WO2020045417A1 - 光学ガラスおよび光学部品 - Google Patents
光学ガラスおよび光学部品 Download PDFInfo
- Publication number
- WO2020045417A1 WO2020045417A1 PCT/JP2019/033490 JP2019033490W WO2020045417A1 WO 2020045417 A1 WO2020045417 A1 WO 2020045417A1 JP 2019033490 W JP2019033490 W JP 2019033490W WO 2020045417 A1 WO2020045417 A1 WO 2020045417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- glass
- optical glass
- further preferably
- content ratio
- Prior art date
Links
- 239000005304 optical glass Substances 0.000 title claims abstract description 115
- 230000003287 optical effect Effects 0.000 title claims abstract description 23
- 239000011521 glass Substances 0.000 claims abstract description 240
- 238000004031 devitrification Methods 0.000 claims abstract description 89
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 61
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 56
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 23
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 23
- 230000003746 surface roughness Effects 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 10
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 6
- 229910052765 Lutetium Inorganic materials 0.000 claims description 6
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- 230000009477 glass transition Effects 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 48
- 230000007423 decrease Effects 0.000 description 40
- 239000000203 mixture Substances 0.000 description 37
- 239000011734 sodium Substances 0.000 description 32
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 27
- 238000004519 manufacturing process Methods 0.000 description 25
- 230000001965 increasing effect Effects 0.000 description 19
- 238000002844 melting Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 229910052783 alkali metal Inorganic materials 0.000 description 17
- 150000001340 alkali metals Chemical class 0.000 description 17
- 238000002834 transmittance Methods 0.000 description 17
- 238000000465 moulding Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 12
- 238000007496 glass forming Methods 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 230000000007 visual effect Effects 0.000 description 10
- 239000006060 molten glass Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000006260 foam Substances 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 238000004040 coloring Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000006124 Pilkington process Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000003426 chemical strengthening reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000007500 overflow downdraw method Methods 0.000 description 2
- 238000007372 rollout process Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 206010040925 Skin striae Diseases 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910003439 heavy metal oxide Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000006058 strengthened glass Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000012856 weighed raw material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3417—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/73—Anti-reflective coatings with specific characteristics
- C03C2217/734—Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
Definitions
- the present invention relates to an optical glass and an optical component.
- Wearable devices such as glasses with projectors, glasses or goggle type displays, virtual reality augmented reality display devices, glass used for virtual image display devices and the like, wide-angle images, high brightness and high contrast, improved light guide characteristics,
- a high refractive index is required from the viewpoint of ease of processing of a diffraction grating and the like.
- small-sized imaging glass lenses with a wide imaging angle of view have been used for applications such as in-vehicle cameras and visual sensors for robots. Therefore, a high refractive index is required.
- optical glass used in the above-mentioned applications in order to make the user's wearing feeling preferable, in addition, automobiles and robots are required to be lightweight, and in order to reduce the weight of the entire apparatus, low density is required. . Furthermore, in consideration of use in an external environment, it is important that the surface is not deteriorated or deteriorated by acid rain or chemicals such as detergents and waxes used for cleaning.
- plate-shaped glass may be used for wearable equipment, and may be produced by a molding method such as a float method, a fusion method, or a roll-out method with high production efficiency.
- a molding method such as a float method, a fusion method, or a roll-out method with high production efficiency.
- the relationship between the temperature during production and the viscosity of the glass is important.
- the visible light transmittance is also an important parameter, and in the case of a high refractive index glass, melting at a high temperature may reduce the visible light transmittance, particularly on the short wavelength side. If the viscosity curve is steep, it becomes difficult to control the viscosity in manufacturing.
- the present invention has been made to solve the above-described problems, and has as its object to provide an optical glass having a high refractive index, a low density, and excellent manufacturing characteristics.
- the optical glass of the present invention refractive index (n d) from 1.81 to 2.15, a density of 6.0 g / cm 3 or less, the temperatures T 1 at which the glass viscosity becomes 10 1 dPa ⁇ s 900 It is characterized in that the content of SiO 2 is 5% to 44% in terms of mol% on an oxide basis, with a devitrification temperature of 1300 ° C. or less, and a devitrification temperature of 1300 ° C. or less.
- An optical component according to the present invention includes the plate-shaped optical glass according to the present invention.
- FIG. 1 is a cross-sectional view for explaining the warpage of the optical glass.
- the optical glass of the present invention has the predetermined refractive index ( nd ), density (d), and melting property as described above, and these properties will be described in order.
- the optical glass of the present invention has a high refractive index ( nd ) in the range of 1.81 to 2.15. Since refractive index (n d) is 1.81 or more, the optical glass of the present invention, a wide angle of the image as an optical glass used in wearable devices, high brightness, high contrast, light characteristics enhancing, processing of the diffraction grating It is suitable in terms of easiness and the like.
- This refractive index ( nd ) is preferably at least 1.85, more preferably at least 1.88, further preferably at least 1.91, further preferably at least 1.94, further preferably at least 1.97, More preferably, it is 1.99 or more, more preferably 2.00 or more.
- glass refractive index (n d) of more than 2.15 tends dense and devitrification temperature is becomes tendency increases.
- the refractive index ( nd ) is preferably 2.10 or less, more preferably 2.06 or less, and still more preferably 2.03 or less. And more preferably 2.01 or less, further preferably 1.98 or less, further preferably 1.95 or less, further preferably 1.94 or less, and still more preferably 1.92 or less.
- the optical glass of the present invention has a density (d) of not more than 6.0 g / cm 3 .
- the optical glass of the present invention has a density in the above-described range, which makes it possible to make the user's wearing feeling preferable when used in a wearable device, and when used in a vehicle-mounted camera, a visual sensor for a robot, or the like. Thus, the weight of the entire apparatus can be reduced.
- This density (d) is preferably 5.6 g / cm 3 or less, more preferably 5.2 g / cm 3 or less, still more preferably 4.8 g / cm 3 or less, and even more preferably 4.6 g / cm 3 or less.
- the density (d) is preferably not less than 3.3 g / cm 3 in order to prevent the glass surface from being easily scratched.
- This density (d) is more preferably at least 3.6 g / cm 3 , still more preferably at least 3.9 g / cm 3 , still more preferably at least 4.2 g / cm 3 , still more preferably 4.4 g. / Cm 3 or more, and even more preferably 4.7 g / cm 3 or more.
- the temperature T 1 when the viscosity of the glass becomes 10 1 dPa ⁇ s is in the range of 900 to 1200 ° C.
- T 1 is the reference temperature of solubility, the T 1 of the glass is too high, since it becomes necessary to dissolve at elevated temperature, in the case of the high refractive index glass, possibly especially short-wavelength-side visible light transmittance is reduced is there.
- This T 1 is preferably 1180 ° C. or lower, more preferably 1150 ° C. or lower, further preferably 1130 ° C. or lower, and still more preferably 1110 ° C. or lower.
- T 1 is preferably 950 ° C. or higher, more preferably 1000 ° C. or higher, further preferably 1050 ° C. or higher, further preferably 1080 ° C. or higher, still more preferably 1100 ° C. or higher, and particularly preferably 1120 ° C. or higher. .
- the optical glass of the present invention has a devitrification temperature of 1300 ° C or less. With such characteristics, devitrification of glass at the time of molding can be suppressed, and moldability is good.
- the devitrification temperature is more preferably 1275 ° C. or lower, further preferably 1250 ° C. or lower, still more preferably 1225 ° C. or lower, even more preferably 1200 ° C. or lower, still more preferably 1175 ° C. or lower, and still more preferably 1150 ° C.
- it is still more preferably 1125 ° C or less, still more preferably 1100 ° C or less, still more preferably 1075 ° C or less, and particularly preferably 1050 ° C or less.
- the devitrification temperature is the lowest temperature at which a crystal having a long side or a long diameter of 1 ⁇ m or more is not observed on the glass surface or inside when the heated and molten glass is cooled by natural cooling.
- the glass transition point (Tg) is preferably 600 ° C. or higher.
- Tg is more preferably 630 ° C. or higher, further preferably 660 ° C. or higher, further preferably 690 ° C. or higher, further preferably 720 ° C. or higher, and particularly preferably 750 ° C. or higher.
- the Tg is preferably 800 ° C. or less. It is more preferably at most 760 ° C, further preferably at most 720 ° C, still more preferably at most 680 ° C, particularly preferably at most 640 ° C.
- Tg can be measured by, for example, a thermal expansion method.
- the optical glass of the present invention preferably has an Abbe number (v d ) of 60 or less.
- v d is more preferably 50 or less, more preferably 40 or less, more preferably 38 or less, more preferably 35 or less, still more preferably 32 or less, particularly preferably 30 or less.
- the optical glass of the present invention preferably has an Abbe number (v d ) of 15 or more.
- v d is more preferably 18 or more, more preferably 21 or more, more preferably 23 or more, more preferably 25 or more, even more preferably 27 or more, particularly preferably 29 or more.
- the optical glass of the present invention preferably has a coefficient of thermal expansion ( ⁇ ) at 50 to 350 ° C. of 50 to 150 ( ⁇ 10 ⁇ 7 / K).
- ⁇ coefficient of thermal expansion
- the lower limit of ⁇ is preferably 60 ( ⁇ 10 ⁇ 7 / K) or more, more preferably 70 ( ⁇ 10 ⁇ 7 / K) or more, and still more preferably 80 ( ⁇ 10 ⁇ 7 / K) or more.
- ⁇ 10 ⁇ 7 / K is preferably 60 ( ⁇ 10 ⁇ 7 / K) or more, more preferably 70 ( ⁇ 10 ⁇ 7 / K) or more, and still more preferably 80 ( ⁇ 10 ⁇ 7 / K) or more.
- 90 ⁇ 10 ⁇ 7 / K
- the optical glass of the present invention when the optical glass of the present invention is set to ⁇ in the above-mentioned range, cracks during cooling are less likely to occur, so that the cooling rate can be increased.
- the difference (Tf-Tg) between the virtual temperature (Tf) and the glass transition temperature (Tg) of the optical glass can be made 0 ° C. or more, and the structure of the glass can be made more sparse and the optical glass can be made Even if a certain shock is applied to the glass, the structure of the glass becomes denser, so that the shock is easily absorbed. As a result, the strength of the optical glass itself can be improved, and breakage due to falling or the like can be suppressed.
- the upper limit of ⁇ is preferably 120 ( ⁇ 10 ⁇ 7 / K) or less, more preferably 110 ( ⁇ 10 ⁇ 7 / K) or less, and further preferably 100 ( ⁇ 10 ⁇ 7 / K) or less. And particularly preferably not more than 95 ( ⁇ 10 ⁇ 7 / K).
- the optical glass of the present invention is preferably a glass plate having a thickness of 0.01 to 2 mm.
- the thickness is 0.01 mm or more, breakage during handling or processing of the optical glass can be suppressed. In addition, bending due to the weight of the optical glass can be suppressed.
- This thickness is more preferably 0.1 mm or more, still more preferably 0.3 mm or more, and even more preferably 0.5 mm or more.
- the thickness is 2 mm or less, the weight of the optical element using the optical glass can be reduced.
- This thickness is more preferably 1.5 mm or less, still more preferably 1.0 mm or less, and even more preferably 0.8 mm or less.
- the area of one main surface is preferably 8 cm 2 or more. If this area is 8 cm 2 or more, a large number of optical elements can be arranged, and the productivity is improved.
- This area is more preferably at least 30 cm 2 , still more preferably at least 170 cm 2 , still more preferably at least 300 cm 2 , particularly preferably at least 1000 cm 2 .
- the area is 6500 cm 2 or less, handling of the glass plate becomes easy, and breakage during handling and processing of the glass plate can be suppressed.
- the area is more preferably not 4500Cm 2 or less, further preferably not more 4000 cm 2 or less, more further preferably 3000 cm 2 or less, particularly preferably 2000 cm 2 or less.
- LTV Local Thickness Variation
- a nanostructure having a desired shape can be formed on one main surface by using an imprint technique or the like, and a desired light guide characteristic can be obtained.
- the light guide can prevent the ghost phenomenon and the distortion due to the difference in the optical path length.
- This LTV is more preferably 1.8 ⁇ m or less, further preferably 1.6 ⁇ m or less, still more preferably 1.4 ⁇ m or less, and particularly preferably 1.2 ⁇ m or less.
- the warp is preferably 50 ⁇ m or less. If the warpage of the glass plate is 50 ⁇ m or less, a nanostructure having a desired shape can be formed on one main surface by using an imprint technique or the like, and a desired light guide characteristic can be obtained. When trying to obtain a plurality of light guides, those with stable quality can be obtained.
- the warpage of the glass substrate is more preferably 40 ⁇ m or less, further preferably 30 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
- the warp is preferably 30 ⁇ m or less. If the warpage of the glass plate is 30 ⁇ m or less, a nanostructure having a desired shape can be formed on one main surface by using an imprint technique or the like, and a desired light guide characteristic can be obtained. When trying to obtain a plurality of light guides, those with stable quality can be obtained.
- the warpage of the glass plate is more preferably 20 ⁇ m or less, further preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
- the warpage is preferably 100 ⁇ m or less. If the warpage of the glass plate is 100 ⁇ m or less, a nanostructure having a desired shape can be formed on one main surface by using an imprint technique or the like, and a desired light guide characteristic can be obtained. When trying to obtain a plurality of light guides, those with stable quality can be obtained.
- the warpage of the glass plate is more preferably 70 ⁇ m or less, further preferably 50 ⁇ m or less, further preferably 35 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
- FIG. 1 is a cross-sectional view when the optical glass of the present invention is a glass plate G1.
- "Warp" means that the reference line G1D of the glass plate G1 and the glass plate G1 are crossed at an arbitrary cross section that passes through the center of the one main surface G1F of the glass plate G1 and is orthogonal to the one main surface G1F of the glass plate G1. Is the difference C between the maximum value B and the minimum value A of the vertical distance from the center line G1C of FIG.
- the intersection line between the arbitrary cross section and the one main surface G1F of the glass plate G1 is referred to as a bottom line G1A.
- the line of intersection between the arbitrary cross section and the other main surface G1G of the glass plate G1 is referred to as an upper line G1B.
- the center line G1C is a line connecting the centers in the thickness direction of the glass plate G1.
- the center line G1C is calculated by calculating the midpoint between the bottom line G1A and the upper line G1B with respect to the direction of laser irradiation described later.
- the reference line G1D is obtained as follows. First, the bottom line G1A is calculated based on a measurement method for canceling the influence of the own weight. A straight line is obtained from the bottom line G1A by the least square method. The obtained straight line is the reference line G1D. A well-known method is used as a measuring method for canceling the influence due to its own weight.
- one main surface G1F of the glass plate G1 is supported at three points, and the glass plate G1 is irradiated with a laser by a laser displacement meter, and one main surface G1F of the glass plate G1 and another one are viewed from an arbitrary reference plane. Of the main surface G1G is measured.
- the glass plate G1 is inverted, and three points of another main surface G1G opposite to the three points supporting one main surface G1F are supported, and one of the glass substrates G1 from an arbitrary reference plane is supported.
- the height of the main surface G1F and another main surface G1G is measured.
- the influence of the own weight is canceled.
- the height of one main surface G1F is measured as described above.
- the height of another main surface G1G is measured at a position corresponding to the measurement point of one main surface G1F.
- the height of another main surface G1G is measured.
- the height of one main surface G1F is measured at a position corresponding to the measurement point of the other main surface G1G.
- the warpage is measured by, for example, a laser displacement meter.
- the surface roughness Ra of one main surface is preferably 2 nm or less.
- a nanostructure having a desired shape can be formed on one main surface by using an imprint technique or the like, and a desired light guide characteristic can be obtained.
- This Ra is more preferably 1.7 nm or less, further preferably 1.4 nm or less, still more preferably 1.2 nm or less, and particularly preferably 1 nm or less.
- the surface roughness Ra is an arithmetic average roughness defined in JIS B0601 (2001).
- an area of 10 ⁇ m ⁇ 10 ⁇ m is a value measured using an atomic force microscope (AFM).
- the content ratio of each component is represented by mol% based on the oxide unless otherwise specified.
- substantially not contained means that it is not contained except for inevitable impurities.
- the content ratio of the unavoidable impurities is 0.1% or less in the present invention.
- composition satisfying the above-mentioned characteristics in the optical glass of the present embodiment include, for example, TiO 2 , Ta 2 O 5 , WO 3 , Nb 2 O 5 , and ZrO 2 which are high refractive index components expressed in terms of mol% on an oxide basis. And at least one selected from the group consisting of Ln 2 O 3 (Ln is at least one selected from the group consisting of Y, La, Gd, Yb, and Lu) in an amount of 30% to 80%, and a glass skeleton component.
- Ln 2 O 3 Ln is at least one selected from the group consisting of Y, La, Gd, Yb, and Lu
- the proportion of BaO in the alkali metal components is 0.5 or less. It is.
- Each component in the glass composition A satisfying this condition will be specifically described below. Note that the optical glass of the present invention is not limited to the composition of the following embodiment as long as it has the above-described characteristics.
- SiO 2 is a glass-forming component that imparts high strength and crack resistance to glass, and improves the stability and chemical durability of glass.
- the content ratio of SiO 2 is preferably 5% or more and 44% or less. When the content ratio of SiO 2 is 5% or more, the temperature T 1 when the viscosity of the glass becomes 10 1 dPa ⁇ s can be set in a preferable range.
- the content of SiO 2 is preferably at least 7%, more preferably at least 9%, further preferably at least 10%, particularly preferably at least 11%.
- the content ratio of SiO 2 is 44% or less, more components for obtaining a high refractive index can be contained.
- the content ratio of SiO 2 is more preferably 38% or less, more preferably 30% or less, further preferably 20% or less, further preferably 15% or less, and particularly preferably 12% or less.
- B 2 O 3 is a component that lowers Tg, improves mechanical properties such as glass strength and crack resistance, and lowers the devitrification temperature. However, when the amount of B 2 O 3 is large, the refractive index decreases. Easy to do. Therefore, the content ratio of B 2 O 3 is preferably 0% or more and 40% or less. The content ratio of B 2 O 3 is more preferably 35% or less, still more preferably 30% or less, further preferably 25% or less, further preferably 23% or less, and particularly preferably 22% or less. Further, the content ratio of B 2 O 3 is more preferably 5% or more, further preferably 12% or more, further preferably 18% or more, and particularly preferably 20% or more.
- SiO 2 and B 2 O 3 are glass-forming components and components that improve the stability of glass. If the total amount of SiO 2 and B 2 O 3 is large, the devitrification temperature of the glass decreases, and the glass is easily manufactured. Therefore, the total amount of SiO 2 and B 2 O 3 is 20% or more. It is preferably at least 25%, more preferably at least 28%, further preferably at least 30%, particularly preferably at least 32%. On the other hand, when the total amount of SiO 2 and B 2 O 3 is reduced, the refractive index can be improved.
- a particularly high refractive index when a particularly high refractive index is required, it is preferably 70% or less, more preferably 50% or less, still more preferably 40% or less, further preferably 35% or less, further preferably 33% or less, and more preferably 32% or less. Particularly preferred.
- SiO 2 / B 2 O 3 is preferably at most 5.0, more preferably at most 4.0, still more preferably at most 3.0, even more preferably at most 2.0. It is more preferably at most 1.0, more preferably at most 0.8, particularly preferably at most 0.6.
- TiO 2 , Ta 2 O 5 , WO 3 , Nb 2 O 5 , ZrO 2 and Ln 2 O 3 are glass Is a high-refractive-index component for increasing the refractive index.
- the content of these components is preferably 30% to 80% in total.
- a particularly high refractive index is required, it is preferably at least 40%, more preferably at least 55%, further preferably at least 60%, further preferably at least 65%, particularly preferably at least 67%.
- the high refractive index component is more than 80%, devitrification tends to occur.
- the content of these components is more preferably 70% or less, further preferably 60% or less, further preferably 50% or less, and particularly preferably. 45% or less.
- the content ratio of the alkali metal component (Li 2 O + Na 2 O + K 2 O) is 0% or more and 10% or less in total. Tg can be lowered by increasing the alkali metal component. However, if the amount of Li 2 O + Na 2 O + K 2 O is too large, T 1 tends to be low, the viscosity curve becomes steep, and the production characteristics are deteriorated. On the other hand, if the content of Li 2 O + Na 2 O + K 2 O is too small, T 1 tends to increase, the dissolution temperature increases, and components such as TiO 2 and Nb 2 O 5 among high refractive index components may be easily reduced and colored. .
- Li 2 O + Na 2 O + K 2 O when Li 2 O + Na 2 O + K 2 O is contained, the content is preferably 0.5% or more and 10% or less.
- Li 2 O + Na 2 O + K 2 O is more preferably at least 1%, further preferably at least 2%, further preferably at least 4%, particularly preferably at least 5%.
- Li 2 O + Na 2 O + K 2 O is preferably at most 6%, more preferably at most 3%, further preferably at most 2%, particularly preferably at most 1%.
- “Li 2 O + Na 2 O + K 2 O” indicates the total amount of at least one alkali metal oxide component selected from the group consisting of Li 2 O, Na 2 O and K 2 O.
- the configuration connected by “+” indicates the total amount of at least one component selected from the group consisting of the components connected by “+”.
- the content ratio of Li 2 O is 0% or more and 10% or less. When Li 2 O is contained, the content ratio is 0.2% or more and 10% or less. When Li 2 O is contained, strength (Kc) and crack resistance (CIL) can be improved.
- the content ratio is preferably 1% or more, more preferably 2% or more, further preferably 4% or more, and particularly preferably 5% or more. On the other hand, if the amount of Li 2 O is too large, it tends to be devitrified.
- the content ratio of Li 2 O is preferably 8% or less, more preferably 6% or less, further preferably 4% or less, further preferably 2% or less, and more preferably 1% or less. Particularly preferred.
- the content ratio of Li 2 O is preferably 3.0% or more, more preferably 6.0% or more, still more preferably 9.0% or more. 0% or more is particularly preferred.
- Na 2 O is a component that suppresses devitrification and lowers Tg, and its content is 0% or more and 10% or less.
- the content ratio is preferably 1% or more, more preferably 2% or more, still more preferably 3% or more, and particularly preferably 4% or more.
- the content ratio of Na 2 O is preferably 7% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less.
- the total amount of Li 2 O and Na 2 O is preferably 0% or more and 10% or less. It is more preferably at most 6%, further preferably at most 4%, further preferably at most 2%, particularly preferably at most 1%.
- K 2 O is a component that suppresses devitrification and lowers Tg, and its content is 0% or more and 10% or less.
- the content ratio is preferably 1% or more, more preferably 2% or more, further preferably 3% or more, and particularly preferably 4% or more.
- the content ratio of K 2 O is preferably at most 7%, more preferably at most 4%, further preferably at most 2%, particularly preferably at most 1%.
- MgO is a component that improves the melting property of glass, suppresses devitrification, and adjusts optical constants such as Abbe number and refractive index of glass.
- the content ratio of MgO is preferably 0% or more and 10% or less.
- the content ratio of MgO is more preferably 8% or less, particularly preferably 6% or less.
- the content ratio of MgO is preferably 0.3% or more, more preferably 0.5% or more, and still more preferably 1% or more.
- the content ratio of CaO is preferably 0% or more and 25% or less.
- the content ratio of CaO is more preferably 20% or less, further preferably 10% or less, and particularly preferably 6% or less.
- the content ratio of CaO is more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1% or more.
- the content ratio of SrO is preferably 0% or more and 20% or less.
- the content ratio of SrO is more preferably 15% or less, further preferably 8% or less, and particularly preferably 4% or less. Further, the content ratio of SrO is more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1% or more.
- the total amount of MgO, CaO, and SrO is preferably 30% or less. It is more preferably at most 20%, further preferably at most 12%, further preferably at most 10%, further preferably at most 5%, particularly preferably at most 2%.
- BaO is a component that suppresses devitrification, but when the amount of BaO is large, the density tends to increase. Therefore, when BaO is contained, the content is preferably 0% or more and 30% or less.
- the content ratio of BaO is more preferably 25% or less, still more preferably 15% or less, further preferably 8% or less, and particularly preferably 4% or less. Further, the content ratio of BaO is more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1% or more.
- the specific gravity can be reduced by setting the ratio of BaO in the alkaline earth metal component (BaO / (MgO + CaO + SrO + BaO)) to 0.5 or less. It is preferably at most 0.4, more preferably at most 0.3, further preferably at most 0.2, particularly preferably at most 0.1.
- the devitrification temperature can be lowered by increasing the proportion of BaO contained in the alkali metal component. For applications requiring a lower surface roughness Ra, 0.1 or more is preferable, 0.2 or more is more preferable, 0.3 or more is more preferable, and 0.4 or more is particularly preferable.
- the total amount of the alkali metal component (Li 2 O + Na 2 O + K 2 O) and the alkaline earth metal component (MgO + CaO + SrO + BaO) increases, Tg of the glass tends to decrease. Therefore, the total amount of the alkali metal component and the alkaline earth metal component is preferably 30% or less. It is more preferably at most 16%, further preferably at most 12%, further preferably at most 10%, further preferably at most 5%, particularly preferably at most 2%.
- Al 2 O 3 is a component that improves the chemical durability, but when the amount of Al 2 O 3 increases, the glass tends to be devitrified. Therefore, the content ratio of Al 2 O 3 is preferably 0% or more and 5% or less. The content ratio of Al 2 O 3 is more preferably 3% or less, and particularly preferably 2% or less. Further, the content ratio of Al 2 O 3 is more preferably at least 0.3%, further preferably at least 0.5%, particularly preferably at least 1%.
- TiO 2 is a component that increases the refractive index of the glass and increases the dispersion of the glass, and the content thereof is 0% or more and 50% or less.
- the content ratio is preferably 10% or more, more preferably 20% or more, still more preferably 25% or more, further preferably 28% or more, further preferably 30% or more, and more preferably 32% or more. Particularly preferred.
- the content ratio of TiO 2 is preferably 50% or less, more preferably 40% or less, further preferably 37% or less, further preferably 35% or less, and further preferably 34% or less. It is preferably at most 33%, particularly preferably at most 32%.
- TiO 2 / B 2 O 3 is preferably 5.0 or less, more preferably 4.0 or less, further preferably 3.0 or less, further preferably 2.0 or less, and further preferably It is preferably at most 1.8, more preferably at most 1.7, even more preferably at most 1.6, particularly preferably at most 1.5.
- the content ratio of WO 3 is preferably 0% or more and 10% or less.
- the content of WO 3 is more preferably 6% or less, still more preferably 2% or less, further preferably 1.5% or less, further preferably 1.0% or less, and particularly preferably 0.5% or less.
- the refractive index of the glass can be improved. Therefore, when a particularly high refractive index is required, the content of WO 3 is more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1% or more.
- Nb 2 O 5 is a component that increases the refractive index of glass and decreases the Abbe number (v d ).
- the content ratio of Nb 2 O 5 is 0% or more and 35% or less.
- the content ratio of Nb 2 O 5 is more preferably 1% or more, still more preferably 2% or more, further preferably 2.5% or more, still more preferably 3% or more, further preferably 4% or more, and more preferably 5% or more. More preferably, it is particularly preferably at least 6%. Further, if Nb 2 O 5 is too much, it tends to be devitrified.
- the total amount of TiO 2 , WO 3, and Nb 2 O 5 is preferably 10% or more and 50% or less. It is more preferably at least 15%, further preferably at least 20%, further preferably at least 25%, particularly preferably at least 30%.
- Y 2 O 3 is a component that can increase the refractive index of the glass and adjust T 1 of the glass to a preferable range, and its content is 0% or more and 7% or less.
- the content ratio of Y 2 O 3 is preferably 1% or more, more preferably 2% or more, still more preferably 2.5% or more, further preferably 3% or more, still more preferably 3.5% or more, and more preferably 4% or more. Is more preferable, and 5% or more is particularly preferable.
- Y 2 O 3 is too much, it tends to be devitrified. Therefore, for applications requiring lower surface roughness Ra, 5% or less is preferable, 4% or less is more preferable, 3.5% or less is further preferable, and 3% or less is particularly preferable.
- ZrO 2 is a component that increases the refractive index of the glass and increases the chemical durability of the glass, and its content is 0% or more and 20% or less. Crack resistance can be improved by containing ZrO 2 .
- its content is preferably at least 1%, more preferably at least 3%, further preferably at least 5%, further preferably at least 6%, particularly preferably at least 6.5%.
- the content of ZrO 2 is more preferably 15% or less, still more preferably 10% or less, further preferably 8% or less, and particularly preferably 7% or less.
- ZnO is a component for improving mechanical properties such as glass strength and crack resistance, and its content is 0% or more and 15% or less.
- the content ratio is more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1% or more.
- the content of ZnO is more preferably 10% or less, still more preferably 5% or less, and more preferably 2%.
- the content is more preferably 1% or less, further preferably 1% or less, particularly preferably 0.5% or less.
- La 2 O 3 is a component that improves the refractive index of glass, and its content is 0% or more and 35% or less.
- its content is preferably at least 10%, more preferably at least 15%, further preferably at least 16%, further preferably at least 18%, particularly preferably at least 20%.
- the content ratio of La 2 O 3 is preferably 30% or less. It is more preferably at most 25%, further preferably at most 22%, further preferably at most 20%, further preferably at most 19%, further preferably at most 18%, particularly preferably at most 17%.
- Gd 2 O 3 is a component for improving the refractive index of glass, and its content is 0% or more and 15% or less.
- its content is preferably at least 1%, more preferably at least 2%, further preferably at least 3%, further preferably at least 4%, particularly preferably at least 5%.
- the content of Gd 2 O 3 is preferably 10% or less, more preferably 7% or less, still more preferably 5% or less, and further preferably 4% or less. It is more preferably at most 3%, further preferably at most 2%, particularly preferably at most 1%.
- (ZrO 2 + Ta 2 O 5 + Nb 2 O 5 ) / (SiO 2 + B 2 O 3 ) is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.6 or less, and 0.4 or less. Is more preferable, and 0.35 or less is particularly preferable.
- the ratio of the total amount of Nb 2 O 5 , TiO 2 , WO 3 and Ta 2 O 5 to the total amount of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3 (Nb 2 O 5 + TiO 2 When + WO 3 + Ta 2 O 5 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 ) increases, the glass is colored and the transmittance tends to decrease. Therefore, (Nb 2 O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 ) is preferably 10.0 or less, more preferably 8.0 or less.
- (Nb 2 O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 ) is 0.5 or more. Is preferably 0.7 or more, more preferably 0.9 or more, still more preferably 1.1 or more, further preferably 1.2 or more, still more preferably 1.3 or more, still more preferably 1.4 or more. , 2.0 or more, more preferably 3.0 or more, and particularly preferably 3.5 or more.
- the optical glass of the present embodiment preferably contains at least one of Sb 2 O 3 and SnO 2 .
- Sb 2 O 3 and SnO 2 are not essential components, but can be added for the purpose of adjusting the refractive index characteristics, improving the meltability, suppressing coloring, improving the transmittance, refining, and improving the chemical durability.
- the total is preferably 10% or less, more preferably 5% or less, still more preferably 3% or less, and particularly preferably 1% or less.
- the optical glass of the present embodiment preferably contains V 2 O 5 .
- V 2 O 5 is not essential, but can be added for the purpose of improving transmittance and clarity.
- V 2 O 5 is contained, it is preferably at most 5%, more preferably at most 3%, further preferably at most 1%, particularly preferably at most 0.5%.
- the optical glass of the present embodiment preferably contains F.
- F is not essential, but can be added for the purpose of improving solubility, improving transmittance, and improving clarity.
- F is contained, it is preferably at most 5%, more preferably at most 3%.
- the optical glass of the present embodiment it is preferable to perform an operation of increasing the water content in the molten glass in a melting step of heating and melting the glass raw material in the melting vessel to obtain the molten glass.
- the operation for increasing the water content in the glass is not limited.
- a treatment for adding water vapor to the melting atmosphere and a treatment for bubbling a gas containing water vapor in the melt can be considered.
- the operation of increasing the water content is not essential, it can be performed for the purpose of improving the transmittance and the clarity.
- the optical glass of the present embodiment containing an alkali metal oxide of Li 2 O or Na 2 O is chemically modified by replacing Li ions with Na ions or K ions and Na ions with K ions. Can be strengthened. That is, the strength of the optical glass can be improved by performing the chemical strengthening treatment.
- Glass composition A1 A glass composition in which the alkaline earth metal component is 5% or less in the above glass composition A is referred to as a glass composition A1, and each component will be described. Components that are not described in the glass composition A1 are the same as those in the description of the components in the glass composition A described above, and will not be described.
- SiO 2 is a glass-forming component that imparts high strength and crack resistance to glass, and improves the stability and chemical durability of glass.
- the content ratio of SiO 2 is preferably 5% or more and 30% or less. When the content ratio of SiO 2 is 5% or more, the temperature T 1 when the viscosity of the glass becomes 10 1 dPa ⁇ s can be set in a preferable range.
- the content of SiO 2 is preferably at least 7%, more preferably at least 9%, further preferably at least 10%, particularly preferably at least 11%.
- the content ratio of SiO 2 is 30% or less, more components for obtaining a high refractive index can be contained.
- the content ratio of SiO 2 is more preferably 25% or less, more preferably 20% or less, further preferably 15% or less, further preferably 13% or less, and particularly preferably 12% or less.
- B 2 O 3 is a component that lowers Tg, improves mechanical properties such as glass strength and crack resistance, and lowers the devitrification temperature. However, when the amount of B 2 O 3 is large, the refractive index decreases. Easy to do. Therefore, the content ratio of B 2 O 3 is preferably 5% or more and 40% or less. The content ratio of B 2 O 3 is more preferably 35% or less, still more preferably 30% or less, further preferably 25% or less, further preferably 23% or more, and particularly preferably 22% or less. Further, the content ratio of B 2 O 3 is more preferably 10% or more, further preferably 15% or more, further preferably 18% or more, and particularly preferably 20% or more.
- SiO 2 and B 2 O 3 are glass-forming components and are components for improving the stability of glass, and their total amount is 20% or more and 45% or less. If the total amount of SiO 2 and B 2 O 3 is large, the devitrification temperature of the glass decreases, and the glass is easily manufactured. Therefore, the total amount of SiO 2 and B 2 O 3 is 20% or more. It is preferably at least 25%, more preferably at least 28%, further preferably at least 30%, particularly preferably at least 32%. On the other hand, when the total amount of SiO 2 and B 2 O 3 is reduced, the refractive index can be improved. Therefore, when a particularly high refractive index is required, it is preferably at most 45%, more preferably at most 40%, further preferably at most 35%, further preferably at most 33%, particularly preferably at most 32%.
- SiO 2 / B 2 O 3 is preferably 1.4 or less, more preferably 1.2 or less, further preferably 1.0 or less, further preferably 0.8 or less, and particularly preferably 0.6 or less.
- TiO 2 , Ta 2 O 5 , WO 3 , Nb 2 O 5 , ZrO 2 and Ln 2 O 3 are glass Is a high-refractive-index component for increasing the refractive index.
- the content ratio of these components is preferably 45% to 80% in total.
- the refractive index is preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, even more preferably 65% or more, and particularly preferably 67% or more.
- the high refractive index component is more than 80%, devitrification tends to occur.
- the content of these components is more preferably 75% or less, further preferably 70% or less, and particularly preferably 68% or less.
- MgO is a component that improves the melting property of glass, suppresses devitrification, and adjusts optical constants such as Abbe number and refractive index of glass.
- the content ratio of MgO is preferably 0% or more and 5% or less.
- the content ratio of MgO is more preferably 4% or less, and particularly preferably 2% or less.
- the content ratio of MgO is preferably 0.3% or more, more preferably 0.5% or more, and still more preferably 1% or more.
- the content ratio of CaO is preferably 0% or more and 5% or less.
- the content ratio of CaO is more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less.
- the content ratio of CaO is more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1% or more.
- the content ratio of SrO is preferably 0% or more and 5% or less.
- the SrO content is preferably 15% or less, more preferably 4% or less, and particularly preferably 2% or less. Further, the content ratio of SrO is more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1% or more.
- the total amount of MgO, CaO, and SrO is preferably 5% or less. It is more preferably at most 4%, further preferably at most 3%, further preferably at most 2%, further preferably at most 1%, particularly preferably at most 0.5%.
- BaO is a component that suppresses devitrification, but when the amount of BaO is large, the density tends to increase. Therefore, when BaO is contained, the content is preferably 0% or more and 5% or less.
- the content ratio of BaO is more preferably 4% or less, still more preferably 3% or less, further preferably 2% or less, and particularly preferably 1% or less. Further, the content ratio of BaO is more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1% or more.
- the specific gravity can be reduced by setting the ratio of BaO in the alkaline earth metal component (BaO / (MgO + CaO + SrO + BaO)) to 0.5 or less. It is preferably at most 0.4, more preferably at most 0.3, further preferably at most 0.2, particularly preferably at most 0.1.
- the devitrification temperature can be lowered by increasing the proportion of BaO contained in the alkali metal component. For applications requiring a lower surface roughness Ra, 0.1 or more is preferable, 0.2 or more is more preferable, 0.3 or more is more preferable, and 0.4 or more is particularly preferable.
- the total amount of the alkali metal component (Li 2 O + Na 2 O + K 2 O) and the alkaline earth metal component (MgO + CaO + SrO + BaO) increases, Tg of the glass tends to decrease. Therefore, the total amount of the alkali metal component and the alkaline earth metal component is preferably 15% or less. It is more preferably at most 12%, further preferably at most 10%, further preferably at most 5%, further preferably at most 3%, particularly preferably at most 2%.
- TiO 2 / B 2 O 3 is preferably 2.0 or less, more preferably 1.8 or less, further preferably 1.7 or less, further preferably 1.6 or less, particularly preferably 1.5 or less.
- the optical glass obtained with glass composition A1 has a high refractive index ( nd ) in the range from 1.92 to 2.15. Refractive index (n d) is 1.92 or more.
- This optical glass is suitable as an optical glass used for wearable devices in terms of widening the angle of an image, high brightness and high contrast, improvement of light guide characteristics, and easy processing of a diffraction grating. Further, as a small-sized imaging glass lens having a wide imaging angle of view used for a vehicle-mounted camera, a visual sensor for a robot, and the like, it is suitable for capturing a smaller and wider area.
- This refractive index ( nd ) is preferably at least 1.95, more preferably at least 1.97, further preferably at least 1.98, further preferably at least 1.99, further preferably at least 2.00. is there. Meanwhile glass refractive index (n d) of more than 2.15 tends dense and devitrification temperature is becomes tendency increases.
- the refractive index ( nd ) is preferably 2.10 or less, more preferably 2.06 or less, and still more preferably 2.03 or less. Further preferably, it is 2.01 or less, further preferably 1.98 or less, further preferably 1.95 or less, further preferably 1.94 or less, and still more preferably 1.93 or less.
- the optical glass obtained with the glass composition A1 has a density (d) of 4.0 g / cm 3 or more and 6.0 g / cm 3 or less.
- This optical glass has a density in the above-described range, so that it is possible to make a user's wearing feeling preferable when used in wearable devices, and when used in a vehicle-mounted camera, a visual sensor for a robot, etc. Overall weight can be reduced.
- This density (d) is preferably 5.8 g / cm 3 or less, more preferably 5.6 g / cm 3 or less, still more preferably 5.4 g / cm 3 or less, and even more preferably 5.2 g / cm 3 or less.
- the density (d) is preferably 4.0 g / cm 3 or more, more preferably 4.3 g / cm 3 or more, and still more preferably 4.6 g / cm 3 in order to make the surface of the optical glass difficult to damage.
- cm 3 or more more preferably 4.7 g / cm 3 or more, particularly preferably 4.8 g / cm 3 or more.
- Glass composition A2 The glass composition in which the alkaline earth metal component is more than 5% and 50% or less and B 2 O 3 is less than 15% in the above glass composition A is referred to as glass composition A2, and each component will be described. Components that are not described in the glass composition A2 are the same as those in the description of the components in the glass composition A described above, and will not be described.
- SiO 2 is a glass-forming component that imparts high strength and crack resistance to glass, and improves the stability and chemical durability of glass.
- the content ratio of SiO 2 is preferably 5% or more and 44% or less.
- the content ratio of SiO 2 is preferably 10% or more, more preferably 15% or more, still more preferably 20% or more, further preferably 24% or more, further preferably 28% or more, and particularly preferably 30% or more.
- the content ratio of SiO 2 is 44% or less, a component for obtaining a high refractive index can be contained.
- the content ratio of SiO 2 is more preferably 37% or less, still more preferably 35.5% or less, further preferably 34% or less, further preferably 33% or less, and particularly preferably 31% or less.
- B 2 O 3 is a glass forming component and is an optional component.
- B 2 O 3 is a component that lowers Tg, improves mechanical properties such as glass strength and crack resistance, and lowers the devitrification temperature.
- the content ratio of B 2 O 3 is preferably 0% or more and less than 15% from the balance between the refractive index and the mechanical strength.
- the content ratio of B 2 O 3 is more preferably 14% or less, further preferably 13% or less, further preferably 12% or less, further preferably 11% or more, and particularly preferably 10% or less.
- the content ratio of B 2 O 3 is more preferably 1% or more, still more preferably 3% or more, further preferably 5% or more, and particularly preferably 7% or more.
- SiO 2 and B 2 O 3 are glass-forming components and are components for improving the stability of glass, and have a total content of 30% or more and 70% or less. If the total amount of SiO 2 and B 2 O 3 is large, the devitrification temperature of the glass decreases, and the glass is easily manufactured. Therefore, the total amount of SiO 2 and B 2 O 3 is 30% or more. It is preferably at least 32%, more preferably at least 34%, further preferably at least 36%, particularly preferably at least 37%. On the other hand, when the total amount of SiO 2 and B 2 O 3 is reduced, the refractive index can be improved. Therefore, when a particularly high refractive index is required, it is preferably at most 70%, more preferably at most 60%, further preferably at most 50%, further preferably at most 40%, particularly preferably at most 35%.
- SiO 2 / B 2 O 3 is preferably at most 5.0, more preferably at most 4.5, further preferably at most 4.0, further preferably at most 3.5, particularly preferably at most 3.5. Preferably it is 3.0 or less.
- TiO 2 , Ta 2 O 5 , WO 3 , Nb 2 O 5 , ZrO 2 and Ln 2 O 3 are glass Is a high-refractive-index component for increasing the refractive index.
- the content of these components is preferably 30% to 55% in total.
- a particularly high refractive index it is preferably 33% or more, more preferably 35% or more, still more preferably 36% or more, even more preferably 37% or more, and particularly preferably 38% or more.
- the content of these components is more preferably 50% or less, further preferably 45% or less, further preferably 40% or less, and particularly preferably. 35% or less.
- the content ratio of the alkali metal component (Li 2 O + Na 2 O + K 2 O) is 0% or more and 10% or less in total. Tg can be lowered by increasing the alkali metal component. However, if the amount of Li 2 O + Na 2 O + K 2 O is too large, T 1 tends to be low, the viscosity curve becomes steep, and the production characteristics are deteriorated. On the other hand, if the amount of Li 2 O + Na 2 O + K 2 O is too small, T 1 tends to increase, and the dissolution temperature increases, which may cause coloring. Therefore, when Li 2 O + Na 2 O + K 2 O is contained, the content is preferably 0.5% or more and 10% or less.
- Li 2 O + Na 2 O + K 2 O is more preferably at least 1%, further preferably at least 1.5%, further preferably at least 2%, particularly preferably at least 3%.
- Li 2 O + Na 2 O + K 2 O is preferably at most 6%, more preferably at most 4%, further preferably at most 3%, particularly preferably at most 2%.
- the content ratio of Li 2 O is 0% or more and 10% or less. When Li 2 O is contained, the content ratio is 0.2% or more and 10% or less. When Li 2 O is contained, strength (Kc) and crack resistance (CIL) can be improved.
- the content ratio is preferably 0.5% or more, more preferably 1% or more, further preferably 1.5% or more, and particularly preferably 2% or more.
- the content ratio of Li 2 O is preferably 8% or less, more preferably 6% or less, further preferably 4% or less, and particularly preferably 2% or less.
- the content ratio of Li 2 O is preferably 3.0% or more, more preferably 6.0% or more, still more preferably 9.0% or more. 0% or more is particularly preferred.
- the content ratio of CaO is preferably 0% or more and 25% or less.
- the content ratio of CaO is more preferably 20% or less, still more preferably 15% or less, further preferably 10% or less, further preferably 8% or less, further preferably 7% or less, and particularly preferably 6.5% or less.
- the CaO content is preferably 2% or more, more preferably 4% or more, still more preferably 5% or more, and particularly preferably 6% or more.
- the content ratio of SrO is preferably 0% or more and 20% or less.
- the content ratio of SrO is more preferably 15% or less, further preferably 10% or less, further preferably 9% or less, further preferably 8% or less, and particularly preferably 7% or less.
- the content ratio of SrO is more preferably 2% or more, further preferably 4% or more, and particularly preferably 6% or more.
- the total amount of MgO, CaO, and SrO is preferably 30% or less. It is more preferably at most 25%, further preferably at most 18%, further preferably at most 16%, further preferably at most 15%, particularly preferably at most 14%.
- BaO is a component that suppresses devitrification, but when the amount of BaO is large, the density tends to increase. Therefore, when BaO is contained, the content is preferably 0% or more and 30% or less.
- the content ratio of BaO is more preferably 20% or less, still more preferably 15% or less, further preferably 11% or less, further preferably 9% or less, and particularly preferably 8% or less. Further, the content ratio of BaO is more preferably 2% or more, further preferably 4% or more, and particularly preferably 6% or more.
- the content ratio of the alkaline earth metal component is 5% or more and 50% or less in total.
- the total amount is 50% or less, devitrification of glass can be suppressed, so that it is preferable. It is more preferably 40% or less, further preferably 30% or less, further preferably 27% or less, further preferably 25% or less, further preferably 23% or less, and still more preferably 21% or less. Or less, particularly preferably 20% or less.
- the total amount is 5% or more, the melting property of the glass can be improved, which is preferable. It is more preferably at least 10%, further preferably at least 13%, further preferably at least 16%, further preferably at least 18%, particularly preferably at least 19%.
- the specific gravity can be reduced. It is preferably at most 0.45, more preferably at most 0.42, even more preferably at most 0.40, particularly preferably at most 0.35.
- the proportion of BaO contained in the alkaline earth metal component is preferably 0.1 or more, more preferably 0.2 or more, further preferably 0.3 or more, and particularly preferably 0.35 or more.
- the total amount of the alkali metal component (Li 2 O + Na 2 O + K 2 O) and the alkaline earth metal component (MgO + CaO + SrO + BaO) increases, Tg of the glass tends to decrease. Therefore, the total amount of the alkali metal component and the alkaline earth metal component is preferably 30% or less. It is more preferably at most 16%, further preferably at most 14%, further preferably at most 13%, further preferably at most 12%, particularly preferably at most 11.5%.
- TiO 2 is a component that increases the refractive index of the glass and increases the dispersion of the glass, and the content thereof is 0% or more and 50% or less.
- the content ratio is preferably 10% or more, more preferably 15% or more, still more preferably 17% or more, further preferably 19% or more, further preferably 20% or more, and more preferably 22% or more. Particularly preferred.
- the content ratio of TiO 2 is preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, further preferably 25% or less, and further preferably 23% or less. It is preferably at most 22%, particularly preferably at most 21%.
- TiO 2 / B 2 O 3 is preferably at most 5.0, more preferably at most 4.5, still more preferably at most 4.0, even more preferably at most 3.5. It is preferably at most 3.0, more preferably at most 2.8, particularly preferably at most 2.7.
- Nb 2 O 5 is a component that increases the refractive index of glass and decreases the Abbe number (v d ).
- the content ratio of Nb 2 O 5 is 0% or more and 35% or less.
- the content ratio of Nb 2 O 5 is preferably 2% or more, more preferably 4% or more, still more preferably 5% or more, further preferably 6% or more, still more preferably 7% or more, and still more preferably 8% or more. Particularly preferred is 10% or more. Further, if Nb 2 O 5 is too much, it tends to be devitrified. Therefore, for applications requiring a lower surface roughness Ra, 20% or less is preferable, 10% or less is more preferable, 8% or less is further preferable, and 7% or less is particularly preferable.
- the total amount of TiO 2 , WO 3, and Nb 2 O 5 is preferably 10% or more and 50% or less. It is more preferably at least 14%, further preferably at least 18%, further preferably at least 22%, particularly preferably at least 26%.
- the total amount of TiO 2 , WO 3, and Nb 2 O 5 is large, devitrification tends to occur. Therefore, for applications requiring a lower surface roughness Ra, it is preferably 40% or less, more preferably 35% or less, further preferably 30% or less, and particularly preferably 28% or less.
- ZrO 2 is a component that increases the refractive index of the glass and increases the chemical durability of the glass, and its content is 0% or more and 20% or less. Crack resistance can be improved by containing ZrO 2 .
- the content ratio is preferably 1% or more, more preferably 2% or more, still more preferably 3% or more, and particularly preferably 4% or more.
- the content ratio of ZrO 2 is more preferably 15% or less, further preferably 10% or less, further preferably 6% or less, and particularly preferably 5% or less.
- ZnO is a component for improving mechanical properties such as glass strength and crack resistance, and its content is 0% or more and 15% or less.
- the content ratio is more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1% or more.
- the content of ZnO is more preferably 10% or less, still more preferably 5% or less, further preferably 2% or less, further preferably 1% or less. 0.5% or less is particularly preferred.
- La 2 O 3 is a component that improves the refractive index of glass, and its content is 0% or more and 35% or less.
- its content is preferably at least 2%, more preferably at least 4%, further preferably at least 5%, further preferably at least 6%, particularly preferably at least 7%.
- the content ratio of La 2 O 3 is preferably 30% or less. It is more preferably at most 25%, further preferably at most 20%, further preferably at most 15%, further preferably at most 10%, further preferably at most 9%, particularly preferably at most 8%.
- the ratio of the total amount of Nb 2 O 5 , TiO 2 , WO 3 and Ta 2 O 5 to the total amount of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3 (Nb 2 O 5 + TiO 2 When + WO 3 + Ta 2 O 5 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 ) increases, the glass is colored and the transmittance tends to decrease. Therefore, (Nb 2 O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 ) is preferably 10.0 or less, more preferably 8.0 or less.
- the optical glass obtained with glass composition A2 has a high refractive index ( nd ) in the range of 1.81 to 1.96.
- Refractive index (n d) is that 1.81 or more.
- This optical glass is suitable as an optical glass used for wearable devices in terms of widening the angle of an image, high brightness and high contrast, improvement of light guide characteristics, and easy processing of a diffraction grating. Further, as a small-sized imaging glass lens having a wide imaging angle of view used for a vehicle-mounted camera, a visual sensor for a robot, and the like, it is suitable for capturing a smaller and wider area.
- the refractive index (n d) is preferably not less 1.84 or more, more preferably 1.86 or more, more preferably 1.87 or more, more preferably 1.88 or more, more preferably 1.89 or more, Particularly preferably, it is 1.90 or more.
- the refractive index ( nd ) is preferably 1.94 or less, more preferably 1.93 or less, and still more preferably 1.92 or less. , More preferably 1.91 or less, further preferably 1.90 or less, further preferably 1.89 or less, further preferably 1.88 or less, and still more preferably 1.87 or less.
- the optical glass obtained with the glass composition A2 has a density (d) of 3.3 g / cm 3 or more and 5.4 g / cm 3 or less.
- This optical glass has a density in the above-described range, so that it is possible to make a user's wearing feeling preferable when used in wearable devices, and when used in a vehicle-mounted camera, a visual sensor for a robot, etc. Overall weight can be reduced.
- This density (d) is preferably 5.2 g / cm 3 or less, more preferably 5.0 g / cm 3 or less, still more preferably 4.8 g / cm 3 or less, and still more preferably 4.6 g / cm 3 or less.
- the density (d) is preferably 3.6 g / cm 3 or more in order to make the surface of the optical glass difficult to damage. More preferably 3.8 g / cm 3 or more, still more preferably 4.0 g / cm 3 or more, even more preferably 4.2 g / cm 3 or more, and particularly preferably 4.3 g / cm 3 or more.
- the optical glass has a devitrification temperature of 1300 ° C or less. With such characteristics, devitrification of glass at the time of molding can be suppressed, and moldability is good.
- This devitrification temperature is more preferably 1275 ° C. or lower, further preferably 1240 ° C. or lower, still more preferably 1225 ° C. or lower, even more preferably 1200 ° C. or lower, still more preferably 1175 ° C. or lower, and still more preferably 1150 ° C.
- it is still more preferably 1125 ° C or less, still more preferably 1100 ° C or less, still more preferably 1075 ° C or less, and particularly preferably 1050 ° C or less.
- the devitrification temperature is the lowest temperature at which a crystal having a long side or a long diameter of 1 ⁇ m or more is not observed on the glass surface or inside when the heated and molten glass is cooled by natural cooling.
- Glass composition A3 The glass composition in which the alkaline earth metal component is more than 5% and 50% or less and B 2 O 3 is 15% or more in the above glass composition A is referred to as glass composition A3, and each component will be described. Components that are not described in the glass composition A3 are the same as those in the description of the components of the glass composition A described above, and thus will not be described.
- SiO 2 is a glass-forming component that imparts high strength and crack resistance to glass, and improves the stability and chemical durability of glass.
- the content ratio of SiO 2 is preferably 5% or more and 44% or less.
- the content ratio of SiO 2 is preferably 5% or more, more preferably 10% or more, still more preferably 12% or more, further preferably 13% or more, further preferably 14% or more, and particularly preferably 15% or more.
- the content ratio of SiO 2 is 44% or less, a component for obtaining a high refractive index can be contained.
- the content ratio of SiO 2 is more preferably 37% or less, still more preferably 30% or less, further preferably 23% or less, further preferably 20% or less, and particularly preferably 17% or less.
- B 2 O 3 is a glass-forming component and an essential component.
- B 2 O 3 is a component that lowers Tg, improves mechanical properties such as glass strength and crack resistance, and lowers the devitrification temperature.
- the content ratio of B 2 O 3 is preferably 15% or more and 40% or less.
- the content ratio of B 2 O 3 is more preferably 35% or less, still more preferably 32% or less, further preferably 29% or less, further preferably 27% or less, and particularly preferably 26% or less.
- the content ratio of B 2 O 3 is more preferably 18% or more, further preferably 21% or more, further preferably 23% or more, and particularly preferably 24% or more.
- SiO 2 and B 2 O 3 are glass-forming components and are components for improving the stability of glass, and have a total content of 30% or more and 70% or less. If the total amount of SiO 2 and B 2 O 3 is large, the devitrification temperature of the glass decreases, and the glass is easily manufactured. Therefore, the total amount of SiO 2 and B 2 O 3 is 30% or more, preferably 32% or more, more preferably 34% or more, still more preferably 36% or more, and particularly preferably 39% or more. On the other hand, when the total amount of SiO 2 and B 2 O 3 is reduced, the refractive index can be improved. Therefore, when a particularly high refractive index is required, it is preferably at most 70%, more preferably at most 60%, further preferably at most 50%, further preferably at most 45%, particularly preferably at most 42%.
- SiO 2 / B 2 O 3 is preferably at most 5.0, more preferably at most 3.0, still more preferably at most 2.0, even more preferably at most 1.5, particularly preferably at most 1.5. Preferably it is 1.0 or less.
- TiO 2 , Ta 2 O 5 , WO 3 , Nb 2 O 5 , ZrO 2 and Ln 2 O 3 are glass Is a high-refractive-index component for increasing the refractive index.
- the content of these components is preferably 30% to 55% in total.
- a particularly high refractive index it is preferably 33% or more, more preferably 35% or more, still more preferably 36% or more, even more preferably 37% or more, and particularly preferably 38% or more.
- the content of these components is more preferably 50% or less, further preferably 45% or less, further preferably 40% or less, and particularly preferably. 35% or less.
- the content ratio of the alkali metal component (Li 2 O + Na 2 O + K 2 O) is 0% or more and 10% or less in total. Tg can be lowered by increasing the alkali metal component. However, if the amount of Li 2 O + Na 2 O + K 2 O is too large, T 1 tends to be low, the viscosity curve becomes steep, and the production characteristics are deteriorated. On the other hand, if the amount of Li 2 O + Na 2 O + K 2 O is too small, T 1 tends to increase, and the dissolution temperature increases, which may cause coloring. Therefore, when Li 2 O + Na 2 O + K 2 O is contained, the content is preferably 0.5% or more and 10% or less.
- Li 2 O + Na 2 O + K 2 O is more preferably at least 1%, further preferably at least 1.5%, further preferably at least 2%, particularly preferably at least 3%.
- Li 2 O + Na 2 O + K 2 O is preferably at most 6%, more preferably at most 4%, further preferably at most 3%, particularly preferably at most 2%.
- the content ratio of Li 2 O is 0% or more and 10% or less. When Li 2 O is contained, the content ratio is 0.2% or more and 10% or less. When Li 2 O is contained, strength (Kc) and crack resistance (CIL) can be improved.
- the content ratio is preferably 0.5% or more, more preferably 1% or more, further preferably 1.5% or more, and particularly preferably 2% or more.
- the content ratio of Li 2 O is preferably 6% or less, more preferably 3% or less, further preferably 1% or less, and particularly preferably 0.1% or less.
- the content ratio of Li 2 O is preferably 3.0% or more, more preferably 6.0% or more, still more preferably 9.0% or more. 0% or more is particularly preferred.
- the content ratio of CaO is preferably 0% or more and 25% or less.
- the content ratio of CaO is more preferably 20% or less, still more preferably 17% or less, further preferably 14% or less, further preferably 13% or less, further preferably 12% or less, and particularly preferably 11.5% or less.
- the content ratio of CaO is more preferably 4% or more, further preferably 8% or more, further preferably 10% or more, and particularly preferably 11% or more.
- the content ratio of SrO is preferably 0% or more and 20% or less.
- the content ratio of SrO is more preferably 15% or less, further preferably 12% or less, further preferably 10% or less, further preferably 9% or less, and particularly preferably 8% or less.
- the content ratio of SrO is more preferably 2% or more, further preferably 5% or more, and particularly preferably 7% or more.
- the total amount of MgO, CaO, and SrO is preferably 30% or less. It is more preferably at most 25%, further preferably at most 22%, further preferably at most 21%, further preferably at most 20%, particularly preferably at most 19.5%.
- BaO is a component that suppresses devitrification, but when the amount of BaO is large, the density tends to increase. Therefore, when BaO is contained, the content is preferably 0% or more and 30% or less.
- the content ratio of BaO is more preferably 20% or less, still more preferably 15% or less, further preferably 11% or less, further preferably 9% or less, and particularly preferably 8% or less. Further, the content ratio of BaO is more preferably 2% or more, still more preferably 5% or more, and particularly preferably 7% or more.
- the content ratio of the alkaline earth metal component is 5% or more and 50% or less in total.
- the total amount is 50% or less, devitrification of glass can be suppressed, so that it is preferable. More preferably, it is 40% or less, further preferably, it is 35% or less, further preferably, it is 32% or less, further preferably, it is 30% or less, further preferably, it is 29% or less, and still more preferably, 28% or less. Or less, particularly preferably 20% or less.
- the total amount is 5% or more, the melting property of the glass can be improved, which is preferable. It is more preferably at least 10%, further preferably at least 15%, further preferably at least 20%, further preferably at least 25%, particularly preferably at least 26%.
- the specific gravity can be reduced. It is preferably at most 0.45, more preferably at most 0.42, even more preferably at most 0.40, particularly preferably at most 0.35.
- the proportion of BaO contained in the alkaline earth metal component is preferably 0.1 or more, more preferably 0.2 or more, further preferably 0.25 or more, and particularly preferably 0.3 or more.
- the total amount of the alkali metal component (Li 2 O + Na 2 O + K 2 O) and the alkaline earth metal component (MgO + CaO + SrO + BaO) increases, Tg of the glass tends to decrease. Therefore, the total amount of the alkali metal component and the alkaline earth metal component is preferably 30% or less, more preferably 29% or less, further preferably 28% or less, and particularly preferably 27.5% or less.
- TiO 2 is a component that increases the refractive index of the glass and increases the dispersion of the glass, and the content thereof is 0% or more and 50% or less.
- the content ratio is preferably 10% or more, more preferably 15% or more, still more preferably 17% or more, further preferably 19% or more, further preferably 20% or more, and more preferably 20.5%. The above is particularly preferred.
- the content ratio of TiO 2 is preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, further preferably 25% or less, and further preferably 23% or less. It is preferably at most 22%, particularly preferably at most 21%.
- TiO 2 / B 2 O 3 is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less, further preferably 2.0 or less, and furthermore It is preferably at most 1.5, more preferably at most 1.2, particularly preferably at most 1.0.
- Nb 2 O 5 is a component that increases the refractive index of glass and decreases the Abbe number (v d ).
- the content ratio of Nb 2 O 5 is 0% or more and 35% or less.
- the content ratio of Nb 2 O 5 is preferably 0.5% or more, more preferably 1.0% or more, further preferably 1.5% or more, further preferably 2.0% or more, and more preferably 2.5% or more. Particularly preferred. Further, if Nb 2 O 5 is too much, it tends to be devitrified. Therefore, for applications requiring lower surface roughness Ra, 20% or less is preferable, 10% or less is more preferable, 5% or less is further preferable, and 3% or less is particularly preferable.
- the total amount of TiO 2 , WO 3, and Nb 2 O 5 is preferably 10% or more and 50% or less. It is more preferably at least 14%, further preferably at least 18%, further preferably at least 22%, particularly preferably at least 23%.
- the total amount of TiO 2 , WO 3, and Nb 2 O 5 is large, devitrification tends to occur. Therefore, for applications requiring a lower surface roughness Ra, it is preferably 40% or less, more preferably 35% or less, still more preferably 30% or less, and particularly preferably 25% or less.
- ZrO 2 is a component that increases the refractive index of the glass and increases the chemical durability of the glass, and its content is 0% or more and 20% or less. Crack resistance can be improved by containing ZrO 2 .
- the content ratio is preferably 1% or more, more preferably 2% or more, still more preferably 3% or more, and particularly preferably 4% or more.
- the content ratio of ZrO 2 is more preferably 15% or less, further preferably 10% or less, further preferably 6% or less, and particularly preferably 5% or less.
- ZnO is a component for improving mechanical properties such as glass strength and crack resistance, and its content is 0% or more and 15% or less.
- the content ratio is more preferably 0.3% or more, further preferably 0.5% or more, and particularly preferably 1% or more.
- the content of ZnO is more preferably 10% or less, still more preferably 5% or less, further preferably 2% or less, further preferably 1% or less. 0.5% or less is particularly preferred.
- La 2 O 3 is a component that improves the refractive index of glass, and its content is 0% or more and 35% or less.
- its content is preferably at least 2%, more preferably at least 3%, further preferably at least 4%, further preferably at least 4.5%, particularly preferably at least 5%.
- the content ratio of La 2 O 3 is preferably 30% or less. It is more preferably at most 25%, further preferably at most 20%, further preferably at most 15%, further preferably at most 10%, further preferably at most 7%, particularly preferably at most 6%.
- the ratio of the total amount of Nb 2 O 5 , TiO 2 , WO 3 and Ta 2 O 5 to the total amount of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and Yb 2 O 3 (Nb 2 O 5 + TiO 2 When + WO 3 + Ta 2 O 5 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 ) increases, the glass is colored and the transmittance tends to decrease. Therefore, (Nb 2 O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 ) is preferably 10.0 or less, more preferably 8.0 or less.
- the optical glass obtained with glass composition A3 has a high refractive index ( nd ) in the range of 1.81 to 1.96.
- Refractive index (n d) is that 1.81 or more.
- This optical glass is suitable as an optical glass used for wearable devices in terms of widening the angle of an image, high brightness and high contrast, improvement of light guide characteristics, and easy processing of a diffraction grating. Further, as a small-sized imaging glass lens having a wide imaging angle of view used for a vehicle-mounted camera, a visual sensor for a robot, and the like, it is suitable for capturing a smaller and wider area.
- the refractive index (n d) is preferably not less 1.820 or more, more preferably 1.830 or more, more preferably 1.835 or more, more preferably 1.840 or more, more preferably 1.845 or more, Especially preferably, it is 1.850 or more.
- the refractive index ( nd ) is preferably 1.92 or less, more preferably 1.90 or less, and still more preferably 1.89 or less. And more preferably 1.88 or less, further preferably 1.87 or less, further preferably 1.86 or less, further preferably 1.855 or less, and still more preferably 1.853 or less.
- the optical glass obtained with the glass composition A3 has a density (d) of 3.3 g / cm 3 or more and 5.4 g / cm 3 or less.
- This optical glass has a density in the above-described range, so that it is possible to make a user's wearing feeling preferable when used in wearable devices, and when used in a vehicle-mounted camera, a visual sensor for a robot, etc. Overall weight can be reduced.
- This density (d) is preferably 5.2 g / cm 3 or less, more preferably 5.0 g / cm 3 or less, still more preferably 4.6 g / cm 3 or less, and still more preferably 4.2 g / cm 3 or less.
- the density (d) is preferably 3.6 g / cm 3 or more in order to make the surface of the optical glass difficult to damage. More preferably 3.7 g / cm 3 or more, still more preferably 3.8 g / cm 3 or more, even more preferably 3.9 g / cm 3 or more, and particularly preferably 3.95 g / cm 3 or more.
- the optical glass has a devitrification temperature of 1300 ° C or less. With such characteristics, devitrification of glass at the time of molding can be suppressed, and moldability is good.
- This devitrification temperature is more preferably 1275 ° C. or lower, further preferably 1240 ° C. or lower, still more preferably 1225 ° C. or lower, even more preferably 1200 ° C. or lower, still more preferably 1175 ° C. or lower, and still more preferably 1150 ° C.
- it is still more preferably 1100 ° C or lower, still more preferably 1050 ° C or lower, still more preferably 1025 ° C or lower, and particularly preferably 1020 ° C or lower.
- the devitrification temperature is the lowest temperature at which a crystal having a long side or a long diameter of 1 ⁇ m or more is not observed on the glass surface or inside when the heated and molten glass is cooled by natural cooling.
- the optical glass of the present invention is manufactured, for example, as follows. That is, first, the raw materials are weighed so as to have the above-mentioned predetermined glass composition, and are uniformly mixed. The prepared mixture is put into a platinum crucible, a quartz crucible, or an alumina crucible and roughly melted. Then, put in a gold crucible, a platinum crucible, a platinum alloy crucible, a strengthened platinum crucible, or an iridium crucible, melt at a temperature range of 1200 to 1400 ° C. for 2 to 10 hours, homogenize by defoaming, stirring, etc. to remove bubbles. After that, it is cast into a mold and gradually cooled. Thereby, the optical glass of the present invention is obtained.
- the optical glass can be formed into a glass plate by molding the molten glass into a plate shape by a molding method such as a float method, a fusion method, or a roll-out method. Further, after the molten glass is once formed into a block shape, a glass plate can be formed by a redraw method or the like. Also, for example, a glass molded body can be produced by using means such as reheat press molding or precision press molding. That is, a lens preform for mold press molding is produced from optical glass, and a reheat press molding is performed on the lens preform, and then a polishing process is performed to produce a glass molded body. The glass preform can be produced by performing precision press molding on the lens preform obtained. The means for producing the glass molded body is not limited to these means.
- the residual bubbles of the optical glass of the present invention produced as described above are preferably 10 bubbles / kg or less (10 bubbles / kg), more preferably 7 bubbles / kg or less, still more preferably 5 bubbles / kg or less.
- the number of particles / kg or less is particularly preferred.
- the glass sheet is formed by the above-described method, a glass sheet containing no bubbles can be efficiently formed if the residual bubbles are 10 bubbles / kg or less.
- the individual size of the residual foam is preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, and still more preferably 40 ⁇ m or less. , 20 ⁇ m or less is particularly preferred.
- L 2 / L 1 is preferably 0.90 or more, more preferably 0.92 or more, and even more preferably 0.95 or more.
- L 2 / L 1 is 0.90 or more, the residual bubbles are in a state close to a perfect circle (true sphere), and even if the residual bubbles are included, the residual bubbles are compared with the oval residual bubbles. Is suppressed, and the generation of cracks starting from residual bubbles can be suppressed when a glass plate is prepared.
- the size and shape of the residual bubbles can be obtained from the values measured by a laser microscope (manufactured by Keyence Corporation: VK-X100).
- An optical member such as a glass plate or a glass molded body produced in this way is useful for various optical elements.
- wearable devices for example, glasses with a projector, eyeglasses, and goggles
- Light guides, filters and lenses used in displays, virtual reality augmented reality displays, virtual image displays, etc. (2) Suitable for use in in-vehicle cameras, lenses and cover glasses used in visual sensors for robots, etc. . It is suitably used even in applications exposed to harsh environments such as in-vehicle cameras. Further, it is also suitably used for applications such as a glass substrate for an organic EL, a substrate for a wafer level lens array, a substrate for a lens unit, a lens forming substrate by an etching method, and an optical waveguide.
- the optical glass of the present embodiment described above has a high refractive index and a low density, and has good manufacturing characteristics, and is suitable as an optical glass for wearable devices, vehicles, and robots. Further, on the main surface of the optical glass, an antireflection film composed of 4 to 10 dielectric multilayer films in which a low refractive index film such as SiO 2 and a high refractive index film such as TiO 2 were alternately laminated was formed. Optical components are also suitable for wearable devices, vehicles, and robots.
- the raw materials were weighed so as to have the chemical compositions (mol% in terms of oxide) shown in Tables 1 to 9.
- the raw materials are all high-purity raw materials used for ordinary optical glass, such as oxides, hydroxides, carbonates, nitrates, fluorides, hydroxides, and metaphosphate compounds, which correspond to the raw materials for the respective components. Selected and used.
- the weighed raw materials are mixed uniformly, put into a platinum crucible with an internal volume of about 300 mL, melted at about 1300 ° C for about 2 hours, clarified, stirred, kept at 1300 ° C for 0.5 hour, and preheated to about 650 ° C After casting in a rectangular mold having a length of 50 mm and a width of 100 mm, the samples were slowly cooled at about 1 ° C./min to obtain samples of Examples 1 to 85.
- Examples 1 to 80 are Examples and Examples 81 to 85 are Comparative Examples.
- Refractive index (n d ) The sample glass was processed into a triangular prism having a side of 30 mm and a thickness of 10 mm, and was measured by a refractometer (Kalnew, KPR-2000). Density (d): Measured according to JIS Z8807 (1976, a measuring method of weighing in a liquid). Devitrification temperature: After placing about 5 g of a sample in a platinum dish and holding it at 1000 ° C. to 1400 ° C. in 1 ° C. intervals for 1 hour, cool it by natural cooling, observe the presence or absence of crystal precipitation with a microscope, The minimum temperature at which no crystal of 1 ⁇ m or more in the long side or major axis was observed was defined as the devitrification temperature.
- Temperature T 1 The viscosity of the glass is measured using a rotational viscometer according to the method specified in ASTM C 965-96, and the temperature T 1 (° C.) when the viscosity of the glass becomes 10 1 dPa ⁇ s is determined. It was measured.
- Glass transition point (Tg) a value measured using a differential thermal dilatometer (TMA) and determined according to JIS R3103-3 (2001).
- LTV The thickness of the glass substrate was measured at a 3 mm interval on a 50 mm ⁇ 50 mm ⁇ 1 mm plate-like sample using a non-contact laser displacement meter (Nano Metro manufactured by Kuroda Seiko) to calculate LTV.
- Warpage The height of the two main surfaces of the glass substrate was measured at intervals of 3 mm for a disk-shaped sample having a diameter of 8 inches x 1 mm and a diameter of 6 inches x 1 mm using a non-contact laser displacement meter (Nano Metro manufactured by Kuroda Seiko). The warpage was calculated by the method described with reference to FIG.
- Ra Surface roughness
- Abbe number ( ⁇ d ): Calculated by ⁇ d (n d ⁇ 1) / (n F ⁇ n C ) using the sample used for the refractive index measurement.
- n d helium d line, n F is hydrogen F line, and n C is the refractive index with respect to hydrogen C line.
- Thermal expansion coefficient ( ⁇ ) The linear thermal expansion coefficient in the range of 50 to 350 ° C. was measured using a differential thermal dilatometer (TMA), and the average linear thermal expansion in the range of 50 to 350 ° C. according to JIS R3102 (1995). The coefficients were determined.
- the optical glass of each example are each an refractive index (n d) of 1.81 or higher and a high refractive index. Further, the density is as low as 6.0 g / cm 3 or less. Further, since the temperature T 1 when the viscosity of the glass is 10 1 dPa ⁇ s is 900 to 1200 ° C., the production characteristics are good. Further, since the devitrification temperature is 1300 ° C. or lower, the production characteristics are good. Therefore, it is suitable for optical glasses used for wearable devices, in-vehicle cameras, and vision for robots.
- the glasses of Comparative Examples 81 and 84 have a devitrification temperature higher than 1300 ° C. and have poor production characteristics.
- the glasses of Examples 81, 82 and 83 have a refractive index (nd) lower than 1.81.
- the glass of Example 85 has a Si content of less than 5 mol%.
- the optical glass obtained from the molten glass of the glass composition of each example (Examples 1 to 80), for producing characteristic for the temperature T 1 is a 900 ⁇ 1200 ° C. is good, the size of the residual bubbles are small Since the number is small, a glass plate free from defects such as bubbles, foreign matter, striae, and phase separation can be obtained. Therefore, when a sample having the above size is formed, an optical glass having an LTV value of 2 ⁇ m or less, a warp value (a circular glass plate having a diameter of 6 inches) of 30 ⁇ m or less, and a Ra value of 2 nm or less can be obtained. it can. Furthermore, since the devitrification temperature is 1300 ° C.
- the LTV value is 1.5 ⁇ m or less
- the warp value circular glass plate having a diameter of 6 inches
- the Ra value is It is considered that 1 nm or less can be realized.
- the LTV values were 1.0, 1.2, and 1.2 ⁇ m, and the warp values were 45, 32, 38, and Ra. 0.198, 0.284 and 0.266 were obtained. Therefore, by precisely polishing a glass plate free from the above-mentioned disadvantages of the embodiment of the present invention, an LTV value of 2 ⁇ m or less, a warp value of 50 ⁇ m or less, and an Ra value of 2 nm or less can be obtained.
- the glass is immersed in a melt obtained by heating and melting sodium nitrate to 400 ° C. for 30 minutes, and a chemical strengthening treatment is performed to obtain a strengthened glass.
- the optical glass of the present invention has a high refractive index and a low density, and has good manufacturing characteristics, and is suitable as an optical glass for wearable devices, vehicles, vehicles, and robots.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Glass Compositions (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
本発明は、屈折率(nd)が1.81~2.15、密度が6.0g/cm3以下、ガラスの粘性が101dPa・sとなるときの温度T1が900~1200℃、失透温度が1300℃以下、酸化物基準のモル%表示で、SiO2の含有割合が5~44%である光学ガラス及び該光学ガラスを用いた光学部品を提供する。
Description
本発明は、光学ガラスおよび光学部品に関する。
ウェアラブル機器、例えばプロジェクター付きメガネ、眼鏡型やゴーグル型ディスプレイ、仮想現実拡張現実表示装置、虚像表示装置などに用いられるガラスとしては、画像の広角化、高輝度・高コントラスト化、導光特性向上、回折格子の加工容易性などの面から、高屈折率が求められる。また、従来、車載用カメラ、ロボット用視覚センサーなどの用途に、小型で撮像画角の広い撮像ガラスレンズが用いられておりこのような撮像ガラスレンズに対しては、より小型で広い範囲を撮影するために、高屈折率が求められる。
上記用途に用いられる光学ガラスとしては、ユーザーの装着感を好ましいものとするため、また、自動車やロボットは軽量化が求められ、装置全体の重量を減量するために、密度が低いことが求められる。さらに、外部環境での使用を考慮すると、酸性雨や、洗浄の際に使用される洗剤やワックスなどの薬剤による表面劣化や変質の少ないことも重要である。
このうち車載用のガラスレンズに関しては、例えば、所定の耐酸性を有する車載カメラ用のレンズガラス材を用いることで、屈折率および強度を高め、さらに、耐酸性や耐水性を向上させる試みがなされている(例えば、特許文献1参照。)。
しかしながら、従来、高屈折率の組成にする場合、屈折率を高めるガラス構成成分として重金属酸化物が使用されることが多い。そのため、一般に、高屈折率ガラスの密度は大きくなっていた。
また、ウェアラブル機器には板状に成形されたガラスが用いられることがあり、製造効率の高いフロート法、フュージョン法、ロールアウト法といった成型方法によって生産されることがあるが、効率的に製造するためには製造時の温度とガラスの粘性との関係が重要である。
さらに光学部品として用いられる場合、可視光透過率も重要なパラメータであり、高屈折率ガラスの場合、高い温度で溶解すると、特に短波長側の可視光透過率が低下するおそれがあり、一方で粘性カーブが急峻であると、製造するにあたり粘性の制御が困難になる。
さらに光学部品として用いられる場合、可視光透過率も重要なパラメータであり、高屈折率ガラスの場合、高い温度で溶解すると、特に短波長側の可視光透過率が低下するおそれがあり、一方で粘性カーブが急峻であると、製造するにあたり粘性の制御が困難になる。
本発明は、上述のような課題を解消するためになされたものであり、高屈折率かつ低密度であるとともに、製造特性が良好な光学ガラスの提供を目的とする。
本発明の光学ガラスは、屈折率(nd)が1.81~2.15、密度が6.0g/cm3以下、ガラスの粘性が101dPa・sとなるときの温度T1が900~1200℃、失透温度が1300℃以下、酸化物基準のモル%表示で、SiO2の含有割合が5%~44%であることを特徴とする。
本発明の光学部品は、本発明の板状の光学ガラスを有することを特徴とする。
本発明の光学部品は、本発明の板状の光学ガラスを有することを特徴とする。
以下、本発明の光学ガラスおよび光学部品の実施形態について説明する。
本発明の光学ガラスは、上記のように所定の屈折率(nd)、密度(d)および溶解特性を有しており、これら各特性について順番に説明する。
本発明の光学ガラスは1.81~2.15の範囲の高い屈折率(nd)を有する。屈折率(nd)が1.81以上であるので、本発明の光学ガラスは、ウェアラブル機器に用いる光学ガラスとして画像の広角化、高輝度・高コントラスト化、導光特性向上、回折格子の加工容易性などの面で好適である。また車載用カメラ、ロボット用視覚センサーなどの用途に用いられる小型で撮像画角の広い撮像ガラスレンズとしては、より小型で広い範囲を撮影するために好適である。この屈折率(nd)は好ましくは、1.85以上であり、より好ましくは1.88以上、さらに好ましくは1.91以上、さらに好ましくは1.94以上、さらに好ましくは1.97以上、さらに好ましくは1.99以上、さらに好ましくは2.00以上である。
一方で屈折率(nd)が2.15を超えるガラスは密度が高くなりやすく、また失透温度が高くなりやすい傾向がある。特に、光学ガラスの密度の低さを重要視する場合には、この屈折率(nd)は好ましくは、2.10以下であり、より好ましくは2.06以下、さらに好ましくは2.03以下、さらに好ましくは2.01以下、さらに好ましくは1.98以下、さらに好ましくは1.95以下、さらに好ましくは1.94以下、よりさらに好ましくは1.92以下である。
本発明の光学ガラスは1.81~2.15の範囲の高い屈折率(nd)を有する。屈折率(nd)が1.81以上であるので、本発明の光学ガラスは、ウェアラブル機器に用いる光学ガラスとして画像の広角化、高輝度・高コントラスト化、導光特性向上、回折格子の加工容易性などの面で好適である。また車載用カメラ、ロボット用視覚センサーなどの用途に用いられる小型で撮像画角の広い撮像ガラスレンズとしては、より小型で広い範囲を撮影するために好適である。この屈折率(nd)は好ましくは、1.85以上であり、より好ましくは1.88以上、さらに好ましくは1.91以上、さらに好ましくは1.94以上、さらに好ましくは1.97以上、さらに好ましくは1.99以上、さらに好ましくは2.00以上である。
一方で屈折率(nd)が2.15を超えるガラスは密度が高くなりやすく、また失透温度が高くなりやすい傾向がある。特に、光学ガラスの密度の低さを重要視する場合には、この屈折率(nd)は好ましくは、2.10以下であり、より好ましくは2.06以下、さらに好ましくは2.03以下、さらに好ましくは2.01以下、さらに好ましくは1.98以下、さらに好ましくは1.95以下、さらに好ましくは1.94以下、よりさらに好ましくは1.92以下である。
また、本発明の光学ガラスは、6.0g/cm3以下となる密度(d)を有する。本発明の光学ガラスは、上記した範囲の密度を有することで、ウェアラブル機器に用いられた場合にユーザーの装着感を好ましいものにでき、車載用カメラ、ロボット用視覚センサーなどに用いられた場合に、装置全体の重量を減量できる。この密度(d)は好ましくは5.6g/cm3以下であり、より好ましくは5.2g/cm3以下、さらに好ましくは4.8g/cm3以下、さらに好ましくは4.6g/cm3以下、さらに好ましくは4.4g/cm3以下、さらに好ましくは4.2g/cm3以下である。
一方で本発明の光学ガラスにおいて、ガラス表面に傷を付けにくくするためには、密度(d)は、3.3g/cm3以上が好ましい。この密度(d)は、より好ましくは3.6g/cm3以上、さらに好ましくは3.9g/cm3以上であり、さらに好ましくは4.2g/cm3以上であり、さらに好ましくは4.4g/cm3以上であり、よりさらに好ましくは4.7g/cm3以上である。
一方で本発明の光学ガラスにおいて、ガラス表面に傷を付けにくくするためには、密度(d)は、3.3g/cm3以上が好ましい。この密度(d)は、より好ましくは3.6g/cm3以上、さらに好ましくは3.9g/cm3以上であり、さらに好ましくは4.2g/cm3以上であり、さらに好ましくは4.4g/cm3以上であり、よりさらに好ましくは4.7g/cm3以上である。
また、本発明の光学ガラスは、ガラスの粘性が101dPa・sとなるときの温度T1が900~1200℃の範囲である。T1は溶解性の基準温度であり、ガラスのT1が高すぎると、高温で溶解する必要が生じるため、高屈折率ガラスの場合、特に短波長側の可視光透過率が低下するおそれがある。このT1は好ましくは1180℃以下であり、より好ましくは1150℃以下、さらに好ましくは1130℃以下、よりさらに好ましくは1110℃以下である。
一方でT1が低すぎると、粘性カーブが急峻になり、製造するにあたり粘性の制御が困難になる問題がある。本発明の光学ガラスは、上記した範囲のT1を有することで、製造特性を良好にできる。このT1は好ましくは、950℃以上であり、より好ましくは1000℃以上、さらに好ましくは1050℃以上、さらに好ましくは1080℃以上、よりさらに好ましくは1100℃以上、特に好ましくは1120℃以上である。
一方でT1が低すぎると、粘性カーブが急峻になり、製造するにあたり粘性の制御が困難になる問題がある。本発明の光学ガラスは、上記した範囲のT1を有することで、製造特性を良好にできる。このT1は好ましくは、950℃以上であり、より好ましくは1000℃以上、さらに好ましくは1050℃以上、さらに好ましくは1080℃以上、よりさらに好ましくは1100℃以上、特に好ましくは1120℃以上である。
また、本発明の光学ガラスは、失透温度は1300℃以下である。このような特性を有すると、成形時におけるガラスの失透を抑制でき、成形性が良好である。この失透温度は、より好ましくは1275℃以下、さらに好ましくは1250℃以下、さらにより好ましくは1225℃以下、さらにより好ましくは1200℃以下、さらにより好ましくは1175℃以下、さらにより好ましくは1150℃以下、さらにより好ましくは1125℃以下、さらにより好ましくは1100℃以下、さらにより好ましくは1075℃以下、特に好ましくは1050℃以下である。ここで、失透温度とは、加熱、溶融したガラスを自然放冷により冷却する際に、ガラス表面および内部に長辺又は長径で1μm以上の結晶の認められない最も低い温度である。
また、本発明の光学ガラスにおいて、ガラス転移点(Tg)は600℃以上であることが好ましい。本発明の光学ガラスは、600℃以上のTgを有することでプロセスにおけるたわみ等の変形を抑制することができる。このTgは、より好ましくは630℃以上、さらに好ましくは660℃以上、さらに好ましくは690℃以上、さらに好ましくは720℃以上、特に好ましくは750℃以上である。プレス成型およびリドロー成形等の成形を行う場合にはTgは800℃以下であることが好ましい。より好ましくは760℃以下、さらに好ましくは720℃以下、さらにより好ましくは680℃以下、特に好ましくは640℃以下である。Tgは、例えば熱膨張法によって測定できる。
また、本発明の光学ガラスは、失透温度における粘性(失透粘性)ηをdPa・s単位で表したときに、logη=0.4以上であることが好ましい。このような特性を有すると、成形時におけるガラスの失透を抑制でき、成形性が良好である。この失透温度における粘性は、より好ましくはlogη=0.5以上、さらに好ましくはlogη=0.6以上、さらにより好ましくはlogη=0.7以上、特に好ましくは0.8以上である。
また、本発明の光学ガラスは、60以下のアッベ数(vd)を有することが好ましい。本発明の光学ガラスを導光板のようなガラス板に適用する場合は、上記した範囲の低いvdを有することで、ウェアラブル機器の光学設計が容易になり、色収差の改善もしやすくなるので、高精細な画像や映像を再現できる。vdは、より好ましくは50以下であり、さらに好ましくは40以下、さらに好ましくは38以下、さらに好ましくは35以下、よりさらに好ましくは32以下、特に好ましくは30以下である。
また、本発明の光学ガラスは、15以上のアッベ数(vd)を有することが好ましい。具体的には、本発明の光学ガラスを導光板のようなガラス板に適用する場合は、上記した範囲の高いvdを有することで、表面に塗布する樹脂との屈折率マッチングが得やすくなる。vdは、より好ましくは18以上、さらに好ましくは21以上、さらに好ましくは23以上、さらに好ましくは25以上、よりさらに好ましくは27以上、特に好ましくは29以上である。
また、本発明の光学ガラスは、15以上のアッベ数(vd)を有することが好ましい。具体的には、本発明の光学ガラスを導光板のようなガラス板に適用する場合は、上記した範囲の高いvdを有することで、表面に塗布する樹脂との屈折率マッチングが得やすくなる。vdは、より好ましくは18以上、さらに好ましくは21以上、さらに好ましくは23以上、さらに好ましくは25以上、よりさらに好ましくは27以上、特に好ましくは29以上である。
また、本発明の光学ガラスの50~350℃における熱膨張係数(α)は、50~150(×10-7/K)が好ましい。本発明の光学ガラスは、上記した範囲のαとすると、周辺部材との膨張マッチングが良好である。このαの下限は、好ましくは60(×10-7/K)以上であり、より好ましくは70(×10-7/K)以上であり、さらに好ましくは80(×10-7/K)以上であり、特に好ましくは90(×10-7/K)以上である。
また、本発明の光学ガラスは、上記した範囲のαとすると、冷却時の割れが起こりにくくなるため冷却速度を上昇できる。その結果、光学ガラスの仮想温度(Tf)とガラス転移温度(Tg)との差(Tf-Tg)を0℃以上とすることが可能になり、ガラスの構造をより疎なものとし、光学ガラスに何らかの衝撃が加わってもガラスの構造が緻密化することでその衝撃を吸収しやすくなる。その結果、光学ガラス自体の強度を向上し、落下等による破損を抑制できる。このαの上限は、好ましくは120(×10-7/K)以下であり、より好ましくは110(×10-7/K)以下であり、さらに好ましくは100(×10-7/K)以下であり、特に好ましくは95(×10-7/K)以下である。
本発明の光学ガラスは、厚さが0.01~2mmのガラス板が好ましい。厚さが0.01mm以上であれば、光学ガラスの取り扱い時や加工時の破損を抑制できる。また、光学ガラスの自重によるたわみを抑えられる。この厚さは、より好ましくは0.1mm以上であり、さらに好ましくは0.3mm以上であり、よりさらに好ましくは0.5mm以上である。一方で厚さが2mm以下であれば、光学ガラスを用いた光学素子を軽量にできる。この厚さは、より好ましくは1.5mm以下であり、さらに好ましくは1.0mm以下であり、よりさらに好ましくは0.8mm以下である。
本発明の光学ガラスがガラス板である場合においては、一の主表面の面積は8cm2以上が好ましい。この面積が8cm2以上であれば、多数の光学素子を配置でき生産性が向上する。この面積はより好ましくは30cm2以上であり、さらに好ましくは170cm2以上であり、よりさらに好ましくは300cm2以上であり、特に好ましくは1000cm2以上である。一方で面積が6500cm2以下であればガラス板の取り扱いが容易になり、ガラス板の取り扱い時や加工時の破損を抑制できる。この面積はより好ましくは4500cm2以下であり、さらに好ましくは4000cm2以下であり、よりさらに好ましくは3000cm2以下であり、特に好ましくは2000cm2以下である。
本発明の光学ガラスがガラス板である場合においては、一の主表面の25cm2におけるLTV(Local Thickness Variation)は2μm以下が好ましい。この範囲の平坦度を有することで、一の主表面にインプリント技術等を用いて所望形状のナノ構造を形成でき、また所望の導光特性を得ることができる。特に、導光体では光路長の差異によるゴースト現象や歪みを防止できる。このLTVは、より好ましくは1.8μm以下であり、さらに好ましくは1.6μm以下であり、よりさらに好ましくは1.4μm以下であり、特に好ましくは1.2μm以下である。
本発明の光学ガラスを直径8インチの円形のガラス板としたとき、反りは50μm以下が好ましい。このガラス板の反りが50μm以下であれば、一の主表面にインプリント技術等を用いて所望形状のナノ構造を形成でき、また所望の導光特性が得られる。複数の導光体を得ようとするとき、品質の安定したものが得られる。このガラス基板の反りはより好ましくは40μm以下であり、さらに好ましくは30μm以下であり、特に好ましくは20μm以下である。
また、直径6インチの円形のガラス板としたとき、反りは30μm以下が好ましい。このガラス板の反りは30μm以下であれば、一の主表面にインプリント技術等を用いて所望形状のナノ構造を形成でき、また所望の導光特性が得られる。複数の導光体を得ようとするとき、品質の安定したものが得られる。このガラス板の反りはより好ましくは20μm以下であり、さらに好ましくは15μm以下であり、特に好ましくは10μm以下である。
また、各辺が6インチの正方形のガラス板としたとき、反りは100μm以下が好ましい。このガラス板の反りは100μm以下であれば、一の主表面にインプリント技術等を用いて所望形状のナノ構造を形成でき、また所望の導光特性が得られる。複数の導光体を得ようとするとき、品質の安定したものが得られる。このガラス板の反りはより好ましくは70μm以下であり、さらに好ましくは50μm以下であり、さらに好ましくは35μm以下であり、特に好ましくは20μm以下である。
図1は、本発明の光学ガラスをガラス板G1としたときの断面図である。「反り」とは、ガラス板G1の一の主表面G1Fの中心を通り、ガラス板G1の一の主表面G1Fに対して直交する任意の断面において、ガラス板G1の基準線G1Dとガラス板G1の中心線G1Cとの垂直方向の距離の最大値Bと最小値Aとの差Cである。
前記直交する任意の断面とガラス板G1の一の主表面G1Fとの交線を、底線G1Aとする。前記直交する任意の断面とガラス板G1の他の一の主表面G1Gとの交線を、上線G1Bとする。ここで、中心線G1Cは、ガラス板G1の板厚方向の中心を結んだ線である。中心線G1Cは、底線G1Aと上線G1Bとの後述するレーザ照射の方向に対しての中点を求めることにより算出される。
基準線G1Dは、以下のように求められる。まず、自重の影響をキャンセルする測定方法のもとに、底線G1Aを算出する。該底線G1Aから、最小自乗法により直線を求める。求められた直線が、基準線G1Dである。自重による影響をキャンセルする測定方法としては公知の方法が用いられる。
例えば、ガラス板G1の一の主表面G1Fを3点支持し、レーザ変位計によりガラス板G1にレーザを照射し、任意の基準面からの、ガラス板G1の一の主表面G1Fおよび他の一の主表面G1Gの高さを測定する。
次に、ガラス板G1を反転させ、一の主表面G1Fを支持した3点に対向する他の一の主表面G1Gの3点を支持し、任意の基準面からの、ガラス基板G1の一の主表面G1Fおよび他の一の主表面G1Gの高さを測定する。
反転前後における各測定点の高さの平均を求めることで自重による影響がキャンセルされる。例えば、反転前に、上述のとおり、一の主表面G1Fの高さを測定する。ガラス板G1を反転後、一の主表面G1Fの測定点に対応する位置で、他の一の主表面G1Gの高さを測定する。同様に、反転前に、他の一の主表面G1Gの高さを測定する。ガラス板G1を反転後、他の一の主表面G1Gの測定点に対応する位置で、一の主表面G1Fの高さを測定する。
反りは、例えば、レーザ変位計により測定される。
反転前後における各測定点の高さの平均を求めることで自重による影響がキャンセルされる。例えば、反転前に、上述のとおり、一の主表面G1Fの高さを測定する。ガラス板G1を反転後、一の主表面G1Fの測定点に対応する位置で、他の一の主表面G1Gの高さを測定する。同様に、反転前に、他の一の主表面G1Gの高さを測定する。ガラス板G1を反転後、他の一の主表面G1Gの測定点に対応する位置で、一の主表面G1Fの高さを測定する。
反りは、例えば、レーザ変位計により測定される。
また、本発明の光学ガラスにおいて、一の主表面の表面粗さRaは2nm以下が好ましい。この範囲のRaを有することで、一の主表面にインプリント技術等を用いて所望形状のナノ構造を形成でき、また所望の導光特性が得られる。特に、導光体では界面での乱反射が抑制されてゴースト現象や歪を防止できる。このRaは、より好ましくは1.7nm以下であり、さらに好ましくは1.4nm以下、さらにより好ましくは1.2nm以下、特に好ましくは1nm以下である。ここで、表面粗さRaは、JIS B0601(2001年)で定義された算術平均粗さである。本明細書では、10μm×10μmのエリアを、原子間力顕微鏡(AFM)を用いて測定した値である。
[ガラス成分]
次に、本発明の光学ガラスが含有し得る各成分の組成範囲の一実施形態について詳細に説明する。本明細書において、各成分の含有割合は、特に断りのない限り、酸化物基準のモル%で示す。また、本発明の光学ガラスにおいて、「実質的に含有しない」とは、不可避不純物を除き含有しないことを意味する。不可避不純物の含有割合は、本発明において0.1%以下である。
次に、本発明の光学ガラスが含有し得る各成分の組成範囲の一実施形態について詳細に説明する。本明細書において、各成分の含有割合は、特に断りのない限り、酸化物基準のモル%で示す。また、本発明の光学ガラスにおいて、「実質的に含有しない」とは、不可避不純物を除き含有しないことを意味する。不可避不純物の含有割合は、本発明において0.1%以下である。
本実施形態の光学ガラスにおける上記特性を満たす組成としては、例えば、酸化物基準のモル%表示で、高屈折率成分であるTiO2、Ta2O5、WO3、Nb2O5、ZrO2およびLn2O3(LnはY、La、Gd、YbおよびLuからなる群から選ばれる少なくとも1種である)からなる群から選ばれる少なくとも1種を30%~80%、ガラス骨格成分であるSiO2とB2O3の合量が20%~70%、アルカリ土類金属成分(MgO、CaO、SrO、BaO)を含む場合にはアルカリ金属成分のうちBaOを含む割合が0.5以下である。
この条件を満たすガラス組成Aにおける各成分について、以下具体的に説明する。なお、本発明の光学ガラスは、上記した特性を有する限り、下記実施形態の組成に限定されない。
この条件を満たすガラス組成Aにおける各成分について、以下具体的に説明する。なお、本発明の光学ガラスは、上記した特性を有する限り、下記実施形態の組成に限定されない。
<ガラス組成A>
SiO2は、ガラス形成成分であり、ガラスに高い強度とクラック耐性を付与し、ガラスの安定性および化学的耐久性を向上させる成分である。SiO2の含有割合は、5%以上44%以下であることが好ましい。SiO2の含有割合が5%以上で、ガラスの粘性が101dPa・sとなるときの温度T1を好ましい範囲にできる。SiO2の含有割合は、7%以上が好ましく、9%以上がより好ましく、10%以上がさらに好ましく、11%以上が特に好ましい。一方、SiO2の含有割合が44%以下で、高い屈折率を得るための成分をより多く含有させることができる。SiO2の含有割合は、38%以下がより好ましく、30%以下がより好ましく、20%以下がさらに好ましく、15%以下がさらに好ましく、12%以下が特に好ましい。
SiO2は、ガラス形成成分であり、ガラスに高い強度とクラック耐性を付与し、ガラスの安定性および化学的耐久性を向上させる成分である。SiO2の含有割合は、5%以上44%以下であることが好ましい。SiO2の含有割合が5%以上で、ガラスの粘性が101dPa・sとなるときの温度T1を好ましい範囲にできる。SiO2の含有割合は、7%以上が好ましく、9%以上がより好ましく、10%以上がさらに好ましく、11%以上が特に好ましい。一方、SiO2の含有割合が44%以下で、高い屈折率を得るための成分をより多く含有させることができる。SiO2の含有割合は、38%以下がより好ましく、30%以下がより好ましく、20%以下がさらに好ましく、15%以下がさらに好ましく、12%以下が特に好ましい。
B2O3は、Tgを低くし、ガラスの強度やクラック耐性などの機械的特性を向上し、失透温度を低下させる成分であるが、B2O3の量が多いと屈折率が低下し易い。そのため、B2O3の含有割合は0%以上40%以下が好ましい。B2O3の含有割合は、35%以下がより好ましく、30%以下がさらに好ましく、25%以下がさらに好ましく、23%以下がさらに好ましく、22%以下が特に好ましい。また、B2O3の含有割合は、5%以上がより好ましく、12%以上がさらに好ましく、18%以上がさらに好ましく、20%以上が特に好ましい。
SiO2とB2O3はガラス形成成分であり、ガラスの安定性を向上させる成分である。SiO2とB2O3の合量が多いとガラスの失透温度が低下し,製造しやすくなる。そのためSiO2とB2O3の合量は20%以上である。25%以上が好ましく、28%以上がより好ましく、30%以上がさらに好ましく、32%以上が特に好ましい。一方で、SiO2とB2O3の合量を少なくすると屈折率を向上させることができる。そのため特に高い屈折率が求められる場合には、70%以下が好ましく、50%以下がより好ましく、40%以下がさらに好ましく、35%以下がさらに好ましく、33%以下がさらに好ましく、32%以下が特に好ましい。
B2O3を含有する場合にはB2O3に対するSiO2の比SiO2/B2O3が大きいとガラスが失透しやすくなる。そのためB2O3を含有する場合にはSiO2/B2O3は好ましくは5.0以下、より好ましくは4.0以下、さらに好ましくは3.0以下、さらに好ましくは2.0以下、さらに好ましくは1.0以下、さらに好ましくは0.8以下、特に好ましくは0.6以下である。
TiO2、Ta2O5、WO3、Nb2O5、ZrO2およびLn2O3(LnはY、La、Gd、YbおよびLuからなる群から選ばれる少なくとも1種である)は、ガラスの屈折率を高める高屈折率成分である。これら成分の含有割合は合量で30%~80%であることが好ましい。特に高い屈折率が求められる場合は、40%以上が好ましく、55%以上がより好ましく、60%以上がさらに好ましく、65%以上がよりさらに好ましく、67%以上が特に好ましい。一方で、高屈折率成分が80%超であると失透しやすくなる。より低い表面粗さRaが求められる用途については、これら成分の含有割合は、より好ましくは70%以下であり、さらに好ましくは60%以下であり、さらに好ましくは50%以下であり、特に好ましくは45%以下である。
アルカリ金属成分(Li2O+Na2O+K2O)の含有割合は合量で0%以上10%以下である。このアルカリ金属成分を多くすることでTgを低くできる。しかし、Li2O+Na2O+K2Oが多くなりすぎると、T1が低くなり易く、粘性カーブが急峻になり製造特性が低下する。一方、Li2O+Na2O+K2Oが少なすぎると、T1が高くなり易く、溶解温度が高くなり高屈折率成分のうちTiO2、Nb2O5といった成分が還元され易く着色する恐れがある。そのため、Li2O+Na2O+K2Oを含有する場合、0.5%以上10%以下であることが好ましい。Li2O+Na2O+K2Oは、1%以上がより好ましく、2%以上がさらに好ましく、4%以上がさらに好ましく、5%以上が特に好ましい。また、Li2O+Na2O+K2Oは、6%以下が好ましく、3%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。「Li2O+Na2O+K2O」はLi2O、Na2OおよびK2Oからなる群から選ばれる少なくとも1種のアルカリ金属酸化物成分の合量を示すものである。以下、同様に「+」で繋げられた構成は、「+」で繋がれた成分からなる群から選ばれる少なくとも1種の成分の合量を示すものである。
Li2Oの含有割合は0%以上10%以下である。Li2Oを含有する場合の含有割合は0.2%以上10%以下である。Li2Oを含有させると、強度(Kc)およびクラック耐性(CIL)を向上させることができる。本発明の光学ガラスがLi2Oを含有する場合、その含有割合は、1%以上が好ましく、2%以上がより好ましく、4%以上がさらに好ましく、5%以上が特に好ましい。一方、Li2Oは、多すぎると失透し易くなる。特に失透に対する品質が求められる場合にはLi2Oの含有割合は、8%以下が好ましく、6%以下がより好ましく、4%以下がさらに好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。
本実施形態の光学ガラスを化学強化する場合には、Li2Oの含有割合は、3.0%以上が好ましく、6.0%以上がより好ましく、9.0%以上がさらに好ましく、11.0%以上が特に好ましい。
本実施形態の光学ガラスを化学強化する場合には、Li2Oの含有割合は、3.0%以上が好ましく、6.0%以上がより好ましく、9.0%以上がさらに好ましく、11.0%以上が特に好ましい。
Na2Oは失透を抑制し、Tgを低くする成分であり、その含有割合は0%以上10%以下である。Na2Oを含有させると、優れた失透抑制効果が得られる。本発明の光学ガラスがNa2Oを含有する場合、その含有割合は、1%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましく、4%以上が特に好ましい。一方、Na2Oは、多すぎると、強度およびクラック耐性が低下し易い。特に強度が求められる場合のNa2Oの含有割合は、7%以下が好ましく、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。
Li2OとNa2Oの合量が多くなるとTgが低くなる傾向にあるため、Li2OとNa2Oの合量は0%以上10%以下が好ましい。より好ましくは6%以下であり、さらに好ましくは4%以下であり、さらに好ましくは2%以下であり、特に好ましくは1%以下である。
K2Oは失透を抑制し、Tgを低くする成分であり、その含有割合は0%以上10%以下である。K2Oを含有させると、優れた失透抑制効果が得られる。本発明の光学ガラスがK2Oを含有する場合、その含有割合は、1%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましく、4%以上が特に好ましい。一方、K2Oは、多すぎると、強度およびクラック耐性が低下し易い。特に強度が求められる場合のK2Oの含有割合は、7%以下が好ましく、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。
MgOは、ガラスの溶融性を向上させ、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、MgOの量が多くなると、かえって失透を促進してしまう。そのため、MgOの含有割合は、0%以上10%以下が好ましい。MgOの含有割合は、8%以下がより好ましく、6%以下が特に好ましい。また、MgOの含有割合は、0.3%以上が好ましく、0.5%以上がより好ましく、1%以上がさらに好ましい。
CaOは、失透を抑制する成分であるが、CaOの量が多いと、クラック耐性が低下し易い。そのため、CaOの含有割合は、0%以上25%以下が好ましい。CaOの含有割合は、20%以下がより好ましく、10%以下がさらに好ましく、6%以下が特に好ましい。また、CaOの含有割合は、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。
SrOは、ガラスの溶融性を向上させ、失透を抑制し、ガラスの光学恒数を調整する成分である。一方、SrOの量が多くなると、かえって失透を促進してしまう。そのため、SrOの含有割合は、0%以上20%以下が好ましい。SrOの含有割合は15%以下がより好ましく、8%以下がさらに好ましく、4%以下が特に好ましい。また、SrOの含有割合は、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。
MgOとCaOとSrOの合量が多くなるとガラスが失透しやすくなる。そのためMgOとCaOとSrOの合量は30%以下が好ましい。より好ましくは20%以下であり、さらに好ましくは12%以下であり、さらに好ましくは10%以下であり、さらに好ましくは5%以下であり、特に好ましくは2%以下である。
BaOは、失透を抑制する成分であるが、BaOの量が多いと、密度が大きくなりやすい。そのため、BaOが含有される場合には、0%以上30%以下が好ましい。BaOの含有割合は25%以下がより好ましく、15%以下がさらに好ましく、8%以下がさらに好ましく、4%以下が特に好ましい。また、BaOの含有割合は、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。
アルカリ土類金属成分(MgO+CaO+SrO+BaO)を含む場合には、アルカリ土類金属成分中のBaOの比(BaO/(MgO+CaO+SrO+BaO))を0.5以下にすることで、比重を小さくすることができる。好ましくは0.4以下、より好ましくは0.3以下、さらに好ましくは0.2以下、特に好ましくは0.1以下である。アルカリ金属成分のうちBaOが含む割合を大きくすることで失透温度を低下させることができる。より低い表面粗さRaが求められる用途については、0.1以上が好ましく、0.2以上がより好ましく、0.3以上がさらに好ましく、0.4以上が特に好ましい。
アルカリ金属成分(Li2O+Na2O+K2O)とアルカリ土類金属成分(MgO+CaO+SrO+BaO)の合量が多くなるとガラスのTgが低下しやすくなる。そのためアルカリ金属成分とアルカリ土類金属成分の合量は30%以下が好ましい。より好ましくは16%以下であり、さらに好ましくは12%以下であり、さらに好ましくは10%以下であり、さらに好ましくは5%以下であり、特に好ましくは2%以下である。
Al2O3は、化学的耐久性を向上させる成分であるが、Al2O3が多くなると、ガラスが失透し易くなる。そのため、Al2O3の含有割合は0%以上5%以下が好ましい。Al2O3の含有割合は3%以下がより好ましく、2%以下が特に好ましい。またAl2O3の含有割合は0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。
TiO2はガラスの屈折率を高め、ガラスの分散を大きくする成分であり、その含有割合は、0%以上50%以下である。TiO2を含有する場合、その含有割合は、10%以上が好ましく、20%以上がより好ましく、25%以上がさらに好ましく、28%以上がさらに好ましく、30%以上がさらに好ましく、32%以上が特に好ましい。一方、TiO2は多すぎると着色しやすく、また、透過率が低下する。そのため、特に透過率が求められる場合にはTiO2の含有割合は、50%以下が好ましく、40%以下がより好ましく、37%以下がさらに好ましく、35%以下がさらに好ましく、34%以下がさらに好ましく、33%以下がさらに好ましく、32%以下が特に好ましい。
B2O3を含有する場合にはB2O3に対するTiO2の比TiO2/B2O3が大きいと、溶解温度を高くする必要が生じるためTiが還元されやすくなりガラスが着色し透過率が低下しやすくなる。そのためB2O3を含有する場合はTiO2/B2O3は好ましくは5.0以下、より好ましくは4.0以下、さらに好ましくは3.0以下、さらに好ましくは2.0以下、さらに好ましくは1.8以下、さらに好ましくは1.7以下、さらに好ましくは1.6以下、特に好ましくは1.5以下である。
WO3は添加することでガラスの失透を抑制させるが、その添加量が多すぎると、かえってガラスが失透し易くなる。そのため、WO3の含有割合は0%以上10%以下が好ましい。WO3の含有割合は、6%以下がより好ましく、2%以下がさらに好ましく、1.5%以下がさらに好ましく、1.0%以下がさらに好ましく、0.5%以下が特に好ましい。また、WO3を添加することでガラスの屈折率を向上させることができる。そのため特に高い屈折率が求められる場合には、WO3の含有割合は、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。
Nb2O5は、ガラスの屈折率を高めるとともに、アッベ数(vd)を小さくする成分である。Nb2O5の含有割合は、0%以上35%以下である。Nb2O5の含有割合は、1%以上がより好ましく、2%以上がさらに好ましく、2.5%以上がさらに好ましく、3%以上がさらに好ましく、4%以上がさらに好ましく、5%以上がさらに好ましく、6%以上が特に好ましい。
また、Nb2O5は、多すぎると失透し易くなる。そのため、より低い表面粗さRaが求められる用途については、20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、6%以下がさらに好ましく、4%以下がさらに好ましく、3%以下がさらに好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。
また、Nb2O5は、多すぎると失透し易くなる。そのため、より低い表面粗さRaが求められる用途については、20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、6%以下がさらに好ましく、4%以下がさらに好ましく、3%以下がさらに好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。
TiO2とWO3とNb2O5の合量が少なくなるとガラスの屈折率が低下する。そのためTiO2とWO3とNb2O5の合量は10%以上50%以下が好ましい。より好ましくは15%以上であり、さらに好ましくは20%以上であり、さらに好ましくは25%以上であり、特に好ましくは30%以上である。
Y2O3はガラスの屈折率を高めるとともに、ガラスのT1を好ましい範囲に調整できる成分であり、その含有割合は0%以上7%以下である。Y2O3の含有割合は、1%以上が好ましく、2%以上がより好ましく、2.5%以上がさらに好ましく、3%以上がさらに好ましく、3.5%以上がさらに好ましく、4%以上がさらに好ましく、5%以上が特に好ましい。また、Y2O3は、多すぎると失透し易くなる。そのため、より低い表面粗さRaが求められる用途については、5%以下が好ましく、4%以下がより好ましく、3.5%以下がさらに好ましく、3%以下が特に好ましい。
ZrO2はガラスの屈折率を高め、ガラスの化学的耐久性を高める成分であり、その含有割合は0%以上20%以下である。ZrO2を含有することで、クラック耐性を向上させることができる。ZrO2を含有する場合、その含有割合は、1%以上が好ましく、3%以上がより好ましく、5%以上がさらに好ましく、6%以上がさらに好ましく、6.5%以上が特に好ましい。一方、ZrO2が多すぎると、失透しやすくなる。そのためより低い表面粗さRaが求められる用途については、ZrO2の含有割合は、15%以下がより好ましく、10%以下がさらに好ましく、8%以下がさらに好ましく、7%以下が特に好ましい。
ZnOはガラスの強度やクラック耐性などの機械的特性を向上させる成分であり、その含有割合は0%以上15%以下である。ZnOを含有する場合、その含有割合は、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。一方、ZnOの量が多いと失透し易くなるため、より低い表面粗さRaが求められる用途については、ZnOの含有割合は、10%以下がより好ましく、5%以下がさらに好ましく、2%以下がさらに好ましく、1%以下がさらに好ましく、0.5%以下が特に好ましい。
La2O3はガラスの屈折率を向上させる成分であり、その含有割合は0%以上35%以下である。La2O3を含有する場合、その含有割合は、10%以上が好ましく、15%以上がより好ましく、16%以上がさらに好ましく、18%以上がさらに好ましく、20%以上が特に好ましい。一方で、La2O3の量が多すぎると機械的特性が低下するとともに失透温度が上昇する。そのため、機械的特性や製造特性が重要となる場合には、La2O3の含有割合は、30%以下が好ましい。25%以下がより好ましく、22%以下がさらに好ましく、20%以下がさらに好ましく、19%以下がさらに好ましく、18%以下がさらに好ましく、17%以下が特に好ましい。
Gd2O3はガラスの屈折率を向上させる成分であり、その含有割合は0%以上15%以下である。Gd2O3を含有する場合、その含有割合は、1%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましく、4%以上がさらに好ましく、5%以上が特に好ましい。一方で、Gd2O3の量が多すぎると機械的特性が低下するとともに失透温度が上昇する。そのため、機械的特性や製造特性が重要となる場合には、Gd2O3の含有割合は、10%以下が好ましく、7%以下がより好ましく、5%以下がさらに好ましく、4%以下がさらに好ましく、3%以下がさらに好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。
SiO2とB2O3の合量に対するZrO2とTa2O5とNb2O5の合量の比(ZrO2+Ta2O5+Nb2O5)/(SiO2+B2O3)が大きくなると、ガラスの失透粘性が低下しやすくなる。そのため(ZrO2+Ta2O5+Nb2O5)/(SiO2+B2O3)は1.0以下が好ましく、0.8以下がより好ましく、0.6以下がさらに好ましく、0.4以下がさらに好ましく、0.35以下が特に好ましい。
La2O3とGd2O3とY2O3とYb2O3の合量に対するNb2O5とTiO2とWO3とTa2O5の合量の比(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)が大きくなると、ガラスが着色し透過率が低下しやすくなる。そのため(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)は10.0以下が好ましく、8.0以下がより好ましく、6.0以下がさらに好ましく、5.0以下がさらに好ましく、4.5以下がさらに好ましく、4.0以下がさらに好ましく、3.0以下がさらに好ましく、2.5以下がさらに好ましく、2.0以下がさらに好ましく、1.5以下がさらに好ましく、1.3以下が特に好ましい。一方で、(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)が小さくなると、ガラスのTgが低下しやすくなる。そのため高い耐熱性が求められる用途に対しては(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)は0.5以上が好ましく、0.7以上がより好ましく、0.9以上がさらに好ましく、1.1以上がさらに好ましく、1.2以上がさらに好ましく、1.3以上がさらに好ましく、1.4以上がさらに好ましい、2.0以上がさらに好ましく、3.0以上がさらに好ましく、3.5以上が特に好ましい。
As2O3は、有害な化学物質であるため、近年使用を控える傾向にあり、環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、不可避な混入を除き、実質的に含有しないことが好ましい。
さらに本実施形態の光学ガラスには、Sb2O3およびSnO2のうちの少なくとも一種が含有されることが好ましい。これらは必須の成分ではないが、屈折率特性の調整、溶融性の向上、着色の抑制、透過率の向上、清澄、化学的耐久性の向上などの目的で添加できる。これらの成分を含有させる場合、合計で、10%以下が好ましく、5%以下がより好ましく、3%以下がさらに好ましく、1%以下が特に好ましい。
さらに本実施形態の光学ガラスには、V2O5を含有することが好ましい。V2O5は必須ではないが、透過率の向上、清澄性向上などの目的で添加できる。V2O5を含有させる場合は、5%以下が好ましく、3%以下がより好ましく、1%以下がさらに好ましく、0.5%以下が特に好ましい。
さらに本実施形態の光学ガラスには、Fが含有されることが好ましい。Fは必須ではないが、溶解性の向上、透過率の向上、清澄性向上などの目的で添加できる。Fを含有させる場合は、5%以下が好ましく、3%以下がより好ましい。
さらに本実施形態の光学ガラスには、ガラス原料を溶融容器内で加熱、溶融し、溶融ガラスを得る溶融工程において、溶融ガラス中の水分量を高める操作を行うことが好ましい。ガラス中の水分量を高める操作は限定されないが、たとえば溶融雰囲気に水蒸気を付加する処理および溶融物内に水蒸気を含むガスをバブリングする処理が考えられる。水分量を高める操作は必須ではないが、透過率の向上、清澄性向上などの目的で行うことができる。
また、本実施形態の光学ガラスでLi2OやNa2Oのアルカリ金属酸化物を含有するものは、LiイオンをNaイオンまたはKイオンに、NaイオンをKイオンに置換することで、化学的に強化できる。すなわち、化学強化処理すれば、光学ガラスの強度を向上させることができる。
<ガラス組成A1>
上記したガラス組成Aでアルカリ土類金属成分が5%以下であるガラス組成をガラス組成A1とし、各成分について説明する。このガラス組成A1で説明しなかった成分については、上記したガラス組成Aの成分の説明と同一であるため省略する。
上記したガラス組成Aでアルカリ土類金属成分が5%以下であるガラス組成をガラス組成A1とし、各成分について説明する。このガラス組成A1で説明しなかった成分については、上記したガラス組成Aの成分の説明と同一であるため省略する。
SiO2は、ガラス形成成分であり、ガラスに高い強度とクラック耐性を付与し、ガラスの安定性および化学的耐久性を向上させる成分である。SiO2の含有割合は、5%以上30%以下であることが好ましい。SiO2の含有割合が5%以上で、ガラスの粘性が101dPa・sとなるときの温度T1を好ましい範囲にできる。SiO2の含有割合は、7%以上が好ましく、9%以上がより好ましく、10%以上がさらに好ましく、11%以上が特に好ましい。一方、SiO2の含有割合が30%以下で、高い屈折率を得るための成分をより多く含有させることができる。SiO2の含有割合は、25%以下がより好ましく、20%以下がより好ましく、15%以下がさらに好ましく、13%以下がさらに好ましく、12%以下が特に好ましい。
B2O3は、Tgを低くし、ガラスの強度やクラック耐性などの機械的特性を向上し、失透温度を低下させる成分であるが、B2O3の量が多いと屈折率が低下し易い。そのため、B2O3の含有割合は5%以上40%以下が好ましい。B2O3の含有割合は、35%以下がより好ましく、30%以下がさらに好ましく、25%以下がさらに好ましく、23%以上がさらに好ましく、22%以下が特に好ましい。また、B2O3の含有割合は、10%以上がより好ましく、15%以上がさらに好ましく、18%以上がさらに好ましく、20%以上が特に好ましい。
SiO2とB2O3はガラス形成成分であり、ガラスの安定性を向上させる成分であり、合量で20%以上45%以下である。SiO2とB2O3の合量が多いとガラスの失透温度が低下し、製造しやすくなる。そのためSiO2とB2O3の合量は20%以上である。25%以上が好ましく、28%以上がより好ましく、30%以上がさらに好ましく、32%以上が特に好ましい。一方で、SiO2とB2O3の合量を少なくすると屈折率を向上させることができる。そのため特に高い屈折率が求められる場合には、45%以下が好ましく、40%以下がより好ましく、35%以下がさらに好ましく、33%以下がさらに好ましく、32%以下が特に好ましい。
B2O3に対するSiO2の比SiO2/B2O3が大きいとガラスが失透しやすくなる。そのためSiO2/B2O3は好ましくは1.4以下、より好ましくは1.2以下、さらに好ましくは1.0以下、さらに好ましくは0.8以下、特に好ましくは0.6以下である。
TiO2、Ta2O5、WO3、Nb2O5、ZrO2およびLn2O3(LnはY、La、Gd、YbおよびLuからなる群から選ばれる少なくとも1種である)は、ガラスの屈折率を高める高屈折率成分である。これら成分の含有割合は合量で45%~80%であることが好ましい。特に高い屈折率が求められる場合は、50%以上が好ましく、55%以上がより好ましく、60%以上がさらに好ましく、65%以上がよりさらに好ましく、67%以上が特に好ましい。一方で、高屈折率成分が80%超であると失透しやすくなる。より低い表面粗さRaが求められる用途については、これら成分の含有割合は、より好ましくは75%以下であり、さらに好ましくは70%以下であり、特に好ましくは68%以下である。
MgOは、ガラスの溶融性を向上させ、失透を抑制し、ガラスのアッベ数や屈折率等の光学恒数を調整する成分である。一方、MgOの量が多くなると、かえって失透を促進してしまう。そのため、MgOの含有割合は、0%以上5%以下が好ましい。MgOの含有割合は、4%以下がより好ましく、2%以下が特に好ましい。また、MgOの含有割合は、0.3%以上が好ましく、0.5%以上がより好ましく、1%以上がさらに好ましい。
CaOは、失透を抑制する成分であるが、CaOの量が多いと、クラック耐性が低下し易い。そのため、CaOの含有割合は、0%以上5%以下が好ましい。CaOの含有割合は、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。また、CaOの含有割合は、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。
SrOは、ガラスの溶融性を向上させ、失透を抑制し、ガラスの光学恒数を調整する成分である。一方、SrOの量が多くなると、かえって失透を促進してしまう。そのため、SrOの含有割合は、0%以上5%以下が好ましい。SrOの含有割合は15%以下がより好ましく、4%以下がさらに好ましく、2%以下が特に好ましい。また、SrOの含有割合は、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。
MgOとCaOとSrOの合量が多くなるとガラスが失透しやすくなる。そのためMgOとCaOとSrOの合量は5%以下が好ましい。より好ましくは4%以下であり、さらに好ましくは3%以下であり、さらに好ましくは2%以下であり、さらに好ましくは1%以下であり、特に好ましくは0.5%以下である。
BaOは、失透を抑制する成分であるが、BaOの量が多いと、密度が大きくなりやすい。そのため、BaOが含有される場合には、0%以上5%以下が好ましい。BaOの含有割合は4%以下がより好ましく、3%以下がさらに好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。また、BaOの含有割合は、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。
アルカリ土類金属成分(MgO+CaO+SrO+BaO)を含む場合には、アルカリ土類金属成分中のBaOの比(BaO/(MgO+CaO+SrO+BaO))を0.5以下にすることで、比重を小さくすることができる。好ましくは0.4以下、より好ましくは0.3以下、さらに好ましくは0.2以下、特に好ましくは0.1以下である。アルカリ金属成分のうちBaOが含む割合を大きくすることで失透温度を低下させることができる。より低い表面粗さRaが求められる用途については、0.1以上が好ましく、0.2以上がより好ましく、0.3以上がさらに好ましく、0.4以上が特に好ましい。
アルカリ金属成分(Li2O+Na2O+K2O)とアルカリ土類金属成分(MgO+CaO+SrO+BaO)の合量が多くなるとガラスのTgが低下しやすくなる。そのためアルカリ金属成分とアルカリ土類金属成分の合量は15%以下が好ましい。より好ましくは12%以下であり、さらに好ましくは10%以下であり、さらに好ましくは5%以下であり、さらに好ましくは3%以下であり、特に好ましくは2%以下である。
B2O3に対するTiO2の比TiO2/B2O3が大きいと、溶解温度を高くする必要が生じるためTiが還元されやすくなりガラスが着色し透過率が低下しやすくなる。そのためTiO2/B2O3は好ましくは2.0以下、より好ましくは1.8以下、さらに好ましくは1.7以下、さらに好ましくは1.6以下、特に好ましくは1.5以下である。
ガラス組成A1で得られる光学ガラスは、1.92~2.15の範囲の高い屈折率(nd)を有する。屈折率(nd)が1.92以上である。この光学ガラスは、ウェアラブル機器に用いる光学ガラスとして画像の広角化、高輝度・高コントラスト化、導光特性向上、回折格子の加工容易性などの面で好適である。また車載用カメラ、ロボット用視覚センサーなどの用途に用いられる小型で撮像画角の広い撮像ガラスレンズとしては、より小型で広い範囲を撮影するために好適である。この屈折率(nd)は好ましくは、1.95以上であり、より好ましくは1.97以上、さらに好ましくは1.98以上、さらに好ましくは1.99以上、さらに好ましくは2.00以上である。
一方で屈折率(nd)が2.15を超えるガラスは密度が高くなりやすく、また失透温度が高くなりやすい傾向がある。特に、光学ガラスの密度の低さを重要視する場合には、この屈折率(nd)は好ましくは、2.10以下であり、より好ましくは2.06以下、さらに好ましくは2.03以下、さらに好ましくは2.01以下、さらに好ましくは1.98以下、さらに好ましくは1.95以下、さらに好ましくは1.94以下、よりさらに好ましくは1.93以下である。
一方で屈折率(nd)が2.15を超えるガラスは密度が高くなりやすく、また失透温度が高くなりやすい傾向がある。特に、光学ガラスの密度の低さを重要視する場合には、この屈折率(nd)は好ましくは、2.10以下であり、より好ましくは2.06以下、さらに好ましくは2.03以下、さらに好ましくは2.01以下、さらに好ましくは1.98以下、さらに好ましくは1.95以下、さらに好ましくは1.94以下、よりさらに好ましくは1.93以下である。
また、ガラス組成A1で得られる光学ガラスは、4.0g/cm3以上6.0g/cm3以下となる密度(d)を有する。この光学ガラスは、上記した範囲の密度を有することで、ウェアラブル機器に用いられた場合にユーザーの装着感を好ましいものにでき、車載用カメラ、ロボット用視覚センサーなどに用いられた場合に、装置全体の重量を減量できる。この密度(d)は好ましくは5.8g/cm3以下であり、より好ましくは5.6g/cm3以下、さらに好ましくは5.4g/cm3以下、さらに好ましくは5.2g/cm3以下、さらに好ましくは5.1g/cm3以下、さらに好ましくは5.0g/cm3以下である。
一方で光学ガラスの表面に傷を付けにくくするためには、密度(d)は、4.0g/cm3以上が好ましく、より好ましくは4.3g/cm3以上、さらに好ましくは4.6g/cm3以上であり、よりさらに好ましくは4.7g/cm3以上、特に好ましくは4.8g/cm3以上である。
一方で光学ガラスの表面に傷を付けにくくするためには、密度(d)は、4.0g/cm3以上が好ましく、より好ましくは4.3g/cm3以上、さらに好ましくは4.6g/cm3以上であり、よりさらに好ましくは4.7g/cm3以上、特に好ましくは4.8g/cm3以上である。
<ガラス組成A2>
上記したガラス組成Aでアルカリ土類金属成分が5%超50%以下かつB2O3が15%未満であるガラス組成をガラス組成A2とし、各成分について説明する。このガラス組成A2で説明しなかった成分については、上記したガラス組成Aの成分の説明と同一であるため省略する。
上記したガラス組成Aでアルカリ土類金属成分が5%超50%以下かつB2O3が15%未満であるガラス組成をガラス組成A2とし、各成分について説明する。このガラス組成A2で説明しなかった成分については、上記したガラス組成Aの成分の説明と同一であるため省略する。
SiO2は、ガラス形成成分であり、ガラスに高い強度とクラック耐性を付与し、ガラスの安定性および化学的耐久性を向上させる成分である。SiO2の含有割合は、5%以上44%以下であることが好ましい。SiO2の含有割合が5%以上で、ガラスの粘性が101dPa・sとなるときの温度T1を好ましい範囲にできる。SiO2の含有割合は、10%以上が好ましく、15%以上がより好ましく、20%以上がさらに好ましく、24%以上がさらに好ましく、28%以上がさらに好ましく、30%以上が特に好ましい。一方、SiO2の含有割合が44%以下で、高い屈折率を得るための成分を含有させることができる。SiO2の含有割合は、37%以下がより好ましく、35.5%以下がさらに好ましく、34%以下がさらに好ましく、33%以下がさらに好ましく、31%以下が特に好ましい。
B2O3は、ガラス形成成分であり、任意成分である。B2O3は、Tgを低くし、ガラスの強度やクラック耐性などの機械的特性を向上し、失透温度を低下させる成分である。屈折率と機械強度のバランスからB2O3の含有割合は、0%以上15%未満が好ましい。B2O3の含有割合は、14%以下がより好ましく、13%以下がさらに好ましく、12%以下がさらに好ましく、11%以上がさらに好ましく、10%以下が特に好ましい。また、B2O3の含有割合は、1%以上がより好ましく、3%以上がさらに好ましく、5%以上がさらに好ましく、7%以上が特に好ましい。
SiO2とB2O3はガラス形成成分であり、ガラスの安定性を向上させる成分であり、合量で30%以上70%以下である。SiO2とB2O3の合量が多いとガラスの失透温度が低下し、製造しやすくなる。そのためSiO2とB2O3の合量は30%以上である。32%以上が好ましく、34%以上がより好ましく、36%以上がさらに好ましく、37%以上が特に好ましい。一方で、SiO2とB2O3の合量を少なくすると屈折率を向上させることができる。そのため特に高い屈折率が求められる場合には、70%以下が好ましく、60%以下がより好ましく、50%以下がさらに好ましく、40%以下がさらに好ましく、35%以下が特に好ましい。
B2O3を含有する場合、B2O3に対するSiO2の比SiO2/B2O3が大きいとガラスが失透しやすくなる。そのためB2O3を含有する場合にSiO2/B2O3は好ましくは5.0以下、より好ましくは4.5以下、さらに好ましくは4.0以下、さらに好ましくは3.5以下、特に好ましくは3.0以下である。
TiO2、Ta2O5、WO3、Nb2O5、ZrO2およびLn2O3(LnはY、La、Gd、YbおよびLuからなる群から選ばれる少なくとも1種である)は、ガラスの屈折率を高める高屈折率成分である。これら成分の含有割合は合量で30%~55%であることが好ましい。特に高い屈折率が求められる場合は、33%以上が好ましく、35%以上がより好ましく、36%以上がさらに好ましく、37%以上がよりさらに好ましく、38%以上が特に好ましい。一方で、この高屈折率成分が多くなると失透しやすくなる。より低い表面粗さRaが求められる用途については、これら成分の含有割合は、より好ましくは50%以下であり、さらに好ましくは45%以下であり、さらに好ましくは40%以下であり、特に好ましくは35%以下である。
アルカリ金属成分(Li2O+Na2O+K2O)の含有割合は合量で0%以上10%以下である。このアルカリ金属成分を多くすることでTgを低くできる。しかし、Li2O+Na2O+K2Oが多くなりすぎると、T1が低くなり易く、粘性カーブが急峻になり製造特性が低下する。一方、Li2O+Na2O+K2Oが少なすぎると、T1が高くなり易く、溶解温度が高くなり着色する恐れがある。そのため、Li2O+Na2O+K2Oを含有する場合、0.5%以上10%以下であることが好ましい。Li2O+Na2O+K2Oは、1%以上がより好ましく、1.5%以上がさらに好ましく、2%以上がさらに好ましく、3%以上が特に好ましい。また、Li2O+Na2O+K2Oは、6%以下が好ましく、4%以下がより好ましく、3%以下がさらに好ましく、2%以下が特に好ましい。
Li2Oの含有割合は0%以上10%以下である。Li2Oを含有する場合の含有割合は0.2%以上10%以下である。Li2Oを含有させると、強度(Kc)およびクラック耐性(CIL)を向上させることができる。本発明の光学ガラスがLi2Oを含有する場合、その含有割合は、0.5%以上が好ましく、1%以上がより好ましく、1.5%以上がさらに好ましく、2%以上が特に好ましい。一方、Li2Oは、多すぎると失透し易くなる。特に失透が問題になる場合にはLi2Oの含有割合は、8%以下が好ましく、6%以下がより好ましく、4%以下がさらに好ましく、2%以下が特に好ましい。
本実施形態の光学ガラスを化学強化する場合には、Li2Oの含有割合は、3.0%以上が好ましく、6.0%以上がより好ましく、9.0%以上がさらに好ましく、11.0%以上が特に好ましい。
本実施形態の光学ガラスを化学強化する場合には、Li2Oの含有割合は、3.0%以上が好ましく、6.0%以上がより好ましく、9.0%以上がさらに好ましく、11.0%以上が特に好ましい。
CaOは、失透を抑制する成分であるが、CaOの量が多いと、クラック耐性が低下し易い。そのため、CaOの含有割合は、0%以上25%以下が好ましい。CaOの含有割合は、20%以下がより好ましく、15%以下がさらに好ましく、10%以下がさらに好ましく、8%以下がさらに好ましく、7%以下がさらに好ましく、6.5%以下が特に好ましい。また、CaOの含有割合は、2%以上がより好ましく、4%以上がさらに好ましく、5%以上がさらに好ましく、6%以上が特に好ましい。
SrOは、ガラスの溶融性を向上させ、失透を抑制し、ガラスの光学恒数を調整する成分である。一方、SrOの量が多くなると、かえって失透を促進してしまう。そのため、SrOの含有割合は、0%以上20%以下が好ましい。SrOの含有割合は15%以下がより好ましく、10%以下がさらに好ましく、9%以下がさらに好ましく、8%以下がさらに好ましく、7%以下が特に好ましい。また、SrOの含有割合は、2%以上がより好ましく、4%以上がさらに好ましく、6%以上が特に好ましい。
MgOとCaOとSrOの合量が多くなるとガラスが失透しやすくなる。そのためMgOとCaOとSrOの合量は30%以下が好ましい。より好ましくは25%以下であり、さらに好ましくは18%以下であり、さらに好ましくは16%以下であり、さらに好ましくは15%以下であり、特に好ましくは14%以下である。
BaOは、失透を抑制する成分であるが、BaOの量が多いと、密度が大きくなりやすい。そのため、BaOが含有される場合には、0%以上30%以下が好ましい。BaOの含有割合は20%以下がより好ましく、15%以下がさらに好ましく、11%以下がさらに好ましく、9%以下がさらに好ましく、8%以下が特に好ましい。また、BaOの含有割合は、2%以上がより好ましく、4%以上がさらに好ましく、6%以上が特に好ましい。
アルカリ土類金属成分(MgO+CaO+SrO+BaO)の含有割合は、その合量で5%以上50%以下である。この合量が50%以下であればガラスの失透を抑制できるので好ましい。より好ましくは40%以下であり、さらに好ましくは30%以下であり、さらに好ましくは27%以下であり、さらに好ましくは25%以下であり、さらに好ましくは23%以下であり、さらに好ましくは21%以下であり、特に好ましくは20%以下である。この合量が5%以上であれば、ガラスの溶融性を向上できるので好ましい。より好ましくは10%以上であり、さらに好ましくは13%以上であり、さらに好ましくは16%以上であり、さらに好ましくは18%以上であり、特に好ましくは19%以上である。
アルカリ土類金属成分(MgO+CaO+SrO+BaO)中のBaOの比(BaO/(MgO+CaO+SrO+BaO))を0.5以下にすることで、比重を小さくすることができる。好ましくは0.45以下、より好ましくは0.42以下、さらに好ましくは0.40以下、特に好ましくは0.35以下である。アルカリ土類金属成分のうちBaOが含む割合を大きくすることで失透温度を低下させ、製造特性を向上させることができる。製造特性が特に重要な場合には、0.1以上が好ましく、0.2以上がより好ましく、0.3以上がさらに好ましく、0.35以上が特に好ましい。
アルカリ金属成分(Li2O+Na2O+K2O)とアルカリ土類金属成分(MgO+CaO+SrO+BaO)の合量が多くなるとガラスのTgが低下しやすくなる。そのためアルカリ金属成分とアルカリ土類金属成分の合量は30%以下が好ましい。より好ましくは16%以下であり、さらに好ましくは14%以下であり、さらに好ましくは13%以下であり、さらに好ましくは12%以下であり、特に好ましくは11.5%以下である。
TiO2はガラスの屈折率を高め、ガラスの分散を大きくする成分であり、その含有割合は、0%以上50%以下である。TiO2を含有する場合、その含有割合は、10%以上が好ましく、15%以上がより好ましく、17%以上がさらに好ましく、19%以上がさらに好ましく、20%以上がさらに好ましく、22%以上が特に好ましい。一方、TiO2は多すぎると着色しやすく、また、透過率が低下する。そのため、特に透過率が求められる場合にはTiO2の含有割合は、50%以下が好ましく、40%以下がより好ましく、30%以下がさらに好ましく、25%以下がさらに好ましく、23%以下がさらに好ましく、22%以下がさらに好ましく、21%以下が特に好ましい。
B2O3を含む場合には、B2O3に対するTiO2の比TiO2/B2O3が大きいと溶解温度を高くする必要が生じるためTiが還元されやすくなりガラスが着色し透過率が低下しやすくなる。そのためB2O3を含む場合にはTiO2/B2O3は好ましくは5.0以下、より好ましくは4.5以下、さらに好ましくは4.0以下、さらに好ましくは3.5以下、さらに好ましくは3.0以下、さらに好ましくは2.8以下、特に好ましくは2.7以下である。
Nb2O5は、ガラスの屈折率を高めるとともに、アッベ数(vd)を小さくする成分である。Nb2O5の含有割合は、0%以上35%以下である。Nb2O5の含有割合は、2%以上が好ましく、4%以上がより好ましく、5%以上がさらに好ましく、6%以上がさらに好ましく、7%以上がさらに好ましく、8%以上がさらに好ましく、10%以上が特に好ましい。
また、Nb2O5は、多すぎると失透し易くなる。そのため、より低い表面粗さRaが求められる用途については、20%以下が好ましく、10%以下がより好ましく、8%以下がさらに好ましく、7%以下が特に好ましい。
また、Nb2O5は、多すぎると失透し易くなる。そのため、より低い表面粗さRaが求められる用途については、20%以下が好ましく、10%以下がより好ましく、8%以下がさらに好ましく、7%以下が特に好ましい。
TiO2とWO3とNb2O5の合量が少なくなるとガラスの屈折率が低下する。そのためTiO2とWO3とNb2O5の合量は10%以上50%以下が好ましい。より好ましくは14%以上であり、さらに好ましくは18%以上であり、さらに好ましくは22%以上であり、特に好ましくは26%以上である。一方で、TiO2とWO3とNb2O5の合量が多くなると失透し易くなる。そのため、より低い表面粗さRaが求められる用途については、40%以下が好ましく、35%以下がより好ましく、30%以下がさらに好ましく、28%以下が特に好ましい。
ZrO2はガラスの屈折率を高め、ガラスの化学的耐久性を高める成分であり、その含有割合は0%以上20%以下である。ZrO2を含有することで、クラック耐性を向上させることができる。ZrO2を含有する場合、その含有割合は、1%以上がより好ましく、2%以上がさらに好ましく、3%以上がさらに好ましく、4%以上が特に好ましい。一方、ZrO2が多すぎると、失透しやすくなる。そのため特に製造特性が重要になる場合には、ZrO2の含有割合は、15%以下がより好ましく、10%以下がさらに好ましく、6%以下がさらに好ましく、5%以下が特に好ましい。
ZnOはガラスの強度やクラック耐性などの機械的特性を向上させる成分であり、その含有割合は0%以上15%以下である。ZnOを含有する場合、その含有割合は、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。一方、ZnOの量が多いと失透し易くなるため、ZnOの含有割合は、10%以下がより好ましく、5%以下がさらに好ましく、2%以下がさらに好ましく、1%以下がさらに好ましく、0.5%以下が特に好ましい。
La2O3はガラスの屈折率を向上させる成分であり、その含有割合は0%以上35%以下である。La2O3を含有する場合、その含有割合は、2%以上が好ましく、4%以上がより好ましく、5%以上がさらに好ましく、6%以上がさらに好ましく、7%以上が特に好ましい。一方で、La2O3の量が多すぎると機械的特性が低下するとともに失透温度が上昇する。そのため、機械的特性や製造特性が重要となる場合には、La2O3の含有割合は、30%以下が好ましい。25%以下がより好ましく、20%以下がさらに好ましく、15%以下がさらに好ましく、10%以下がさらに好ましく、9%以下がさらに好ましく、8%以下が特に好ましい。
La2O3とGd2O3とY2O3とYb2O3の合量に対するNb2O5とTiO2とWO3とTa2O5の合量の比(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)が大きくなると、ガラスが着色し透過率が低下しやすくなる。そのため(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)は10.0以下が好ましく、8.0以下がより好ましく、6.0以下がさらに好ましく、5.0以下がさらに好ましく、4.5以下がさらに好ましく、4.0以下が特に好ましい。一方で、(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)が小さくなると、ガラスのTgが低下しやすくなる。そのため高い耐熱性が求められる用途に対しては(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)は0.5以上が好ましく、1.0以上がより好ましく、2.0以上がさらに好ましく、3.0以上がさらに好ましく、3.5以上が特に好ましい。
ガラス組成A2で得られる光学ガラスは、1.81~1.96の範囲の高い屈折率(nd)を有する。屈折率(nd)が1.81以上である。この光学ガラスは、ウェアラブル機器に用いる光学ガラスとして画像の広角化、高輝度・高コントラスト化、導光特性向上、回折格子の加工容易性などの面で好適である。また車載用カメラ、ロボット用視覚センサーなどの用途に用いられる小型で撮像画角の広い撮像ガラスレンズとしては、より小型で広い範囲を撮影するために好適である。この屈折率(nd)は好ましくは、1.84以上であり、より好ましくは1.86以上、さらに好ましくは1.87以上、さらに好ましくは1.88以上、さらに好ましくは1.89以上、特に好ましくは1.90以上である。
一方で屈折率(nd)が1.96を超えるガラスは密度が高くなりやすく、また失透温度が高くなりやすい傾向がある。特に、光学ガラスの密度の低さを重要視する場合には、この屈折率(nd)は好ましくは、1.94以下であり、より好ましくは1.93以下、さらに好ましくは1.92以下、さらに好ましくは1.91以下、さらに好ましくは1.90以下、さらに好ましくは1.89以下、さらに好ましくは1.88以下、よりさらに好ましくは1.87以下である。
一方で屈折率(nd)が1.96を超えるガラスは密度が高くなりやすく、また失透温度が高くなりやすい傾向がある。特に、光学ガラスの密度の低さを重要視する場合には、この屈折率(nd)は好ましくは、1.94以下であり、より好ましくは1.93以下、さらに好ましくは1.92以下、さらに好ましくは1.91以下、さらに好ましくは1.90以下、さらに好ましくは1.89以下、さらに好ましくは1.88以下、よりさらに好ましくは1.87以下である。
また、ガラス組成A2で得られる光学ガラスは、3.3g/cm3以上5.4g/cm3以下となる密度(d)を有する。この光学ガラスは、上記した範囲の密度を有することで、ウェアラブル機器に用いられた場合にユーザーの装着感を好ましいものにでき、車載用カメラ、ロボット用視覚センサーなどに用いられた場合に、装置全体の重量を減量できる。この密度(d)は好ましくは5.2g/cm3以下であり、より好ましくは5.0g/cm3以下、さらに好ましくは4.8g/cm3以下、さらに好ましくは4.6g/cm3以下、さらに好ましくは4.4g/cm3以下、さらに好ましくは4.2g/cm3以下である。
一方で光学ガラスの表面に傷を付けにくくするためには、密度(d)は、3.6g/cm3以上が好ましい。より好ましくは3.8g/cm3以上、さらに好ましくは4.0g/cm3以上であり、よりさらに好ましくは4.2g/cm3以上、特に好ましくは4.3g/cm3以上である。
一方で光学ガラスの表面に傷を付けにくくするためには、密度(d)は、3.6g/cm3以上が好ましい。より好ましくは3.8g/cm3以上、さらに好ましくは4.0g/cm3以上であり、よりさらに好ましくは4.2g/cm3以上、特に好ましくは4.3g/cm3以上である。
また、この光学ガラスは、失透温度は1300℃以下である。このような特性を有すると、成形時におけるガラスの失透を抑制でき、成形性が良好である。この失透温度は、より好ましくは1275℃以下、さらに好ましくは1240℃以下、さらにより好ましくは1225℃以下、さらにより好ましくは1200℃以下、さらにより好ましくは1175℃以下、さらにより好ましくは1150℃以下、さらにより好ましくは1125℃以下、さらにより好ましくは1100℃以下、さらにより好ましくは1075℃以下、特に好ましくは1050℃以下である。ここで、失透温度とは、加熱、溶融したガラスを自然放冷により冷却する際に、ガラス表面および内部に長辺又は長径で1μm以上の結晶の認められない最も低い温度である。
<ガラス組成A3>
上記したガラス組成Aでアルカリ土類金属成分が5%超50%以下かつB2O3が15%以上であるガラス組成をガラス組成A3とし、各成分について説明する。このガラス組成A3で説明しなかった成分については、上記したガラス組成Aの成分の説明と同一であるため省略する。
上記したガラス組成Aでアルカリ土類金属成分が5%超50%以下かつB2O3が15%以上であるガラス組成をガラス組成A3とし、各成分について説明する。このガラス組成A3で説明しなかった成分については、上記したガラス組成Aの成分の説明と同一であるため省略する。
SiO2は、ガラス形成成分であり、ガラスに高い強度とクラック耐性を付与し、ガラスの安定性および化学的耐久性を向上させる成分である。SiO2の含有割合は、5%以上44%以下であることが好ましい。SiO2の含有割合が5%以上で、ガラスの粘性が101dPa・sとなるときの温度T1を好ましい範囲にできる。SiO2の含有割合は、5%以上が好ましく、10%以上がより好ましく、12%以上がさらに好ましく、13%以上がさらに好ましく、14%以上がさらに好ましく、15%以上が特に好ましい。一方、SiO2の含有割合が44%以下で、高い屈折率を得るための成分を含有させることができる。SiO2の含有割合は、37%以下がより好ましく、30%以下がさらに好ましく、23%以下がさらに好ましく、20%以下がさらに好ましく、17%以下が特に好ましい。
B2O3は、ガラス形成成分であり、必須成分である。B2O3は、Tgを低くし、ガラスの強度やクラック耐性などの機械的特性を向上し、失透温度を低下させる成分であるが、B2O3の量が多いと屈折率が低下し易い。そのため、B2O3の含有割合は、15%以上40%以下が好ましい。B2O3の含有割合は、35%以下がより好ましく、32%以下がさらに好ましく、29%以下がさらに好ましく、27%以下がさらに好ましく、26%以下が特に好ましい。また、B2O3の含有割合は、18%以上がより好ましく、21%以上がさらに好ましく、23%以上がさらに好ましく、24%以上が特に好ましい。
SiO2とB2O3はガラス形成成分であり、ガラスの安定性を向上させる成分であり、合量で30%以上70%以下である。SiO2とB2O3の合量が多いとガラスの失透温度が低下し、製造しやすくなる。そのためSiO2とB2O3の合量は30%以上であり、32%以上が好ましく、34%以上がより好ましく、36%以上がさらに好ましく、39%以上が特に好ましい。一方で、SiO2とB2O3の合量を少なくすると屈折率を向上させることができる。そのため特に高い屈折率が求められる場合には、70%以下が好ましく、60%以下がより好ましく、50%以下がさらに好ましく、45%以下がさらに好ましく、42%以下が特に好ましい。
B2O3を含有する場合、B2O3に対するSiO2の比SiO2/B2O3が大きいとガラスが失透しやすくなる。そのためB2O3を含有する場合にSiO2/B2O3は好ましくは5.0以下、より好ましくは3.0以下、さらに好ましくは2.0以下、さらに好ましくは1.5以下、特に好ましくは1.0以下である。
TiO2、Ta2O5、WO3、Nb2O5、ZrO2およびLn2O3(LnはY、La、Gd、YbおよびLuからなる群から選ばれる少なくとも1種である)は、ガラスの屈折率を高める高屈折率成分である。これら成分の含有割合は合量で30%~55%であることが好ましい。特に高い屈折率が求められる場合は、33%以上が好ましく、35%以上がより好ましく、36%以上がさらに好ましく、37%以上がよりさらに好ましく、38%以上が特に好ましい。一方で、この高屈折率成分が多くなると失透しやすくなる。より低い表面粗さRaが求められる用途については、これら成分の含有割合は、より好ましくは50%以下であり、さらに好ましくは45%以下であり、さらに好ましくは40%以下であり、特に好ましくは35%以下である。
アルカリ金属成分(Li2O+Na2O+K2O)の含有割合は合量で0%以上10%以下である。このアルカリ金属成分を多くすることでTgを低くできる。しかし、Li2O+Na2O+K2Oが多くなりすぎると、T1が低くなり易く、粘性カーブが急峻になり製造特性が低下する。一方、Li2O+Na2O+K2Oが少なすぎると、T1が高くなり易く、溶解温度が高くなり着色する恐れがある。そのため、Li2O+Na2O+K2Oを含有する場合、0.5%以上10%以下であることが好ましい。Li2O+Na2O+K2Oは、1%以上がより好ましく、1.5%以上がさらに好ましく、2%以上がさらに好ましく、3%以上が特に好ましい。また、Li2O+Na2O+K2Oは、6%以下が好ましく、4%以下がより好ましく、3%以下がさらに好ましく、2%以下が特に好ましい。
Li2Oの含有割合は0%以上10%以下である。Li2Oを含有する場合の含有割合は0.2%以上10%以下である。Li2Oを含有させると、強度(Kc)およびクラック耐性(CIL)を向上させることができる。本発明の光学ガラスがLi2Oを含有する場合、その含有割合は、0.5%以上が好ましく、1%以上がより好ましく、1.5%以上がさらに好ましく、2%以上が特に好ましい。一方、Li2Oは、多すぎると失透し易くなる。特に失透が問題になる場合にはLi2Oの含有割合は、6%以下が好ましく、3%以下がより好ましく、1%以下がさらに好ましく、0.1%以下が特に好ましい。
本実施形態の光学ガラスを化学強化する場合には、Li2Oの含有割合は、3.0%以上が好ましく、6.0%以上がより好ましく、9.0%以上がさらに好ましく、11.0%以上が特に好ましい。
本実施形態の光学ガラスを化学強化する場合には、Li2Oの含有割合は、3.0%以上が好ましく、6.0%以上がより好ましく、9.0%以上がさらに好ましく、11.0%以上が特に好ましい。
CaOは、失透を抑制する成分であるが、CaOの量が多いと、クラック耐性が低下し易い。そのため、CaOの含有割合は、0%以上25%以下が好ましい。CaOの含有割合は、20%以下がより好ましく、17%以下がさらに好ましく、14%以下がさらに好ましく、13%以下がさらに好ましく、12%以下がさらに好ましく、11.5%以下が特に好ましい。また、CaOの含有割合は、4%以上がより好ましく、8%以上がさらに好ましく、10%以上がさらに好ましく、11%以上が特に好ましい。
SrOは、ガラスの溶融性を向上させ、失透を抑制し、ガラスの光学恒数を調整する成分である。一方、SrOの量が多くなると、かえって失透を促進してしまう。そのため、SrOの含有割合は、0%以上20%以下が好ましい。SrOの含有割合は15%以下がより好ましく、12%以下がさらに好ましく、10%以下がさらに好ましく、9%以下がさらに好ましく、8%以下が特に好ましい。また、SrOの含有割合は、2%以上がより好ましく、5%以上がさらに好ましく、7%以上が特に好ましい。
MgOとCaOとSrOの合量が多くなるとガラスが失透しやすくなる。そのためMgOとCaOとSrOの合量は30%以下が好ましい。より好ましくは25%以下であり、さらに好ましくは22%以下であり、さらに好ましくは21%以下であり、さらに好ましくは20%以下であり、特に好ましくは19.5%以下である。
BaOは、失透を抑制する成分であるが、BaOの量が多いと、密度が大きくなりやすい。そのため、BaOが含有される場合には、0%以上30%以下が好ましい。BaOの含有割合は20%以下がより好ましく、15%以下がさらに好ましく、11%以下がさらに好ましく、9%以下がさらに好ましく、8%以下が特に好ましい。また、BaOの含有割合は、2%以上がより好ましく、5%以上がさらに好ましく、7%以上が特に好ましい。
アルカリ土類金属成分(MgO+CaO+SrO+BaO)の含有割合は、その合量で5%以上50%以下である。この合量が50%以下であればガラスの失透を抑制できるので好ましい。より好ましくは40%以下であり、さらに好ましくは35%以下であり、さらに好ましくは32%以下であり、さらに好ましくは30%以下であり、さらに好ましくは29%以下であり、さらに好ましくは28%以下であり、特に好ましくは20%以下である。この合量が5%以上であれば、ガラスの溶融性を向上できるので好ましい。より好ましくは10%以上であり、さらに好ましくは15%以上であり、さらに好ましくは20%以上であり、さらに好ましくは25%以上であり、特に好ましくは26%以上である。
アルカリ土類金属成分(MgO+CaO+SrO+BaO)中のBaOの比(BaO/(MgO+CaO+SrO+BaO))を0.5以下にすることで、比重を小さくすることができる。好ましくは0.45以下、より好ましくは0.42以下、さらに好ましくは0.40以下、特に好ましくは0.35以下である。アルカリ土類金属成分のうちBaOが含む割合を大きくすることで失透温度を低下させ、製造特性を向上させることができる。製造特性が特に重要な場合には、0.1以上が好ましく、0.2以上がより好ましく、0.25以上がさらに好ましく、0.3以上が特に好ましい。
アルカリ金属成分(Li2O+Na2O+K2O)とアルカリ土類金属成分(MgO+CaO+SrO+BaO)の合量が多くなるとガラスのTgが低下しやすくなる。そのためアルカリ金属成分とアルカリ土類金属成分の合量は30%以下が好ましく、より好ましくは29%以下であり、さらに好ましくは28%以下であり、特に好ましくは27.5%以下である。
TiO2はガラスの屈折率を高め、ガラスの分散を大きくする成分であり、その含有割合は、0%以上50%以下である。TiO2を含有する場合、その含有割合は、10%以上が好ましく、15%以上がより好ましく、17%以上がさらに好ましく、19%以上がさらに好ましく、20%以上がさらに好ましく、20.5%以上が特に好ましい。一方、TiO2は多すぎると着色しやすく、また、透過率が低下する。そのため、特に透過率が求められる場合にはTiO2の含有割合は、50%以下が好ましく、40%以下がより好ましく、30%以下がさらに好ましく、25%以下がさらに好ましく、23%以下がさらに好ましく、22%以下がさらに好ましく、21%以下が特に好ましい。
B2O3を含む場合には、B2O3に対するTiO2の比TiO2/B2O3が大きいと溶解温度を高くする必要が生じるためTiが還元されやすくなりガラスが着色し透過率が低下しやすくなる。そのためB2O3を含む場合にはTiO2/B2O3は好ましくは5.0以下、より好ましくは4.0以下、さらに好ましくは3.0以下、さらに好ましくは2.0以下、さらに好ましくは1.5以下、さらに好ましくは1.2以下、特に好ましくは1.0以下である。
Nb2O5は、ガラスの屈折率を高めるとともに、アッベ数(vd)を小さくする成分である。Nb2O5の含有割合は、0%以上35%以下である。Nb2O5の含有割合は、0.5%以上が好ましく、1.0%以上がより好ましく、1.5%以上がさらに好ましく、2.0%以上がさらに好ましく、2.5%以上が特に好ましい。
また、Nb2O5は、多すぎると失透し易くなる。そのため、より低い表面粗さRaが求められる用途については、20%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましく、3%以下が特に好ましい。
また、Nb2O5は、多すぎると失透し易くなる。そのため、より低い表面粗さRaが求められる用途については、20%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましく、3%以下が特に好ましい。
TiO2とWO3とNb2O5の合量が少なくなるとガラスの屈折率が低下する。そのためTiO2とWO3とNb2O5の合量は10%以上50%以下が好ましい。より好ましくは14%以上であり、さらに好ましくは18%以上であり、さらに好ましくは22%以上であり、特に好ましくは23%以上である。一方で、TiO2とWO3とNb2O5の合量が多くなると失透し易くなる。そのため、より低い表面粗さRaが求められる用途については、40%以下が好ましく、35%以下がより好ましく、30%以下がさらに好ましく、25%以下が特に好ましい。
ZrO2はガラスの屈折率を高め、ガラスの化学的耐久性を高める成分であり、その含有割合は0%以上20%以下である。ZrO2を含有することで、クラック耐性を向上させることができる。ZrO2を含有する場合、その含有割合は、1%以上がより好ましく、2%以上がさらに好ましく、3%以上がさらに好ましく、4%以上が特に好ましい。一方、ZrO2が多すぎると、失透しやすくなる。そのため特に製造特性が重要になる場合には、ZrO2の含有割合は、15%以下がより好ましく、10%以下がさらに好ましく、6%以下がさらに好ましく、5%以下が特に好ましい。
ZnOはガラスの強度やクラック耐性などの機械的特性を向上させる成分であり、その含有割合は0%以上15%以下である。ZnOを含有する場合、その含有割合は、0.3%以上がより好ましく、0.5%以上がさらに好ましく、1%以上が特に好ましい。一方、ZnOの量が多いと失透し易くなるため、ZnOの含有割合は、10%以下がより好ましく、5%以下がさらに好ましく、2%以下がさらに好ましく、1%以下がさらに好ましく、0.5%以下が特に好ましい。
La2O3はガラスの屈折率を向上させる成分であり、その含有割合は0%以上35%以下である。La2O3を含有する場合、その含有割合は、2%以上が好ましく、3%以上がより好ましく、4%以上がさらに好ましく、4.5%以上がさらに好ましく、5%以上が特に好ましい。一方で、La2O3の量が多すぎると機械的特性が低下するとともに失透温度が上昇する。そのため、機械的特性や製造特性が重要となる場合には、La2O3の含有割合は、30%以下が好ましい。25%以下がより好ましく、20%以下がさらに好ましく、15%以下がさらに好ましく、10%以下がさらに好ましく、7%以下がさらに好ましく、6%以下が特に好ましい。
La2O3とGd2O3とY2O3とYb2O3の合量に対するNb2O5とTiO2とWO3とTa2O5の合量の比(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)が大きくなると、ガラスが着色し透過率が低下しやすくなる。そのため(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)は10.0以下が好ましく、8.0以下がより好ましく、7.0以下がさらに好ましく、6.0以下がさらに好ましく、5.5以下がさらに好ましく、5.0以下が特に好ましい。一方で、(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)が小さくなると、ガラスのTgが低下しやすくなる。そのため高い耐熱性が求められる用途に対しては(Nb2O5+TiO2+WO3+Ta2O5)/(La2O3+Gd2O3+Y2O3+Yb2O3)は0.5以上が好ましく、1.0以上がより好ましく、2.0以上がさらに好ましく、3.0以上がさらに好ましく、4.0以上が特に好ましい。
ガラス組成A3で得られる光学ガラスは、1.81~1.96の範囲の高い屈折率(nd)を有する。屈折率(nd)が1.81以上である。この光学ガラスは、ウェアラブル機器に用いる光学ガラスとして画像の広角化、高輝度・高コントラスト化、導光特性向上、回折格子の加工容易性などの面で好適である。また車載用カメラ、ロボット用視覚センサーなどの用途に用いられる小型で撮像画角の広い撮像ガラスレンズとしては、より小型で広い範囲を撮影するために好適である。この屈折率(nd)は好ましくは、1.820以上であり、より好ましくは1.830以上、さらに好ましくは1.835以上、さらに好ましくは1.840以上、さらに好ましくは1.845以上、特に好ましくは1.850以上である。
一方で屈折率(nd)が1.96を超えるガラスは密度が高くなりやすく、また失透温度が高くなりやすい傾向がある。特に、光学ガラスの密度の低さを重要視する場合には、この屈折率(nd)は好ましくは、1.92以下であり、より好ましくは1.90以下、さらに好ましくは1.89以下、さらに好ましくは1.88以下、さらに好ましくは1.87以下、さらに好ましくは1.86以下、さらに好ましくは1.855以下、よりさらに好ましくは1.853以下である。
一方で屈折率(nd)が1.96を超えるガラスは密度が高くなりやすく、また失透温度が高くなりやすい傾向がある。特に、光学ガラスの密度の低さを重要視する場合には、この屈折率(nd)は好ましくは、1.92以下であり、より好ましくは1.90以下、さらに好ましくは1.89以下、さらに好ましくは1.88以下、さらに好ましくは1.87以下、さらに好ましくは1.86以下、さらに好ましくは1.855以下、よりさらに好ましくは1.853以下である。
また、ガラス組成A3で得られる光学ガラスは、3.3g/cm3以上5.4g/cm3以下となる密度(d)を有する。この光学ガラスは、上記した範囲の密度を有することで、ウェアラブル機器に用いられた場合にユーザーの装着感を好ましいものにでき、車載用カメラ、ロボット用視覚センサーなどに用いられた場合に、装置全体の重量を減量できる。この密度(d)は好ましくは5.2g/cm3以下であり、より好ましくは5.0g/cm3以下、さらに好ましくは4.6g/cm3以下、さらに好ましくは4.2g/cm3以下、さらに好ましくは4.1g/cm3以下、さらに好ましくは4.0g/cm3以下である。
一方で光学ガラスの表面に傷を付けにくくするためには、密度(d)は、3.6g/cm3以上が好ましい。より好ましくは3.7g/cm3以上、さらに好ましくは3.8g/cm3以上であり、よりさらに好ましくは3.9g/cm3以上、特に好ましくは3.95g/cm3以上である。
一方で光学ガラスの表面に傷を付けにくくするためには、密度(d)は、3.6g/cm3以上が好ましい。より好ましくは3.7g/cm3以上、さらに好ましくは3.8g/cm3以上であり、よりさらに好ましくは3.9g/cm3以上、特に好ましくは3.95g/cm3以上である。
また、この光学ガラスは、失透温度は1300℃以下である。このような特性を有すると、成形時におけるガラスの失透を抑制でき、成形性が良好である。この失透温度は、より好ましくは1275℃以下、さらに好ましくは1240℃以下、さらにより好ましくは1225℃以下、さらにより好ましくは1200℃以下、さらにより好ましくは1175℃以下、さらにより好ましくは1150℃以下、さらにより好ましくは1100℃以下、さらにより好ましくは1050℃以下、さらにより好ましくは1025℃以下、特に好ましくは1020℃以下である。ここで、失透温度とは、加熱、溶融したガラスを自然放冷により冷却する際に、ガラス表面および内部に長辺又は長径で1μm以上の結晶の認められない最も低い温度である。
[光学ガラスおよびガラス成形体の製造方法]
本発明の光学ガラスは、例えば以下のように製造される。すなわち、まず、上記所定のガラス組成となるように原料を秤量し、均一に混合する。作製した混合物を白金坩堝、石英坩堝又はアルミナ坩堝に投入して粗溶融する。その後、金坩堝、白金坩堝、白金合金坩堝、強化白金坩堝又はイリジウム坩堝に入れて1200~1400℃の温度範囲で2~10時間溶融し、脱泡、撹拌などにより均質化して泡切れ等を行った後、金型に鋳込んで徐冷する。これにより本発明の光学ガラスが得られる。
本発明の光学ガラスは、例えば以下のように製造される。すなわち、まず、上記所定のガラス組成となるように原料を秤量し、均一に混合する。作製した混合物を白金坩堝、石英坩堝又はアルミナ坩堝に投入して粗溶融する。その後、金坩堝、白金坩堝、白金合金坩堝、強化白金坩堝又はイリジウム坩堝に入れて1200~1400℃の温度範囲で2~10時間溶融し、脱泡、撹拌などにより均質化して泡切れ等を行った後、金型に鋳込んで徐冷する。これにより本発明の光学ガラスが得られる。
さらに、この光学ガラスは、溶融したガラスをフロート法、フュージョン法、ロールアウト法といった成型方法によって板状に成形することでガラス板にもできる。また、溶融したガラスを一旦ブロック状に成形したのち、リドロー法等でガラス板にもできる。また、例えばリヒートプレス成形や精密プレス成形等の手段を用いて、ガラス成形体を作製できる。すなわち、光学ガラスからモールドプレス成形用のレンズプリフォームを作製し、このレンズプリフォームに対してリヒートプレス成形した後で研磨加工を行ってガラス成形体を作製したり、例えば研磨加工を行って作製したレンズプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりできる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
上記のように製造される本発明の光学ガラスの残留泡は、1kg当たり10個(10個/kg)以下が好ましく、7個/kg以下がより好ましく、5個/kg以下がさらに好ましく、3個/kg以下が特に好ましい。上記した方法でガラス板を成形する場合、残留泡が10個/kg以下であれば、泡の含まれないガラス板を効率よく成形できる。また、残留泡が内部に包まれる最小サイズの円の直径を残留泡の個々の大きさとしたとき、残留泡の個々の大きさは80μm以下が好ましく、60μm以下がより好ましく、40μm以下がさらに好ましく、20μm以下が特に好ましい。
また、前記直径を残留泡の縦方向の長さL1とし、この直径と垂直に交わる直線で残留泡の最大長さとなる直線の長さを残留泡の横方向の長さL2としたとき、残留泡の形状を縦横比で表すとL2/L1は0.90以上が好ましく、0.92以上がより好ましく、0.95以上がさらに好ましい。このようにL2/L1が0.90以上であれば、残留泡は真円(真球)に近い状態となり、例え残留泡が含まれていたとしても、楕円の残留泡と比べるとガラスの強度低下が抑えられ、ガラス板を作成するときに、残留泡が起点となる割れの発生を抑制できる。また、ガラス基板に残留泡が存在しても、楕円の残留泡と比べるとガラス板に入射する光の異方散乱が抑えられる効果も有する。残留泡の大きさや形状は、レーザ顕微鏡(キーエンス社製:VK-X100)によって測定された値から得られる。
このようにして作製されるガラス板やガラス成形体のような光学部材は、様々な光学素子に有用であるが、その中でも特に、(1)ウェアラブル機器、例えばプロジェクター付きメガネ、眼鏡型やゴーグル型ディスプレイ、仮想現実拡張現実表示装置、虚像表示装置などに使われる導光体、フィルターやレンズ等、(2)車載用カメラ、ロボット用視覚センサーに使われるレンズやカバーガラス等、に好適に用いられる。車載用カメラのような過酷な環境に曝される用途であっても好適に用いられる。また、有機EL用ガラス基板,ウエハーレベルレンズアレイ用基板、レンズユニット用基板、エッチング法によるレンズ形成基板、光導波路といった用途にも好適に用いられる。
以上説明した本実施形態の光学ガラスは高屈折率かつ低密度であるとともに、製造特性が良好であり、ウェアラブル機器、車載用、ロボット搭載用、の光学ガラスとして好適である。また、この光学ガラスの主表面にSiO2などの低屈折率膜と、TiO2などの高屈折率膜とを交互に積層した4~10層の誘電体多層膜からなる反射防止膜を形成した光学部品もウェアラブル機器、車載用、ロボット搭載用に好適である。
表1~9に示す化学組成(酸化物換算のモル%)となるように原料を秤量した。原料は、いずれも、各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、フッ化物、水酸化物、メタリン酸化合物等の通常の光学ガラスに使用される高純度原料を選定して使用した。
秤量した原料を均一に混合し、内容積約300mLの白金ルツボ内に入れて、約1300℃で約2時間溶融、清澄、撹拌後、1300℃で0.5時間保持し、およそ650℃に予熱した縦50mm×横100mmの長方形のモールドに鋳込み後、約1℃/分で徐冷して例1~85のサンプルとした。なお、ここで例1~80が実施例、例81~85が比較例である。
[評価]
上記で得られた各サンプルについて、屈折率(nd)、密度(d)、失透温度、粘度(ガラスの粘性が101dPa・sとなるときの温度T1)、を次のように測定した。得られた結果を表1~9に併せて示した。
上記で得られた各サンプルについて、屈折率(nd)、密度(d)、失透温度、粘度(ガラスの粘性が101dPa・sとなるときの温度T1)、を次のように測定した。得られた結果を表1~9に併せて示した。
屈折率(nd):サンプルのガラスを一辺が30mm、厚さが10mmの三角形状プリズムに加工し、屈折率計(Kalnew社製、機器名:KPR-2000)により測定した。
密度(d):JIS Z8807(1976、液中で秤量する測定方法)に準じて測定した。
失透温度:白金皿にサンプル約5gを入れ、1000℃~1400℃まで5℃刻みにてそれぞれ1時間保持したものを自然放冷により冷却した後、結晶析出の有無を顕微鏡により観察して、長辺又は長径で1μm以上の結晶の認められない最低温度を失透温度とした。
密度(d):JIS Z8807(1976、液中で秤量する測定方法)に準じて測定した。
失透温度:白金皿にサンプル約5gを入れ、1000℃~1400℃まで5℃刻みにてそれぞれ1時間保持したものを自然放冷により冷却した後、結晶析出の有無を顕微鏡により観察して、長辺又は長径で1μm以上の結晶の認められない最低温度を失透温度とした。
温度T1:ASTM C 965-96に規定されている方法に従い、回転粘度計を用いてガラスの粘度を測定し、ガラスの粘性が101dPa・sとなるときの温度T1(℃)を測定した。
ガラス転移点(Tg):示差熱膨張計(TMA)を用いて測定した値であり、JIS R3103-3(2001年)により求めた。
ヤング率(E):20mm×20mm×1mmの板状のサンプルについて、超音波精密板厚計(OLYMPAS社製、MODEL 38DL PLUS)を用いて測定した(単位:GPa)。
ヤング率(E):20mm×20mm×1mmの板状のサンプルについて、超音波精密板厚計(OLYMPAS社製、MODEL 38DL PLUS)を用いて測定した(単位:GPa)。
LTV:ガラス基板の板厚を非接触レーザ変位計(黒田精工製ナノメトロ)により、50mm×50mm×1mmの板状のサンプルについて、3mm間隔で測定し、LTVを算出した。
反り:ガラス基板の2つの主表面の高さを非接触レーザ変位計(黒田精工製ナノメトロ)により、直径8インチ×1mmおよび直径6インチ×1mmの円板状のサンプルについて、3mm間隔で測定し、図1を参照して説明した上記方法により反りを算出した。
表面粗さ(Ra):20mm×20mm×1mmの板状のサンプルについて、10μm×10μmのエリアを、原子間力顕微鏡(AFM)(オクスフォードインストゥルメンツ社製)を用いて測定した値である。
アッベ数(νd):上記屈折率測定に使用したサンプルを用いて、νd=(nd-1)/(nF-nC)により算出する。ndはヘリウムd線、nFは水素F線、およびnCは水素C線に対する屈折率である。これらの屈折率も上記した屈折率計を使用して測定した。
熱膨張係数(α):示差熱膨張計(TMA)を用いて50~350℃の範囲における線熱膨張係数を測定し、JIS R3102(1995年)により50~350℃の範囲における平均線熱膨張係数を求めた。
反り:ガラス基板の2つの主表面の高さを非接触レーザ変位計(黒田精工製ナノメトロ)により、直径8インチ×1mmおよび直径6インチ×1mmの円板状のサンプルについて、3mm間隔で測定し、図1を参照して説明した上記方法により反りを算出した。
表面粗さ(Ra):20mm×20mm×1mmの板状のサンプルについて、10μm×10μmのエリアを、原子間力顕微鏡(AFM)(オクスフォードインストゥルメンツ社製)を用いて測定した値である。
アッベ数(νd):上記屈折率測定に使用したサンプルを用いて、νd=(nd-1)/(nF-nC)により算出する。ndはヘリウムd線、nFは水素F線、およびnCは水素C線に対する屈折率である。これらの屈折率も上記した屈折率計を使用して測定した。
熱膨張係数(α):示差熱膨張計(TMA)を用いて50~350℃の範囲における線熱膨張係数を測定し、JIS R3102(1995年)により50~350℃の範囲における平均線熱膨張係数を求めた。
上記各実施例(例1~80)の光学ガラスは、いずれも、屈折率(nd)が1.81以上と高屈折率である。また、密度が6.0g/cm3以下と低い。またガラスの粘性が101dPa・sとなるときの温度T1が900~1200℃であるため製造特性が良好である。また、失透温度が1300℃以下であるため製造特性が良好である。そのため、ウェアラブル機器や車載用カメラやロボット用視覚に用いられる光学ガラスに好適である。
一方、比較例である例81および例84のガラスは、失透温度が1300℃より高く製造特性が劣る。例81、82および例83のガラスは、屈折率(nd)が1.81より低い。例85のガラスは、Siの含有量が5モル%より低い。
上記各実施例(例1~80)のガラス組成を溶融したガラスから得られる光学ガラスは、温度T1が900~1200℃であるため製造特性が良好であるため、残留泡の大きさは小さく個数も少ないので、泡、異物、脈理、分相等の欠点が存在しないガラス板が得られる。したがって、上記したような大きさのサンプルを形成するとLTVの値は2μm以下、反りの値(直径6インチの円形のガラス板)は30μm以下、Raの値は2nm以下の光学ガラスを得ることができる。さらに、失透温度が1300℃以下であり失透の発生を抑えられるため、LTVの値は1.5μm以下、反りの値(直径6インチの円形のガラス板)は18μm以下、Raの値は1nm以下を実現できると考えられる。
本実施例の上記欠点が存在しない3種のガラス板を精密研磨したところ、LTVの値は1.0、1.2、1.2μm,反りの値は45、32、38,Raの値は0.198、0.284、0.266が得られた。よって本発明の実施例の上記の欠点が存在しないガラス板を精密研磨することでLTVの値は2μm以下、反りの値は50μm以下、Raの値は2nm以下の光学ガラスを得ることができる。
本発明のガラスを化学強化する際には、たとえば硝酸ナトリウム塩を400℃に加熱し溶融した融液に、ガラスを30分浸漬し、化学強化処理を行って強化ガラスを得ることができる。
以上より、本発明の光学ガラスは、高屈折率かつ低密度であるとともに、製造特性が良好であり、ウェアラブル機器、車載用、ロボット搭載用、等の光学ガラスとして好適である。上記実施例の光学ガラスにSiO2などの低屈折率膜と、TiO2などの高屈折率膜とを交互に積層した4~10層の誘電体多層膜からなる反射防止膜を形成した光学部品も、ウェアラブル機器、車載用、ロボット搭載用として好適である。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2018年8月31日出願の日本特許出願(特願2018-163582)、2018年11月21日出願の日本特許出願(特願2018-218577)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (13)
- 屈折率(nd)が1.81~2.15、
密度(d)が6.0g/cm3以下、
ガラスの粘性が101dPa・sとなるときの温度T1が900~1200℃、
失透温度が1300℃以下、
酸化物基準のモル%表示で、SiO2の含有割合が5%~44%である、
ことを特徴とする光学ガラス。 - ガラス転移点(Tg)が600℃以上である請求項1に記載の光学ガラス。
- 酸化物基準のモル%表示で、
TiO2、Ta2O5、WO3、Nb2O5、ZrO2およびLn2O3(LnはY、La、Gd、YbおよびLuからなる群から選ばれる少なくとも1種である)からなる群から選ばれる少なくとも1種を30%~80%、SiO2とB2O3の合量が20%~70%、アルカリ土類金属成分(MgO、CaO、SrO、BaO)を含む場合にはアルカリ土類金属成分中のBaOの含む割合が0.5以下である請求項1または2に記載の光学ガラス。 - 失透温度における粘性(失透粘性)がlogη=0.4以上である、請求項1~3のいずれか1項に記載の光学ガラス。
- ヤング率(E)が60GPa以上である、請求項1~4のいずれか1項に記載の光学ガラス。
- アッベ数(vd)が60以下、50~350℃での熱膨張係数αが50~150×10-7/Kである、請求項1~5のいずれか1項に記載の光学ガラス。
- 板厚が0.01~2mmの板状であることを特徴とする請求項1~6のいずれか1項に記載の光学ガラス。
- 一の主表面の面積が8cm2以上である請求項1~7のいずれか1項に記載の光学ガラス。
- 対向する主表面は両面に研磨が施され、一の主表面の面積が25cm2のガラス板としたとき、そのガラス基板のLTVが2μm以下である請求項1~8のいずれか1項に記載の光学ガラス。
- 直径8インチの円形のガラス板としたとき、一の主表面の反りが50μm以下である請求項1~9のいずれか1項に記載の光学ガラス。
- 表面粗さRaが2nm以下である請求項1~10のいずれか1項に記載の光学ガラス。
- 請求項9~11のいずれか1項に記載の板状の光学ガラスを有することを特徴とする光学部品。
- 前記板状の光学ガラスの表面に反射防止膜を有する請求項12に記載の光学部品。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217004273A KR20210053880A (ko) | 2018-08-31 | 2019-08-27 | 광학 유리 및 광학 부품 |
EP19854935.4A EP3845503A4 (en) | 2018-08-31 | 2019-08-27 | OPTICAL GLASS AND OPTICAL COMPONENT |
CN201980055962.8A CN112638835B (zh) | 2018-08-31 | 2019-08-27 | 光学玻璃和光学部件 |
CN202310675818.2A CN116655237A (zh) | 2018-08-31 | 2019-08-27 | 光学玻璃和光学部件 |
JP2020539490A JP7512893B2 (ja) | 2018-08-31 | 2019-08-27 | 光学ガラスおよび光学部品 |
CN202310678226.6A CN116655238A (zh) | 2018-08-31 | 2019-08-27 | 光学玻璃和光学部件 |
US17/186,953 US20210179479A1 (en) | 2018-08-31 | 2021-02-26 | Optical glass and optical component |
JP2024074856A JP2024096328A (ja) | 2018-08-31 | 2024-05-02 | 導光板用ガラス板 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018163582 | 2018-08-31 | ||
JP2018-163582 | 2018-08-31 | ||
JP2018218577 | 2018-11-21 | ||
JP2018-218577 | 2018-11-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/186,953 Continuation US20210179479A1 (en) | 2018-08-31 | 2021-02-26 | Optical glass and optical component |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020045417A1 true WO2020045417A1 (ja) | 2020-03-05 |
Family
ID=69644270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/033490 WO2020045417A1 (ja) | 2018-08-31 | 2019-08-27 | 光学ガラスおよび光学部品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210179479A1 (ja) |
EP (1) | EP3845503A4 (ja) |
JP (2) | JP7512893B2 (ja) |
KR (1) | KR20210053880A (ja) |
CN (3) | CN112638835B (ja) |
TW (1) | TWI816870B (ja) |
WO (1) | WO2020045417A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220073414A1 (en) * | 2020-09-10 | 2022-03-10 | Corning Incorporated | Silicoborate and borosilicate glasses with high refractive index and low density |
WO2022055709A1 (en) * | 2020-09-10 | 2022-03-17 | Corning Incorporated | Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light |
WO2022055688A3 (en) * | 2020-09-10 | 2022-05-12 | Corning Incorporated | Silicoborate and borosilicate glasses having high refractive index and low density |
EP4059901A1 (en) | 2021-03-19 | 2022-09-21 | Corning Incorporated | High-index borate glasses |
NL2028260B1 (en) | 2021-03-19 | 2022-09-29 | Corning Inc | High-Index Borate Glasses |
WO2022216567A1 (en) | 2021-04-05 | 2022-10-13 | Corning Incorporated | High-index silicoborate and borosilicate glasses |
WO2023017759A1 (ja) * | 2021-08-12 | 2023-02-16 | 日本電気硝子株式会社 | 光学ガラス板 |
WO2024034360A1 (ja) * | 2022-08-09 | 2024-02-15 | Agc株式会社 | ガラス基板 |
WO2024034361A1 (ja) * | 2022-08-09 | 2024-02-15 | Agc株式会社 | ガラス基板 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021109897A1 (de) | 2021-04-20 | 2022-10-20 | Schott Ag | Gläser mit hohem Brechwert und geringer Dichte |
NL2029053B1 (en) | 2021-08-03 | 2023-02-17 | Corning Inc | Borate and Silicoborate Optical Glasses with High Refractive Index and Low Liquidus Temperature |
EP4129942A1 (en) | 2021-08-03 | 2023-02-08 | Corning Incorporated | Borate and silicoborate optical glasses with high refractive index and low liquidus temperature |
TW202330417A (zh) | 2021-12-21 | 2023-08-01 | 德商首德公司 | 高折射率基板 |
WO2023183142A1 (en) | 2022-03-25 | 2023-09-28 | Corning Incorporated | High-index high-dispersion phosphate glasses containing bismuth oxide |
CN115010363A (zh) * | 2022-06-01 | 2022-09-06 | 河北光兴半导体技术有限公司 | 高折射率玻璃组合物和高折射率玻璃及其制备方法和应用 |
CN115700228A (zh) * | 2022-11-21 | 2023-02-07 | 深圳市微思腾新材料科技有限公司 | 一种光学玻璃组合物及光学玻璃 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013253013A (ja) * | 2012-06-06 | 2013-12-19 | Schott Ag | 光学ガラス |
JP2013256446A (ja) | 2013-09-09 | 2013-12-26 | Hoya Corp | 車載カメラ用レンズ硝材及び車載カメラ用レンズ |
JP2015059060A (ja) * | 2013-09-18 | 2015-03-30 | 株式会社オハラ | 光学ガラス及び光学素子 |
US20160194237A1 (en) * | 2013-08-23 | 2016-07-07 | Hoya Corporation | Optical glass and use thereof |
JP2018163582A (ja) | 2017-03-27 | 2018-10-18 | 株式会社ラック | 中継装置、中継方法およびプログラム |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55126549A (en) * | 1979-03-19 | 1980-09-30 | Ohara Inc | High refraction high dispersion optical glass |
DE3343418A1 (de) * | 1983-12-01 | 1985-06-20 | Schott Glaswerke, 6500 Mainz | Optisches glas mit brechwerten>= 1.90, abbezahlen>= 25 und mit hoher chemischer bestaendigkeit |
JPS62275038A (ja) * | 1986-02-20 | 1987-11-30 | Nikon Corp | 軽量高屈折率光学ガラス |
JPH0741334A (ja) * | 1993-07-30 | 1995-02-10 | Minolta Co Ltd | 光学ガラス |
US6121176A (en) * | 1997-01-29 | 2000-09-19 | Corning S.A. | Glasses with very high refractive index |
JP2000128570A (ja) * | 1998-10-21 | 2000-05-09 | Minolta Co Ltd | 光学ガラス |
JP2000159537A (ja) * | 1998-11-20 | 2000-06-13 | Minolta Co Ltd | 光学ガラス |
JP4361004B2 (ja) * | 2004-11-15 | 2009-11-11 | Hoya株式会社 | 光学ガラス、精密プレス成形用プリフォームおよびその製造方法ならびに光学素子およびその製造方法 |
JP4322217B2 (ja) * | 2005-02-21 | 2009-08-26 | Hoya株式会社 | 光学ガラス、プレス成形用ガラスゴブ、光学部品、ガラス成形体の製造方法および光学部品の製造方法 |
CN101888981B (zh) * | 2007-12-06 | 2013-03-27 | 旭硝子株式会社 | 光学玻璃及使用该光学玻璃的精密模压成型用预成型体和光学元件 |
KR101348051B1 (ko) * | 2009-05-15 | 2014-01-03 | 호야 가부시키가이샤 | 프레스 성형용 유리 소재, 상기 유리 소재를 이용한 유리 광학 소자의 제조 방법, 및 유리 광학 소자 |
JP5711464B2 (ja) * | 2010-01-14 | 2015-04-30 | 株式会社住田光学ガラス | 光学ガラス、精密プレス成形用プリフォームおよび光学素子 |
TWI594966B (zh) * | 2010-10-08 | 2017-08-11 | Ohara Kk | Optical glass, preform and optical element |
US10308545B2 (en) * | 2010-10-26 | 2019-06-04 | Schott Ag | Highly refractive thin glasses |
CN103313947A (zh) * | 2011-01-18 | 2013-09-18 | 株式会社小原 | 光学玻璃、预成型坯及光学元件 |
JP6096501B2 (ja) * | 2011-12-28 | 2017-03-15 | 株式会社オハラ | 光学ガラス及び光学素子 |
WO2014057584A1 (ja) * | 2012-10-12 | 2014-04-17 | Hoya株式会社 | 光学ガラス、プレス成形用ガラス素材、光学素子およびその製造方法、ならびに接合光学素子 |
JP6136009B2 (ja) * | 2013-07-16 | 2017-05-31 | 日本電気硝子株式会社 | 光学ガラス |
JP6922741B2 (ja) * | 2015-11-24 | 2021-08-18 | Agc株式会社 | 光学ガラス |
CN109476529A (zh) * | 2016-07-28 | 2019-03-15 | Agc株式会社 | 光学玻璃和光学部件 |
CN106430948A (zh) * | 2016-09-29 | 2017-02-22 | 成都光明光电股份有限公司 | 光学玻璃、玻璃预制件和光学元件 |
JP7076192B2 (ja) * | 2016-11-30 | 2022-05-27 | 株式会社オハラ | 光学ガラス、プリフォーム材及び光学素子 |
TWI771375B (zh) * | 2017-02-24 | 2022-07-21 | 美商康寧公司 | 高寬高比玻璃晶圓 |
-
2019
- 2019-08-27 WO PCT/JP2019/033490 patent/WO2020045417A1/ja unknown
- 2019-08-27 EP EP19854935.4A patent/EP3845503A4/en active Pending
- 2019-08-27 KR KR1020217004273A patent/KR20210053880A/ko not_active Application Discontinuation
- 2019-08-27 CN CN201980055962.8A patent/CN112638835B/zh active Active
- 2019-08-27 CN CN202310678226.6A patent/CN116655238A/zh active Pending
- 2019-08-27 CN CN202310675818.2A patent/CN116655237A/zh active Pending
- 2019-08-27 JP JP2020539490A patent/JP7512893B2/ja active Active
- 2019-08-30 TW TW108131238A patent/TWI816870B/zh active
-
2021
- 2021-02-26 US US17/186,953 patent/US20210179479A1/en active Pending
-
2024
- 2024-05-02 JP JP2024074856A patent/JP2024096328A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013253013A (ja) * | 2012-06-06 | 2013-12-19 | Schott Ag | 光学ガラス |
US20160194237A1 (en) * | 2013-08-23 | 2016-07-07 | Hoya Corporation | Optical glass and use thereof |
JP2013256446A (ja) | 2013-09-09 | 2013-12-26 | Hoya Corp | 車載カメラ用レンズ硝材及び車載カメラ用レンズ |
JP2015059060A (ja) * | 2013-09-18 | 2015-03-30 | 株式会社オハラ | 光学ガラス及び光学素子 |
JP2018163582A (ja) | 2017-03-27 | 2018-10-18 | 株式会社ラック | 中継装置、中継方法およびプログラム |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11802073B2 (en) | 2020-09-10 | 2023-10-31 | Corning Incorporated | Silicoborate and borosilicate glasses with high refractive index and low density |
US20220073414A1 (en) * | 2020-09-10 | 2022-03-10 | Corning Incorporated | Silicoborate and borosilicate glasses with high refractive index and low density |
WO2022055709A1 (en) * | 2020-09-10 | 2022-03-17 | Corning Incorporated | Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light |
WO2022055688A3 (en) * | 2020-09-10 | 2022-05-12 | Corning Incorporated | Silicoborate and borosilicate glasses having high refractive index and low density |
US11999651B2 (en) | 2020-09-10 | 2024-06-04 | Corning Incorporated | Silicoborate and borosilicate glasses having high refractive index and low density |
US11976004B2 (en) | 2020-09-10 | 2024-05-07 | Corning Incorporated | Silicoborate and borosilicate glasses having high refractive index and high transmittance to blue light |
WO2022055702A1 (en) * | 2020-09-10 | 2022-03-17 | Corning Incorporated | Silicoborate and borosilicate glasses having high refractive index and low density |
NL2028260B1 (en) | 2021-03-19 | 2022-09-29 | Corning Inc | High-Index Borate Glasses |
WO2022197495A1 (en) | 2021-03-19 | 2022-09-22 | Corning Incorporated | High-index borate glasses |
EP4059901A1 (en) | 2021-03-19 | 2022-09-21 | Corning Incorporated | High-index borate glasses |
WO2022216567A1 (en) | 2021-04-05 | 2022-10-13 | Corning Incorporated | High-index silicoborate and borosilicate glasses |
WO2023017759A1 (ja) * | 2021-08-12 | 2023-02-16 | 日本電気硝子株式会社 | 光学ガラス板 |
WO2024034360A1 (ja) * | 2022-08-09 | 2024-02-15 | Agc株式会社 | ガラス基板 |
WO2024034361A1 (ja) * | 2022-08-09 | 2024-02-15 | Agc株式会社 | ガラス基板 |
Also Published As
Publication number | Publication date |
---|---|
EP3845503A4 (en) | 2022-05-18 |
TW202019845A (zh) | 2020-06-01 |
JPWO2020045417A1 (ja) | 2021-09-09 |
TWI816870B (zh) | 2023-10-01 |
CN116655238A (zh) | 2023-08-29 |
EP3845503A1 (en) | 2021-07-07 |
KR20210053880A (ko) | 2021-05-12 |
JP2024096328A (ja) | 2024-07-12 |
US20210179479A1 (en) | 2021-06-17 |
CN116655237A (zh) | 2023-08-29 |
CN112638835B (zh) | 2024-02-02 |
JP7512893B2 (ja) | 2024-07-09 |
TW202400531A (zh) | 2024-01-01 |
CN112638835A (zh) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020045417A1 (ja) | 光学ガラスおよび光学部品 | |
JP6321312B1 (ja) | 光学ガラスおよび光学部品 | |
JP6879215B2 (ja) | 光学ガラス | |
JP7222360B2 (ja) | 反射防止膜付ガラス基板及び光学部品 | |
JP6922741B2 (ja) | 光学ガラス | |
US20200325063A1 (en) | Optical glass and optical member | |
JPWO2018235725A1 (ja) | 光学ガラスおよび光学部品 | |
WO2021220581A1 (ja) | ガラス | |
TWI860070B (zh) | 光學玻璃及光學構件 | |
TW201923410A (zh) | 光學玻璃、光學構件及可穿戴機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19854935 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020539490 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019854935 Country of ref document: EP Effective date: 20210331 |