WO2020045276A1 - Solid fuel crushing device, power plant equipped with same, and solid fuel crushing method - Google Patents
Solid fuel crushing device, power plant equipped with same, and solid fuel crushing method Download PDFInfo
- Publication number
- WO2020045276A1 WO2020045276A1 PCT/JP2019/033017 JP2019033017W WO2020045276A1 WO 2020045276 A1 WO2020045276 A1 WO 2020045276A1 JP 2019033017 W JP2019033017 W JP 2019033017W WO 2020045276 A1 WO2020045276 A1 WO 2020045276A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow path
- solid fuel
- fuel
- gap
- rotating frame
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C15/00—Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B7/00—Selective separation of solid materials carried by, or dispersed in, gas currents
- B07B7/08—Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
- B07B7/083—Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
Definitions
- the present disclosure relates to a solid fuel pulverizing apparatus suitable for pulverizing, for example, biomass fuel or coal fuel, a power plant including the same, and a solid fuel pulverizing method.
- solid fuels such as coal fuel and biomass fuel are pulverized by a mill (pulverizer) into fine powder having a particle size smaller than a predetermined particle size, and supplied to a combustion device.
- the mill pulverizes solid fuel, such as coal fuel or biomass fuel, injected into the rotary table by chewing between the rotary table and the rollers, and is pulverized by a carrier gas supplied from the outer periphery of the rotary table to a fine powder.
- the resulting fuel is sorted by a classifier into small-sized particles, transported to a boiler, and burned by a combustion device.
- steam is generated by heat exchange with combustion gas generated by burning in a boiler, and power is generated by driving a turbine with the steam.
- the pulverized fuel that has been pulverized by the mill is classified into fine particles and coarse particles by a rotary classifier installed above the mill.
- the fine-grained fine fuel passes through the blades of the rotary classifier and is sent to the subsequent process, and the coarse-grained fuel collides with the blades of the rotary classifier, falls on the rotary table, and is pulverized again.
- JP 2018-79424 A JP-A-10-76171 JP-A-8-192066
- biomass fuel has a property of being highly flammable as compared with coal fuel and capable of being suitably burned even with a relatively large particle size. Therefore, when a biomass fuel is used as a solid fuel, it is generally supplied from a mill to a combustion device in a state of a particle size that is about 5 to 10 times larger than that of a coal fuel.
- the mill for crushing and classifying the solid fuel has a different design between the biomass fuel crushing application and the coal fuel crushing application (for example, the housing). It is inherently preferable to individually design the shape, the rotation speed of the rotary table, the rotation speed of the rotary classifier, and the like. However, from the viewpoint of equipment cost and installation space, a mill that can handle both solid fuels such as biomass fuel and coal fuel is desired.
- the coal fuel is pulverized, and therefore, it may not be suitable for the pulverization of biomass fuel having a larger particle size after the pulverization than the coal fuel.
- the biomass fuel may be too narrow and the fuel may adhere or accumulate after pulverization.
- a labyrinth seal structure is used as in Patent Document 1, in the case of biomass fuel, there is a possibility that the fuel after grinding may accumulate when passing through a plurality of irregularities.
- the present disclosure has been made in view of such circumstances, and even for a plurality of types of solid fuels such as coal fuel and biomass fuel, coarse particles are formed from the gap between the classifier and the blade guide. It is an object of the present invention to provide a solid fuel pulverizer capable of classifying while suppressing a short path in which fuel after pulverization is discharged from a mill outlet while maintaining desired classification performance, a power plant including the same, and a solid fuel pulverization method. I do.
- a solid fuel crushing apparatus is a rotary table, a crushing roller that crushes solid fuel between the rotary table, and a classifier that classifies the crushed fuel crushed by the crushing roller,
- the classifier comprises a plurality of blades extending in the vertical direction and arranged along a circumferential direction around the rotation axis, and the rotation axis line supporting the upper ends of the plurality of blades.
- a rotating frame that rotates around, and a seal portion having a gap flow path formed between the rotating frame and an opposing wall portion arranged to face the rotating frame
- the gap flow path has an inlet opening that opens to the outer circumference of the seal portion and has a first flow path from the outer circumference to the inner circumference, and a first bend with respect to the inner circumference end of the first flow path.
- the upper end is connected to have a lower part A second flow path, and an outlet opening at the inner circumference of the seal portion, and the outer flow path is directed from the outer circumference to the inner circumference and has a second bent portion with respect to the lower end of the second flow path.
- the pulverized fuel pulverized by the pulverizing roller is sealed by a seal provided between a rotating frame of a classifier that rotates about a vertical axis of rotation in a vertical direction and an opposing wall. That is, the gap between the rotating frame and the opposing wall portion is controlled so as to suppress the passage of the post-pulverized fuel that passes between the rotating frame and the opposing wall portion without passing through the blade after the pulverized fuel.
- a seal is formed by the flow path.
- the gap flow passage of the seal portion has an inlet opening that opens to the outer periphery of the seal portion and is connected to the inner peripheral end of the first flow passage from the outer peripheral side to the inner peripheral side, and is connected to the inner peripheral end portion of the first flow passage to be downward.
- a third flow passage having an outlet opening connected to the lower end of the second flow passage and opening from the outer periphery toward the inner periphery toward the inner periphery of the seal portion. Since the second flow path is provided from the upper side to the lower side, the pulverized fuel that has flowed in from the inlet opening is only generated by the fluid force of the fluid flowing from the upper side to the lower side in the second flow path. Without gravity, the discharge can be promoted. Thereby, it becomes easy to discharge the fuel after the pulverization existing in the gap flow path. Since the gap flow path of the seal portion has the first bent portion and the second bent portion, an appropriate pressure loss is given at these bent portions to crush the gap between the opposed wall portion and coarse particles. By suppressing the post-fuel from being discharged from the outlet of the mill through a short pass, desired sealing properties can be ensured.
- the cross-sectional area of the third flow path is larger than the cross-sectional area of the second flow path.
- the cross-sectional area of the third flow path is larger than the cross-sectional area of the second flow path, it is possible to easily discharge the pulverized fuel present in the gap flow path to the outlet opening of the third flow path. it can.
- the cross-sectional area of the first flow path is larger than the cross-sectional area of the second flow path.
- the gap dimension D1 between the rotating frame and the opposed wall portion in the second flow path is such that when the solid fuel is a biomass pellet, The particle size is not less than the particle diameter of the constituent particles of the biomass pellet and not more than the particle diameter of the biomass pellet before pulverization.
- the constituent particles of the biomass pellet mean particles (fine particles) that are constituent units of the biomass pellet that is compression-molded into a predetermined shape. Further, the particle size of the biomass pellet means that the biomass pellet that is compression-molded into a predetermined shape is often not a spherical shape but a cylindrical shape, and means the shorter dimension of the outer shape.
- the length from the first bent portion to the second bent portion in the up-down direction of the second flow path is the rotation frame in the second flow path.
- the gap is between 5 and 10 times the gap between the first and second facing walls.
- the vertical length of the second flow path is less than 5 times the gap size, a sufficient pressure loss cannot be obtained and the sealing performance may be reduced. If the length from the first bent portion to the second bent portion in the vertical direction of the second flow path exceeds 10 times the gap size, the fuel after pulverization may adhere or accumulate on the second flow path. Therefore, it is preferable that the length of the second flow path in the vertical direction is not less than 5 times and not more than 10 times the gap dimension.
- a rib extending in a radial direction is provided on an outer periphery of the rotating frame.
- ⁇ ⁇ Ribs extending in the radial direction are provided on the outer periphery of the rotating frame. This allows the ribs that rotate with the rotating frame to remove the coarsely ground fuel that floats in the vicinity of the seal inlet, thereby reducing the amount of fuel after flowing in through the inlet opening and passing through the seal, reducing the coarse particles. Classification performance can be improved by suppressing a short path in which post-fuel is discharged from the mill outlet.
- a chamfered portion or a curved surface portion is provided on an inner peripheral surface side of the rotating frame corresponding to the second bent portion and / or the opposed wall portion. ing.
- the flow is smoothed, and the dischargeability of the pulverized fuel existing in the gap flow path is improved. Can be improved.
- a groove is formed.
- the upward spiral groove from which the flow flows upward from below is formed on the inner peripheral surface side and / or the opposing wall portion of the rotating frame corresponding to the second flow path, the pressure loss with respect to the flow of the second flow path is formed. Can be added, and the sealing property can be improved. Since the upward spiral groove has a smaller particle size as compared with the biomass fuel, the gap between the upper wall and the opposed wall portion is prevented from being discharged from the mill outlet by short-passing the fuel after crushing the coarse particles, It is preferable to use it in a form in which a large amount of coal fuel that requires more sealing properties is used.
- the rotating frame and / or the opposing wall corresponding to the second flow path are formed with a downward spiral groove in which a flow flows downward from above. I have.
- a downward spiral groove is formed in the rotating frame and / or the stationary wall portion corresponding to the second flow path so that the flow is directed downward from above, the flow in the second flow path can be energized, and solid fuel can be supplied. Discharge performance can be improved.
- the downward spiral groove is preferably used for a biomass fuel that requires a high discharge property because of its larger particle size than coal fuel.
- a power plant is a solid fuel crusher described in any of the above, a boiler that generates steam by burning solid fuel crushed by the solid fuel crusher, A power generation unit that generates power using the steam generated by the boiler.
- a solid fuel pulverizing method includes a rotary table, a pulverizing roller that pulverizes the solid fuel between the rotary table, and a classifier that classifies the pulverized fuel pulverized by the pulverizing roller.
- the classifier comprises a plurality of blades extending in a vertical direction and arranged along a circumferential direction around a rotation axis, and a state in which upper ends of the plurality of blades are supported.
- a rotating frame that rotates about a rotation axis, and a solid body that includes a seal portion having a gap flow path formed between the rotating frame and an opposing wall portion disposed to face the rotating frame.
- a solid fuel pulverization method for a fuel pulverizer wherein the gap flow path of the seal portion has an inlet opening that opens to an outer periphery of the seal portion and a first flow passage that extends from an outer peripheral side to an inner peripheral side; Inner circumference end of first flow path A second flow path having an upper end connected so as to have a first bent portion with respect to the second flow path, and an outlet opening which opens to the inner periphery of the seal portion, and which is directed from the outer peripheral side to the inner peripheral side, and A third flow path connected to the lower end of the two flow paths so that the other end on the outer peripheral side has a second bent portion.
- FIG. 1 is a schematic configuration diagram illustrating a power plant according to an embodiment of the present disclosure. It is the seal structure of a classifier, and is the elements expanded longitudinal sectional view which showed the A section of FIG. It is the partial perspective view which showed the rotating frame. It is a seal structure of a classifier according to a second embodiment of the present disclosure, and is a partially enlarged longitudinal sectional view corresponding to FIG. 2. It is a seal structure of a classifier according to a third embodiment of the present disclosure, and is a partially enlarged longitudinal sectional view corresponding to FIG. 2.
- a power plant 1 includes a solid fuel crusher 100, a boiler 200 that generates steam, and a power generation unit (not shown) that generates power using the steam generated by the boiler 200. ).
- the solid fuel crushing device 100 is a device that crushes a solid fuel such as a coal fuel or a biomass fuel as an example, generates fine powder fuel, and supplies it to the burner unit (combustion device) 220 of the boiler 200.
- the power plant 1 includes one solid fuel crusher 100. However, the power plant 1 may include a plurality of solid fuel crushers 100 corresponding to each of the plurality of burner units 220 of one boiler 200. Good.
- the solid fuel crushing apparatus 100 includes a mill (crushing unit) 10, a coal feeder (fuel feeder) 20, a blowing unit 30, a state detecting unit 40, and a control unit 50.
- a mill crushing unit
- coal feeder fuel feeder
- blowing unit a blowing unit 30
- state detecting unit 40 a state detecting unit 40
- control unit 50 a control unit 50.
- upward refers to a vertically upward direction
- upper such as an upper portion or an upper surface refers to a vertically upward portion.
- “below” indicates a vertically lower portion.
- the mill 10 that pulverizes a solid fuel such as a coal fuel or a biomass fuel supplied to the boiler 200 into a pulverized fuel, which is a pulverized solid fuel, is configured to pulverize not only the coal fuel but also the biomass fuel.
- the biomass fuel is a renewable organic resource derived from living organisms, such as thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuel (pellet or pellet) made from these. Chip) and the like, and are not limited to those presented here. Since biomass fuel takes in carbon dioxide during the growth process of biomass, it is considered to be carbon neutral which does not emit carbon dioxide which is a global warming gas.
- the mill 10 includes a housing 11, a rotary table 12, a roller (crushing roller) 13, a driving unit 14, a classifier 16, a fuel supply unit 17, and a motor 18 for driving the classifier 16 to rotate.
- the housing 11 is a casing that is formed in a cylindrical shape extending in the vertical direction and houses the turntable 12, the rollers 13, the classifier 16, and the fuel supply unit 17.
- the fuel supply unit 17 is attached to the center of the ceiling 42 of the housing 11.
- the fuel supply unit 17 supplies the solid fuel guided from the bunker 21 into the housing 11.
- the fuel supply unit 17 is disposed at the center of the housing 11 along the vertical direction, and has a lower end extending into the housing 11. ing.
- the drive unit 14 is installed near the bottom surface 41 of the housing 11, and the turntable 12 that is rotated by the driving force transmitted from the drive unit 14 is rotatably arranged.
- the turntable 12 is a member having a circular shape in plan view, and is arranged such that the lower end of the fuel supply unit 17 faces the turntable.
- the upper surface of the turntable 12 may have, for example, an inclined shape in which a center portion is low and becomes high toward the outside, and an outer peripheral portion may be bent upward.
- the fuel supply unit 17 supplies the solid fuel (for example, coal or biomass fuel in the present embodiment) from above to the lower rotary table 12, and the rotary table 12 pulverizes the supplied solid fuel with the rollers 13. It is also called a crushing table.
- the solid fuel When the solid fuel is supplied from the fuel supply unit 17 toward the center of the turntable 12, the solid fuel is guided to the outer peripheral side of the turntable 12 by centrifugal force due to the rotation of the turntable 12, and is interposed between the solid fuel and the roller 13. Crushed and crushed.
- the pulverized solid fuel becomes pulverized fuel, and is wound up by a carrier gas (hereinafter, referred to as “primary air”) guided from a carrier gas passage (hereinafter, referred to as “primary air passage”) 100a, It is led to the classifier 16.
- primary air carrier gas guided from a carrier gas passage
- outlets through which the primary air flowing from the primary air flow path 100 a flows out into the space above the turntable 12 in the housing 11 are provided.
- a vane (not shown) is provided above the outlet to apply a turning force to the primary air blown out from the outlet.
- the primary air to which the swirling force is given by the vane becomes an airflow having a swirling velocity component, and guides the solid fuel pulverized on the rotary table 12 to the upper classifier 16 in the housing 11.
- those having a particle size larger than a predetermined particle size are classified by the classifier 16 or dropped and returned to the rotary table 12 without reaching the classifier 16. And crushed again.
- the roller 13 is a rotator that crushes the solid fuel supplied from the fuel supply unit 17 to the turntable 12.
- the roller 13 is pressed against the upper surface of the turntable 12 and cooperates with the turntable 12 to pulverize the solid fuel.
- FIG. 1 only one roller 13 is shown as a representative, but a plurality of rollers 13 are arranged facing each other at a certain interval in the circumferential direction so as to press the upper surface of the rotary table 12. You.
- three rollers 13 are evenly arranged in the circumferential direction at an angular interval of 120 ° on the outer peripheral portion. In this case, the portions where the three rollers 13 are in contact with the upper surface of the rotary table 12 (the portions to be pressed) are equidistant from the rotation center of the rotary table 12.
- the roller 13 is swingable up and down by a journal head 45, and is supported so as to be able to approach and separate from the upper surface of the rotary table 12.
- the roller 13 receives the rotational force from the rotary table 12 and rotates.
- the solid fuel is supplied from the fuel supply unit 17, the solid fuel is pressed between the roller 13 and the rotary table 12 to be pulverized to be pulverized.
- the support arm 47 of the journal head 45 is supported by a support shaft 48 whose middle portion extends in the horizontal direction. That is, the support arm 47 is supported on the side surface of the housing 11 so as to be able to swing up and down around the roller around the support shaft 48.
- a pressing device 49 is provided at an upper end portion of the support arm 47 located vertically above. The pressing device 49 is fixed to the housing 11 and applies a load to the roller 13 via the support arm 47 or the like so as to press the roller 13 against the rotary table 12.
- the drive unit 14 is a device that transmits a driving force to the rotary table 12 and rotates the rotary table 12 around a central axis.
- the driving unit 14 generates a driving force for rotating the rotary table 12.
- the classifier 16 is provided on the upper portion of the housing 11 and has a hollow inverted-cone shape.
- the classifier 16 includes a plurality of blades 16a extending vertically in the outer peripheral position.
- the blades 16a are provided in parallel at predetermined intervals (equal intervals) around the central axis of the classifier 16.
- the classifier 16 pulverizes the solid fuel pulverized by the rollers 13 into a material having a particle size larger than a predetermined particle size (for example, 70 to 100 ⁇ m for coal and 0.6 to 1.0 mm for biomass fuel) (hereinafter, pulverization exceeding the predetermined particle size).
- a predetermined particle size for example, 70 to 100 ⁇ m for coal and 0.6 to 1.0 mm for biomass fuel
- a rotary classifier that classifies by rotating as a whole is also called a rotary separator.
- a rotational driving force is applied to the classifier 16 by a motor 18.
- the crushed solid fuel that has reached the classifier 16 crushes large-diameter coarse powder fuel by the blade 16a due to the relative balance between the centrifugal force generated by the rotation of the blade 16a and the centripetal force generated by the airflow of the primary air. It is dropped, returned to the turntable 12 and crushed again, and the pulverized fuel is guided to the outlet 19 in the ceiling 42 of the housing 11.
- the pulverized fuel classified by the classifier 16 is discharged from the outlet 19 to the supply channel 100b, and is conveyed together with the primary air.
- the pulverized fuel flowing out to the supply flow path 100b is supplied to the burner section 220 of the boiler 200.
- the fuel supply unit 17 has a lower end extending vertically to the inside of the housing 11 so as to penetrate the upper end of the housing 11 and is attached.
- the solid fuel supplied from the upper part of the fuel supply unit 17 is supplied to a substantially central area of the turntable 12. Solid fuel is supplied to the fuel supply unit 17 from the coal feeder 20.
- the coal feeder 20 includes a bunker 21, a transport unit (fuel feeder) 22, and a motor (fuel feeder) 23.
- the transport unit 22 transports the solid fuel discharged from the lower end of the downspout unit 24 immediately below the bunker 21 by the driving force given by the motor 23.
- the solid fuel transferred by the transfer unit 22 is guided to the fuel supply unit 17 of the mill 10.
- the inside of the mill 10 is supplied with primary air for conveying pulverized fuel, which is pulverized solid fuel, and the pressure is higher than the atmospheric pressure.
- the fuel is held in a stacked state inside the downspout part 24 which is a tube extending in the vertical direction immediately below the bunker 21, and the fuel layer stacked in the downspout part 24 causes the fuel on the side of the mill 10.
- the sealability is ensured so that the primary air and the fuel after pulverization do not flow back.
- the supply amount of the solid fuel to be supplied to the mill 10 may be adjusted by adjusting the belt speed of the belt conveyor of the transport unit 22 by the motor 23.
- the chips and pellets of the biomass fuel before pulverization have a constant particle size as compared with coal fuel (that is, the particle size of the coal before pulverization is, for example, about 2 to 50 mm) (the size of the pellet is For example, the diameter is about 6 to 8 mm and the length is about 40 mm or less.
- the gap formed between the biomass fuels is larger than in the case of the coal fuel.
- the primary air blown up from the inside of the mill 10 and the pulverized fuel pass through the gap formed between the biomass fuels.
- the pressure inside the mill 10 may decrease. Also, when the primary air blows into the storage section of the bunker 21, if the transportability of the biomass fuel is deteriorated, dust is generated, the downspout section 24 is ignited, and the pressure inside the mill 10 is reduced, the transport amount of the fine powder fuel is reduced. , And various problems may occur in the operation of the mill 10. For this reason, a rotary valve (not shown) may be provided in the middle of the fuel supply unit 17 from the coal feeder 20 to suppress the backflow due to the blowing up of the primary air and the pulverized fuel.
- the blower 30 is a device that blows primary air for drying the solid fuel pulverized by the rollers 13 and supplying the solid fuel to the classifier 16 into the housing 11.
- the blower unit 30 includes a hot gas blower 30a, a cold gas blower 30b, a hot gas damper 30c, and a cold gas damper 30d to adjust the primary air blown to the housing 11 to an appropriate temperature.
- the hot gas blower 30a is a blower that blows heated primary air supplied from a heat exchanger (heater) such as an air preheater.
- a hot gas damper 30c (first blower) is provided downstream of the hot gas blower 30a.
- the opening degree of the hot gas damper 30c is controlled by the control unit 50.
- the flow rate of the primary air blown by the hot gas blower 30a is determined by the opening degree of the hot gas damper 30c.
- the cold gas blower 30b is a blower that blows primary air that is ambient air at normal temperature.
- a cold gas damper (second blower) 30d is provided downstream of the cold gas blower 30b.
- the opening of the cold gas damper 30d is controlled by the control unit 50.
- the flow rate of the primary air blown by the cold gas blower 30b is determined by the opening of the cold gas damper 30d.
- the flow rate of the primary air is the total flow rate of the primary air flow blown by the hot gas blower 30a and the flow rate of the primary air blown by the cold gas blower 30b, and the temperature of the primary air is the primary air blown by the hot gas blower 30a
- the mixing ratio of the primary air blown by the cold gas blower 30b is controlled by the control unit 50.
- an environmental device such as an electric dust collector to the primary air blown by the hot gas blower 30a through a gas recirculating blower, and thereby forming a mixture.
- the oxygen concentration of the primary air flowing from the primary air flow path 100a may be adjusted.
- the state detection unit 40 of the present embodiment is, for example, a differential pressure measuring unit, and includes a portion where the primary air flows from the primary air flow path 100a into the mill 10 and the primary air and the fine powder fuel from the mill 10 to the supply flow path 100b. Is measured as a differential pressure in the mill 10 with respect to the outlet 19 from which the gas is discharged.
- the classifying performance of the classifier 16 changes the increase / decrease of the circulating amount of the pulverized fuel of the solid fuel circulating inside the mill 10 and the increase / decrease of the differential pressure inside the mill 10 corresponding thereto.
- the fine fuel discharged from the outlet 19 can be adjusted and managed with respect to the solid fuel supplied to the inside of the mill 10, so that the particle size of the fine fuel does not affect the combustibility of the burner 220, A large amount of fine fuel can be supplied to the burner section 220 provided in the boiler 200.
- the state detection unit 40 of the present embodiment is, for example, a temperature measurement unit, and a blower that blows primary air for supplying the solid fuel pulverized by the rollers 13 to the classifier 16 into the housing 11.
- the temperature of the primary air in the housing 11 whose temperature is adjusted by the temperature detecting unit 30 is detected, and the blowing unit 30 is controlled so as not to exceed the upper limit temperature.
- the primary air is cooled by transporting the pulverized material in the housing 11 while drying it, so that the temperature of the upper space of the housing 11 is, for example, about 60 to 80 ° C.
- the control unit 50 is a device that controls each unit of the solid fuel crusher 100.
- the control unit 50 can control the rotation of the turntable 12 with respect to the operation of the mill 10 by transmitting a driving instruction to the driving unit 14, for example.
- the control unit 50 adjusts the classifying performance by transmitting a driving instruction to the motor 18 of the classifier 16 to control the number of revolutions, thereby optimizing the differential pressure in the mill 10 and supplying the fine powder fuel. Can be stabilized.
- the control unit 50 adjusts the supply amount of the solid fuel supplied from the transport unit 22 to the fuel supply unit 17 by transmitting the drive instruction to the motor 23 of the coal feeder 20, for example. Can be.
- the control unit 50 can control the opening degree of the hot gas damper 30c and the cold gas damper 30d to control the flow rate and temperature of the primary air.
- the control unit 50 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
- a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like, and executes information processing and arithmetic processing. Thereby, various functions are realized.
- the program may be installed in advance in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or delivered via a wired or wireless communication unit. Etc. may be applied.
- the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
- the boiler 200 that performs combustion using the pulverized fuel supplied from the solid fuel crusher 100 to generate steam will be described.
- the boiler 200 includes a furnace 210 and a burner section 220.
- the burner unit 220 burns the pulverized fuel using the primary air containing the pulverized fuel supplied from the supply flow path 100b and the secondary air supplied from a heat exchanger (not shown) to generate a flame. It is.
- the combustion of the pulverized fuel is performed in the furnace 210, and the high-temperature combustion gas is discharged outside the boiler 200 after passing through a heat exchanger (not shown) such as an evaporator, a superheater, and an economizer.
- the combustion gas discharged from the boiler 200 is subjected to predetermined processing in an environmental device (for example, a denitration device, an electric dust collector, etc .: not shown), and heat exchange with the outside air is performed by a heat exchanger (not shown) such as an air preheater. Is performed, and guided to a chimney (not shown) via an induction ventilator (not shown), and is discharged to the atmosphere.
- a heat exchanger such as an air preheater.
- the outside air heated by heat exchange with the combustion gas in the heat exchanger is sent to the above-described hot gas blower 30a.
- Water supplied to each heat exchanger of the boiler 200 is heated by an economizer (not shown), and further heated by an evaporator (not shown) and a superheater (not shown) to generate high-temperature and high-pressure steam.
- the power is sent to a turbine (not shown), and a generator (not shown) is rotated to generate power.
- the sealing structure is set for coal fuel by focusing only on the sealing properties, the biomass fuel has a larger particle size than the coal fuel, so the gap flow path is too narrow for biomass fuel, and May adhere or accumulate in the gap flow path, which may hinder the rotation of the classifier 16.
- FIG. 2 shows the details of the portion A in FIG.
- a blade guide (opposing wall) 52 is fixed to the lower surface of the ceiling 42.
- the blade guide 52 has an annular shape centered on the rotation axis L1.
- the rotation axis L1 is a center axis on which the classifier 16 rotates. Although the rotation axis L1 is shown relatively close to the blade guide 52 in FIG. 2 for easy understanding, the rotation axis L1 is actually farther away.
- the blade guide 52 is fixed to a mounting part 54 fixed to the lower surface of the ceiling part 42 by bolts or welding. Therefore, the blade guide 52 is a stationary portion that does not rotate similarly to the ceiling portion 42.
- the blade guide 52 includes a disk portion 52a provided at an upper portion, and a cylindrical portion 52b continuously extending downward at an inner circumferential position of the disk portion 52a. Therefore, the vertical cross-sectional shape of the blade guide 52 is an L-shape which is turned upside down in FIG.
- the rotating frame 56 is a frame that supports upper ends of a plurality of blades 16a (see FIG. 1) arranged in parallel in the circumferential direction.
- the rotating frame 56 has an annular shape, and rotates around the rotation axis L1 together with each blade 16a.
- the rotating frame 56 includes an upper cylindrical portion 56a on the upper side and a lower cylindrical portion 56b provided continuously below the upper cylindrical portion 56a.
- the lower cylindrical portion 56b has an outer peripheral surface 56b1 having the same diameter as the outer peripheral surface 56a1 of the upper cylindrical portion 56a, while having an inner peripheral surface 56b2 located on the inner peripheral side of the inner peripheral surface 56a2 of the upper cylindrical portion 56a. are doing. Therefore, the thickness (radial dimension) of the lower cylindrical portion 56b is larger than that of the upper cylindrical portion 56a.
- a disk portion 56c is fixed to the outer peripheral surface 56b1 of the lower cylindrical portion 56b so as to extend in the radial direction.
- the disk portion 56c is fixed to the lower cylindrical portion 56b by welding or the like.
- a rib 58 is provided on the upper surface of the disk portion 56c.
- the rib 58 is a plate-like body having a substantially right triangle when viewed from the side as shown in FIG.
- the lower side of the rib 58 is fixed to the upper surface of the disk portion 56c by welding or the like, and the left side perpendicular to the lower side of the rib 58 is welded to the outer peripheral surfaces of the upper cylindrical portion 56a and the lower cylindrical portion 56b. And so on.
- the oblique side of the rib 58 is located on the outer peripheral side.
- FIG. 3 is a perspective view showing a part of the rotating frame 56.
- the inner peripheral side and the outer peripheral side are opposite to each other with respect to the rotation axis L1 in FIG.
- the rib 58 is provided at a predetermined position in the circumferential direction.
- a plurality of ribs 58 are provided at predetermined regular intervals.
- a clearance channel GF is formed between the rotary frame 56 and the blade guide 52 facing the rotary frame 56, and a seal portion 57 is provided.
- the outer and inner diameters of the rotating frame 56 are substantially the same as the outer and inner diameters of the blade guide 52.
- the gap flow path GF is provided with a first flow path GF1, a second flow path GF2, and a third flow path GF3 in order from the outer peripheral side to the inner peripheral side, that is, from the upstream side to the downstream side.
- the gap channel GF has a first channel GF1, a second channel GF2, and a third channel GF3, and has a vertical channel shape having a crank shape. Constitutes the seal portion 57.
- the first flow path GF1 is formed between the upper end 56a3 of the upper cylindrical portion 56a of the rotating frame 56 and the lower surface 52a3 of the disk portion 52a of the blade guide 52 facing the upper end.
- the first flow path GF1 is formed substantially horizontally from the outer peripheral side toward the inner peripheral side.
- the first flow path GF1 has an inlet opening GFin that opens above the outer peripheral surface 56a1 of the rotating frame 56.
- the second flow path GF2 is formed between the inner peripheral surface 56a2 of the upper cylindrical portion 56a of the rotating frame 56 and the outer peripheral surface 52b1 of the cylindrical portion 52b of the blade guide 52 facing the inner peripheral surface 56a2.
- the second flow path GF2 is connected to the inner peripheral end of the first flow path GF1, and is a flow path extending in a substantially vertical direction from above to below.
- the connection between the first flow path GF1 and the second flow path GF2 is a first bent portion BD1 bent at a substantially right angle.
- the third flow path GF3 is formed between the upper end 56b3 of the lower cylindrical portion 56b of the rotating frame 56 and the lower end 52b3 of the cylindrical portion 52b of the blade guide 52 facing the upper end 56b3.
- the outer peripheral end of the third flow path GF3 is connected to the lower end of the second flow path GF2, and is a flow path formed from the outer peripheral side toward the inner peripheral side.
- the connecting portion between the second flow path GF2 and the third flow path GF3 is bent at a substantially right angle, and forms a second bent portion BD2.
- the third flow path GF3 has an outlet opening GFout that opens above the inner peripheral surface 56b2 of the lower cylindrical portion 56b of the rotating frame 56.
- the gap D2 in the radial direction between the inner circumference 56a2 of the upper cylindrical portion 56a of the rotating frame 56 and the outer circumferential surface 52b1 of the cylindrical portion 52b of the blade guide 52 is determined by the gap of the second flow path GF2.
- the particle size is equal to or larger than the particle size of the constituent particles of the biomass pellet and equal to or smaller than the particle size of the biomass pellet before pulverization.
- the constituent particles of the biomass pellet mean particles (fine particles) that are constituent units of the biomass pellet that has been compression-molded into a predetermined shape.
- the particle diameter of the constituent particles of the biomass pellet is set to 0.6 to 1.0 mm.
- the particle size of the biomass pellet means that the biomass pellet that is compression-molded into a predetermined shape is often not a spherical shape but a cylindrical shape, and means the shorter dimension of the outer shape.
- the particle size of the cylindrical biomass pellet is 6 to 8 mm, and the length is 30 to 40 mm.
- the gap dimension D1 is set to be 0.6 mm or more and 8 mm or less. In the case where the fuel is used by switching to coal fuel, or when the biomass fuel is included in the coal fuel, the gap size D1 is equal to or larger than the particle diameter of the constituent particles of the biomass pellet and equal to or smaller than the particle diameter of the biomass pellet before pulverization as described above. It has been.
- the gap size D1 (for example, 0.6 mm or more and 8 mm or less) is a numerical value several times larger.
- the gap flow passage GF of the seal portion 57 between the rotary frame 56 and the blade guide 52 is subjected to coarse pulverized fuel. Is suppressed from being discharged from the outlet 19 of the mill 10 through a short pass, whereby the sealing property is ensured.
- the vertical length D2 of the second flow path GF2 which is the length between the inlet opening GFin and the outlet opening GFout, is set to be not less than 5 times and not more than 10 times the gap dimension D1.
- the length D2 in the vertical direction is 3 mm or more and 80 mm or less.
- the cross-sectional area of the first flow path GF1 is larger than the cross-sectional area of the second flow path GF2. That is, the gap dimension D3 of the first channel GF1 is larger than the gap dimension D1 of the second channel GF2.
- the cross-sectional area of the third flow path GF3 is larger than the cross-sectional area of the second flow path GF2. That is, the clearance dimension D4 of the third flow path GF3 is larger than the clearance dimension D1 of the second flow path GF2.
- the pulverized fuel pulverized by the rollers 13 is sealed by the gap flow path GF between the rotary frame 56 of the classifier 16 and the blade guide 52. That is, in order to prevent the fuel after pulverization from passing between the rotary frame 56 and the blade guide 52 without passing between the blades 16a, a seal is provided by the gap flow path GF between the rotary frame 56 and the blade guide 52. A portion 57 is formed.
- the gap flow path GF has an inlet opening GFin that opens to the outer circumference of the classifier 16 and is connected to the first flow path GF1 that goes from the outer circumference to the inner circumference, and to the inner circumference end of the first flow path GF1.
- a third flow path GF3 having an outlet opening GFout that opens on the inner peripheral side. Since the second flow path GF2 is provided from the upper side to the lower side, not only the fluid force by the fluid flowing from the top to the bottom in the second flow path GF2 but also gravity can be used. Thus, the pulverized fuel that has flowed in from the inlet opening GFin can be easily discharged without retaining the pulverized fuel existing in the gap flow path GF. Since the gap flow path GF has the first bent portion BD1 and the second bent portion BD2, an appropriate pressure loss is given to these bent portions BD1 and BD2, and the pressure loss in the second flow passage GF2. To secure desired sealing properties.
- the gap flow path of the seal portion 57 between the rotating frame 56 and the blade guide 52 causes the fuel after coarse pulverization of the fuel due to the pressure loss in the first bent portion BD1 bent at a substantially right angle and the second flow path GF2. Can be prevented from being discharged from the outlet 19 of the mill 10 through a short pass. Since the flow path cross-sectional area of the first flow path GF1 is larger than the flow path cross-sectional area of the second flow path GF2, it is possible to provide a gap on the first flow path GF1 side so as not to interfere with each other.
- the pulverized fuel that has flowed in from the inlet opening GFin is the pulverized fuel existing in the gap flow path GF. Can be more easily discharged to the outlet opening GFout of the third flow path GF3.
- the gap size D1 of the second flow path GF2 By setting the gap size D1 of the second flow path GF2 to be equal to or larger than the particle diameter of the constituent particles of the biomass pellet and equal to or smaller than the particle diameter of the biomass pellet, it is possible to avoid accumulation of the fuel after pulverization of the biomass pellet in the second flow path GF2. it can.
- the length D2 of the second flow path GF2 in the vertical direction is set to 5 times or more and 10 times or less of the gap dimension D1 of the second flow path GF2. If the length D2 of the second flow path GF2 in the up-down direction is less than 5 times the gap dimension D1, sufficient pressure loss cannot be obtained, and the sealing performance may be reduced. If the vertical length D2 of the second flow path GF2 exceeds 10 times the gap dimension D1, the fuel after pulverization may adhere or accumulate on the second flow path GF2. Therefore, in order to provide an appropriate pressure loss in the second flow path GF2, it is preferable that the vertical length D2 of the second flow path GF2 is 5 times or more and 10 times or less of the gap dimension D1.
- a rib 58 extending in the radial direction is provided on the outer periphery of the rotating frame 56.
- the coarse fuel floating near the entrance of the entrance opening GFin of the clearance channel GF of the seal portion 57 can be removed by the rib 58 rotating together with the rotating frame 56, thereby suppressing the inflow from the entrance opening (GFin).
- FIG. 4 is a longitudinal sectional view of this embodiment corresponding to FIG. 2 of the first embodiment.
- a chamfered portion 52d is formed between the outer peripheral surface 52b1 and the lower end 52b3 of the cylindrical portion 52b of the blade guide 52.
- the chamfered portion 52d is provided continuously in the circumferential direction around the rotation axis L1.
- the chamfered portion 52d may have an arcuate curved surface portion.
- a curved surface portion 56d is formed between the inner peripheral surface 56a2 of the upper cylindrical portion 56a of the rotating frame 56 and the upper end 56b3 of the lower cylindrical portion 56b.
- the curved surface portion 56d has an arc shape (R shape) in which the center of curvature is located on the inner peripheral side of the inner peripheral surface 56a2 of the upper cylindrical portion 56a when viewed in cross section as shown in FIG. It is provided continuously in the circumferential direction around L1.
- the curved surface portion 56d may have a chamfered shape.
- the second bent portion BD2 'connecting the second flow passage GF2 and the third flow passage GF3 is formed between the chamfered portion 52d and the curved surface portion 56d.
- the flow is smoothed, and the dischargeability of the pulverized fuel existing in the gap flow path GF is further improved.
- the flow path in the second bent portion BD2 ' is widened, so that the fuel after the pulverization can easily flow. .
- the degree to which the flow path of the second bent portion BD2 'is widened is such that the pressure loss given by the second bent portion BD2' is smaller than the pressure loss of the first bent portion BD1 and the pressure loss of the second flow passage GF2.
- the pressure loss is appropriately set so as not to be 1/10 or less.
- the blade guide 52 is provided with the chamfered portion 52d and the rotating frame 56 is provided with the curved surface portion 56d.
- the present disclosure is not limited to this, and the blade guide 52 may be provided with the curved surface portion. May be provided, or a chamfer may be provided on the rotating frame 56. Alternatively, a chamfer or a curved portion may be provided for either the blade guide 52 or the rotating frame 56.
- FIG. 5 is a longitudinal sectional view of this embodiment corresponding to FIG. 2 of the first embodiment.
- a spiral groove 52e is formed on the outer peripheral surface 52b1 of the cylindrical portion 52b of the blade guide 52.
- the number of the spiral groove 52e may be one or plural.
- the cross-sectional shape of the spiral groove 52e may be rectangular as shown in FIG. 5, or may be arc-shaped.
- the spiral groove 52e can be used for a case where the spiral groove 52e is formed so as to go upward from below with respect to the flow flowing through the second flow path GF2, and a case where the spiral groove 52e is formed so as to go downward from above.
- the spiral groove 52e When the spiral groove 52e is directed upward from the lower side to the upper side, a pressure loss can be added to the flow of the second flow path GF2, and the sealing performance can be improved.
- the upward spiral groove 52e has a smaller particle size than biomass fuel, so it is preferable to use the spiral groove 52e in a mode in which a large amount of coal fuel requiring sealing properties is used.
- the spiral groove 52e When the spiral groove 52e is directed downward from the upper side to the lower side, the flow of the second flow path GF2 can be energized, and the dischargeability of the fuel after pulverization can be improved.
- the downward spiral groove 52e is preferably used when the biomass fuel is required to be discharged, because of its larger particle size than coal fuel.
- the spiral groove 52e is formed in the blade guide 52.
- the spiral groove 52e may be formed only in the inner peripheral surface 56a2 of the upper cylindrical portion 56a of the rotating frame 56, or the blade guide 52 and the It may be provided on both of the rotating frames 56.
- the second flow path GF2 is a flow path extending in the vertical direction.
- the present disclosure is not limited to this, and the second flow path GF2 is not limited to the second flow path GF2 as long as gravity can be effectively used.
- the extending direction of the flow path GF2 may be inclined with respect to the vertical direction.
- the bent angle is not limited to 90 ° as long as an appropriate pressure loss can be given.
- the bent angle is set to an obtuse angle even if it is set to 70 ° or more and 110 ° or less. May be.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Crushing And Grinding (AREA)
- Combined Means For Separation Of Solids (AREA)
Abstract
Provided is a solid fuel crushing device which is capable of maintaining a desired classifying performance even when classifying a plurality of types of solid fuels, such as coal fuels or biomass fuels. According to the present invention, a crusher (16) is provided with a seal part (57) having a gap flow passage (GF) formed between a rotary frame (56) and a facing wall part (52). The gap flow passage (GF) of the seal part (57) is provided with: a first flow passage (GF1) that has an inlet opening (GFin) open in the outer periphery of the seal part (57) and extends from the outer peripheral side toward the inner peripheral side; a second flow passage (GF2) of which the upper end is connected to the inner peripheral end section of the first flow passage (GF1) so as to have a first bent part (BD1), and which extends downward; and a third flow passage (GF3) that has an outlet opening (GFout) open in the inner periphery of the seal part (57) and extends from the outer peripheral side toward the inner peripheral side, wherein the other end in the outer peripheral side of the third flow passage (GF3) is connected to the lower end of the second flow passage (GF2) so as to have a second bent part (BD2).
Description
本開示は、例えばバイオマス燃料や石炭燃料を粉砕するのに好適な固体燃料粉砕装置及びこれを備えた発電プラント並びに固体燃料粉砕方法に関するものである。
The present disclosure relates to a solid fuel pulverizing apparatus suitable for pulverizing, for example, biomass fuel or coal fuel, a power plant including the same, and a solid fuel pulverizing method.
従来、石炭燃料やバイオマス燃料等の固体燃料は、ミル(粉砕機)で所定粒径よりも小さい微粉状に粉砕して、燃焼装置へ供給される。ミルは、回転テーブルへ投入された石炭燃料やバイオマス燃料等の固体燃料を、回転テーブルとローラの間で噛み砕くことで粉砕し、回転テーブルの外周から供給される搬送ガスによって、粉砕されて微粉状となった燃料を分級機で粒径サイズの小さいものを選別し、ボイラへ搬送して燃焼装置で燃焼させている。火力発電プラントでは、ボイラで燃焼して生成された燃焼ガスとの熱交換により蒸気を発生させ、この蒸気によりタービンを駆動することで発電が行なわれる。
Conventionally, solid fuels such as coal fuel and biomass fuel are pulverized by a mill (pulverizer) into fine powder having a particle size smaller than a predetermined particle size, and supplied to a combustion device. The mill pulverizes solid fuel, such as coal fuel or biomass fuel, injected into the rotary table by chewing between the rotary table and the rollers, and is pulverized by a carrier gas supplied from the outer periphery of the rotary table to a fine powder. The resulting fuel is sorted by a classifier into small-sized particles, transported to a boiler, and burned by a combustion device. In a thermal power plant, steam is generated by heat exchange with combustion gas generated by burning in a boiler, and power is generated by driving a turbine with the steam.
ミルで粉砕された粉砕後燃料は、ミル上部に設置された回転分級機によって微粒と粗粒に分級される。微粒である微粉燃料は回転分級機のブレード間を通過して後工程に送られ、粗粒である粗粉燃料は回転分級機のブレードに衝突して回転テーブルへ落下し、再度粉砕される。
(4) The pulverized fuel that has been pulverized by the mill is classified into fine particles and coarse particles by a rotary classifier installed above the mill. The fine-grained fine fuel passes through the blades of the rotary classifier and is sent to the subsequent process, and the coarse-grained fuel collides with the blades of the rotary classifier, falls on the rotary table, and is pulverized again.
しかし、本来ならば回転分級機ではじかれるサイズの粗粒の一部が、回転分級機と、回転分級機に対向する静止壁部であるブレードガイドとの間の隙間をショートパスして、ミル出口から排出されることがある。このようなショートパスが発生すると、所望の分級効率が得られない。この課題に対して、下記特許文献1乃至3のように、エアシール供給やラビリンスシール構造を設けてショートパスを抑制することが提案されている。
However, a part of the coarse particles that would normally be repelled by the rotary classifier short-passes the gap between the rotary classifier and the blade guide, which is the stationary wall facing the rotary classifier. May be discharged from exit. When such a short path occurs, a desired classification efficiency cannot be obtained. In order to solve this problem, it has been proposed to provide an air seal supply or a labyrinth seal structure as described in Patent Documents 1 to 3 below to suppress a short path.
炭素含有固体燃料の中でも木質系などのバイオマス燃料は、石炭燃料に比べて細かく粉砕することが難しい。一方で、バイオマス燃料は、石炭燃料に比べて燃焼性が高く比較的大きな粒径であっても好適に燃焼させることができる性質を有している。従って、バイオマス燃料を固体燃料として使用する場合、石炭燃料と比較して約5~10倍程度大きい粒径の状態でミルから燃焼装置に供給されるものが一般である。
中 で も Among carbon-containing solid fuels, woody biomass fuels are more difficult to pulverize than coal fuels. On the other hand, biomass fuel has a property of being highly flammable as compared with coal fuel and capable of being suitably burned even with a relatively large particle size. Therefore, when a biomass fuel is used as a solid fuel, it is generally supplied from a mill to a combustion device in a state of a particle size that is about 5 to 10 times larger than that of a coal fuel.
このように、石炭燃料とバイオマス燃料とでは、燃焼装置に供給する粒径が異なるため、固体燃料の粉砕及び分級を行うミルは、バイオマス燃料粉砕用途と石炭燃料粉砕用途とで異なる設計(例えばハウジング形状、回転テーブルの回転速度や回転分級機の回転速度など)とし、個別設計することが本来好ましい。しかし、設備コストや設置スペース等の観点から、バイオマス燃料と石炭燃料の両方の固体燃料に対して対応することができるミルが望まれている。
As described above, since the particle size supplied to the combustion device differs between the coal fuel and the biomass fuel, the mill for crushing and classifying the solid fuel has a different design between the biomass fuel crushing application and the coal fuel crushing application (for example, the housing). It is inherently preferable to individually design the shape, the rotation speed of the rotary table, the rotation speed of the rotary classifier, and the like. However, from the viewpoint of equipment cost and installation space, a mill that can handle both solid fuels such as biomass fuel and coal fuel is desired.
しかし、上記の各特許文献では、石炭燃料の粉砕を前提としているため、石炭燃料よりも粉砕後の粒径が大きいバイオマス燃料の粉砕に適さない場合がある。例えば、回転分級機とブレードガイドとの間の隙間寸法を石炭燃料用に設定すると、バイオマス燃料としては狭すぎて粉砕後燃料が付着したり堆積したりしてしまうおそれがある。あるいは、上記特許文献1のようにラビリンスシール構造とすると、バイオマス燃料の場合には複数の凹凸を通過する際に粉砕後燃料が堆積してしまうおそれがある。
However, in each of the above patent documents, it is premised that the coal fuel is pulverized, and therefore, it may not be suitable for the pulverization of biomass fuel having a larger particle size after the pulverization than the coal fuel. For example, if the size of the gap between the rotary classifier and the blade guide is set for coal fuel, the biomass fuel may be too narrow and the fuel may adhere or accumulate after pulverization. Alternatively, if a labyrinth seal structure is used as in Patent Document 1, in the case of biomass fuel, there is a possibility that the fuel after grinding may accumulate when passing through a plurality of irregularities.
本開示は、このような事情に鑑みてなされたものであって、石炭燃料やバイオマス燃料といったような複数種類の固体燃料に対しても、分級機とブレードガイドとの間の隙間から粗粒の粉砕後燃料がミル出口から排出されるショートパスを抑制して、所望の分級性能を維持しつつ分級できる固体燃料粉砕装置及びこれを備えた発電プラント並びに固体燃料粉砕方法を提供することを目的とする。
The present disclosure has been made in view of such circumstances, and even for a plurality of types of solid fuels such as coal fuel and biomass fuel, coarse particles are formed from the gap between the classifier and the blade guide. It is an object of the present invention to provide a solid fuel pulverizer capable of classifying while suppressing a short path in which fuel after pulverization is discharged from a mill outlet while maintaining desired classification performance, a power plant including the same, and a solid fuel pulverization method. I do.
本開示の一態様に係る固体燃料粉砕装置は、回転テーブルと、前記回転テーブルとの間で固体燃料を粉砕する粉砕ローラと、前記粉砕ローラによって粉砕された粉砕後燃料を分級する分級機と、を備え、前記分級機は、鉛直上下方向に延在するとともに回転軸線を中心とする円周方向に沿って配置された複数のブレードと、複数の前記ブレードの上端を支持した状態で前記回転軸線回りに回転する回転枠と、を備え、前記回転枠と、該回転枠に対向して配置された対向壁部との間に形成された隙間流路を有するシール部を備え、前記シール部の前記隙間流路は、該シール部の外周に開口する入口開口を有するとともに外周側から内周側に向かう第1流路と、該第1流路の内周側端部に対して第1屈曲部を有するように上端が接続されて下方に向かう第2流路と、該シール部の内周に開口する出口開口を有するとともに外周側から内周側に向かうとともに該第2流路の下端に対して第2屈曲部を有するように外周側他端が接続された第3流路とを備えている。
A solid fuel crushing apparatus according to one aspect of the present disclosure is a rotary table, a crushing roller that crushes solid fuel between the rotary table, and a classifier that classifies the crushed fuel crushed by the crushing roller, The classifier comprises a plurality of blades extending in the vertical direction and arranged along a circumferential direction around the rotation axis, and the rotation axis line supporting the upper ends of the plurality of blades. A rotating frame that rotates around, and a seal portion having a gap flow path formed between the rotating frame and an opposing wall portion arranged to face the rotating frame, The gap flow path has an inlet opening that opens to the outer circumference of the seal portion and has a first flow path from the outer circumference to the inner circumference, and a first bend with respect to the inner circumference end of the first flow path. The upper end is connected to have a lower part A second flow path, and an outlet opening at the inner circumference of the seal portion, and the outer flow path is directed from the outer circumference to the inner circumference and has a second bent portion with respect to the lower end of the second flow path. A third flow path to which the other end is connected.
粉砕ローラで粉砕された粉砕後燃料は、鉛直上下方向の回転軸線を中心に回転する分級機の回転枠と対向壁部との間に設けたシール部によってシールされる。すなわち、粉砕後の粉砕後燃料がブレード間を通過せずに回転枠と対向壁部との間を通過する粉砕後燃料の通過を抑制するように、回転枠と対向壁部との間の隙間流路によってシール部が形成されている。
シール部の隙間流路は、シール部の外周に開口する入口開口を有するとともに外周側から内周側に向かう第1流路と、第1流路の内周端部に対して接続されて下方へ向かう第2流路と、第2流路の下端に対して接続されて外周側から内周側に向かいシール部の内周に開口する出口開口を有する第3流路とを備えている。
第2流路は、上方から下方に向かうように設けられているので、入口開口から流入してしまった粉砕後燃料は、第2流路内を上側から下側に流れる流体による流体力だけでなく重力を利用して排出を促進することができる。これにより、隙間流路内に存在する粉砕後燃料を排出することが容易となる。
シール部の隙間流路は、第1屈曲部と第2屈曲部を有しているので、これら屈曲部にて適切な圧力損失を与えて、対向壁部との間の隙間を粗粒の粉砕後燃料がショートパスしてミルの出口から排出されることを抑制することで、所望のシール性を確保することができる。 The pulverized fuel pulverized by the pulverizing roller is sealed by a seal provided between a rotating frame of a classifier that rotates about a vertical axis of rotation in a vertical direction and an opposing wall. That is, the gap between the rotating frame and the opposing wall portion is controlled so as to suppress the passage of the post-pulverized fuel that passes between the rotating frame and the opposing wall portion without passing through the blade after the pulverized fuel. A seal is formed by the flow path.
The gap flow passage of the seal portion has an inlet opening that opens to the outer periphery of the seal portion and is connected to the inner peripheral end of the first flow passage from the outer peripheral side to the inner peripheral side, and is connected to the inner peripheral end portion of the first flow passage to be downward. And a third flow passage having an outlet opening connected to the lower end of the second flow passage and opening from the outer periphery toward the inner periphery toward the inner periphery of the seal portion.
Since the second flow path is provided from the upper side to the lower side, the pulverized fuel that has flowed in from the inlet opening is only generated by the fluid force of the fluid flowing from the upper side to the lower side in the second flow path. Without gravity, the discharge can be promoted. Thereby, it becomes easy to discharge the fuel after the pulverization existing in the gap flow path.
Since the gap flow path of the seal portion has the first bent portion and the second bent portion, an appropriate pressure loss is given at these bent portions to crush the gap between the opposed wall portion and coarse particles. By suppressing the post-fuel from being discharged from the outlet of the mill through a short pass, desired sealing properties can be ensured.
シール部の隙間流路は、シール部の外周に開口する入口開口を有するとともに外周側から内周側に向かう第1流路と、第1流路の内周端部に対して接続されて下方へ向かう第2流路と、第2流路の下端に対して接続されて外周側から内周側に向かいシール部の内周に開口する出口開口を有する第3流路とを備えている。
第2流路は、上方から下方に向かうように設けられているので、入口開口から流入してしまった粉砕後燃料は、第2流路内を上側から下側に流れる流体による流体力だけでなく重力を利用して排出を促進することができる。これにより、隙間流路内に存在する粉砕後燃料を排出することが容易となる。
シール部の隙間流路は、第1屈曲部と第2屈曲部を有しているので、これら屈曲部にて適切な圧力損失を与えて、対向壁部との間の隙間を粗粒の粉砕後燃料がショートパスしてミルの出口から排出されることを抑制することで、所望のシール性を確保することができる。 The pulverized fuel pulverized by the pulverizing roller is sealed by a seal provided between a rotating frame of a classifier that rotates about a vertical axis of rotation in a vertical direction and an opposing wall. That is, the gap between the rotating frame and the opposing wall portion is controlled so as to suppress the passage of the post-pulverized fuel that passes between the rotating frame and the opposing wall portion without passing through the blade after the pulverized fuel. A seal is formed by the flow path.
The gap flow passage of the seal portion has an inlet opening that opens to the outer periphery of the seal portion and is connected to the inner peripheral end of the first flow passage from the outer peripheral side to the inner peripheral side, and is connected to the inner peripheral end portion of the first flow passage to be downward. And a third flow passage having an outlet opening connected to the lower end of the second flow passage and opening from the outer periphery toward the inner periphery toward the inner periphery of the seal portion.
Since the second flow path is provided from the upper side to the lower side, the pulverized fuel that has flowed in from the inlet opening is only generated by the fluid force of the fluid flowing from the upper side to the lower side in the second flow path. Without gravity, the discharge can be promoted. Thereby, it becomes easy to discharge the fuel after the pulverization existing in the gap flow path.
Since the gap flow path of the seal portion has the first bent portion and the second bent portion, an appropriate pressure loss is given at these bent portions to crush the gap between the opposed wall portion and coarse particles. By suppressing the post-fuel from being discharged from the outlet of the mill through a short pass, desired sealing properties can be ensured.
さらに、本開示の一態様に係る固体燃料粉砕装置では、前記第3流路の流路断面積は、前記第2流路の流路断面積よりも大きい。
Furthermore, in the solid fuel pulverizer according to one aspect of the present disclosure, the cross-sectional area of the third flow path is larger than the cross-sectional area of the second flow path.
第3流路の流路断面積を第2流路の流路断面積よりも大きくしたので、隙間流路に存在する粉砕後燃料を容易に第3流路の出口開口へと排出することができる。
Since the cross-sectional area of the third flow path is larger than the cross-sectional area of the second flow path, it is possible to easily discharge the pulverized fuel present in the gap flow path to the outlet opening of the third flow path. it can.
さらに、本開示の一態様に係る固体燃料粉砕装置では、前記第1流路の流路断面積は、前記第2流路の流路断面積よりも大きい。
Furthermore, in the solid fuel crushing device according to an aspect of the present disclosure, the cross-sectional area of the first flow path is larger than the cross-sectional area of the second flow path.
第1流路の流路断面積を第2流路の流路断面積よりも大きくしたので、第1流路GF1側に相互に干渉しないような隙間を設けることができる。
(4) Since the flow path cross-sectional area of the first flow path is larger than the flow path cross-sectional area of the second flow path, a gap can be provided on the first flow path GF1 side so as not to interfere with each other.
さらに、本開示の一態様に係る固体燃料粉砕装置では、前記第2流路における前記回転枠と前記対向壁部との間の隙間寸法D1は、前記固体燃料がバイオマスペレットとされた場合に、該バイオマスペレットの構成粒子の粒径以上でかつ、粉砕前の該バイオマスペレットの粒径以下とされている。
Furthermore, in the solid fuel crushing device according to an aspect of the present disclosure, the gap dimension D1 between the rotating frame and the opposed wall portion in the second flow path is such that when the solid fuel is a biomass pellet, The particle size is not less than the particle diameter of the constituent particles of the biomass pellet and not more than the particle diameter of the biomass pellet before pulverization.
第2流路の隙間寸法をバイオマスペレットの構成粒子の粒子径以上でかつバイオマスペレットの粒子径以下とすることによって、第2流路にバイオマスペレットの粉砕後燃料が堆積することを回避できる。
なお、バイオマスペレットの構成粒子とは、所定形状に圧縮成形されたバイオマスペレットの構成単位とされる粒子(細粒)を意味する。また、バイオマスペレットの粒径とは、所定形状に圧縮成形されたバイオマスペレットは球形でなく円筒状のものが多く、外形のうちで短い側の寸法を意味する。 By setting the gap size of the second flow path to be equal to or larger than the particle diameter of the constituent particles of the biomass pellet and equal to or smaller than the particle diameter of the biomass pellet, it is possible to avoid the accumulation of the fuel after the biomass pellet is pulverized in the second flow path.
The constituent particles of the biomass pellet mean particles (fine particles) that are constituent units of the biomass pellet that is compression-molded into a predetermined shape. Further, the particle size of the biomass pellet means that the biomass pellet that is compression-molded into a predetermined shape is often not a spherical shape but a cylindrical shape, and means the shorter dimension of the outer shape.
なお、バイオマスペレットの構成粒子とは、所定形状に圧縮成形されたバイオマスペレットの構成単位とされる粒子(細粒)を意味する。また、バイオマスペレットの粒径とは、所定形状に圧縮成形されたバイオマスペレットは球形でなく円筒状のものが多く、外形のうちで短い側の寸法を意味する。 By setting the gap size of the second flow path to be equal to or larger than the particle diameter of the constituent particles of the biomass pellet and equal to or smaller than the particle diameter of the biomass pellet, it is possible to avoid the accumulation of the fuel after the biomass pellet is pulverized in the second flow path.
The constituent particles of the biomass pellet mean particles (fine particles) that are constituent units of the biomass pellet that is compression-molded into a predetermined shape. Further, the particle size of the biomass pellet means that the biomass pellet that is compression-molded into a predetermined shape is often not a spherical shape but a cylindrical shape, and means the shorter dimension of the outer shape.
さらに、本開示の一態様に係る固体燃料粉砕装置では、前記第2流路の上下方向の前記第1屈曲部から前記第2屈曲部までの長さは、前記第2流路における前記回転枠と前記対向壁部との間の隙間寸法の5倍以上10倍以下とされている。
Furthermore, in the solid fuel crushing device according to an aspect of the present disclosure, the length from the first bent portion to the second bent portion in the up-down direction of the second flow path is the rotation frame in the second flow path. The gap is between 5 and 10 times the gap between the first and second facing walls.
第2流路の上下方向の長さが隙間寸法の5倍未満では十分な圧力損失を得ることができずシール性が低下するおそれがある。第2流路の上下方向の第1屈曲部から第2屈曲部までの長さが隙間寸法の10倍を超えると、粉砕後燃料が第2流路に付着または堆積するおそれがある。したがって、第2流路の上下方向の長さが隙間寸法の5倍以上10倍以下が好適である。
で は If the vertical length of the second flow path is less than 5 times the gap size, a sufficient pressure loss cannot be obtained and the sealing performance may be reduced. If the length from the first bent portion to the second bent portion in the vertical direction of the second flow path exceeds 10 times the gap size, the fuel after pulverization may adhere or accumulate on the second flow path. Therefore, it is preferable that the length of the second flow path in the vertical direction is not less than 5 times and not more than 10 times the gap dimension.
さらに、本開示の一態様に係る固体燃料粉砕装置では、前記回転枠の外周には、半径方向に延在するリブが設けられている。
Furthermore, in the solid fuel crushing device according to an aspect of the present disclosure, a rib extending in a radial direction is provided on an outer periphery of the rotating frame.
回転枠の外周に、半径方向に延在するリブを設けることとした。これにより、回転枠とともに回転するリブによってシール部入口付近に浮遊する粗粒の粉砕後燃料を払い除けることで、入口開口から流入して、シール部を通過する粉砕後燃料を減らし粗粒の粉砕後燃料がミル出口から排出されるショートパスを抑制することで、分級性能を向上させることができる。
リ ブ Ribs extending in the radial direction are provided on the outer periphery of the rotating frame. This allows the ribs that rotate with the rotating frame to remove the coarsely ground fuel that floats in the vicinity of the seal inlet, thereby reducing the amount of fuel after flowing in through the inlet opening and passing through the seal, reducing the coarse particles. Classification performance can be improved by suppressing a short path in which post-fuel is discharged from the mill outlet.
さらに、本開示の一態様に係る固体燃料粉砕装置では、前記第2屈曲部に対応する前記回転枠の内周面側および/または前記対向壁部には、面取部または曲面部が設けられている。
Further, in the solid fuel crushing device according to an aspect of the present disclosure, a chamfered portion or a curved surface portion is provided on an inner peripheral surface side of the rotating frame corresponding to the second bent portion and / or the opposed wall portion. ing.
第2屈曲部に対応する位置の回転枠の内周面側および/または対向壁部に面取部または曲面部を設けることによって流れを滑らかにし、隙間流路に存在する粉砕後燃料の排出性を向上させることができる。
By providing a chamfered portion or a curved surface portion on the inner peripheral surface side and / or the opposing wall portion of the rotating frame at a position corresponding to the second bent portion, the flow is smoothed, and the dischargeability of the pulverized fuel existing in the gap flow path is improved. Can be improved.
さらに、本開示の一態様に係る固体燃料粉砕装置では、前記第2流路に対応する前記回転枠の内周面側および/または前記対向壁部には、流れが下方から上方へ向かう上向き螺旋溝が形成されている。
Furthermore, in the solid fuel crushing device according to an aspect of the present disclosure, an upward spiral in which the flow flows from the lower side to the upper side on the inner peripheral surface side of the rotary frame and / or the opposing wall portion corresponding to the second flow path. A groove is formed.
第2流路に対応する回転枠の内周面側および/または対向壁部に、流れが下方から上方へ向かう上向き螺旋溝が形成されているので、第2流路の流れに対して圧力損失を付加することができ、シール性を向上させることができる。上向き螺旋溝は、バイオマス燃料に比べて粒径が小さいため、対向壁部との間の隙間を粗粒の粉砕後燃料がショートパスしてミルの出口から排出されることを抑制することで、シール性がより要求される石炭燃料を多く使用する形態のときに用いるのが好適である。
Since the upward spiral groove from which the flow flows upward from below is formed on the inner peripheral surface side and / or the opposing wall portion of the rotating frame corresponding to the second flow path, the pressure loss with respect to the flow of the second flow path is formed. Can be added, and the sealing property can be improved. Since the upward spiral groove has a smaller particle size as compared with the biomass fuel, the gap between the upper wall and the opposed wall portion is prevented from being discharged from the mill outlet by short-passing the fuel after crushing the coarse particles, It is preferable to use it in a form in which a large amount of coal fuel that requires more sealing properties is used.
さらに、本開示の一態様に係る固体燃料粉砕装置では、前記第2流路に対応する前記回転枠および/または前記対向壁部には、流れが上方から下方へ向かう下向き螺旋溝が形成されている。
Furthermore, in the solid fuel crushing device according to an aspect of the present disclosure, the rotating frame and / or the opposing wall corresponding to the second flow path are formed with a downward spiral groove in which a flow flows downward from above. I have.
第2流路に対応する回転枠および/または静止壁部に、流れが上方から下方へ向かう下向き螺旋溝が形成されているので、第2流路の流れを加勢することができ、固体燃料の排出性を向上させることができる。下向き螺旋溝は、石炭燃料に比べて粒径が大きいため排出性が要求されるバイオマス燃料のときに用いるのが好適である。
Since a downward spiral groove is formed in the rotating frame and / or the stationary wall portion corresponding to the second flow path so that the flow is directed downward from above, the flow in the second flow path can be energized, and solid fuel can be supplied. Discharge performance can be improved. The downward spiral groove is preferably used for a biomass fuel that requires a high discharge property because of its larger particle size than coal fuel.
また、本開示の一態様に係る発電プラントは、上記のいずれかに記載された固体燃料粉砕装置と、前記固体燃料粉砕装置にて粉砕された固体燃料を燃焼して蒸気を生成するボイラと、前記ボイラによって生成された蒸気を用いて発電する発電部と、を備えている。
Further, a power plant according to one aspect of the present disclosure is a solid fuel crusher described in any of the above, a boiler that generates steam by burning solid fuel crushed by the solid fuel crusher, A power generation unit that generates power using the steam generated by the boiler.
また、本開示の一態様に係る固体燃料粉砕方法は、回転テーブルと、前記回転テーブルとの間で固体燃料を粉砕する粉砕ローラと、前記粉砕ローラによって粉砕された粉砕後燃料を分級する分級機と、を備え、前記分級機は、鉛直上下方向に延在するとともに回転軸線を中心とする円周方向に沿って配置された複数のブレードと、複数の前記ブレードの上端を支持した状態で前記回転軸線回りに回転する回転枠と、を備え、前記回転枠と、該回転枠に対向して配置された対向壁部との間に形成された隙間流路を有するシール部を備えている固体燃料粉砕装置の固体燃料粉砕方法であって、前記シール部の前記隙間流路は、該シール部の外周に開口する入口開口を有するとともに外周側から内周側に向かう第1流路と、該第1流路の内周側端部に対して第1屈曲部を有するように上端が接続されて下方に向かう第2流路と、該シール部の内周に開口する出口開口を有するとともに外周側から内周側に向かうとともに該第2流路の下端に対して第2屈曲部を有するように外周側他端が接続された第3流路とを備えている。
Further, a solid fuel pulverizing method according to an aspect of the present disclosure includes a rotary table, a pulverizing roller that pulverizes the solid fuel between the rotary table, and a classifier that classifies the pulverized fuel pulverized by the pulverizing roller. The classifier comprises a plurality of blades extending in a vertical direction and arranged along a circumferential direction around a rotation axis, and a state in which upper ends of the plurality of blades are supported. A rotating frame that rotates about a rotation axis, and a solid body that includes a seal portion having a gap flow path formed between the rotating frame and an opposing wall portion disposed to face the rotating frame. A solid fuel pulverization method for a fuel pulverizer, wherein the gap flow path of the seal portion has an inlet opening that opens to an outer periphery of the seal portion and a first flow passage that extends from an outer peripheral side to an inner peripheral side; Inner circumference end of first flow path A second flow path having an upper end connected so as to have a first bent portion with respect to the second flow path, and an outlet opening which opens to the inner periphery of the seal portion, and which is directed from the outer peripheral side to the inner peripheral side, and A third flow path connected to the lower end of the two flow paths so that the other end on the outer peripheral side has a second bent portion.
回転枠と対向壁部との間に形成された隙間流路において、適切な粉砕後燃料の排出性と所望の圧力損失を得ることによって、分級機とブレードガイドとの間の隙間からの粗粒の粉砕後燃料がミル出口から排出されるショートパスを抑制して、所望の分級性能を維持しつつ複数種類の固体燃料を分級することができる。
In the gap flow path formed between the rotating frame and the opposing wall, coarse particles from the gap between the classifier and the blade guide are obtained by obtaining appropriate pulverized fuel dischargeability and a desired pressure loss. A short path in which the fuel after the pulverization is discharged from the mill outlet can be suppressed, and a plurality of types of solid fuels can be classified while maintaining desired classification performance.
以下、本開示の第1実施形態について、図面を参照して説明する。
図1に示すように、本実施形態に係る発電プラント1は、固体燃料粉砕装置100と、蒸気を生成するボイラ200と、ボイラ200で生成された蒸気を用いて発電する発電部(図示せず)とを備えている。 Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings.
As shown in FIG. 1, apower plant 1 according to the present embodiment includes a solid fuel crusher 100, a boiler 200 that generates steam, and a power generation unit (not shown) that generates power using the steam generated by the boiler 200. ).
図1に示すように、本実施形態に係る発電プラント1は、固体燃料粉砕装置100と、蒸気を生成するボイラ200と、ボイラ200で生成された蒸気を用いて発電する発電部(図示せず)とを備えている。 Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings.
As shown in FIG. 1, a
固体燃料粉砕装置100は、一例として石炭燃料やバイオマス燃料等の固体燃料を粉砕し、微粉燃料を生成してボイラ200のバーナ部(燃焼装置)220へ供給する装置である。発電プラント1は、1台の固体燃料粉砕装置100を備えるものであるが、1台のボイラ200の複数のバーナ部220のそれぞれに対応して複数台の固体燃料粉砕装置100を備えるシステムとしてもよい。
The solid fuel crushing device 100 is a device that crushes a solid fuel such as a coal fuel or a biomass fuel as an example, generates fine powder fuel, and supplies it to the burner unit (combustion device) 220 of the boiler 200. The power plant 1 includes one solid fuel crusher 100. However, the power plant 1 may include a plurality of solid fuel crushers 100 corresponding to each of the plurality of burner units 220 of one boiler 200. Good.
固体燃料粉砕装置100は、ミル(粉砕部)10と、給炭機(燃料供給機)20と、送風部30と、状態検出部40と、制御部50とを備えている。
なお、本実施形態では、上方とは鉛直上側の方向を、上部や上面などの「上」とは鉛直上側の部分を示している。また同様に「下」とは鉛直下側の部分を示している。 The solidfuel crushing apparatus 100 includes a mill (crushing unit) 10, a coal feeder (fuel feeder) 20, a blowing unit 30, a state detecting unit 40, and a control unit 50.
In the present embodiment, “upward” refers to a vertically upward direction, and “upper” such as an upper portion or an upper surface refers to a vertically upward portion. Similarly, “below” indicates a vertically lower portion.
なお、本実施形態では、上方とは鉛直上側の方向を、上部や上面などの「上」とは鉛直上側の部分を示している。また同様に「下」とは鉛直下側の部分を示している。 The solid
In the present embodiment, “upward” refers to a vertically upward direction, and “upper” such as an upper portion or an upper surface refers to a vertically upward portion. Similarly, “below” indicates a vertically lower portion.
ボイラ200に供給する石炭燃料やバイオマス燃料等の固体燃料を微粉状の固体燃料である微粉燃料へと粉砕するミル10は、石炭燃料だけでなくバイオマス燃料も粉砕する形式とされている。
ここで、バイオマス燃料とは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。バイオマス燃料は、バイオマスの成育過程において二酸化炭素を取り込むことから、地球温暖化ガスとなる二酸化炭素を排出しないカーボンニュートラルとされるため、その利用が種々検討されている。 Themill 10 that pulverizes a solid fuel such as a coal fuel or a biomass fuel supplied to the boiler 200 into a pulverized fuel, which is a pulverized solid fuel, is configured to pulverize not only the coal fuel but also the biomass fuel.
Here, the biomass fuel is a renewable organic resource derived from living organisms, such as thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuel (pellet or pellet) made from these. Chip) and the like, and are not limited to those presented here. Since biomass fuel takes in carbon dioxide during the growth process of biomass, it is considered to be carbon neutral which does not emit carbon dioxide which is a global warming gas.
ここで、バイオマス燃料とは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。バイオマス燃料は、バイオマスの成育過程において二酸化炭素を取り込むことから、地球温暖化ガスとなる二酸化炭素を排出しないカーボンニュートラルとされるため、その利用が種々検討されている。 The
Here, the biomass fuel is a renewable organic resource derived from living organisms, such as thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuel (pellet or pellet) made from these. Chip) and the like, and are not limited to those presented here. Since biomass fuel takes in carbon dioxide during the growth process of biomass, it is considered to be carbon neutral which does not emit carbon dioxide which is a global warming gas.
ミル10は、ハウジング11と、回転テーブル12と、ローラ(粉砕ローラ)13と、駆動部14と、分級機16と、燃料供給部17と、分級機16を回転駆動させるモータ18とを備えている。
ハウジング11は、鉛直方向に延びる筒状に形成されるとともに、回転テーブル12とローラ13と分級機16と、燃料供給部17とを収容する筐体である。
ハウジング11の天井部42の中央部には、燃料供給部17が取り付けられている。この燃料供給部17は、バンカ21から導かれた固体燃料をハウジング11内に供給するものであり、ハウジング11の中心位置に上下方向に沿って配置され、下端部がハウジング11内部まで延設されている。 Themill 10 includes a housing 11, a rotary table 12, a roller (crushing roller) 13, a driving unit 14, a classifier 16, a fuel supply unit 17, and a motor 18 for driving the classifier 16 to rotate. I have.
Thehousing 11 is a casing that is formed in a cylindrical shape extending in the vertical direction and houses the turntable 12, the rollers 13, the classifier 16, and the fuel supply unit 17.
Thefuel supply unit 17 is attached to the center of the ceiling 42 of the housing 11. The fuel supply unit 17 supplies the solid fuel guided from the bunker 21 into the housing 11. The fuel supply unit 17 is disposed at the center of the housing 11 along the vertical direction, and has a lower end extending into the housing 11. ing.
ハウジング11は、鉛直方向に延びる筒状に形成されるとともに、回転テーブル12とローラ13と分級機16と、燃料供給部17とを収容する筐体である。
ハウジング11の天井部42の中央部には、燃料供給部17が取り付けられている。この燃料供給部17は、バンカ21から導かれた固体燃料をハウジング11内に供給するものであり、ハウジング11の中心位置に上下方向に沿って配置され、下端部がハウジング11内部まで延設されている。 The
The
The
ハウジング11の底面部41付近には駆動部14が設置され、この駆動部14から伝達される駆動力により回転する回転テーブル12が回転自在に配置されている。
回転テーブル12は、平面視円形の部材であり、燃料供給部17の下端部が対向するように配置されている。回転テーブル12の上面は、例えば、中心部が低く、外側に向けて高くなるような傾斜形状をなし、外周部が上方に曲折した形状をなしていてもよい。燃料供給部17は、固体燃料(本実施形態では例えば石炭やバイオマス燃料)を上方から下方の回転テーブル12に向けて供給し、回転テーブル12は供給された固体燃料をローラ13との間で粉砕するもので、粉砕テーブルとも呼ばれる。 Thedrive unit 14 is installed near the bottom surface 41 of the housing 11, and the turntable 12 that is rotated by the driving force transmitted from the drive unit 14 is rotatably arranged.
Theturntable 12 is a member having a circular shape in plan view, and is arranged such that the lower end of the fuel supply unit 17 faces the turntable. The upper surface of the turntable 12 may have, for example, an inclined shape in which a center portion is low and becomes high toward the outside, and an outer peripheral portion may be bent upward. The fuel supply unit 17 supplies the solid fuel (for example, coal or biomass fuel in the present embodiment) from above to the lower rotary table 12, and the rotary table 12 pulverizes the supplied solid fuel with the rollers 13. It is also called a crushing table.
回転テーブル12は、平面視円形の部材であり、燃料供給部17の下端部が対向するように配置されている。回転テーブル12の上面は、例えば、中心部が低く、外側に向けて高くなるような傾斜形状をなし、外周部が上方に曲折した形状をなしていてもよい。燃料供給部17は、固体燃料(本実施形態では例えば石炭やバイオマス燃料)を上方から下方の回転テーブル12に向けて供給し、回転テーブル12は供給された固体燃料をローラ13との間で粉砕するもので、粉砕テーブルとも呼ばれる。 The
The
固体燃料が燃料供給部17から回転テーブル12の中央へ向けて投入されると、回転テーブル12の回転による遠心力によって固体燃料は回転テーブル12の外周側へと導かれ、ローラ13との間に挟み込まれて粉砕される。粉砕された固体燃料は微粉燃料となり、搬送用ガス流路(以下「一次空気流路」という。)100aから導かれた搬送用ガス(以下「一次空気」という。)によって上方へと巻き上げられ、分級機16へと導かれる。すなわち、回転テーブル12の外周側の複数箇所には、一次空気流路100aから流入する一次空気をハウジング11内の回転テーブル12の上方の空間に流出させる吹出口(図示省略)が設けられている。吹出口の上方にはベーン(図示省略)が設置されており、吹出口から吹き出した一次空気に旋回力を与える。ベーンにより旋回力が与えられた一次空気は、旋回する速度成分を有する気流となって、回転テーブル12上で粉砕された固体燃料をハウジング11内の上方の分級機16へと導く。なお、一次空気に混合した固体燃料の粉砕物のうち、所定粒径より大きいものは分級機16により分級されて、または、分級機16まで到達することなく、落下して回転テーブル12に戻されて、再び粉砕される。
When the solid fuel is supplied from the fuel supply unit 17 toward the center of the turntable 12, the solid fuel is guided to the outer peripheral side of the turntable 12 by centrifugal force due to the rotation of the turntable 12, and is interposed between the solid fuel and the roller 13. Crushed and crushed. The pulverized solid fuel becomes pulverized fuel, and is wound up by a carrier gas (hereinafter, referred to as “primary air”) guided from a carrier gas passage (hereinafter, referred to as “primary air passage”) 100a, It is led to the classifier 16. That is, at a plurality of locations on the outer peripheral side of the turntable 12, outlets (not shown) through which the primary air flowing from the primary air flow path 100 a flows out into the space above the turntable 12 in the housing 11 are provided. . A vane (not shown) is provided above the outlet to apply a turning force to the primary air blown out from the outlet. The primary air to which the swirling force is given by the vane becomes an airflow having a swirling velocity component, and guides the solid fuel pulverized on the rotary table 12 to the upper classifier 16 in the housing 11. Among the solid fuel pulverized products mixed with the primary air, those having a particle size larger than a predetermined particle size are classified by the classifier 16 or dropped and returned to the rotary table 12 without reaching the classifier 16. And crushed again.
ローラ13は、燃料供給部17から回転テーブル12に供給された固体燃料を粉砕する回転体である。ローラ13は、回転テーブル12の上面に押圧されて回転テーブル12と協働して固体燃料を粉砕する。
図1では、ローラ13が代表して1つのみ示されているが、回転テーブル12の上面を押圧するように、周方向に一定の間隔を空けて、複数のローラ13が対向して配置される。例えば、外周部上に120°の角度間隔を空けて、3つのローラ13が周方向に均等に配置される。この場合、3つのローラ13が回転テーブル12の上面と接する部分(押圧する部分)は、回転テーブル12の回転中心からの距離が等距離となる。 Theroller 13 is a rotator that crushes the solid fuel supplied from the fuel supply unit 17 to the turntable 12. The roller 13 is pressed against the upper surface of the turntable 12 and cooperates with the turntable 12 to pulverize the solid fuel.
In FIG. 1, only oneroller 13 is shown as a representative, but a plurality of rollers 13 are arranged facing each other at a certain interval in the circumferential direction so as to press the upper surface of the rotary table 12. You. For example, three rollers 13 are evenly arranged in the circumferential direction at an angular interval of 120 ° on the outer peripheral portion. In this case, the portions where the three rollers 13 are in contact with the upper surface of the rotary table 12 (the portions to be pressed) are equidistant from the rotation center of the rotary table 12.
図1では、ローラ13が代表して1つのみ示されているが、回転テーブル12の上面を押圧するように、周方向に一定の間隔を空けて、複数のローラ13が対向して配置される。例えば、外周部上に120°の角度間隔を空けて、3つのローラ13が周方向に均等に配置される。この場合、3つのローラ13が回転テーブル12の上面と接する部分(押圧する部分)は、回転テーブル12の回転中心からの距離が等距離となる。 The
In FIG. 1, only one
ローラ13は、ジャーナルヘッド45によって、上下に揺動可能となっており、回転テーブル12の上面に対して接近離間自在に支持されている。ローラ13は、外周面が回転テーブル12の上面に接触した状態で、回転テーブル12が回転すると、回転テーブル12から回転力を受けて連れ回りするようになっている。燃料供給部17から固体燃料が供給されると、ローラ13と回転テーブル12との間で固体燃料が押圧されて粉砕されて、微粉燃料となる。
The roller 13 is swingable up and down by a journal head 45, and is supported so as to be able to approach and separate from the upper surface of the rotary table 12. When the rotary table 12 rotates in a state where the outer peripheral surface is in contact with the upper surface of the rotary table 12, the roller 13 receives the rotational force from the rotary table 12 and rotates. When the solid fuel is supplied from the fuel supply unit 17, the solid fuel is pressed between the roller 13 and the rotary table 12 to be pulverized to be pulverized.
ジャーナルヘッド45の支持アーム47は、その中間部が水平方向に延在する支持軸48によって支持されている。すなわち、支持アーム47は、ハウジング11の側面部に支持軸48を中心としてローラ上下方向に揺動可能に支持されている。また、支持アーム47の鉛直上側にある上端部には、押圧装置49が設けられている。押圧装置49は、ハウジング11に固定され、ローラ13を回転テーブル12に押し付けるように、支持アーム47等を介してローラ13に荷重を付与する。
支持 The support arm 47 of the journal head 45 is supported by a support shaft 48 whose middle portion extends in the horizontal direction. That is, the support arm 47 is supported on the side surface of the housing 11 so as to be able to swing up and down around the roller around the support shaft 48. A pressing device 49 is provided at an upper end portion of the support arm 47 located vertically above. The pressing device 49 is fixed to the housing 11 and applies a load to the roller 13 via the support arm 47 or the like so as to press the roller 13 against the rotary table 12.
駆動部14は、回転テーブル12に駆動力を伝達し、回転テーブル12を中心軸線回りに回転させる装置である。駆動部14は、回転テーブル12を回転させる駆動力を発生する。
The drive unit 14 is a device that transmits a driving force to the rotary table 12 and rotates the rotary table 12 around a central axis. The driving unit 14 generates a driving force for rotating the rotary table 12.
分級機16は、ハウジング11の上部に設けられ、中空状の略逆円錐形状の外形を有している。分級機16は、その外周位置に上下方向に延在する複数のブレード16aを備えている。各ブレード16aは、分級機16の中心軸線周りに所定の間隔(均等間隔)を空けて並列に設けられている。分級機16は、ローラ13により粉砕された固体燃料を所定粒径(例えば、石炭では70~100μm、バイオマス燃料では0.6~1.0mm)よりも大きいもの(以下、所定粒径を超える粉砕された固体燃料を「粗粉燃料」という。)と所定粒径以下のもの(以下、所定粒径以下に粉砕された固体燃料を「微粉燃料」という。)に分級する装置である。分級機16のうち、全体が回転することによって分級する回転分級機は、ロータリセパレータとも称されている。分級機16に対しては、モータ18によって回転駆動力が与えられる。
The classifier 16 is provided on the upper portion of the housing 11 and has a hollow inverted-cone shape. The classifier 16 includes a plurality of blades 16a extending vertically in the outer peripheral position. The blades 16a are provided in parallel at predetermined intervals (equal intervals) around the central axis of the classifier 16. The classifier 16 pulverizes the solid fuel pulverized by the rollers 13 into a material having a particle size larger than a predetermined particle size (for example, 70 to 100 μm for coal and 0.6 to 1.0 mm for biomass fuel) (hereinafter, pulverization exceeding the predetermined particle size). This is a device that classifies the solid fuel that has been pulverized into a “coarse fuel” and a solid fuel of a predetermined particle size or less (hereinafter, a solid fuel pulverized to a predetermined particle size or less is referred to as a “fine powder fuel”). Among the classifiers 16, a rotary classifier that classifies by rotating as a whole is also called a rotary separator. A rotational driving force is applied to the classifier 16 by a motor 18.
分級機16に到達した固体燃料の粉砕後燃料は、ブレード16aの回転により生じる遠心力と、一次空気の気流による向心力との相対的なバランスにより、大きな径の粗粉燃料は、ブレード16aによって叩き落とされ、回転テーブル12へと戻されて再び粉砕され、微粉燃料はハウジング11の天井部42にある出口19に導かれる。
分級機16によって分級された微粉燃料は、出口19から供給流路100bへ排出され、一次空気とともに搬送される。供給流路100bへ流出した微粉燃料は、ボイラ200のバーナ部220へ供給される。 The crushed solid fuel that has reached theclassifier 16 crushes large-diameter coarse powder fuel by the blade 16a due to the relative balance between the centrifugal force generated by the rotation of the blade 16a and the centripetal force generated by the airflow of the primary air. It is dropped, returned to the turntable 12 and crushed again, and the pulverized fuel is guided to the outlet 19 in the ceiling 42 of the housing 11.
The pulverized fuel classified by theclassifier 16 is discharged from the outlet 19 to the supply channel 100b, and is conveyed together with the primary air. The pulverized fuel flowing out to the supply flow path 100b is supplied to the burner section 220 of the boiler 200.
分級機16によって分級された微粉燃料は、出口19から供給流路100bへ排出され、一次空気とともに搬送される。供給流路100bへ流出した微粉燃料は、ボイラ200のバーナ部220へ供給される。 The crushed solid fuel that has reached the
The pulverized fuel classified by the
燃料供給部17は、ハウジング11の上端を貫通するように上下方向に沿って下端部がハウジング11内部まで延設されて取り付けられている。燃料供給部17の上部から投入された固体燃料は、回転テーブル12の略中央領域に供給される。燃料供給部17には、給炭機20から固体燃料が供給される。
The fuel supply unit 17 has a lower end extending vertically to the inside of the housing 11 so as to penetrate the upper end of the housing 11 and is attached. The solid fuel supplied from the upper part of the fuel supply unit 17 is supplied to a substantially central area of the turntable 12. Solid fuel is supplied to the fuel supply unit 17 from the coal feeder 20.
給炭機20は、バンカ21と、搬送部(燃料供給機)22と、モータ(燃料供給機)23とを備える。搬送部22は、モータ23から与えられる駆動力によってバンカ21の直下にあるダウンスパウト部24の下端部から排出される固体燃料を搬送する。搬送部22によって搬送された固体燃料は、ミル10の燃料供給部17に導かれる。
The coal feeder 20 includes a bunker 21, a transport unit (fuel feeder) 22, and a motor (fuel feeder) 23. The transport unit 22 transports the solid fuel discharged from the lower end of the downspout unit 24 immediately below the bunker 21 by the driving force given by the motor 23. The solid fuel transferred by the transfer unit 22 is guided to the fuel supply unit 17 of the mill 10.
通常、ミル10の内部には、粉砕した固体燃料である微粉燃料を搬送するための一次空気が供給されて、圧力が大気圧よりも高くなっている。バンカ21の直下にある上下方向に延在する管であるダウンスパウト部24には内部に燃料が積層状態で保持されていて、ダウンスパウト部24内に積層された燃料層により、ミル10側の一次空気と粉砕後燃料が逆流入しないようなシール性を確保している。ミル10へ供給する固体燃料の供給量は、モータ23によって搬送部22のベルトコンベアのベルト速度を調整することで行われても良い。
Usually, the inside of the mill 10 is supplied with primary air for conveying pulverized fuel, which is pulverized solid fuel, and the pressure is higher than the atmospheric pressure. The fuel is held in a stacked state inside the downspout part 24 which is a tube extending in the vertical direction immediately below the bunker 21, and the fuel layer stacked in the downspout part 24 causes the fuel on the side of the mill 10. The sealability is ensured so that the primary air and the fuel after pulverization do not flow back. The supply amount of the solid fuel to be supplied to the mill 10 may be adjusted by adjusting the belt speed of the belt conveyor of the transport unit 22 by the motor 23.
粉砕前のバイオマス燃料のチップやペレットは、石炭燃料(すなわち粉砕前の石炭の粒径は、例えば、粒径が2~50mm程度)に比べて、粒径が一定であり(ペレットのサイズは、例えば、直径6~8mm程度、長さは40mm以下程度 )、かつ、軽量である。このため、バイオマス燃料がダウンスパウト部24内に貯留されている場合は、石炭燃料の場合に比べて、各バイオマス燃料間に形成される隙間が大きくなる。このように、ダウンスパウト部24内のバイオマス燃料のチップやペレットの間には隙間があることから、ミル10内部から吹き上げる一次空気と粉砕後燃料が各バイオマス燃料間に形成される隙間を通過して、ミル10内部の圧力が低下する可能性がある。また、一次空気がバンカ21の貯留部へと吹き抜けると、バイオマス燃料の搬送性の悪化や粉塵発生、ダウンスパウト部24の発火や、また、ミル10内部の圧力が低下すると、微粉燃料の搬送量が低下するなど、ミル10の運転に種々の問題が生じる可能性がある。このため、給炭機20から燃料供給部17の途中にロータリバルブ(図示省略)を設けて、一次空気と粉砕後燃料の吹き上げによる逆流を抑制するようにしてもよい。
The chips and pellets of the biomass fuel before pulverization have a constant particle size as compared with coal fuel (that is, the particle size of the coal before pulverization is, for example, about 2 to 50 mm) (the size of the pellet is For example, the diameter is about 6 to 8 mm and the length is about 40 mm or less. For this reason, when the biomass fuel is stored in the down spout section 24, the gap formed between the biomass fuels is larger than in the case of the coal fuel. As described above, since there is a gap between the chips and pellets of the biomass fuel in the down spout portion 24, the primary air blown up from the inside of the mill 10 and the pulverized fuel pass through the gap formed between the biomass fuels. As a result, the pressure inside the mill 10 may decrease. Also, when the primary air blows into the storage section of the bunker 21, if the transportability of the biomass fuel is deteriorated, dust is generated, the downspout section 24 is ignited, and the pressure inside the mill 10 is reduced, the transport amount of the fine powder fuel is reduced. , And various problems may occur in the operation of the mill 10. For this reason, a rotary valve (not shown) may be provided in the middle of the fuel supply unit 17 from the coal feeder 20 to suppress the backflow due to the blowing up of the primary air and the pulverized fuel.
送風部30は、ローラ13により粉砕された固体燃料を乾燥させるとともに分級機16へ供給するための一次空気をハウジング11の内部へ送風する装置である。送風部30は、ハウジング11へ送風される一次空気を適切な温度に調整するために、熱ガス送風機30aと、冷ガス送風機30bと、熱ガスダンパ30cと、冷ガスダンパ30dとを備えている。
The blower 30 is a device that blows primary air for drying the solid fuel pulverized by the rollers 13 and supplying the solid fuel to the classifier 16 into the housing 11. The blower unit 30 includes a hot gas blower 30a, a cold gas blower 30b, a hot gas damper 30c, and a cold gas damper 30d to adjust the primary air blown to the housing 11 to an appropriate temperature.
熱ガス送風機30aは、空気予熱器などの熱交換器(加熱器)から供給される熱せられた一次空気を送風する送風機である。熱ガス送風機30aの下流側には熱ガスダンパ30c(第1送風部)が設けられている。熱ガスダンパ30cの開度は制御部50によって制御される。熱ガスダンパ30cの開度によって熱ガス送風機30aが送風する一次空気の流量が決定する。
The hot gas blower 30a is a blower that blows heated primary air supplied from a heat exchanger (heater) such as an air preheater. A hot gas damper 30c (first blower) is provided downstream of the hot gas blower 30a. The opening degree of the hot gas damper 30c is controlled by the control unit 50. The flow rate of the primary air blown by the hot gas blower 30a is determined by the opening degree of the hot gas damper 30c.
冷ガス送風機30bは、常温の外気である一次空気を送風する送風機である。冷ガス送風機30bの下流側には冷ガスダンパ(第2送風部)30dが設けられている。冷ガスダンパ30dの開度は制御部50によって制御される。冷ガスダンパ30dの開度によって冷ガス送風機30bが送風する一次空気の流量が決定する。
(4) The cold gas blower 30b is a blower that blows primary air that is ambient air at normal temperature. A cold gas damper (second blower) 30d is provided downstream of the cold gas blower 30b. The opening of the cold gas damper 30d is controlled by the control unit 50. The flow rate of the primary air blown by the cold gas blower 30b is determined by the opening of the cold gas damper 30d.
一次空気の流量は、熱ガス送風機30aが送風する一次空気の流量と冷ガス送風機30bが送風する一次空気の流量の合計の流量となり、一次空気の温度は、熱ガス送風機30aが送風する一次空気と冷ガス送風機30bが送風する一次空気の混合比率で決まり、制御部50によって制御される。
なお、熱ガス送風機30aが送風する一次空気に、ガス再循環通風機を介して電気集塵機など環境装置を通過したボイラ200から排出された燃焼ガスの一部を導き、混合気とすることで、一次空気流路100aから流入する一次空気の酸素濃度を調整してもよい。 The flow rate of the primary air is the total flow rate of the primary air flow blown by thehot gas blower 30a and the flow rate of the primary air blown by the cold gas blower 30b, and the temperature of the primary air is the primary air blown by the hot gas blower 30a And the mixing ratio of the primary air blown by the cold gas blower 30b is controlled by the control unit 50.
In addition, by introducing a part of the combustion gas discharged from theboiler 200 that has passed through an environmental device such as an electric dust collector to the primary air blown by the hot gas blower 30a through a gas recirculating blower, and thereby forming a mixture, The oxygen concentration of the primary air flowing from the primary air flow path 100a may be adjusted.
なお、熱ガス送風機30aが送風する一次空気に、ガス再循環通風機を介して電気集塵機など環境装置を通過したボイラ200から排出された燃焼ガスの一部を導き、混合気とすることで、一次空気流路100aから流入する一次空気の酸素濃度を調整してもよい。 The flow rate of the primary air is the total flow rate of the primary air flow blown by the
In addition, by introducing a part of the combustion gas discharged from the
本実施形態では、ハウジング11の状態検出部40により、計測または検出したデータを制御部50に送信する。本実施形態の状態検出部40は、例えば、差圧計測手段であり、一次空気流路100aからミル10内部へ一次空気が流入する部分及びミル10内部から供給流路100bへ一次空気及び微粉燃料が排出する出口19との差圧をミル10内の差圧として計測する。分級機16の分級性能により、ミル10内部を循環する固体燃料の微粉燃料の循環量の増減とこれに対するミル10内の差圧の上昇低減が変化する。すなわち、ミル10の内部に供給する固体燃料に対して、出口19から排出させる微粉燃料を調整して管理することができるので、微粉燃料の粒度がバーナ部220の燃焼性に影響しない範囲で、多くの微粉燃料をボイラ200に設けられたバーナ部220に供給することができる。
In the present embodiment, data measured or detected by the state detection unit 40 of the housing 11 is transmitted to the control unit 50. The state detection unit 40 of the present embodiment is, for example, a differential pressure measuring unit, and includes a portion where the primary air flows from the primary air flow path 100a into the mill 10 and the primary air and the fine powder fuel from the mill 10 to the supply flow path 100b. Is measured as a differential pressure in the mill 10 with respect to the outlet 19 from which the gas is discharged. The classifying performance of the classifier 16 changes the increase / decrease of the circulating amount of the pulverized fuel of the solid fuel circulating inside the mill 10 and the increase / decrease of the differential pressure inside the mill 10 corresponding thereto. That is, the fine fuel discharged from the outlet 19 can be adjusted and managed with respect to the solid fuel supplied to the inside of the mill 10, so that the particle size of the fine fuel does not affect the combustibility of the burner 220, A large amount of fine fuel can be supplied to the burner section 220 provided in the boiler 200.
また、本実施形態の状態検出部40は、例えば、温度計測手段であり、ローラ13により粉砕された固体燃料を分級機16へ供給するための一次空気を、ハウジング11の内部に送風する送風部30により温度調整される一次空気のハウジング11での温度を検出して、上限温度を超えないように送風部30を制御する。なお、一次空気は、ハウジング11内において、粉砕物を乾燥しながら搬送することによって冷却されるので、ハウジング11の上部空間の温度は、例えば約60~80℃程度となる。
Further, the state detection unit 40 of the present embodiment is, for example, a temperature measurement unit, and a blower that blows primary air for supplying the solid fuel pulverized by the rollers 13 to the classifier 16 into the housing 11. The temperature of the primary air in the housing 11 whose temperature is adjusted by the temperature detecting unit 30 is detected, and the blowing unit 30 is controlled so as not to exceed the upper limit temperature. The primary air is cooled by transporting the pulverized material in the housing 11 while drying it, so that the temperature of the upper space of the housing 11 is, for example, about 60 to 80 ° C.
制御部50は、固体燃料粉砕装置100の各部を制御する装置である。制御部50は、例えば、駆動部14に駆動指示を伝達することによりミル10の運転に対する回転テーブル12の回転を制御することができる。制御部50は、例えば分級機16のモータ18へ駆動指示を伝達して回転数を制御することで、分級性能を調整することにより、ミル10内の差圧を適正化して微粉燃料の供給を安定化させることができる。また、制御部50は、例えば給炭機20のモータ23へ駆動指示を伝達することにより、搬送部22が固体燃料を搬送して燃料供給部17へ供給する固体燃料の供給量を調整することができる。また、制御部50は、開度指示を送風部30に伝達することにより、熱ガスダンパ30cおよび冷ガスダンパ30dの開度を制御して一次空気の流量と温度を制御することができる。
The control unit 50 is a device that controls each unit of the solid fuel crusher 100. The control unit 50 can control the rotation of the turntable 12 with respect to the operation of the mill 10 by transmitting a driving instruction to the driving unit 14, for example. The control unit 50 adjusts the classifying performance by transmitting a driving instruction to the motor 18 of the classifier 16 to control the number of revolutions, thereby optimizing the differential pressure in the mill 10 and supplying the fine powder fuel. Can be stabilized. Further, the control unit 50 adjusts the supply amount of the solid fuel supplied from the transport unit 22 to the fuel supply unit 17 by transmitting the drive instruction to the motor 23 of the coal feeder 20, for example. Can be. In addition, by transmitting the opening degree instruction to the blower unit 30, the control unit 50 can control the opening degree of the hot gas damper 30c and the cold gas damper 30d to control the flow rate and temperature of the primary air.
制御部50は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
The control unit 50 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium. For example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like, and executes information processing and arithmetic processing. Thereby, various functions are realized. The program may be installed in advance in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or delivered via a wired or wireless communication unit. Etc. may be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
次に、固体燃料粉砕装置100から供給される微粉燃料を用いて燃焼を行って蒸気を発生させるボイラ200について説明する。ボイラ200は、火炉210とバーナ部220とを備えている。
Next, the boiler 200 that performs combustion using the pulverized fuel supplied from the solid fuel crusher 100 to generate steam will be described. The boiler 200 includes a furnace 210 and a burner section 220.
バーナ部220は、供給流路100bから供給される微粉燃料を含む一次空気と、熱交換器(図示省略)から供給される二次空気とを用いて微粉燃料を燃焼させて火炎を生成する装置である。微粉燃料の燃焼は火炉210内で行われ、高温の燃焼ガスは、蒸発器,過熱器,エコノマイザなどの熱交換器(図示省略)を通過した後にボイラ200の外部に排出される。
The burner unit 220 burns the pulverized fuel using the primary air containing the pulverized fuel supplied from the supply flow path 100b and the secondary air supplied from a heat exchanger (not shown) to generate a flame. It is. The combustion of the pulverized fuel is performed in the furnace 210, and the high-temperature combustion gas is discharged outside the boiler 200 after passing through a heat exchanger (not shown) such as an evaporator, a superheater, and an economizer.
ボイラ200から排出された燃焼ガスは、環境装置(例えば脱硝装置、電気集塵機など:図示省略)で所定の処理を行うとともに、空気予熱器などの熱交換器(図示省略)で外気との熱交換が行われ、誘引通風機(図示省略)を介して煙突(図示省略)へと導かれて大気へと放出される。熱交換器において燃焼ガスとの熱交換により加熱された外気は、前述した熱ガス送風機30aに送られる。
The combustion gas discharged from the boiler 200 is subjected to predetermined processing in an environmental device (for example, a denitration device, an electric dust collector, etc .: not shown), and heat exchange with the outside air is performed by a heat exchanger (not shown) such as an air preheater. Is performed, and guided to a chimney (not shown) via an induction ventilator (not shown), and is discharged to the atmosphere. The outside air heated by heat exchange with the combustion gas in the heat exchanger is sent to the above-described hot gas blower 30a.
ボイラ200の各熱交換器への給水は、エコノマイザ(図示省略)において加熱された後に、蒸発器(図示省略)および過熱器(図示省略)によって更に加熱されて高温高圧の蒸気が生成され、蒸気タービン(図示省略)へと送られて発電機(図示省略)を回転駆動して発電が行われる。
Water supplied to each heat exchanger of the boiler 200 is heated by an economizer (not shown), and further heated by an evaporator (not shown) and a superheater (not shown) to generate high-temperature and high-pressure steam. The power is sent to a turbine (not shown), and a generator (not shown) is rotated to generate power.
[分級機のシール構造]
次に、分級機16のシール構造について説明する。
図1に示したように、分級機16は、回転軸線回りに回転するので、静止しているハウジング11の天井部42との間に隙間流路を設けている。この隙間流路を介して粉砕後燃料が分級機16の外周側から内周側に流れて、隙間流路GFから流入した粗粒の粉砕後燃料がショートパスすると、ブレード16aによって分離されずに微粉燃料だけでなく粗粉燃料もミル出口から排出されて、分級性能が低下してしまう。そこで、隙間流路をシールするシール構造が必要となる。しかし、シール性のみに注目してシール構造を石炭燃料用に設定すると、バイオマス燃料は石炭燃料に比べて粒径が大きいため、バイオマス燃料としては隙間流路が狭すぎて粉砕後の粉砕後燃料が隙間流路内で付着したり堆積したりして、分級機16の回転に支障を生じるおそれがある。 [Seal structure of classifier]
Next, the seal structure of theclassifier 16 will be described.
As shown in FIG. 1, since theclassifier 16 rotates around the rotation axis, a gap flow path is provided between the classifier 16 and the ceiling 42 of the stationary housing 11. After the pulverized fuel flows from the outer peripheral side to the inner peripheral side of the classifier 16 via the gap flow path, and the coarse-grained pulverized fuel flowing from the gap flow path GF is short-passed, the fuel is not separated by the blade 16a. Not only the fine fuel but also the coarse fuel is discharged from the mill outlet, and the classification performance is reduced. Therefore, a seal structure for sealing the gap flow path is required. However, if the sealing structure is set for coal fuel by focusing only on the sealing properties, the biomass fuel has a larger particle size than the coal fuel, so the gap flow path is too narrow for biomass fuel, and May adhere or accumulate in the gap flow path, which may hinder the rotation of the classifier 16.
次に、分級機16のシール構造について説明する。
図1に示したように、分級機16は、回転軸線回りに回転するので、静止しているハウジング11の天井部42との間に隙間流路を設けている。この隙間流路を介して粉砕後燃料が分級機16の外周側から内周側に流れて、隙間流路GFから流入した粗粒の粉砕後燃料がショートパスすると、ブレード16aによって分離されずに微粉燃料だけでなく粗粉燃料もミル出口から排出されて、分級性能が低下してしまう。そこで、隙間流路をシールするシール構造が必要となる。しかし、シール性のみに注目してシール構造を石炭燃料用に設定すると、バイオマス燃料は石炭燃料に比べて粒径が大きいため、バイオマス燃料としては隙間流路が狭すぎて粉砕後の粉砕後燃料が隙間流路内で付着したり堆積したりして、分級機16の回転に支障を生じるおそれがある。 [Seal structure of classifier]
Next, the seal structure of the
As shown in FIG. 1, since the
図2には、図1のA部の詳細が示されている。天井部42の下面には、ブレードガイド(対向壁部)52が固定されている。ブレードガイド52は、回転軸線L1を中心とする円環形状とされている。回転軸線L1は、分級機16が回転する中心軸線とされている。なお、回転軸線L1は、図2では理解の容易のためにブレードガイド52の比較的近傍に示されているが、実際は更に離れて位置している。ブレードガイド52は、天井部42の下面に固定された取付部54に対して、ボルトや溶接によって固定されている。したがって、ブレードガイド52は、天井部42と同様に回転しない静止部となっている。ブレードガイド52は、上部に設けられた円板部52aと、円板部52aの内周位置にて連続して下方に延在する円筒部52bを備えている。したがって、ブレードガイド52の縦断面形状は、図2において上下を反転させたL字形状となっている。
FIG. 2 shows the details of the portion A in FIG. A blade guide (opposing wall) 52 is fixed to the lower surface of the ceiling 42. The blade guide 52 has an annular shape centered on the rotation axis L1. The rotation axis L1 is a center axis on which the classifier 16 rotates. Although the rotation axis L1 is shown relatively close to the blade guide 52 in FIG. 2 for easy understanding, the rotation axis L1 is actually farther away. The blade guide 52 is fixed to a mounting part 54 fixed to the lower surface of the ceiling part 42 by bolts or welding. Therefore, the blade guide 52 is a stationary portion that does not rotate similarly to the ceiling portion 42. The blade guide 52 includes a disk portion 52a provided at an upper portion, and a cylindrical portion 52b continuously extending downward at an inner circumferential position of the disk portion 52a. Therefore, the vertical cross-sectional shape of the blade guide 52 is an L-shape which is turned upside down in FIG.
ブレードガイド52の下方には、回転枠56が設けられている。回転枠56は、周方向に並列に並べられた複数のブレード16a(図1参照)の上端を支持する枠体とされている。回転枠56は、円環形状とされており、各ブレード16aと共に回転軸線L1回りに回転する。回転枠56は、上側の上円筒部56aと、上円筒部56aの下方に連続して設けられた下円筒部56bとを備えている。下円筒部56bは、上円筒部56aの外周面56a1と同じ径を有する外周面56b1を有する一方で、上円筒部56aの内周面56a2よりも内周側に位置する内周面56b2を有している。したがって、上円筒部56aよりも下円筒部56bの方が厚さ(半径方向の寸法)が大きくなっている。
回 転 A rotating frame 56 is provided below the blade guide 52. The rotating frame 56 is a frame that supports upper ends of a plurality of blades 16a (see FIG. 1) arranged in parallel in the circumferential direction. The rotating frame 56 has an annular shape, and rotates around the rotation axis L1 together with each blade 16a. The rotating frame 56 includes an upper cylindrical portion 56a on the upper side and a lower cylindrical portion 56b provided continuously below the upper cylindrical portion 56a. The lower cylindrical portion 56b has an outer peripheral surface 56b1 having the same diameter as the outer peripheral surface 56a1 of the upper cylindrical portion 56a, while having an inner peripheral surface 56b2 located on the inner peripheral side of the inner peripheral surface 56a2 of the upper cylindrical portion 56a. are doing. Therefore, the thickness (radial dimension) of the lower cylindrical portion 56b is larger than that of the upper cylindrical portion 56a.
下円筒部56bの外周面56b1に対して、半径方向に延在するように円板部56cが固定されている。円板部56cは、下円筒部56bに対して溶接等によって固定されている。円板部56cの上面には、リブ58が設けられている。
円 A disk portion 56c is fixed to the outer peripheral surface 56b1 of the lower cylindrical portion 56b so as to extend in the radial direction. The disk portion 56c is fixed to the lower cylindrical portion 56b by welding or the like. A rib 58 is provided on the upper surface of the disk portion 56c.
リブ58は、図2のように側面視すると、略直角三角形とされた板状体である。リブ58の下辺は円板部56cの上面に対して溶接等によって固定されており、リブ58の下辺に対して直角をなす左辺は上円筒部56a及び下円筒部56bの外周面に対して溶接等によって固定されている。リブ58の斜辺は、外周側に位置している。
The rib 58 is a plate-like body having a substantially right triangle when viewed from the side as shown in FIG. The lower side of the rib 58 is fixed to the upper surface of the disk portion 56c by welding or the like, and the left side perpendicular to the lower side of the rib 58 is welded to the outer peripheral surfaces of the upper cylindrical portion 56a and the lower cylindrical portion 56b. And so on. The oblique side of the rib 58 is located on the outer peripheral side.
図3には、回転枠56の一部分を示した斜視図が示されている。なお、同図では、内周側と外周側が図2と回転軸線L1に対して左右反対になっているので注意されたい。同図に示すように、リブ58は、円周方向の所定位置に設けられている。好ましくは、リブ58は、所定の等間隔で複数設けることが好ましい。リブ58が回転枠56とともに回転することによって、リブ58の側面58aによって、ミル10内の下方側から上方側へ流れる気流の一部が後述する隙間流路GFの入口開口GFin付近に浮遊する粗粉燃料を払い除けることができるようになっている。
FIG. 3 is a perspective view showing a part of the rotating frame 56. It should be noted that, in FIG. 2, the inner peripheral side and the outer peripheral side are opposite to each other with respect to the rotation axis L1 in FIG. As shown in the figure, the rib 58 is provided at a predetermined position in the circumferential direction. Preferably, a plurality of ribs 58 are provided at predetermined regular intervals. When the rib 58 rotates together with the rotary frame 56, a part of the airflow flowing from the lower side to the upper side in the mill 10 floats near the inlet opening GFin of the gap flow passage GF described later by the side surface 58a of the rib 58. Powder fuel can be removed.
図2に示すように、回転枠56と、回転枠56に対向するブレードガイド52との間には隙間流路GFが形成されていて、シール部57を設けてある。回転枠56の外径及び内径はブレードガイド52の外径及び内径と略同一とされている。隙間流路GFは、外周側から内周側すなわち上流側から下流側に向けて、第1流路GF1、第2流路GF2及び第3流路GF3が順に設けられている。隙間流路GFは、以下に説明するように、第1流路GF1、第2流路GF2及び第3流路GF3によって、縦断面形状がクランク状とされた流路形状とされており、これによりシール部57を構成する。
(2) As shown in FIG. 2, a clearance channel GF is formed between the rotary frame 56 and the blade guide 52 facing the rotary frame 56, and a seal portion 57 is provided. The outer and inner diameters of the rotating frame 56 are substantially the same as the outer and inner diameters of the blade guide 52. The gap flow path GF is provided with a first flow path GF1, a second flow path GF2, and a third flow path GF3 in order from the outer peripheral side to the inner peripheral side, that is, from the upstream side to the downstream side. As will be described below, the gap channel GF has a first channel GF1, a second channel GF2, and a third channel GF3, and has a vertical channel shape having a crank shape. Constitutes the seal portion 57.
第1流路GF1は、回転枠56の上円筒部56aの上端56a3と、この上端に対向するブレードガイド52の円板部52aの下面52a3との間に形成されている。第1流路GF1は、外周側から内周側に向かって略水平に形成されている。第1流路GF1は、回転枠56の外周面56a1の上方にて開口する入口開口GFinを有する。
The first flow path GF1 is formed between the upper end 56a3 of the upper cylindrical portion 56a of the rotating frame 56 and the lower surface 52a3 of the disk portion 52a of the blade guide 52 facing the upper end. The first flow path GF1 is formed substantially horizontally from the outer peripheral side toward the inner peripheral side. The first flow path GF1 has an inlet opening GFin that opens above the outer peripheral surface 56a1 of the rotating frame 56.
第2流路GF2は、回転枠56の上円筒部56aの内周面56a2と、この内周面56a2に対向するブレードガイド52の円筒部52bの外周面52b1との間に形成されている。第2流路GF2は、第1流路GF1の内周側端部に接続しており、上方から下方に向かって略鉛直方向に延在した流路となっている。第1流路GF1と第2流路GF2との接続部は、略直角に屈曲した第1屈曲部BD1となっている。
The second flow path GF2 is formed between the inner peripheral surface 56a2 of the upper cylindrical portion 56a of the rotating frame 56 and the outer peripheral surface 52b1 of the cylindrical portion 52b of the blade guide 52 facing the inner peripheral surface 56a2. The second flow path GF2 is connected to the inner peripheral end of the first flow path GF1, and is a flow path extending in a substantially vertical direction from above to below. The connection between the first flow path GF1 and the second flow path GF2 is a first bent portion BD1 bent at a substantially right angle.
第3流路GF3は、回転枠56の下円筒部56bの上端56b3と、この上端56b3に対向するブレードガイド52の円筒部52bの下端52b3との間に形成されている。第3流路GF3の外周側端部は、第2流路GF2の下端に接続しており、外周側から内周側に向かって形成された流路となっている。第2流路GF2と第3流路GF3との接続部は、本実施形態では略直角に屈曲しており、第2屈曲部BD2となっている。第3流路GF3は、回転枠56の下円筒部56bの内周面56b2の上方にて開口する出口開口GFoutを有している。
The third flow path GF3 is formed between the upper end 56b3 of the lower cylindrical portion 56b of the rotating frame 56 and the lower end 52b3 of the cylindrical portion 52b of the blade guide 52 facing the upper end 56b3. The outer peripheral end of the third flow path GF3 is connected to the lower end of the second flow path GF2, and is a flow path formed from the outer peripheral side toward the inner peripheral side. In the present embodiment, the connecting portion between the second flow path GF2 and the third flow path GF3 is bent at a substantially right angle, and forms a second bent portion BD2. The third flow path GF3 has an outlet opening GFout that opens above the inner peripheral surface 56b2 of the lower cylindrical portion 56b of the rotating frame 56.
第2流路GF2の隙間、すなわち回転枠56の上円筒部56aの内周面56a2と、ブレードガイド52の円筒部52bの外周面52b1との間の半径方向における隙間寸法D1は、固体燃料がバイオマスペレットとされた場合に、バイオマスペレットの構成粒子の粒径以上でかつ、粉砕前のバイオマスペレットの粒径以下とされている。バイオマスペレットの構成粒子とは、所定形状に圧縮成形されたバイオマスペレットの構成単位とされる粒子(細粒)を意味する。例えば、バイオマスペレットの構成粒子の粒径が0.6~1.0mmとされる。また、バイオマスペレットの粒径とは、所定形状に圧縮成形されたバイオマスペレットは球形でなく円筒状のものが多く、外形のうちで短い側の寸法を意味する。例えば、円筒状バイオマスペレットの粒径が6~8mm、長さが30~40mmとされる。例えば、上記のようなバイオマスペレットの場合には、隙間寸法D1は、0.6mm以上8mm以下とされる。
石炭燃料と切替えて使用する場合や、石炭燃料中にバイオマス燃料を含む場合の隙間寸法D1は、上記と同様にバイオマスペレットの構成粒子の粒径以上でかつ、粉砕前のバイオマスペレットの粒径以下とされている。石炭燃料にとっては隙間寸法D1(例えば0.6mm以上8mm以下)は数倍大きい数値となる。しかし、略直角に屈曲した第1屈曲部BD1と第2流路GF2での圧力損失により、回転枠56とブレードガイド52との間のシール部57の隙間流路GFを粗粒の粉砕後燃料がショートパスしてミル10の出口19から排出されることが抑制されることで、シール性が確保される。 The gap D2 in the radial direction between the inner circumference 56a2 of the uppercylindrical portion 56a of the rotating frame 56 and the outer circumferential surface 52b1 of the cylindrical portion 52b of the blade guide 52 is determined by the gap of the second flow path GF2. In the case where the biomass pellet is used, the particle size is equal to or larger than the particle size of the constituent particles of the biomass pellet and equal to or smaller than the particle size of the biomass pellet before pulverization. The constituent particles of the biomass pellet mean particles (fine particles) that are constituent units of the biomass pellet that has been compression-molded into a predetermined shape. For example, the particle diameter of the constituent particles of the biomass pellet is set to 0.6 to 1.0 mm. Further, the particle size of the biomass pellet means that the biomass pellet that is compression-molded into a predetermined shape is often not a spherical shape but a cylindrical shape, and means the shorter dimension of the outer shape. For example, the particle size of the cylindrical biomass pellet is 6 to 8 mm, and the length is 30 to 40 mm. For example, in the case of the biomass pellet as described above, the gap dimension D1 is set to be 0.6 mm or more and 8 mm or less.
In the case where the fuel is used by switching to coal fuel, or when the biomass fuel is included in the coal fuel, the gap size D1 is equal to or larger than the particle diameter of the constituent particles of the biomass pellet and equal to or smaller than the particle diameter of the biomass pellet before pulverization as described above. It has been. For coal fuel, the gap size D1 (for example, 0.6 mm or more and 8 mm or less) is a numerical value several times larger. However, due to the pressure loss in the first bent portion BD1 bent at a substantially right angle and the second flow passage GF2, the gap flow passage GF of theseal portion 57 between the rotary frame 56 and the blade guide 52 is subjected to coarse pulverized fuel. Is suppressed from being discharged from the outlet 19 of the mill 10 through a short pass, whereby the sealing property is ensured.
石炭燃料と切替えて使用する場合や、石炭燃料中にバイオマス燃料を含む場合の隙間寸法D1は、上記と同様にバイオマスペレットの構成粒子の粒径以上でかつ、粉砕前のバイオマスペレットの粒径以下とされている。石炭燃料にとっては隙間寸法D1(例えば0.6mm以上8mm以下)は数倍大きい数値となる。しかし、略直角に屈曲した第1屈曲部BD1と第2流路GF2での圧力損失により、回転枠56とブレードガイド52との間のシール部57の隙間流路GFを粗粒の粉砕後燃料がショートパスしてミル10の出口19から排出されることが抑制されることで、シール性が確保される。 The gap D2 in the radial direction between the inner circumference 56a2 of the upper
In the case where the fuel is used by switching to coal fuel, or when the biomass fuel is included in the coal fuel, the gap size D1 is equal to or larger than the particle diameter of the constituent particles of the biomass pellet and equal to or smaller than the particle diameter of the biomass pellet before pulverization as described above. It has been. For coal fuel, the gap size D1 (for example, 0.6 mm or more and 8 mm or less) is a numerical value several times larger. However, due to the pressure loss in the first bent portion BD1 bent at a substantially right angle and the second flow passage GF2, the gap flow passage GF of the
入口開口GFinと出口開口GFoutの間の長さとなる第2流路GF2の上下方向の長さD2は、上記の隙間寸法D1の5倍以上10倍以下とされている。例えば、上記のバイオマスペレットの具体的寸法の場合、上下方向の長さD2は、3mm以上80mm以下とされる。
The vertical length D2 of the second flow path GF2, which is the length between the inlet opening GFin and the outlet opening GFout, is set to be not less than 5 times and not more than 10 times the gap dimension D1. For example, in the case of the specific size of the biomass pellet described above, the length D2 in the vertical direction is 3 mm or more and 80 mm or less.
第1流路GF1の流路断面積は、第2流路GF2の流路断面積よりも大きくされている。すなわち、第2流路GF2の隙間寸法D1よりも、第1流路GF1の隙間寸法D3の方が大きくされている。
流 路 The cross-sectional area of the first flow path GF1 is larger than the cross-sectional area of the second flow path GF2. That is, the gap dimension D3 of the first channel GF1 is larger than the gap dimension D1 of the second channel GF2.
第3流路GF3の流路断面積は、第2流路GF2の流路断面積よりも大きくされている。すなわち、第2流路GF2の隙間寸法D1よりも、第3流路GF3の隙間寸法D4の方が大きくされている。
流 路 The cross-sectional area of the third flow path GF3 is larger than the cross-sectional area of the second flow path GF2. That is, the clearance dimension D4 of the third flow path GF3 is larger than the clearance dimension D1 of the second flow path GF2.
本実施形態によれば、以下の作用効果を奏する。
ローラ13で粉砕された粉砕後燃料は、分級機16の回転枠56とブレードガイド52との間の隙間流路GFによってシールされる。すなわち、粉砕後燃料がブレード16a間を通過せずに回転枠56とブレードガイド52との間を通過することがないように、回転枠56とブレードガイド52との間の隙間流路GFによってシール部57が形成されている。
隙間流路GFは、分級機16の外周に開口する入口開口GFinを有するとともに外周側から内周側に向かう第1流路GF1と、第1流路GF1の内周端部に対して接続されて下方へ向かう第2流路GF2と、第2流路GF2の下端に対して接続されて外周側から内周側に向かい分級機16(具体的にはシール部57となる回転枠56)の内周側に開口する出口開口GFoutを有する第3流路GF3とを備えている。
第2流路GF2は、上方から下方に向かうように設けられているので、第2流路GF2内を上から下に流れる流体による流体力だけでなく重力を利用することができる。これにより、入口開口GFinから流入してしまった粉砕後燃料は、隙間流路GF内に存在する粉砕後燃料を滞留させることなく排出することが容易となる。
隙間流路GFは、第1屈曲部BD1と第2屈曲部BD2を有しているので、これら屈曲部BD1,BD2にて適切な圧力損失を与えて、また第2流路GF2での圧力損失を与えて、所望のシール性を確保することができる。 According to the present embodiment, the following operation and effect can be obtained.
The pulverized fuel pulverized by therollers 13 is sealed by the gap flow path GF between the rotary frame 56 of the classifier 16 and the blade guide 52. That is, in order to prevent the fuel after pulverization from passing between the rotary frame 56 and the blade guide 52 without passing between the blades 16a, a seal is provided by the gap flow path GF between the rotary frame 56 and the blade guide 52. A portion 57 is formed.
The gap flow path GF has an inlet opening GFin that opens to the outer circumference of theclassifier 16 and is connected to the first flow path GF1 that goes from the outer circumference to the inner circumference, and to the inner circumference end of the first flow path GF1. Of the classifier 16 connected to the lower end of the second flow path GF2 from the outer peripheral side toward the inner peripheral side (specifically, the rotating frame 56 serving as the seal portion 57). A third flow path GF3 having an outlet opening GFout that opens on the inner peripheral side.
Since the second flow path GF2 is provided from the upper side to the lower side, not only the fluid force by the fluid flowing from the top to the bottom in the second flow path GF2 but also gravity can be used. Thus, the pulverized fuel that has flowed in from the inlet opening GFin can be easily discharged without retaining the pulverized fuel existing in the gap flow path GF.
Since the gap flow path GF has the first bent portion BD1 and the second bent portion BD2, an appropriate pressure loss is given to these bent portions BD1 and BD2, and the pressure loss in the second flow passage GF2. To secure desired sealing properties.
ローラ13で粉砕された粉砕後燃料は、分級機16の回転枠56とブレードガイド52との間の隙間流路GFによってシールされる。すなわち、粉砕後燃料がブレード16a間を通過せずに回転枠56とブレードガイド52との間を通過することがないように、回転枠56とブレードガイド52との間の隙間流路GFによってシール部57が形成されている。
隙間流路GFは、分級機16の外周に開口する入口開口GFinを有するとともに外周側から内周側に向かう第1流路GF1と、第1流路GF1の内周端部に対して接続されて下方へ向かう第2流路GF2と、第2流路GF2の下端に対して接続されて外周側から内周側に向かい分級機16(具体的にはシール部57となる回転枠56)の内周側に開口する出口開口GFoutを有する第3流路GF3とを備えている。
第2流路GF2は、上方から下方に向かうように設けられているので、第2流路GF2内を上から下に流れる流体による流体力だけでなく重力を利用することができる。これにより、入口開口GFinから流入してしまった粉砕後燃料は、隙間流路GF内に存在する粉砕後燃料を滞留させることなく排出することが容易となる。
隙間流路GFは、第1屈曲部BD1と第2屈曲部BD2を有しているので、これら屈曲部BD1,BD2にて適切な圧力損失を与えて、また第2流路GF2での圧力損失を与えて、所望のシール性を確保することができる。 According to the present embodiment, the following operation and effect can be obtained.
The pulverized fuel pulverized by the
The gap flow path GF has an inlet opening GFin that opens to the outer circumference of the
Since the second flow path GF2 is provided from the upper side to the lower side, not only the fluid force by the fluid flowing from the top to the bottom in the second flow path GF2 but also gravity can be used. Thus, the pulverized fuel that has flowed in from the inlet opening GFin can be easily discharged without retaining the pulverized fuel existing in the gap flow path GF.
Since the gap flow path GF has the first bent portion BD1 and the second bent portion BD2, an appropriate pressure loss is given to these bent portions BD1 and BD2, and the pressure loss in the second flow passage GF2. To secure desired sealing properties.
分級機16の内部の温度上昇に伴う温度差による熱伸び差や機械加工精度に対して相互に干渉しないような隙間を設ける必要がある。このとき、略直角に屈曲した第1屈曲部BD1と第2流路GF2での圧力損失により、回転枠56とブレードガイド52との間のシール部57の隙間流路を粗粒の粉砕後燃料がショートパスしてミル10の出口19から排出されることを抑制できるよう、シール性が確保される。第1流路GF1の流路断面積を第2流路GF2の流路断面積よりも大きくしたので、第1流路GF1側に相互に干渉しないような隙間を設けることが可能となる。
(4) It is necessary to provide a gap that does not interfere with each other due to a difference in thermal expansion due to a temperature difference due to a rise in the temperature inside the classifier 16 and a machining accuracy. At this time, the gap flow path of the seal portion 57 between the rotating frame 56 and the blade guide 52 causes the fuel after coarse pulverization of the fuel due to the pressure loss in the first bent portion BD1 bent at a substantially right angle and the second flow path GF2. Can be prevented from being discharged from the outlet 19 of the mill 10 through a short pass. Since the flow path cross-sectional area of the first flow path GF1 is larger than the flow path cross-sectional area of the second flow path GF2, it is possible to provide a gap on the first flow path GF1 side so as not to interfere with each other.
第3流路GF3の流路断面積を第2流路GF2の流路断面積よりも大きくしたので入口開口GFinから流入してしまった粉砕後燃料は、隙間流路GFに存在する粉砕後燃料をさらに容易に第3流路GF3の出口開口GFoutへと排出することができる。
Since the cross-sectional area of the third flow path GF3 is larger than the cross-sectional area of the second flow path GF2, the pulverized fuel that has flowed in from the inlet opening GFin is the pulverized fuel existing in the gap flow path GF. Can be more easily discharged to the outlet opening GFout of the third flow path GF3.
第2流路GF2の隙間寸法D1をバイオマスペレットの構成粒子の粒子径以上でかつバイオマスペレットの粒子径以下とすることによって、第2流路GF2にバイオマスペレットの粉砕後燃料が堆積することを回避できる。
By setting the gap size D1 of the second flow path GF2 to be equal to or larger than the particle diameter of the constituent particles of the biomass pellet and equal to or smaller than the particle diameter of the biomass pellet, it is possible to avoid accumulation of the fuel after pulverization of the biomass pellet in the second flow path GF2. it can.
第2流路GF2の上下方向の長さD2を、第2流路GF2の隙間寸法D1の5倍以上10倍以下とした。第2流路GF2の上下方向の長さD2が隙間寸法D1の5倍未満では十分な圧力損失を得ることができずシール性が低下するおそれがある。第2流路GF2の上下方向の長さD2が隙間寸法D1の10倍を超えると、粉砕後燃料が第2流路GF2に付着または堆積するおそれがある。したがって、第2流路GF2での適切な圧力損失を与えるには、第2流路GF2の上下方向の長さD2が隙間寸法D1の5倍以上10倍以下が好適である。
(4) The length D2 of the second flow path GF2 in the vertical direction is set to 5 times or more and 10 times or less of the gap dimension D1 of the second flow path GF2. If the length D2 of the second flow path GF2 in the up-down direction is less than 5 times the gap dimension D1, sufficient pressure loss cannot be obtained, and the sealing performance may be reduced. If the vertical length D2 of the second flow path GF2 exceeds 10 times the gap dimension D1, the fuel after pulverization may adhere or accumulate on the second flow path GF2. Therefore, in order to provide an appropriate pressure loss in the second flow path GF2, it is preferable that the vertical length D2 of the second flow path GF2 is 5 times or more and 10 times or less of the gap dimension D1.
回転枠56の外周に、半径方向に延在するリブ58を設けることとした。これにより、回転枠56とともに回転するリブ58によって、シール部57の隙間流路GFの入口開口GFinの入口付近に浮遊する粗粒燃料を払い除けることで、入口開口(GFin)からの流入を抑制し、粗粉燃料が隙間流路GFをショートパスしてミル10の出口19から排出することを抑制し、分級性能を向上させることができる。
リ ブ A rib 58 extending in the radial direction is provided on the outer periphery of the rotating frame 56. Thereby, the coarse fuel floating near the entrance of the entrance opening GFin of the clearance channel GF of the seal portion 57 can be removed by the rib 58 rotating together with the rotating frame 56, thereby suppressing the inflow from the entrance opening (GFin). However, it is possible to prevent the coarse powder fuel from being short-passed through the gap flow path GF and being discharged from the outlet 19 of the mill 10, thereby improving the classification performance.
[第2実施形態]
次に、本開示の第2実施形態について、図4を用いて説明する。
本実施形態は、第1実施形態に対して、第1流路GF1と第2流路GF2とを接続する第2屈曲部BD2の形状が異なる。したがって、以下の説明では、第1実施形態との相違点について説明し、その他の構成及び作用効果については第1実施形態と同様なので説明を省略する。 [Second embodiment]
Next, a second embodiment of the present disclosure will be described with reference to FIG.
This embodiment differs from the first embodiment in the shape of the second bent portion BD2 that connects the first flow path GF1 and the second flow path GF2. Therefore, in the following description, differences from the first embodiment will be described, and other configurations and operational effects are the same as those of the first embodiment, and a description thereof will be omitted.
次に、本開示の第2実施形態について、図4を用いて説明する。
本実施形態は、第1実施形態に対して、第1流路GF1と第2流路GF2とを接続する第2屈曲部BD2の形状が異なる。したがって、以下の説明では、第1実施形態との相違点について説明し、その他の構成及び作用効果については第1実施形態と同様なので説明を省略する。 [Second embodiment]
Next, a second embodiment of the present disclosure will be described with reference to FIG.
This embodiment differs from the first embodiment in the shape of the second bent portion BD2 that connects the first flow path GF1 and the second flow path GF2. Therefore, in the following description, differences from the first embodiment will be described, and other configurations and operational effects are the same as those of the first embodiment, and a description thereof will be omitted.
図4は、第1実施形態の図2に対応する本実施形態の縦断面図である。
ブレードガイド52の円筒部52bの外周面52b1と下端52b3との間には、面取部52dが形成されている。面取部52dは、回転軸線L1を中心とする円周方向に連続して設けられている。面取部52dは、円弧形状の曲面部の形状をしていてもよい。
回転枠56の上円筒部56aの内周面56a2と下円筒部56bの上端56b3との間には、曲面部56dが形成されている。曲面部56dは、図4のように断面視した場合に、曲率中心を上円筒部56aの内周面56a2よりも内周側に位置させた円弧形状(R形状)とされており、回転軸線L1を中心とする円周方向に連続して設けられている。曲面部56dは面取部の形状をしていてもよい。
本実施形態では、第2流路GF2と第3流路GF3とを接続する第2屈曲部BD2’は、面取部52dと曲面部56dとの間に形成されている。 FIG. 4 is a longitudinal sectional view of this embodiment corresponding to FIG. 2 of the first embodiment.
A chamferedportion 52d is formed between the outer peripheral surface 52b1 and the lower end 52b3 of the cylindrical portion 52b of the blade guide 52. The chamfered portion 52d is provided continuously in the circumferential direction around the rotation axis L1. The chamfered portion 52d may have an arcuate curved surface portion.
Acurved surface portion 56d is formed between the inner peripheral surface 56a2 of the upper cylindrical portion 56a of the rotating frame 56 and the upper end 56b3 of the lower cylindrical portion 56b. The curved surface portion 56d has an arc shape (R shape) in which the center of curvature is located on the inner peripheral side of the inner peripheral surface 56a2 of the upper cylindrical portion 56a when viewed in cross section as shown in FIG. It is provided continuously in the circumferential direction around L1. The curved surface portion 56d may have a chamfered shape.
In the present embodiment, the second bent portion BD2 'connecting the second flow passage GF2 and the third flow passage GF3 is formed between the chamferedportion 52d and the curved surface portion 56d.
ブレードガイド52の円筒部52bの外周面52b1と下端52b3との間には、面取部52dが形成されている。面取部52dは、回転軸線L1を中心とする円周方向に連続して設けられている。面取部52dは、円弧形状の曲面部の形状をしていてもよい。
回転枠56の上円筒部56aの内周面56a2と下円筒部56bの上端56b3との間には、曲面部56dが形成されている。曲面部56dは、図4のように断面視した場合に、曲率中心を上円筒部56aの内周面56a2よりも内周側に位置させた円弧形状(R形状)とされており、回転軸線L1を中心とする円周方向に連続して設けられている。曲面部56dは面取部の形状をしていてもよい。
本実施形態では、第2流路GF2と第3流路GF3とを接続する第2屈曲部BD2’は、面取部52dと曲面部56dとの間に形成されている。 FIG. 4 is a longitudinal sectional view of this embodiment corresponding to FIG. 2 of the first embodiment.
A chamfered
A
In the present embodiment, the second bent portion BD2 'connecting the second flow passage GF2 and the third flow passage GF3 is formed between the chamfered
本実施形態によれば、第2屈曲部BD2’に対応する位置に面取部52dと曲面部56dを設けることによって流れを滑らかにし、隙間流路GFに存在する粉砕後燃料の排出性を一層に向上させることができる。
特に、ブレードガイド52に面取部52dを設けると共に、回転枠56に曲面部56dを設けることで、第2屈曲部BD2’における流路を広くすることで粉砕後燃料を流れやすくすることができる。ただし、第2屈曲部BD2’の流路を広くする程度は、第2屈曲部BD2’によって与えられる圧力損失が第1屈曲部BD1の圧力損失や第2流路GF2の圧力損失に比べて小さくなり過ぎないように、例えば第1屈曲部BD1での圧力損失と第2流路GF2での圧力損失の小さい方よりも1/10以下にはならないように適切に設定される。 According to the present embodiment, by providing the chamferedportion 52d and the curved surface portion 56d at positions corresponding to the second bent portion BD2 ', the flow is smoothed, and the dischargeability of the pulverized fuel existing in the gap flow path GF is further improved. Can be improved.
In particular, by providing theblade guide 52 with the chamfered portion 52d and the rotating frame 56 with the curved surface portion 56d, the flow path in the second bent portion BD2 'is widened, so that the fuel after the pulverization can easily flow. . However, the degree to which the flow path of the second bent portion BD2 'is widened is such that the pressure loss given by the second bent portion BD2' is smaller than the pressure loss of the first bent portion BD1 and the pressure loss of the second flow passage GF2. In order to prevent the pressure loss in the first bent portion BD1 and the pressure loss in the second flow path GF2, for example, the pressure loss is appropriately set so as not to be 1/10 or less.
特に、ブレードガイド52に面取部52dを設けると共に、回転枠56に曲面部56dを設けることで、第2屈曲部BD2’における流路を広くすることで粉砕後燃料を流れやすくすることができる。ただし、第2屈曲部BD2’の流路を広くする程度は、第2屈曲部BD2’によって与えられる圧力損失が第1屈曲部BD1の圧力損失や第2流路GF2の圧力損失に比べて小さくなり過ぎないように、例えば第1屈曲部BD1での圧力損失と第2流路GF2での圧力損失の小さい方よりも1/10以下にはならないように適切に設定される。 According to the present embodiment, by providing the chamfered
In particular, by providing the
なお、本実施形態では、ブレードガイド52に面取部52dを設け、回転枠56に曲面部56dを設けることとしたが、本開示はこれに限定されるものではなく、ブレードガイド52に曲面部を設けても良いし、回転枠56に面取部を設けても良い。あるいは、ブレードガイド52又は回転枠56のいずれか一方に対して面取部又は曲面部を設けることとしても良い。
In the present embodiment, the blade guide 52 is provided with the chamfered portion 52d and the rotating frame 56 is provided with the curved surface portion 56d. However, the present disclosure is not limited to this, and the blade guide 52 may be provided with the curved surface portion. May be provided, or a chamfer may be provided on the rotating frame 56. Alternatively, a chamfer or a curved portion may be provided for either the blade guide 52 or the rotating frame 56.
[第3実施形態]
次に、本開示の第3実施形態について、図5を用いて説明する。
本実施形態は、第1実施形態に対して、ブレードガイド52の円筒部52bの外周面52b1の形状が異なる。したがって、以下の説明では、第1実施形態との相違点について説明し、その他の構成及び作用効果については第1実施形態と同様なので説明を省略する。 [Third embodiment]
Next, a third embodiment of the present disclosure will be described with reference to FIG.
This embodiment differs from the first embodiment in the shape of the outer peripheral surface 52b1 of thecylindrical portion 52b of the blade guide 52. Therefore, in the following description, differences from the first embodiment will be described, and other configurations and operational effects are the same as those of the first embodiment, and a description thereof will be omitted.
次に、本開示の第3実施形態について、図5を用いて説明する。
本実施形態は、第1実施形態に対して、ブレードガイド52の円筒部52bの外周面52b1の形状が異なる。したがって、以下の説明では、第1実施形態との相違点について説明し、その他の構成及び作用効果については第1実施形態と同様なので説明を省略する。 [Third embodiment]
Next, a third embodiment of the present disclosure will be described with reference to FIG.
This embodiment differs from the first embodiment in the shape of the outer peripheral surface 52b1 of the
図5は、第1実施形態の図2に対応する本実施形態の縦断面図である。
ブレードガイド52の円筒部52bの外周面52b1には、螺旋溝52eが形成されている。螺旋溝52eは、1条であっても良いし、複数条であっても良い。また、螺旋溝52eの断面形状は、図5に示すように矩形状であっても良いし、円弧形状であっても良い。
螺旋溝52eは、第2流路GF2を流れる流れに対して下方から上方へ向かうように形成される場合と、上方から下方へ向かうように形成される場合とを使い分けることができる。 FIG. 5 is a longitudinal sectional view of this embodiment corresponding to FIG. 2 of the first embodiment.
Aspiral groove 52e is formed on the outer peripheral surface 52b1 of the cylindrical portion 52b of the blade guide 52. The number of the spiral groove 52e may be one or plural. Further, the cross-sectional shape of the spiral groove 52e may be rectangular as shown in FIG. 5, or may be arc-shaped.
Thespiral groove 52e can be used for a case where the spiral groove 52e is formed so as to go upward from below with respect to the flow flowing through the second flow path GF2, and a case where the spiral groove 52e is formed so as to go downward from above.
ブレードガイド52の円筒部52bの外周面52b1には、螺旋溝52eが形成されている。螺旋溝52eは、1条であっても良いし、複数条であっても良い。また、螺旋溝52eの断面形状は、図5に示すように矩形状であっても良いし、円弧形状であっても良い。
螺旋溝52eは、第2流路GF2を流れる流れに対して下方から上方へ向かうように形成される場合と、上方から下方へ向かうように形成される場合とを使い分けることができる。 FIG. 5 is a longitudinal sectional view of this embodiment corresponding to FIG. 2 of the first embodiment.
A
The
螺旋溝52eが下方から上方へ向かう上向きとされている場合には、第2流路GF2の流れに対して圧力損失を付加することができ、シール性を向上させることができる。上向きの螺旋溝52eは、バイオマス燃料に比べて粒径が小さいためシール性が要求される石炭燃料を多く使用する形態のときに用いるのが好適である。
(4) When the spiral groove 52e is directed upward from the lower side to the upper side, a pressure loss can be added to the flow of the second flow path GF2, and the sealing performance can be improved. The upward spiral groove 52e has a smaller particle size than biomass fuel, so it is preferable to use the spiral groove 52e in a mode in which a large amount of coal fuel requiring sealing properties is used.
螺旋溝52eが上方から下方へ向かう下向きとされている場合には、第2流路GF2の流れを加勢することができ、粉砕後燃料の排出性を向上させることができる。下向きの螺旋溝52eは、石炭燃料に比べて粒径が大きいため排出性が要求されるバイオマス燃料を多く使用する形態のときに用いるのが好適である。
(4) When the spiral groove 52e is directed downward from the upper side to the lower side, the flow of the second flow path GF2 can be energized, and the dischargeability of the fuel after pulverization can be improved. The downward spiral groove 52e is preferably used when the biomass fuel is required to be discharged, because of its larger particle size than coal fuel.
本実施形態では、ブレードガイド52に対して螺旋溝52eを形成することとしたが、回転枠56の上円筒部56aの内周面56a2にのみ形成しても良いし、あるいは、ブレードガイド52及び回転枠56の両方に設けても良い。
In this embodiment, the spiral groove 52e is formed in the blade guide 52. However, the spiral groove 52e may be formed only in the inner peripheral surface 56a2 of the upper cylindrical portion 56a of the rotating frame 56, or the blade guide 52 and the It may be provided on both of the rotating frames 56.
なお、上述した各実施形態では、第2流路GF2を鉛直方向に延在する流路としたが、本開示はこれに限定されるものではなく、重力を有効に利用できる限りにおいて、第2流路GF2の延在方向を鉛直方向に対して傾けても良い。
また、屈曲部BD1,BD2についても、適切な圧力損失を与えることができる限りにおいて、屈曲角度は90°に限定されるものではなく、例えば70°以上110°以下とされていても鈍角とされていても良い。 In each of the embodiments described above, the second flow path GF2 is a flow path extending in the vertical direction. However, the present disclosure is not limited to this, and the second flow path GF2 is not limited to the second flow path GF2 as long as gravity can be effectively used. The extending direction of the flow path GF2 may be inclined with respect to the vertical direction.
In addition, as for the bent portions BD1 and BD2, the bent angle is not limited to 90 ° as long as an appropriate pressure loss can be given. For example, the bent angle is set to an obtuse angle even if it is set to 70 ° or more and 110 ° or less. May be.
また、屈曲部BD1,BD2についても、適切な圧力損失を与えることができる限りにおいて、屈曲角度は90°に限定されるものではなく、例えば70°以上110°以下とされていても鈍角とされていても良い。 In each of the embodiments described above, the second flow path GF2 is a flow path extending in the vertical direction. However, the present disclosure is not limited to this, and the second flow path GF2 is not limited to the second flow path GF2 as long as gravity can be effectively used. The extending direction of the flow path GF2 may be inclined with respect to the vertical direction.
In addition, as for the bent portions BD1 and BD2, the bent angle is not limited to 90 ° as long as an appropriate pressure loss can be given. For example, the bent angle is set to an obtuse angle even if it is set to 70 ° or more and 110 ° or less. May be.
1 発電プラント
10 ミル(粉砕部)
11 ハウジング
12 回転テーブル
13 ローラ(粉砕ローラ)
14 駆動部
16 分級機
16a ブレード
17 燃料供給部
18 モータ
19 出口
20 給炭機(燃料供給機)
21 バンカ
22 搬送部(燃料供給機)
23 モータ(燃料供給機)
24 ダウンスパウト部
30 送風部
30a 熱ガス送風機
30b 冷ガス送風機
30c 熱ガスダンパ(第1送風部)
30d 冷ガスダンパ(第2送風部)
40 状態検出部(温度検出手段、差圧検出手段)
41 底面部
42 天井部
45 ジャーナルヘッド
47 支持アーム
48 支持軸
49 押圧装置
50 制御部
52 ブレードガイド(対向壁部)
52a 円板部
52a3 下面
52b 円筒部
52b1 外周面
52b3 下端
52d 面取部
52e 螺旋溝
54 取付部
56 回転枠
56a 上円筒部
56a1 外周面
56a2 内周面
56a3 上端
56b 下円筒部
56b1 外周面
56b2 内周面
56b3 上端
56c 円板部
56d 曲面部
57 シール部
58 リブ
58a 側面
100 固体燃料粉砕装置
100a 一次空気流路(搬送用ガス流路)
100b 供給流路
200 ボイラ
210 火炉
220 バーナ部(燃焼装置)
L1 回転軸線
GF 隙間流路
GF1 第1流路
GF2 第2流路
GF3 第3流路
GFin 入口開口
GFout 出口開口
BD1 第1屈曲部
BD2,BD2’ 第2屈曲部
D1 (第2流路の)隙間寸法
D2 (第2流路の)上下方向の長さ
D3 (第1流路の)隙間寸法
D4 (第3流路の)隙間寸法 1power plant 10 mill (crushing unit)
11Housing 12 Rotary table 13 Roller (crushing roller)
14drive unit 16 classifier 16a blade 17 fuel supply unit 18 motor 19 outlet 20 coal supply machine (fuel supply machine)
21Bunker 22 Transport unit (fuel supply machine)
23 Motor (fuel supply machine)
24 Downspout section 30 Blow section 30a Hot gas blower 30b Cold gas blower 30c Hot gas damper (first blow section)
30d cold gas damper (second blowing unit)
40 state detecting section (temperature detecting means, differential pressure detecting means)
41bottom part 42 ceiling part 45 journal head 47 support arm 48 support shaft 49 pressing device 50 control part 52 blade guide (opposing wall part)
52a Disk portion52a3 Lower surface 52b Cylindrical portion 52b1 Outer peripheral surface 52b3 Lower end 52d Beveled portion 52e Spiral groove 54 Mounting portion 56 Rotating frame 56a Upper cylindrical portion 56a1 Outer peripheral surface 56a2 Inner peripheral surface 56a3 Upper end 56b Lower cylindrical portion 56b1 Outer peripheral surface 56b2 Inner peripheral Surface 56b3 Upper end 56c Disk portion 56d Curved surface portion 57 Seal portion 58 Rib 58a Side surface 100 Solid fuel pulverizer 100a Primary air flow path (transport gas flow path)
100bSupply channel 200 Boiler 210 Furnace 220 Burner unit (combustion device)
L1 Rotation axis GF Gap flow path GF1 First flow path GF2 Second flow path GF3 Third flow path GFin Inlet opening GFout Outlet opening BD1 First bent portion BD2, BD2 'Second bent portion D1 (for second flow path) Dimension D2 Vertical length (of second flow path) D3 Gap size (of first flow path) D4 Gap size (of third flow path)
10 ミル(粉砕部)
11 ハウジング
12 回転テーブル
13 ローラ(粉砕ローラ)
14 駆動部
16 分級機
16a ブレード
17 燃料供給部
18 モータ
19 出口
20 給炭機(燃料供給機)
21 バンカ
22 搬送部(燃料供給機)
23 モータ(燃料供給機)
24 ダウンスパウト部
30 送風部
30a 熱ガス送風機
30b 冷ガス送風機
30c 熱ガスダンパ(第1送風部)
30d 冷ガスダンパ(第2送風部)
40 状態検出部(温度検出手段、差圧検出手段)
41 底面部
42 天井部
45 ジャーナルヘッド
47 支持アーム
48 支持軸
49 押圧装置
50 制御部
52 ブレードガイド(対向壁部)
52a 円板部
52a3 下面
52b 円筒部
52b1 外周面
52b3 下端
52d 面取部
52e 螺旋溝
54 取付部
56 回転枠
56a 上円筒部
56a1 外周面
56a2 内周面
56a3 上端
56b 下円筒部
56b1 外周面
56b2 内周面
56b3 上端
56c 円板部
56d 曲面部
57 シール部
58 リブ
58a 側面
100 固体燃料粉砕装置
100a 一次空気流路(搬送用ガス流路)
100b 供給流路
200 ボイラ
210 火炉
220 バーナ部(燃焼装置)
L1 回転軸線
GF 隙間流路
GF1 第1流路
GF2 第2流路
GF3 第3流路
GFin 入口開口
GFout 出口開口
BD1 第1屈曲部
BD2,BD2’ 第2屈曲部
D1 (第2流路の)隙間寸法
D2 (第2流路の)上下方向の長さ
D3 (第1流路の)隙間寸法
D4 (第3流路の)隙間寸法 1
11
14
21
23 Motor (fuel supply machine)
24 Down
30d cold gas damper (second blowing unit)
40 state detecting section (temperature detecting means, differential pressure detecting means)
41
52a Disk portion
100b
L1 Rotation axis GF Gap flow path GF1 First flow path GF2 Second flow path GF3 Third flow path GFin Inlet opening GFout Outlet opening BD1 First bent portion BD2, BD2 'Second bent portion D1 (for second flow path) Dimension D2 Vertical length (of second flow path) D3 Gap size (of first flow path) D4 Gap size (of third flow path)
Claims (11)
- 回転テーブルと、
前記回転テーブルとの間で固体燃料を粉砕する粉砕ローラと、
前記粉砕ローラによって粉砕された粉砕後燃料を分級する分級機と、
を備え、
前記分級機は、鉛直上下方向に延在するとともに回転軸線を中心とする円周方向に沿って配置された複数のブレードと、
複数の前記ブレードの上端を支持した状態で前記回転軸線回りに回転する回転枠と、を備え、
前記回転枠と、該回転枠に対向して配置された対向壁部との間に形成された隙間流路を有するシール部を備え、
前記シール部の前記隙間流路は、該シール部の外周に開口する入口開口を有するとともに外周側から内周側に向かう第1流路と、該第1流路の内周側端部に対して第1屈曲部を有するように上端が接続されて下方に向かう第2流路と、該シール部の内周に開口する出口開口を有するとともに外周側から内周側に向かうとともに該第2流路の下端に対して第2屈曲部を有するように外周側他端が接続された第3流路とを備えている固体燃料粉砕装置。 A rotating table,
A grinding roller for grinding the solid fuel between the rotary table and
A classifier for classifying the fuel after pulverization pulverized by the pulverizing roller,
With
The classifier, a plurality of blades extending vertically and arranged along a circumferential direction around the rotation axis,
A rotating frame that rotates around the rotation axis while supporting the upper ends of the plurality of blades,
The rotating frame, comprising a seal portion having a gap flow path formed between the opposed wall portion disposed opposite to the rotating frame,
The gap flow passage of the seal portion has an inlet opening that opens to the outer periphery of the seal portion and a first flow passage that goes from the outer periphery to the inner periphery, and an inner peripheral end of the first passage. A second flow path having an upper end connected so as to have a first bent portion and having a downward direction, and an outlet opening which is opened to the inner periphery of the seal portion, and which is directed from the outer peripheral side to the inner peripheral side and the second flow path. And a third flow path connected to the lower end of the path so as to have a second bent portion at the other end on the outer peripheral side. - 前記第3流路の流路断面積は、前記第2流路の流路断面積よりも大きい請求項1に記載の固体燃料粉砕装置。 The solid fuel pulverizer according to claim 1, wherein the cross-sectional area of the third flow path is larger than the cross-sectional area of the second flow path.
- 前記第1流路の流路断面積は、前記第2流路の流路断面積よりも大きい請求項1に記載の固体燃料粉砕装置。 The solid fuel pulverizer according to claim 1, wherein the cross-sectional area of the first flow path is larger than the cross-sectional area of the second flow path.
- 前記第2流路における前記回転枠と前記対向壁部との間の隙間寸法D1は、前記固体燃料がバイオマスペレットとされた場合に、該バイオマスペレットの構成粒子の粒径以上でかつ、粉砕前の該バイオマスペレットの粒径以下とされている請求項1から3のいずれかに記載の固体燃料粉砕装置。 The gap dimension D1 between the rotating frame and the opposed wall portion in the second flow path is, when the solid fuel is a biomass pellet, not less than the particle diameter of the constituent particles of the biomass pellet and before the pulverization. The solid fuel pulverizer according to any one of claims 1 to 3, wherein the particle size of the biomass pellet is not more than the particle diameter of the biomass pellet.
- 前記第2流路の上下方向の前記第1屈曲部から前記第2屈曲部までの長さは、前記第2流路における前記回転枠と前記対向壁部との間の隙間寸法の5倍以上10倍以下とされている請求項1から4のいずれかに記載の固体燃料粉砕装置。 The length of the second flow path from the first bent portion to the second bent portion in the up-down direction is at least five times the gap size between the rotating frame and the opposed wall portion in the second flow channel. The solid fuel crushing device according to any one of claims 1 to 4, wherein the crushing ratio is 10 times or less.
- 前記回転枠の外周には、半径方向に延在するリブが設けられている請求項1から5のいずれかに記載の固体燃料粉砕装置。 The solid fuel pulverizer according to any one of claims 1 to 5, wherein a rib extending in a radial direction is provided on an outer periphery of the rotary frame.
- 前記第2屈曲部に対応する前記回転枠の内周面側および/または前記対向壁部には、面取部または曲面部が設けられている請求項1から6のいずれかに記載の固体燃料粉砕装置。 The solid fuel according to any one of claims 1 to 6, wherein a chamfered portion or a curved portion is provided on an inner peripheral surface side of the rotating frame corresponding to the second bent portion and / or on the facing wall portion. Crushing equipment.
- 前記第2流路に対応する前記回転枠および/または前記対向壁部には、流れが下方から上方へ向かう上向き螺旋溝が形成されている請求項1から7のいずれかに記載の固体燃料粉砕装置。 The solid fuel pulverizer according to any one of claims 1 to 7, wherein the rotary frame and / or the opposing wall corresponding to the second flow path has an upward spiral groove in which a flow is directed upward from below. apparatus.
- 前記第2流路に対応する前記回転枠および/または前記対向壁部には、流れが上方から下方へ向かう下向き螺旋溝が形成されている請求項1から8のいずれかに記載の固体燃料粉砕装置。 The solid fuel pulverizer according to any one of claims 1 to 8, wherein a downward spiral groove is formed in the rotary frame and / or the opposing wall corresponding to the second flow path, the downward spiral groove being formed so that a flow is directed downward from above. apparatus.
- 請求項1から9のいずれかに記載された固体燃料粉砕装置と、
前記固体燃料粉砕装置にて粉砕された固体燃料を燃焼して蒸気を生成するボイラと、
前記ボイラによって生成された蒸気を用いて発電する発電部と、
を備えている発電プラント。 A solid fuel crushing device according to any one of claims 1 to 9,
A boiler that generates steam by burning solid fuel pulverized by the solid fuel pulverizer,
A power generation unit that generates power using steam generated by the boiler,
A power plant equipped with: - 回転テーブルと、
前記回転テーブルとの間で固体燃料を粉砕する粉砕ローラと、
前記粉砕ローラによって粉砕された粉砕後燃料を分級する分級機と、
を備え、
前記分級機は、鉛直上下方向に延在するとともに回転軸線を中心とする円周方向に沿って配置された複数のブレードと、
複数の前記ブレードの上端を支持した状態で前記回転軸線回りに回転する回転枠と、を備え、
前記回転枠と、該回転枠に対向して配置された対向壁部との間に形成された隙間流路を有するシール部を備えている固体燃料粉砕装置の固体燃料粉砕方法であって、
前記シール部の前記隙間流路は、該シール部の外周に開口する入口開口を有するとともに外周側から内周側に向かう第1流路と、該第1流路の内周側端部に対して第1屈曲部を有するように上端が接続されて下方に向かう第2流路と、該シール部の内周に開口する出口開口を有するとともに外周側から内周側に向かうとともに該第2流路の下端に対して第2屈曲部を有するように外周側他端が接続された第3流路とを備えている固体燃料粉砕方法。 A rotating table,
A grinding roller for grinding the solid fuel between the rotary table and
A classifier for classifying the fuel after pulverization pulverized by the pulverizing roller,
With
The classifier, a plurality of blades extending vertically and arranged along a circumferential direction around the rotation axis,
A rotating frame that rotates around the rotation axis while supporting the upper ends of the plurality of blades,
The solid fuel pulverization method of a solid fuel pulverizer, comprising: a rotating frame, and a seal portion having a gap flow path formed between an opposing wall portion disposed to face the rotating frame,
The gap flow passage of the seal portion has an inlet opening that opens to the outer periphery of the seal portion and a first flow passage that goes from the outer periphery to the inner periphery, and an inner peripheral end of the first passage. A second flow path having an upper end connected so as to have a first bent portion and having a downward direction, and an outlet opening which is opened to the inner periphery of the seal portion, and which is directed from the outer peripheral side to the inner peripheral side and the second flow path. A third flow path connected to the lower end of the path so as to have a second bent portion at the other end on the outer peripheral side.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018158257A JP7134787B2 (en) | 2018-08-27 | 2018-08-27 | Solid fuel crushing device, power plant equipped with the same, and solid fuel crushing method |
JP2018-158257 | 2018-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020045276A1 true WO2020045276A1 (en) | 2020-03-05 |
Family
ID=69643225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/033017 WO2020045276A1 (en) | 2018-08-27 | 2019-08-23 | Solid fuel crushing device, power plant equipped with same, and solid fuel crushing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7134787B2 (en) |
WO (1) | WO2020045276A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022156406A (en) * | 2021-03-31 | 2022-10-14 | 三菱重工業株式会社 | Classifier and power plant, and operation method of classifier |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS648982U (en) * | 1987-07-01 | 1989-01-18 | ||
JPH03207477A (en) * | 1990-01-09 | 1991-09-10 | Ube Ind Ltd | Classifying device |
JP2001232225A (en) * | 2000-02-22 | 2001-08-28 | Ishikawajima Harima Heavy Ind Co Ltd | Vertical mill and rotary classifier |
CN200995192Y (en) * | 2006-12-06 | 2007-12-26 | 上海建设路桥机械设备有限公司 | Turbine classifier of swing powder grinder |
JP2015117867A (en) * | 2013-12-17 | 2015-06-25 | 三菱日立パワーシステムズ株式会社 | Boiler system and power generation plant with boiler system |
JP2018079424A (en) * | 2016-11-16 | 2018-05-24 | 三菱日立パワーシステムズ株式会社 | Solid fuel pulverizer and operation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3207477B2 (en) | 1991-12-24 | 2001-09-10 | 財団法人生産開発科学研究所 | Magnetoresistance effect element |
-
2018
- 2018-08-27 JP JP2018158257A patent/JP7134787B2/en active Active
-
2019
- 2019-08-23 WO PCT/JP2019/033017 patent/WO2020045276A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS648982U (en) * | 1987-07-01 | 1989-01-18 | ||
JPH03207477A (en) * | 1990-01-09 | 1991-09-10 | Ube Ind Ltd | Classifying device |
JP2001232225A (en) * | 2000-02-22 | 2001-08-28 | Ishikawajima Harima Heavy Ind Co Ltd | Vertical mill and rotary classifier |
CN200995192Y (en) * | 2006-12-06 | 2007-12-26 | 上海建设路桥机械设备有限公司 | Turbine classifier of swing powder grinder |
JP2015117867A (en) * | 2013-12-17 | 2015-06-25 | 三菱日立パワーシステムズ株式会社 | Boiler system and power generation plant with boiler system |
JP2018079424A (en) * | 2016-11-16 | 2018-05-24 | 三菱日立パワーシステムズ株式会社 | Solid fuel pulverizer and operation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP7134787B2 (en) | 2022-09-12 |
JP2020032313A (en) | 2020-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020158270A1 (en) | Crusher, boiler system, and method for operating crusher | |
CN111482242B (en) | Solid fuel pulverizer, power generation facility provided with same, and control method therefor | |
JP7317631B2 (en) | Solid fuel crusher, power plant, and solid fuel crusher control method | |
WO2020045276A1 (en) | Solid fuel crushing device, power plant equipped with same, and solid fuel crushing method | |
KR102588781B1 (en) | Solid fuel pulverizer and power plant provided with the same, and method for pulverizing solid fuel | |
CN111482243B (en) | Solid fuel pulverizer, power generation facility provided with same, and control method therefor | |
WO2023120083A1 (en) | Crushing roller, solid fuel crushing device, and method for producing crushing roller | |
JP7395314B2 (en) | Stable operation control system, solid fuel pulverizer, stable operation control method, and stable operation control program | |
JP2022156405A (en) | Classifier and power plant, and operation method of classifier | |
JP7341669B2 (en) | Solid fuel crushing device, power plant equipped with the same, and solid fuel crushing method | |
KR102292355B1 (en) | Solid fuel supply apparatus, solid fuel supply method, pulverizer and boiler | |
JP2022041973A (en) | Device, power generation plant, method for controlling device, program, power generation plant system, and method for controlling power generation plant system | |
JP7612396B2 (en) | Crusher and power generation plant, and method for operating the crusher | |
JP7621766B2 (en) | Solid fuel pulverizer, power generation plant, and method for operating the solid fuel pulverizer | |
JP7592515B2 (en) | Solid fuel supply equipment, power generation plant, and solid fuel supply method | |
JP7635018B2 (en) | Solid fuel pulverizer, power generation plant, and method for operating the solid fuel pulverizer | |
JP3221183U (en) | Pulverizer, solid fuel pulverizer equipped with the same, and boiler system | |
JP7483404B2 (en) | Fuel supply device, solid fuel pulverizer, boiler system, and method for operating the fuel supply device | |
WO2020045129A1 (en) | Solid fuel pulverizing device, power generation plant provided with same, and method for controlling solid fuel pulverization | |
WO2024095875A1 (en) | Crushing roller, crushing table, solid fuel crushing device, and method for producing crushing roller | |
WO2024095874A1 (en) | Pulverizing roller, pulverizing table, solid fuel pulverization device, and method for manufacturing pulverizing roller | |
JP2022086305A (en) | How to operate the crusher, power plant and crusher | |
JP2024145457A (en) | Fuel supply device protection system, solid fuel pulverizer, boiler system, and method for protecting a fuel supply device | |
JP2024095040A (en) | Solid fuel crushing device and power generation plant and operation method of solid fuel crushing device and design method of solid fuel crushing device | |
JP2022130856A (en) | Rotary valve and power generation plant, and operational method of rotary valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19856374 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19856374 Country of ref document: EP Kind code of ref document: A1 |