WO2020040245A1 - 抗体薬物複合体の感受性マーカー - Google Patents
抗体薬物複合体の感受性マーカー Download PDFInfo
- Publication number
- WO2020040245A1 WO2020040245A1 PCT/JP2019/032773 JP2019032773W WO2020040245A1 WO 2020040245 A1 WO2020040245 A1 WO 2020040245A1 JP 2019032773 W JP2019032773 W JP 2019032773W WO 2020040245 A1 WO2020040245 A1 WO 2020040245A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- htrop2
- log
- expression level
- antibody
- Prior art date
Links
- 0 CC[C@](C(C=C1N2Cc3c([C@](CCc4c(C)c(F)c5)NC(COCNC(CNC([C@](Cc6ccccc6)NC(CNC(CNC(CCCCCN(C(CC6*)=O)C6=O)=O)=O)=O)=O)=O)=O)c4c5nc13)=C(CO1)C2=O)(C1=O)O Chemical compound CC[C@](C(C=C1N2Cc3c([C@](CCc4c(C)c(F)c5)NC(COCNC(CNC([C@](Cc6ccccc6)NC(CNC(CNC(CCCCCN(C(CC6*)=O)C6=O)=O)=O)=O)=O)=O)=O)c4c5nc13)=C(CO1)C2=O)(C1=O)O 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- the present invention relates to a method for identifying a subject to be administered with a drug containing an antibody drug conjugate in a human patient suffering from cancer.
- anticancer drugs are effective in certain human patients, but not in others. This is based on the genetic diversity of the cancer and may be observed even among cancers within the same patient. The difference in efficacy between patients is particularly significant for molecularly targeted anticancer drugs. Therefore, appropriate tests are needed to determine which anticancer drugs are effective for which patients, and anticancer drugs should be expected to be sufficiently effective without such tests. Can not.
- Establishment of a diagnostic method based on the discovery of a sensitivity marker is a means of accelerating the development of a new anticancer drug by previously identifying patients likely to show a clinical response to the new anticancer drug . This can significantly reduce the size, duration and cost of clinical trials. Genomics, proteomics, or molecular imaging techniques would have allowed rapid and sensitive detection of sensitive markers. However, despite the availability of various technologies relating to gene profiling in cancer, it is hard to say that sensitivity markers for anticancer drugs are widely in practical use.
- Human TROP2 trophoblast cell cell surface protein 2, TACSTD2: tumor-associated calcium calcium signal transducer 2, GA733-1, EGP-1, M1S1; hereinafter referred to as hTROP2
- TACSTD2 tumor-associated calcium calcium signal transducer 2, GA733-1, EGP-1, M1S1; hereinafter referred to as hTROP2
- hTROP2 tumor-associated calcium calcium signal transducer 2
- It is a type 1 cell membrane protein.
- hTROP2 is overexpressed in cancers derived from various epithelial cells, and in normal tissues, hTROP2 is limited to expression in some tissues of epithelial cells. It has also been shown that the expression level is lower than that of tumor tissues (Non-patent Documents 1 to 5).
- the expression of hTROP2 is determined by colorectal cancer (Non-Patent Document 2), gastric cancer (Non-Patent Document 2), pancreatic cancer (Non-Patent Document 3), oral cancer (Non-Patent Document 4), and glioma (Non-Patent Document 5).
- a model using colorectal cancer cells reports that hTROP2 expression is involved in anchorage-independent cell growth of cancer cells and tumor formation in immunodeficient mice (Non-Patent Document 6). .
- An antibody-drug conjugate in which a cytotoxic drug is bound to an antibody that is expressed on the surface of a cancer cell and binds to an antigen that can be internalized into the cell (Antibody-Drug @ Conjugate; hereinafter also referred to as “ADC”) Is capable of selectively delivering a drug to cancer cells, thereby accumulating the drug in the cancer cells and killing the cancer cells.
- ADC Antibody-Drug @ Conjugate
- antibody-drug conjugates comprising a derivative of an antibody and a derivative of exotecan, which is a topoisomerase I inhibitor, are known (Patent Documents 9 to 15, Non-Patent Documents 8 to 16). ).
- the antibody-drug conjugate described in Patent Document 9 contains an anti-hTROP2 antibody, and can kill cancer cells expressing the hTROP2 antibody. Similarly, there is a possibility that the antitumor activity cannot be accurately predicted only by the expression level of hTROP2.
- Non-Patent Document 17 Human SLFN11 (Schlafen @ family @ member @ 11) is a protein consisting of 901 amino acid residues, and is suggested to have a function of binding to a replication fork in response to DNA replication stress and inhibiting DNA replication. It has also been reported that the sensitivity of cancer cell lines to DNA-impaired anticancer drugs including topoisomerase I inhibitors and SLFN11 mRNA expression levels are highly correlated (Non-patent Documents 18 to 19).
- Non-Patent Document 20 veliparib, a poly ADP-ribose polymerase (PARP) inhibitor, and rovalpituzumab tesirine, an anti-DLL3 antibody drug conjugate (Rova-T)
- PARP poly ADP-ribose polymerase
- Rova-T anti-DLL3 antibody drug conjugate
- Temozolomide and Veliparib which are alkylating agents
- has a life-prolonging effect on small cell lung cancer patients overexpressing SLFN11 Non-Patent Document 21.
- the relationship between the antitumor activity of ADC using a topoisomerase I inhibitor such as exatecan and the expression level of SLFN11 has not yet been clarified, and its effectiveness as a diagnostic agent for predicting the efficacy is unknown.
- the present invention relates to a method for identifying a subject to be administered to a human patient suffering from cancer by using a gene expression level at an mRNA level as an index when administering a drug containing an anti-hTROP2 antibody.
- the present inventors have found that, by combining the expression levels of the mRNA levels of the hTROP2 gene and the SLFN11 gene, it is possible to identify a subject to which a drug containing an anti-hTROP2 antibody is to be administered with higher accuracy, and to improve the present invention. Completed.
- a method for identifying a subject to be administered a drug containing an anti-hTROP2 antibody in a human patient suffering from cancer comprising: 1) obtaining a biological sample from a human patient diagnosed as having cancer; 2) estimating the expression level of the hTROP2 gene at the mRNA level in the biological sample; 3) a step of evaluating the expression level of the SLFN11 gene at the mRNA level in the biological sample determined to have a high expression level of the hTROP2 gene; and 4) a step of determining the expression level of the SLFN11 gene to be high.
- a method that includes [2] A method for identifying a subject to be administered a drug containing an anti-hTROP2 antibody in a human patient suffering from cancer, comprising: 1) obtaining a biological sample from a human patient diagnosed as having cancer; 2) a step of evaluating the expression levels of the hTROP2 gene and the SLFN11 gene at the mRNA level in the sample; and 3) a human patient having the sample determined to have a high expression level of the hTROP2 gene and the SLFN11 gene, Identifying as a subject to be administered a drug containing an anti-hTROP2 antibody; A method that includes [3] From a biological sample obtained from a human patient diagnosed as having cancer, a log 2 [RPKM + 1] value is measured by RNA sequencing, and when this value exceeds a specific value, the hTROP2 gene at the mRNA level is measured.
- log 2 [RPKM + 1] value is 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 , 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8 .2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, and 9.0 if it exceeds any one selected from the group consisting of:
- the method according to [3], wherein the expression level of the hTROP2 gene at the mRNA level is determined to be high.
- log 2 [RPKM + 1] value is 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 , 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, and 8.0
- [6] log 2 [RPKM + 1] value is 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4 , 7.5, 7.6, 7.7, 7.8, 7.9, and 8.0, the expression level of the hTROP2 gene at the mRNA level when it exceeds any one selected from the group consisting of: Is determined to be high, the method according to any one of [3] to [5].
- [7] log 2 [RPKM + 1] value is 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 ,
- the expression level of the hTROP2 gene at the mRNA level is determined to be high. The described method.
- log 2 [RPKM + 1] value is 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.
- log 2 [FPKM + 1] value is 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 , 7.0. Any one selected from the group consisting of 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, and 8.0
- log 2 [FPKM + 1] value is 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9
- the method according to [20] or [21], wherein the expression level of the hTROP2 gene at the mRNA level is determined to be high when the log 2 [FPKM + 1] value exceeds 6.0 or 7.0.
- log 2 [FPKM + 1] value is 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, Selected from the group consisting of 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, and 4.0.
- log 2 [FPKM + 1] value is 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
- the expression level of the SLFN11 gene at the mRNA level is determined to be high when the expression level is higher than any one selected from the group consisting of SLFN11 and 3.0. the method of. [28] Any one of [22] to [26], in which when the log 2 [FPKM + 1] value exceeds 2.0 or 3.0, the expression level of the SLFN11 gene at the mRNA level is determined to be high. The method described in one.
- log 2 [MNC + 1] value is 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9 , 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14.0, 14.1, 14.2, 14.2.
- the anti-hTROP2 antibody drug conjugate has the following formula:
- A indicates the binding position to the anti-hTROP2 antibody
- the anti-hTROP2 antibody is an antibody comprising a heavy chain having the amino acid sequence of amino acids 20 to 470 in SEQ ID NO: 1 and a light chain having the amino acid sequence of amino acids 21 to 234 in SEQ ID NO: 2. , [46].
- Cancer is lung cancer, kidney cancer, urothelial cancer, colon cancer, prostate cancer, glioblastoma multiforme, ovarian cancer, pancreatic cancer, breast cancer, melanoma, liver cancer, Bladder, gastric, cervical, endometrial, head and neck, esophageal, biliary, thyroid, lymphoma, acute myeloid leukemia, acute lymphocytic leukemia, and / or multiple The method according to any one of [1] to [51], which is a myeloma.
- the present invention includes the following items. Note that the elements or requirements of [3] to [52] can be applied to the following inventions.
- a method for identifying a subject to be administered a drug containing an anti-hTROP2 antibody in a human patient suffering from cancer comprising: 1) obtaining a biological sample from a human patient diagnosed as having cancer; 2) a step of evaluating the expression level of the hTROP2 gene and / or the SLFN11 gene at the mRNA level in the sample; and 3) having the sample determined to have a high expression level of the hTROP2 gene and / or the SLFN11 gene.
- Identifying a human patient as a subject to receive a drug containing an anti-hTROP2 antibody A method that includes [54] A method for identifying a subject to be administered a drug containing an anti-hTROP2 antibody in a human patient suffering from cancer, comprising: 1) obtaining a biological sample from a human patient diagnosed as having cancer; 2) a step of evaluating the expression level of the hTROP2 gene at the mRNA level in the sample; and 3) a human patient having the sample determined to have a high expression level of the hTROP2 gene containing the anti-hTROP2 antibody.
- a method that includes [55] A method for identifying a subject to be administered a drug containing an anti-hTROP2 antibody in a human patient with cancer, comprising: 1) obtaining a biological sample from a human patient diagnosed with cancer Process; 2) a step of evaluating the expression level of the SLFN11 gene at the mRNA level in the sample; and 3) a human patient having the sample determined to have a high expression level of the SLFN11 gene, containing an anti-hTROP2 antibody. Identifying as a subject to which the medicament is administered; A method that includes
- a method for identifying a subject to be administered a drug containing an anti-hTROP2 antibody in a human patient suffering from cancer comprising: 1) obtaining a biological sample from a human patient diagnosed as suffering from cancer Process; 2) a step of evaluating the expression levels of the hTROP2 gene and the SLFN11 gene at the mRNA level in the sample; and 3) a human patient having the sample determined to have a high expression level of the hTROP2 gene and the SLFN11 gene, Identifying as a subject to be administered a drug containing an anti-hTROP2 antibody;
- a method that includes [57] A method for identifying a subject to be administered a drug containing an anti-hTROP2 antibody in a human patient suffering from cancer, comprising: 1) obtaining a biological sample from a human patient diagnosed as having cancer; Process; 2) evaluating the expression level of the hTROP2 gene at the mRNA level in the sample; 3) a step of evaluating the expression level of the SLFN11 gene
- a method that includes [58] A method for identifying a subject to be administered a drug containing an anti-hTROP2 antibody in a human patient suffering from cancer, comprising: 1) obtaining a biological sample from a human patient diagnosed as suffering from cancer Process; 2) evaluating the expression level of the SLFN11 gene at the mRNA level in the sample; 3) a step of evaluating the expression level of the hTROP2 gene at the mRNA level in the biological sample determined to have a high expression level of the SLFN11 gene; and 4) the step of evaluating the biological sample determined to have a high expression level of the hTROP2 gene.
- a method that includes [59] A method for treating cancer, which comprises administering a medicament containing an anti-hTROP2 antibody, comprising: 1) obtaining a biological sample from a human patient diagnosed as having cancer; 2) evaluating the expression level of the hTROP2 gene at the mRNA level in the biological sample; 3) evaluating the expression level of the SLFN11 gene at the mRNA level in the biological sample determined to have high expression level of the hTROP2 gene; and 4) having the biological sample determined to have high expression level of the SLFN11 gene.
- a method for treating cancer which comprises administering a medicament containing an anti-hTROP2 antibody, comprising: 1) obtaining a biological sample from a human patient diagnosed as having cancer; 2) evaluating the expression level of the hTROP2 gene and / or SLFN11 gene at the mRNA level in the sample; and 3) having the sample determined that the expression level of the hTROP2 gene and / or SLFN11 gene was high.
- a method for treating cancer which comprises administering a medicine containing an anti-hTROP2 antibody, comprising: 1) obtaining a biological sample from a human patient diagnosed as having cancer; 2) evaluating the expression level of the SLFN11 gene at the mRNA level in the sample; and 3) converting a human patient having the sample determined to have a high expression level of the SLFN11 gene into a drug containing an anti-hTROP2 antibody.
- a method for treating cancer which comprises administering a medicament containing an anti-hTROP2 antibody, comprising: 1) obtaining a biological sample from a human patient diagnosed as having cancer; 2) evaluating the expression level of the SLFN11 gene at the mRNA level in the sample; 3) evaluating the expression level of the hTROP2 gene at the mRNA level in the biological sample determined to have a high expression level of the SLFN11 gene; and 4) having the biological sample determined to have a high expression level of the hTROP2 gene.
- Selecting a human patient to be administered a drug containing an anti-hTROP2 antibody A method that includes:
- FIG. 2 shows the amino acid sequence of the heavy chain of the humanized anti-hTROP2 antibody (SEQ ID NO: 1).
- Figure 3 shows the amino acid sequence of the humanized anti-hTROP2 antibody light chain (SEQ ID NO: 2).
- CDRH1 sequence of humanized anti-hTROP2 antibody heavy chain SEQ ID NO: 3
- CDRH2 sequence SEQ ID NO: 4
- CDRH3 sequence SEQ ID NO: 5
- CDRL1 sequence of humanized anti-hTROP2 antibody light chain SEQ ID NO: 6
- the CDRL2 sequence (SEQ ID NO: 7) and the CDRL3 sequence (SEQ ID NO: 8) are shown.
- FIG. 2 is a view showing the cell growth inhibitory effect of compound (1) or antibody-drug conjugate (1) on NCI-H1781 cells at the time of SLFN11 knockdown.
- FIG. 2 is a view showing the cell growth inhibitory effect of compound (1) or antibody-drug conjugate (1) on Calu-3 cells at the time of SLFN11 knockdown.
- FIG. 2 is a view showing the cell growth inhibitory effect of compound (1) or antibody-drug conjugate (1) on MDA-MB-468 cells at the time of SLFN11 knockdown.
- FIG. 3 is a diagram showing the cell growth inhibitory effect of compound (1) or antibody-drug conjugate (1) on HCC38 cells at the time of SLFN11 knockdown.
- cancer and “tumor” are used interchangeably.
- the term “gene” includes not only DNA but also its mRNA, cDNA, and its cRNA.
- polynucleotide is used synonymously with nucleic acid, and also includes DNA, RNA, probes, oligonucleotides, and primers.
- polypeptide and “protein” are used interchangeably.
- cells include cells in animal individuals and cultured cells.
- hTROP2 means a human protein encoded by a gene identified by an accession number of NM_002353 (NCBI), and an allelic variant thereof, and includes a protein identified by NP_002344 (NCBI).
- SLFN11 refers to a human protein encoded by a gene identified by an accession number of NM_152270 (NCBI), and an allelic variant thereof, and includes a protein identified by NP_689483 (NCBI). .
- the term “antigen-binding fragment of an antibody” refers to a partial fragment of an antibody having an antigen-binding activity, and includes Fab, F (ab ′) 2, Fv, scFv, diabody, and linear antibody. And multispecific antibodies formed from antibody fragments. Further, Fab 'which is a monovalent fragment of the variable region of an antibody obtained by treating F (ab') 2 under reducing conditions is also included in the antigen-binding fragment of the antibody. However, it is not limited to these molecules as long as it has an antigen binding ability. In addition, these antigen-binding fragments include not only those obtained by treating the full-length molecule of an antibody protein with an appropriate enzyme, but also those produced in an appropriate host cell using an antibody gene modified by genetic engineering. It is.
- CDR in the present specification means a complementarity determining region (CDR: Complementarity determining region). It is known that a heavy chain and a light chain of an antibody molecule each have three CDRs. CDRs are also referred to as hypervariable domains, and are located in the variable regions of the heavy and light chains of an antibody, where the primary structure has particularly high variability, and the heavy and light polypeptide chains Are separated into three places on the primary structure.
- the CDRs of the antibody the CDRs of the heavy chain are referred to as CDRH1, CDRH2, and CDRH3 from the amino terminal side of the heavy chain amino acid sequence
- the CDRs of the light chain are referred to as CDRL1 from the amino terminal side of the light chain amino acid sequence.
- response to a treatment means that, with respect to the tumor to be treated, the tumor exhibits (a) slow growth, (b) cessation of growth, or (c) regression.
- Anti-hTROP2 antibody The antibody against hTROP2 used in the present invention is produced in vivo by immunizing an animal with hTROP2 or any polypeptide selected from the amino acid sequence of hTROP2, using a method commonly practiced in the art.
- the antibody obtained can be obtained by collecting and purifying the antibody.
- the biological species of TROP2 serving as an antigen is not limited to humans, and animals can be immunized with TROP2 derived from non-human animals such as mice and rats. In this case, by examining the cross-reactivity between the obtained antibody binding to the heterologous TROP2 and hTROP2, an antibody applicable to human diseases can be selected.
- a hybridoma can be established by fusing antibody-producing cells producing an antibody against hTROP2 with myeloma cells to obtain a monoclonal antibody.
- hTROP2 serving as an antigen can be obtained by expressing the hTROP2 gene in a host cell by genetic manipulation.
- a vector capable of expressing the hTROP2 gene may be prepared, introduced into a host cell to express the gene, and the expressed TROP2 may be purified.
- hTROP2-expressing cells or cell lines expressing hTROP2 by the above-described genetic manipulation can be used as hTROP2 protein.
- the antibody of the present invention includes, in addition to the monoclonal antibody to hTROP2, a recombinant antibody artificially modified for the purpose of reducing xenoantigenicity to humans, such as a chimeric antibody, a humanized ( Humanized antibodies, human antibodies and the like. These antibodies can be produced using known methods.
- a humanized antibody consisting of the heavy chain amino acid sequence shown in SEQ ID NO: 1 and the light chain amino acid sequence shown in SEQ ID NO: 2 can be mentioned, but is not limited thereto.
- the anti-hTROP2 antibody used in the present invention also includes an antigen-binding fragment of the antibody.
- the antigen-binding fragment of an antibody include Fab, F (ab ') 2, Fv, or a single chain Fv (scFv) in which heavy and light chain Fvs are linked by an appropriate linker, diabody (diabodies), and a linear antibody.
- Fab ' which is a monovalent fragment of the variable region of an antibody obtained by treating F (ab') 2 under reducing conditions is also included in the antibody fragment.
- the anti-hTROP2 antibody used in the present invention also includes a modified antibody.
- modified product refers to a product obtained by performing a chemical or biological modification on the antibody of the present invention.
- Chemical modifications include the attachment of a chemical moiety to the amino acid backbone, N-linked or O-linked carbohydrate chains, and the like.
- Biological modifications include post-translational modifications (eg, glycosylation to N- or O-linkage, N- or C-terminal processing, deamidation, aspartic acid isomerization, methionine oxidation) And methionine residues added to the N-terminus by expression using prokaryotic host cells.
- the anti-hTROP2 antibody used in the present invention includes those labeled to enable detection or isolation of the anti-hTROP2 antibody or hTROP2, for example, enzyme labels, fluorescent labels, and affinity labels. Modifications are included. Such a modified anti-hTROP2 antibody is useful for improving antibody stability and blood retention, reducing antigenicity, and detecting or isolating an anti-hTROP2 antibody or hTROP2.
- the antibody-dependent cytotoxicity can be enhanced.
- a technique for regulating the sugar chain modification of an antibody International Publication Nos. WO 1999/54342, WO 2000/61739, and WO 2002/31140 are known, but not limited thereto.
- the anti-hTROP2 antibody used in the present invention also includes an antibody whose sugar chain modification is regulated.
- the method of the present invention can also be used for a medicament containing an antibody that binds to an antigen other than the anti-hTROP2 antibody.
- an antibody that binds to an antigen other than the anti-hTROP2 antibody There are no particular restrictions on the antibodies other than the anti-hTROP2 antibody used in the present invention.
- Each antibody can be obtained in
- anti-HER2 antibody refers to an activity that specifically binds to HER2 (Human ⁇ Epidermal ⁇ Growth ⁇ Factor ⁇ Receptor ⁇ Type ⁇ 2; @ ErbB-2), and preferably internalizes in HER2 expressing cells by binding to HER2. 1 shows an antibody having Examples of the anti-HER2 antibody include trastuzumab (US Pat. No. 5,821,337) and pertuzumab (WO 01/00245), and preferably trastuzumab.
- the “anti-HER3 antibody” specifically binds to HER3 (Human Epidermal Growth Factor Receptor Type 3; ErbB-3), and preferably has an activity of being internalized in HER3 expressing cells by binding to HER3.
- HER3 Human Epidermal Growth Factor Receptor Type 3
- 1 shows an antibody having Examples of the anti-HER3 antibody include patrizumab (Patritumab; @ U3-1287), U1-59 (International Publication No. 2007/0777028), MM-121 (Seribantuab), and anti-ERBB3 antibody described in International Publication No. 2008/100624, RG. -7116 (Lumretuzumab) and LJM-716 (Elgemtumab), and preferably, patrizumab and U1-59.
- the “anti-B7-H3 antibody” specifically binds to B7-H3 (B cell antigen # 7 homolog 3; PD-L3; CD276), and preferably binds to B7-H3. 2 shows an antibody having an activity of internalizing B7-H3 expressing cells.
- Examples of the anti-B7-H3 antibody include M30-H1-L4 (WO 2014/057687).
- the “anti-GPR20 antibody” refers to an antibody that specifically binds to GPR20 (G protein-coupled receptor) 20 and preferably has an activity of being internalized in GPR20-expressing cells by binding to GPR20.
- GPR20 G protein-coupled receptor
- Examples of the anti-GPR20 antibody include h046-H4e / L7 (WO2018 / 135501).
- anti-CDH6 antibody refers to an antibody that specifically binds to CDH6 (Cadherin-6), and preferably has an activity of binding to CDH6 to be internalized in CDH6-expressing cells.
- CDH6 CDH6
- anti-CDH6 antibody for example, H01L02 (WO 2018/212136) can be mentioned.
- the antibody drug conjugate used in the present invention has the formula
- A indicates the binding position to the antibody
- a partial structure comprising a linker and a drug in the antibody-drug conjugate is referred to as a “drug linker”.
- This drug linker is a thiol group (in other words, a sulfur atom of a cysteine residue) generated at a disulfide bond site between antibody chains (at two heavy chains and heavy chains and at two heavy chains and light chains). Is bound to.
- the drug linker of the present invention is a topoisomerase I inhibitor, exatecan (IUPAC name: (1S, 9S) -1-amino-9-ethyl-5-fluoro-1,2,3,9,12,15-hexahydro-).
- the antibody-drug conjugate used in the present invention can be represented by the following formula.
- n has the same meaning as the so-called average number of drug bonds (DAR; Drug-to-Antibody Ratio), and indicates the average number of drug linker bonds per antibody.
- DAR Drug-to-Antibody Ratio
- the average number of drug linkers bound per antibody of the antibody-drug conjugate used in the present invention can be adjusted in the range of 0 to 8, but is preferably 2 to 8.
- the average binding number for the anti-hTROP2 antibody is more preferably 3 to 5, and even more preferably 3.5 to 4.5.
- the antibody-drug conjugate used in the present invention has a linker moiety cleaved after being transferred into a cancer cell
- the above compound is considered to be the main antitumor activity of the antibody-drug conjugate used in the present invention, and has been confirmed to have topoisomerase I inhibitory activity (Ogitani Y. et al., Clinical Cancer Research, 2016, Oct 15; 22 (20): 5097-5108, Epub 2016 Mar 29). If the antibody-drug conjugate releases the above compound, the method of the present invention can be applied without limiting the antigen recognized by the antibody to hTROP2.
- Topoisomerase I is an enzyme involved in the synthesis of DNA by converting the higher order structure of DNA by cutting and rejoining a single strand of DNA. Therefore, a drug having a topoisomerase I inhibitory activity inhibits the synthesis of DNA, thereby halting cell division in the S phase (DNA synthesis phase) of the cell cycle, and inducing cell death by apoptosis. Can be suppressed.
- the antibody-drug conjugate used in the present invention has a bystander effect (Ogitani Y. et al., Cancer Science (2016) 107, 1039-1046). This bystander effect is that after the antibody-drug conjugate used in the present invention is internalized into a target-expressing cancer cell, the compound is also used as an anti-tumor agent even for nearby cancer cells that do not express the target. It is exerted by exerting an effect.
- the drug linker intermediate used in the production of the antibody drug conjugate used in the present invention is represented by the following formula.
- the above drug linker intermediate is N- [6- (2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl) hexanoyl] glycylglycyl-L-phenylalanyl-N-[(2- ⁇ [(1S, 9S) -9-ethyl-5-fluoro-9-hydroxy-4-methyl-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H, 12H-benzo [ de] pyrano [3 ′, 4 ′: 6,7] indolizino [1,2-b] quinolin-1-yl] amino ⁇ -2-oxoethoxy) methyl] glycinamide, It can be produced with reference to the description of International Publication No. 2015/0998099 and the like.
- the antibody-drug conjugate used in the present invention can be produced by reacting the above-mentioned drug linker intermediate with an antibody having a thiol group (also referred to as a sulfhydryl group).
- Antibodies having a sulfhydryl group can be obtained by methods well known to those skilled in the art (Hermanson, G. T, BioconjugatejTechniques, pp.56-136, pp.456-493, AcademicdePress (1996)).
- a reducing agent such as tris (2-carboxyethyl) phosphine hydrochloride (TCEP) is used in an amount of 0.3 to 3 molar equivalents per one intrachain disulfide in an antibody
- TCEP tris (2-carboxyethyl) phosphine hydrochloride
- EDTA ethylenediaminetetraacetic acid
- an antibody-drug conjugate in which 2 to 8 drugs are bound per antibody can be prepared using 2 to 20 molar equivalents of the drug linker intermediate per antibody having a sulfhydryl group. .
- the average number of drug bonds per antibody molecule of the manufactured antibody-drug conjugate is calculated by, for example, measuring the UV absorbance of the antibody-drug conjugate and its conjugation precursor at two wavelengths of 280 nm and 370 nm (UV Method) or a method in which each fragment obtained by treating an antibody-drug conjugate with a reducing agent is quantified by HPLC measurement and calculated (HPLC method).
- an antibody-drug conjugate described in WO2015 / 098099 can be exemplified.
- anti-hTROP2 antibody-drug conjugate in the anti-hTROP2 antibody-drug conjugate described in the international publication, further preferred is a heavy chain amino acid sequence containing a heavy chain variable region consisting of amino acid residues 20 to 140 of the amino acid sequence shown in SEQ ID NO: 1, And an antibody consisting of a light chain amino acid sequence containing a light chain variable region consisting of amino acid residues 21 to 129 of the amino acid sequence shown in SEQ ID NO: 2.
- Particularly preferred among the anti-hTROP2 antibody drug conjugates described in the international publication include an antibody consisting of the heavy chain amino acid sequence shown in SEQ ID NO: 1 and the light chain amino acid sequence shown in SEQ ID NO: 2.
- the above antibody-drug conjugate also contains an antibody in which the lysine residue at the carboxyl terminus of the heavy chain has been deleted.
- the anti-hTROP2 antibody drug conjugate used in the present invention is not limited to those having the above specific drug linker.
- Sacitizumab ⁇ Govitecan ⁇ IMMU-132
- the anti-hTROP2 antibody drug conjugate described in WO2003 / 074566, WO2011 / 068845, WO2013 / 068946, or US Patent No. 7999083 is also used in the present invention. It is possible.
- a biological sample taken from a subject can be used as a source of RNA to determine the level of gene expression at the RNA level in the sample.
- the biological sample can include, for example, blood, such as whole blood or a blood-derived product, such as exosomes, tissues, cells, and / or circulating tissue cells.
- the biological sample may be removed from a tumor.
- Exosomes are vesicles composed of lipid bilayers secreted from cells. Numerous studies since its discovery in the 1980's have shown that they move between cells and transport a variety of molecules. Due to its morphological characteristics, it contains not only proteins but also many bioactive molecules such as nucleic acids, carbohydrates and lipids. Exosomes also include miRNAs and mRNAs, which have been shown to be transported between cells. Therefore, exosomes can be selected as a biological sample to which the present invention is applied.
- the biological sample may be obtained by a known means such as venipuncture or using a known tumor biopsy device or procedure. Endoscopic biopsy, resection biopsy, incision biopsy, fine needle biopsy, punch biopsy, cutting biopsy and skin biopsy are recognized medical procedures that can be used by those skilled in the art to obtain tumor samples. This is an example.
- the biological sample should be large enough to provide enough RNA, or slices, to measure gene expression.
- the method of the present invention comprises providing an autologous tissue sample or agreeing to obtain an autologous tissue sample to assess gene expression at the mRNA level in a human subject diagnosed with cancer. Including.
- the biological sample may be in any form that allows measurement of gene expression or amount. That is, the sample must be sufficient for RNA extraction or thin-layer preparation.
- the sample can be stored fresh and using a suitable cryogenic technique or using a non-cryogenic technique.
- a standard process for manipulating clinical biopsy samples is to fix a tissue sample in formalin and embed it in paraffin. This form of the sample is commonly known as formalin fixed paraffin embedded (FFPE) tissue.
- FFPE formalin fixed paraffin embedded
- RNA expression is performed using an appropriate method. Some such methods are well-known in the art. For example, determination of gene expression is made by measuring the level or amount of RNA, eg, mRNA, in a sample.
- 'PCR or microarray primers and / or probes are designed on the 3' end of the mRNA. This is because high preservation (stability) is considered to be achieved during the experimental process of RNA isolation or cDNA synthesis.
- the probes can be designed based on the desired sequence to detect a particular form of transcription variant. Examples of suitable detection methods are set forth below, but are not limited thereto.
- RNA analysis Known microarray analysis and quantitative polymerase chain reaction (PCR) are examples of methods for determining the level of gene expression at the mRNA level.
- RNA is extracted from cells, tumors or tissues using standard protocols.
- RNA analysis is performed using techniques that do not require RNA isolation.
- RNA isolated from fresh or frozen tissue samples tends to be less fragmented than RNA from FFPE samples.
- FFPE samples of tumor material are more readily available, and FFPE samples are a suitable source of RNA for use in the methods of the invention.
- RNA isolation products and complete kits include Qiagen (Valencia, CA), Invitrogen (Carlsbad, CA), Ambion (Austin, TX) and Exiqon (Woburn, MA).
- RNA isolation begins with tissue / cell destruction. It is desirable to minimize RNA degradation by RNase during tissue / cell destruction.
- One approach to limiting RNase activity during the RNA isolation process is to ensure that the denaturant is in contact with the cell contents as soon as the cells are destroyed.
- Another common practice is to include one or more proteases in the RNA isolation process. If necessary, the fresh tissue sample is immersed in the RNA stabilization solution at room temperature as soon as it is collected. The stabilization solution rapidly penetrates the cells and stabilizes the RNA for storage at 4 ° C. and subsequent isolation.
- One such stabilizing solution is commercially available as RNAlater® (Ambion, Austin, Tex.).
- RNA is isolated from disrupted tumor material by cesium chloride density gradient centrifugation. Generally, mRNA makes up about 1% to 5% of total cellular RNA. Immobilized oligo (dT) (eg, oligo (dT) cellulose) is commonly used to separate mRNA from ribosomal and transfer RNA. If stored after isolation, RNA must be stored under RNase-free conditions. Methods for stable storage of isolated RNA are known in the art. A variety of commercially available products for stable storage of RNA are available.
- Microarray mRNA expression levels can be determined (eg, measured) using conventional DNA microarray expression profiling techniques.
- a DNA microarray is a collection of specific DNA segments or probes immobilized on a solid surface or support layer (eg, glass, plastic, or silicon), each specific DNA segment occupying a known location in the array.
- hybridization of labeled RNA to a sample under stringent conditions allows for the detection and quantification of the RNA molecule corresponding to each probe in the array.
- the microarray is scanned by confocal laser microscopy or other suitable detection method.
- Modern commercial DNA microarrays typically contain tens of thousands of probes, and thus can simultaneously measure the expression of tens of thousands of genes. Such a microarray can be used in the practice of the present invention. Alternatively, custom chips containing as many probes as needed to measure expression of a particular gene and the necessary controls or standards (eg, for data normalization) can be used in the practice of the present method. Can be done.
- a two-color microarray reader can be used to facilitate data normalization.
- the sample is labeled with a first fluorophore that emits at a first wavelength
- the RNA or cDNA standard is labeled with a second fluorophore that emits at a different wavelength.
- Cy3 (570 nm) and Cy5 (670 nm) are often used together in a two-color microarray system.
- DNA microarray technology is well developed, commercially available, and widely used. Thus, in practicing the methods of the present application, one of skill in the art can use microarray technology to measure the expression level of a gene encoding a biomarker protein without undue experimentation.
- DNA microarray chips, reagents eg, those required for the preparation of RNA or cDNA, labeling of RNA or cDNA, hybridization solutions and washing solutions
- instruments eg, microarray readers
- protocols are well known in the art, It is commercially available from various commercial sources.
- Commercial vendors of microarray systems include Agilent Technologies (Santa Clara, CA) and Affymetrix (Santa Clara, CA), although other array systems may be used.
- Quantitative PCR mRNA levels can be measured using conventional quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) techniques.
- Advantages of qRT-PCR include sensitivity, flexibility, quantitative accuracy, and the ability to distinguish between mRNAs with high sequence identity.
- Guidance on processing tissue samples for quantitative PCR is available from various sources (eg, manufacturers and suppliers of equipment and reagents for qRT-PCR) (eg, Qiagen (Valencia, Calif.) And Ambion ( Austin, TX)). Instruments and systems for automated operation of qRT-PCR are commercially available and are routinely used in many laboratories.
- An example of a well-known commercial system is the Applied Biosystems 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA).
- the first step in measuring gene expression by RT-PCR is to reverse transcribe the mRNA template into cDNA.
- the cDNA is then exponentially amplified in a PCR reaction.
- Two commonly used reverse transcriptases are avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT).
- AMV-RT avian myeloblastosis virus reverse transcriptase
- MMLV-RT Moloney murine leukemia virus reverse transcriptase
- the reverse transcription reaction is typically primed with a specific primer, random hexamer, or oligo (dT) primer. Suitable primers are commercially available (e.g., GeneAmp® RNA RNA PCR kit (Perkin Elmer, Waltham, MA)).
- the resulting cDNA product can be used as a template in a subsequent polymerase chain reaction.
- the PCR step is performed using a thermostable DNA-dependent DNA polymerase.
- the most commonly used polymerase in PCR systems is Thermus @ aquaticus (Taq) polymerase.
- the selectivity of PCR results from the use of primers that are complementary to the DNA region targeted for amplification (ie, the region of cDNA reverse transcribed from the gene encoding the desired protein). Therefore, when qRT-PCR is used in the present invention, primers specific to each marker gene are based on the cDNA sequence of the gene.
- Commercial techniques such as SYBR® green or TaqMan® (Applied Biosystems, Foster City, CA) can be used according to the manufacturer's instructions.
- mRNA levels can be normalized for differences in loading between samples by comparing levels of housekeeping genes (eg, ⁇ -actin or GAPDH).
- the level of mRNA expression can be expressed relative to any single control sample (eg, mRNA from normal non-tumor tissues or cells). Alternatively, it can be expressed against a pool of tumor samples, or mRNA derived from a tumor cell line or from a set of commercially available control mRNAs.
- Suitable primer sets for PCR analysis of gene expression levels can be designed and synthesized by those skilled in the art without undue experimentation.
- PCR primer sets for practicing the present invention can be purchased from commercial sources (eg, Applied Biosystems). PCR primers are preferably about 17-25 nucleotides in length. Primers can be designed to have a particular Tm using conventional algorithms for melting temperature (Tm) estimation. Software for primer design and Tm estimation is commercially available (eg, Primer Express TM (Applied Biosystems)) and is also available on the Internet (eg, Primer 3 (Massachusetts Institute of Technology)). By applying the established principles of PCR primer design, a number of different primers can be used to measure the expression level of any given gene.
- Tm melting temperature
- RNA analysis is performed using techniques that do not involve RNA extraction or isolation.
- One such technique is a quantitative nuclease protection assay, commercially available under the name qNPA® (High Throughput Genomics, Inc., Arlington, AZ). This technique may be advantageous when the tissue sample to be analyzed is in the form of FFPE material. See, for example, See, e. g. , Roberts et al, 2007, Laboratory Investigation 87: 979-997.
- nCounter (registered trademark) is a system that directly counts molecules based on digital molecular barcode technology developed by NanoString Technologies, and can analyze up to 800 types of RNA and DNA quickly and accurately in a single tube. It is possible.
- a probe Reporter Probe
- Capture Probe a probe having a barcode specific to the sequence of the target molecule and a probe (Capture Probe) to be fixed to the analysis cartridge are hybridized with the target nucleic acid, and the cartridge of the cartridge is scanned by a fluorescent scanner. The sequence of color barcodes of each target sequence immobilized on the surface is counted. See, for example, Geiss G, et al. , 26: 317-25 (2008). , Nature Biotechnology.
- HTG EdgeSeq is a sample profiling application that includes the analysis of instrumentation, consumables, and software developed by HTG Molecular Diagnostics, including tumor profiling, molecular diagnostic testing, and biomarker development. Automated molecular profiling of genes and gene activity using nuclease protection chemistry on biological samples. For example, Martel R. , Et al. Assay Drug Dev Technology. 2002 Nov; 1 (1): 61-71. As described above, the expression level of each gene is obtained as a count value. The count value is used for analysis through a process called normalization for correcting a variation in distribution between samples. As a specific normalization method, there is a Median normalization method.
- a scaling factor is obtained for each sample by the method described below, and correction is performed by dividing the expression level of the gene by the scaling factor.
- the geometric mean of the expression levels (count values) of all the samples was determined, and the value obtained by dividing the expression level of Gene g by the geometric mean was Sample Scaling factor (S ig ) for i 's Gene g .
- next-generation RNA sequencing Unlike the conventional Sanger method, this is RNA sequencing analysis using next-generation sequencing technology that can acquire enormous sequence information in a short time and at low cost by performing advanced parallel processing. Expression of the entire cryptome can be analyzed with higher sensitivity and higher accuracy.
- Typical next-generation sequencing technologies that are currently widely used include one-nucleotide synthesis reaction sequencing technology (Illumina Inc.) and sequencing by Thermo Fisher Scientific Inc. (Illumina Inc.). An ion semiconductor sequence technology (Ion Torrent technology) etc. can be mentioned. Details of each technology are described in, for example, Buermans HP. , Et al. Biochim Biophys Acta. 2014 Oct; 1842 (10): 1932-1941.
- individual sequence information (read) obtained using the above-mentioned next-generation sequencing technology was mapped to identify each gene from which transcript was derived, and was mapped to each transcript.
- the number of reads is used for analysis through a process called normalization for correcting the number of reads based on the length of the transcript, the total number of reads obtained in the analysis, and the like.
- normalization for example, the length of a transcript is 1 kb, the total number of reads is 1,000,000, and the number of reads, which is the number of reads corrected by the gene length of each gene, is read per kilobase of exon per milled mapped sequence reads. (RPKM) value.
- the fragments per kilobase of exon per million mapped sequence reads (FPKM) value, which is the number of fragments corrected by the gene length of each gene, and the number of reads of each transcript are corrected by the gene length
- FPKM transscripts per million
- RPKM calculates the expression level of each gene by counting the number of reads mapped to exons using a known gene model
- FPKM calculates the expression level at the isoform level by counting the fragments for each estimated isoform. Calculate the amount. Details of each normalization method are described in, for example, Conesa A., et al. See Genome Biol. 2016 Jan 26; 17: 13.
- Evaluation of hTROP2 gene expression hTROP2 gene expression can be evaluated in biological samples from human patients. Such an embodiment includes a step of requesting evaluation of hTROP2 gene expression at the mRNA level and receiving the evaluation result. Some embodiments include determining the value of hTROP2 gene expression at the mRNA level, and recording the value determined in any manner.
- HTROP2 gene expression level can be interpreted in relation to a given numerical value. If equal to, greater than, or greater than a predetermined value, the hTROP2 gene expression level may predict that the subject is susceptible (responsive) to treatment with a drug containing an anti-hTROP2 antibody. Will be interpreted. In some embodiments, if the hTROP2 gene expression level is equal to, less than, or less than a predetermined value, the tumor is resistant (non-responsive) to treatment with a drug containing an anti-hTROP2 antibody. Interpreted as predictable.
- hTROP2 gene expression can be assessed as high expression or low expression based on a number representing the level of hTROP2 gene expression in the biological sample.
- a subject can be assessed for high or low expression, for example, based on hTROP2 expression at the mRNA level.
- the expression level can be evaluated by any known method as described above.
- the hTROP2 gene expression level can be evaluated based on the values of reads per kilobase of exon per million mapped sequence reads (RPKM) calculated by next-generation RNA sequencing.
- the RPKM value is a value obtained by normalizing the number of reads obtained by the next-generation sequencer using the exon length of each gene and the total number of sequences read by the sequencer. Can be analyzed using a Log 2 [RPKM + 1] value which is a logarithmic (Log 2 ) value.
- RPKM values and hTROP2 gene expression are correlated. Therefore, when the RPKM value is high, the hTROP2 gene expression is also high.
- the Log 2 [RPKM + 1] value is greater than or greater than a predetermined value, high hTROP2 gene expression is assessed.
- the predetermined number can be set statistically to minimize the undesirable effects of false positives and false negatives.
- the set numerical value can be selected in the range of 6.0 to 9.0, for example, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.
- the set numerical value can be selected in a range of 6.0 to 8.0, for example, 6.0, 6.1, 6.2, 6.3, 6.4, 6. 5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, It is possible to select from the group consisting of 7.8, 7.9, and 8.0. Further, the set numerical value can be selected in a range of 6.5 to 8.0, for example, 6.5, 6.6, 6.7, 6.8, 6.9, 7.
- the set numerical value can be selected in a range of 7.0 to 8.0, for example, 7.0, 7.1, 7.2, 7.3, 7.4, 7. 5, 7.6, 7.7, 7.8, 7.9, and 8.0. Further, the set numerical value can be selected in a range of 7.5 to 8.0, for example, 7.5, 7.6, 7.7, 7.8, 7.9, and 8 .0 can be selected.
- the set numerical value can be selected from the group consisting of 6.5, 7.0, 7.5, and 8.0.
- the hTROP2 gene expression level can be evaluated based on the values of fragments per kilobase of exon per milled mapped sequence reads (FPKM) calculated by next-generation RNA sequencing.
- the FPKM value is a value obtained by normalizing the number of reads obtained by the next-generation sequencer using the gene length of each gene and the total number of sequences read by the sequencer.
- the expression level of the hTROP2 gene is 1 And can be analyzed using Log 2 [FPKM + 1] value which is a logarithmic (Log 2 ) value.
- FPKM values and hTROP2 gene expression are correlated. Therefore, when the FPKM value is high, the hTROP2 gene expression is also high.
- the Log 2 [FPKM + 1] value is greater than or greater than a predetermined value, high hTROP2 gene expression is assessed.
- the predetermined number can be set statistically to minimize the undesirable effects of false positives and false negatives.
- the set numerical value can be selected in the range of 6.0 to 8.0, for example, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.
- the set numerical value can be selected in the range of 6.0 to 7.0, for example, 6.0, 6.1, 6.2, 6.3, 6.4, 6. 5, 6.6, 6.7, 6.8, 6.9, and 7.0. As the set numerical value, it is also possible to select 6.0 or 7.0.
- the hTROP2 gene expression level can be evaluated based on a Median Normalized Count (MNC) value calculated by EdgeSeq Assay.
- MNC Median Normalized Count
- the MNC value is a value obtained by using the Median normalization method in EdgeSeq Assay
- the expression level of the hTROP2 gene is Log 2 [MNC + 1] value, which is a logarithmic (Log 2 ) value obtained by adding 1 to the MNC value.
- MNC values and hTROP2 gene expression are correlated. Therefore, when the MNC value is high, the hTROP2 gene expression is also high.
- the Log 2 [MNC + 1] value is greater than or greater than a predetermined value, high hTROP2 gene expression is assessed.
- the predetermined number can be set statistically to minimize the undesirable effects of false positives and false negatives.
- the set numerical value can be selected in the range of 12.0 to 15.0. For example, 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14.0, 14.1, 14.2, 14.2.
- the set numerical value can be selected in the range of 12.0 to 14.0, for example, 12.0, 12.1, 12.2, 12.3, 12.4, 12.4. 5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, and 14.0. is there.
- 12.0, 13.0, or 14.0 can be selected.
- hTROP2 gene expression at the mRNA level is assessed using a regulatory approved test.
- the regulatory approved test is a test approved by the FDA, EMA, or PMDA.
- Assessing SLFN11 gene expression can be assessed in biological samples from human patients. Such an embodiment includes a step of requesting an evaluation of SLFN11 gene expression at the mRNA level and receiving an evaluation result. Some embodiments include determining the value of SLFN11 gene expression at the mRNA level, and recording the value determined in any manner.
- SLFN11 gene expression level can be interpreted in relation to a given numerical value. If equal to, greater than, or greater than a predetermined number, the level of SLFN11 gene expression is interpreted as predicting that the subject is susceptible (responsive) to treatment with a drug containing an anti-hTROP2 antibody. You. In some embodiments, if the level of SLFN11 gene expression is equal to, less than, or less than a predetermined value, the tumor is resistant (non-responsive) to treatment with a drug containing an anti-hTROP2 antibody. Interpreted as predictable.
- SLFN11 gene expression can be assessed as high or low expression based on a number representing the level of SLFN11 gene expression in the biological sample.
- a subject can be assessed for high or low expression, for example, based on SLFN11 expression at the mRNA level.
- the expression level can be evaluated by any known method as described above.
- the expression level of the SLFN11 gene can be evaluated based on the RPKM value as in the case of the hTROP2 gene.
- the expression level of the SLFN11 gene can be analyzed using a Log 2 [RPKM + 1] value, which is a value obtained by adding 1 to the RPKM value and calculating the logarithm (Log 2 ).
- RPKM value and SLFN11 gene expression are correlated. Therefore, when the RPKM value is high, the SLFN11 gene expression is also high.
- the Log 2 [RPKM + 1] value is above a predetermined number, it is assessed as high SLFN11 gene expression.
- the predetermined number can be set statistically to minimize the undesirable effects of false positives and false negatives.
- the set numerical value can be selected in the range of 1.0 to 4.0, for example, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.
- the set numerical value can be selected in a range of 1.0 to 3.0, for example, 1.0, 1.1, 1.2, 1.3, 1.4, 1.. 5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, It is possible to select from the group consisting of 2.8, 2.9 and 3.0. Further, the set numerical value can be selected in the range of 2.0 to 3.0, for example, 2.0, 2.1, 2.2, 2.3, 2.4, 2.. 5, 2.6, 2.7, 2.8, 2.9 and 3.0. The set numerical value can be selected from the group consisting of 1.0, 2.0, and 3.0, and can be set to 3.0.
- the expression level of the SLFN11 gene can be evaluated based on the FPKM value as in the case of the hTROP2 gene.
- the expression level of the SLFN11 gene can be analyzed using a Log 2 [FPKM + 1] value, which is a value obtained by adding 1 to the FPKM value and calculating the logarithm (Log 2 ).
- FPKM value and SLFN11 gene expression are correlated. Therefore, when the FPKM value is high, the SLFN11 gene expression is also high.
- the predetermined number can be set statistically to minimize the undesirable effects of false positives and false negatives.
- the set numerical value can be selected in the range of 2.0 to 4.0, for example, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3. It is possible to select from the group consisting of 8, 3.9 and 4.0.
- the set numerical value can be selected in a range of 2.0 to 3.0, for example, 2.0, 2.1, 2.2, 2.3, 2.4, 2.. 5, 2.6, 2.7, 2.8, 2.9 and 3.0.
- 2.0 or 3.0 can be selected.
- the expression level of the SLFN11 gene can be evaluated based on the MNC value as in the case of the hTROP2 gene.
- the expression level of the SLFN11 gene can be analyzed using a Log 2 [MNC + 1] value which is a logarithmic (Log 2 ) value obtained by adding 1 to the MNC value.
- MNC values and SLFN11 gene expression are correlated. Therefore, when the MNC value is high, the SLFN11 gene expression is also high. In some embodiments, a high SLFN11 gene expression is assessed if the Log 2 [MNC] value is greater than a predetermined value.
- the predetermined number can be set statistically to minimize the undesirable effects of false positives and false negatives.
- the set numerical value can be selected in the range of 11.5 to 13.5, for example, 11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0, 13.1, 13.2, 13. It is possible to select from the group consisting of 3, 13.4, and 13.5.
- the set numerical value can be selected in the range of 11.5 to 12.5. For example, 11.5, 11.6, 11.7, 11.8, 11.9, 12. 0, 12.1, 12.2, 12.3, 12.4, and 12.5. As the set numerical value, 11.5, 12.0, or 12.5 can be selected.
- SLFN11 gene expression at the mRNA level is assessed using a regulatory approved test.
- the regulatory approved test is, for example, a test approved by the FDA, EMA, or PMDA.
- hTROP2 gene expression can be assessed in combination with expression of the SLFN11 gene. By combining two types of sensitivity markers, more accurate evaluation is possible.
- a human patient suffering from cancer can be treated with a medicament containing an anti-hTROP2 antibody if the expression of the hTROP2 gene and / or SLFN11 gene is assessed to be high.
- a human patient suffering from cancer can avoid administration of a medicament containing an anti-hTROP2 antibody if the expression of the hTROP2 gene and / or SLFN11 gene is assessed as low.
- Suitable dosages of the drug containing the anti-hTROP2 antibody include 2.0 mg / kg, 4.0 mg / kg, 6.0 mg / kg, 8.0 mg / kg, or 10.0 mg / kg. , But is not limited to these dosages.
- a suitable interval of administration of a drug containing an anti-hTROP2 antibody may be, for example, a three-week interval, but is not limited to this interval.
- hTROP2 and SLFN11 gene expression levels can be evaluated based on RPKM values.
- the expression level of each gene can be analyzed by adding Log 2 [RPKM + 1], which is a value obtained by adding 1 to the RPKM value and making it logarithmic (Log 2 ).
- the predetermined number can be set statistically to minimize the undesirable effects of false positives and false negatives.
- the Log 2 [RPKM + 1] value in the hTROP2 gene can be set in the range of 6.0 to 9.0.
- the Log 2 [RPKM + 1] value in the SLFN11 gene can be set in a range from 1.0 to 4.0.
- a suitable combination of Log 2 [RPKM + 1] set values for the hTROP2 and SLFN11 genes includes a group consisting of 7.5, 7.6, 7.7, 7.8, 7.9, and 8.0 for the hTROP2 gene. 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1. for the SLFN11 gene.
- One numerical value selected from the group consisting of 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, and 3.0 Can be cited.
- Log 2 [RPKM + 1] settings for the hTROP2 and SLFN11 genes is 7.5, 7.6, 7.7, 7.8, 7.9, and 8.0 for the hTROP2 gene.
- More preferred combinations of Log 2 [RPKM + 1] settings in the hTROP2 and SLFN11 genes include a combination of 7.5 in the hTROP2 gene and 1.0 in the SLFN11 gene, or 6.5 in the hTROP2 gene and 2.0 in the SLFN11 gene. Can be cited.
- Log 2 [RPKM + 1] settings in the hTROP2 and SLFN11 genes include 7.5 in the hTROP2 gene and 2.0 in the SLFN11 gene, or 6.5 in the hTROP2 gene and 3 in the SLFN11 gene. .0 is satisfied.
- Suitable combinations of Log 2 [RPKM + 1] settings for the hTROP2 and SLFN11 genes include 7.5 in the hTROP2 gene and 1.0 in the SLFN11 gene, 6.5 in the hTROP2 gene, and 2. in the SLFN11 gene. 0 combinations, 7.5 combinations in the hTROP2 gene and 2.0 combinations in the SLFN11 gene, and any one combination selected from the group consisting of 6.5 combinations in the hTROP2 gene and 3.0 combinations in the SLFN11 gene. be able to.
- hTROP2 and SLFN11 gene expression levels can be evaluated based on FPKM values.
- the expression level of each gene can be analyzed using a Log 2 [FPKM + 1] value which is a logarithmic (Log 2 ) value obtained by adding 1 to the FPKM value.
- the predetermined number can be set statistically to minimize the undesirable effects of false positives and false negatives.
- the Log 2 [FPKM + 1] value in the hTROP2 gene can be set in the range of 6.0 to 8.0.
- the Log 2 [FPKM + 1] value in the SLFN11 gene can be set in a range of 2.0 to 4.0.
- a human patient suffering from cancer can be treated by administering a drug containing an anti-hTROP2 antibody if both of the settings in the hTROP2 and SLFN11 genes are satisfied.
- a drug containing an anti-hTROP2 antibody can be administered and treated.
- Suitable combinations of Log 2 [FPKM + 1] set values in the hTROP2 and SLFN11 genes include: In the hTROP2 gene, a group consisting of 7.0, 7.1, 7.2, 7, 3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, and 8.0 And 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2. One combination of numerical values selected from the group consisting of 9, and 3.0 can be given.
- Another preferable combination is 6.0, $ 6.1, $ 6.2, $ 6.3, $ 6.4, 6.5, $ 6.6, $ 6.7, $ 6.8, and $ 6.0 in the hTROP2 gene.
- Yet another combination is 7.0, $ 7.1, $ 7.2, $ 7, 3, $ 7.4, $ 7.5, $ 7.6, $ 7.7, $ 7.8, $ 7.9 in the hTROP2 gene. , And 8.0, and 3.0, ⁇ ⁇ 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.0 in the SLFN11 gene. 7, $ 3.8, $ 3.9, and 4.0.
- Another combination of more preferred Log 2 [FPKM + 1] settings in the hTROP2 and SLFN11 genes includes 7.0 in the hTROP2 gene and 2.0 in the SLFN11 gene, 6.0 in the hTROP2 gene and 3.0 in the SLFN11 gene. 0 and any one combination selected from the group consisting of 7.0 in the hTROP2 gene and 3.0 in the SLFN11 gene.
- hTROP2 and SLFN11 gene expression levels can be evaluated based on MNC values.
- the expression level of each gene can be analyzed using a Log 2 [MNC + 1] value which is a logarithmic (Log 2 ) value obtained by adding 1 to the MNC value.
- the predetermined number can be set statistically to minimize the undesirable effects of false positives and false negatives.
- the Log 2 [MNC + 1] value in the hTROP2 gene can be set in the range of 12.0 to 14.0. Further, the Log 2 [MNC + 1] value in the SLFN11 gene can be set in a range of 11.5-12.5.
- a human patient suffering from cancer can be treated by administering a drug containing an anti-hTROP2 antibody if both of the settings in the hTROP2 and SLFN11 genes are satisfied. Further, in some embodiments, when either of the set values in the hTROP2 or SLFN11 gene is satisfied, a drug containing an anti-hTROP2 antibody can be administered and treated.
- Suitable combinations of Log 2 [MNC + 1] set values for the hTROP2 and SLFN11 genes include 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, and 12.6 for the hTROP2 gene. , 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14.0, 14.1, 14.2, 14.2. 3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9, and 15.0, and a numerical value selected from the group consisting of 11.5, 11 .1, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8 , 12.9, 13.0, 13.1, 13.2, 13.3, 13.4, and 13.5.
- Another suitable combination is 12.0, $ 12.1, $ 12.2, $ 12.3, $ 12.4, $ 12.5, $ 12.6, $ 12.7, $ 12.8, and 12.0 in the hTROP2 gene. 12.9, ⁇ 13.0.
- One numerical combination can be cited.
- Another suitable combination of Log 2 [MNC + 1] settings in the hTROP2 and SLFN11 genes includes 12.0 in the hTROP2 gene and 11.5 in the SLFN11 gene, 14.0 in the hTROP2 gene and 11.1 in the SLFN11 gene. 5 combinations, any one combination selected from the group consisting of 12.0 in the hTROP2 gene and 12.5 in the SLFN11 gene, and 14.0 in the hTROP2 gene and 12.5 in the SLFN11 gene. be able to.
- the measurement and evaluation of the gene expression level may be performed simultaneously for the hTROP2 gene and the SLFN11 gene.
- the measurement and evaluation of the expression level of the hTROP2 gene may be performed first, and the measurement and evaluation of the expression level of the SLFN11 gene may be performed for a human patient evaluated to have a high expression level of the hTROP2 gene.
- the measurement and evaluation of the expression level of the SLFN11 gene may be performed first, and the measurement and evaluation of the expression level of the hTROP2 gene may be performed for a human patient evaluated to have a high expression level of the SLFN11 gene.
- hTROP2 and SLFN11 gene expression at the mRNA level is assessed using a regulatory approved test.
- the regulatory approval test is an FDA, EMA or PMDA approved test.
- Test Kit The present invention also relates to a diagnostic test kit comprising several components for performing the method of the present invention. Diagnostic test kits enhance the convenience, speed, and reproducibility of performing diagnostic assays.
- a basic diagnostic test kit includes PCR primers that analyze gene expression.
- a more detailed test kit comprises, in addition to the PCR primers, buffers, reagents, and detailed instructions for measuring gene expression levels using PCR technology.
- the kit includes a test protocol and all the consumable components required for the test, except for the RNA sample.
- Embodiment 1 Production of Antibody Drug Conjugate A humanized anti-hTROP2 antibody (SEQ ID NO: 1 having a sequence consisting of Antibody comprising a light chain consisting of the amino acid sequence of amino acids 21 to 234 in SEQ ID NO: 2)
- antibody-drug conjugate (1) in which a drug linker represented by and an anti-hTROP2 antibody were bound by a thioether bond (hereinafter, referred to as “antibody-drug conjugate (1)”) was produced.
- the average number of drug bonds per antibody molecule can be adjusted in the range of 0 to 8, but this time, an antibody drug conjugate having an average number of drug bonds of 3.5 to 4.5 was prepared and used in the following examples. did.
- Embodiment 2 FIG. Evaluation of antitumor effect of antibody drug conjugate (1) Mice: Female nu / nu mice (Envigo), 5-8 weeks of age, were acclimated for at least 3 days under SPF conditions before use in the experiment. Mice were fed a sterilized solid feed (Teklad 2919, Envigo) and fed water (containing 2 ppm chlorine) with reverse osmosis membrane treatment.
- Tumor volume (mm 3 ) 0.52 ⁇ major axis (mm) ⁇ [minor axis (mm)] 2
- a tumor piece shredded to about 5 ⁇ 5 ⁇ 5 mm 3 was transplanted subcutaneously to the left flank of a female nu / nu mouse.
- PDX derived xenograft
- TGI tumor growth inhibition rate
- Tumor growth inhibition rate (%) 100 ⁇ (1-Tf / mean Cf)
- Tf tumor volume 21 days after administration of antibody drug conjugate
- mean Cf arithmetic mean value of tumor volume 21 days after administration of negative control group mice All tests described above were performed at Georgia Oncology (Champions). Carried out.
- Embodiment 3 Relationship between hTROP2 and SLFN11 gene expression levels (RPKM values) in tumors derived from each PDX mouse model and antibody-drug conjugate (1) antitumor activity Gene expression level data in each PDX model used in Example 2 was obtained from graduates 1 was added to the RPKM value obtained and normalized by the company to obtain a log 2 [RPKM + 1] value which is a logarithmic (Log 2 ) value (Table 2), and using this, the antibody drug conjugate (1 ) was analyzed for the relationship between the antitumor activity (Table 1) and the expression levels of hTROP2 gene and SLFN11 gene in the PDX model.
- the Log 2 [RPKM + 1] value of the hTROP2 gene is higher than 7.5 and the Log 2 [RPKM + 1] value of the SLFN11 gene is higher than 1.0, or the Log 2 [RPKM + 1] value of the hTROP2 gene is 6.5.
- the proportion of animal models showing a TGI of 75% or more is about 80% to 100%.
- Embodiment 4 FIG. Evaluation of antitumor effect of antibody drug conjugate (2) Mice: Female nu / nu mice (Envigo), 5-8 weeks of age, were acclimated for at least 3 days under SPF conditions before use in the experiment. Mice were fed a sterilized solid feed (Teklad 2919, Envigo) and fed water (containing 2 ppm chlorine) with reverse osmosis membrane treatment.
- Tumor volume (mm 3 ) 0.52 ⁇ major axis (mm) ⁇ [minor axis (mm)] 2
- a tumor piece shredded to about 5 ⁇ 5 ⁇ 5 mm 3 was transplanted subcutaneously to the left flank of a female nu / nu mouse.
- PDX derived xenograft
- TGI tumor growth inhibition rate
- Embodiment 5 FIG. HTROP2 and SLFN11 gene expression levels (FPKM values) in tumors derived from each PDX mouse model, and relationship with antibody drug conjugate (1) antitumor activity
- Gene expression level data in each PDX model used in Example 4 Using RNA extracted from a formalin-fixed paraffin-embedded specimen of the tumor, it was obtained by the next-generation RNA sequencing method. The obtained data was normalized to the FPKM value, and then 1 was added to FPKM to obtain a Log 2 [FPKM + 1] value which is a logarithmic (Log 2 ) value (Table 6).
- the ratio of the animal model showing TGI of 75% or more remains at 43 to 50%, and the combination of the hTROP2 gene expression amount and the SLFN11 gene expression amount indicates that the antibody drug conjugate ( It was clarified that 1) can be used as a sensitivity marker for predicting the antitumor effect.
- the Log 2 [FPKM + 1] value of the hTROP2 gene is greater than 7.0 and the Log 2 [FPKM + 1] value of the SLFN11 gene is greater than 2.0, or the Log 2 [FPKM + 1] value of the hTROP2 gene is 6.0.
- the ratio of the animal model having a TGI of 75% or more is about 80% to 100%.
- the proportion of the animal model having a TGI of 75% or more is 100%. Become. Even when the TGI is 70% or 80% or more, it is possible to predict the antitumor effect at the same prediction rate by each Log 2 [FPKM + 1] value set when the TGI is 75% or more. Was.
- Embodiment 6 Production of Compound (1) According to the production methods described in WO 2014/057687 and WO 2015/115091, the compound represented by the formula
- compound (1) (Hereinafter, referred to as “compound (1)”) was produced.
- Embodiment 7 FIG. Cell growth inhibition test 7- (1) at the time of SLFN11 knockdown: Effect on human pharyngeal cancer cell line FaDu Human pharyngeal cancer cell line FaDu was obtained from ATCC and used for evaluation. FaDu cells suspended in 2 ⁇ 10 5 cells / mL in a MEM medium containing a non-essential amino acid solution, a pyruvate solution and 10% fetal bovine serum were seeded at 10 mL / dish in a 10 cm cell culture dish.
- the collected cells were suspended at 5 ⁇ 10 4 cells / mL in a MEM medium containing a non-essential amino acid solution, a pyruvate solution and 10% fetal bovine serum.
- the cells were seeded at 100 ⁇ L / well in a 96-well cell culture plate. Twenty-four hours after seeding, the medium was treated with 100 nM, 33 nM, 11 nM, 3.7 nM, 1.2 nM, 0.41 nM. 0.13 nM.
- the medium was replaced with a medium containing 0.045 nM or 0 nM of the compound (1) or the antibody-drug conjugate (1) at 100 ⁇ L / well.
- the molar concentration of the antibody-drug conjugate (1) was calculated with an average molecular weight of 150,000. All cells were cultured at 37 ° C. under 5% CO 2 . After 72 hours from the medium exchange, an ATPlite 1 step detection system (PerkinElmer) was added at 100 ⁇ L / well, and the luminescence intensity of each well was measured after incubation at room temperature for 10 minutes.
- an ATPlite 1 step detection system PerkinElmer
- the cell growth inhibition rate (%) under each condition was calculated using the following formula.
- Cell growth inhibition rate (%) 100 ⁇ (1-T / C)
- T Average luminescence intensity of each sample-added well
- C Average luminescence intensity of each well to which 0 nM of each sample was added
- FIG. 4 shows the cell growth inhibitory effect of the compound (1) or the antibody-drug conjugate (1) on FaDu cells at the time of SLFN11 knockdown.
- Table 9 shows the calculated 50% inhibitory concentrations.
- SLFN11 knockdown on the Fadu cell line attenuated the cell growth inhibitory effects of compound (1) and antibody drug conjugate (1).
- NCI-H1781 Human lung cancer cell line NCI-H1781 was obtained from ATCC and used for evaluation. NCI-H1781 cells suspended at 2 ⁇ 10 5 cells / mL in RPMI-1640 medium containing 10% fetal bovine serum were seeded at 10 mL / dish in a 10 cm cell culture dish.
- the cells were seeded at 100 ⁇ L / well in a 96-well cell culture plate. Twenty-four hours after seeding, the medium was treated with 100 nM, 33 nM, 11 nM, 3.7 nM, 1.2 nM, 0.41 nM. 0.13 nM. The medium was replaced with a medium containing 0.045 nM or 0 nM of the compound (1) or the antibody-drug conjugate (1) at 100 ⁇ L / well. The molar concentration of the antibody-drug conjugate (1) was calculated with an average molecular weight of 150,000. All cells were cultured at 37 ° C. under 5% CO 2 . After 72 hours from the medium exchange, an ATPlite 1 step detection system (PerkinElmer) was added at 100 ⁇ L / well, and the luminescence intensity of each well was measured after incubation at room temperature for 10 minutes.
- PerkinElmer an ATPlite 1 step detection system
- the cell growth inhibition rate (%) under each condition was calculated using the following formula.
- Cell growth inhibition rate (%) 100 ⁇ (1-T / C)
- T Average luminescence intensity of each sample-added well
- C Average luminescence intensity of each well to which 0 nM of each sample was added
- FIG. 5 shows the cell growth inhibitory effect of the compound (1) or the antibody-drug conjugate (1) on the NCI-H1781 cells at the time of SLFN11 knockdown.
- Table 10 shows the calculated 50% inhibitory concentrations. Knockdown of SLFN11 against NCI-H1781 cell line attenuated the cell growth inhibitory effects of compound (1) and antibody-drug conjugate (1).
- the collected cells were suspended at 5 ⁇ 10 4 cells / mL in a MEM medium containing a non-essential amino acid solution, a pyruvate solution and 10% fetal bovine serum.
- the cells were seeded at 100 ⁇ L / well in a 96-well cell culture plate. Twenty-four hours after seeding, the medium was treated with 100 nM, 33 nM, 11 nM, 3.7 nM, 1.2 nM, 0.41 nM. 0.13 nM.
- the medium was replaced with a medium containing 0.045 nM or 0 nM of the compound (1) or the antibody-drug conjugate (1) at 100 ⁇ L / well.
- the molar concentration of the antibody-drug conjugate (1) was calculated with an average molecular weight of 150,000. All cells were cultured at 37 ° C. under 5% CO 2 . After 72 hours from the medium exchange, an ATPlite 1 step detection system (PerkinElmer) was added at 100 ⁇ L / well, and the luminescence intensity of each well was measured after incubation at room temperature for 10 minutes.
- an ATPlite 1 step detection system PerkinElmer
- the cell growth inhibition rate (%) under each condition was calculated using the following formula.
- Cell growth inhibition rate (%) 100 ⁇ (1-T / C)
- T Average luminescence intensity of each sample-added well
- C Average luminescence intensity of each well to which 0 nM of each sample was added
- FIG. 6 shows the cell proliferation inhibitory effect of the compound (1) or the antibody-drug conjugate (1) on Calu-3 cells at the time of SLFN11 knockdown.
- Table 11 shows the calculated 50% inhibitory concentrations. Knockdown of SLFN11 on the Calu-3 cell line attenuated the cytostatic effect of compound (1).
- the cells were seeded at 100 ⁇ L / well in a 96-well cell culture plate. Twenty-four hours after seeding, the medium was treated with 100 nM, 33 nM, 11 nM, 3.7 nM, 1.2 nM, 0.41 nM. 0.13 nM. The medium was replaced with a medium containing 0.045 nM or 0 nM of the compound (1) or the antibody-drug conjugate (1) at 100 ⁇ L / well. The molar concentration of the antibody-drug conjugate (1) was calculated with an average molecular weight of 150,000. All cells were cultured at 37 ° C. under 5% CO 2 . After 72 hours from the medium exchange, an ATPlite 1 step detection system (PerkinElmer) was added at 100 ⁇ L / well, and the luminescence intensity of each well was measured after incubation at room temperature for 10 minutes.
- PerkinElmer an ATPlite 1 step detection system
- the cell growth inhibition rate (%) under each condition was calculated using the following formula.
- Cell growth inhibition rate (%) 100 ⁇ (1-T / C)
- T Average luminescence intensity of each sample-added well
- C Average luminescence intensity of each well to which 0 nM of each sample was added
- FIG. 7 shows the cell growth inhibitory effect of compound (1) or antibody-drug conjugate (1) on MDA-MB-468 cells at the time of SLFN11 knockdown.
- Table 12 shows the calculated 50% inhibitory concentrations. Knockdown of SLFN11 on the MDA-MB-468 cell line attenuated the cytostatic effect of compound (1).
- HCC38 Human breast cancer cell line HCC38 was obtained from the ATCC and used for evaluation. HCC38 cells suspended at 2 ⁇ 10 5 cells / mL in RPMI-1640 medium containing 10% fetal bovine serum were seeded on a 10 cm cell culture dish at 10 mL / dish. After 24 hours from the seeding, it was suspended ON-TARGETplus SLFN11 siRNA of 100pmol (Dharamcon) or ON-TARGETplus Non-targeting Control Pool (Dharamcon) and 30 ⁇ L of Lipofectamine TM RNAiMAX Transfection Reagent to (ThermoFisher) in Opti-MEM medium 1mL The whole amount was added to the medium.
- the medium was removed and the cells were washed with PBS, and then the cells were dissociated from the dish using 1 mL of TrypLE TM Express and collected.
- the collected cells were suspended in RPMI-1640 medium containing 10% fetal bovine serum at 5 ⁇ 10 4 cells / mL.
- the cells were seeded at 100 ⁇ L / well in a 96-well cell culture plate. Twenty-four hours after seeding, the medium was treated with 100 nM, 33 nM, 11 nM, 3.7 nM, 1.2 nM, 0.41 nM. 0.13 nM.
- the medium was replaced with a medium containing 0.045 nM or 0 nM of the compound (1) or the antibody-drug conjugate (1) a at 100 ⁇ L / well.
- the molar concentration of the antibody-drug conjugate (1) was calculated with an average molecular weight of 150,000. All cells were cultured at 37 ° C. under 5% CO 2 . After 72 hours from the medium exchange, an ATPlite 1 step detection system (PerkinElmer) was added at 100 ⁇ L / well, and the luminescence intensity of each well was measured after incubation at room temperature for 10 minutes.
- the cell growth inhibition rate (%) under each condition was calculated using the following formula.
- Cell growth inhibition rate (%) 100 ⁇ (1-T / C)
- T Average luminescence intensity of each sample-added well
- C Average luminescence intensity of each well to which 0 nM of each sample was added
- FIG. 8 shows the cell growth inhibitory effect of compound (1) or antibody-drug conjugate (1) on HCC38 cells at the time of SLFN11 knockdown.
- Table 13 shows the calculated 50% inhibitory concentrations.
- SLFN11 knockdown on the HCC38 cell line attenuated the cell growth inhibitory effects of compound (1) and antibody drug conjugate (1).
- Embodiment 8 FIG. HTROP2 and SLFN11 gene expression levels (Median Normalized Count value) in tumors derived from patients in clinical trials, and antibody drug conjugates (1) Antitumor activity 8- (1) Test plan and drug effects Relapse / progression In a phase 1 dose escalation study of patients with non-small cell lung cancer, the antibody-drug conjugate (1) was administered intravenously once every three weeks until unacceptable toxicity or exacerbation of the condition. Dose limiting toxicity is determined in Cycle 1 (Day 1-21). Tumor collection was performed by the first dose after entry into the clinical trial. Table 14 shows the administered dose and the maximum tumor change rate (%) in each patient. When the value of the maximum tumor change rate is negative, it means that the tumor was reduced by the administration of the antibody-drug conjugate (1).
- a Log 2 [MNC + 1] value which is a logarithm (Log 2 ) value obtained by adding 1 to the Median Normalized Count (MNC) value obtained and normalized by HTG Molecular Diagnostics, was obtained (Table 15).
- the relationship between the antitumor activity (Table 14) of the antibody-drug conjugate (1) in patients and the expression levels of the hTROP2 gene and the SLFN11 gene was analyzed. When all the evaluated patients were divided into groups in which the hTROP2 gene and the SLFN11 gene showed a certain level of expression or more (Table 16), the proportion of patients showing a certain degree of efficacy (maximum tumor change rate of 0% or less) was hTROP2 gene.
- SEQ ID NO: 1 amino acid sequence of humanized anti-hTROP2 antibody heavy chain
- SEQ ID NO: 2 amino acid sequence of humanized anti-hTROP2 antibody light chain
- SEQ ID NO: 3 CDRH1 sequence of humanized anti-hTROP2 antibody heavy chain
- SEQ ID NO: 4 humanized anti-hTROP2 CDRH2 sequence of antibody heavy chain
- SEQ ID NO: 5 CDRH3 sequence of humanized anti-hTROP2 antibody heavy chain
- SEQ ID NO: 7 CDRL2 sequence of humanized anti-hTROP2 antibody light chain
- SEQ ID NO: 8 CDRL3 sequence of humanized anti-hTROP2 antibody light chain
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Hospice & Palliative Care (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Abstract
本発明は、がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する際に、mRNAレベルでの遺伝子発現量を指標として投与対象を同定する方法を提供する。 本発明は、がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法に関し、当該方法は、がんに罹患したと診断されたヒト患者から生体試料を取得する工程;該生体試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価する工程;hTROP2遺伝子の発現得量が高いと判断された該生体試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価する工程;及びSLFN11遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程を含む。又、当該方法は、がんに罹患したと診断されたヒト患者から生体試料を取得する工程;当該試料においてmRNAレベルでのhTROP2遺伝子及びSLFN11遺伝子の発現量を評価する工程;及びhTROP2遺伝子及びSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程を含む。
Description
本発明は、がんに罹患したヒト患者において、抗体薬物複合体を含有する医薬を投与する対象を同定する方法に係わる。
ほとんどの抗がん剤は、特定のヒト患者には効果があるが、その他のヒト患者には効果がない。これは、がんの遺伝的多様性に基づくものであり、同じ患者内のがんの間でさえ観察されることがある。患者ごとの薬効の隔たりは、分子標的型抗がん剤において特に顕著である。従って、いずれの抗がん剤がいずれの患者に対して有効であるかを決定するための適切な検査が必要であり、このような検査なくして抗がん剤の十分な薬効を期待することはできない。感受性マーカーの発見に基づく診断法の確立は、新たな抗がん剤に対して臨床応答を示す可能性が高い患者を予め特定することによって、該抗がん剤の開発を加速する手段となる。これによって、臨床試験の規模、期間及び費用を著しく低減させることが可能となる。ゲノミクス、プロテオミクス、又は分子イメージングの技術は、感受性マーカーの迅速且つ高感度での検出を可能とするはずであった。しかし、がんにおける遺伝子プロファイリングに係わる様々な技術が利用可能となったにも関わらず、抗がん剤の感受性マーカーが広く実用化の域にあるとは言いがたい。
上述の分子標的型抗がん剤の標的として、例えばヒトTROP2を挙げることができる。ヒトTROP2(trophoblast cell surface protein 2, TACSTD2:tumor-associated calcium signal transducer 2,GA733-1,EGP-1,M1S1;以下、hTROP2と表記する)は、323アミノ酸残基からなる1回膜貫通型の1型細胞膜蛋白質である。
臨床検体を用いた免疫組織化学解析により、hTROP2は種々の上皮細胞由来のがんにおいて過剰発現していること、且つ、正常組織においてはいくつかの組織の上皮細胞での発現に限られ、その発現量も腫瘍組織と比較して低いことが示されている(非特許文献1~5)。またhTROP2の発現は大腸がん(非特許文献1)、胃がん(非特許文献2)、膵臓がん(非特許文献3)、口腔がん(非特許文献4)、グリオーマ(非特許文献5)において予後不良と相関することも報告されている。さらに大腸がん細胞を用いたモデルから、hTROP2の発現ががん細胞の足場非依存的細胞増殖及び免疫不全マウスでの腫瘍形成に関与していることが報告されている(非特許文献6)。
この様ながんとの関連性を示唆する情報から、これまでに複数の抗hTROP2抗体が樹立され、その抗腫瘍効果が検討されている。この中には抗体単独でnu/nuマウス異種移植モデルにおける抗腫瘍活性を示すもの(特許文献1~4)の他、抗体薬物複合体として抗腫瘍活性を示すもの(特許文献5~7)等が開示されている。しかしながら、それらの活性の強さや適用範囲はまだ十分ではなく、hTROP2を治療標的とする未充足医療ニーズが存在している。既存の抗体又は抗体薬物複合体が医療ニーズを満していない原因としては、医薬としての効果が十分でないことに加え、適切な感受性マーカーが見出されていない点を挙げることができる。例えば、小細胞肺がんにおいてhTROP2を標的とする抗体薬物複合体の示す抗腫瘍活性が、hTROP2の発現量によって予測できないことが知られている(非特許文献7)。
がん細胞表面に発現し、且つ、細胞に内在化できる抗原に結合する抗体に、細胞毒性のある薬物を結合させた抗体薬物複合体(Antibody-Drug Conjugate;以下、「ADC」と呼ぶこともある)は、がん細胞に選択的に薬物を送達できることによって、がん細胞内に薬物を蓄積させ、がん細胞を死滅させることが期待できる。このような抗体薬物複合体の一つとして、抗体とトポイソメラーゼI阻害剤であるエキサテカンの誘導体を構成要素とする抗体薬物複合体が知られている(特許文献9~15、非特許文献8~16)。特許文献9に記載の抗体薬物複合体は抗hTROP2抗体を含有し、hTROP2抗体を発現するがん細胞を死滅させることが可能であるが、既存のhTROP2を標的とする抗体又は抗体薬物複合体と同様に、hTROP2の発現量のみによって抗腫瘍活性を正確に予測できない可能性がある。
ヒトSLFN11(Schlafen family member 11)は901アミノ酸残基からなる蛋白質で、DNA複製ストレスに応答して複製フォークに結合し、DNA複製を阻害する機能を有することが示唆されている(非特許文献17)。またがん細胞株のトポイソメラーゼI阻害剤を含むDNA障害型抗がん剤に対する感受性と、SLFN11のmRNA発現量が高く相関することも報告されている(非特許文献18~19)。また、ポリ ADPリボースポリメラーゼ(PARP)阻害剤であるveliparib及び抗DLL3抗体薬物複合体であるrovalpituzumab tesirine (Rova-T)の併用が、SLFN11を高発現している小細胞肺がん患者に対する延命効果を有することが知られている(非特許文献20)。さらに、アルキル化剤であるTemozolomide及びveliparibの併用が、SLFN11を高発現している小細胞肺がん患者に対する延命効果を有することも知られている(非特許文献21)。しかしながら、エキサテカン等のトポイソメラーゼI阻害剤を用いたADCによる抗腫瘍活性とSLFN11の発現量との関係は未だ明らかにされておらず、薬効を予測する診断薬としての有効性も不明である。
Ohmachi T, et al., Clin. Cancer Res., 12(10), 3057-3063 (2006).
Muhlmann G, et al., J. Clin. Pathol., 62(2), 152-158 (2009).
Fong D, et al., Br. J. Cancer, 99(8), 1290-1295 (2008).
Fong D, et al., Mod. Pathol., 21(2), 186-191 (2008).
Ning S, et al., Neurol. Sci., 34(10), 1745-1750 (2013).
Wang J, et al., Mol. Cancer Ther., 7(2), 280-285 (2008).
Gray J. E., et al. Clin. Cancer Res. 23(19), 5711-5719 (2017)
Ducry, L., et al., Bioconjugate Chem. (2010) 21, 5-13.
Alley, S. C., et al., Current Opinion in Chemical Biology (2010) 14, 529-537.
Damle N. K. Expert Opin. Biol. Ther. (2004) 4, 1445-1452.
Senter P. D., et al., Nature Biotechnology (2012) 30, 631-637.
Howard A. et al., J Clin Oncol 29: 398-405.
Ogitani Y. et al., Clinical Cancer Research (2016) 22(20), 5097-5108.
Ogitani Y. et al., Cancer Science (2016) 107, 1039-1046.
Doi T, et al., Lancet Oncol 2017; 18: 1512-22.
Takegawa N, et al., Int. J. Cancer: 141, 1682-1689 (2017)
Murai J, et al., Mol. Cell 69(3), 371-384 (2018)
Zoppoli G, et al., Proc. Natl. Acad. Sci. U. S. A., 109(37):15030-15035 (2012)
Barretina J, et al., Nature 483(7391), 603-607 (2012)
Van Den Borg R, et al., Expert Rev. Anticancer Ther., 19 (6), 461-471 (2019)
Pietanza MC, et al., J, Clin. Oncol. 36 (23), 2386-2394 (2018)
本発明は、がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する際に、mRNAレベルでの遺伝子発現量を指標として投与対象を同定する方法に係わる。
本発明者らは、hTROP2遺伝子及びSLFN11遺伝子のmRNAレベルの発現量を組み合わせることによって、抗hTROP2抗体を含有する医薬を投与する対象を、より精度高く同定可能であることを見出して、本発明を完成させた。
すなわち、本発明は、以下の各項目を含むが、これらに限定されない。
[1]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)該生体試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価する工程;
3)hTROP2遺伝子の発現量が高いと判断された該生体試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価する工程; 及び
4)SLFN11遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[2]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及びSLFN11遺伝子の発現量を評価する工程; 及び
3)hTROP2遺伝子及びSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[3]がんに罹患したと診断されたヒト患者から取得した生体試料から、RNAシーケンシングによってlog2[RPKM+1]値が測定され、これが特定の値を上回る場合に、mRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断される、[1]又は[2]に記載の方法。
[4]log2[RPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9,及び9.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]に記載の方法。
[5]log2[RPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]又は[4]に記載の方法。
[1]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)該生体試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価する工程;
3)hTROP2遺伝子の発現量が高いと判断された該生体試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価する工程; 及び
4)SLFN11遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[2]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及びSLFN11遺伝子の発現量を評価する工程; 及び
3)hTROP2遺伝子及びSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[3]がんに罹患したと診断されたヒト患者から取得した生体試料から、RNAシーケンシングによってlog2[RPKM+1]値が測定され、これが特定の値を上回る場合に、mRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断される、[1]又は[2]に記載の方法。
[4]log2[RPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9,及び9.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]に記載の方法。
[5]log2[RPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]又は[4]に記載の方法。
[6]log2[RPKM+1]値が、6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]乃至[5]のいずれか一つに記載の方法。
[7]log2[RPKM+1]値が、7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]乃至[6]のいずれか一つに記載の方法。
[8]log2[RPKM+1]値が、7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]乃至[7]のいずれか一つに記載の方法。
[9]log2[RPKM+1]値が、7.0, 7.5,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]乃至[7]のいずれか一つに記載の方法。
[10]log2[RPKM+1]値が7.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[9]に記載の方法。
[7]log2[RPKM+1]値が、7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]乃至[6]のいずれか一つに記載の方法。
[8]log2[RPKM+1]値が、7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]乃至[7]のいずれか一つに記載の方法。
[9]log2[RPKM+1]値が、7.0, 7.5,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[3]乃至[7]のいずれか一つに記載の方法。
[10]log2[RPKM+1]値が7.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[9]に記載の方法。
[11]log2[RPKM+1]値が7.5を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[9]に記載の方法。
[12]log2[RPKM+1]値が8.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[9]に記載の方法。
[13]log2[RPKM+1]値が1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[3]乃至[12]のいずれか一つに記載の方法。
[14]log2[RPKM+1]値が1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[3]乃至[13]のいずれか一つに記載の方法。
[15]log2[RPKM+1]値が2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[3]乃至[14]のいずれか一つに記載の方法。
[12]log2[RPKM+1]値が8.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[9]に記載の方法。
[13]log2[RPKM+1]値が1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[3]乃至[12]のいずれか一つに記載の方法。
[14]log2[RPKM+1]値が1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[3]乃至[13]のいずれか一つに記載の方法。
[15]log2[RPKM+1]値が2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[3]乃至[14]のいずれか一つに記載の方法。
[16]log2[RPKM+1]値が1.0、2.0及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[3]乃至[14]のいずれか一つに記載の方法。
[17]log2[RPKM+1]値が1.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[16]に記載の方法。
[18]log2[RPKM+1]値が2.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[16]に記載の方法。
[19]log2[RPKM+1]値が3.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[16]に記載の方法。
[20]がんに罹患したと診断されたヒト患者から取得した生体試料から、RNAシーケンシングによってlog2[FPKM+1]値が測定され、これが特定の値を上回る場合に、mRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断される、[1]又は[2]に記載の方法。
[17]log2[RPKM+1]値が1.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[16]に記載の方法。
[18]log2[RPKM+1]値が2.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[16]に記載の方法。
[19]log2[RPKM+1]値が3.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[16]に記載の方法。
[20]がんに罹患したと診断されたヒト患者から取得した生体試料から、RNAシーケンシングによってlog2[FPKM+1]値が測定され、これが特定の値を上回る場合に、mRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断される、[1]又は[2]に記載の方法。
[21]log2[FPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0. 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[20]に記載の方法。
[22]log2[FPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9,及び7.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[20]又は[21]に記載の方法。
[23]log2[FPKM+1]値が、6.0,又は7.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[20]又は[21]に記載の方法。
[24]log2[FPKM+1]値が6.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[22]に記載の方法。
[25]log2[FPKM+1]値が7.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[22]に記載の方法。
[22]log2[FPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9,及び7.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[20]又は[21]に記載の方法。
[23]log2[FPKM+1]値が、6.0,又は7.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[20]又は[21]に記載の方法。
[24]log2[FPKM+1]値が6.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[22]に記載の方法。
[25]log2[FPKM+1]値が7.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[22]に記載の方法。
[26]log2[FPKM+1]値が2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[20]乃至[25]のいずれか一つに記載の方法。
[27]log2[FPKM+1]値が2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[20]乃至[26]のいずれか一つに記載の方法。
[28]log2[FPKM+1]値が2.0,又は3.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[22]乃至[26]のいずれか一つに記載の方法。
[29]log2[FPKM+1]値が2.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[28]に記載の方法。
[30]log2[FPKM+1]値が3.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[28]に記載の方法。
[27]log2[FPKM+1]値が2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[20]乃至[26]のいずれか一つに記載の方法。
[28]log2[FPKM+1]値が2.0,又は3.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[22]乃至[26]のいずれか一つに記載の方法。
[29]log2[FPKM+1]値が2.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[28]に記載の方法。
[30]log2[FPKM+1]値が3.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[28]に記載の方法。
[31]がんに罹患したと診断されたヒト患者から取得した生体試料から、EdgeSeq Assayによってlog2[MNC+1]値が測定され、これが特定の値を上回る場合に、mRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断される、[1]又は[2]に記載の方法。
[32]log2[MNC+1]値が、12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14.0, 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9,及び15.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[31]に記載の方法。
[33]log2[MNC+1]値が、12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9,及び14.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[31]又は[32]に記載の方法。
[34]log2[MNC+1]値が、12.0, 13.0, 又は14.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[31]又は[32]に記載の方法。
[35]log2[MNC+1]値が12.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[34]に記載の方法。
[32]log2[MNC+1]値が、12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14.0, 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9,及び15.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[31]に記載の方法。
[33]log2[MNC+1]値が、12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9,及び14.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[31]又は[32]に記載の方法。
[34]log2[MNC+1]値が、12.0, 13.0, 又は14.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[31]又は[32]に記載の方法。
[35]log2[MNC+1]値が12.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[34]に記載の方法。
[36]log2[MNC+1]値が13.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[34]に記載の方法。
[37]log2[MNC+1]値が14.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[34]に記載の方法。
[38]log2[MNC+1]値が11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4,及び13.5からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[31]乃至[37]のいずれか一つに記載の方法。
[39]log2[MNC+1]値が11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 及び12.5からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[31]乃至[38]のいずれか一つに記載の方法。
[40]log2[MNC+1]値が11.5, 12.0, 及び12.5からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[31]乃至[38]のいずれか一つに記載の方法。
[37]log2[MNC+1]値が14.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、[34]に記載の方法。
[38]log2[MNC+1]値が11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4,及び13.5からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[31]乃至[37]のいずれか一つに記載の方法。
[39]log2[MNC+1]値が11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 及び12.5からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[31]乃至[38]のいずれか一つに記載の方法。
[40]log2[MNC+1]値が11.5, 12.0, 及び12.5からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[31]乃至[38]のいずれか一つに記載の方法。
[41]log2[MNC+1]値が11.5を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[40]に記載の方法。
[42]log2[MNC+1]値が12.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[40]に記載の方法。
[43]log2[MNC+1]値が12.5を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[40]に記載の方法。
[44]生体試料が腫瘍試料を含む、[1]乃至[43]のいずれか一つに記載の方法。
[45]抗hTROP2抗体を含有する医薬が抗hTROP2抗体薬物複合体である、[1]乃至[44]のいずれか一つに記載の方法。
[42]log2[MNC+1]値が12.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[40]に記載の方法。
[43]log2[MNC+1]値が12.5を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、[40]に記載の方法。
[44]生体試料が腫瘍試料を含む、[1]乃至[43]のいずれか一つに記載の方法。
[45]抗hTROP2抗体を含有する医薬が抗hTROP2抗体薬物複合体である、[1]乃至[44]のいずれか一つに記載の方法。
[46]抗hTROP2抗体薬物複合体が、次式
(式中、Aは抗hTROP2抗体との結合位置を示す)
で示される薬物リンカーと、抗hTROP2抗体とがチオエーテル結合によって結合した抗体薬物複合体である、[45]に記載の方法。
[47]抗hTROP2抗体が、配列番号1においてアミノ酸番号20乃至470に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号21乃至234に記載のアミノ酸配列からなる軽鎖からなる抗体である、[46]に記載の方法。
[48]抗hTROP2抗体の重鎖カルボキシル末端のリシン残基が欠失している、[47]に記載の方法。
[49]薬物-リンカー構造の1抗体あたりの平均結合数が2から8個の範囲である[46]乃至[48]のいずれか一つに記載の方法。
[50]薬物-リンカー構造の1抗体あたりの平均結合数が3.5から4.5個の範囲である[46]乃至[49]のいずれか一つに記載の方法。
で示される薬物リンカーと、抗hTROP2抗体とがチオエーテル結合によって結合した抗体薬物複合体である、[45]に記載の方法。
[47]抗hTROP2抗体が、配列番号1においてアミノ酸番号20乃至470に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号21乃至234に記載のアミノ酸配列からなる軽鎖からなる抗体である、[46]に記載の方法。
[48]抗hTROP2抗体の重鎖カルボキシル末端のリシン残基が欠失している、[47]に記載の方法。
[49]薬物-リンカー構造の1抗体あたりの平均結合数が2から8個の範囲である[46]乃至[48]のいずれか一つに記載の方法。
[50]薬物-リンカー構造の1抗体あたりの平均結合数が3.5から4.5個の範囲である[46]乃至[49]のいずれか一つに記載の方法。
[51]抗hTROP2抗体薬物複合体が、Sacituzumab Govitecan (IMMU-132)である、[45]に記載の方法。
[52]がんが、肺がん、腎がん、尿路上皮がん、大腸がん、前立腺がん、多形神経膠芽腫、卵巣がん、膵がん、乳がん、メラノーマ、肝がん、膀胱がん、胃がん、子宮頸がん、子宮体がん、頭頸部がん、食道がん、胆道がん、甲状腺がん、リンパ腫、急性骨髄性白血病、急性リンパ性白血病、及び/又は多発性骨髄腫である[1]乃至[51]に記載の方法。
[52]がんが、肺がん、腎がん、尿路上皮がん、大腸がん、前立腺がん、多形神経膠芽腫、卵巣がん、膵がん、乳がん、メラノーマ、肝がん、膀胱がん、胃がん、子宮頸がん、子宮体がん、頭頸部がん、食道がん、胆道がん、甲状腺がん、リンパ腫、急性骨髄性白血病、急性リンパ性白血病、及び/又は多発性骨髄腫である[1]乃至[51]に記載の方法。
さらに、本発明は以下の項目も含む。なお、[3]乃至[52]の要素又は要件は、以下の発明についても適用することが可能である。
[53]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量を評価する工程; 及び
3)hTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[54]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価する工程; 及び
3)hTROP2遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[55]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価する工程; 及び
3)SLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量を評価する工程; 及び
3)hTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[54]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価する工程; 及び
3)hTROP2遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[55]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価する工程; 及び
3)SLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[56]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及びSLFN11遺伝子の発現量を評価する工程; 及び
3)hTROP2遺伝子及びSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[57]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価する工程;
3)hTROP2遺伝子の発現得量が高いと判断された該生体試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価する工程; 及び
4)SLFN11遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[58]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価する工程;
3)SLFN11遺伝子の発現得量が高いと判断された該生体試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価する工程; 及び
4)hTROP2遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[59]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)該生体試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価し;
3)hTROP2遺伝子の発現量が高いと判断された該生体試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価し; さらに
4)SLFN11遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[60]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及びSLFN11遺伝子の発現量を評価し; さらに
3)hTROP2遺伝子及びSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
2)当該試料においてmRNAレベルでのhTROP2遺伝子及びSLFN11遺伝子の発現量を評価する工程; 及び
3)hTROP2遺伝子及びSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[57]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価する工程;
3)hTROP2遺伝子の発現得量が高いと判断された該生体試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価する工程; 及び
4)SLFN11遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[58]がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価する工程;
3)SLFN11遺伝子の発現得量が高いと判断された該生体試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価する工程; 及び
4)hTROP2遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。
[59]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)該生体試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価し;
3)hTROP2遺伝子の発現量が高いと判断された該生体試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価し; さらに
4)SLFN11遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[60]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及びSLFN11遺伝子の発現量を評価し; さらに
3)hTROP2遺伝子及びSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[61]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量を評価し、; さらに
3)hTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[62]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価し; さらに
3)hTROP2遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[63]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価し; 及び
3)SLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[64]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及びSLFN11遺伝子の発現量を評価し; さらに
3)hTROP2遺伝子及びSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[65]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価し;
3)hTROP2遺伝子の発現得量が高いと判断された該生体試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価し; さらに
4)SLFN11遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量を評価し、; さらに
3)hTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[62]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価し; さらに
3)hTROP2遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[63]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価し; 及び
3)SLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[64]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及びSLFN11遺伝子の発現量を評価し; さらに
3)hTROP2遺伝子及びSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[65]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価し;
3)hTROP2遺伝子の発現得量が高いと判断された該生体試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価し; さらに
4)SLFN11遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
[66]抗hTROP2抗体を含有する医薬を投与することを含むがんの治療方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価し;
3)SLFN11遺伝子の発現得量が高いと判断された該生体試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価し; さらに
4)hTROP2遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
1)がんに罹患したと診断されたヒト患者から生体試料を取得し;
2)当該試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価し;
3)SLFN11遺伝子の発現得量が高いと判断された該生体試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価し; さらに
4)hTROP2遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として選択する;
ことを含む方法。
抗hTROP2抗体を含有する医薬を投与する対象を同定することによって、薬効の期待できる患者を選択して医薬を投与することができる。
定義
本明細書において、他に言及の無い限り、数値について言及するとき、「約」は、示された数値の±10%を意味する。
本明細書において、他に言及の無い限り、数値について言及するとき、「約」は、示された数値の±10%を意味する。
本明細書において、「がん」と「腫瘍」は、相互置換可能に用いられる。
本明細書において、「遺伝子」という語には、DNAのみならずそのmRNA、cDNA、及びそのcRNAも含まれる。
本明細書において、「ポリヌクレオチド」という語は核酸と同じ意味で用いており、DNA、RNA、プローブ、オリゴヌクレオチド、及びプライマーも含まれる。
本明細書においては、「ポリペプチド」と「蛋白質」は区別せずに用いている。
本明細書において、「細胞」には、動物個体内の細胞、培養細胞も含んでいる。
本明細書において、「hTROP2」はNM_002353(NCBI)のアクセション番号で同定された遺伝子にコードされたヒト蛋白質、及びそのアレル変異体を意味し、NP_002344(NCBI)で同定された蛋白質を含む。
本明細書において、「SLFN11」は、NM_152270(NCBI)のアクセション番号で同定された遺伝子にコードされたヒト蛋白質、及びそのアレル変異体を意味し、NP_689483(NCBI)で同定された蛋白質を含む。
本明細書中、「抗体の抗原結合断片」とは、抗原との結合活性を有する抗体の部分断片を意味しており、Fab、F(ab’)2、Fv、scFv、diabody、線状抗体及び抗体断片より形成された多特異性抗体等を含む。また、F(ab’)2を還元条件下で処理した抗体の可変領域の一価の断片であるFab’も抗体の抗原結合断片に含まれる。但し、抗原との結合能を有している限りこれらの分子に限定されない。また、これらの抗原結合断片には、抗体蛋白質の全長分子を適当な酵素で処理したもののみならず、遺伝子工学的に改変された抗体遺伝子を用いて適当な宿主細胞において産生された蛋白質も含まれる。
本明細書における「CDR」とは、相補性決定領域(CDR:Complemetarity determing region)を意味する。抗体分子の重鎖及び軽鎖にはそれぞれ3箇所のCDRがあることが知られている。CDRは、超可変領域(hypervariable domain)とも呼ばれ、抗体の重鎖及び軽鎖の可変領域内にあって、一次構造の変異性が特に高い部位であり、重鎖及び軽鎖のポリペプチド鎖の一次構造上において、それぞれ3ヶ所に分離している。本明細書中においては、抗体のCDRについて、重鎖のCDRを重鎖アミノ酸配列のアミノ末端側からCDRH1、CDRH2、CDRH3と表記し、軽鎖のCDRを軽鎖アミノ酸配列のアミノ末端側からCDRL1、CDRL2、CDRL3と表記する。これらの部位は立体構造の上で相互に近接し、結合する抗原に対する特異性を決定している。
本明細書において、治療に対する「応答」は、治療される腫瘍に関して、当該腫瘍が、(a)増殖の遅延、(b)増殖の停止又は(c)退縮を示すことを意味する。
抗hTROP2抗体
本発明において使用されるhTROP2に対する抗体は、この分野で通常実施される方法を用いて、hTROP2又はhTROP2のアミノ酸配列から選択される任意のポリペプチドを動物に免疫し、生体内に産生される抗体を採取、精製することによって得ることができる。抗原となるTROP2の生物種はヒトに限定されず、マウス、ラット等のヒト以外の動物に由来するTROP2を動物に免疫することもできる。この場合には、取得された異種TROP2に結合する抗体とhTROP2との交差性を試験することによって、ヒトの疾患に適用可能な抗体を選別できる。
本発明において使用されるhTROP2に対する抗体は、この分野で通常実施される方法を用いて、hTROP2又はhTROP2のアミノ酸配列から選択される任意のポリペプチドを動物に免疫し、生体内に産生される抗体を採取、精製することによって得ることができる。抗原となるTROP2の生物種はヒトに限定されず、マウス、ラット等のヒト以外の動物に由来するTROP2を動物に免疫することもできる。この場合には、取得された異種TROP2に結合する抗体とhTROP2との交差性を試験することによって、ヒトの疾患に適用可能な抗体を選別できる。
また、公知の方法(例えば、Kohler and Milstein,Nature(1975)256,p.495-497;Kennet,R.ed.,Monoclonal Antibodies,p.365-367,Plenum Press,N.Y.(1980))に従って、hTROP2に対する抗体を産生する抗体産生細胞とミエローマ細胞とを融合させることによってハイブリドーマを樹立し、モノクローナル抗体を得ることもできる。
なお、抗原となるhTROP2はhTROP2遺伝子を遺伝子操作によって宿主細胞に発現させることによって得ることができる。具体的には、hTROP2遺伝子を発現可能なベクターを作製し、これを宿主細胞に導入して該遺伝子を発現させ、発現したTROP2を精製すればよい。また、上記の遺伝子操作によるhTROP2発現細胞、或はhTROP2を発現している細胞株をhTROP2蛋白質として使用することも可能である。
本発明の抗体には、上記hTROP2に対するモノクローナル抗体に加え、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ(Chimeric)抗体、ヒト化(Humanized)抗体、ヒト抗体等も含まれる。これらの抗体は、既知の方法を用いて製造することができる。
ヒト化抗体の一例として、配列番号1に示される重鎖アミノ酸配列及び配列番号2に示される軽鎖アミノ酸配列からなるヒト化抗体を挙げることができるが、これに限定されるものではない。
例えば、国際公開第2008/144891号、国際公開第2011/145744号、国際公開第2011/155579号、国際公開第2013/077458号、国際公開第2003/074566号、国際公開第2011/068845号、国際公開第2013/068946号、米国特許第7999083号明細書、又は国際公開第2015/098099号に記載の各種の抗hTROP2抗体が、本発明において使用可能である。
なお、哺乳類培養細胞で生産される抗体の重鎖のカルボキシル末端のリシン残基が欠失することが知られている(Tsubaki et.al.,Int.J.Biol.Macromol,139-147,2013)。しかし、この重鎖配列の欠失は、抗体の抗原結合能及びエフェクター機能(補体の活性化や抗体依存性細胞障害作用など)には影響を及ぼさない。従って、本発明においては、上記の重鎖カルボキシル末端のリシン残基が欠失した抗体も使用可能である。
本発明において使用される抗hTROP2抗体には、該抗体の抗原結合断片も含まれる。抗体の抗原結合断片としては、Fab、F(ab’)2、Fv、又は重鎖及び軽鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)、diabody(diabodies)、線状抗体、及び抗体断片より形成された多特異性抗体などを挙げることができる。また、F(ab’)2を還元条件下で処理した抗体の可変領域の一価の断片であるFab’も抗体の断片に含まれる。
本発明において使用される抗hTROP2抗体には、抗体の修飾体も含まれる。当該修飾体とは、本発明の抗体に化学的又は生物学的な修飾が施されてなるものを意味する。化学的な修飾体には、アミノ酸骨格への化学部分の結合、N-結合又はO-結合炭水化物鎖の化学修飾体等が含まれる。生物学的な修飾体には、翻訳後修飾(例えば、N-結合又はO-結合への糖鎖付加、N末又はC末のプロセッシング、脱アミド化、アスパラギン酸の異性化、メチオニンの酸化)されたもの、原核生物宿主細胞を用いて発現させることによってN末にメチオニン残基が付加したもの等が含まれる。また、本発明において使用される抗hTROP2抗体には、抗hTROP2抗体又はhTROP2の検出又は単離を可能にするために標識されたもの、例えば、酵素標識体、蛍光標識体、アフィニティ標識体もかかる修飾物が含まれる。この様な抗hTROP2抗体の修飾物は、抗体の安定性及び血中滞留性の改善、抗原性の低減、抗hTROP2抗体又はhTROP2の検出又は単離等に有用である。
また、本発明において使用される抗hTROP2抗体に結合している糖鎖修飾を調節すること(グリコシル化、脱フコース化等)によって、抗体依存性細胞傷害活性を増強することが可能である。抗体の糖鎖修飾の調節技術としては、国際公開第1999/54342号、同2000/61739号、同2002/31140号等が知られているが、これらに限定されるものではない。本発明において使用される抗hTROP2抗体には当該糖鎖修飾を調節された抗体も含まれる。
その他の抗体
本発明の方法は、抗hTROP2抗体以外の抗原に結合する抗体を含有する医薬にも使用することが可能である。本発明で使用される抗hTROP2抗体以外の抗体に特に制限はないが、例えば、抗HER2抗体、抗HER3抗体、抗B7-H3抗体、抗CD3抗体、抗CD30抗体、抗CD33抗体、抗CD37抗体、抗CD56抗体、抗CD98抗体、抗DR5抗体、抗EGFR抗体、抗EPHA2抗体、抗FGFR2抗体、抗FGFR4抗体、抗FOLR1抗体、抗VEGF抗体、抗CD20抗体、抗CD22抗体、抗CD70抗体、抗PSMA抗体、抗CEA抗体、及び抗Mesothelin抗体、抗A33抗体、抗CanAg抗体、抗Cripto抗体、抗G250抗体、抗MUC1抗体、抗GPNMB抗体、抗Integrin抗体、抗Tenascin-C抗体、抗SLC44A4抗体、抗GPR20抗体、及び抗CDH6抗体を挙げることができ、好適には、抗HER2抗体、抗HER3抗体、抗B7-H3抗体、抗GPR20抗体、及び抗CDH6抗体を挙げることができ、より好適には、抗HER2抗体を挙げることができる。各抗体は、抗hTROP2抗体と同様の方法で取得することが可能である。また、各抗体は、抗hTROP2抗体と同様に、抗体が通常有する普遍的な性質を有している。
本発明の方法は、抗hTROP2抗体以外の抗原に結合する抗体を含有する医薬にも使用することが可能である。本発明で使用される抗hTROP2抗体以外の抗体に特に制限はないが、例えば、抗HER2抗体、抗HER3抗体、抗B7-H3抗体、抗CD3抗体、抗CD30抗体、抗CD33抗体、抗CD37抗体、抗CD56抗体、抗CD98抗体、抗DR5抗体、抗EGFR抗体、抗EPHA2抗体、抗FGFR2抗体、抗FGFR4抗体、抗FOLR1抗体、抗VEGF抗体、抗CD20抗体、抗CD22抗体、抗CD70抗体、抗PSMA抗体、抗CEA抗体、及び抗Mesothelin抗体、抗A33抗体、抗CanAg抗体、抗Cripto抗体、抗G250抗体、抗MUC1抗体、抗GPNMB抗体、抗Integrin抗体、抗Tenascin-C抗体、抗SLC44A4抗体、抗GPR20抗体、及び抗CDH6抗体を挙げることができ、好適には、抗HER2抗体、抗HER3抗体、抗B7-H3抗体、抗GPR20抗体、及び抗CDH6抗体を挙げることができ、より好適には、抗HER2抗体を挙げることができる。各抗体は、抗hTROP2抗体と同様の方法で取得することが可能である。また、各抗体は、抗hTROP2抗体と同様に、抗体が通常有する普遍的な性質を有している。
本発明において、「抗HER2抗体」とは、HER2(Human Epidermal Growth Factor Receptor Type 2; ErbB-2)に特異的に結合し、好ましくは、HER2と結合することによってHER2発現細胞に内在化する活性を有する抗体を示す。抗HER2抗体としては、例えば、トラスツズマブ(Trastuzumab)(米国特許第5821337号)、ペルツズマブ(Pertuzumab)(国際公開第01/00245号)を挙げることができ、好適にはトラスツズマブを挙げることができる。本発明において、「抗HER3抗体」とは、HER3(Human Epidermal Growth Factor Receptor Type 3; ErbB-3)に特異的に結合し、好ましくは、HER3と結合することによってHER3発現細胞に内在化する活性を有する抗体を示す。抗HER3抗体としては、例えば、パトリツマブ(Patritumab; U3-1287)、U1-59(国際公開第2007/077028号)、MM-121(Seribantumab)、国際公開2008/100624号記載の抗ERBB3抗体、RG-7116(Lumretuzumab)、及びLJM-716(Elgemtumab)を挙げることができ、好適には、パトリツマブ、及びU1-59を挙げることができる。
本発明において、「抗B7-H3抗体」とは、B7-H3(B cell antigen #7 homolog 3; PD-L3; CD276)に特異的に結合し、好ましくは、B7-H3と結合することによってB7-H3発現細胞に内在化する活性を有する抗体を示す。抗B7-H3抗体としては、例えば、M30-H1-L4(国際公開第2014/057687号)を挙げることができる。
本発明において、「抗GPR20抗体」とは、GPR20(G Protein-coupled receptor 20)に特異的に結合し、好ましくは、GPR20と結合することによってGPR20発現細胞に内在化する活性を有する抗体を示す。抗GPR20抗体としては、例えば、h046-H4e/L7(国際公開第2018/135501号)を挙げることができる。
本発明において、「抗CDH6抗体」とは、CDH6(Cadherin-6)に特異的に結合し、好ましくは、CDH6と結合することによってCDH6発現細胞に内在化する活性を有する抗体を示す。抗CDH6抗体としては、例えば、H01L02(国際公開第2018/212136号)を挙げることができる。
抗体薬物複合体
本発明において使用される抗体薬物複合体は、式
本発明において使用される抗体薬物複合体は、式
(式中、Aは抗体との結合位置を示す)
で示される薬物リンカーと、抗体とがチオエーテル結合によって結合した抗体薬物複合体である。
で示される薬物リンカーと、抗体とがチオエーテル結合によって結合した抗体薬物複合体である。
本発明においては、抗体薬物複合体のうち、リンカー及び薬物からなる部分構造を「薬物リンカー」と称する。この薬物リンカーは抗体の鎖間のジスルフィド結合部位(2箇所の重鎖-重鎖間、及び2箇所の重鎖-軽鎖間)において生じたチオール基(言い換えれば、システイン残基の硫黄原子)に結合している。
本発明の薬物リンカーは、トポイソメラーゼI阻害剤であるエキサテカン(IUPAC名:(1S,9S)-1-アミノ-9-エチル-5-フルオロ-1,2,3,9,12,15-ヘキサヒドロ-9-ヒドロキシ-4-メチル-10H,13H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-10,13-ジオン、(化学名:(1S,9S)-1-アミノ-9-エチル-5-フルオロ-2,3-ジヒドロ-9-ヒドロキシ-4-メチル-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-10,13(9H,15H)-ジオンとして表すこともできる))を構成要素としている。エキサテカンは、式
で示される、抗腫瘍効果を有するカンプトテシン誘導体である。
本発明において使用される抗体薬物複合体は、次式で示すこともできる。
ここで、薬物リンカーは抗体とチオエーテル結合によって結合している。また、nはいわゆる平均薬物結合数(DAR; Drug-to-Antibody Ratio)と同義であり、1抗体あたりの薬物リンカーの平均結合数を示す。本発明において使用される抗体薬物複合体の1抗体あたりの薬物リンカーの平均結合数は、0~8の範囲で調節可能であるが、好適には2から8である。抗hTROP2抗体の場合の平均結合数は、より好適には3から5であり、さらにより好適には3.5から4.5である。
本発明で使用される抗体薬物複合体は、がん細胞内に移行した後にリンカー部分が切断され、式
で表される化合物を遊離する。
上記化合物は、本発明で使用される抗体薬物複合体の抗腫瘍活性の本体であると考えられ、トポイソメラーゼI阻害作用を有することが確認されている(Ogitani Y. et al., Clinical Cancer Research, 2016, Oct 15;22(20):5097-5108, Epub 2016 Mar 29)。上記化合物を遊離する抗体薬物複合体であれば、抗体の認識する抗原をhTROP2に限定することなく、本発明の方法を適用することが可能である。
トポイソメラーゼIは、DNAの単鎖の切断と再結合を行うことによりDNAの高次構造を変換しDNAの合成に関与する酵素である。従って、トポイソメラーゼI阻害作用を有する薬剤は、DNAの合成を阻害することにより、細胞周期のS期(DNA合成期)で細胞分裂を停止させ、アポトーシスによる細胞死を誘導することにより、がん細胞の増殖を抑制することができる。
なお、本発明で使用される抗体薬物複合体は、バイスタンダー効果を有することも知られている(Ogitani Y. et al., Cancer Science (2016) 107, 1039-1046)。このバイスタンダー効果は、本発明で使用される抗体薬物複合体が、標的発現がん細胞に内在化した後、上記化合物が、標的を発現していない近傍のがん細胞に対しても抗腫瘍効果を及ぼすことにより発揮される。
本発明において使用される抗体薬物複合体の製造に使用される薬物リンカー中間体は、次式で示される。
上記の薬物リンカー中間体は、N-[6-(2,5-ジオキソ-2,5-ジヒドロ-1H-ピロール-1-イル)ヘキサノイル]グリシルグリシル-L-フェニルアラニル-N-[(2-{[(1S,9S)-9-エチル-5-フルオロ-9-ヒドロキシ-4-メチル-10,13-ジオキソ-2,3,9,10,13,15-ヘキサヒドロ-1H,12H-ベンゾ[de]ピラノ[3’,4’:6,7]インドリジノ[1,2-b]キノリン-1-イル]アミノ}-2-オキソエトキシ)メチル]グリシンアミド、という化学名で表すことができ、国際公開第2015/098099号等の記載を参考に製造することができる。
本発明において使用される抗体薬物複合体は、前述の薬物リンカー中間体と、チオール基(又はスルフヒドリル基とも言う)を有する抗体を反応させることによって製造することができる。
スルフヒドリル基を有する抗体は、当業者周知の方法で得ることができる(Hermanson, G. T, Bioconjugate Techniques, pp.56-136, pp.456-493, Academic Press(1996))。例えば、トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)等の還元剤を、抗体内鎖間ジスルフィド1個当たりに対して0.3乃至3モル当量用い、エチレンジアミン四酢酸(EDTA)等のキレート剤を含む緩衝液中で、抗体と反応させることで、抗体内鎖間ジスルフィドが部分的又は完全に還元されたスルフヒドリル基を有する抗体を得ることができる。
さらに、スルフヒドリル基を有する抗体1個あたり、2乃至20モル当量の薬物リンカー中間体を使用して、抗体1個当たり2個乃至8個の薬物が結合した抗体薬物複合体を製造することができる。
製造した抗体薬物複合体の抗体一分子あたりの平均薬物結合数は、例えば、280nm及び370nmの二波長における抗体薬物複合体とそのコンジュゲーション前駆体のUV吸光度を測定することにより算出する方法(UV法)や、抗体薬物複合体を還元剤で処理し得られた各フラグメントをHPLC測定により定量し算出する方法(HPLC法)により行うことができる。
抗体と薬物リンカー中間体のコンジュゲーション、及び抗体薬物複合体の抗体一分子あたりの平均薬物結合数の算出は、国際公開第2015/098099号、及び国際公開第2017/002776号等の記載を参考に実施することができる。
本発明で使用される、上記の薬物リンカーを有する抗hTROP2抗体薬物複合体としては、国際公開第2015/098099号に記載の抗体薬物複合体を挙げることができる。なお、該国際公開に記載の抗hTROP2抗体薬物複合体において好ましいものは、配列表の配列番号3に示されるアミノ酸配列からなるCDRH1(TAGMQ)、配列番号4に示されるアミノ酸配列からなるCDRH2(WINTHSGVPKYAEDFKG)、及び配列番号25に示されるアミノ酸配列からなるCDRH3(SGFGSSYWYFDV)を重鎖可変領域に含有する重鎖アミノ酸配列、並びに配列表の配列番号6に示されるアミノ酸配列からなるCDRL1(KASQDVSTAVA)、配列番号7に示されるアミノ酸配列からなるCDRL2(SASYRYT)、及び配列番号8に示されるアミノ酸配列からなるCDRL3(QQHYITPLT)を軽鎖可変領域に含有する軽鎖アミノ酸配列からなる抗体を含有している。該国際公開に記載の抗hTROP2抗体薬物複合体において、さらに好ましいものは、配列番号1に示されるアミノ酸配列の20乃至140番目のアミノ酸残基からなる重鎖可変領域を含有する重鎖アミノ酸配列、及び配列番号2に示されるアミノ酸配列の21乃至129番目のアミノ酸残基からなる軽鎖可変領域を含有する軽鎖アミノ酸配列からなる抗体を含有している。該国際公開に記載の抗hTROP2抗体薬物複合体において特に好ましいものは、配列番号1に示される重鎖アミノ酸配列及び配列番号2に示される軽鎖アミノ酸配列からなる抗体を含有している。
なお、哺乳類培養細胞で生産される抗体の重鎖のカルボキシル末端のリシン残基が欠失することが知られている。従って、上記の抗体薬物複合体は、重鎖カルボキシル末端のリシン残基が欠失した抗体も含有している。
但し、含有される抗体がhTROP2を認識できる限り、本発明で使用される抗hTROP2抗体薬物複合体は、上記の特定の薬物リンカーを有するものに限定されない。このような抗hTROP2抗体薬物複合体の実例としては、Sacituzumab Govitecan (IMMU-132)を挙げることが可能である。また、国際公開第2003/074566号、国際公開第2011/068845号、国際公開第2013/068946号、又は米国特許第7999083号明細書に記載の抗hTROP2抗体薬物複合体も、本発明で使用することが可能である。
生体試料
対象、例えばがんと診断された対象から採取した生体試料がRNAの供給源として使用され、当該試料中のRNAレベルでの遺伝子発現のレベルが決定され得る。当該生体試料は、例えば、血液、例えば全血又は血液由来物、例えばエキソソーム、組織、細胞及び又は循環系組織細胞を含み得る。幾つかの態様において、当該生体試料は、腫瘍から取り出されても良い。
対象、例えばがんと診断された対象から採取した生体試料がRNAの供給源として使用され、当該試料中のRNAレベルでの遺伝子発現のレベルが決定され得る。当該生体試料は、例えば、血液、例えば全血又は血液由来物、例えばエキソソーム、組織、細胞及び又は循環系組織細胞を含み得る。幾つかの態様において、当該生体試料は、腫瘍から取り出されても良い。
エキソソームは細胞から分泌される脂質二重膜からなる小胞である。1980年代に発見されてから現在までの多くの研究により、細胞のあいだを移動しさまざまな分子を輸送することがわかってきた。その形態的な特徴により、タンパク質ばかりでなく、核酸、糖質、脂質など、多くの生理活性分子を含む。また、エキソソームはmiRNA及びmRNAを含み、それらは細胞のあいだを輸送されることが明らかにされた。従って、本発明が適用される生体試料として、エキソソームを選択することも可能である。
生体試料は、静脈穿刺等の公知の手段により、又は公知の腫瘍生検装置や手順を用いて、取得されてもよい。内視鏡生検、切除生検、切開生検、微細針生検、パンチ生検、切削生検及び皮膚生検が、腫瘍試料を取得するために当業者が使用し得る認識される医学的手順の例である。生体試料は、遺伝子発現を測定するための十分なRNA、又は薄片を提供するのに十分な大きさを有するべきである。
幾つかの態様において、本願方法は、自家組織試料を提供する、又は自家組織試料を採取することに同意して、がんと診断されたヒト対象におけるmRNAレベルでの遺伝子発現を評価する工程を含む。
前記生体試料は、遺伝子発現又は量の測定を可能とする任意の形態であってもよい。即ち、当該試料は、RNA抽出又は薄層調製に充分でなければならない。従って、当該試料は、新鮮で、適切な低温技術を用いて保存され、又は非低温技術を用いて保存され得る。例えば、臨床生検試料を操作する標準的なプロセスは、組織試料をホルマリン中で固定し、それをパラフィン中に包埋する。この形態の試料は、ホルマリン固定パラフィン包埋(FFPE)組織として通常知られている。その後の解析のための組織調製の適切な技術は、当業者に周知である。
遺伝子発現
本願において、生体試料中の遺伝子発現レベルの決定又は測定は、適切な方法を用いて実施される。幾つかのそのような方法は、当該技術分野で周知である。例えば、遺伝子発現の決定は、試料中のRNA、例えばmRNAのレベル又は量を測定することによってなされる。
本願において、生体試料中の遺伝子発現レベルの決定又は測定は、適切な方法を用いて実施される。幾つかのそのような方法は、当該技術分野で周知である。例えば、遺伝子発現の決定は、試料中のRNA、例えばmRNAのレベル又は量を測定することによってなされる。
PCR又はマイクロアレイのプライマー及び/又はプローブは、mRNAの3’末端上に設計される。RNA単離又はcDNA合成の実験プロセスの過程で高い保存性(安定性)をもたらすと考えられるからである。前記プローブは、特定の形態の転写バリアントを検出するように、所望の配列に基づいて設計され得る。適切な検出方法の例を以下に示すが、これらに限定されるものではない。
RNA解析
公知のマイクロアレイ解析や、定量的ポリメラーゼ連鎖反応(PCR)は、mRNAレベルでの遺伝子発現のレベルを決定する方法の例である。幾つかの態様において、RNAは、細胞、腫瘍又は組織から、標準的なプロトコールを使用して抽出される。他の態様において、RNA解析は、RNA単離を要しない技術を使用して実施される。
公知のマイクロアレイ解析や、定量的ポリメラーゼ連鎖反応(PCR)は、mRNAレベルでの遺伝子発現のレベルを決定する方法の例である。幾つかの態様において、RNAは、細胞、腫瘍又は組織から、標準的なプロトコールを使用して抽出される。他の態様において、RNA解析は、RNA単離を要しない技術を使用して実施される。
組織サンプルから真核生物mRNA(すなわち、ポリ(a)RNA)を迅速且つ効率的に抽出するための方法は、十分に確立されており、当業者に公知である。例えば、Ausubelら,1997,Current Protocols of Molecular Biology,John Wiley & Sonsを参照のこと。上記組織サンプルは、新鮮、凍結、又は固定されパラフィン包埋された(FFPE)、臨床研究腫瘍標本であり得る。一般に、新鮮な組織サンプル又は凍結組織サンプルから単離されたRNAは、FFPEサンプル由来のRNAよりフラグメント化が少ない傾向にある。しかし、腫瘍材料のFFPEサンプルは、より容易に入手可能であり、FFPEサンプルは、本発明の方法における使用のためのRNAの適切な供給源である。RT-PCRによる遺伝子発現プロファイリングのためのRNA供給源としてのFFPEサンプルの考察については、例えば、Clark-Langoneら,2007,BMC Genomics 8:279を参照されたい。また、De Andreusら,1995,Biotechniques 18:42044;及びBakerら,米国特許出願公開第2005/0095634号を参照されたい。
RNA抽出及び調製についての業者の説明書付きの市販キットの使用は、一般的である。種々のRNA単離製品及び完全なキットの商業的業者としては、Qiagen(Valencia,CA)、Invitrogen(Carlsbad,CA)、Ambion(Austin,TX)及びExiqon(Woburn,MA)を挙げることができる。
一般に、RNA単離は、組織/細胞破壊で始まる。組織/細胞破壊の間に、RNaseによるRNA分解を最小限にすることが望ましい。RNA単離プロセスの間にRNase活性を制限する1つのアプローチは、上記細胞が破壊されたら直ぐに、変性剤を、細胞内容物と接触した状態におくことを確実にすることである。別の一般的な慣行は、RNA単離プロセスにおいて1種以上のプロテアーゼを含めることである。必要に応じて、新鮮な組織サンプルは、集められたら直ぐに、室温でRNA安定化溶液中に浸漬される。上記安定化溶液は、上記細胞に迅速に浸透し、4℃での貯蔵、その後の単離のために、上記RNAを安定化する。1つのこのような安定化溶液は、RNAlater(登録商標)(Ambion,Austin,TX)として市販されている。
いくつかのプロトコールにおいて、全RNAは、塩化セシウム密度勾配遠心分離によって、破壊された腫瘍材料から単離される。一般に、mRNAは、全細胞RNAのうちの約1%~5%を構成する。固定化オリゴ(dT)(例えば、オリゴ(dT)セルロース)は、mRNAを、リボソームRNA及びトランスファーRNAから分離するために一般に使用される。単離後に貯蔵される場合、RNAは、RNaseを含まない条件下で貯蔵されなければならない。単離されたRNAの安定な貯蔵のための方法は、当該分野で公知である。RNAを安定に貯蔵するための種々の市販の製品が、利用可能である。
マイクロアレイ
mRNA発現レベルは、従来のDNAマイクロアレイ発現プロファイリング技術を使用して決定(例えば、測定)され得る。DNAマイクロアレイは、固体表面又は支持層(例えば、ガラス、プラスチック又はシリコン)に固定化した特定のDNAセグメント又はプローブの集まりであり、各特定のDNAセグメントは、アレイにおいて既知の位置を占有する。通常は、ストリンジェントな条件下での標識されたRNAのサンプルとのハイブリダイゼーションは、上記アレイにおける各プローブに対応するRNA分子の検出及び定量を可能にする。非特異的に結合したサンプル材料を除去するためのストリンジェントな洗浄後、上記マイクロアレイは、共焦点レーザー顕微鏡又は他の適切な検出法によって、スキャンされる。現代の市販のDNAマイクロアレイ(しばしば、DNAチップとして公知)は、代表的には、数万のプローブを含み、従って、数万の遺伝子の発現を同時に測定し得る。このようなマイクロアレイは、本発明の実施において使用され得る。あるいは、特定の遺伝子の発現を測定するために必要とされる程度の数のプローブと、必要なコントロール又は標準(例えば、データ正規化のため)とを含む特注チップが、本願方法の実施において使用され得る。
mRNA発現レベルは、従来のDNAマイクロアレイ発現プロファイリング技術を使用して決定(例えば、測定)され得る。DNAマイクロアレイは、固体表面又は支持層(例えば、ガラス、プラスチック又はシリコン)に固定化した特定のDNAセグメント又はプローブの集まりであり、各特定のDNAセグメントは、アレイにおいて既知の位置を占有する。通常は、ストリンジェントな条件下での標識されたRNAのサンプルとのハイブリダイゼーションは、上記アレイにおける各プローブに対応するRNA分子の検出及び定量を可能にする。非特異的に結合したサンプル材料を除去するためのストリンジェントな洗浄後、上記マイクロアレイは、共焦点レーザー顕微鏡又は他の適切な検出法によって、スキャンされる。現代の市販のDNAマイクロアレイ(しばしば、DNAチップとして公知)は、代表的には、数万のプローブを含み、従って、数万の遺伝子の発現を同時に測定し得る。このようなマイクロアレイは、本発明の実施において使用され得る。あるいは、特定の遺伝子の発現を測定するために必要とされる程度の数のプローブと、必要なコントロール又は標準(例えば、データ正規化のため)とを含む特注チップが、本願方法の実施において使用され得る。
データ正規化を促進するために、2色のマイクロアレイリーダーが使用され得る。2色(2チャネル)システムにおいて、サンプルは、第1の波長で発光する第1のフルオロフォアで標識される一方で、RNA又はcDNA標準は、異なる波長で発光する第2のフルオロフォアで標識される。例えば、Cy3(570nm)及びCy5(670nm)は、しばしば、2色のマイクロアレイシステムにおいて一緒に使用される。
DNAマイクロアレイ技術は、十分に発展されており、市販され、広く使用されている。従って、本願方法を実施するにおいて、当業者は、過度の実験なくして、生体マーカータンパク質をコードする遺伝子の発現レベルを測定するために、マイクロアレイ技術を使用し得る。DNAマイクロアレイチップ、試薬(例えば、RNA若しくはcDNAの調製、RNA若しくはcDNAの標識に必要なもの、ハイブリダイゼーション溶液及び洗浄溶液)、機器(例えば、マイクロアレイリーダー)及びプロトコールは、当該分野で周知であり、種々の商業的供給元から市販される。マイクロアレイシステムの商業的業者としては、Agilent Technologies(Santa Clara,CA)及びAffymetrix(Santa Clara,CA)が挙げることができるが、他のアレイシステムも使用され得る。
定量的PCR
mRNAのレベルは、従来の定量的逆転写酵素ポリメラーゼ連鎖反応(qRT-PCR)技術を使用して測定され得る。qRT-PCRの利点としては、感度、柔軟性、定量的正確性、配列の同一性の高いmRNA間を識別する能力を挙げることができる。定量的PCRのために組織サンプルを加工処理することに関するガイダンスは、種々の供給元(例えば、qRT-PCRについての装置及び試薬の製造業者及び業者)(例えば、Qiagen(Valencia,CA)及びAmbion(Austin,TX))から入手可能である。qRT-PCRの自動運転のための機器及びシステムは、市販されており、多くの研究室において慣用的に使用されている。周知の商業的システムの例は、Applied Biosystems 7900HT Fast Real-Time PCR System(Applied Biosystems,Foster City,CA)である。
mRNAのレベルは、従来の定量的逆転写酵素ポリメラーゼ連鎖反応(qRT-PCR)技術を使用して測定され得る。qRT-PCRの利点としては、感度、柔軟性、定量的正確性、配列の同一性の高いmRNA間を識別する能力を挙げることができる。定量的PCRのために組織サンプルを加工処理することに関するガイダンスは、種々の供給元(例えば、qRT-PCRについての装置及び試薬の製造業者及び業者)(例えば、Qiagen(Valencia,CA)及びAmbion(Austin,TX))から入手可能である。qRT-PCRの自動運転のための機器及びシステムは、市販されており、多くの研究室において慣用的に使用されている。周知の商業的システムの例は、Applied Biosystems 7900HT Fast Real-Time PCR System(Applied Biosystems,Foster City,CA)である。
いったん単離されたmRNAを手にしたら、RT-PCRによる遺伝子発現測定の第1の工程は、上記mRNAテンプレートをcDNAへと逆転写することである。次いで、cDNAは、PCR反応において指数関数的に増幅させられる。2つの一般的に使用される逆転写酵素は、トリ骨髄芽球症ウイルス(avilo myeloblastosis virus)逆転写酵素(AMV-RT)及びモロニーマウス白血病ウイルス逆転写酵素(MMLV-RT)である。上記逆転写反応は、代表的には、特定のプライマー、ランダムヘキサマー、又はオリゴ(dT)プライマーで開始される(primed)。適切なプライマーは、市販されている(例えば、GeneAmp(登録商標) RNA PCRキット(Perkin Elmer,Waltham,MA))。得られたcDNA生成物は、その後のポリメラーゼ連鎖反応においてテンプレートとして使用され得る。
上記PCR工程は、熱安定性DNA依存性DNAポリメラーゼを使用して行われる。PCRシステムにおいて最も一般的に使用されるポリメラーゼは、Thermus aquaticus(Taq)ポリメラーゼである。PCRの選択性は、増幅について標的とされたDNA領域(すなわち、所望のタンパク質をコードする遺伝子から逆転写されたcDNAの領域)に相補的であるプライマーの使用から生じる。従って、本発明においてqRT-PCRが使用される場合、各マーカー遺伝子に特異的なプライマーは、上記遺伝子のcDNA配列に基づく。商業的技術(例えば、SYBR(登録商標)green又はTaqMan(登録商標)(Applied Biosystems,Foster City,CA))は、業者の説明書に従って使用され得る。mRNAレベルは、ハウスキーピング遺伝子(例えば、β-アクチン又はGAPDH)のレベルを比較することによって、サンプル間でのローディングの差異について正規化され得る。mRNA発現のレベルは、任意の単一のコントロールサンプル(例えば、通常の非腫瘍組織又は細胞に由来するmRNA)と比較して表され得る。あるいは、腫瘍サンプルのプール、若しくは腫瘍細胞株に由来するか、又は市販のコントロールmRNAのセットに由来するmRNAに対して表され得る。
遺伝子の発現レベルのPCR分析に適切なプライマーセットは、過度の実験なくして、当業者によって設計及び合成され得る。
あるいは、本発明を実施するためのPCRプライマーセットは、商業的供給元(例えば、Applied Biosystems)から購入され得る。PCRプライマーは、好ましくは、長さが約17~25ヌクレオチドである。プライマーは、融解温度(Tm)概算のための従来のアルゴリズムを使用して、特定のTmを有するように設計され得る。プライマー設計及びTm概算のためのソフトウェアは、市販されており(例えば、Primer ExpressTM(Applied Biosystems))、インターネット上でも利用可能である(例えば、Primer3(Massachusetts Institute of Technology))。PCRプライマー設計の確立された原理を適用することによって、多数の異なるプライマーが、任意の所定の遺伝子の発現レベルを測定するために使用され得る。
qNPA
幾つかの態様において、RNA解析は、RNA抽出又は単離を含まない技術を使用して実施される。そのような技術の一つは、qNPA(登録商標)の名称で市販されている(High Throughput Genomics, Inc., Tucson, AZ)、定量ヌクレアーゼ保護アッセイである。この技術は、解析する組織試料がFFPE材料の形態である場合に有利であり得る。例えばSee, e.g., Roberts et al, 2007, Laboratory Investigation 87:979-997を参照されたい。
幾つかの態様において、RNA解析は、RNA抽出又は単離を含まない技術を使用して実施される。そのような技術の一つは、qNPA(登録商標)の名称で市販されている(High Throughput Genomics, Inc., Tucson, AZ)、定量ヌクレアーゼ保護アッセイである。この技術は、解析する組織試料がFFPE材料の形態である場合に有利であり得る。例えばSee, e.g., Roberts et al, 2007, Laboratory Investigation 87:979-997を参照されたい。
nCounter Analysis System
nCounter(登録商標)は NanoString Technologies社が開発したデジタル分子バーコード技術に基づいた分子をダイレクトにカウントするシステムであり、最大800種類のRNAやDNAをシングルチューブで迅速且つ高精度に解析することが可能である。 nCounterの解析では、標的分子の配列に特異的なバーコードを有するプローブ(Reporter Probe)と解析用カートリッジに固定するためのプローブ(Capture Probe)を標的の核酸とハイブリダイズさせ、蛍光スキャナーによりカートリッジの表面に固定化された各標的配列のカラーバーコードの並びをカウントする。例えば、Geiss G, et al., 26: 317-25 (2008)., Nature Biotechnologyを参照されたい。
nCounter(登録商標)は NanoString Technologies社が開発したデジタル分子バーコード技術に基づいた分子をダイレクトにカウントするシステムであり、最大800種類のRNAやDNAをシングルチューブで迅速且つ高精度に解析することが可能である。 nCounterの解析では、標的分子の配列に特異的なバーコードを有するプローブ(Reporter Probe)と解析用カートリッジに固定するためのプローブ(Capture Probe)を標的の核酸とハイブリダイズさせ、蛍光スキャナーによりカートリッジの表面に固定化された各標的配列のカラーバーコードの並びをカウントする。例えば、Geiss G, et al., 26: 317-25 (2008)., Nature Biotechnologyを参照されたい。
HTG EdgeSeq Assays
EdgeSeq は、HTG Molecular Diagnostics社が開発した計測機器、消耗品、ソフトウェアの分析からなる、腫瘍プロファイリング、分子診断テスト及びバイオマーカーの開発を含むサンプルプロファイリングアプリケーションである。生物学的サンプルにヌクレアーゼ保護化学を用いて遺伝子及び遺伝子活性の分子プロファイリングを自動化する。例えば、Martel R., et al. Assay Drug Dev Technol. 2002 Nov;1(1):61-71を参照されたい。上記により個々の遺伝子の発現量がカウント値として得られる。カウント値はサンプル間での分布のバラツキを補正する正規化と呼ばれる作業を経て、解析に使用される。具体的な正規化の手法としては、Median normalization法を挙げることができる。Median normalization法では、下記に示す方法で各サンプルについてScaling factorを求め、遺伝子の発現量をScaling factorで割り返すことで補正を行う。i番目のサンプル(Samplei)のg番目の遺伝子(Geneg)について、全てのサンプルの発現量(カウント値)の幾何平均を求め、Genegの発現量をその幾何平均で割った値をSampleiのGenegに対するScaling factor(Sig)とする。Scaling factorを全ての遺伝子について求めた後に、Samplei内でのSigの中央値をSampleiのScaling factor(Si)とする。最後に、Sampleiの全ての遺伝子発現量をSiで割り返した値をMedian Normalized Count (MNC)として得る。本手法の詳細については、例えば(Andres, S. and Huber W Genome Biol. 2010;11(10):R106)を参照されたい。
EdgeSeq は、HTG Molecular Diagnostics社が開発した計測機器、消耗品、ソフトウェアの分析からなる、腫瘍プロファイリング、分子診断テスト及びバイオマーカーの開発を含むサンプルプロファイリングアプリケーションである。生物学的サンプルにヌクレアーゼ保護化学を用いて遺伝子及び遺伝子活性の分子プロファイリングを自動化する。例えば、Martel R., et al. Assay Drug Dev Technol. 2002 Nov;1(1):61-71を参照されたい。上記により個々の遺伝子の発現量がカウント値として得られる。カウント値はサンプル間での分布のバラツキを補正する正規化と呼ばれる作業を経て、解析に使用される。具体的な正規化の手法としては、Median normalization法を挙げることができる。Median normalization法では、下記に示す方法で各サンプルについてScaling factorを求め、遺伝子の発現量をScaling factorで割り返すことで補正を行う。i番目のサンプル(Samplei)のg番目の遺伝子(Geneg)について、全てのサンプルの発現量(カウント値)の幾何平均を求め、Genegの発現量をその幾何平均で割った値をSampleiのGenegに対するScaling factor(Sig)とする。Scaling factorを全ての遺伝子について求めた後に、Samplei内でのSigの中央値をSampleiのScaling factor(Si)とする。最後に、Sampleiの全ての遺伝子発現量をSiで割り返した値をMedian Normalized Count (MNC)として得る。本手法の詳細については、例えば(Andres, S. and Huber W Genome Biol. 2010;11(10):R106)を参照されたい。
次世代RNAシーケンシング
従来のサンガー法とは異なり、高度な並列化処理を行うことで短時間且つ低コストで莫大な配列情報を取得できる次世代シーケンス技術を用いたRNAシーケンシング解析であり、トランスクリプトーム全体の発現をより高感度且つ高精度に解析することができる。現在汎用されている代表的な次世代シーケンス技術としては、イルミナ社(Illumina Inc.)の1塩基合成反応シーケンス技術(Sequencing by synthesis)や、サーモフィッシャーサイエンティフィック社(Thermo Fisher Scientific Inc.)のイオン半導体シーケンス技術(Ion Torrent technology)等を挙げることができる。各技術の詳細は、例えばBuermans HP., et al. Biochim Biophys Acta. 2014 Oct;1842(10):1932-1941を参照されたい。また、上記の次世代シーケンス技術を用いて得られた個々の配列情報(リード)は、それぞれどの遺伝子の転写物に由来しているものかを同定するマッピング作業や、各転写物にマッピングされたリード数を、転写物の長さや当該解析で得られた総リード数等により補正する正規化と呼ばれる作業を経て、解析に使用される。具体的な正規化の手法としては、例えば転写物の長さを1kb、総リード数を100万とし、各遺伝子の遺伝子長で補正されたリード数であるreads per kilobase of exon per million mapped sequence reads (RPKM)値を挙げることができる。同様に総リード数を100万とし、各遺伝子の遺伝子長で補正されたフラグメント数であるfragments per kilobase of exon per million mapped sequence reads (FPKM)値や、各転写産物のリード数を遺伝子長で補正し、総リード数を100万とした場合の転写産物数を表すtranscripts per million(TPM)値等も汎用される。RPKM は既知の遺伝子モデルを用いてエキソンにマップされたリードを数え上げて遺伝子ごとの発現量を計算するのに対して、FPKMは推定されたアイソフォームごとにフラグメントを数え上げることでアイソフォームレベルの発現量を計算する。各正規化の手法の詳細は、例えばConesa A., et al.Genome Biol. 2016 Jan 26;17:13を参照されたい。
従来のサンガー法とは異なり、高度な並列化処理を行うことで短時間且つ低コストで莫大な配列情報を取得できる次世代シーケンス技術を用いたRNAシーケンシング解析であり、トランスクリプトーム全体の発現をより高感度且つ高精度に解析することができる。現在汎用されている代表的な次世代シーケンス技術としては、イルミナ社(Illumina Inc.)の1塩基合成反応シーケンス技術(Sequencing by synthesis)や、サーモフィッシャーサイエンティフィック社(Thermo Fisher Scientific Inc.)のイオン半導体シーケンス技術(Ion Torrent technology)等を挙げることができる。各技術の詳細は、例えばBuermans HP., et al. Biochim Biophys Acta. 2014 Oct;1842(10):1932-1941を参照されたい。また、上記の次世代シーケンス技術を用いて得られた個々の配列情報(リード)は、それぞれどの遺伝子の転写物に由来しているものかを同定するマッピング作業や、各転写物にマッピングされたリード数を、転写物の長さや当該解析で得られた総リード数等により補正する正規化と呼ばれる作業を経て、解析に使用される。具体的な正規化の手法としては、例えば転写物の長さを1kb、総リード数を100万とし、各遺伝子の遺伝子長で補正されたリード数であるreads per kilobase of exon per million mapped sequence reads (RPKM)値を挙げることができる。同様に総リード数を100万とし、各遺伝子の遺伝子長で補正されたフラグメント数であるfragments per kilobase of exon per million mapped sequence reads (FPKM)値や、各転写産物のリード数を遺伝子長で補正し、総リード数を100万とした場合の転写産物数を表すtranscripts per million(TPM)値等も汎用される。RPKM は既知の遺伝子モデルを用いてエキソンにマップされたリードを数え上げて遺伝子ごとの発現量を計算するのに対して、FPKMは推定されたアイソフォームごとにフラグメントを数え上げることでアイソフォームレベルの発現量を計算する。各正規化の手法の詳細は、例えばConesa A., et al.Genome Biol. 2016 Jan 26;17:13を参照されたい。
hTROP2遺伝子発現の評価
hTROP2遺伝子発現は、ヒト患者由来の生体試料において評価され得る。そのような態様は、mRNAレベルでのhTROP2遺伝子発現の評価を依頼し、評価結果を受け取る工程を含む。幾つかの態様は、mRNAレベルでのhTROP2遺伝子発現の数値を決定する工程、及び任意の方法で決定された数値を記録する工程を含む。
hTROP2遺伝子発現は、ヒト患者由来の生体試料において評価され得る。そのような態様は、mRNAレベルでのhTROP2遺伝子発現の評価を依頼し、評価結果を受け取る工程を含む。幾つかの態様は、mRNAレベルでのhTROP2遺伝子発現の数値を決定する工程、及び任意の方法で決定された数値を記録する工程を含む。
hTROP2遺伝子発現レベルは、所定の数値に関連して解釈され得る。所定の数値と等しい場合、数値以上である場合、又は数値を上回る場合に、hTROP2遺伝子発現レベルは、対象が、抗hTROP2抗体を含有する医薬による治療に感受性(応答性)であると予測できると解釈される。幾つかの態様において、hTROP2遺伝子発現レベルが、所定の数値と等しい場合、数値以下である場合、又は数値を下回る場合、腫瘍が抗hTROP2抗体を含有する医薬による治療に耐性(非応答性)であると予測できると解釈される。
幾つかの態様において、生体試料中のhTROP2遺伝子発現のレベルを表す数値に基づいて、hTROP2遺伝子発現は、高発現又は低発現と評価され得る。対象は、例えば、mRNAレベルでのhTROP2発現に基づいて、高発現又は低発現と評価され得る。
前記発現レベルは、上記のような任意の公知の方法により評価され得る。例えば、hTROP2遺伝子発現量は、次世代RNAシーケンシングによって算出されるreads per kilobase of exon per million mapped sequence reads (RPKM)値に基づいて評価され得る。RPKM値は、次世代シーケンサにて得られたリードの数を各遺伝子のエキソンの長さ及びシーケンサで読まれた配列の総数を用いて正規化した値であり、hTROP2遺伝子の発現量はRPKM値に1を加え、対数(Log2)とした値であるLog2[RPKM+1]値を使用して解析することができる。
RPKM値とhTROP2遺伝子発現は、相関している。従って、RPKM値が高い場合、hTROP2遺伝子発現も高い。幾つかの態様において、Log2[RPKM+1]値が所定の数値以上であるか、又は上回る場合、高hTROP2遺伝子発現と評価される。所定の数値は、偽陽性及び偽陰性の望ましくない効果を最小化するように統計的に設定され得る。設定された数値は、6.0~9.0の範囲で選択することが可能であり、例えば、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9,及び9.0からなる群から選択することが可能である。また、設定された数値は、6.0~8.0の範囲で選択することが可能であり、例えば、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択することが可能である。さらに、設定された数値は、6.5~8.0の範囲で選択することが可能であり、例えば、6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択することが可能である。さらに、設定された数値は、7.0~8.0の範囲で選択することが可能であり、例えば、7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択することが可能である。さらに、設定された数値は、7.5~8.0の範囲で選択することが可能であり、例えば、7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択することが可能である。設定された数値は、6.5, 7.0, 7.5,及び8.0からなる群から選択することも可能である。
hTROP2遺伝子発現量は、次世代RNAシーケンシングによって算出されるfragments per kilobase of exon per million mapped sequence reads (FPKM)値に基づいて評価され得る。FPKM値は、次世代シーケンサにて得られたリードの数を各遺伝子の遺伝子長及びシーケンサで読まれた配列の総数を用いて正規化した値であり、hTROP2遺伝子の発現量はFPKM値に1を加え、対数(Log2)とした値であるLog2[FPKM+1]値を使用して解析することができる。
FPKM値とhTROP2遺伝子発現は、相関している。従って、FPKM値が高い場合、hTROP2遺伝子発現も高い。幾つかの態様において、Log2[FPKM+1]値が所定の数値以上であるか、又は上回る場合、高hTROP2遺伝子発現と評価される。所定の数値は、偽陽性及び偽陰性の望ましくない効果を最小化するように統計的に設定され得る。設定された数値は、6.0~8.0の範囲で選択することが可能であり、例えば、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択することが可能である。また、設定された数値は、6.0~7.0の範囲で選択することが可能であり、例えば、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9,及び7.0からなる群から選択することが可能である。設定された数値は、6.0,又は7.0を選択することも可能である。
hTROP2遺伝子発現量は、EdgeSeq Assayによって算出されるMedian Normalized Count (MNC)値に基づいて評価され得る。MNC値は、EdgeSeq AssayにてMedian normalization法を用いて得られた値であり、hTROP2遺伝子の発現量はMNC値に1を加え、対数(Log2)とした値であるLog2[MNC+1]値を使用して解析することができる。
MNC値とhTROP2遺伝子発現は、相関している。従って、MNC値が高い場合、hTROP2遺伝子発現も高い。幾つかの態様において、Log2[MNC+1]値が所定の数値以上であるか、又は上回る場合、高hTROP2遺伝子発現と評価される。所定の数値は、偽陽性及び偽陰性の望ましくない効果を最小化するように統計的に設定され得る。設定された数値は、12.0~15.0の範囲で選択することが可能であり、例えば、12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14.0, 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9,及び15.0からなる群から選択することが可能である。また、設定された数値は、12.0~14.0の範囲で選択することが可能であり、例えば、12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9,及び14.0からなる群から選択することが可能である。設定された数値は、12.0, 13.0, 又は14.0を選択することも可能である。
幾つかの態様において、mRNAレベルでのhTROP2遺伝子発現は、規制当局に認可された試験を使用して評価される。幾つかの態様において、前記規制当局に認可された試験は、FDA、EMA又はPMDAによって認可された試験である。
SLFN11遺伝子発現の評価
SLFN11遺伝子発現は、ヒト患者由来の生体試料において評価され得る。そのような態様は、mRNAレベルでのSLFN11遺伝子発現の評価を依頼し、評価結果を受け取る工程を含む。幾つかの態様は、mRNAレベルでのSLFN11遺伝子発現の数値を決定する工程、及び任意の方法で決定された数値を記録する工程を含む。
SLFN11遺伝子発現は、ヒト患者由来の生体試料において評価され得る。そのような態様は、mRNAレベルでのSLFN11遺伝子発現の評価を依頼し、評価結果を受け取る工程を含む。幾つかの態様は、mRNAレベルでのSLFN11遺伝子発現の数値を決定する工程、及び任意の方法で決定された数値を記録する工程を含む。
SLFN11遺伝子発現レベルは、所定の数値に関連して解釈され得る。所定の数値と等しい場合、数値以上である場合、又は上回る場合に、SLFN11遺伝子発現レベルは、対象が、抗hTROP2抗体を含有する医薬による治療に感受性(応答性)であると予測できると解釈される。幾つかの態様において、SLFN11遺伝子発現レベルが、所定の数値と等しい場合、数値以下である場合、又は数値を下回る場合、腫瘍が抗hTROP2抗体を含有する医薬による治療に耐性(非応答性)であると予測できると解釈される。
幾つかの態様において、生体試料中のSLFN11遺伝子発現のレベルを表す数値に基づいて、SLFN11遺伝子発現は、高発現又は低発現と評価され得る。対象は、例えば、mRNAレベルでのSLFN11発現に基づいて、高発現又は低発現と評価され得る。
前記発現レベルは、上記のような任意の公知の方法により評価され得る。例えば、SLFN11遺伝子発現量は、hTROP2遺伝子の場合と同じくRPKM値に基づいて評価され得る。SLFN11遺伝子の発現量はRPKM値に1を加え、対数(Log2)とした値であるLog2[RPKM+1]値を使用して解析することができる。
RPKM値とSLFN11遺伝子発現は、相関している。従って、RPKM値が高い場合、SLFN11遺伝子発現も高い。幾つかの態様において、Log2[RPKM+1]値が所定の数値を上回る場合、高SLFN11遺伝子発現と評価される。所定の数値は、偽陽性及び偽陰性の望ましくない効果を最小化するように統計的に設定され得る。設定された数値は、1.0~4.0の範囲で選択することが可能であり、例えば、1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択することが可能である。また、設定された数値は、1.0~3.0の範囲で選択することが可能であり、例えば、1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9及び3.0からなる群から選択することが可能である。さらに、設定された数値は、2.0~3.0の範囲で選択することが可能であり、例えば、2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9及び3.0からなる群から選択することが可能である。設定された数値は、1.0, 2.0及び3.0からなる群から選択することが可能であり、3.0と設定することも可能である。
SLFN11遺伝子発現量は、hTROP2遺伝子の場合と同じくFPKM値に基づいて評価され得る。SLFN11遺伝子の発現量はFPKM値に1を加え、対数(Log2)とした値であるLog2[FPKM+1]値を使用して解析することができる。
FPKM値とSLFN11遺伝子発現は、相関している。従って、FPKM値が高い場合、SLFN11遺伝子発現も高い。幾つかの態様において、Log2[FPKM]値が所定の数値を上回る場合、高SLFN11遺伝子発現と評価される。所定の数値は、偽陽性及び偽陰性の望ましくない効果を最小化するように統計的に設定され得る。設定された数値は、2.0~4.0の範囲で選択することが可能であり、例えば、2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択することが可能である。また、設定された数値は、2.0~3.0の範囲で選択することが可能であり、例えば、2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9及び3.0からなる群から選択することが可能である。設定された数値は、2.0又は3.0を選択することが可能である。
SLFN11遺伝子発現量は、hTROP2遺伝子の場合と同じくMNC値に基づいて評価され得る。SLFN11遺伝子の発現量はMNC値に1を加え、対数(Log2)とした値であるLog2[MNC+1]値を使用して解析することができる。
MNC値とSLFN11遺伝子発現は、相関している。従って、MNC値が高い場合、SLFN11遺伝子発現も高い。幾つかの態様において、Log2[MNC]値が所定の数値を上回る場合、高SLFN11遺伝子発現と評価される。所定の数値は、偽陽性及び偽陰性の望ましくない効果を最小化するように統計的に設定され得る。設定された数値は、11.5~13.5の範囲で選択することが可能であり、例えば、11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4,及び13.5からなる群から選択することが可能である。また、設定された数値は、11.5~12.5の範囲で選択することが可能であり、例えば、11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 及び12.5からなる群から選択することが可能である。設定された数値は、11.5, 12.0, 又は12.5を選択することが可能である。
幾つかの態様において、mRNAレベルでのSLFN11遺伝子発現は、規制当局に認可された試験を使用して評価される。幾つかの態様において、前記規制当局に認可された試験は、例えばFDA、EMA又はPMDAによって認可された試験である。
投与と治療
幾つかの態様において、hTROP2遺伝子発現の評価は、SLFN11遺伝子の発現と組み合わせて評価され得る。2種類の感受性マーカーを組み合わせることによって、より精度の高い評価が可能となる。幾つかの態様において、がんに罹患しているヒト患者は、hTROP2遺伝子及び/又はSLFN11遺伝子の発現が高いと評価された場合に、抗hTROP2抗体を含有する医薬を投与されて治療され得る。幾つかの態様において、がんに罹患しているヒト患者は、hTROP2遺伝子及び/又はSLFN11遺伝子の発現が低いと評価された場合に、抗hTROP2抗体を含有する医薬の投与を回避され得る。
幾つかの態様において、hTROP2遺伝子発現の評価は、SLFN11遺伝子の発現と組み合わせて評価され得る。2種類の感受性マーカーを組み合わせることによって、より精度の高い評価が可能となる。幾つかの態様において、がんに罹患しているヒト患者は、hTROP2遺伝子及び/又はSLFN11遺伝子の発現が高いと評価された場合に、抗hTROP2抗体を含有する医薬を投与されて治療され得る。幾つかの態様において、がんに罹患しているヒト患者は、hTROP2遺伝子及び/又はSLFN11遺伝子の発現が低いと評価された場合に、抗hTROP2抗体を含有する医薬の投与を回避され得る。
抗hTROP2抗体を含有する医薬の好適な投与量として、2.0mg/kg、4.0mg/kg、6.0mg/kg、8.0mg/kg、又は10.0mg/kgの各投与量を挙げることができるが、これらの投与量に限定されるものではない。また、抗hTROP2抗体を含有する医薬の好適な投与間隔としては、3週間間隔を挙げることができるが、この投与間隔に限定されるものではない。
hTROP2及びSLFN11遺伝子発現量は、RPKM値に基づいて評価され得る。各遺伝子の発現量はRPKM値に1を加え、対数(Log2)とした値であるLog2[RPKM+1]値を使用して解析することができる。所定の数値は、偽陽性及び偽陰性の望ましくない効果を最小化するように統計的に設定され得る。
前記のようにhTROP2遺伝子におけるLog2[RPKM+1]値は、6.0~9.0の範囲で設定することが可能である。また、SLFN11遺伝子におけるLog2[RPKM+1]値は、1.0~4.0の範囲で設定することが可能である。設定された数値を組み合わせる場合、がんに罹患しているヒト患者は、hTROP2及びSLFN11遺伝子における設定値の双方を満たす場合に、抗hTROP2抗体を含有する医薬を投与されて治療され得る。また、幾つかの態様において、hTROP2又はSLFN11遺伝子における設定値のいずれか一方を満たす場合に、抗hTROP2抗体を含有する医薬を投与されて治療され得る。
hTROP2及びSLFN11遺伝子における好適なLog2[RPKM+1]設定値の組み合わせとしては、hTROP2遺伝子においては7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択される一つの数値及びSLFN11遺伝子においては1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,及び2.0からなる群から選択される一つの数値の組み合わせ、hTROP2遺伝子においては6.5, 6.6, 6.7, 6.8, 6.9,及び7.0からなる群から選択される一つの数値及びSLFN11遺伝子においては2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択される一つの数値の組み合わせ、並びにhTROP2遺伝子においては7.0, 7.1, 7.2, 7.3, 7.4,及び7.5からなる群から選択される一つの数値及びSLFN11遺伝子においては2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択される一つの数値の組み合わせを挙げることができる。
hTROP2及びSLFN11遺伝子における好適なLog2[RPKM+1]設定値のさらに別の組み合わせとしては、hTROP2遺伝子においては7.5, 7.6, 7.7, 7.8, 7.9, 及び8.0からなる群から選択される一つの数値及びSLFN11遺伝子においては2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択される一つの数値の組み合わせ、hTROP2遺伝子においては6.5, 6.6, 6.7, 6.8, 6.9, 及び7.0からなる群から選択される一つの数値及びSLFN11遺伝子においては3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択される一つの数値の組み合わせ、hTROP2遺伝子においては7.0, 7.1, 7.2, 7.3, 7.4,及び7.5からなる群から選択される一つの数値及びSLFN11遺伝子においては3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択される一つの数値の組み合わせ、並びにhTROP2遺伝子においては7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択される一つの数値及びSLFN11遺伝子においては3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択される一つの数値の組み合わせ、を挙げることができる。
hTROP2及びSLFN11遺伝子におけるさらに好適なLog2[RPKM+1]設定値の組み合わせとしては、hTROP2遺伝子における7.5及びSLFN11遺伝子における1.0の組み合わせ、又はhTROP2遺伝子における6.5及びSLFN11遺伝子における2.0の組み合わせのいずれか一つ満たす場合を挙げることができる。
hTROP2及びSLFN11遺伝子におけるさらに好適なLog2[RPKM+1]設定値の別の組み合わせとしては、hTROP2遺伝子における7.5及びSLFN11遺伝子における2.0の組み合わせ、又はhTROP2遺伝子における6.5及びSLFN11遺伝子における3.0の組み合わせのいずれか一つを満たす場合を挙げることができる。
hTROP2及びSLFN11遺伝子におけるさらに好適なLog2[RPKM+1]設定値の別の組み合わせとしては、hTROP2遺伝子における7.5及びSLFN11遺伝子における1.0の組み合わせ、hTROP2遺伝子における6.5及びSLFN11遺伝子における2.0の組み合わせ、hTROP2遺伝子における7.5及びSLFN11遺伝子における2.0の組み合わせ、並びにhTROP2遺伝子における6.5及びSLFN11遺伝子における3.0の組み合わせからなる群から選択されるいずれか一つの組み合わせを挙げることができる。
また、hTROP2及びSLFN11遺伝子発現量は、FPKM値に基づいて評価され得る。各遺伝子の発現量はFPKM値に1を加え、対数(Log2)とした値であるLog2[FPKM+1]値を使用して解析することができる。所定の数値は、偽陽性及び偽陰性の望ましくない効果を最小化するように統計的に設定され得る。
前記のようにhTROP2遺伝子におけるLog2[FPKM+1]値は、6.0~8.0の範囲で設定することが可能である。また、SLFN11遺伝子におけるLog2[FPKM+1]値は、2.0~4.0の範囲で設定することが可能である。設定された数値を組み合わせる場合、がんに罹患しているヒト患者は、hTROP2及びSLFN11遺伝子における設定値の双方を満たす場合に、抗hTROP2抗体を含有する医薬を投与されて治療され得る。また、幾つかの態様において、hTROP2又はSLFN11遺伝子における設定値のいずれか一方を満たす場合に、抗hTROP2抗体を含有する医薬を投与されて治療され得る。
hTROP2及びSLFN11遺伝子における好適なLog2[FPKM+1]設定値の組み合わせとしては、
hTROP2遺伝子においては7.0, 7.1, 7.2, 7,3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0からなる群から選択される一つの数値及びSLFN11遺伝子においては2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択される一つの数値の組み合わせを挙げることができる。
hTROP2遺伝子においては7.0, 7.1, 7.2, 7,3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0からなる群から選択される一つの数値及びSLFN11遺伝子においては2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択される一つの数値の組み合わせを挙げることができる。
また、別の好適な組み合わせとしては、hTROP2遺伝子においては6.0, 6.1, 6.2, 6.3, 6.4,6.5, 6.6, 6.7, 6.8, 6.9, 及び7.0からなる群から選択される一つの数値及びSLFN11遺伝子においては3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択される一つの数値の組み合わせを挙げることができる。
さらに別の組み合わせとしては、hTROP2遺伝子においては7.0, 7.1, 7.2, 7,3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 及び8.0からなる群から選択される一つの数値及びSLFN11遺伝子においては3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択される一つの数値の組み合わせを挙げることができる。
hTROP2及びSLFN11遺伝子におけるさらに好適なLog2[FPKM+1]設定値の別の組み合わせとしては、hTROP2遺伝子における7.0及びSLFN11遺伝子における2.0の組み合わせ、hTROP2遺伝子における6.0及びSLFN11遺伝子における3.0の組み合わせ、並びにhTROP2遺伝子における7.0及びSLFN11遺伝子における3.0の組み合わせからなる群から選択されるいずれか一つの組み合わせを挙げることができる。
さらに、hTROP2及びSLFN11遺伝子発現量は、MNC値に基づいて評価され得る。各遺伝子の発現量はMNC値に1を加え、対数(Log2)とした値であるLog2[MNC+1]値を使用して解析することができる。所定の数値は、偽陽性及び偽陰性の望ましくない効果を最小化するように統計的に設定され得る。
前記のようにhTROP2遺伝子におけるLog2[MNC+1]値は、12.0~14.0の範囲で設定することが可能である。また、SLFN11遺伝子におけるLog2[MNC+1]値は、11.5~12.5の範囲で設定することが可能である。設定された数値を組み合わせる場合、がんに罹患しているヒト患者は、hTROP2及びSLFN11遺伝子における設定値の双方を満たす場合に、抗hTROP2抗体を含有する医薬を投与されて治療され得る。また、幾つかの態様において、hTROP2又はSLFN11遺伝子における設定値のいずれか一方を満たす場合に、抗hTROP2抗体を含有する医薬を投与されて治療され得る。
hTROP2及びSLFN11遺伝子における好適なLog2[MNC+1]設定値の組み合わせとしては、hTROP2遺伝子においては12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14.0, 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9,及び15.0からなる群から選択される一つの数値及びSLFN11遺伝子においては11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4,及び13.5からなる群から選択される一つの数値の組み合わせを挙げることができる。
また、別の好適な組み合わせとしては、hTROP2遺伝子においては12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9,及び14.0からなる群から選択される一つの数値及びSLFN11遺伝子においては11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 及び12.5からなる群から選択される一つの数値の組み合わせを挙げることができる。
さらに別の組み合わせとしては、hTROP2遺伝子においては12.0, 13.0, 又は14.0から選択される一つの数値及びSLFN11遺伝子においては11.5, 12.0, 又は12.5から選択される一つの数値の組み合わせを挙げることができる。
hTROP2及びSLFN11遺伝子におけるさらに好適なLog2[MNC+1]設定値の別の組み合わせとしては、hTROP2遺伝子における12.0及びSLFN11遺伝子における11.5の組み合わせ、hTROP2遺伝子における14.0及びSLFN11遺伝子における11.5の組み合わせ、hTROP2遺伝子における12.0及びSLFN11遺伝子における12.5の組み合わせ、並びにhTROP2遺伝子における14.0及びSLFN11遺伝子における12.5の組み合わせからなる群から選択されるいずれか一つの組み合わせを挙げることができる。
遺伝子発現量の測定及び評価は、hTROP2遺伝子及びSLFN11遺伝子について同時に行っても良い。
あるいは、hTROP2遺伝子の発現量の測定及び評価を最初に行い、hTROP2遺伝子の発現量が高いと評価されたヒト患者について、SLFN11遺伝子の発現量の測定及び評価を行っても良い。
あるいは、SLFN11遺伝子の発現量の測定及び評価を最初に行い、SLFN11遺伝子の発現量が高いと評価されたヒト患者について、hTROP2遺伝子の発現量の測定及び評価を行っても良い。
幾つかの態様において、mRNAレベルでのhTROP2及びSLFN11遺伝子発現は、規制当局に認可された試験を使用して評価される。幾つかの態様において、前記規制当局に認可された試験は、FDA、EMA又はPMDAに認可された試験である。
試験キット
本発明は、本発明の方法を実施するための幾つかの構成を備える診断試験キットにも関する。診断試験キットは、診断アッセイの実施における、利便性、迅速性、及び再現性を向上させる。例えば、qRT-PCRベースの態様において、基本的な診断試験キットは、遺伝子の発現を解析するPCRプライマーを含む。他の態様において、より詳細な試験キットは、PCRプライマーに加え、PCR技術を用いて遺伝子発現レベルを測定するための、緩衝剤、試薬、及び詳細な説明書を備える。幾つかの態様において、当該キットは、試験プロトコール、及びRNA試料以外の、試験に必要な全ての消費成分を備えている。
本発明は、本発明の方法を実施するための幾つかの構成を備える診断試験キットにも関する。診断試験キットは、診断アッセイの実施における、利便性、迅速性、及び再現性を向上させる。例えば、qRT-PCRベースの態様において、基本的な診断試験キットは、遺伝子の発現を解析するPCRプライマーを含む。他の態様において、より詳細な試験キットは、PCRプライマーに加え、PCR技術を用いて遺伝子発現レベルを測定するための、緩衝剤、試薬、及び詳細な説明書を備える。幾つかの態様において、当該キットは、試験プロトコール、及びRNA試料以外の、試験に必要な全ての消費成分を備えている。
本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1.抗体薬物複合体の製造
国際公開第2015/098099号及び国際公報第2017/002776に記載の製造方法に従って、ヒト化抗hTROP2抗体(配列番号1においてアミノ酸番号20乃至470に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号21乃至234に記載のアミノ酸配列からなる軽鎖を含んでなる抗体)を用いて、式
実施例1.抗体薬物複合体の製造
国際公開第2015/098099号及び国際公報第2017/002776に記載の製造方法に従って、ヒト化抗hTROP2抗体(配列番号1においてアミノ酸番号20乃至470に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号21乃至234に記載のアミノ酸配列からなる軽鎖を含んでなる抗体)を用いて、式
(式中、Aは抗hTROP2抗体との結合位置を示す)
で示される薬物リンカーと、抗hTROP2抗体とがチオエーテル結合によって結合した抗体薬物複合体(以下、「抗体薬物複合体(1)」と称する)を製造した。抗体一分子当たりの平均薬物結合数は0~8の範囲で調節可能であるが、今回は平均薬物結合数3.5~4.5の抗体薬物複合体を製造し、以下の実施例において使用した。
で示される薬物リンカーと、抗hTROP2抗体とがチオエーテル結合によって結合した抗体薬物複合体(以下、「抗体薬物複合体(1)」と称する)を製造した。抗体一分子当たりの平均薬物結合数は0~8の範囲で調節可能であるが、今回は平均薬物結合数3.5~4.5の抗体薬物複合体を製造し、以下の実施例において使用した。
実施例2.抗体薬物複合体の抗腫瘍効果の評価(1)
マウス:5-8週齢の雌nu/nuマウス(Envigo)を実験使用前にSPF条件化で3日間以上馴化した。マウスには滅菌した固形飼料(Teklad2919,Envigo)を給餌し、逆浸透膜処理した水(2ppm塩素を含む)を与えた。
マウス:5-8週齢の雌nu/nuマウス(Envigo)を実験使用前にSPF条件化で3日間以上馴化した。マウスには滅菌した固形飼料(Teklad2919,Envigo)を給餌し、逆浸透膜処理した水(2ppm塩素を含む)を与えた。
測定、計算式:腫瘍の長径及び短径を電子式デジタルキャリパー(CD-6PMX,Mitutoyo Corp.)で1週間に2回測定し、以下の計算式を用いて腫瘍体積(mm3)を算出した。
腫瘍体積(mm3)=0.52×長径(mm)×[短径(mm)]2
各がん患者由来腫瘍片をマウス皮下に移植・継代して得られた腫瘍を用いて、約5x5x5mm3に細断した腫瘍片を雌nu/nuマウスの左側腹部に皮下移植し、各patient-derived xenograft(PDX)モデルを作成した。移植した腫瘍体積の平均値が150-300mm3に達した時点で無作為に群分けを実施した(Day0)。群分けと同日に、抗体薬物複合体(1)を10mg/kgの用量で尾静脈内投与した。陰性対照としてFormulation bufferを10mL/kgの液量で同様に投与した。投与21日後の各腫瘍体積を用いて、以下の計算式に従い腫瘍増殖抑制率(TGI(%))を算出した(表1)。
腫瘍増殖抑制率(%)=100×(1-Tf/mean Cf)
Tf:抗体薬物複合体(1)の投与21日後の腫瘍体積
mean Cf:陰性対照群マウスの投与21日後の腫瘍体積の相加平均値
上記の全ての試験は、Champions Oncology社(Champions社)において実施した。
腫瘍体積(mm3)=0.52×長径(mm)×[短径(mm)]2
各がん患者由来腫瘍片をマウス皮下に移植・継代して得られた腫瘍を用いて、約5x5x5mm3に細断した腫瘍片を雌nu/nuマウスの左側腹部に皮下移植し、各patient-derived xenograft(PDX)モデルを作成した。移植した腫瘍体積の平均値が150-300mm3に達した時点で無作為に群分けを実施した(Day0)。群分けと同日に、抗体薬物複合体(1)を10mg/kgの用量で尾静脈内投与した。陰性対照としてFormulation bufferを10mL/kgの液量で同様に投与した。投与21日後の各腫瘍体積を用いて、以下の計算式に従い腫瘍増殖抑制率(TGI(%))を算出した(表1)。
腫瘍増殖抑制率(%)=100×(1-Tf/mean Cf)
Tf:抗体薬物複合体(1)の投与21日後の腫瘍体積
mean Cf:陰性対照群マウスの投与21日後の腫瘍体積の相加平均値
上記の全ての試験は、Champions Oncology社(Champions社)において実施した。
実施例3.各PDXマウスモデル由来腫瘍におけるhTROP2及びSLFN11遺伝子発現量(RPKM値)、並びに抗体薬物複合体(1)抗腫瘍活性との関連
実施例2において使用された各PDXモデルにおける遺伝子発現量データは、Champions社にて取得及び正規化されたRPKM値に1を加え、対数(Log2)とした値であるLog2[RPKM+1]値を入手し(表2)、これを用いて抗体薬物複合体(1)のPDXモデルにおける抗腫瘍活性(表1)とhTROP2遺伝子及びSLFN11遺伝子の発現量の関連を解析した。評価した全モデルをhTROP2遺伝子及びSLFN11遺伝子が一定以上の発現量を示す群に分けた場合(表3)、一定以上の薬効(今回は一例としてTGIが75%以上との基準を採用)を示す動物モデルの割合はhTROP2遺伝子発現が増加且つSLFN11遺伝子発現が増加するほど高まることが示された(表4)。SLFN11遺伝子発現による群分けを行わない場合、TGIが75%以上を示す動物モデルの割合は47~63%に止まっており、hTROP2遺伝子発現量及びSLFN11遺伝子発現量の組み合わせが、抗体薬物複合体(1)の抗腫瘍効果を予測する感受性マーカーとして使用可能であることが明らかとなった。例えば、hTROP2遺伝子のLog2[RPKM+1]値が7.5を上回り且つSLFN11遺伝子のLog2[RPKM+1]値が1.0を上回る場合、又はhTROP2遺伝子のLog2[RPKM+1]値が6.5を上回り且つSLFN11遺伝子のLog2[RPKM+1]が2.0を上回る場合、TGIが75%以上を示す動物モデルの割合は約80%乃至100%となる。また、hTROP2遺伝子のLog2[RPKM+1]値が7.5を上回り且つSLFN11遺伝子のLog2[RPKM+1]値が2.0を上回る場合、又はhTROP2遺伝子のLog2[RPKM+1]値が6.5を上回り且つSLFN11遺伝子のLog2[RPKM+1]が3.0を上回る場合、TGIが75%以上を示す動物モデルの割合は100%となる。なお、TGIが60%以上又は70%以上の場合でも、TGIが75%以上の場合に設定された各Log2[RPKM+1]値により、同等の予測率で抗腫瘍効果の予測することが可能であった。TGIが80%以上の場合は、Log2[RPKM+1]値が7.5を上回り且つSLFN11遺伝子のLog2[RPKM+1]値が1.0を上回り2以下である場合のみ、予測率が60%台に低下した。
実施例2において使用された各PDXモデルにおける遺伝子発現量データは、Champions社にて取得及び正規化されたRPKM値に1を加え、対数(Log2)とした値であるLog2[RPKM+1]値を入手し(表2)、これを用いて抗体薬物複合体(1)のPDXモデルにおける抗腫瘍活性(表1)とhTROP2遺伝子及びSLFN11遺伝子の発現量の関連を解析した。評価した全モデルをhTROP2遺伝子及びSLFN11遺伝子が一定以上の発現量を示す群に分けた場合(表3)、一定以上の薬効(今回は一例としてTGIが75%以上との基準を採用)を示す動物モデルの割合はhTROP2遺伝子発現が増加且つSLFN11遺伝子発現が増加するほど高まることが示された(表4)。SLFN11遺伝子発現による群分けを行わない場合、TGIが75%以上を示す動物モデルの割合は47~63%に止まっており、hTROP2遺伝子発現量及びSLFN11遺伝子発現量の組み合わせが、抗体薬物複合体(1)の抗腫瘍効果を予測する感受性マーカーとして使用可能であることが明らかとなった。例えば、hTROP2遺伝子のLog2[RPKM+1]値が7.5を上回り且つSLFN11遺伝子のLog2[RPKM+1]値が1.0を上回る場合、又はhTROP2遺伝子のLog2[RPKM+1]値が6.5を上回り且つSLFN11遺伝子のLog2[RPKM+1]が2.0を上回る場合、TGIが75%以上を示す動物モデルの割合は約80%乃至100%となる。また、hTROP2遺伝子のLog2[RPKM+1]値が7.5を上回り且つSLFN11遺伝子のLog2[RPKM+1]値が2.0を上回る場合、又はhTROP2遺伝子のLog2[RPKM+1]値が6.5を上回り且つSLFN11遺伝子のLog2[RPKM+1]が3.0を上回る場合、TGIが75%以上を示す動物モデルの割合は100%となる。なお、TGIが60%以上又は70%以上の場合でも、TGIが75%以上の場合に設定された各Log2[RPKM+1]値により、同等の予測率で抗腫瘍効果の予測することが可能であった。TGIが80%以上の場合は、Log2[RPKM+1]値が7.5を上回り且つSLFN11遺伝子のLog2[RPKM+1]値が1.0を上回り2以下である場合のみ、予測率が60%台に低下した。
実施例4.抗体薬物複合体の抗腫瘍効果の評価(2)
マウス:5-8週齢の雌nu/nuマウス(Envigo)を実験使用前にSPF条件化で3日間以上馴化した。マウスには滅菌した固形飼料(Teklad2919,Envigo)を給餌し、逆浸透膜処理した水(2ppm塩素を含む)を与えた。
マウス:5-8週齢の雌nu/nuマウス(Envigo)を実験使用前にSPF条件化で3日間以上馴化した。マウスには滅菌した固形飼料(Teklad2919,Envigo)を給餌し、逆浸透膜処理した水(2ppm塩素を含む)を与えた。
測定、計算式:腫瘍の長径及び短径を電子式デジタルキャリパー(CD-6PMX,Mitutoyo Corp.)で1週間に2回測定し、以下の計算式を用いて腫瘍体積(mm3)を算出した。
腫瘍体積(mm3)=0.52×長径(mm)×[短径(mm)]2
各がん患者由来腫瘍片をマウス皮下に移植・継代して得られた腫瘍を用いて、約5x5x5mm3に細断した腫瘍片を雌nu/nuマウスの左側腹部に皮下移植し、各patient-derived xenograft(PDX)モデルを作成した。移植した腫瘍体積の平均値が150-300mm3に達した時点で無作為に群分けを実施した(Day0)。群分けと同日に、抗体薬物複合体(1)を10mg/kgの用量で尾静脈内投与した。陰性対照としてFormulation bufferを10mL/kgの液量で同様に投与した。
実施例2及び本実施例で評価したPDXモデルについて、投与10-15日後の各腫瘍体積を用いて、以下の計算式に従い腫瘍増殖抑制率(TGI(%))を算出した(表5)。
腫瘍増殖抑制率(%)=100×(1-Tf/mean Cf)
Tf:抗体薬物複合体(1)の投与10-15日後の腫瘍体積
mean Cf:陰性対照群マウスの投与10-15日後の腫瘍体積の相加平均値
腫瘍体積(mm3)=0.52×長径(mm)×[短径(mm)]2
各がん患者由来腫瘍片をマウス皮下に移植・継代して得られた腫瘍を用いて、約5x5x5mm3に細断した腫瘍片を雌nu/nuマウスの左側腹部に皮下移植し、各patient-derived xenograft(PDX)モデルを作成した。移植した腫瘍体積の平均値が150-300mm3に達した時点で無作為に群分けを実施した(Day0)。群分けと同日に、抗体薬物複合体(1)を10mg/kgの用量で尾静脈内投与した。陰性対照としてFormulation bufferを10mL/kgの液量で同様に投与した。
実施例2及び本実施例で評価したPDXモデルについて、投与10-15日後の各腫瘍体積を用いて、以下の計算式に従い腫瘍増殖抑制率(TGI(%))を算出した(表5)。
腫瘍増殖抑制率(%)=100×(1-Tf/mean Cf)
Tf:抗体薬物複合体(1)の投与10-15日後の腫瘍体積
mean Cf:陰性対照群マウスの投与10-15日後の腫瘍体積の相加平均値
実施例5.各PDXマウスモデル由来腫瘍におけるhTROP2及びSLFN11遺伝子発現量(FPKM値)、並びに抗体薬物複合体(1)抗腫瘍活性との関連
実施例4において使用された各PDXモデルにおける遺伝子発現量データは、各腫瘍のホルマリン固定パラフィン包埋標本より抽出されたRNAを用いて、次世代RNAシーケンス法にて取得した。取得されたデータはFPKM値に正規化した後、FPKMに1を加え、対数(Log2)とした値であるLog2[FPKM+1]値とし(表6)、これを用いて抗体薬物複合体(1)のPDXモデルにおける抗腫瘍活性(表5)とhTROP2遺伝子及びSLFN11遺伝子の発現量の関連を解析した。評価した全モデルをhTROP2遺伝子及びSLFN11遺伝子が一定以上の発現量を示す群に分けた場合(表7)、一定以上の薬効(今回は一例としてTGIが75%以上との基準を採用)を示す動物モデルの割合はhTROP2遺伝子発現が増加且つSLFN11遺伝子発現が増加するほど高まることが示された(表8)。SLFN11遺伝子発現による群分けを行わない場合、TGIが75%以上を示す動物モデルの割合は43~50%に止まっており、hTROP2遺伝子発現量及びSLFN11遺伝子発現量の組み合わせが、抗体薬物複合体(1)の抗腫瘍効果を予測する感受性マーカーとして使用可能であることが明らかとなった。例えば、hTROP2遺伝子のLog2[FPKM+1]値が7.0を上回り且つSLFN11遺伝子のLog2[FPKM+1]値が2.0を上回る場合、又はhTROP2遺伝子のLog2[FPKM+1]値が6.0を上回り且つSLFN11遺伝子のLog2[FPKM+1]が3.0を上回る場合、TGIが75%以上を示す動物モデルの割合は約80%乃至100%となる。また、hTROP2遺伝子のLog2[FPKM+1]値が7.0を上回り且つSLFN11遺伝子のLog2[FPKM+1]値が3.0を上回る場合、TGIが75%以上を示す動物モデルの割合は100%となる。なお、TGIが70%又は80%以上の場合でも、TGIが75%以上の場合に設定された各Log2[FPKM+1]値により、同等の予測率で抗腫瘍効果の予測することが可能であった。
実施例4において使用された各PDXモデルにおける遺伝子発現量データは、各腫瘍のホルマリン固定パラフィン包埋標本より抽出されたRNAを用いて、次世代RNAシーケンス法にて取得した。取得されたデータはFPKM値に正規化した後、FPKMに1を加え、対数(Log2)とした値であるLog2[FPKM+1]値とし(表6)、これを用いて抗体薬物複合体(1)のPDXモデルにおける抗腫瘍活性(表5)とhTROP2遺伝子及びSLFN11遺伝子の発現量の関連を解析した。評価した全モデルをhTROP2遺伝子及びSLFN11遺伝子が一定以上の発現量を示す群に分けた場合(表7)、一定以上の薬効(今回は一例としてTGIが75%以上との基準を採用)を示す動物モデルの割合はhTROP2遺伝子発現が増加且つSLFN11遺伝子発現が増加するほど高まることが示された(表8)。SLFN11遺伝子発現による群分けを行わない場合、TGIが75%以上を示す動物モデルの割合は43~50%に止まっており、hTROP2遺伝子発現量及びSLFN11遺伝子発現量の組み合わせが、抗体薬物複合体(1)の抗腫瘍効果を予測する感受性マーカーとして使用可能であることが明らかとなった。例えば、hTROP2遺伝子のLog2[FPKM+1]値が7.0を上回り且つSLFN11遺伝子のLog2[FPKM+1]値が2.0を上回る場合、又はhTROP2遺伝子のLog2[FPKM+1]値が6.0を上回り且つSLFN11遺伝子のLog2[FPKM+1]が3.0を上回る場合、TGIが75%以上を示す動物モデルの割合は約80%乃至100%となる。また、hTROP2遺伝子のLog2[FPKM+1]値が7.0を上回り且つSLFN11遺伝子のLog2[FPKM+1]値が3.0を上回る場合、TGIが75%以上を示す動物モデルの割合は100%となる。なお、TGIが70%又は80%以上の場合でも、TGIが75%以上の場合に設定された各Log2[FPKM+1]値により、同等の予測率で抗腫瘍効果の予測することが可能であった。
実施例6.化合物(1)の製造
国際公開第2014/057687号及び国際公報第2015/115091に記載の製造方法に従って、式
国際公開第2014/057687号及び国際公報第2015/115091に記載の製造方法に従って、式
で示される化合物(以下、「化合物(1)」と称する)を製造した。
実施例7.SLFN11ノックダウン時における細胞増殖抑制試験
7-(1):ヒト咽頭がん細胞株FaDuに対する効果
ヒト咽頭がん細胞株FaDuをATCCより入手し、評価に使用した。10cm細胞培養ディッシュに、非必須アミノ酸溶液、ピルビン酸溶液及び10%ウシ胎児血清を含むMEM培地にて2×105cells/mLに懸濁したFaDu細胞を10mL/ディッシュにて播種した。播種から24時間経過後、100pmolのON-TARGETplus SLFN11 siRNA(Dharamcon)又はON-TARGETplus Non-targeting Control Pool(Dharamcon)及び30μLのLipofectamineTM RNAiMAX Transfection Reagent(ThermoFisher)を1mLのOpti-MEM培地に懸濁し全量を培地に添加した。72時間経過後、培地を除去しPBSにて洗浄した後、1mLのTrypLETM Expressを用いて細胞をディッシュより解離し回収した。回収された細胞は非必須アミノ酸溶液、ピルビン酸溶液及び10%ウシ胎児血清を含むMEM培地にて5×104cells/mLに懸濁し。96ウェル細胞培養プレートに100μL/ウェルにて播種した。播種から24時間後、培地を100nM、33nM、11nM、3.7nM、1.2nM、0.41nM.0.13nM.0.045nM、又は0nMの化合物(1)又は抗体薬物複合体(1)を含む培地に100μL/ウェルで交換した。抗体薬物複合体(1)のモル濃度は、平均分子量を150,000として算出した。細胞はいずれも37℃、5%CO2下で培養した。培地交換から72時間経過後、ATPlite 1step検出システム(PerkinElmer)を100μL/ウェルにて添加し、室温で10分間インキュベーション後に各wellの発光強度を測定した。
7-(1):ヒト咽頭がん細胞株FaDuに対する効果
ヒト咽頭がん細胞株FaDuをATCCより入手し、評価に使用した。10cm細胞培養ディッシュに、非必須アミノ酸溶液、ピルビン酸溶液及び10%ウシ胎児血清を含むMEM培地にて2×105cells/mLに懸濁したFaDu細胞を10mL/ディッシュにて播種した。播種から24時間経過後、100pmolのON-TARGETplus SLFN11 siRNA(Dharamcon)又はON-TARGETplus Non-targeting Control Pool(Dharamcon)及び30μLのLipofectamineTM RNAiMAX Transfection Reagent(ThermoFisher)を1mLのOpti-MEM培地に懸濁し全量を培地に添加した。72時間経過後、培地を除去しPBSにて洗浄した後、1mLのTrypLETM Expressを用いて細胞をディッシュより解離し回収した。回収された細胞は非必須アミノ酸溶液、ピルビン酸溶液及び10%ウシ胎児血清を含むMEM培地にて5×104cells/mLに懸濁し。96ウェル細胞培養プレートに100μL/ウェルにて播種した。播種から24時間後、培地を100nM、33nM、11nM、3.7nM、1.2nM、0.41nM.0.13nM.0.045nM、又は0nMの化合物(1)又は抗体薬物複合体(1)を含む培地に100μL/ウェルで交換した。抗体薬物複合体(1)のモル濃度は、平均分子量を150,000として算出した。細胞はいずれも37℃、5%CO2下で培養した。培地交換から72時間経過後、ATPlite 1step検出システム(PerkinElmer)を100μL/ウェルにて添加し、室温で10分間インキュベーション後に各wellの発光強度を測定した。
各条件における細胞増殖抑制率(%)は、以下の計算式を用いて算出した。
細胞増殖抑制率(%)=100×(1-T/C)
T:各検体添加ウェルの平均発光強度
C:各検体0 nMを添加したウェルの平均発光強度
細胞増殖抑制率(%)=100×(1-T/C)
T:各検体添加ウェルの平均発光強度
C:各検体0 nMを添加したウェルの平均発光強度
各条件における50%阻害濃度は以下の計算式にフィッティングし算出した。
細胞生存率(%)=(Emax-Emin)×検体濃度γ/
((Emax-50)/(50-Emin)× IC50γ+検体濃度γ)
+ Emin
Emax:最大細胞増殖抑制率(%)
Emin:最小細胞増殖抑制率(%)
IC50:50%阻害濃度
γ:Hill係数
計算式へのフィッティングはSAS system Release 9.2(SAS Institute Inc.)を使用した。
細胞生存率(%)=(Emax-Emin)×検体濃度γ/
((Emax-50)/(50-Emin)× IC50γ+検体濃度γ)
+ Emin
Emax:最大細胞増殖抑制率(%)
Emin:最小細胞増殖抑制率(%)
IC50:50%阻害濃度
γ:Hill係数
計算式へのフィッティングはSAS system Release 9.2(SAS Institute Inc.)を使用した。
SLFN11ノックダウン時のFaDu細胞における、化合物(1)又は抗体薬物複合体(1)による細胞増殖抑制効果を図4に示す。また、算出された各50%阻害濃度を表9に示す。Fadu細胞株に対するSLFN11ノックダウンによって、化合物(1)及び抗体薬物複合体(1)の細胞増殖抑制効果は減弱した。
7-(2):ヒト肺がん細胞株NCI-H1781に対する効果
ヒト肺がん細胞株NCI-H1781をATCCより入手し、評価に使用した。10cm細胞培養ディッシュに、10%ウシ胎児血清を含むRPMI-1640培地にて2×105cells/mLに懸濁したNCI-H1781細胞を10mL/ディッシュにて播種した。播種から24時間経過後、100pmolのON-TARGETplus SLFN11 siRNA(Dharamcon)又はON-TARGETplus Non-targeting Control Pool(Dharamcon)及び30μLのLipofectamineTM RNAiMAX Transfection Reagent(ThermoFisher)を1mLのOpti-MEM培地に懸濁し全量を培地に添加した。72時間経過後、培地を除去しPBSにて洗浄した後、1mLのTrypLETM Expressを用いて細胞をディッシュより解離し回収した。回収された細胞は10%ウシ胎児血清を含むRPMI-1640培地にて5×104cells/mLに懸濁し。96ウェル細胞培養プレートに100μL/ウェルにて播種した。播種から24時間後、培地を100nM、33nM、11nM、3.7nM、1.2nM、0.41nM.0.13nM.0.045nM、又は0nMの化合物(1)又は抗体薬物複合体(1)を含む培地に100μL/ウェルで交換した。抗体薬物複合体(1)のモル濃度は、平均分子量を150,000として算出した。細胞はいずれも37℃、5%CO2下で培養した。培地交換から72時間経過後、ATPlite 1step検出システム(PerkinElmer)を100μL/ウェルにて添加し、室温で10分間インキュベーション後に各wellの発光強度を測定した。
ヒト肺がん細胞株NCI-H1781をATCCより入手し、評価に使用した。10cm細胞培養ディッシュに、10%ウシ胎児血清を含むRPMI-1640培地にて2×105cells/mLに懸濁したNCI-H1781細胞を10mL/ディッシュにて播種した。播種から24時間経過後、100pmolのON-TARGETplus SLFN11 siRNA(Dharamcon)又はON-TARGETplus Non-targeting Control Pool(Dharamcon)及び30μLのLipofectamineTM RNAiMAX Transfection Reagent(ThermoFisher)を1mLのOpti-MEM培地に懸濁し全量を培地に添加した。72時間経過後、培地を除去しPBSにて洗浄した後、1mLのTrypLETM Expressを用いて細胞をディッシュより解離し回収した。回収された細胞は10%ウシ胎児血清を含むRPMI-1640培地にて5×104cells/mLに懸濁し。96ウェル細胞培養プレートに100μL/ウェルにて播種した。播種から24時間後、培地を100nM、33nM、11nM、3.7nM、1.2nM、0.41nM.0.13nM.0.045nM、又は0nMの化合物(1)又は抗体薬物複合体(1)を含む培地に100μL/ウェルで交換した。抗体薬物複合体(1)のモル濃度は、平均分子量を150,000として算出した。細胞はいずれも37℃、5%CO2下で培養した。培地交換から72時間経過後、ATPlite 1step検出システム(PerkinElmer)を100μL/ウェルにて添加し、室温で10分間インキュベーション後に各wellの発光強度を測定した。
各条件における細胞増殖抑制率(%)は、以下の計算式を用いて算出した。
細胞増殖抑制率(%)=100×(1-T/C)
T:各検体添加ウェルの平均発光強度
C:各検体0 nMを添加したウェルの平均発光強度
細胞増殖抑制率(%)=100×(1-T/C)
T:各検体添加ウェルの平均発光強度
C:各検体0 nMを添加したウェルの平均発光強度
各条件における50%阻害濃度は以下の計算式にフィッティングし算出した。
細胞生存率(%)=(Emax-Emin)×検体濃度γ/
((Emax-50)/(50-Emin)× IC50γ+検体濃度γ)
+ Emin
Emax:最大細胞増殖抑制率(%)
Emin:最小細胞増殖抑制率(%)
IC50:50%阻害濃度
γ:Hill係数
細胞生存率(%)=(Emax-Emin)×検体濃度γ/
((Emax-50)/(50-Emin)× IC50γ+検体濃度γ)
+ Emin
Emax:最大細胞増殖抑制率(%)
Emin:最小細胞増殖抑制率(%)
IC50:50%阻害濃度
γ:Hill係数
計算式へのフィッティングはSAS system Release 9.2(SAS Institute Inc.)を使用した。
SLFN11ノックダウン時のNCI-H1781細胞における、化合物(1)又は抗体薬物複合体(1)による細胞増殖抑制効果を図5に示す。また、算出された各50%阻害濃度を表10に示す。NCI-H1781細胞株に対するSLFN11ノックダウンによって、化合物(1)及び抗体薬物複合体(1)の細胞増殖抑制効果は減弱した。
7-(3):ヒト肺がん細胞株Calu-3に対する効果
ヒト肺がん細胞株Calu-3をATCCより入手し、評価に使用した。10cm細胞培養ディッシュに、非必須アミノ酸溶液、ピルビン酸溶液及び10%ウシ胎児血清を含むMEM培地にて2×105cells/mLに懸濁したCalu-3細胞を10mL/ディッシュにて播種した。播種から24時間経過後、100pmolのON-TARGETplus SLFN11 siRNA(Dharamcon)又はON-TARGETplus Non-targeting Control Pool(Dharamcon)及び30μLのLipofectamineTM RNAiMAX Transfection Reagent(ThermoFisher)を1mLのOpti-MEM培地に懸濁し全量を培地に添加した。72時間経過後、培地を除去しPBSにて洗浄した後、1mLのTrypLETM Expressを用いて細胞をディッシュより解離し回収した。回収された細胞は非必須アミノ酸溶液、ピルビン酸溶液及び10%ウシ胎児血清を含むMEM培地にて5×104cells/mLに懸濁し。96ウェル細胞培養プレートに100μL/ウェルにて播種した。播種から24時間後、培地を100nM、33nM、11nM、3.7nM、1.2nM、0.41nM.0.13nM.0.045nM、又は0nMの化合物(1)又は抗体薬物複合体(1)を含む培地に100μL/ウェルで交換した。抗体薬物複合体(1)のモル濃度は、平均分子量を150,000として算出した。細胞はいずれも37℃、5%CO2下で培養した。培地交換から72時間経過後、ATPlite 1step検出システム(PerkinElmer)を100μL/ウェルにて添加し、室温で10分間インキュベーション後に各wellの発光強度を測定した。
ヒト肺がん細胞株Calu-3をATCCより入手し、評価に使用した。10cm細胞培養ディッシュに、非必須アミノ酸溶液、ピルビン酸溶液及び10%ウシ胎児血清を含むMEM培地にて2×105cells/mLに懸濁したCalu-3細胞を10mL/ディッシュにて播種した。播種から24時間経過後、100pmolのON-TARGETplus SLFN11 siRNA(Dharamcon)又はON-TARGETplus Non-targeting Control Pool(Dharamcon)及び30μLのLipofectamineTM RNAiMAX Transfection Reagent(ThermoFisher)を1mLのOpti-MEM培地に懸濁し全量を培地に添加した。72時間経過後、培地を除去しPBSにて洗浄した後、1mLのTrypLETM Expressを用いて細胞をディッシュより解離し回収した。回収された細胞は非必須アミノ酸溶液、ピルビン酸溶液及び10%ウシ胎児血清を含むMEM培地にて5×104cells/mLに懸濁し。96ウェル細胞培養プレートに100μL/ウェルにて播種した。播種から24時間後、培地を100nM、33nM、11nM、3.7nM、1.2nM、0.41nM.0.13nM.0.045nM、又は0nMの化合物(1)又は抗体薬物複合体(1)を含む培地に100μL/ウェルで交換した。抗体薬物複合体(1)のモル濃度は、平均分子量を150,000として算出した。細胞はいずれも37℃、5%CO2下で培養した。培地交換から72時間経過後、ATPlite 1step検出システム(PerkinElmer)を100μL/ウェルにて添加し、室温で10分間インキュベーション後に各wellの発光強度を測定した。
各条件における細胞増殖抑制率(%)は、以下の計算式を用いて算出した。
細胞増殖抑制率(%)=100×(1-T/C)
T:各検体添加ウェルの平均発光強度
C:各検体0 nMを添加したウェルの平均発光強度
細胞増殖抑制率(%)=100×(1-T/C)
T:各検体添加ウェルの平均発光強度
C:各検体0 nMを添加したウェルの平均発光強度
各条件における50%阻害濃度は以下の計算式にフィッティングし算出した。
細胞生存率(%)=(Emax-Emin)×検体濃度γ/
((Emax-50)/(50-Emin)× IC50γ+検体濃度γ)
+ Emin
Emax:最大細胞増殖抑制率(%)
Emin:最小細胞増殖抑制率(%)
IC50:50%阻害濃度
γ:Hill係数
細胞生存率(%)=(Emax-Emin)×検体濃度γ/
((Emax-50)/(50-Emin)× IC50γ+検体濃度γ)
+ Emin
Emax:最大細胞増殖抑制率(%)
Emin:最小細胞増殖抑制率(%)
IC50:50%阻害濃度
γ:Hill係数
計算式へのフィッティングはSAS system Release 9.2(SAS Institute Inc.)を使用した。
SLFN11ノックダウン時のCalu-3細胞における、化合物(1)又は抗体薬物複合体(1)による細胞増殖抑制効果を図6に示す。また、算出された各50%阻害濃度を表11に示す。Calu-3細胞株に対するSLFN11ノックダウンによって、化合物(1)の細胞増殖抑制効果は減弱した。
7-(4):ヒト乳がん細胞株MDA-MB-468に対する効果
ヒト乳がん細胞株MDA-MB-468をATCCより入手し、評価に使用した。10cm細胞培養ディッシュに、10%ウシ胎児血清を含むRPMI-1640培地にて2×105cells/mLに懸濁したMDA-MB-468細胞を10mL/ディッシュにて播種した。播種から24時間経過後、100pmolのON-TARGETplus SLFN11 siRNA(Dharamcon)又はON-TARGETplus Non-targeting Control Pool(Dharamcon)及び30μLのLipofectamineTM RNAiMAX Transfection Reagent(ThermoFisher)を1mLのOpti-MEM培地に懸濁し全量を培地に添加した。72時間経過後、培地を除去しPBSにて洗浄した後、1mLのTrypLETM Expressを用いて細胞をディッシュより解離し回収した。回収された細胞は10%ウシ胎児血清を含むRPMI-1640培地にて5×104cells/mLに懸濁し。96ウェル細胞培養プレートに100μL/ウェルにて播種した。播種から24時間後、培地を100nM、33nM、11nM、3.7nM、1.2nM、0.41nM.0.13nM.0.045nM、又は0nMの化合物(1)又は抗体薬物複合体(1)を含む培地に100μL/ウェルで交換した。抗体薬物複合体(1)のモル濃度は、平均分子量を150,000として算出した。細胞はいずれも37℃、5%CO2下で培養した。培地交換から72時間経過後、ATPlite 1step検出システム(PerkinElmer)を100μL/ウェルにて添加し、室温で10分間インキュベーション後に各wellの発光強度を測定した。
ヒト乳がん細胞株MDA-MB-468をATCCより入手し、評価に使用した。10cm細胞培養ディッシュに、10%ウシ胎児血清を含むRPMI-1640培地にて2×105cells/mLに懸濁したMDA-MB-468細胞を10mL/ディッシュにて播種した。播種から24時間経過後、100pmolのON-TARGETplus SLFN11 siRNA(Dharamcon)又はON-TARGETplus Non-targeting Control Pool(Dharamcon)及び30μLのLipofectamineTM RNAiMAX Transfection Reagent(ThermoFisher)を1mLのOpti-MEM培地に懸濁し全量を培地に添加した。72時間経過後、培地を除去しPBSにて洗浄した後、1mLのTrypLETM Expressを用いて細胞をディッシュより解離し回収した。回収された細胞は10%ウシ胎児血清を含むRPMI-1640培地にて5×104cells/mLに懸濁し。96ウェル細胞培養プレートに100μL/ウェルにて播種した。播種から24時間後、培地を100nM、33nM、11nM、3.7nM、1.2nM、0.41nM.0.13nM.0.045nM、又は0nMの化合物(1)又は抗体薬物複合体(1)を含む培地に100μL/ウェルで交換した。抗体薬物複合体(1)のモル濃度は、平均分子量を150,000として算出した。細胞はいずれも37℃、5%CO2下で培養した。培地交換から72時間経過後、ATPlite 1step検出システム(PerkinElmer)を100μL/ウェルにて添加し、室温で10分間インキュベーション後に各wellの発光強度を測定した。
各条件における細胞増殖抑制率(%)は、以下の計算式を用いて算出した。
細胞増殖抑制率(%)=100×(1-T/C)
T:各検体添加ウェルの平均発光強度
C:各検体0 nMを添加したウェルの平均発光強度
細胞増殖抑制率(%)=100×(1-T/C)
T:各検体添加ウェルの平均発光強度
C:各検体0 nMを添加したウェルの平均発光強度
各条件における50%阻害濃度は以下の計算式にフィッティングし算出した。
細胞生存率(%)=(Emax-Emin)×検体濃度γ/
((Emax-50)/(50-Emin)× IC50γ+検体濃度γ)
+ Emin
Emax:最大細胞増殖抑制率(%)
Emin:最小細胞増殖抑制率(%)
IC50:50%阻害濃度
γ:Hill係数
細胞生存率(%)=(Emax-Emin)×検体濃度γ/
((Emax-50)/(50-Emin)× IC50γ+検体濃度γ)
+ Emin
Emax:最大細胞増殖抑制率(%)
Emin:最小細胞増殖抑制率(%)
IC50:50%阻害濃度
γ:Hill係数
計算式へのフィッティングはSAS system Release 9.2(SAS Institute Inc.)を使用した。
SLFN11ノックダウン時のMDA-MB-468細胞における、化合物(1)又は抗体薬物複合体(1)による細胞増殖抑制効果を図7に示す。算出された各50%阻害濃度を表12に示す。MDA-MB-468細胞株に対するSLFN11ノックダウンによって、化合物(1)の細胞増殖抑制効果は減弱した。
7-(5):ヒト乳がん細胞株HCC38に対する効果
ヒト乳がん細胞株HCC38をATCCより入手し、評価に使用した。10cm細胞培養ディッシュに、10%ウシ胎児血清を含むRPMI-1640培地にて2×105cells/mLに懸濁したHCC38細胞を10mL/ディッシュにて播種した。播種から24時間経過後、100pmolのON-TARGETplus SLFN11 siRNA(Dharamcon)又はON-TARGETplus Non-targeting Control Pool(Dharamcon)及び30μLのLipofectamineTM RNAiMAX Transfection Reagent(ThermoFisher)を1mLのOpti-MEM培地に懸濁し全量を培地に添加した。72時間経過後、培地を除去しPBSにて洗浄した後、1mLのTrypLETM Expressを用いて細胞をディッシュより解離し回収した。回収された細胞は10%ウシ胎児血清を含むRPMI-1640培地にて5×104cells/mLに懸濁し。96ウェル細胞培養プレートに100μL/ウェルにて播種した。播種から24時間後、培地を100nM、33nM、11nM、3.7nM、1.2nM、0.41nM.0.13nM.0.045nM、又は0nMの化合物(1)又は抗体薬物複合体(1)aを含む培地に100μL/ウェルで交換した。抗体薬物複合体(1)のモル濃度は、平均分子量を150,000として算出した。細胞はいずれも37℃、5%CO2下で培養した。培地交換から72時間経過後、ATPlite 1step検出システム(PerkinElmer)を100μL/ウェルにて添加し、室温で10分間インキュベーション後に各wellの発光強度を測定した。
ヒト乳がん細胞株HCC38をATCCより入手し、評価に使用した。10cm細胞培養ディッシュに、10%ウシ胎児血清を含むRPMI-1640培地にて2×105cells/mLに懸濁したHCC38細胞を10mL/ディッシュにて播種した。播種から24時間経過後、100pmolのON-TARGETplus SLFN11 siRNA(Dharamcon)又はON-TARGETplus Non-targeting Control Pool(Dharamcon)及び30μLのLipofectamineTM RNAiMAX Transfection Reagent(ThermoFisher)を1mLのOpti-MEM培地に懸濁し全量を培地に添加した。72時間経過後、培地を除去しPBSにて洗浄した後、1mLのTrypLETM Expressを用いて細胞をディッシュより解離し回収した。回収された細胞は10%ウシ胎児血清を含むRPMI-1640培地にて5×104cells/mLに懸濁し。96ウェル細胞培養プレートに100μL/ウェルにて播種した。播種から24時間後、培地を100nM、33nM、11nM、3.7nM、1.2nM、0.41nM.0.13nM.0.045nM、又は0nMの化合物(1)又は抗体薬物複合体(1)aを含む培地に100μL/ウェルで交換した。抗体薬物複合体(1)のモル濃度は、平均分子量を150,000として算出した。細胞はいずれも37℃、5%CO2下で培養した。培地交換から72時間経過後、ATPlite 1step検出システム(PerkinElmer)を100μL/ウェルにて添加し、室温で10分間インキュベーション後に各wellの発光強度を測定した。
各条件における細胞増殖抑制率(%)は、以下の計算式を用いて算出した。
細胞増殖抑制率(%)=100×(1-T/C)
T:各検体添加ウェルの平均発光強度
C:各検体0 nMを添加したウェルの平均発光強度
細胞増殖抑制率(%)=100×(1-T/C)
T:各検体添加ウェルの平均発光強度
C:各検体0 nMを添加したウェルの平均発光強度
各条件における50%阻害濃度は以下の計算式にフィッティングし算出した。
細胞生存率(%)=(Emax-Emin)×検体濃度γ/
((Emax-50)/(50-Emin)× IC50γ+検体濃度γ)
+ Emin
Emax:最大細胞増殖抑制率(%)
Emin:最小細胞増殖抑制率(%)
IC50:50%阻害濃度
γ:Hill係数
細胞生存率(%)=(Emax-Emin)×検体濃度γ/
((Emax-50)/(50-Emin)× IC50γ+検体濃度γ)
+ Emin
Emax:最大細胞増殖抑制率(%)
Emin:最小細胞増殖抑制率(%)
IC50:50%阻害濃度
γ:Hill係数
計算式へのフィッティングはSAS system Release 9.2(SAS Institute Inc.)を使用した。
SLFN11ノックダウン時のHCC38細胞における、化合物(1)又は抗体薬物複合体(1)による細胞増殖抑制効果を図8に示す。また、算出された各50%阻害濃度を表13に示す。HCC38細胞株に対するSLFN11ノックダウンによって、化合物(1)及び抗体薬物複合体(1)の細胞増殖抑制効果は減弱した。
実施例8.臨床試験における各患者由来腫瘍のhTROP2及びSLFN11遺伝子発現量(Median Normalized Count値)、並びに抗体薬物複合体(1)抗腫瘍活性との関連
8-(1)試験計画及び薬剤の効果
再発・進行性の非小細胞肺がん患者を対象とした第1相臨床試験用量漸増パートにおいて、抗体薬物複合体(1)は認容できない毒性又は病態の増悪が認められるまで3週に1度静脈内投与された。用量制限毒性は、Cycle 1 (Day 1-21)において求める。腫瘍採取は臨床試験にエントリー後、1度目の投薬までに実施した。各患者における投与用量及び最大腫瘍変化率(%)を表14に示す。なお、最大腫瘍変化率の値がマイナスの場合は、抗体薬物複合体(1)の投与により腫瘍が縮小したことを意味している。
8-(1)試験計画及び薬剤の効果
再発・進行性の非小細胞肺がん患者を対象とした第1相臨床試験用量漸増パートにおいて、抗体薬物複合体(1)は認容できない毒性又は病態の増悪が認められるまで3週に1度静脈内投与された。用量制限毒性は、Cycle 1 (Day 1-21)において求める。腫瘍採取は臨床試験にエントリー後、1度目の投薬までに実施した。各患者における投与用量及び最大腫瘍変化率(%)を表14に示す。なお、最大腫瘍変化率の値がマイナスの場合は、抗体薬物複合体(1)の投与により腫瘍が縮小したことを意味している。
8-(2)腫瘍におけるSLFN11、TROP2 mRNA levelsの測定
各患者における遺伝子発現データは、抗体薬物複合体(1)投薬前の各患者の腫瘍組織のホルマリン固定パラフィン包埋標本より切片作成し、レーザーマイクロダイセクションによる腫瘍部位の切り出しを行った後にEdgeSeqにて取得した。取得されたカウントデータはMedian Normalization法により正規化し、各遺伝子の発現量とした。上記の全ての試験は、HTG Molecular Diagnostics社において実施した。
各患者における遺伝子発現データは、抗体薬物複合体(1)投薬前の各患者の腫瘍組織のホルマリン固定パラフィン包埋標本より切片作成し、レーザーマイクロダイセクションによる腫瘍部位の切り出しを行った後にEdgeSeqにて取得した。取得されたカウントデータはMedian Normalization法により正規化し、各遺伝子の発現量とした。上記の全ての試験は、HTG Molecular Diagnostics社において実施した。
HTG Molecular Diagnostics社にて取得及び正規化されたMedian Normalized Count(MNC)値に1を加え、対数(Log2)とした値であるLog2[MNC+1]値を入手し(表15)、これを用いて抗体薬物複合体(1)の患者における抗腫瘍活性(表14)とhTROP2遺伝子及びSLFN11遺伝子の発現量の関連を解析した。評価した全患者をhTROP2遺伝子及びSLFN11遺伝子が一定以上の発現量を示す群に分けた場合(表16)、一定以上の薬効(最大腫瘍変化率が0%以下)を示す患者の割合はhTROP2遺伝子発現が増加且つSLFN11遺伝子発現が増加するほど高まることが示された(表17)。SLFN11遺伝子発現による群分けを行わない場合、最大腫瘍変化率が0%以下を示す患者の割合は75~80%に止まっており、hTROP2遺伝子発現量及びSLFN11遺伝子発現量の組み合わせが、抗体薬物複合体(1)の抗腫瘍効果を予測する感受性マーカーとして使用可能であることが明らかとなった。例えば、hTROP2遺伝子のLog2[MNC+1]値が12を上回り且つSLFN11遺伝子のLog2[MNC+1]値が11.5を上回る場合、最大腫瘍変化率が0%以下を示す患者の割合は約80%乃至100%となる。
配列番号1:ヒト化抗hTROP2抗体重鎖のアミノ酸配列
配列番号2:ヒト化抗hTROP2抗体軽鎖のアミノ酸配列
配列番号3:ヒト化抗hTROP2抗体重鎖のCDRH1配列
配列番号4:ヒト化抗hTROP2抗体重鎖のCDRH2配列
配列番号5:ヒト化抗hTROP2抗体重鎖のCDRH3配列
配列番号6:ヒト化抗hTROP2抗体軽鎖のCDRL1配列
配列番号7:ヒト化抗hTROP2抗体軽鎖のCDRL2配列
配列番号8:ヒト化抗hTROP2抗体軽鎖のCDRL3配列
配列番号2:ヒト化抗hTROP2抗体軽鎖のアミノ酸配列
配列番号3:ヒト化抗hTROP2抗体重鎖のCDRH1配列
配列番号4:ヒト化抗hTROP2抗体重鎖のCDRH2配列
配列番号5:ヒト化抗hTROP2抗体重鎖のCDRH3配列
配列番号6:ヒト化抗hTROP2抗体軽鎖のCDRL1配列
配列番号7:ヒト化抗hTROP2抗体軽鎖のCDRL2配列
配列番号8:ヒト化抗hTROP2抗体軽鎖のCDRL3配列
Claims (52)
- がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)該生体試料においてmRNAレベルでのhTROP2遺伝子の発現量を評価する工程;
3)hTROP2遺伝子の発現量が高いと判断された該生体試料においてmRNAレベルでのSLFN11遺伝子の発現量を評価する工程; 及び
4)SLFN11遺伝子の発現量が高いと判断された該生体試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。 - がんに罹患したヒト患者において、抗hTROP2抗体を含有する医薬を投与する対象を同定する方法であって:
1)がんに罹患したと診断されたヒト患者から生体試料を取得する工程;
2)当該試料においてmRNAレベルでのhTROP2遺伝子及びSLFN11遺伝子の発現量を評価する工程; 及び
3)hTROP2遺伝子及びSLFN11遺伝子の発現量が高いと判断された当該試料を有していたヒト患者を、抗hTROP2抗体を含有する医薬を投与する対象として同定する工程;
を含む方法。 - がんに罹患したと診断されたヒト患者から取得した生体試料から、RNAシーケンシングによってlog2[RPKM+1]値が測定され、これが特定の値を上回る場合に、mRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断される、請求項1又は2に記載の方法。
- log2[RPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9,及び9.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項3に記載の方法。
- log2[RPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項3又は4に記載の方法。
- log2[RPKM+1]値が、6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項3乃至5のいずれか一つに記載の方法。
- log2[RPKM+1]値が、7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項3乃至6のいずれか一つに記載の方法。
- log2[RPKM+1]値が、7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項3乃至7のいずれか一つに記載の方法。
- log2[RPKM+1]値が、7.0, 7.5,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項3乃至7のいずれか一つに記載の方法。
- log2[RPKM+1]値が7.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項9に記載の方法。
- log2[RPKM+1]値が7.5を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項9に記載の方法。
- log2[RPKM+1]値が8.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項9に記載の方法。
- log2[RPKM+1]値が1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項3乃至12のいずれか一つに記載の方法。
- log2[RPKM+1]値が1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項3乃至13のいずれか一つに記載の方法。
- log2[RPKM+1]値が2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項3乃至14のいずれか一つに記載の方法。
- log2[RPKM+1]値が1.0、2.0及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項3乃至14のいずれか一つに記載の方法。
- log2[RPKM+1]値が1.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項16に記載の方法。
- log2[RPKM+1]値が2.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項16に記載の方法。
- log2[RPKM+1]値が3.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項16に記載の方法。
- がんに罹患したと診断されたヒト患者から取得した生体試料から、RNAシーケンシングによってlog2[FPKM+1]値が測定され、これが特定の値を上回る場合に、mRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断される、請求項1又は2に記載の方法。
- log2[FPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0. 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9,及び8.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項20に記載の方法。
- log2[FPKM+1]値が、6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9,及び7.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項20又は21に記載の方法。
- log2[FPKM+1]値が、6.0,又は7.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項20又は21に記載の方法。
- log2[FPKM+1]値が6.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項22に記載の方法。
- log2[FPKM+1]値が7.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項22に記載の方法。
- log2[FPKM+1]値が2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,及び4.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項20乃至25のいずれか一つに記載の方法。
- log2[FPKM+1]値が2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,及び3.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項20乃至26のいずれか一つに記載の方法。
- log2[FPKM+1]値が2.0,又は3.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項20乃至26のいずれか一つに記載の方法。
- log2[FPKM+1]値が2.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項28に記載の方法。
- log2[FPKM+1]値が3.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項28に記載の方法。
- がんに罹患したと診断されたヒト患者から取得した生体試料から、EdgeSeq Assayによってlog2[MNC+1]値が測定され、これが特定の値を上回る場合に、mRNAレベルでのhTROP2遺伝子及び/又はSLFN11遺伝子の発現量が高いと判断される、請求項1又は2に記載の方法。
- log2[MNC+1]値が、12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 14.0, 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9,及び15.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項31に記載の方法。
- log2[MNC+1]値が、12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9,及び14.0からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項31又は32に記載の方法。
- log2[MNC+1]値が、12.0, 13.0, 又は14.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項31又は32に記載の方法。
- log2[MNC+1]値が12.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項34に記載の方法。
- log2[MNC+1]値が13.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項34に記載の方法。
- log2[MNC+1]値が14.0を上回る場合に、mRNAレベルでのhTROP2遺伝子の発現量が高いと判断される、請求項34に記載の方法。
- log2[MNC+1]値が11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 13.0, 13.1, 13.2, 13.3, 13.4,及び13.5からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項31乃至37のいずれか一つに記載の方法。
- log2[MNC+1]値が11.5, 11.6, 11.7, 11.8, 11.9, 12.0, 12.1, 12.2, 12.3, 12.4, 及び12.5からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項31乃至38のいずれか一つに記載の方法。
- log2[MNC+1]値が11.5, 12.0, 及び12.5からなる群から選択されるいずれか一つを上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項31乃至38のいずれか一つに記載の方法。
- log2[MNC+1]値が11.5を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項40に記載の方法。
- log2[MNC+1]値が12.0を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項40に記載の方法。
- log2[MNC+1]値が12.5を上回る場合に、mRNAレベルでのSLFN11遺伝子の発現量が高いと判断される、請求項40に記載の方法。
- 生体試料が腫瘍試料を含む、請求項1乃至43のいずれか一つに記載の方法。
- 抗hTROP2抗体を含有する医薬が抗hTROP2抗体薬物複合体である、請求項1乃至44のいずれか一つに記載の方法。
- 抗hTROP2抗体が、配列番号1においてアミノ酸番号20乃至470に記載のアミノ酸配列からなる重鎖及び配列番号2においてアミノ酸番号21乃至234に記載のアミノ酸配列からなる軽鎖からなる抗体である、請求項46に記載の方法。
- 抗hTROP2抗体の重鎖カルボキシル末端のリシン残基が欠失している、請求項47に記載の方法。
- 薬物-リンカー構造の1抗体あたりの平均結合数が2から8個の範囲である請求項46乃至48のいずれか一つに記載の方法。
- 薬物-リンカー構造の1抗体あたりの平均結合数が3.5から4.5個の範囲である請求項46乃至49のいずれか一つに記載の方法。
- 抗hTROP2抗体薬物複合体が、Sacituzumab Govitecan (IMMU-132)である、請求項45に記載の方法。
- がんが、肺がん、腎がん、尿路上皮がん、大腸がん、前立腺がん、多形神経膠芽腫、卵巣がん、膵がん、乳がん、メラノーマ、肝がん、膀胱がん、胃がん、子宮頸がん、子宮体がん、頭頸部がん、食道がん、胆道がん、甲状腺がん、リンパ腫、急性骨髄性白血病、急性リンパ性白血病、及び/又は多発性骨髄腫である請求項1乃至51に記載の方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19850901.0A EP3842546A4 (en) | 2018-08-23 | 2019-08-22 | Sensitivity marker for antibody-drug conjugate |
JP2020538461A JP7481255B2 (ja) | 2018-08-23 | 2019-08-22 | 抗体薬物複合体の感受性マーカー |
CN201980055378.2A CN112739826A (zh) | 2018-08-23 | 2019-08-22 | 抗体-药物缀合物的敏感性标志物 |
US17/269,615 US20210340628A1 (en) | 2018-08-23 | 2019-08-22 | Sensitivity marker for antibody-drug conjugate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018156449 | 2018-08-23 | ||
JP2018-156449 | 2018-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020040245A1 true WO2020040245A1 (ja) | 2020-02-27 |
Family
ID=69591927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032773 WO2020040245A1 (ja) | 2018-08-23 | 2019-08-22 | 抗体薬物複合体の感受性マーカー |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210340628A1 (ja) |
EP (1) | EP3842546A4 (ja) |
JP (1) | JP7481255B2 (ja) |
CN (1) | CN112739826A (ja) |
TW (1) | TW202016317A (ja) |
WO (1) | WO2020040245A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11806405B1 (en) | 2021-07-19 | 2023-11-07 | Zeno Management, Inc. | Immunoconjugates and methods |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5821337A (en) | 1991-06-14 | 1998-10-13 | Genentech, Inc. | Immunoglobulin variants |
WO1999054342A1 (en) | 1998-04-20 | 1999-10-28 | Pablo Umana | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
WO2000061739A1 (en) | 1999-04-09 | 2000-10-19 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
WO2001000245A2 (en) | 1999-06-25 | 2001-01-04 | Genentech, Inc. | HUMANIZED ANTI-ErbB2 ANTIBODIES AND TREATMENT WITH ANTI-ErbB2 ANTIBODIES |
WO2002031140A1 (fr) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Cellules produisant des compositions d'anticorps |
WO2003074566A2 (en) | 2002-03-01 | 2003-09-12 | Immunomedics, Inc. | Rs7 antibodies |
US20050095634A1 (en) | 2003-10-16 | 2005-05-05 | Genomic Health Inc. | qRT-PCR assay system for gene expression profiling |
WO2007077028A2 (en) | 2005-12-30 | 2007-07-12 | U3 Pharma Ag | Antibodies directed to her-3 and uses thereof |
WO2008100624A2 (en) | 2007-02-16 | 2008-08-21 | Merrimack Pharmaceuticals, Inc. | Antibodies against erbb3 and uses thereof |
WO2008144891A1 (en) | 2007-05-30 | 2008-12-04 | F. Hoffmann-La Roche Ag | Humanized and chimeric anti-trop-2 antibodies that mediate cancer cell cytotoxicity |
WO2011068845A1 (en) | 2009-12-02 | 2011-06-09 | Immunomedics, Inc. | Combining radioimmunotherapy and antibody-drug conjugates for improved cancer therapy |
US7999083B2 (en) | 2002-12-13 | 2011-08-16 | Immunomedics, Inc. | Immunoconjugates with an intracellularly-cleavable linkage |
WO2011145744A1 (ja) | 2010-05-17 | 2011-11-24 | 株式会社リブテック | in vivoで抗腫瘍活性を有する抗ヒトTROP-2抗体 |
WO2011155579A1 (ja) | 2010-06-10 | 2011-12-15 | 北海道公立大学法人札幌医科大学 | 抗Trop-2抗体 |
WO2013068946A2 (en) | 2011-11-11 | 2013-05-16 | Rinat Neuroscience Corp. | Antibodies specific for trop-2 and their uses |
WO2013077458A1 (ja) | 2011-11-22 | 2013-05-30 | 株式会社リブテック | in vivoで抗腫瘍活性を有する抗ヒトTROP-2抗体 |
WO2014057687A1 (ja) | 2012-10-11 | 2014-04-17 | 第一三共株式会社 | 抗体-薬物コンジュゲート |
WO2014061277A1 (ja) | 2012-10-19 | 2014-04-24 | 第一三共株式会社 | 親水性構造を含むリンカーで結合させた抗体-薬物コンジュゲート |
WO2015098099A1 (ja) | 2013-12-25 | 2015-07-02 | 第一三共株式会社 | 抗trop2抗体-薬物コンジュゲート |
WO2015115091A1 (ja) | 2014-01-31 | 2015-08-06 | 第一三共株式会社 | 抗her2抗体-薬物コンジュゲート |
WO2015146132A1 (ja) | 2014-03-26 | 2015-10-01 | 第一三共株式会社 | 抗cd98抗体-薬物コンジュゲート |
WO2015155998A1 (en) | 2014-04-10 | 2015-10-15 | Daiichi Sankyo Company, Limited | Anti-her3 antibody-drug conjugate |
WO2015155976A1 (ja) | 2014-04-10 | 2015-10-15 | 第一三共株式会社 | 抗her2抗体-薬物コンジュゲート |
WO2017002776A1 (ja) | 2015-06-29 | 2017-01-05 | 第一三共株式会社 | 抗体-薬物コンジュゲートの選択的製造方法 |
WO2018135501A1 (ja) | 2017-01-17 | 2018-07-26 | 第一三共株式会社 | 抗gpr20抗体及び抗gpr20抗体-薬物コンジュゲート |
WO2018212136A1 (ja) | 2017-05-15 | 2018-11-22 | 第一三共株式会社 | 抗cdh6抗体及び抗cdh6抗体-薬物コンジュゲート |
-
2019
- 2019-08-22 US US17/269,615 patent/US20210340628A1/en active Pending
- 2019-08-22 EP EP19850901.0A patent/EP3842546A4/en active Pending
- 2019-08-22 CN CN201980055378.2A patent/CN112739826A/zh active Pending
- 2019-08-22 WO PCT/JP2019/032773 patent/WO2020040245A1/ja unknown
- 2019-08-22 TW TW108130044A patent/TW202016317A/zh unknown
- 2019-08-22 JP JP2020538461A patent/JP7481255B2/ja active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5821337A (en) | 1991-06-14 | 1998-10-13 | Genentech, Inc. | Immunoglobulin variants |
WO1999054342A1 (en) | 1998-04-20 | 1999-10-28 | Pablo Umana | Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity |
WO2000061739A1 (en) | 1999-04-09 | 2000-10-19 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
WO2001000245A2 (en) | 1999-06-25 | 2001-01-04 | Genentech, Inc. | HUMANIZED ANTI-ErbB2 ANTIBODIES AND TREATMENT WITH ANTI-ErbB2 ANTIBODIES |
WO2002031140A1 (fr) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Cellules produisant des compositions d'anticorps |
WO2003074566A2 (en) | 2002-03-01 | 2003-09-12 | Immunomedics, Inc. | Rs7 antibodies |
US7999083B2 (en) | 2002-12-13 | 2011-08-16 | Immunomedics, Inc. | Immunoconjugates with an intracellularly-cleavable linkage |
US20050095634A1 (en) | 2003-10-16 | 2005-05-05 | Genomic Health Inc. | qRT-PCR assay system for gene expression profiling |
WO2007077028A2 (en) | 2005-12-30 | 2007-07-12 | U3 Pharma Ag | Antibodies directed to her-3 and uses thereof |
WO2008100624A2 (en) | 2007-02-16 | 2008-08-21 | Merrimack Pharmaceuticals, Inc. | Antibodies against erbb3 and uses thereof |
WO2008144891A1 (en) | 2007-05-30 | 2008-12-04 | F. Hoffmann-La Roche Ag | Humanized and chimeric anti-trop-2 antibodies that mediate cancer cell cytotoxicity |
WO2011068845A1 (en) | 2009-12-02 | 2011-06-09 | Immunomedics, Inc. | Combining radioimmunotherapy and antibody-drug conjugates for improved cancer therapy |
WO2011145744A1 (ja) | 2010-05-17 | 2011-11-24 | 株式会社リブテック | in vivoで抗腫瘍活性を有する抗ヒトTROP-2抗体 |
WO2011155579A1 (ja) | 2010-06-10 | 2011-12-15 | 北海道公立大学法人札幌医科大学 | 抗Trop-2抗体 |
WO2013068946A2 (en) | 2011-11-11 | 2013-05-16 | Rinat Neuroscience Corp. | Antibodies specific for trop-2 and their uses |
WO2013077458A1 (ja) | 2011-11-22 | 2013-05-30 | 株式会社リブテック | in vivoで抗腫瘍活性を有する抗ヒトTROP-2抗体 |
WO2014057687A1 (ja) | 2012-10-11 | 2014-04-17 | 第一三共株式会社 | 抗体-薬物コンジュゲート |
WO2014061277A1 (ja) | 2012-10-19 | 2014-04-24 | 第一三共株式会社 | 親水性構造を含むリンカーで結合させた抗体-薬物コンジュゲート |
WO2015098099A1 (ja) | 2013-12-25 | 2015-07-02 | 第一三共株式会社 | 抗trop2抗体-薬物コンジュゲート |
WO2015115091A1 (ja) | 2014-01-31 | 2015-08-06 | 第一三共株式会社 | 抗her2抗体-薬物コンジュゲート |
WO2015146132A1 (ja) | 2014-03-26 | 2015-10-01 | 第一三共株式会社 | 抗cd98抗体-薬物コンジュゲート |
WO2015155998A1 (en) | 2014-04-10 | 2015-10-15 | Daiichi Sankyo Company, Limited | Anti-her3 antibody-drug conjugate |
WO2015155976A1 (ja) | 2014-04-10 | 2015-10-15 | 第一三共株式会社 | 抗her2抗体-薬物コンジュゲート |
WO2017002776A1 (ja) | 2015-06-29 | 2017-01-05 | 第一三共株式会社 | 抗体-薬物コンジュゲートの選択的製造方法 |
WO2018135501A1 (ja) | 2017-01-17 | 2018-07-26 | 第一三共株式会社 | 抗gpr20抗体及び抗gpr20抗体-薬物コンジュゲート |
WO2018212136A1 (ja) | 2017-05-15 | 2018-11-22 | 第一三共株式会社 | 抗cdh6抗体及び抗cdh6抗体-薬物コンジュゲート |
Non-Patent Citations (41)
Title |
---|
"Monoclonal Antibodies", 1980, PLENUM PRESS, pages: 365 - 367 |
"NCBI", Database accession no. NP -689483 |
ALLEY, S. C. ET AL., CURRENT OPINION IN CHEMICAL BIOLOGY, vol. 14, 2010, pages 529 - 537 |
AUSUBEL ET AL.: "Current Protocols of Molecular Biology", 1997, JOHN WILEY SONS |
BARRETINA J ET AL., NATURE, vol. 483, no. 7391, 2012, pages 603 - 607 |
BARRETINA J. ET AL.: "The cancer cell line encyclopedia enables predictive modeling of anticancer drug sensitivity", NATURE, vol. 483, no. 7391, 28 March 2012 (2012-03-28), pages 603 - 607, XP055242438, ISSN: 0028-0836, DOI: :10.1038/nature11003 * |
BUERMANS HP. ET AL., BIOCHIM BIOPHYS ACTA, vol. 1842, no. 10, October 2014 (2014-10-01), pages 1932 - 1941 |
CLARK-LANGONE ET AL., BMC GENOMICS, vol. 8, 2007, pages 279 |
CONESA A. ET AL., GENOME BIOL, vol. 17, 26 January 2016 (2016-01-26), pages 13 |
DAMLE N. K., EXPERT OPIN. BIOL. THER., vol. 4, 2004, pages 1445 - 1452 |
DE ANDREUS ET AL., BIOTECHNIQUES, vol. 18, 1995, pages 42044 |
DOI T ET AL., LANCET ONCOL, vol. 18, 2017, pages 1512 - 22 |
DUCRY, L. ET AL., BIOCONJUGATE CHEM., vol. 21, 2010, pages 5 - 13 |
DUFFY M.J. ET AL.: "Companion biomarkers: paving the pathway to personalized treatment for cancer", CLINICAL CHEMISTRY, vol. 59, no. 10, 1 October 2013 (2013-10-01), pages 1447 - 1456, XP055687417, ISSN: 0009-9147, DOI: 10.1373/clinchem.2012.200477 * |
FONG D ET AL., BR. J. CANCER, vol. 99, no. 8, 2008, pages 1290 - 1295 |
FONG D ET AL., MOD. PATHOL., vol. 21, no. 2, 2008, pages 186 - 191 |
GEISS G ET AL., NATURE BIOTECHNOLOGY, vol. 26, 2008, pages 317 - 25 |
GOLDENBERG D. M. ET AL.: "Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC)", ONCOTARGET, vol. 6, no. 26, 2015, pages 22496 - 22512, XP055269616, DOI: 10.18632/oncotarget.4318 * |
GRAY J. E. ET AL., CLIN. CANCER RES., vol. 23, no. 19, 2017, pages 5711 - 5719 |
HERMANSON, G. T: "Bioconjugate Techniques", 1996, ACADEMIC PRESS, pages: 56 - 136,456-493 |
HOWARD A. ET AL., J CLIN ONCOL, vol. 29, pages 398 - 405 |
KOHLERMILSTEIN, NATURE, vol. 256, 1975, pages 495 - 497 |
MARTEL R. ET AL., ASSAY DRUG DEV TECHNOL, vol. 1, no. 1, November 2002 (2002-11-01), pages 61 - 71 |
MUHLMANN G ET AL., J. CLIN. PATHOL., vol. 62, no. 2, 2009, pages 152 - 158 |
MURAI J ET AL., MOL. CELL, vol. 69, no. 3, 2018, pages 371 - 384 |
NING S ET AL., NEUROL. SCI., vol. 34, no. 10, 2013, pages 1745 - 1750 |
OGITANI Y ET AL., CLINICAL CANCER RESEARCH, vol. 22, no. 20, 2016, pages 5097 - 5108 |
OGITANI Y ET AL., CLINICAL CANCER RESEARCH, vol. 22, no. 20, 29 March 2016 (2016-03-29), pages 5097 - 5108 |
OGITANI Y. ET AL., CANCER SCIENCE, vol. 107, 2016, pages 1039 - 1046 |
OHMACHI T ET AL., CLIN. CANCER RES., vol. 12, no. 10, 2006, pages 3057 - 3063 |
PIETANZA MC ET AL., J, CLIN. ONCOL., vol. 36, no. 23, 2018, pages 2386 - 2394 |
ROBERTS ET AL., LABORATORY INVESTIGATION, vol. 87, 2007, pages 979 - 997 |
See also references of EP3842546A4 |
SENTER P. D. ET AL., NATURE BIOTECHNOLOGY, vol. 30, 2012, pages 631 - 637 |
STARODUB A. N. ET AL.: "First-in-human trial of a novel anti-Trop 2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors", CLIN. CANCER RES., vol. 21, no. 17, 1 September 2015 (2015-09-01), pages 1 - 6, XP055268280, Retrieved from the Internet <URL:https://clincancerres.aacrjournals.org/content/suppl/2015/06/05/1078-0432.CCR-14-3321.DC1/142817_2_supp_0_npfrhk.docx> DOI: 10.1158/1078-0432.CCR-14-3321 * |
TAKEGAWA N ET AL., INT. J. CANCER, vol. 141, 2017, pages 1682 - 1689 |
TSUBAKI ET AL., INT. J. BIOL. MACROMOL, 2013, pages 139 - 147 |
VAN DEN BORG R ET AL., EXPERT REV. ANTICANCER THER, vol. 19, no. 6, 2019, pages 461 - 471 |
WANG J ET AL., MOL. CANCER THER., vol. 7, no. 2, 2008, pages 280 - 285 |
ZOPPOLI G ET AL., PROC. NATL. ACAD. SCI. U. S. A., vol. 109, no. 37, 2012, pages 15030 - 15035 |
ZOPPOLI G. ET AL.: "Putative DNA/RNA helicase schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents", PROC. NATL. ACAD. SCI. USA, vol. 109, no. 37, 2012, pages 15030 - 15035, XP055241718, ISSN: 0027-8424, DOI: 10.1073/pnas.1205943109 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11806405B1 (en) | 2021-07-19 | 2023-11-07 | Zeno Management, Inc. | Immunoconjugates and methods |
Also Published As
Publication number | Publication date |
---|---|
EP3842546A4 (en) | 2022-06-29 |
JP7481255B2 (ja) | 2024-05-10 |
US20210340628A1 (en) | 2021-11-04 |
EP3842546A1 (en) | 2021-06-30 |
CN112739826A (zh) | 2021-04-30 |
JPWO2020040245A1 (ja) | 2021-09-02 |
TW202016317A (zh) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240011098A1 (en) | Diagnostic and therapeutic methods for cancer | |
US10240207B2 (en) | Cancer treatment with c-met antagonists and correlation of the latter with HGF expression | |
US20180010132A1 (en) | Inhibition of prmt5 to treat mtap-deficiency-related diseases | |
TR201819859T4 (tr) | Akciğer kanseri metastazının tanısı ve prognozu için yöntem. | |
EP3004396B1 (en) | Compositions for the treatment of cancer | |
WO2012147800A1 (ja) | 乳ガン患者のトラスツズマブに対する治療感受性予測用組成物及び方法 | |
JP2017523776A (ja) | 膠芽腫の診断方法及びその治療用組成物 | |
JP2010178650A (ja) | 固形癌の再発予測のための試験方法および再発予防剤 | |
WO2019173456A1 (en) | Replication stress response biomarkers for immunotherapy response | |
Okita et al. | Antitumor effects of novel mAbs against cationic amino acid transporter 1 (CAT1) on human CRC with amplified CAT1 gene | |
JP2022519649A (ja) | がんの診断および治療方法 | |
JP2024513692A (ja) | グレムリン1アンタゴニストを使用して疾患を処置する方法 | |
JP7481255B2 (ja) | 抗体薬物複合体の感受性マーカー | |
US11525008B2 (en) | Methods and pharmaceutical compositions for the treatment of lung cancer | |
WO2012071097A1 (en) | Methods for diagnosing and treating neuroendocrine cancer | |
WO2023165618A1 (en) | Methods for treating cancer | |
US20230112470A1 (en) | Use of egfr/her2 tyrosine kinase inhibitors and/or her2/her3 antibodies for the treatment of cancers with nrg1 fusions | |
US20230069749A1 (en) | Use of poziotinib for the treatment of cancers with nrg1 fusions | |
US20190015503A1 (en) | Methods for the prognosis and treatment of endometrial carcinoma | |
WO2024218697A1 (en) | Methods and systems for improving anti-cancer therapies | |
JP2023510847A (ja) | 癌の治療方法 | |
WO2006113766A2 (en) | Methods for diagnosing treating neuroendocrine cancer | |
WO2020115261A1 (en) | Methods and compositions for treating melanoma | |
WO2017067944A1 (en) | Methods for predicting the survival time of subjects suffering from triple negative breast cancer | |
AU2012216627A1 (en) | Composition and methods for the diagnosis, prognosis and treatment of leukemia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19850901 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020538461 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019850901 Country of ref document: EP Effective date: 20210323 |