[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019235458A1 - Recalled image estimation device, recalled image estimation method, control program, and recording medium - Google Patents

Recalled image estimation device, recalled image estimation method, control program, and recording medium Download PDF

Info

Publication number
WO2019235458A1
WO2019235458A1 PCT/JP2019/022113 JP2019022113W WO2019235458A1 WO 2019235458 A1 WO2019235458 A1 WO 2019235458A1 JP 2019022113 W JP2019022113 W JP 2019022113W WO 2019235458 A1 WO2019235458 A1 WO 2019235458A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
subject
decoder
decoding information
brain
Prior art date
Application number
PCT/JP2019/022113
Other languages
French (fr)
Japanese (ja)
Inventor
琢史 ▲柳▼澤
良平 福間
晴彦 貴島
伸志 西本
Original Assignee
国立大学法人大阪大学
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 国立研究開発法人情報通信研究機構 filed Critical 国立大学法人大阪大学
Priority to JP2020523110A priority Critical patent/JP7352914B2/en
Publication of WO2019235458A1 publication Critical patent/WO2019235458A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present invention relates to estimation of a recall image, and more particularly to a recall image estimation device that supports presentation of an arbitrary recalled image.
  • BMI brain-machine-interface
  • BMI measures the action potential of a patient's cranial nerve cells or cortical electroencephalograms to interpret motor intentions, controls the operation of machines such as robot arms, and controls to select and input characters intended by the patient.
  • Patent Document 1 the presented image and the electrical characteristics measured at a plurality of measurement points in the region including the visual association area of the brain when the image is presented are measured in association with each other.
  • a communication support apparatus that supports communication by specifying an image to be transmitted based on the electrical characteristics is disclosed.
  • Non-Patent Document 1 describes a method in which the firing activity of a nerve cell recorded from the hippocampus of a subject is measured, and the subject considers one of the images by overlapping the two images. A technique capable of strongly displaying the image is disclosed.
  • Patent Literature 1 since the communication support apparatus described in Patent Literature 1 determines an image to be displayed based on the electrical characteristics associated with the presented image, the displayable image is limited to the presented image. , Can not display any recalled image.
  • Non-Patent Document 1 a subject viewing a state where two images overlap each other causes the image on the side toward which the consciousness is directed to be strongly displayed by directing consciousness to one of the images. Although it can, it does not display any recalled image.
  • An object of one aspect of the present invention is to realize a recall image estimation apparatus and a recall image estimation method that accurately estimate a target image recalled by a subject.
  • a recall image estimation device is a multipoint potential that measures electrical characteristics of a subject's brain at a plurality of measurement points in a brain region including a visual association area. Estimated by the measurement unit, a decoder for estimating decoding information indicating the content of the target image recalled by the subject from the electrical characteristics measured while the subject visually recognizes the candidate image, and the decoder An image determining unit that determines a candidate image to be visually recognized by the subject based on the decoded information.
  • the recall image estimation method is measured at a plurality of measurement points in the brain region including the visual association area while the subject visually recognizes the candidate image in order to solve the above problem. From the electrical characteristics of the brain, an estimation step for estimating decoding information indicating the content of the target image recalled by the subject, and a candidate image to be visually recognized by the subject based on the decoding information estimated in the estimation step An image determining step for determining.
  • a target image recalled by a subject can be accurately estimated.
  • (A) is a flowchart which shows an example of the method of producing
  • (b) is a flowchart which shows the preparation process of the decoding information which shows the image for learning and the content of each image.
  • the recall image estimation device 10 is a device that estimates the decoding information indicating the content of the target image of the target image recalled by the subject, and determines a candidate image to be visually recognized by the subject based on the estimated decoding information. .
  • the recall image estimation device 10 does not determine a candidate image based on a one-to-one correspondence between the image visually recognized by the subject and the electrical characteristics of the subject's brain B when the image is viewed. Absent. Therefore, the recall image estimation apparatus 10 can determine an arbitrary candidate image that is not an image visually recognized by the subject in advance as a candidate image to be visually recognized by the subject.
  • the recall image estimation device 10 is a device that supports the subject to be able to present any images and images that the subject desires to present outside.
  • the “candidate image” is intended to be an image visually recognized by the subject in order to measure the electrical characteristics of the brain B, and the “target image” is recalled while the subject visually recognizes the candidate image. Is intended (ie, the image that the subject wants to present).
  • FIG. 1 is a functional block diagram showing a schematic configuration example of a recall image estimation apparatus 10 according to an embodiment of the present invention.
  • the recall image estimation device 10 includes the display unit 5
  • the present invention is not limited to this.
  • a configuration in which an external display device is applied instead of the display unit 5 may be used.
  • the recall image estimation device 10 includes a multipoint potential measurement unit 1, a decoder 2, an image determination unit 3, a display control unit 4, a display unit 5, and a storage unit 6.
  • the multipoint potential measuring unit 1 measures the electrical characteristics of the subject's brain B at a plurality of measurement points in the region of the brain B including the visual association area. More specifically, the multipoint potential measurement unit 1 includes a plurality of electrodes E, and measures a cortical electroencephalogram (Electro-Cortico-Graphy: ECoG) of the brain B (low invasive configuration).
  • the electrode E is an ECoG electrode placed under the dura mater.
  • the electrode E is an electrode for detecting the cortical potential generated in the brain B of the subject who is viewing the image.
  • Electrode E can be placed on the surface of the brain B cerebral cortex that contains the visual association area and on the surface of the sulcus.
  • the number of the electrodes E should just be plural (for example, 100), and is not specifically limited.
  • the multipoint potential measuring unit 1 is not limited to the configuration for measuring the cortical potential.
  • the multipoint potential measuring unit 1 ⁇ Configuration to measure action potential (Multi-unit Activity: MUA) of nerve cell using electrode inserted into brain B as electrode E (invasive configuration) ⁇ Structure for measuring electroencephalogram (stereotactic Electro-Graphy: stereotactic EEG) using an insertion electrode in brain B as electrode E (invasive structure) ⁇ Scalp Electro-Encephalo-Graphy (scalp EEG) measurement using electrode E placed on scalp (non-invasive configuration) ⁇ Configuration to measure intravascular electro-encephalogram (intravascular EEG) using electrode E placed in cerebral blood vessel (minimally invasive configuration) ⁇ Either a configuration (non-invasive configuration) for measuring a magnetic field generated by an electrical activity of the brain B using a magnetoencephalogram (Magneto-Encephalo-Graphy: MEG) sensor as the electrode E Good.
  • the sensitivity of the electrical characteristics of the brain B to be measured is generally in the order of scalp EEG ⁇ MEG ⁇ intravasual EEG ⁇ stereotactic EEG ⁇ ECoG ⁇ MUA.
  • MEG and ECoG are desirable as the multipoint potential measuring unit 1.
  • an alpha wave (8 to 13 Hz), a beta wave (13 to 30 Hz), a low frequency gamma wave (30 to 80 Hz), and a high frequency gamma wave an alpha wave (8 to 13 Hz), a beta wave (13 to 30 Hz), a low frequency gamma wave (30 to 80 Hz), and a high frequency gamma wave
  • an electroencephalogram in each band 80 to 150 Hz
  • the decoder 2 estimates decoding information indicating the contents of the target image recalled by the subject from the electrical characteristics measured while visually recognizing the candidate image.
  • “decoding information” is information indicating the content and meaning of an image. More specifically, “decoding information” is information representing the content and meaning of an image as a vector in a semantic space (which may be expressed as a “word vector space”). A method of expressing the content of an image as a vector in a semantic space will be described later with a specific example.
  • the decoder 2 may be a learned neural network.
  • the learning for creating the decoder 2 is generated in advance using a predetermined candidate image and a word vector corresponding to one or more words included in one or more explanatory sentences explaining the contents of the predetermined candidate image.
  • Teacher decoding information is used.
  • the decoder 2 includes an input layer and an output layer, and when the electrical characteristics of the brain B measured while viewing the predetermined candidate image are input to the input layer, the predetermined candidate Learning is performed so that the teacher decoding information associated with the image is output from the output layer.
  • a process of generating the decoder 2 by learning will be described later with a specific example.
  • the image determination unit 3 determines a candidate image to be visually recognized by the subject based on the decoding information estimated by the decoder 2. More specifically, the image determination unit 3 causes the candidate image associated with the same or similar decoding information as the decoding information estimated by the decoder 2 to be viewed following the candidate image that is being viewed by the subject. Determine as a candidate image.
  • the display control unit 4 controls the display unit 5 to display the candidate image determined by the image determination unit 3. Further, the display control unit 4 controls the display unit 5 to display a predetermined candidate image prepared for learning in the process of generating the decoder 2 by learning.
  • the display unit 5 is a display that displays an image. The subject recalls an arbitrary target image while visually recognizing the image displayed on the display unit 5.
  • the storage unit 6 stores candidate images to be displayed on the display unit 5. Each candidate image is associated with decoding information indicating the contents of each candidate image.
  • the recall image estimation device 10 also has a function of performing machine learning (supervised learning) of the decoder 2
  • the storage unit 6 corresponds to each learning image (predetermined candidate image) and each learning image.
  • the attached decoding information (teacher decoding information) is stored.
  • the decoding information which shows the content of the image which the said test subject is recalling is estimated from the electrical property of the brain B of the test subject who is visually recognizing the candidate image, and based on the estimated decoding information The subject is made to visually recognize the determined image.
  • a closed-loop control mechanism can be configured in which the subject image is visually recognized by the subject, the decoding information is estimated, and the next candidate image is determined based on the estimated decoding information.
  • the closed-loop control mechanism is a “closed control mechanism” in which a candidate image to be visually recognized by the subject is determined from the electrical characteristics of the brain B measured when the subject is visually recognizing the candidate image. Is intended.
  • the subject repeats the process of visually recognizing the candidate image while recalling the desired target image. Therefore, the top-down control of the brain activity by the subject himself / herself is input to the visual cortex of the brain B, and the electrical characteristics of the brain B when this top-down control is input can be measured. Therefore, the target image recalled by the subject can be accurately estimated.
  • top-down control is one of the forms of neural information control when the brain B processes visual information, as in the bottom-up control.
  • Top-down control is control for selecting a target stimulus by actively biasing neural information when there is prior knowledge about a stimulus to be selected from visual information.
  • bottom-up control is a control that passively pays attention to a prominent stimulus, such as when a stimulus significantly different from the surrounding stimulus is included among the multiple stimuli included in the visual information. It is.
  • FIG. 2 is a flowchart illustrating an example of a process flow of the recall image estimation apparatus 10.
  • the decoder 2 is generated by machine learning. Specifically, when an electrical characteristic of the brain B measured while viewing a predetermined candidate image is input, so as to output teacher decoding information associated with the predetermined candidate image, The decoder 2 is learned (step S1: decoder generation step). In the recall image estimation apparatus 10 as shown in FIG. 1, the learned decoder 2 is applied.
  • the display control unit 4 controls the display unit 5 so that candidate images to be visually recognized by the subject are displayed (step S2: candidate image display step).
  • the image may be a moving image including a plurality of images. It does not matter if there is sound.
  • the candidate image that is first visually recognized by the subject is not particularly limited. For example, an arbitrary image such as a screen for notifying that the estimation process by the recall image estimation device 10 has started may be displayed.
  • the decoder 2 estimates decoding information from the electrical characteristics of the brain B of the subject viewing the displayed candidate image measured by the multipoint potential measuring unit 1 (step S3: estimation step).
  • the image determination unit 3 determines a candidate image to be visually recognized by the subject based on the decoding information estimated by the decoder 2 (step S4: image determination step).
  • the display control unit 4 controls the display unit 5 so that the image determined by the image determination unit 3 is displayed following the subject.
  • a closed-loop control mechanism is configured in which the subject visually recognizes the candidate image while recalling the desired target image.
  • FIG. 3 is a functional block diagram illustrating an example of a schematic configuration of the recall image estimation apparatus 10a that performs machine learning for creating the decoder 2.
  • the recall image estimation device 10a may have the same function and the same configuration as the recall image estimation device 10 shown in FIG. 1 (for example, the image determination unit 3 not related to the learning of the decoder 2).
  • the recall image estimation device 10a includes a decoded information comparison unit 7 and a weight coefficient correction unit 8.
  • the decoding information comparison unit 7 uses the decoding information estimated by the decoder 2 before learning (or during learning) from the electrical characteristics of the brain B measured from the brain B of the subject viewing the learning image, and the learning The teacher decoding information associated with the image for use is compared.
  • the weighting factor correction unit 8 corrects the weighting factor of the decoder 2 based on the comparison result by the decoding information comparison unit 7. Specifically, the weight coefficient correction unit 8 is associated with the learning image when the electrical characteristics of the brain B measured from the brain B of the subject who is viewing the learning image are input. The current weighting factor of the decoder 2 is corrected so as to output the teacher decoding information.
  • the decoder 2 can estimate with high accuracy decoding information indicating the content of the target image from the electrical characteristics of the brain B of the subject recalling the target image. Can be created.
  • FIG. 4A is a flowchart illustrating an example of a method for generating a decoder by machine learning
  • FIG. 4B is a flowchart illustrating a preparation process of a learning image and decoding information indicating the contents of each image. It is.
  • FIG. 5 is a diagram illustrating an example of a learning image for creating the decoder 2 and an explanatory text explaining the content of the learning image.
  • step S11 learning image preparation step
  • steps S113 to S115 can be performed using a general personal computer.
  • Step S111 Step for preparing learning images used for machine learning
  • Step S112 Step for preparing an explanatory text (caption or annotation) explaining the content and meaning of the learning image for each learning image (step S112).
  • the explanatory text may be a single sentence or may include a plurality of sentences.
  • the explanatory text is preferably a text that simply and accurately describes the content of the image and the impression received when the image is viewed.
  • the explanatory note may be created by showing an image to one or a plurality of people, or may be created artificially using artificial intelligence having an image recognition function.
  • the learning image for creating the decoder 2 and the explanatory text explaining the content of the learning image will be described later with a specific example.
  • a step of extracting words included in the explanatory text (step S113).
  • a known morphological analysis engine can be applied to this step. Examples of such a known morphological analysis engine include “MeCab”, “Chasen”, “KyTea”, and the like. This process is a process that is necessary when the explanatory text is written in Japanese. If the explanatory text is written in a language in which each word is separated (for example, a space exists between words), such as English, this step is omitted.
  • a step of generating a word vector for each extracted word (step S114).
  • a known tool for example, artificial intelligence
  • Examples of such known tools include “Word2vec”, “GloVe”, “fastText”, “Doc2Vec”, and “WordNet”.
  • “Word2vec” learned using many existing sentences means a predetermined dimension (for example, 1000 dimensions) for each word extracted from the explanatory text.
  • the word vector in the space can be output with high accuracy.
  • the word vector is preferably a vector in a linear space in which linear operations can be performed, but may be a word vector in a non-linear space. Note that this step can be performed in the same manner regardless of the type of language used in the description. For example, when the description is written in English, Word2vec or the like may be learned using an English version of Wikipedia or the like, and a word vector may be output using the learned Word2vec.
  • a step of generating teacher decoding information associated with the learning image as an average of word vectors For words extracted from the explanatory text explaining the content of the learning image, the vector average of the word vectors generated in step S114 is obtained, and teacher decoding information indicating the content of the explanatory text is generated.
  • the teacher decoding information is generated by averaging vectors in the meaning space of words extracted from sentences explaining the contents of each learning image. Note that decoding information is also generated for each of the candidate images provided to the recall image estimation apparatus 10 according to the present embodiment by the processes of S111 to S115.
  • the multipoint potential measuring unit 1 measures the electrical characteristics measured in the brain B of the subject who visually recognizes the learning image (step S12: measurement step). In this step, it is desirable that the subject merely visually recognizes the learning image without recalling the target image.
  • the decoder 2 is trained using the measured electrical characteristics as an input signal and the teacher decoding information indicating the contents of the currently viewed learning image as a teacher signal.
  • the decoding information comparison unit 7 is estimated by the decoder 2 before learning (or during learning) from the electrical characteristics of the brain B measured from the brain B of the subject viewing the learning image.
  • the decoded information is compared with the teacher decoded information associated with the learning image.
  • the weighting coefficient correction unit 8 performs the teacher decoding associated with the learning image.
  • the current weighting factor of the decoder 2 is corrected so as to output information.
  • steps S11 to S13 shown in FIG. 4 (a) do not have to be performed continuously, and can be performed individually.
  • the process of step S11 may be performed before step S12 is performed, or may be performed after step S12 is performed.
  • the configuration may be such that step S12 is performed, data in which the measured electrical characteristics are associated with the image visually recognized by the subject is stored, and the data is used for the learning of the decoder 2.
  • Example of learning image The image shown in FIG. 5 is an example of a learning image.
  • the image shown in FIG. 5 is an example of a learning image.
  • a plurality of explanatory texts may be created for one learning image (and candidate image). For example, for the learning image shown in FIG. 5, “It seems that three families are taking pictures of people wearing spacesuits with a camera. They seem to have fun and experience wearing spacesuits. "You can see a child wearing a space suit. Dad is taking a picture. I'm glad if you can have this experience.”
  • FIG. 6 is an image diagram illustrating an example of a procedure for generating the decoder 2 using the learning image.
  • the case where the electrical characteristic of the brain B of the subject is a cortical electroencephalogram will be described as an example.
  • the cortical electroencephalogram of the brain B of the subject who is viewing the learning image is measured by the multipoint potential measuring unit 1.
  • the measured cortical electroencephalogram is frequency-analyzed to determine the power of each band of the alpha wave, the beta wave, and the gamma wave, and these are used as a feature matrix that is input to the decoder 2.
  • a word is extracted from the explanatory text for each image viewed by the subject, and decoding information is generated from the explanatory text.
  • the explanatory text shown in FIG. 6 “The top of the mountain with snow. The sky with clear blue and white clouds, the snowy ground and the exposed waterside mountains.
  • words such as “snow”, “mountain”, “top”, “mode” are extracted.
  • decoding information averaged for each element (for example, 1000 dimensions) of the extracted word vector is determined as teacher decoding information.
  • a word vector for each extracted word is generated as a 1000-dimensional word vector using learned Word2vec.
  • the weight matrix is corrected so that the teacher decoding information of each image can be output with a desired accuracy when the power of each band of the alpha wave, the beta wave, and the gamma wave is used as an input signal.
  • FIG. 6 shows an example of learning to output decoding information for 3600 images using regression processing such as ridge-regulation.
  • regression processing such as ridge-regulation.
  • analysis methods such as deep learning and Sparse Logistic Regression (SLR).
  • the configuration may be such that the candidate images to be visually recognized by the subject are not determined from the images stored in the storage unit 6 but are acquired from an arbitrary information group to be searched.
  • the recall image estimation device 10a uses a wide variety of images as candidate images by searching for images from the information group to be searched. First, the recall image estimation device 10a will be described with reference to FIG.
  • FIG. 9 is a functional block diagram illustrating a schematic configuration example of the recall image estimation apparatus 10a according to the embodiment of the present invention.
  • the recall image estimation device 10a shown in FIG. 9 includes an image search unit 3a (image determination unit) instead of the image determination unit 3.
  • the image search unit 3a generates a search query using the same or similar decoding information as the decoding information estimated by the decoder 2.
  • the image search unit 3a uses the generated search query to search for an image associated with the same or similar decoding information as the decoding information from the information group to be searched.
  • the information group to be searched may be an arbitrary information group. For example, as shown in FIG. 9, a website A 60a and a website B 60b existing on the Internet may be included.
  • the image search unit 3a determines an image acquired as a search result as a candidate image.
  • the image search part 3a determines the image acquired as a search result as a candidate image which makes a subject visually recognize a candidate image.
  • the decoder 2 estimates decoding information indicating the contents of the target image recalled by the subject from the electrical characteristics measured while viewing the candidate image.
  • the decoder 2 can estimate one or more words close to the estimated decoding information (for example, a vector in the semantic space).
  • the decoder 2 selects several words in order of increasing distance between a vector in the semantic space of the estimated decoded information and a vector in the semantic space of each word close to the decoded information.
  • the image search unit 3a selects several verbs and adjectives from the words estimated by the decoder 2 and uses them for a known image search (for example, Google (registered trademark) image search). Generate a search query.
  • the image search unit 3a can search the web for an image associated with the word estimated by the decoder 2 using the generated search query.
  • the image search unit 3 a determines an image listed at the top in the search result as a candidate image to be displayed on the display unit 5.
  • a variety of images of a search target information group including a website existing on the Internet can be used as a candidate image to be presented to the subject. it can.
  • the subject repeats the process of visually recognizing the candidate image while recalling the desired target image. Therefore, the subject searches for an arbitrary image from a search target information group including a website existing on the Internet by changing an electrical characteristic measured while viewing the candidate image. Can do.
  • the recall image estimation device 10 a shown in FIG. 9 does not include the storage unit 6 that stores candidate images to be displayed on the display unit 5. However, this is only an example, and the recall image estimation device 10a may be configured to include the storage unit 6 as in the recall image estimation device 10 illustrated in FIG.
  • the image search unit 3a acquires the image associated with the same or similar decoding information as the decoding information estimated by the decoder 2 from the storage unit 6, the website A 60a, the website B 60b, and the like.
  • control blocks (particularly the decoder 2, the image determination unit 3, and the display control unit 4) of the recall image estimation device 10 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. It may be realized by software.
  • the recall image estimation apparatus 10 includes a computer that executes instructions of a program that is software for realizing each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium storing the program.
  • the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention.
  • a CPU Central Processing Unit
  • the recording medium a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM Random Access Memory
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • an arbitrary transmission medium such as a communication network or a broadcast wave
  • one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • the recall image estimation apparatus includes a multipoint potential measurement unit that measures electrical characteristics of a subject's brain at a plurality of measurement points in a brain region including a visual association area, and the subject is a candidate image. From the electrical characteristics measured while visually recognizing, based on the decoding information estimated by the decoder, the decoder for estimating the decoding information indicating the content of the target image recalled by the subject, An image determining unit that determines candidate images to be visually recognized by the subject.
  • the decoding information indicating the content of the image recalled by the subject is estimated from the electrical characteristics of the brain of the subject viewing the candidate image, and is determined based on the estimated decoding information.
  • the subject is made to visually recognize the image.
  • a closed-loop control mechanism can be configured in which the subject image is visually recognized by the subject, the decoding content is estimated, and the next candidate image is determined based on the estimated decoding information.
  • the subject repeats the process of visually recognizing the candidate image while recalling the desired target image. Therefore, the top-down control of brain activity by the subject himself / herself is input to the visual cortex of the brain, and the electrical characteristics of the brain when this top-down control is input can be measured. Therefore, the target image recalled by the subject can be accurately estimated.
  • the recall image estimation device is the recall image estimation apparatus according to aspect 1, in which the image determination unit determines an image associated with the decoding information that is the same as or similar to the decoding information estimated by the decoder, You may determine as a candidate image made to visually recognize after the said candidate image.
  • the image determination unit generates and generates a search query using the decoding information that is the same as or similar to the decoding information estimated by the decoder.
  • the search query is used to search the information group to be searched for an image associated with the decoding information that is the same as or similar to the decoding information, and an image acquired as a search result is used as the candidate image. May be determined as
  • the image determination unit determines the image acquired as the search result as a candidate image to be visually recognized following the candidate image. Also good.
  • search target information group may include websites on the Internet.
  • the recall image estimation device is the recall image estimation device according to any one of the aspects 1 to 4, wherein a word vector corresponding to one or more words included in one or more explanatory texts describing the contents of a predetermined candidate image.
  • the teacher decoding information generated in advance and the predetermined candidate image are associated with each other, and the decoder receives the electrical characteristics of the brain measured while viewing the predetermined candidate image. In such a case, the learning may be performed so that the teacher decoding information associated with the predetermined candidate image is output.
  • a decoder capable of estimating the decoding information indicating the content of the target image with high accuracy from the electrical characteristics of the brain of the subject recalling the target image is generated. be able to.
  • the recall image estimation apparatus is the recall image estimation apparatus according to any one of the aspects 1 to 5, wherein the decoder measures the cortical potential of the brain and the electrical brain, which are measured while viewing the candidate image.
  • the decoding information indicating the contents of the candidate image may be estimated using at least one of the magnetic fields generated by the active activity.
  • the recall image estimation method provides a plurality of measurement points in a brain region including a visual association area while a subject visually recognizes a candidate image. Based on the measured electrical characteristics of the brain, the estimation step of estimating the decoding information indicating the content of the target image recalled by the subject, and the subject is made to visually recognize based on the decoding information estimated in the estimation step And an image determining step for determining a candidate image.
  • a control program for causing a computer to function as the recall image estimation device according to any one of the above aspects 1 to 6, the control program for causing the computer to function as the decoder and the image determining unit, and A computer-readable recording medium recording the control program is also included in the technical scope of the present invention.
  • the cortical electroencephalogram of the subject's brain B was measured by the multipoint potential measuring unit 1 while allowing the subject to visually recognize a 60-minute moving image including various types of meaning content.
  • the videos to be viewed by the subjects were prepared by connecting the edited videos by dividing the introduction video of the movie into short segments. In a 60-minute video, various videos including the same video appear several times in random order. The subject was instructed to view the video without fixing the viewpoint.
  • the moving image visually recognized by the subject was converted into a still image (scene) every second.
  • scene For each scene, explanations explaining the contents of the scene were created by a plurality of people.
  • the power of each band of an alpha wave, a beta wave, and a gamma wave was analyzed about the cortical electroencephalogram measured in the same 1 second.
  • a word was extracted from the description for each scene using MeCab. For each extracted word, a 1000-dimensional word vector was generated using Word2vec learned using Wikipedia. Each scene was associated with decoding information generated as an average of word vectors for words extracted from the explanatory text.
  • the solid black line in FIG. 7 shows the frequency distribution of the correlation coefficient between the decoding information estimated from the cortical brain waves of the brain B of the subject viewing the scene and the decoding information (that is, the correct answer) associated with the scene. Is shown.
  • the gray line in FIG. 7 shows the correlation between the shuffled label of the decoding information associated with each scene and the decoding information estimated from the cortical electroencephalogram of the brain B of the subject viewing the scene. The frequency distribution of numbers is shown. According to FIG. 7, it was demonstrated that the decoding information associated with the scene can be estimated with significantly high accuracy from the cortical electroencephalogram of the brain B of the subject viewing the scene.
  • time 0 indicates the timing when the subject is instructed to recall the image (“character”, “landscape”, etc.).
  • the black line in FIG. 8 indicates the trial average of the correlation coefficient normalized with respect to the decoding information associated with the image including the content instructed to the subject and the decoding information estimated from the cortical brain wave of the brain B of the subject. (* P ⁇ 0.05, Student's t-test).
  • the gray line in FIG. 8 shows the trial average of the decoded information associated with the image that does not include the recalled image, the decoded information estimated from the cortical EEG of the subject's brain B, and the normalized correlation coefficient. Show. According to FIG. 8, it was demonstrated that the image recalled by the subject can be estimated with significantly high accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

The present invention estimates, with high accuracy, a target image that is being recalled by a person. A recalled image estimation device (10) is provided with: a multi-point electric potential measurement unit (1) which measures electric characteristics of the brain of a person at multiple measurement points in a brain region including a visual association cortex; a decoder (2) which, from the electric characteristics measured while the subject is visually recognizing candidate images, estimates decoding information indicative of the content of a target image being recalled by the person; and an image determination unit (3) which, on the basis of the estimated decoding information, determines a candidate image for causing the person to perform visual recognition.

Description

想起画像推定装置、想起画像推定方法、制御プログラム、記録媒体Recall image estimation device, recall image estimation method, control program, recording medium
 本発明は想起画像の推定に関し、特に、想起された任意の画像を提示することを支援する想起画像推定装置等に関する。 The present invention relates to estimation of a recall image, and more particularly to a recall image estimation device that supports presentation of an arbitrary recalled image.
 筋萎縮性側索硬化症(ALS)などの進行性の神経難病、および脳血管障害などに起因して、身体の運動機能が極度に低下している患者が多数存在する。このような患者に対する支援技術の1つとして、ブレイン-マシン-インタフェース(BMI)が挙げられる。 There are many patients whose body motor function is extremely reduced due to progressive neurological diseases such as amyotrophic lateral sclerosis (ALS) and cerebrovascular disorders. One such assistive technology for patients is the brain-machine-interface (BMI).
 BMIは、患者の脳神経細胞の活動電位、あるいは皮質脳波などを計測して運動意図を読み解き、ロボットアームなどの機械の動作を制御したり、患者が意図した文字を選択して入力するよう制御したりすることを可能にする技術などを含んでいる。ALS患者を対象に実施されたアンケートによれば、患者の意思伝達をBMI技術によって支援することが強く要望されている。 BMI measures the action potential of a patient's cranial nerve cells or cortical electroencephalograms to interpret motor intentions, controls the operation of machines such as robot arms, and controls to select and input characters intended by the patient. Technology that makes it possible to According to a questionnaire conducted on ALS patients, there is a strong demand to support patient communication using BMI technology.
 例えば、特許文献1には、呈示された画像と、画像を呈示した際に脳の視覚連合野を含む領域の複数の計測点において計測された電気的特性とを相互に対応付けて、計測された電気的特性に基づいて伝えたい画像を特定して、意思伝達を支援する意思伝達支援装置が開示されている。 For example, in Patent Document 1, the presented image and the electrical characteristics measured at a plurality of measurement points in the region including the visual association area of the brain when the image is presented are measured in association with each other. A communication support apparatus that supports communication by specifying an image to be transmitted based on the electrical characteristics is disclosed.
 また、非特許文献1には、被験者の海馬から記録した神経細胞の発火活動を計測して、2つの画像が重なった画像を、被験者がどちらかの画像のことを考えることで、考えた方の画像を強く表示させることができる技術が開示されている。 Non-Patent Document 1 describes a method in which the firing activity of a nerve cell recorded from the hippocampus of a subject is measured, and the subject considers one of the images by overlapping the two images. A technique capable of strongly displaying the image is disclosed.
特開2010-257343号公報(2010年11月11日公開)JP 2010-257343 A (published on November 11, 2010)
 しかしながら、上述のような従来技術は、想起した任意の画像を高い精度で推定することはできないという問題がある。 However, the conventional techniques as described above have a problem that it is impossible to estimate an arbitrary image recalled with high accuracy.
 例えば、特許文献1に記載の意思伝達支援装置は、呈示された画像に対応付けられている電気的特性に基づいて表示する画像を決定するため、表示可能な画像は呈示された画像に限られ、想起された任意の画像を表示することはできない。 For example, since the communication support apparatus described in Patent Literature 1 determines an image to be displayed based on the electrical characteristics associated with the presented image, the displayable image is limited to the presented image. , Can not display any recalled image.
 また、非特許文献1に記載の技術においても、2つの画像が重なった状態を視認している被験者が、いずれかの画像に意識を向けることによって、意識を向けた側の画像を強く表示させることはできるものの、想起された任意の画像を表示させるものではない。 Also, in the technique described in Non-Patent Document 1, a subject viewing a state where two images overlap each other causes the image on the side toward which the consciousness is directed to be strongly displayed by directing consciousness to one of the images. Although it can, it does not display any recalled image.
 本発明の一態様は、被験者が想起している目的画像を、精度良く推定する想起画像推定装置および想起画像推定方法を実現することを目的とする。 An object of one aspect of the present invention is to realize a recall image estimation apparatus and a recall image estimation method that accurately estimate a target image recalled by a subject.
 上記の課題を解決するために、本発明の一態様に係る想起画像推定装置は、被験者の脳の電気的特性を、視覚連合野を含む脳の領域の複数の計測点において計測する多点電位計測部と、前記被験者が候補画像を視認している間に計測される前記電気的特性から、前記被験者が想起している目的画像の内容を示す復号情報を推定するデコーダと、前記デコーダによって推定された前記復号情報に基づいて、前記被験者に視認させる候補画像を決定する画像決定部と、を備えている。 In order to solve the above problems, a recall image estimation device according to one aspect of the present invention is a multipoint potential that measures electrical characteristics of a subject's brain at a plurality of measurement points in a brain region including a visual association area. Estimated by the measurement unit, a decoder for estimating decoding information indicating the content of the target image recalled by the subject from the electrical characteristics measured while the subject visually recognizes the candidate image, and the decoder An image determining unit that determines a candidate image to be visually recognized by the subject based on the decoded information.
 また、本発明に係る想起画像推定方法は、上記の課題を解決するために、被験者が候補画像を視認している間に、視覚連合野を含む脳の領域の複数の計測点において計測される脳の電気的特性から、前記被験者が想起している目的画像の内容を示す復号情報を推定する推定ステップと、前記推定ステップにおいて推定した前記復号情報に基づいて、前記被験者に視認させる候補画像を決定する画像決定ステップと、を含んでいる。 The recall image estimation method according to the present invention is measured at a plurality of measurement points in the brain region including the visual association area while the subject visually recognizes the candidate image in order to solve the above problem. From the electrical characteristics of the brain, an estimation step for estimating decoding information indicating the content of the target image recalled by the subject, and a candidate image to be visually recognized by the subject based on the decoding information estimated in the estimation step An image determining step for determining.
 本発明の一態様によれば、被験者が想起している目的画像を、精度良く推定することができる。 According to one aspect of the present invention, a target image recalled by a subject can be accurately estimated.
本発明の一実施形態に係る想起画像推定装置の概略構成例を示す機能ブロック図である。It is a functional block diagram which shows the schematic structural example of the recall image estimation apparatus which concerns on one Embodiment of this invention. 想起画像推定装置の処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process of the recall image estimation apparatus. デコーダを生成するための機械学習を行う想起画像推定装置の概略構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of schematic structure of the recall image estimation apparatus which performs the machine learning for producing | generating a decoder. (a)は、機械学習によってデコーダを生成する方法の一例を示すフローチャートであり、(b)は、学習用画像および各画像の内容を示す復号情報の準備工程を示すフローチャートである。(A) is a flowchart which shows an example of the method of producing | generating a decoder by machine learning, (b) is a flowchart which shows the preparation process of the decoding information which shows the image for learning and the content of each image. デコーダを生成するための学習用画像、および学習用画像の内容を説明する説明文の一例を示す図である。It is a figure which shows an example of the explanatory image explaining the content of the image for learning for producing | generating a decoder, and the image for learning. 学習用画像を用いてデコーダを生成する手順の一例を説明するイメージ図である。It is an image figure explaining an example of the procedure which produces | generates a decoder using the image for learning. 本発明の一実施例の結果を示すグラフである。It is a graph which shows the result of one Example of this invention. 本発明の他の実施例の結果を示すグラフである。It is a graph which shows the result of the other Example of this invention. 本発明の一実施形態に係る想起画像推定装置の概略構成例を示す機能ブロック図である。It is a functional block diagram which shows the schematic structural example of the recall image estimation apparatus which concerns on one Embodiment of this invention.
 〔実施形態1〕
 以下、本発明の一実施形態に係る想起画像推定装置10について、詳細に説明する。想起画像推定装置10は、被験者が想起している目的画像を、該目的画像の内容を示す復号情報を推定し、推定した復号情報に基づいて、被験者に視認させる候補画像を決定する装置である。想起画像推定装置10は、被験者に視認させた画像と、当該画像を視認しているときの被験者の脳Bの電気的特性との1対1の対応関係に基づいて候補画像を決定するものではない。それゆえ、想起画像推定装置10は、予め被験者に視認させた画像ではない任意の候補画像を、被験者に視認させる候補画像として決定することができる。それゆえ、想起画像推定装置10は、被験者が外部に提示したいと希望する任意の画像およびイメージを外部に提示できるように支援する装置である。ここで、「候補画像」とは、脳Bの電気的特性を計測するために被験者に視認させる画像を意図しており、「目的画像」とは、被験者が候補画像を視認しつつ想起している画像(すなわち、被験者が提示したいと希望している画像)を意図している。
Embodiment 1
Hereinafter, the recall image estimation apparatus 10 according to an embodiment of the present invention will be described in detail. The recall image estimation device 10 is a device that estimates the decoding information indicating the content of the target image of the target image recalled by the subject, and determines a candidate image to be visually recognized by the subject based on the estimated decoding information. . The recall image estimation device 10 does not determine a candidate image based on a one-to-one correspondence between the image visually recognized by the subject and the electrical characteristics of the subject's brain B when the image is viewed. Absent. Therefore, the recall image estimation apparatus 10 can determine an arbitrary candidate image that is not an image visually recognized by the subject in advance as a candidate image to be visually recognized by the subject. Therefore, the recall image estimation device 10 is a device that supports the subject to be able to present any images and images that the subject desires to present outside. Here, the “candidate image” is intended to be an image visually recognized by the subject in order to measure the electrical characteristics of the brain B, and the “target image” is recalled while the subject visually recognizes the candidate image. Is intended (ie, the image that the subject wants to present).
 (想起画像推定装置10の構成)
 まず、想起画像推定装置10の構成について、図1を用いて説明する。図1は、本発明の一実施形態に係る想起画像推定装置10の概略構成例を示す機能ブロック図である。なお、以下では想起画像推定装置10が表示部5を備える構成を例に挙げて説明するがこれに限定されない。例えば、表示部5の代わりに外部の表示装置を適用する構成であってもよい。
(Configuration of Recall Image Estimation Device 10)
First, the configuration of the recall image estimation device 10 will be described with reference to FIG. FIG. 1 is a functional block diagram showing a schematic configuration example of a recall image estimation apparatus 10 according to an embodiment of the present invention. In the following, a configuration in which the recall image estimation device 10 includes the display unit 5 will be described as an example, but the present invention is not limited to this. For example, a configuration in which an external display device is applied instead of the display unit 5 may be used.
 図1に示すように、想起画像推定装置10は、多点電位計測部1、デコーダ2、画像決定部3、表示制御部4、表示部5、および記憶部6を備えている。 As shown in FIG. 1, the recall image estimation device 10 includes a multipoint potential measurement unit 1, a decoder 2, an image determination unit 3, a display control unit 4, a display unit 5, and a storage unit 6.
 多点電位計測部1は、被験者の脳Bの電気的特性を、視覚連合野を含む脳Bの領域の複数の計測点において計測する。より具体的には、多点電位計測部1は、複数の電極Eを備え、脳Bの皮質脳波(Electro-Cortico-Graphy:ECoG)を計測する(低侵襲的構成)。この場合、電極Eは硬膜下に留置されるECoG電極である。電極Eは、画像を視認している被験者の脳Bに生じた皮質電位を検出するための電極である。電極Eは、脳Bの大脳皮質の視覚連合野を含む領域の表面および脳溝の表面に留置され得る。なお、電極Eの数は複数(例えば、100)であればよく、特に限定されない。 The multipoint potential measuring unit 1 measures the electrical characteristics of the subject's brain B at a plurality of measurement points in the region of the brain B including the visual association area. More specifically, the multipoint potential measurement unit 1 includes a plurality of electrodes E, and measures a cortical electroencephalogram (Electro-Cortico-Graphy: ECoG) of the brain B (low invasive configuration). In this case, the electrode E is an ECoG electrode placed under the dura mater. The electrode E is an electrode for detecting the cortical potential generated in the brain B of the subject who is viewing the image. Electrode E can be placed on the surface of the brain B cerebral cortex that contains the visual association area and on the surface of the sulcus. In addition, the number of the electrodes E should just be plural (for example, 100), and is not specifically limited.
 なお、多点電位計測部1は、皮質電位を計測する構成に限定されない。例えば、多点電位計測部1は、
 ・電極Eとして脳Bに刺入電極を用いて神経細胞の活動電位(Multi-unit Activity:MUA)を計測する構成(侵襲的構成)
 ・電極Eとして脳Bに刺入電極を用いる脳波(stereotactic Electro-Encephalo-Graphy:stereotactic EEG)を計測する構成(侵襲的構成)
 ・頭皮上に配置された電極Eを用いる頭皮脳波(scalp Electro-Encephalo-Graphy:scalp EEG)を計測する構成(非侵襲的構成)
 ・脳血管内に配置された電極Eを用いる脳血管内脳波(intravascular Electro-Encephalo-Graphy:intravascular EEG)を計測する構成(低侵襲的構成)
 ・電極Eとして脳磁図(Magneto-Encephalo-Graphy:MEG)用のセンサを用いて、脳Bの電気的な活動によって生じる磁場を計測する構成(非侵襲的構成)、のいずれかであってもよい。
The multipoint potential measuring unit 1 is not limited to the configuration for measuring the cortical potential. For example, the multipoint potential measuring unit 1
・ Configuration to measure action potential (Multi-unit Activity: MUA) of nerve cell using electrode inserted into brain B as electrode E (invasive configuration)
・ Structure for measuring electroencephalogram (stereotactic Electro-Graphy: stereotactic EEG) using an insertion electrode in brain B as electrode E (invasive structure)
・ Scalp Electro-Encephalo-Graphy (scalp EEG) measurement using electrode E placed on scalp (non-invasive configuration)
・ Configuration to measure intravascular electro-encephalogram (intravascular EEG) using electrode E placed in cerebral blood vessel (minimally invasive configuration)
・ Either a configuration (non-invasive configuration) for measuring a magnetic field generated by an electrical activity of the brain B using a magnetoencephalogram (Magneto-Encephalo-Graphy: MEG) sensor as the electrode E Good.
 ただし、計測される脳Bの電気的特性の感度は一般に、scalp EEG<MEG<intravascular EEG<stereotactic EEG<ECoG<MUAの順である。一方、被験者の身体への負担は、scalp EEG=MEG<intravascular EEG<stereotactic EEG=ECoG<MUAの順である。達成されるべき精度と被験者の身体への負担を考慮すると、多点電位計測部1としては、MEGおよびECoGが望ましい。 However, the sensitivity of the electrical characteristics of the brain B to be measured is generally in the order of scalp EEG <MEG <intravasual EEG <stereotactic EEG <ECoG <MUA. On the other hand, the burden on the subject's body is in the order of scalp EEG = MEG <intravasular EEG <stereotactic EEG = ECoG <MUA. In consideration of the accuracy to be achieved and the burden on the body of the subject, MEG and ECoG are desirable as the multipoint potential measuring unit 1.
 多点電位計測部1によって皮質電位を測定する構成を適用する場合、例えば、アルファ波(8~13Hz)、ベータ波(13~30Hz)、低周波ガンマ波(30~80Hz)、および高周波ガンマ波(80~150Hz)の各帯域の脳波が適用され得る。 When applying a configuration in which the cortical potential is measured by the multipoint potential measuring unit 1, for example, an alpha wave (8 to 13 Hz), a beta wave (13 to 30 Hz), a low frequency gamma wave (30 to 80 Hz), and a high frequency gamma wave An electroencephalogram in each band (80 to 150 Hz) can be applied.
 デコーダ2は、候補画像を視認している間に計測される電気的特性から、被験者が想起している目的画像の内容を示す復号情報を推定する。ここで、「復号情報」とは、画像の内容および意味を示す情報である。より具体的には、「復号情報」は、画像の内容および意味を、意味空間(「単語ベクトル空間」と表されてもよい)におけるベクトルとして表した情報である。画像の内容を意味空間におけるベクトルとして表す方法については、具体例を挙げて後に説明する。 The decoder 2 estimates decoding information indicating the contents of the target image recalled by the subject from the electrical characteristics measured while visually recognizing the candidate image. Here, “decoding information” is information indicating the content and meaning of an image. More specifically, “decoding information” is information representing the content and meaning of an image as a vector in a semantic space (which may be expressed as a “word vector space”). A method of expressing the content of an image as a vector in a semantic space will be described later with a specific example.
 デコーダ2は、学習済のニューラルネットワークであってもよい。デコーダ2を作成するための学習には、所定の候補画像と、所定の候補画像の内容を説明する1以上の説明文に含まれる1以上の単語に対応する単語ベクトルを用いて予め生成された教師復号情報とが用いられる。この場合、デコーダ2は、入力層と出力層とを備え、所定の候補画像を視認している間に計測される脳Bの電気的特性が入力層へ入力された場合に、当該所定の候補画像に対応付けられた教師復号情報を出力層から出力するように学習される。デコーダ2を学習によって生成する処理については、後に具体例を挙げて説明する。 The decoder 2 may be a learned neural network. The learning for creating the decoder 2 is generated in advance using a predetermined candidate image and a word vector corresponding to one or more words included in one or more explanatory sentences explaining the contents of the predetermined candidate image. Teacher decoding information is used. In this case, the decoder 2 includes an input layer and an output layer, and when the electrical characteristics of the brain B measured while viewing the predetermined candidate image are input to the input layer, the predetermined candidate Learning is performed so that the teacher decoding information associated with the image is output from the output layer. A process of generating the decoder 2 by learning will be described later with a specific example.
 画像決定部3は、デコーダ2によって推定された復号情報に基づいて、被験者に視認させる候補画像を決定する。より具体的には、画像決定部3は、デコーダ2によって推定された復号情報と同じ、あるいは類似の復号情報に関連付けられている候補画像を、被験者に視認させている候補画像に続けて視認させる候補画像として決定する。 The image determination unit 3 determines a candidate image to be visually recognized by the subject based on the decoding information estimated by the decoder 2. More specifically, the image determination unit 3 causes the candidate image associated with the same or similar decoding information as the decoding information estimated by the decoder 2 to be viewed following the candidate image that is being viewed by the subject. Determine as a candidate image.
 表示制御部4は、画像決定部3が決定した候補画像を表示するよう表示部5を制御する。また、表示制御部4は、デコーダ2を学習によって生成する処理において、学習用に準備された所定の候補画像を表示するよう表示部5を制御する。 The display control unit 4 controls the display unit 5 to display the candidate image determined by the image determination unit 3. Further, the display control unit 4 controls the display unit 5 to display a predetermined candidate image prepared for learning in the process of generating the decoder 2 by learning.
 表示部5は、画像を表示するディスプレイである。被験者は、表示部5に表示される画像を視認しつつ、任意の目的画像を想起する。 The display unit 5 is a display that displays an image. The subject recalls an arbitrary target image while visually recognizing the image displayed on the display unit 5.
 記憶部6は、表示部5にて表示する候補画像を記憶している。各候補画像には、各候補画像の内容を示す復号情報が対応付けられている。なお、想起画像推定装置10がデコーダ2の機械学習(教師有り学習)を行う機能も備えている場合、記憶部6には、学習用画像(所定の候補画像)および、学習用画像毎に対応付けられた復号情報(教師復号情報)を記憶している。 The storage unit 6 stores candidate images to be displayed on the display unit 5. Each candidate image is associated with decoding information indicating the contents of each candidate image. When the recall image estimation device 10 also has a function of performing machine learning (supervised learning) of the decoder 2, the storage unit 6 corresponds to each learning image (predetermined candidate image) and each learning image. The attached decoding information (teacher decoding information) is stored.
 上記の構成によれば、候補画像を視認している被験者の脳Bの電気的特性から、当該被験者が想起している画像の内容を示す復号情報を推定し、推定された復号情報に基づいて決定された画像を当該被験者に視認させる。これにより、候補画像を被験者に視認させ、復号情報を推定し、推定した復号情報に基づいて次の候補画像を決定する、というclosed-loop制御機構が構成され得る。ここで、closed-loop制御機構とは、被験者が候補画像を視認しているときに計測される脳Bの電気的特性から、当該被験者に視認させる候補画像を決定する、という「閉じた制御機構」を意図している。 According to said structure, the decoding information which shows the content of the image which the said test subject is recalling is estimated from the electrical property of the brain B of the test subject who is visually recognizing the candidate image, and based on the estimated decoding information The subject is made to visually recognize the determined image. Thus, a closed-loop control mechanism can be configured in which the subject image is visually recognized by the subject, the decoding information is estimated, and the next candidate image is determined based on the estimated decoding information. Here, the closed-loop control mechanism is a “closed control mechanism” in which a candidate image to be visually recognized by the subject is determined from the electrical characteristics of the brain B measured when the subject is visually recognizing the candidate image. Is intended.
 このようなclosed-loop制御機構を適用することによって、被験者は所望の目的画像を想起しつつ、候補画像を視認するという工程を繰り返すことになる。それゆえ、被験者自身による脳活動のトップダウン制御が脳Bの視覚野に入力され、このトップダウン制御が入力したときの脳Bの電気的特性を計測することができる。よって、被験者が想起している目的画像を精度良く推定することができる。 By applying such a closed-loop control mechanism, the subject repeats the process of visually recognizing the candidate image while recalling the desired target image. Therefore, the top-down control of the brain activity by the subject himself / herself is input to the visual cortex of the brain B, and the electrical characteristics of the brain B when this top-down control is input can be measured. Therefore, the target image recalled by the subject can be accurately estimated.
 ここで、トップダウン制御とは、ボトムアップ制御と同様に、脳Bが視覚情報を処理する場合の神経情報制御形態の一つである。トップダウン制御は、視覚情報の中から選ぶべき刺激について事前知識を持っている場合に、能動的に神経情報にバイアスをかけることによって目的とする刺激を選択する制御である。これに対して、ボトムアップ制御は、視覚情報に含まれる複数の刺激のうち、周囲の刺激と顕著に異なる刺激が含まれる場合などに、受動的にその顕著な刺激に注意を向けるような制御である。 Here, the top-down control is one of the forms of neural information control when the brain B processes visual information, as in the bottom-up control. Top-down control is control for selecting a target stimulus by actively biasing neural information when there is prior knowledge about a stimulus to be selected from visual information. In contrast, bottom-up control is a control that passively pays attention to a prominent stimulus, such as when a stimulus significantly different from the surrounding stimulus is included among the multiple stimuli included in the visual information. It is.
 (想起画像推定装置10の処理の流れの概要)
 続いて、想起画像推定装置10の処理の流れについて、図2を用いて説明する。図2は、想起画像推定装置10の処理の流れの一例を示すフローチャートである。
(Outline of processing flow of the recall image estimation device 10)
Next, the processing flow of the recall image estimation device 10 will be described with reference to FIG. FIG. 2 is a flowchart illustrating an example of a process flow of the recall image estimation apparatus 10.
 まず、デコーダ2が機械学習によって生成される。具体的には、所定の候補画像を視認している間に計測される脳Bの電気的特性が入力された場合、当該所定の候補画像に対応付けられた教師復号情報を出力するように、デコーダ2を学習する(ステップS1:デコーダ生成ステップ)。図1に示すような想起画像推定装置10においては、学習済のデコーダ2が適用される。 First, the decoder 2 is generated by machine learning. Specifically, when an electrical characteristic of the brain B measured while viewing a predetermined candidate image is input, so as to output teacher decoding information associated with the predetermined candidate image, The decoder 2 is learned (step S1: decoder generation step). In the recall image estimation apparatus 10 as shown in FIG. 1, the learned decoder 2 is applied.
 次に、表示制御部4は、被験者に視認させる候補画像が表示されるように表示部5を制御する(ステップS2:候補画像表示ステップ)。画像は、複数の画像からなる動画であってもよい。音声の有無は問わない。なお、被験者に最初に視認させる候補画像に特に限定は無く、例えば、想起画像推定装置10による推定処理が開始されたことを通知する画面など、任意の画像を表示すればよい。 Next, the display control unit 4 controls the display unit 5 so that candidate images to be visually recognized by the subject are displayed (step S2: candidate image display step). The image may be a moving image including a plurality of images. It does not matter if there is sound. The candidate image that is first visually recognized by the subject is not particularly limited. For example, an arbitrary image such as a screen for notifying that the estimation process by the recall image estimation device 10 has started may be displayed.
 次に、デコーダ2は、多点電位計測部1によって計測される表示された候補画像を視認している被験者の脳Bの電気的特性から復号情報を推定する(ステップS3:推定ステップ)。 Next, the decoder 2 estimates decoding information from the electrical characteristics of the brain B of the subject viewing the displayed candidate image measured by the multipoint potential measuring unit 1 (step S3: estimation step).
 続いて、画像決定部3は、デコーダ2によって推定された復号情報に基づいて、被験者に視認させる候補画像を決定する(ステップS4:画像決定ステップ)。 Subsequently, the image determination unit 3 determines a candidate image to be visually recognized by the subject based on the decoding information estimated by the decoder 2 (step S4: image determination step).
 そして、ステップ2に戻り、表示制御部4は、画像決定部3によって決定された画像が、被験者に続いて表示されるように表示部5を制御する。 Then, returning to step 2, the display control unit 4 controls the display unit 5 so that the image determined by the image determination unit 3 is displayed following the subject.
 このように、ステップS2~S4の処理を繰り返すことにより、被験者は所望の目的画像を想起しつつ、候補画像を視認するというclosed-loop制御機構が構成される。 In this way, by repeating the processes of steps S2 to S4, a closed-loop control mechanism is configured in which the subject visually recognizes the candidate image while recalling the desired target image.
 (デコーダ2を作成するための学習を行う想起画像推定装置10aの構成)
 ここでは、デコーダ2を機械学習によって生成する想起画像推定装置10aの構成について図3を用いて説明する。図3は、デコーダ2を作成するための機械学習を行う想起画像推定装置10aの概略構成の一例を示す機能ブロック図である。なお、想起画像推定装置10aは、図1に示す想起画像推定装置10と同じ機能、および同じ構成(例えば、デコーダ2の学習に関係しない画像決定部3など)を備えていてもよい。
(Configuration of Recall Image Estimation Device 10a that Performs Learning for Creating Decoder 2)
Here, the configuration of the recall image estimation apparatus 10a that generates the decoder 2 by machine learning will be described with reference to FIG. FIG. 3 is a functional block diagram illustrating an example of a schematic configuration of the recall image estimation apparatus 10a that performs machine learning for creating the decoder 2. Note that the recall image estimation device 10a may have the same function and the same configuration as the recall image estimation device 10 shown in FIG. 1 (for example, the image determination unit 3 not related to the learning of the decoder 2).
 想起画像推定装置10aは、復号情報比較部7および重み係数補正部8を備えている。 The recall image estimation device 10a includes a decoded information comparison unit 7 and a weight coefficient correction unit 8.
 復号情報比較部7は、学習用画像を視認している被験者の脳Bから計測された脳Bの電気的特性から学習前(または学習中)のデコーダ2によって推定された復号情報と、当該学習用画像に対応付けられた教師復号情報とを比較する。 The decoding information comparison unit 7 uses the decoding information estimated by the decoder 2 before learning (or during learning) from the electrical characteristics of the brain B measured from the brain B of the subject viewing the learning image, and the learning The teacher decoding information associated with the image for use is compared.
 重み係数補正部8は、復号情報比較部7による比較結果に基づいて、デコーダ2の重み係数を補正する。具体的には、重み係数補正部8は、学習用画像を視認している被験者の脳Bから計測された脳Bの電気的特性が入力された場合に、当該学習用画像に対応付けられた教師復号情報を出力するように、デコーダ2の現在の重み係数を補正する。 The weighting factor correction unit 8 corrects the weighting factor of the decoder 2 based on the comparison result by the decoding information comparison unit 7. Specifically, the weight coefficient correction unit 8 is associated with the learning image when the electrical characteristics of the brain B measured from the brain B of the subject who is viewing the learning image are input. The current weighting factor of the decoder 2 is corrected so as to output the teacher decoding information.
 このようにデコーダ2を機械学習によって生成することにより、目的画像を想起している被験者の脳Bの電気的特性から、目的画像の内容を示す復号情報を高い精度で推定することができるデコーダ2を作成することができる。 By generating the decoder 2 by machine learning in this way, the decoder 2 can estimate with high accuracy decoding information indicating the content of the target image from the electrical characteristics of the brain B of the subject recalling the target image. Can be created.
 (機械学習によるデコーダ2の生成)
 次に、デコーダ2を作成するための機械学習の方法の概略を図4および5を用いて説明する。図4の(a)は、機械学習によってデコーダを生成する方法の一例を示すフローチャートであり、図4の(b)は、学習用画像および各画像の内容を示す復号情報の準備工程を示すフローチャートである。図5は、デコーダ2を作成するための学習用画像、および学習用画像の内容を説明する説明文の一例を示す図である。
(Generation of decoder 2 by machine learning)
Next, an outline of a machine learning method for creating the decoder 2 will be described with reference to FIGS. FIG. 4A is a flowchart illustrating an example of a method for generating a decoder by machine learning, and FIG. 4B is a flowchart illustrating a preparation process of a learning image and decoding information indicating the contents of each image. It is. FIG. 5 is a diagram illustrating an example of a learning image for creating the decoder 2 and an explanatory text explaining the content of the learning image.
 まず、機械学習に供される学習用画像、および各学習用画像の内容を示す教師復号情報を準備する(ステップS11:学習用画像準備ステップ)。 First, learning images used for machine learning and teacher decoding information indicating the contents of each learning image are prepared (step S11: learning image preparation step).
 <学習用画像と教師復号情報の準備>
 以下、学習用画像と教師復号情報とを準備する工程の具体例について、図4の(b)を用いて説明する。なお、図4の(b)に示す工程のうち、ステップS113~S115は、一般的なパーソナルコンピュータを用いて行われ得る。
<Preparation of learning image and teacher decoding information>
Hereinafter, a specific example of the process of preparing the learning image and the teacher decoding information will be described with reference to FIG. Of the steps shown in FIG. 4B, steps S113 to S115 can be performed using a general personal computer.
 ・機械学習に用いる学習用画像を準備する工程(ステップS111)。 Step for preparing learning images used for machine learning (step S111).
 ・学習用画像毎に、当該学習用画像の内容および意味を説明する説明文(キャプションまたはアノテーション)を準備する工程(ステップS112)。説明文は、1文であってもよいし、複数の文章を含んでいてもよい。説明文は、画像の内容および画像を視認したときに受ける印象などを端的かつ正確に記載した文章であることが望ましい。説明文は、1または複数人に画像を見せて作成されたものであってもよいし、画像認識機能を備える人工知能を用いて人工的に作成されたものであってもよい。デコーダ2を作成するための学習用画像、および学習用画像の内容を説明する説明文については、後に具体例を挙げて説明する。 Step for preparing an explanatory text (caption or annotation) explaining the content and meaning of the learning image for each learning image (step S112). The explanatory text may be a single sentence or may include a plurality of sentences. The explanatory text is preferably a text that simply and accurately describes the content of the image and the impression received when the image is viewed. The explanatory note may be created by showing an image to one or a plurality of people, or may be created artificially using artificial intelligence having an image recognition function. The learning image for creating the decoder 2 and the explanatory text explaining the content of the learning image will be described later with a specific example.
 ・説明文に含まれる単語を抽出する工程(ステップS113)。この工程には、公知の形態素解析エンジンが適用され得る。このような公知の形態素解析エンジンとしては、「MeCab(和布蕪)」、「Chasen」、および「KyTea」などが挙げられる。なお、この工程は、説明文が日本語で記載されている場合に必要となる工程である。説明文が、例えば英語などのように、各単語が分かれている(例えば、単語と単語との間にスペースが存在する)言語で記載されている場合には、この工程は省略される。 · A step of extracting words included in the explanatory text (step S113). A known morphological analysis engine can be applied to this step. Examples of such a known morphological analysis engine include “MeCab”, “Chasen”, “KyTea”, and the like. This process is a process that is necessary when the explanatory text is written in Japanese. If the explanatory text is written in a language in which each word is separated (for example, a space exists between words), such as English, this step is omitted.
 ・抽出された各単語の単語ベクトルを生成する工程(ステップS114)。この工程には、意味空間における単語の分散表現を出力する機能を有する公知のツール(例えば、人工知能)が適用され得る。なお、このような公知のツールとしては、「Word2vec」、「GloVe」、「fastText」、「Doc2Vec」、および「WordNet」などが挙げられる。例えば、既存の文章(例えば、ウェブ上の「ウェキペディア」などの記述)を多数用いて学習済の「Word2vec」は、説明文から抽出された各単語について、所定の次元(例えば1000次元)の意味空間における単語ベクトルを高い精度で出力することができる。なお、単語ベクトルは互いに線形演算が可能な線形空間におけるベクトルであることが望ましいが、非線形空間における単語ベクトルであってもよい。なお、この工程は、説明文の記載に用いられた言語の種類によらず同様に実施され得る。例えば、説明文が英語で記載されている場合、Word2vecなどを英語版のウェキペディアなどを用いて学習し、学習されたWord2vecにて単語ベクトルを出力すればよい。 A step of generating a word vector for each extracted word (step S114). In this step, a known tool (for example, artificial intelligence) having a function of outputting a distributed expression of words in the semantic space can be applied. Examples of such known tools include “Word2vec”, “GloVe”, “fastText”, “Doc2Vec”, and “WordNet”. For example, “Word2vec” learned using many existing sentences (for example, descriptions such as “Weekpedia” on the web) means a predetermined dimension (for example, 1000 dimensions) for each word extracted from the explanatory text. The word vector in the space can be output with high accuracy. Note that the word vector is preferably a vector in a linear space in which linear operations can be performed, but may be a word vector in a non-linear space. Note that this step can be performed in the same manner regardless of the type of language used in the description. For example, when the description is written in English, Word2vec or the like may be learned using an English version of Wikipedia or the like, and a word vector may be output using the learned Word2vec.
 ・単語ベクトルの平均として、当該学習用画像に対応付ける教師復号情報を生成する工程。学習用画像の内容を説明する説明文から抽出された単語について、ステップS114にて生成された単語ベクトルのベクトル平均を求め、当該説明文の内容を示す教師復号情報を生成する。 A step of generating teacher decoding information associated with the learning image as an average of word vectors. For words extracted from the explanatory text explaining the content of the learning image, the vector average of the word vectors generated in step S114 is obtained, and teacher decoding information indicating the content of the explanatory text is generated.
 上述のように、教師復号情報は、各学習用画像の内容を説明する文章から抽出された単語の意味空間におけるベクトルを平均して生成される。なお、本実施形態に係る想起画像推定装置10に供される候補画像の各々についても、上記S111~S115の工程により、復号情報が生成される。 As described above, the teacher decoding information is generated by averaging vectors in the meaning space of words extracted from sentences explaining the contents of each learning image. Note that decoding information is also generated for each of the candidate images provided to the recall image estimation apparatus 10 according to the present embodiment by the processes of S111 to S115.
 図4の(a)に戻り、次に、多点電位計測部1は、学習用画像を視認する被験者の脳Bにおいて計測される電気的特性を計測する(ステップS12:計測ステップ)。なお、この工程では、被験者は目的画像を想起することなく、単に学習用画像を視認することが望ましい。 4 (a), next, the multipoint potential measuring unit 1 measures the electrical characteristics measured in the brain B of the subject who visually recognizes the learning image (step S12: measurement step). In this step, it is desirable that the subject merely visually recognizes the learning image without recalling the target image.
 続いて、計測された電気的特性を入力信号として用い、視認している学習用画像の内容を示す教師復号情報を教師信号として用いて、デコーダ2を学習させる。具体的には、まず、復号情報比較部7が、学習用画像を視認している被験者の脳Bから計測された脳Bの電気的特性から学習前(または学習中)のデコーダ2によって推定された復号情報と、当該学習用画像に対応付けられた教師復号情報とを比較する。次に、重み係数補正部8が、学習用画像を視認している被験者の脳Bから計測された脳Bの電気的特性が入力された場合に、当該学習用画像に対応付けられた教師復号情報を出力するように、デコーダ2の現在の重み係数を補正する。 Subsequently, the decoder 2 is trained using the measured electrical characteristics as an input signal and the teacher decoding information indicating the contents of the currently viewed learning image as a teacher signal. Specifically, first, the decoding information comparison unit 7 is estimated by the decoder 2 before learning (or during learning) from the electrical characteristics of the brain B measured from the brain B of the subject viewing the learning image. The decoded information is compared with the teacher decoded information associated with the learning image. Next, when the electrical characteristics of the brain B measured from the brain B of the subject who is visually recognizing the learning image are input, the weighting coefficient correction unit 8 performs the teacher decoding associated with the learning image. The current weighting factor of the decoder 2 is corrected so as to output information.
 なお、図4の(a)に示すステップS11~S13の各工程は、連続して実施される必要は無く、それぞれ個別に実施され得る。例えば、ステップS11の工程は、ステップS12が実施される前に実施されてもよいし、ステップS12が実施された後に実施されてもよい。また、ステップS12を実施し、計測された電気的特性と、被験者が視認した画像とを対応付けたデータを記憶しておき、デコーダ2の学習に当該データを利用する構成でもよい。 Note that the steps S11 to S13 shown in FIG. 4 (a) do not have to be performed continuously, and can be performed individually. For example, the process of step S11 may be performed before step S12 is performed, or may be performed after step S12 is performed. Alternatively, the configuration may be such that step S12 is performed, data in which the measured electrical characteristics are associated with the image visually recognized by the subject is stored, and the data is used for the learning of the decoder 2.
 <学習用画像の例>
 図5に示す画像は、学習用画像の一例である。この画像に対しては、「両親と娘、息子の4人家族がでかけている様子がうつっている。息子は宇宙服を着ていてその様子を父親が撮影している。背景などから宇宙についての展覧会のように感じる。みんなが笑顔で楽しい雰囲気を感じる。」という説明文が作成され得る。
<Example of learning image>
The image shown in FIG. 5 is an example of a learning image. For this image, “The family of four of my parents, daughter, and son is going on. The son is wearing a space suit and his father is photographing the situation. "Everyone feels a smile and a fun atmosphere."
 なお、ステップS112において、1つの学習用画像(および候補画像)について、複数の説明文が作成されてもよい。例えば、図5に示す学習用画像に対して、「宇宙服を着た人を3人の家族がカメラで撮っている様子である。楽しそうで、宇宙服を着る体験をしているのだと思った。」、「宇宙服を着た子供が写っています。お父さんは写真を撮っています。こんな体験ができると嬉しいでしょうね。」などの説明文も作成され得る。 In step S112, a plurality of explanatory texts may be created for one learning image (and candidate image). For example, for the learning image shown in FIG. 5, “It seems that three families are taking pictures of people wearing spacesuits with a camera. They seem to have fun and experience wearing spacesuits. "You can see a child wearing a space suit. Dad is taking a picture. I'm glad if you can have this experience."
 <デコーダ2の作成>
 次に、デコーダ2の作成について、図6を用いて説明する。図6は、学習用画像を用いてデコーダ2を生成する手順の一例を説明するイメージ図である。なお、ここでは、被験者の脳Bの電気的特性が、皮質脳波である場合を例に挙げて説明する。
<Creation of decoder 2>
Next, creation of the decoder 2 will be described with reference to FIG. FIG. 6 is an image diagram illustrating an example of a procedure for generating the decoder 2 using the learning image. Here, the case where the electrical characteristic of the brain B of the subject is a cortical electroencephalogram will be described as an example.
 まず、学習用画像を視認している被験者の脳Bの皮質脳波が、多点電位計測部1により計測される。 First, the cortical electroencephalogram of the brain B of the subject who is viewing the learning image is measured by the multipoint potential measuring unit 1.
 次に、計測された皮質脳波を周波数解析し、アルファ波、ベータ波、およびガンマ波の各帯域のパワーをそれぞれ求め、これらをデコーダ2に入力する特徴行列として用いられる。 Next, the measured cortical electroencephalogram is frequency-analyzed to determine the power of each band of the alpha wave, the beta wave, and the gamma wave, and these are used as a feature matrix that is input to the decoder 2.
 一方、MeCabなどの形態素解析エンジンを用いて、被験者が視認している画像毎の説明文から単語を抽出し、説明文から復号情報を生成する。例えば、図6に示す説明文「雪のある山の頂上の様子。はっきりと青と白の雲のある空と、雪のある地面や水辺のむき出しの山。山には影もできている」の場合、「雪」、「山」、「頂上」、「様子」などの単語が抽出される。 On the other hand, using a morphological analysis engine such as MeCab, a word is extracted from the explanatory text for each image viewed by the subject, and decoding information is generated from the explanatory text. For example, the explanatory text shown in FIG. 6 “The top of the mountain with snow. The sky with clear blue and white clouds, the snowy ground and the exposed waterside mountains. In this case, words such as “snow”, “mountain”, “top”, “mode” are extracted.
 そして、抽出された単語の単語ベクトルの各要素(例えば1000次元)について平均した復号情報が教師復号情報として決定される。抽出された各単語についての単語ベクトルは、学習済のWord2vecを用いて、1000次元の単語ベクトルとして生成される。 Then, decoding information averaged for each element (for example, 1000 dimensions) of the extracted word vector is determined as teacher decoding information. A word vector for each extracted word is generated as a 1000-dimensional word vector using learned Word2vec.
 デコーダ2の学習過程では、アルファ波、ベータ波、およびガンマ波の各帯域のパワーを入力信号としたときに、各画像の教師復号情報を所望の精度で出力できるように重み行列が補正される。 In the learning process of the decoder 2, the weight matrix is corrected so that the teacher decoding information of each image can be output with a desired accuracy when the power of each band of the alpha wave, the beta wave, and the gamma wave is used as an input signal. .
 図6では、ridge-regressionなどの回帰処理を用いて、3600の画像について復号情報を出力するように学習する場合の例を示している。なお、ridge-regressionの代替として、深層学習、およびSparse Logistic Regression(SLR)などの解析方法を適用することも可能である。 FIG. 6 shows an example of learning to output decoding information for 3600 images using regression processing such as ridge-regulation. As an alternative to ridge-regulation, it is also possible to apply analysis methods such as deep learning and Sparse Logistic Regression (SLR).
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Another embodiment of the present invention will be described below. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals, and the description thereof will not be repeated.
 (想起画像推定装置10aの構成)
 被験者に視認させる候補画像を、記憶部6に記憶されている画像の中から決定するのではなく、任意の検索対象の情報群から取得する構成であってもよい。
(Configuration of Recall Image Estimation Device 10a)
The configuration may be such that the candidate images to be visually recognized by the subject are not determined from the images stored in the storage unit 6 but are acquired from an arbitrary information group to be searched.
 想起画像推定装置10aは、検索対象の情報群から画像を検索することにより、多種多様な画像を候補画像として利用する。まず、想起画像推定装置10aについて、図9を用いて説明する。図9は、本発明の一実施形態に係る想起画像推定装置10aの概略構成例を示す機能ブロック図である。 The recall image estimation device 10a uses a wide variety of images as candidate images by searching for images from the information group to be searched. First, the recall image estimation device 10a will be described with reference to FIG. FIG. 9 is a functional block diagram illustrating a schematic configuration example of the recall image estimation apparatus 10a according to the embodiment of the present invention.
 図9に示す想起画像推定装置10aは、画像決定部3の代わりに、画像検索部3a(画像決定部)を備えている。 The recall image estimation device 10a shown in FIG. 9 includes an image search unit 3a (image determination unit) instead of the image determination unit 3.
 画像検索部3aは、デコーダ2によって推定された復号情報と同じ、あるいは類似の復号情報を用いて検索用クエリを生成する。また、画像検索部3aは、生成した検索用クエリを用いて、検索対象の情報群から、復号情報と同じ、あるいは類似の復号情報に対応付けられている画像を検索する。検索対象の情報群は任意の情報群であってもよく、例えば、図9に示すように、インターネット上に存在するウェブサイトA60aおよびウェブサイトB60bなどが含まれ得る。次に、画像検索部3aは、検索結果として取得された画像を候補画像として決定する。また、画像検索部3aは、検索結果として取得された画像を、候補画像に続けて被検者に視認させる候補画像として決定する。 The image search unit 3a generates a search query using the same or similar decoding information as the decoding information estimated by the decoder 2. In addition, the image search unit 3a uses the generated search query to search for an image associated with the same or similar decoding information as the decoding information from the information group to be searched. The information group to be searched may be an arbitrary information group. For example, as shown in FIG. 9, a website A 60a and a website B 60b existing on the Internet may be included. Next, the image search unit 3a determines an image acquired as a search result as a candidate image. Moreover, the image search part 3a determines the image acquired as a search result as a candidate image which makes a subject visually recognize a candidate image.
 具体的には、デコーダ2は、候補画像を視認している間に計測される電気的特性から、被験者が想起している目的画像の内容を示す復号情報を推定する。デコーダ2は、推定した復号情報(例えば、意味空間におけるベクトル)に近い1または複数の単語を推定することができる。具体的には、デコーダ2は、推定した復号情報の意味空間におけるベクトルと、該復号情報に近い各単語の意味空間におけるベクトルとの間の距離が近い順に、幾つかの単語を選択する。 Specifically, the decoder 2 estimates decoding information indicating the contents of the target image recalled by the subject from the electrical characteristics measured while viewing the candidate image. The decoder 2 can estimate one or more words close to the estimated decoding information (for example, a vector in the semantic space). Specifically, the decoder 2 selects several words in order of increasing distance between a vector in the semantic space of the estimated decoded information and a vector in the semantic space of each word close to the decoded information.
 画像検索部3aは、デコーダ2によって推定された単語に中から、動詞や形容詞などについて幾つか選択し、これを用いて公知の画像検索(例えば、Google(登録商標)の画像検索など)に用いる検索用クエリを生成する。画像検索部3aは、生成した検索用クエリを用いて、デコーダ2によって推定された単語に対応付けられた画像を、ウェブ上から検索することができる。画像検索部3aは、検索結果において上位に挙げられている画像を、表示部5に表示する候補画像として決定する。 The image search unit 3a selects several verbs and adjectives from the words estimated by the decoder 2 and uses them for a known image search (for example, Google (registered trademark) image search). Generate a search query. The image search unit 3a can search the web for an image associated with the word estimated by the decoder 2 using the generated search query. The image search unit 3 a determines an image listed at the top in the search result as a candidate image to be displayed on the display unit 5.
 このように構成すれば、closed-loop制御機構を適用した場合おいて被験者に提示する候補画像として、インターネット上に存在するウェブサイトを含む検索対象の情報群の多種多様な画像を利用することができる。 If configured in this way, when applying the closed-loop control mechanism, a variety of images of a search target information group including a website existing on the Internet can be used as a candidate image to be presented to the subject. it can.
 closed-loop制御機構を適用することによって、被験者は所望の目的画像を想起しつつ、候補画像を視認するという工程を繰り返すことになる。それゆえ、被検者は、候補画像を視認している間に計測される電気的特性を変えることによって、任意の画像をインターネット上に存在するウェブサイトを含む検索対象の情報群から検索することができる。 By applying the closed-loop control mechanism, the subject repeats the process of visually recognizing the candidate image while recalling the desired target image. Therefore, the subject searches for an arbitrary image from a search target information group including a website existing on the Internet by changing an electrical characteristic measured while viewing the candidate image. Can do.
 なお、図9に示す想起画像推定装置10aは、表示部5にて表示する候補画像を記憶している記憶部6を備えていない。しかし、これは一例に過ぎず、想起画像推定装置10aは、図1に示す想起画像推定装置10のように、記憶部6を備える構成であってもよい。 Note that the recall image estimation device 10 a shown in FIG. 9 does not include the storage unit 6 that stores candidate images to be displayed on the display unit 5. However, this is only an example, and the recall image estimation device 10a may be configured to include the storage unit 6 as in the recall image estimation device 10 illustrated in FIG.
 この場合、画像検索部3aは、デコーダ2によって推定された復号情報と同じ、あるいは類似の復号情報に対応付けられている画像を、記憶部6およびウェブサイトA60aおよびウェブサイトB60bなどから取得する。 In this case, the image search unit 3a acquires the image associated with the same or similar decoding information as the decoding information estimated by the decoder 2 from the storage unit 6, the website A 60a, the website B 60b, and the like.
 〔ソフトウェアによる実現例〕
 想起画像推定装置10の制御ブロック(特にデコーダ2、画像決定部3、および表示制御部4)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks (particularly the decoder 2, the image determination unit 3, and the display control unit 4) of the recall image estimation device 10 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. It may be realized by software.
 後者の場合、想起画像推定装置10は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the recall image estimation apparatus 10 includes a computer that executes instructions of a program that is software for realizing each function. The computer includes, for example, one or more processors and a computer-readable recording medium storing the program. In the computer, the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) for expanding the program may be further provided. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. Note that one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 〔まとめ〕
 本発明の態様1に係る想起画像推定装置は、被験者の脳の電気的特性を、視覚連合野を含む脳の領域の複数の計測点において計測する多点電位計測部と、前記被験者が候補画像を視認している間に計測される前記電気的特性から、前記被験者が想起している目的画像の内容を示す復号情報を推定するデコーダと、前記デコーダによって推定された前記復号情報に基づいて、前記被験者に視認させる候補画像を決定する画像決定部と、を備えている。
[Summary]
The recall image estimation apparatus according to aspect 1 of the present invention includes a multipoint potential measurement unit that measures electrical characteristics of a subject's brain at a plurality of measurement points in a brain region including a visual association area, and the subject is a candidate image. From the electrical characteristics measured while visually recognizing, based on the decoding information estimated by the decoder, the decoder for estimating the decoding information indicating the content of the target image recalled by the subject, An image determining unit that determines candidate images to be visually recognized by the subject.
 上記の構成によれば、候補画像を視認している被験者の脳の電気的特性から、当該被験者が想起している画像の内容を示す復号情報を推定し、推定された復号情報に基づいて決定された画像を当該被験者に視認させる。これにより、候補画像を被験者に視認させ、復号内容を推定し、推定した復号情報に基づいて次の候補画像を決定する、というclosed-loop制御機構が構成され得る。 According to the above configuration, the decoding information indicating the content of the image recalled by the subject is estimated from the electrical characteristics of the brain of the subject viewing the candidate image, and is determined based on the estimated decoding information. The subject is made to visually recognize the image. Thus, a closed-loop control mechanism can be configured in which the subject image is visually recognized by the subject, the decoding content is estimated, and the next candidate image is determined based on the estimated decoding information.
 このようなclosed-loop機構を適用することによって、被験者は所望の目的画像を想起しつつ、候補画像を視認するという工程を繰り返すことになる。それゆえ、被験者自身による脳活動のトップダウン制御が脳の視覚野に入力され、このトップダウン制御が入力したときの脳の電気的特性を計測することができる。よって、被験者が想起している目的画像を精度良く推定することができる。 By applying such a closed-loop mechanism, the subject repeats the process of visually recognizing the candidate image while recalling the desired target image. Therefore, the top-down control of brain activity by the subject himself / herself is input to the visual cortex of the brain, and the electrical characteristics of the brain when this top-down control is input can be measured. Therefore, the target image recalled by the subject can be accurately estimated.
 本発明の態様2に係る想起画像推定装置は、上記態様1において、前記画像決定部は、前記デコーダによって推定された前記復号情報と同じ、あるいは類似の前記復号情報に対応付けられた画像を、前記候補画像に続けて視認させる候補画像として決定してもよい。 The recall image estimation device according to aspect 2 of the present invention is the recall image estimation apparatus according to aspect 1, in which the image determination unit determines an image associated with the decoding information that is the same as or similar to the decoding information estimated by the decoder, You may determine as a candidate image made to visually recognize after the said candidate image.
 また、本発明の態様3に係る想起画像推定装置は、前記画像決定部は、前記デコーダによって推定された前記復号情報と同じ、あるいは類似の前記復号情報を用いて検索用クエリを生成し、生成した前記検索用クエリを用いて、検索対象の情報群から、前記復号情報と同じ、あるいは類似の前記復号情報に関連付けられている画像を検索し、検索結果として取得された画像を、前記候補画像として決定してもよい。 In the recall image estimation device according to aspect 3 of the present invention, the image determination unit generates and generates a search query using the decoding information that is the same as or similar to the decoding information estimated by the decoder. The search query is used to search the information group to be searched for an image associated with the decoding information that is the same as or similar to the decoding information, and an image acquired as a search result is used as the candidate image. May be determined as
 また、本発明の態様4に係る想起画像推定装置は、上記態様3において、前記画像決定部は、前記検索結果として取得された画像を、前記候補画像に続けて視認させる候補画像として決定してもよい。 In the recall image estimation device according to aspect 4 of the present invention, in the aspect 3, the image determination unit determines the image acquired as the search result as a candidate image to be visually recognized following the candidate image. Also good.
 検索対象の情報群から画像を検索することにより、多種多様な画像を候補画像として利用することができる。なお、検索対象の情報群は、インターネット上のウェブサイトなどを含んでいてもよい。 By searching for images from the information group to be searched, a wide variety of images can be used as candidate images. Note that the search target information group may include websites on the Internet.
 本発明の態様5に係る想起画像推定装置は、上記態様1から4のいずれかにおいて、所定の候補画像の内容を説明する1以上の説明文に含まれる1以上の単語に対応する単語ベクトルを用いて予め生成された教師復号情報と、当該所定の候補画像とが対応付けられており、前記デコーダは、所定の候補画像を視認している間に計測される脳の電気的特性が入力された場合に、当該所定の候補画像に対応付けられた前記教師復号情報を出力するように学習される構成であってもよい。 The recall image estimation device according to aspect 5 of the present invention is the recall image estimation device according to any one of the aspects 1 to 4, wherein a word vector corresponding to one or more words included in one or more explanatory texts describing the contents of a predetermined candidate image. The teacher decoding information generated in advance and the predetermined candidate image are associated with each other, and the decoder receives the electrical characteristics of the brain measured while viewing the predetermined candidate image. In such a case, the learning may be performed so that the teacher decoding information associated with the predetermined candidate image is output.
 このように、デコーダを学習によって生成することにより、目的画像を想起している被験者の脳の電気的特性から、目的画像の内容を示す復号情報を高い精度で推定することができるデコーダを生成することができる。 In this way, by generating the decoder by learning, a decoder capable of estimating the decoding information indicating the content of the target image with high accuracy from the electrical characteristics of the brain of the subject recalling the target image is generated. be able to.
 本発明の態様6に係る想起画像推定装置は、上記態様1から5のいずれかにおいて、前記デコーダは、前記候補画像を視認している間に計測される、脳の皮質電位、および脳の電気的な活動によって生じる磁場の少なくとも何れかを用いて、当該候補画像の内容を示す復号情報を推定してもよい。 The recall image estimation apparatus according to aspect 6 of the present invention is the recall image estimation apparatus according to any one of the aspects 1 to 5, wherein the decoder measures the cortical potential of the brain and the electrical brain, which are measured while viewing the candidate image. The decoding information indicating the contents of the candidate image may be estimated using at least one of the magnetic fields generated by the active activity.
 また、本発明の一態様に係る想起画像推定方法は、上記の課題を解決するために、被験者が候補画像を視認している間に、視覚連合野を含む脳の領域の複数の計測点において計測される脳の電気的特性から、前記被験者が想起している目的画像の内容を示す復号情報を推定する推定ステップと、前記推定ステップにおいて推定した前記復号情報に基づいて、前記被験者に視認させる候補画像を決定する画像決定ステップと、を含んでいる。 In addition, in order to solve the above-described problem, the recall image estimation method according to an aspect of the present invention provides a plurality of measurement points in a brain region including a visual association area while a subject visually recognizes a candidate image. Based on the measured electrical characteristics of the brain, the estimation step of estimating the decoding information indicating the content of the target image recalled by the subject, and the subject is made to visually recognize based on the decoding information estimated in the estimation step And an image determining step for determining a candidate image.
 また、上記態様1から6のいずれかに記載の想起画像推定装置としてコンピュータを機能させるための制御プログラムであって、前記デコーダ、および前記画像決定部としてコンピュータを機能させるための制御プログラム、および当該制御プログラムを記録したコンピュータ読み取り可能な記録媒体も本発明の技術的範囲に含まれる。 A control program for causing a computer to function as the recall image estimation device according to any one of the above aspects 1 to 6, the control program for causing the computer to function as the decoder and the image determining unit, and A computer-readable recording medium recording the control program is also included in the technical scope of the present invention.
 本発明の一実施例について、以下に説明する。 An embodiment of the present invention will be described below.
 <推定精度の検証>
 多種類の意味内容を含む60分の動画を被験者に視認させながら、多点電位計測部1によって被験者の脳Bの皮質脳波を計測した。被験者に視認させる動画は、映画の紹介ビデオなどを短く区切って編集した動画を繋ぎ合わせて準備した。60分間の動画において、同じ動画を含むさまざまな動画が何回か順不同で出現する。被験者は、視点を固定することなく、その動画を視認するように指示された。
<Verification of estimation accuracy>
The cortical electroencephalogram of the subject's brain B was measured by the multipoint potential measuring unit 1 while allowing the subject to visually recognize a 60-minute moving image including various types of meaning content. The videos to be viewed by the subjects were prepared by connecting the edited videos by dividing the introduction video of the movie into short segments. In a 60-minute video, various videos including the same video appear several times in random order. The subject was instructed to view the video without fixing the viewpoint.
 被験者に視認させた動画を、1秒毎の静止画像(シーン)に変換した。各シーンについて、複数人により、シーンの内容を説明する説明文が作成された。また、同じ1秒間に計測された皮質脳波について、アルファ波、ベータ波、およびガンマ波の各帯域のパワーを解析した。 The moving image visually recognized by the subject was converted into a still image (scene) every second. For each scene, explanations explaining the contents of the scene were created by a plurality of people. Moreover, the power of each band of an alpha wave, a beta wave, and a gamma wave was analyzed about the cortical electroencephalogram measured in the same 1 second.
 MeCabを用いて、シーン毎の説明文から単語が抽出された。抽出された各単語について、ウィキペディアを用いて学習済のWord2vecを用いて、1000次元の単語ベクトルが生成された。各シーンは、説明文から抽出された単語についての単語ベクトルの平均として生成された復号情報と対応付けられた。 A word was extracted from the description for each scene using MeCab. For each extracted word, a 1000-dimensional word vector was generated using Word2vec learned using Wikipedia. Each scene was associated with decoding information generated as an average of word vectors for words extracted from the explanatory text.
 皮質脳波のパワーを入力信号として用い、各シーンの復号情報を教師信号とする機械学習を行い、デコーダ2を作成した。 Using the power of cortical electroencephalogram as an input signal, machine learning was performed using the decoding information of each scene as a teacher signal, and decoder 2 was created.
 本実施例では、ridge-regressionを用いて、3600のシーンについて、統計的に有意な精度で、画像の内容を示す復号情報を推定することができた。 In this example, it was possible to estimate decoding information indicating the content of an image with statistically significant accuracy for 3600 scenes using ridge-regulation.
 このことを、図7を用いて説明する。図7の黒実線は、シーンを視認している被験者の脳Bの皮質脳波から推定した復号情報と、当該シーンに対応付けられている復号情報(すなわち、正解)との相関係数の度数分布を示している。一方、図7の灰色の線は、各シーンに対応付けられている復号情報のラベルをシャッフルしたものと、シーンを視認している被験者の脳Bの皮質脳波から推定した復号情報との相関係数の度数分布を示している。図7によれば、シーンを視認している被験者の脳Bの皮質脳波から、当該シーンに対応付けられている復号情報を有意に高い精度で推定できていることが実証された。 This will be described with reference to FIG. The solid black line in FIG. 7 shows the frequency distribution of the correlation coefficient between the decoding information estimated from the cortical brain waves of the brain B of the subject viewing the scene and the decoding information (that is, the correct answer) associated with the scene. Is shown. On the other hand, the gray line in FIG. 7 shows the correlation between the shuffled label of the decoding information associated with each scene and the decoding information estimated from the cortical electroencephalogram of the brain B of the subject viewing the scene. The frequency distribution of numbers is shown. According to FIG. 7, it was demonstrated that the decoding information associated with the scene can be estimated with significantly high accuracy from the cortical electroencephalogram of the brain B of the subject viewing the scene.
 <想起画像推定の実証>
 次に、作成したデコーダ2を適用した想起画像推定装置10にて、被験者が想起した目的画像を推定することが可能であるか否かを検証した。
<Demonstration of recall image estimation>
Next, it was verified whether or not it is possible to estimate the target image recalled by the subject using the recalled image estimation device 10 to which the created decoder 2 is applied.
 図8において、時刻0は想起するイメージ(「文字」、「風景」等)を被験者に指示したタイミングを示している。図8の黒線は、被験者に対して指示した内容を含む画像に対応付けられた復号情報と、被験者の脳Bの皮質脳波から推定した復号情報とについて、正規化した相関係数のトライアル平均を示している(*p<0.05、Student’s t-test)。一方、図8のグレーの線は、想起するイメージが含まれない画像に対応付けられた復号情報と、被験者の脳Bの皮質脳波から推定した復号情報と正規化した相関係数のトライアル平均を示している。図8によれば、被験者が想起している画像を有意に高い精度で推定可能であることが実証された。 In FIG. 8, time 0 indicates the timing when the subject is instructed to recall the image (“character”, “landscape”, etc.). The black line in FIG. 8 indicates the trial average of the correlation coefficient normalized with respect to the decoding information associated with the image including the content instructed to the subject and the decoding information estimated from the cortical brain wave of the brain B of the subject. (* P <0.05, Student's t-test). On the other hand, the gray line in FIG. 8 shows the trial average of the decoded information associated with the image that does not include the recalled image, the decoded information estimated from the cortical EEG of the subject's brain B, and the normalized correlation coefficient. Show. According to FIG. 8, it was demonstrated that the image recalled by the subject can be estimated with significantly high accuracy.
  1 多点電位計測部
  2 デコーダ
  3 画像決定部
 3a 画像検索部(画像決定部)
  4 表示制御部
  5 表示部
  6 記憶部
 10、10a 想起画像推定装置
 60a ウェブサイトA
 60b ウェブサイトB
 S1 デコーダ生成ステップ
 S2 候補画像表示ステップ
 S3 推定ステップ
 S4 画像決定ステップ
S11 学習用画像準備ステップ
S13 学習ステップ
DESCRIPTION OF SYMBOLS 1 Multipoint electric potential measurement part 2 Decoder 3 Image determination part 3a Image search part (image determination part)
4 Display Control Unit 5 Display Unit 6 Storage Unit 10, 10a Recall Image Estimation Device 60a Website A
60b Website B
S1 decoder generation step S2 candidate image display step S3 estimation step S4 image determination step S11 learning image preparation step S13 learning step

Claims (9)

  1.  被験者の脳の電気的特性を、視覚連合野を含む脳の領域の複数の計測点において計測する多点電位計測部と、
     前記被験者が候補画像を視認している間に計測される前記電気的特性から、前記被験者が想起している目的画像の内容を示す復号情報を推定するデコーダと、
     前記デコーダによって推定された前記復号情報に基づいて、前記被験者に視認させる候補画像を決定する画像決定部と、を備える
    ことを特徴とする想起画像推定装置。
    A multipoint potential measurement unit that measures the electrical characteristics of the subject's brain at a plurality of measurement points in the brain region including the visual association area;
    From the electrical characteristics measured while the subject is viewing the candidate image, a decoder for estimating decoding information indicating the content of the target image recalled by the subject;
    An recall image estimation apparatus comprising: an image determination unit that determines a candidate image to be visually recognized by the subject based on the decoding information estimated by the decoder.
  2.  前記画像決定部は、前記デコーダによって推定された前記復号情報と同じ、あるいは類似の前記復号情報に対応付けられた画像を、前記候補画像に続けて視認させる候補画像として決定する
    ことを特徴とする請求項1に記載の想起画像推定装置。
    The image determination unit determines an image associated with the decoding information that is the same as or similar to the decoding information estimated by the decoder as a candidate image to be viewed after the candidate image. The recall image estimation apparatus according to claim 1.
  3.  前記画像決定部は、
      前記デコーダによって推定された前記復号情報と同じ、あるいは類似の前記復号情報を用いて検索用クエリを生成し、
      生成した前記検索用クエリを用いて、検索対象の情報群から、前記復号情報と同じ、あるいは類似の前記復号情報に対応付けられている画像を検索し、
      検索結果として取得された画像を、前記候補画像として決定する
    ことを特徴とする請求項1に記載の想起画像推定装置。
    The image determination unit
    Generating a search query using the decoded information that is the same as or similar to the decoded information estimated by the decoder;
    Using the generated search query, search for an image associated with the decoded information that is the same as or similar to the decoded information from the information group to be searched,
    The recall image estimation apparatus according to claim 1, wherein an image acquired as a search result is determined as the candidate image.
  4.  前記画像決定部は、前記検索結果として取得された画像を、前記候補画像に続けて視認させる候補画像として決定する
    ことを特徴とする請求項3に記載の想起画像推定装置。
    The said image determination part determines the image acquired as the said search result as a candidate image made to visually recognize following the said candidate image, The recall image estimation apparatus of Claim 3 characterized by the above-mentioned.
  5.  所定の候補画像の内容を説明する1以上の説明文に含まれる1以上の単語に対応する単語ベクトルを用いて予め生成された教師復号情報と、当該所定の候補画像とが対応付けられており、
     前記デコーダは、所定の候補画像を視認している間に計測される脳の電気的特性が入力された場合に、当該所定の候補画像に対応付けられた前記教師復号情報を出力するように学習される
    ことを特徴とする請求項1から4のいずれか1項に記載の想起画像推定装置。
    Teacher decoding information generated in advance using a word vector corresponding to one or more words included in one or more explanatory texts describing the contents of the predetermined candidate image is associated with the predetermined candidate image. ,
    The decoder learns to output the teacher decoding information associated with the predetermined candidate image when an electrical characteristic of the brain measured while the predetermined candidate image is viewed is input. The recall image estimation device according to any one of claims 1 to 4, wherein the recall image estimation device is provided.
  6.  前記デコーダは、前記候補画像を視認している間に計測される、脳の皮質電位、および脳の電気的な活動によって生じる磁場の少なくとも何れかを用いて、当該候補画像の内容を示す復号情報を推定する
    ことを特徴とする請求項1から5のいずれか1項に記載の想起画像推定装置。
    The decoder uses at least one of the cortical potential of the brain and the magnetic field generated by the electrical activity of the brain, which is measured while viewing the candidate image, and indicates decoding information indicating the content of the candidate image 6. The recall image estimation device according to claim 1, wherein the recall image estimation device according to claim 1 is estimated.
  7.  被験者が候補画像を視認している間に、視覚連合野を含む脳の領域の複数の計測点において計測される脳の電気的特性から、前記被験者が想起している目的画像の内容を示す復号情報を推定する推定ステップと、
     前記推定ステップにおいて推定した前記復号情報に基づいて、前記被験者に視認させる候補画像を決定する画像決定ステップと、を含む
    ことを特徴とする想起画像推定方法。
    Decoding that shows the contents of the target image recalled by the subject from the electrical characteristics of the brain measured at a plurality of measurement points in the brain area including the visual association area while the subject visually recognizes the candidate image An estimation step for estimating information;
    An image determining step of determining a candidate image to be visually recognized by the subject based on the decoding information estimated in the estimating step.
  8.  請求項1から6のいずれか1項に記載の想起画像推定装置としてコンピュータを機能させるための制御プログラムであって、前記デコーダ、および前記画像決定部としてコンピュータを機能させるための制御プログラム。 A control program for causing a computer to function as the recall image estimation apparatus according to any one of claims 1 to 6, wherein the control program causes the computer to function as the decoder and the image determination unit.
  9.  請求項8に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the control program according to claim 8 is recorded.
PCT/JP2019/022113 2018-06-04 2019-06-04 Recalled image estimation device, recalled image estimation method, control program, and recording medium WO2019235458A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020523110A JP7352914B2 (en) 2018-06-04 2019-06-04 Recall image estimation device, recollection image estimation method, control program, recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-107185 2018-06-04
JP2018107185 2018-06-04

Publications (1)

Publication Number Publication Date
WO2019235458A1 true WO2019235458A1 (en) 2019-12-12

Family

ID=68769873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022113 WO2019235458A1 (en) 2018-06-04 2019-06-04 Recalled image estimation device, recalled image estimation method, control program, and recording medium

Country Status (2)

Country Link
JP (1) JP7352914B2 (en)
WO (1) WO2019235458A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111782853A (en) * 2020-06-23 2020-10-16 西安电子科技大学 Semantic image retrieval method based on attention mechanism
WO2023007293A1 (en) * 2021-07-29 2023-02-02 Ofer Moshe Methods and systems for non-sensory information rendering and injection
WO2024100859A1 (en) * 2022-11-10 2024-05-16 日本電信電話株式会社 Image generation method, image generation device, and image generation program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354618A (en) * 1986-08-25 1988-03-09 Canon Inc Input device
JPH07204168A (en) * 1994-01-12 1995-08-08 Nou Kinou Kenkyusho:Kk Device for automatically identifying information on living body
JP2010257343A (en) * 2009-04-27 2010-11-11 Niigata Univ Intention transmission support system
JP2016067922A (en) * 2014-09-25 2016-05-09 エスエヌユー アールアンドディービー ファウンデーション Brain-machine interface device and method
JP2016513319A (en) * 2013-03-15 2016-05-12 インテル コーポレイション Brain-computer interface (BCI) system based on temporal and spatial patterns of collected biophysical signals
WO2017022228A1 (en) * 2015-08-05 2017-02-09 セイコーエプソン株式会社 Mental image playback device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354618A (en) * 1986-08-25 1988-03-09 Canon Inc Input device
JPH07204168A (en) * 1994-01-12 1995-08-08 Nou Kinou Kenkyusho:Kk Device for automatically identifying information on living body
JP2010257343A (en) * 2009-04-27 2010-11-11 Niigata Univ Intention transmission support system
JP2016513319A (en) * 2013-03-15 2016-05-12 インテル コーポレイション Brain-computer interface (BCI) system based on temporal and spatial patterns of collected biophysical signals
JP2016067922A (en) * 2014-09-25 2016-05-09 エスエヌユー アールアンドディービー ファウンデーション Brain-machine interface device and method
WO2017022228A1 (en) * 2015-08-05 2017-02-09 セイコーエプソン株式会社 Mental image playback device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111782853A (en) * 2020-06-23 2020-10-16 西安电子科技大学 Semantic image retrieval method based on attention mechanism
CN111782853B (en) * 2020-06-23 2022-12-02 西安电子科技大学 Semantic image retrieval method based on attention mechanism
WO2023007293A1 (en) * 2021-07-29 2023-02-02 Ofer Moshe Methods and systems for non-sensory information rendering and injection
WO2024100859A1 (en) * 2022-11-10 2024-05-16 日本電信電話株式会社 Image generation method, image generation device, and image generation program

Also Published As

Publication number Publication date
JPWO2019235458A1 (en) 2021-07-29
JP7352914B2 (en) 2023-09-29

Similar Documents

Publication Publication Date Title
Astolfi et al. Imaging the social brain by simultaneous hyperscanning during subject interaction
US11301775B2 (en) Data annotation method and apparatus for enhanced machine learning
Phelps et al. Emotion facilitates perception and potentiates the perceptual benefits of attention
Reed et al. The body-inversion effect
Levelt et al. An MEG study of picture naming
Miellet et al. Local Jekyll and global Hyde: the dual identity of face identification
Sammaknejad et al. Gender classification based on eye movements: A processing effect during passive face viewing
Moon et al. Implicit analysis of perceptual multimedia experience based on physiological response: A review
WO2019235458A1 (en) Recalled image estimation device, recalled image estimation method, control program, and recording medium
Moon et al. Perceptual experience analysis for tone-mapped HDR videos based on EEG and peripheral physiological signals
Sakaki et al. Association learning for emotional harbinger cues: When do previous emotional associations impair and when do they facilitate subsequent learning of new associations?
KR102085693B1 (en) Method and apparatus for determining concentration level of user
WO2016163556A1 (en) Method for estimating perceptual semantic content by analysis of brain activity
Hahn et al. Thatcherization impacts the processing of own-race faces more so than other-race faces: An ERP study
JP2016195716A5 (en)
Kim et al. An analysis of smartphone overuse recognition in terms of emotions using brainwaves and deep learning
Valeriani et al. Multimodal collaborative brain-computer interfaces aid human-machine team decision-making in a pandemic scenario
Đorđević Čegar et al. Modelling effects of S3D visual discomfort in human emotional state using data mining techniques
Cacioppo et al. Predicting intentions of a familiar significant other beyond the mirror neuron system
CN116312971B (en) Cognitive training material generation method, cognitive training method, device and medium
CN112613364A (en) Target object determination method, target object determination system, storage medium, and electronic device
Nussbaum et al. Analysis of viewer EEG data to determine categorization of short video clip
KR102277894B1 (en) Psychology consultation method capable of tracking psychological changes by providing personalized image
Fukuma et al. Decoding visual stimulus in semantic space from electrocorticography signals
Raz et al. A robust neural fingerprint of cinematic shot-scale

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523110

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815429

Country of ref document: EP

Kind code of ref document: A1