered as the age becomes older. Since this becomes small, the analysis unit 130 receives the output signal of the sensor, extracts and learns the wavelength characteristic (pattern) of the output signal, and analyzes which sensor is a new (normal) state, an old state or a failure state.
도 8b를 참조하면, 신규(정상) 상태 센서와 센서의 노후 상태 정도에 따라 파장이 달라지고, 흡수강도도 작아지는 것을 바탕으로 분석부(120)가 어느 센서의 노후 상태가 어느 정도 진행이 되었고, 언제 수명이 다하는지 예측한다.Referring to FIG. 8B, based on the degree of deterioration of the new (normal) state sensor and the sensor, and the absorption intensity of the sensor being lowered, the analyzer 120 proceeds to a certain degree of deterioration of a certain sensor. Predict when the end of life.
도 9a 및 도 9b는 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태에 따른 출력 신호의 특징(패턴) 중 전기전도도 변화량과 압력 변화량을 나타낸 그래프이다. 도 9a는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 고장 상태에 따른 전기전도도 변화량을 나타낸 그래프이며, 도 9b는 멀티모달 센서부(110)의 복수의 센서가 신규(정상) 상태 센서, 노후 상태 및 고장 상태에 따른 압력 변화량을 나타낸 그래프이다.9A and 9B are characteristics (patterns) of output signals according to new (normal) states, aging states, and failure states of a plurality of sensors analyzed by a multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention; ) Is a graph showing the electric conductivity change and the pressure change. FIG. 9A is a graph illustrating changes in conductivity of the plurality of sensors of the multimodal sensor unit 110 according to a new (normal) state sensor, an aging state, and a failure state, and FIG. 9B is a diagram of a plurality of sensors of the multimodal sensor unit 110. The sensor shows a graph of the pressure change according to the new (normal) state sensor, the aging state and the failure state.
도 9a를 참조하면, 동일한 분석물 농도, 온도, 습도를 가진 조건에서 멀티모달 센서부(110)의 복수의 센서를 동일한 반도체식 가스센서를 사용했을 경우, 반도체식 가스 센서는 세라믹 반도체 표면에 가스가 접촉했을 때 일어나는 전기전도도의 변화량을 측정하는데 동일한 센서를 사용했을 경우 성능이 같기 때문에 전기전도도의 변화량이 같게 나와야 하지만, 센서가 노후가 될수록 성능이 저하되기 때문에 분석부(120)가 센서의 출력 신호를 입력받아 전기전도도 변화량 특징(패턴)을 추출해 학습하여 어느 센서가 신규(정상) 상태인지 노후 상태 또는 고장 상태인지 분석한다.Referring to FIG. 9A, when a plurality of sensors of the multi-modal sensor unit 110 use the same semiconductor gas sensor under conditions having the same analyte concentration, temperature, and humidity, the semiconductor gas sensor is a gas on the ceramic semiconductor surface. If the same sensor is used to measure the amount of change in electrical conductivity that occurs when the contact is made, the amount of change in electrical conductivity should be the same because the performance is the same, but as the sensor gets older, the analysis unit 120 outputs the sensor output. It receives the signal and extracts the electrical conductivity variation feature (pattern) and learns it, and analyzes which sensor is new (normal), old or broken.
도 9b를 참조하면, 동일한 분석물 농도, 온도, 습도를 가진 조건에서 멀티모달 센서부(110)의 복수의 센서를 가스 분자가 특정 파장의 광 대개 적외선을 흡수하는 특성을 이용하여 가스 분자가 광을 흡수 시 열적으로 들뜬 상태가 되어 팽창할 때 발생하는 압력 변화량을 정밀한 마이크로폰으로 측정하는 방식의 동일한 센서로 사용했을 경우 성능이 같기 때문에 압력 변화량이 같게 나와야 하지만, 센서가 노후가 될수록 성능이 저하되기 때문에 분석부(120)가 센서의 출력 신호를 입력받아 출력 신호의 압력 변화량 특징(패턴)을 추출해 학습하여 어느 센서가 신규(정상) 상태인지 노후 상태 또는 고장 상태인지 분석한다. Referring to FIG. 9B, a plurality of sensors of the multi-modal sensor unit 110 under the same analyte concentration, temperature, and humidity may be used to emit light of gas molecules by using a characteristic in which gas molecules absorb light of a specific wavelength, usually infrared rays. When the same sensor is used to measure the pressure change generated when it expands due to thermal excitation when it is absorbed by a precise microphone, the pressure change should be the same because the performance is the same, but the performance decreases as the sensor gets older. Therefore, the analysis unit 120 receives the output signal of the sensor and extracts the pressure variation feature (pattern) of the output signal to learn and analyzes which sensor is in a new (normal) state or an old state or a failure state.
도 10은 본 발명의 일 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지 장치가 분석한 복수의 센서의 신규(정상) 상태, 노후 상태에 따른 출력 신호의 특징(패턴) 중 파장과 상대흡수도를 나타낸 그래프이다. 도 10(a)는 동일한 분석물 농도, 온도, 습도를 가진 조건에서 멀티모달 센서부(110)의 복수의 센서가 일산화탄소(CO) 센서와 이산화탄소(CO2) 센서로 이종 센서일 경우 신규(정상) 상태일 때 파장과 상대흡수도를 나타낸 그래프이며, 도 10(b)는 동일한 분석물 농도, 온도, 습도를 가진 조건에서 멀티모달 센서부(110)의 복수의 센서가 일산화탄소(CO) 센서와 이산화탄소(CO2) 센서로 이종 센서일 경우 노후 상태일 때 파장과 상대흡수도를 나타낸 그래프이다.FIG. 10 shows wavelengths and relative absorption among characteristics (patterns) of output signals according to the new (normal) state and the aging state of a plurality of sensors analyzed by the multimodal sensor abnormality detection apparatus using an artificial neural network according to an embodiment of the present invention. It is a graph which shows a figure. 10 (a) is a novel (normal) when a plurality of sensors of the multi-modal sensor unit 110 is a heterogeneous sensor as a carbon monoxide (CO) sensor and a carbon dioxide (CO 2 ) sensor under conditions having the same analyte concentration, temperature, and humidity. 10) is a graph showing the wavelength and the relative absorbance when the state, Figure 10 (b) is a plurality of sensors of the multi-modal sensor unit 110 and the carbon monoxide (CO) sensor under the conditions having the same analyte concentration, temperature, humidity This is a graph showing the wavelength and the relative absorbance when the carbon dioxide (CO 2 ) sensor is a heterogeneous sensor in the aging state.
도 10(a) 및 도 10(b)를 참조하면, 이산화탄소(CO2) 센서의 상대흡수도가 도 10(a)의 신규(정상) 상태보다 도 10(b)의 노후 상태가 낮기 때문에 분석부(120)는 이산화탄소(CO2) 센서가 노후 상태인 것으로 분석한다.Referring to FIGS. 10 (a) and 10 (b), the relative absorption of the carbon dioxide (CO 2 ) sensor is analyzed because the deteriorated state of FIG. 10 (b) is lower than the new (normal) state of FIG. 10 (a). The unit 120 analyzes that the carbon dioxide (CO 2 ) sensor is in an aging state.
도 11은 본 발명의 다른 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지방법에 순서도이다.11 is a flowchart illustrating a multimodal sensor abnormality detection method using an artificial neural network according to another embodiment of the present invention.
도 11을 참조하면, S1110단계에서는 복수의 센서로 구성된 멀티모달 센서부(110)가 측정 영역 내의 분석물을 측정하고 출력 신호를 생성한다.Referring to FIG. 11, in operation S1110, the multimodal sensor unit 110 including a plurality of sensors measures analytes in a measurement area and generates an output signal.
S1120단계에서는 분석부(120)가 멀티모달 센서부(110)로부터 출력 신호를 입력 받아 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태 중 적어도 어느 하나에 따른 출력 신호의 특징(패턴)을 추출한다.In operation S1120, the analysis unit 120 receives the output signal from the multi-modal sensor unit 110, and thus the characteristics (pattern) of the output signal according to at least one of a new (normal) state, an old state, and a failure state of the plurality of sensors. Extract
S1130단계에서는 분석부(120)가 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 복수의 센서의 상태를 분석한다. 여기서, 분석부(120)는 분석한 결과를 출력부(130)로 전송해 출력부(130)가 분석부(120)에서 분석한 결과를 출력할 수 있다.In step S1130, the analysis unit 120 analyzes the state of the plurality of sensors using the learned neural network for the feature (pattern) of the extracted output signal. Here, the analysis unit 120 may transmit the analyzed result to the output unit 130 and output the result analyzed by the output unit 130 in the analysis unit 120.
도 12는 본 발명의 또 다른 실시예에 따른 인공신경망을 이용한 멀티모달 센서 이상 감지방법에 순서도이다.12 is a flowchart illustrating a multimodal sensor abnormality detection method using an artificial neural network according to another embodiment of the present invention.
S1210단계에서는 복수의 센서로 구성된 멀티모달 센서부(110)가 검출 영역 내의 분석물을 측정하고 출력 신호를 생성한다.In step S1210 the multi-modal sensor unit 110 composed of a plurality of sensors measures the analyte in the detection area and generates an output signal.
S1220단계에서는 온도/습도 측정부(140)가 측정 영역 내의 온도와 습도를 검출한다.In step S1220 the temperature / humidity measuring unit 140 detects the temperature and humidity in the measurement area.
S1230단계에서는 분석부(120)가 멀티모달 센서부(110)와 온도/습도 측정부(140)로부터 출력 신호와 측정한 온도와 습도를 입력 받아 온도, 습도, 복수의 센서의 신규(정상) 상태, 노후 상태, 고장 상태 중 적어도 어느 하나에 따른 출력 신호의 특징(패턴)을 추출한다. In step S1230, the analysis unit 120 receives the output signal and the measured temperature and humidity from the multi-modal sensor unit 110 and the temperature / humidity measurement unit 140, and the temperature, humidity, and new (normal) state of the plurality of sensors. Extracts a feature (pattern) of the output signal according to at least one of a deterioration state and a failure state.
S1240단계에서는 분석부(120)가 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 복수의 센서의 상태를 분석한다. 여기서, 분석부(120)는 분석한 결과를 출력부(130)로 전송해 출력부(130)가 분석부(120)에서 분석한 결과를 출력할 수 있다.In step S1240, the analysis unit 120 analyzes the state of the plurality of sensors using the learned artificial neural network for the feature (pattern) of the extracted output signal. Here, the analysis unit 120 may transmit the analyzed result to the output unit 130 and output the result analyzed by the output unit 130 in the analysis unit 120.
이상에서 본 발명에 따른 실시 예들이 설명되었으나, 이는 예시적인 것에 불과하며, 본 발명의 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 다음의 청구범위에 의해서 정해져야할 것이다.Although embodiments according to the present invention have been described above, these are merely exemplary, and those skilled in the art will understand that various modifications and equivalent embodiments of the present invention are possible therefrom. . Therefore, the true technical protection scope of the present invention will be defined by the following claims.
Claims (9)
- 측정 영역 내의 분석물을 측정하고 출력 신호를 생성하는 복수의 센서로 구성된 멀티모달 센서부; 및A multimodal sensor unit configured to measure analytes in the measurement area and generate an output signal; And상기 멀티모달 센서부를 통해 상기 출력 신호를 입력 받아 상기 복수의 센서의 신규(정상) 상태, 노후 상태 및 고장 상태 중 적어도 어느 하나에 따른 상기 출력 신호의 특징(패턴)을 추출하고, 상기 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 상기 복수의 센서의 상태를 분석하는 분석부;를 포함하는 것The output signal is input through the multi-modal sensor unit to extract a feature (pattern) of the output signal according to at least one of a new (normal) state, an old state, and a failure state of the plurality of sensors, and the extracted output. It includes; an analysis unit for analyzing the state of the plurality of sensors using the artificial neural network learned about the characteristics (pattern) of the signal을 특징으로 하는 인공신경망을 이용한 멀티모달 센서 이상 감지 장치.Multimodal sensor abnormality detection device using an artificial neural network, characterized in that.
- 제1항에 있어서,The method of claim 1,상기 출력 신호의 특징(패턴)은 상기 인공신경망을 학습시키기 위한 변수로, 상기 변수는 상기 복수의 센서의 상기 신규(정상) 상태, 상기 노후 상태 및 상기 고장 상태 중 적어도 어느 하나에 따른 측정거리, 상기 분석물 농도, 전압, 저항, 전류, 시간, 전기전도도 변화량, 압력 변화량, 흡수강도, 상대 흡수도 및 파장 중 적어도 어느 하나인 것The characteristic (pattern) of the output signal is a variable for learning the artificial neural network, wherein the variable is a measurement distance according to at least one of the new (normal) state, the aging state and the fault state of the plurality of sensors, At least one of the analyte concentration, voltage, resistance, current, time, electrical conductivity change amount, pressure change amount, absorption intensity, relative absorbance and wavelength을 특징으로 하는 인공신경망을 이용한 멀티모달 센서 이상 감지 장치.Multimodal sensor abnormality detection device using an artificial neural network, characterized in that.
- 제1항에 있어서,The method of claim 1,상기 측정 영역 내의 온도와 습도를 측정하는 온도/습도 측정부;를 더 포함하되,Further comprising: a temperature / humidity measuring unit for measuring the temperature and humidity in the measurement area,상기 분석부는 상기 온도/습도 측정부를 통해 측정한 상기 온도와 습도를 더 입력 받아 상기 복수의 센서의 상기 신규(정상) 상태, 상기 노후 상태, 상기 고장 상태, 상기 온도 및 상기 습도 중 적어도 어느 하나에 따른 상기 출력 신호의 특징(패턴)을 추출하고, 상기 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 상기 복수의 센서의 상태를 분석하는 것The analyzer may further receive the temperature and humidity measured by the temperature / humidity measurement unit to at least one of the new (normal) state, the old state, the failure state, the temperature, and the humidity of the plurality of sensors. Extracting a feature (pattern) of the output signal and analyzing the state of the plurality of sensors using an artificial neural network learned about the extracted output signal feature (pattern)을 특징으로 하는 인공신경망을 이용한 멀티모달 센서 이상 감지 장치.Multimodal sensor abnormality detection device using an artificial neural network, characterized in that.
- 제3항에 있어서,The method of claim 3,상기 출력 신호의 특징(패턴)은 상기 인공신경망을 학습시키기 위한 변수로, 상기 변수는 상기 복수의 센서의 상기 신규(정상) 상태, 상기 노후 상태, 상기 고장 상태, 상기 온도 및 상기 습도 중 적어도 어느 하나에 따른 측정거리, 상기 분석물 농도, 전압, 저항, 전류, 시간, 전기전도도 변화량, 압력 변화량, 흡수강도, 상대 흡수도 및 파장 중 적어도 어느 하나인 것The characteristic (pattern) of the output signal is a variable for learning the artificial neural network, wherein the variable is at least one of the new (normal) state, the aging state, the failure state, the temperature, and the humidity of the plurality of sensors. At least one of measurement distance, analyte concentration, voltage, resistance, current, time, electrical conductivity change, pressure variation, absorption intensity, relative absorbance, and wavelength according to one을 특징으로 하는 인공신경망을 이용한 멀티모달 센서 이상 감지 장치.Multimodal sensor abnormality detection device using an artificial neural network, characterized in that.
- 제1항에 있어서,The method of claim 1,상기 멀티모달 센서부의 상기 복수의 센서는 2개 이상의 동일한 센서이거나 이종 센서인 것The plurality of sensors of the multi-modal sensor unit is two or more of the same sensor or heterogeneous sensor을 특징으로 하는 인공신경망을 이용한 멀티모달 센서 이상 감지 장치.Multimodal sensor abnormality detection device using an artificial neural network, characterized in that.
- 인공신경망을 이용한 멀티모달 센서 이상 감지 장치의 이상 감지 방법에 있어서,In the abnormal detection method of the multi-modal sensor abnormality detection device using an artificial neural network,복수의 센서로 구성된 멀티모달 센서부가 측정 영역 내의 분석물을 측정하고 출력 신호를 생성하는 단계; Measuring an analyte in the measurement area and generating an output signal by the multimodal sensor unit including a plurality of sensors;분석부가 상기 멀티모달 센서부로부터 상기 출력 신호를 입력 받아 상기 복수의 센서의 신규(정상) 상태, 노후 상태, 고장 상태 중 적어도 어느 하나에 따른 상기 출력 신호의 특징(패턴)을 추출하는 단계; 및An analysis unit receiving the output signal from the multi-modal sensor unit and extracting a feature (pattern) of the output signal according to at least one of a new (normal) state, an old state, and a failure state of the plurality of sensors; And상기 분석부가 상기 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 상기 복수의 센서의 상태를 분석하는 단계;를 포함하는 것And analyzing the state of the plurality of sensors by using the artificial neural network learned about the feature (pattern) of the extracted output signal by the analysis unit.을 특징으로 하는 인공신경망을 이용한 멀티모달 센서 이상 감지 방법.Multimodal sensor abnormality detection method using an artificial neural network characterized in that.
- 제6항에 있어서,The method of claim 6,상기 출력 신호의 특징(패턴)은 상기 인공신경망을 학습시키기 위한 변수로, 상기 변수는 상기 복수의 센서의 상기 신규(정상) 상태, 상기 노후 상태 및 상기 고장 상태 중 적어도 어느 하나에 따른 측정거리, 상기 분석물 농도, 전압, 저항, 전류, 시간, 전기전도도 변화량, 압력 변화량, 흡수강도, 상대 흡수도 및 파장 중 적어도 어느 하나인 것The characteristic (pattern) of the output signal is a variable for learning the artificial neural network, wherein the variable is a measurement distance according to at least one of the new (normal) state, the aging state and the failure state of the plurality of sensors, At least one of the analyte concentration, voltage, resistance, current, time, electrical conductivity change amount, pressure change amount, absorption intensity, relative absorbance and wavelength을 특징으로 하는 인공신경망을 이용한 멀티모달 센서 이상 감지 장치.Multimodal sensor abnormality detection device using an artificial neural network, characterized in that.
- 인공신경망을 이용한 멀티모달 센서 이상 감지 장치의 이상 감지 방법에 있어서,In the abnormal detection method of the multi-modal sensor abnormality detection device using an artificial neural network,복수의 센서로 구성된 멀티모달 센서부가 검출 영역 내의 분석물을 측정하고 출력 신호를 생성하는 단계; Measuring an analyte in the detection area and generating an output signal by the multimodal sensor unit including a plurality of sensors;온도/습도 측정부가 상기 측정 영역 내의 온도와 습도를 검출하는 단계; Detecting, by a temperature / humidity measurement unit, temperature and humidity in the measurement area;분석부가 상기 멀티모달 센서부와 상기 온도/습도 측정부로부터 상기 출력 신호와 상기 측정한 상기 온도와 상기 습도를 입력 받아 상기 복수의 센서의 신규(정상) 상태, 노후 상태, 고장 상태 중 적어도 어느 하나에 따른 상기 출력 신호의 특징(패턴)을 추출하는 단계; 및The analysis unit receives the output signal, the measured temperature and the humidity from the multi-modal sensor unit and the temperature / humidity measuring unit and at least one of a new (normal) state, an old state, and a fault state of the plurality of sensors. Extracting a feature (pattern) of the output signal according to the present invention; And상기 분석부가 상기 추출된 출력 신호의 특징(패턴)에 대하여 학습된 인공신경망을 이용하여 상기 복수의 센서의 상태를 분석하는 단계;를 포함하는 것And analyzing the state of the plurality of sensors by using the artificial neural network learned about the feature (pattern) of the extracted output signal by the analysis unit.을 특징으로 하는 인공신경망을 이용한 멀티모달 센서 이상 감지 방법.Multimodal sensor abnormality detection method using an artificial neural network characterized in that.
- 제8항에 있어서,The method of claim 8,상기 출력 신호의 특징(패턴)은 상기 인공신경망을 학습시키기 위한 변수로, 상기 변수는 상기 복수의 센서의 상기 신규(정상) 상태, 상기 노후 상태, 상기 고장 상태, 상기 온도 및 상기 습도 중 적어도 어느 하나에 따른 측정거리, 상기 분석물 농도, 전압, 저항, 전류, 시간, 전기전도도 변화량, 압력 변화량, 흡수강도, 상대 흡수도 및 파장 중 적어도 어느 하나인 것The characteristic (pattern) of the output signal is a variable for learning the artificial neural network, wherein the variable is at least one of the new (normal) state, the aging state, the failure state, the temperature, and the humidity of the plurality of sensors. At least one of measurement distance, analyte concentration, voltage, resistance, current, time, electrical conductivity change, pressure variation, absorption intensity, relative absorbance, and wavelength according to one을 특징으로 하는 인공신경망을 이용한 멀티모달 센서 이상 감지 장치.Multimodal sensor abnormality detection device using an artificial neural network, characterized in that.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180102713A KR20200027088A (en) | 2018-08-30 | 2018-08-30 | Multi-modal sensor fault detection device and method using artificial neural network |
KR10-2018-0102713 | 2018-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020045720A1 true WO2020045720A1 (en) | 2020-03-05 |
Family
ID=69643139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/010654 WO2020045720A1 (en) | 2018-08-30 | 2018-09-12 | Device and method for detecting malfunction in multimodal sensor by using artificial neural network |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20200027088A (en) |
WO (1) | WO2020045720A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022075543A1 (en) * | 2020-10-05 | 2022-04-14 | 서울대학교 산학협력단 | Anomaly detection method using multi-modal sensor, and computing device for performing same |
CN115032237A (en) * | 2021-03-05 | 2022-09-09 | 横河电机株式会社 | Oxygen concentration meter, oxygen concentration detection system, resistance detection method of zirconia sensor |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102389317B1 (en) * | 2020-09-28 | 2022-04-21 | 김학철 | Method of Determining Whether A Smart Farm Sensor has failed using a Recurrent Neural Network(RNN) |
KR102796278B1 (en) * | 2021-07-27 | 2025-04-16 | 현대제철 주식회사 | Apparatus and method for predicting failure of sensor using virtual sensor |
KR102427630B1 (en) * | 2021-12-10 | 2022-08-01 | 한화시스템 주식회사 | Apparatus and method for predicting failure of thermal image system |
KR102427631B1 (en) * | 2021-12-10 | 2022-08-01 | 한화시스템 주식회사 | Thermal image system condition confirming apparatus and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980012758U (en) * | 1996-08-28 | 1998-06-05 | 이대원 | Fault indication temperature measuring device |
JP2005251185A (en) * | 2004-02-05 | 2005-09-15 | Toenec Corp | Electric equipment diagnostic system |
KR20110055331A (en) * | 2009-11-19 | 2011-05-25 | (주)인디스디앤아이 | Ultrasonic detection device for inspection of defects in overhead power lines |
JP2014130141A (en) * | 2012-12-31 | 2014-07-10 | Must Inc | Multi-modal fluid condition sensor platform and system therefor |
KR101499674B1 (en) * | 2014-02-25 | 2015-03-09 | 주식회사 휘성 | Apparatus for insulation deterioration diagnosis of power utilities |
-
2018
- 2018-08-30 KR KR1020180102713A patent/KR20200027088A/en not_active Ceased
- 2018-09-12 WO PCT/KR2018/010654 patent/WO2020045720A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980012758U (en) * | 1996-08-28 | 1998-06-05 | 이대원 | Fault indication temperature measuring device |
JP2005251185A (en) * | 2004-02-05 | 2005-09-15 | Toenec Corp | Electric equipment diagnostic system |
KR20110055331A (en) * | 2009-11-19 | 2011-05-25 | (주)인디스디앤아이 | Ultrasonic detection device for inspection of defects in overhead power lines |
JP2014130141A (en) * | 2012-12-31 | 2014-07-10 | Must Inc | Multi-modal fluid condition sensor platform and system therefor |
KR101499674B1 (en) * | 2014-02-25 | 2015-03-09 | 주식회사 휘성 | Apparatus for insulation deterioration diagnosis of power utilities |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022075543A1 (en) * | 2020-10-05 | 2022-04-14 | 서울대학교 산학협력단 | Anomaly detection method using multi-modal sensor, and computing device for performing same |
CN115032237A (en) * | 2021-03-05 | 2022-09-09 | 横河电机株式会社 | Oxygen concentration meter, oxygen concentration detection system, resistance detection method of zirconia sensor |
Also Published As
Publication number | Publication date |
---|---|
KR20200027088A (en) | 2020-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020045720A1 (en) | Device and method for detecting malfunction in multimodal sensor by using artificial neural network | |
WO2020009342A1 (en) | Garment factory smart monitoring method and system | |
WO2017191872A1 (en) | Plant abnormality detection method and system | |
WO2022131388A1 (en) | Artificial intelligence-based safety management system using mobile unmanned detection device | |
WO2021172723A1 (en) | Method and system for intelligent monitoring of state of nuclear power plant | |
SE0101526D0 (en) | System, apparatus and method for diagnosing flow processes | |
WO2020076083A1 (en) | Power plant early warning device and method employing multiple prediction model | |
CN105236251B (en) | A kind of elevator door interlock circuit/safety circuit failure detector and method | |
DE69710285D1 (en) | Monitoring elevator door performance | |
WO2013133551A1 (en) | Resistance welding monitoring apparatus and method and system therefor | |
WO2020004996A1 (en) | Device and method for generating learning data for learning model of system for predicting and diagnosing power plant malfunction | |
WO2016085010A1 (en) | System and method for effectively diagnosing whether abnormality exists in each solar module | |
WO2021033969A1 (en) | Apparatus and method for detecting defective component using infrared camera | |
CN111137773B (en) | Method and system for detecting faults in an elevator system | |
WO2018044041A1 (en) | Method for learning latest data considering external influences in early warning system and system for same | |
WO2023128669A1 (en) | Partial discharge monitoring system and partial discharge monitoring method | |
WO2022146020A1 (en) | Method and system for comprehensively diagnosing defect in rotating machine | |
CN118659741B (en) | Crack monitoring system of photovoltaic cell panel | |
CN118070143A (en) | Bayesian network-based reliability assessment method for online monitoring device | |
WO2024128341A1 (en) | Motor control panel capable of failure diagnosis and prediction through trend comparison and analysis | |
CN117879155A (en) | Auxiliary decision making system based on information acquisition of intelligent recorder | |
WO2021100967A1 (en) | Facility failure prediction system using acoustic signal in ultrasonic band and method therefor | |
KR20090112892A (en) | Fault diagnosis device and method of semiconductor gas sensor | |
KR20190090641A (en) | Efficiency-Utility Monitoring System of Automation Equipment | |
KR100342421B1 (en) | Device for monitoring fault of transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18931709 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18931709 Country of ref document: EP Kind code of ref document: A1 |