[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019235323A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2019235323A1
WO2019235323A1 PCT/JP2019/021324 JP2019021324W WO2019235323A1 WO 2019235323 A1 WO2019235323 A1 WO 2019235323A1 JP 2019021324 W JP2019021324 W JP 2019021324W WO 2019235323 A1 WO2019235323 A1 WO 2019235323A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
resin
groove
width direction
annular belt
Prior art date
Application number
PCT/JP2019/021324
Other languages
French (fr)
Japanese (ja)
Inventor
圭一 長谷川
片山 昌宏
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019235323A1 publication Critical patent/WO2019235323A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present invention relates to a pneumatic tire provided with a belt layer.
  • a belt including two or more inclined belt plies configured to include a cord inclined toward the tire circumferential direction on the outer side in the tire radial direction of the carcass, and a belt provided with a reinforcing layer and the like.
  • Such structures are common (see, for example, Japanese Patent Application Laid-Open No. 2013-244930 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2013-220741 (Patent Document 2)).
  • Patent Documents 1 and 2 ensure in-plane shear rigidity by providing two or more inclined belt plies, but it is difficult to reduce the weight of the tire because of the large number of plies and reinforcing layers. It has become.
  • the present invention has been made in consideration of the above-mentioned facts, and an object of the present invention is to provide a pneumatic tire that reduces the weight of the tire while improving the in-plane shear rigidity of the belt.
  • the pneumatic tire according to the first aspect of the present invention includes a pair of bead cores, a carcass formed straddling the pair of bead cores, and arranged on the outer side in the tire radial direction of the carcass and extends in the tire circumferential direction. And reinforcing cords arranged at intervals in the tire width direction and an annular shape formed of a resin and covering the reinforcing cord in the tire circumferential direction on the outer side in the tire width direction on at least one of the outer side and the inner side in the tire radial direction. And a resin annular belt having a resin main body with a groove formed along.
  • a resin annular belt is disposed on the outer side in the tire radial direction of the carcass.
  • the resin annular belt includes an annular resin main body made of resin and a reinforcing cord covered with the resin main body.
  • the reinforcing cords extend in the tire circumferential direction and are arranged at intervals in the tire width direction.
  • the resin annular belt As described above, in the resin annular belt, the resin is arranged between the reinforcing cords arranged at intervals in the tire width direction. Therefore, the resin annular belt has higher in-plane shear rigidity than the belt in which the rubber is arranged between the reinforcing cords. Can be obtained. In addition, the weight of the tire can be reduced.
  • At least one of the outer side and the inner side in the tire radial direction of the resin body Grooves are formed along the tire circumferential direction on the outer side in the tire width direction.
  • the groove width of the groove is narrower than the inter-cord pitch of the reinforcing cord in the tire width direction.
  • the groove width narrower than the pitch between the cords of the reinforcing cords in the tire width direction, the groove can be formed avoiding the position where the reinforcing cords are arranged closest to the surface in the resin annular belt, The thickness of the resin body covering the reinforcing cord can be ensured.
  • the groove depth of the groove is 1/10 or more and 1/2 or less of the thickness of the resin annular belt.
  • the groove depth is 1/10 or more and 1/2 or less of the thickness of the resin annular belt, it is possible to appropriately deform the resin annular belt while alleviating stress concentration in the groove.
  • the groove is at least within a range of 1/2 of the outer side in the tire width direction in the belt half width from the tire equatorial plane to the outer end in the tire radial direction of the resin annular belt. Partly formed.
  • the pneumatic tire according to the present invention can achieve both the in-plane shear rigidity of the belt and the tire weight reduction.
  • FIG. 2 is a partially enlarged view of FIG. 1. It is a partially broken top view of the resin annular belt of the pneumatic tire which concerns on this embodiment. It is a partially broken top view of the resin annular belt of the pneumatic tire which concerns on this embodiment.
  • FIG. 1 shows one side of a cut surface (a cross section viewed from the direction along the tire circumferential direction) cut along the tire width direction and the tire radial direction of the pneumatic tire 10.
  • an arrow W indicates the width direction (tire width direction) of the pneumatic tire 10
  • an arrow R indicates the radial direction (tire radial direction) of the pneumatic tire 10.
  • the tire width direction here refers to a direction parallel to the rotation axis of the pneumatic tire 10.
  • the tire radial direction refers to a direction orthogonal to the rotation axis of the pneumatic tire 10.
  • Reference sign CL indicates the equator plane (tire equator plane) of the pneumatic tire 10.
  • the side closer to the rotational axis of the pneumatic tire 10 along the tire radial direction is “inner side in the tire radial direction”
  • the side farther from the rotational axis of the pneumatic tire 10 along the tire radial direction is “tire”. “Outside in the radial direction”.
  • the side close to the tire equator plane CL along the tire width direction is described as “inner side in the tire width direction”
  • the side far from the tire equator plane CL along the tire width direction is described as “outer side in the tire width direction”.
  • the grounding end E and the grounding width TW of the tread 30 to be described later are that the pneumatic tire 10 is mounted on a standard rim defined in JATMA YEAR BOOK (2018 version, Japan Automobile Tire Association Standard). Filled with 100% internal pressure of the air pressure (maximum air pressure) corresponding to the maximum load capacity (bold load in the internal pressure-load capacity correspondence table) in the application size and ply rating in JATMA YEAR BOOK The rotation axis is arranged parallel to the flat plate, and the mass corresponding to the maximum load capacity is added.
  • the TRA standard or ETRTO standard is applied at the place of use or manufacturing, the respective standards are followed.
  • a pneumatic tire 10 includes a pair of bead portions 12 in which a bead core 12 ⁇ / b> A is embedded, a pair of side portions 14 that extend outward from the pair of bead portions 12 in the tire radial direction, and tires from the side portions 14.
  • the crown portion 16 extends inward in the width direction.
  • a carcass 18 including one carcass ply 18 ⁇ / b> A straddles between one bead portion 12 and the other bead portion 12.
  • a resin annular belt 20 is provided on the crown portion 16 on the outer side in the tire radial direction of the carcass 18.
  • a tread 30 is disposed on the outer side of the resin annular belt 20 in the tire radial direction.
  • a plurality of main grooves 32 are formed in the tread 30 along the tire circumferential direction. In FIG. 1, only one side of the tire equatorial plane CL in the pneumatic tire 10 is illustrated.
  • the carcass ply 18A is formed by coating a plurality of cords (not shown) extending in the radial direction of the pneumatic tire 10 with a coating rubber (not shown).
  • the material of the cord of the carcass ply 18A is, for example, PET, but may be another conventionally known material.
  • the end portion in the tire width direction of the carcass ply 18A is folded back outward in the tire radial direction by a bead core 12A.
  • a portion extending from one bead core 12A to the other bead core 12A is called a main body portion 18B, and a portion folded from the bead core 12A is called a folded portion 18C.
  • a bead filler 12B whose thickness gradually decreases from the bead core 12A toward the outer side in the tire radial direction is disposed.
  • a bead portion 12 is a portion on the inner side in the tire radial direction from the tire radial direction outer end 12C of the bead filler 12B.
  • An inner liner 26 made of rubber is arranged inside the tire of the carcass 18, and a side rubber layer 24 made of rubber material is arranged outside the carcass 18 in the tire width direction.
  • the resin annular belt 20 has a reinforcing cord 20A wound spirally in the tire circumferential direction and a resin main body 20B made of a resin material that covers the reinforcing cord 20A.
  • the interval between the reinforcing cords 20A is a pitch P.
  • the resin annular belt 20 can be formed of a ring-shaped ridge obtained by spirally winding a resin-coated cord 20C in which a reinforcing cord 20A is covered with a resin main body 20B.
  • the reinforcing cord 20A is disposed so as to be inclined at an angle ⁇ 1 with respect to the tire circumferential direction.
  • the extending direction CD of the reinforcing cord 20A is indicated by a one-dot chain line
  • the tire circumferential direction S is indicated by a solid line.
  • one resin-coated cord 20C is spirally wound in the tire circumferential direction to form the resin annular belt 20.
  • the reinforcing cord 20A extending along the tire circumferential direction in another configuration is provided. It may be embedded in the resin main body 20B.
  • the resin-coated cord 20C may be formed in a ring shape, and a plurality of ring-shaped resin-coated cords 20C may be formed side by side in the tire width direction.
  • a resin material having a higher tensile elastic modulus than that of the rubber material constituting the side rubber layer 24 and the rubber material forming the tread 30 described later is used for the resin main body 20B.
  • the tensile elastic modulus (specified in JIS K7113: 1995) of the resin main body 20B is preferably 100 MPa or more. Moreover, it is preferable that the upper limit of the tensile elasticity modulus of the resin main body 20B shall be 1000 Mpa or less. The tensile elastic modulus of the resin main body 20B is particularly preferably in the range of 200 to 700 MPa.
  • Examples of the material of the resin main body 20B include thermoplastic resins, thermoplastic elastomers, thermosetting resins, and (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, silicone resins, and other general-purpose resins.
  • engineering plastics including super engineering plastics
  • the resin material here does not include vulcanized rubber.
  • Thermoplastic resin refers to a polymer compound that softens and flows as the temperature rises and becomes relatively hard and strong when cooled.
  • the material softens and flows with increasing temperature, and becomes relatively hard and strong when cooled, and a high molecular compound having rubber-like elasticity is a thermoplastic elastomer, and the material increases with increasing temperature. Is softened, fluidized, and becomes a relatively hard and strong state when cooled, and a high molecular compound having no rubber-like elasticity is distinguished as a thermoplastic resin that is not an elastomer.
  • Thermoplastic resins include polyolefin-based thermoplastic elastomers (TPO), polystyrene-based thermoplastic elastomers (TPS), polyamide-based thermoplastic elastomers (TPA), polyurethane-based thermoplastic elastomers (TPU), and polyesters.
  • TPO polyolefin-based thermoplastic elastomers
  • TPS polystyrene-based thermoplastic elastomers
  • TPA polyamide-based thermoplastic elastomers
  • TPU polyurethane-based thermoplastic elastomers
  • polyesters polyesters.
  • TSV dynamically crosslinked thermoplastic elastomer
  • polyolefin thermoplastic resin polystyrene thermoplastic resin
  • polyamide thermoplastic resin polyamide thermoplastic resin
  • polyester thermoplastic resin etc. Can be mentioned.
  • thermosetting resin refers to a polymer compound that forms a three-dimensional network structure as the temperature rises and cures, and examples thereof include a phenol resin, an epoxy resin, a melamine resin, and a urea resin.
  • the reinforcement cord 20A is a steel cord.
  • the steel cord is mainly composed of steel and can contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper, and chromium.
  • a groove 24 is formed on the outer side of the resin annular belt 20 in the tire width direction.
  • the grooves 24 are formed on the outer side and the inner side in the tire radial direction of the resin main body 20B.
  • the groove 24 formed on the inner side in the tire radial direction of the resin main body 20B is referred to as an inner groove 24A
  • the groove 24 formed on the outer side in the tire radial direction is referred to as an outer groove 24B.
  • the groove 24 is formed in a spiral shape along the extending direction of the reinforcing cord 20A. Similar to the reinforcing cord 20A, the groove 24 is disposed so as to be inclined at an angle ⁇ 1 with respect to the tire circumferential direction (see FIG. 3A).
  • the groove 24 is formed between adjacent reinforcing cords 20A in the tire width direction.
  • the groove bottom of the groove 24 has an R shape.
  • the groove width W1 of the groove 24 is narrower than the pitch P of the reinforcing cord 20A.
  • the groove 24 is formed so as to avoid a position where the reinforcing cord 20 ⁇ / b> A is closest to the surface of the resin annular belt 20.
  • the groove region 22 is at least the outer side in the tire width direction in the belt half width BW / 2 from the tire equatorial plane CL of the resin annular belt 20 to the outer end in the tire radial direction. It is preferable that it exists in the range of 1/2. Moreover, it is preferable that the groove
  • the depth D1 of the groove 24 is preferably 1 ⁇ 2 or less of the thickness of the resin main body 20B (resin annular belt 20). Moreover, it is preferable that the depth D1 of the groove
  • the depth D1 of the groove 24 is 1 ⁇ 2 or less of the thickness of the resin main body 20B (resin annular belt 20).
  • the groove 24 can be formed when the resin annular belt 20 is manufactured.
  • the inner groove 24A on the inner side in the tire radial direction is provided with a convex shape corresponding to the inner groove 24A on the outer peripheral surface of a drum around which the resin-coated cord 20C is spirally wound during resin annular belt molding, and the convex shape is transferred. Can be formed.
  • the outer groove 24B on the outer side in the tire radial direction is provided with a convex shape corresponding to the outer groove 24B on a roller for pressing the resin-coated cord 20C against the drum when the resin-coated cord 20C is wound around the outer peripheral surface of the drum. It can be formed by transferring the convex shape.
  • the inner grooves 24A and the outer grooves 24B can be formed by cutting after the resin annular belt 20 is manufactured.
  • the resin annular belt 20 of the present embodiment has an outer diameter at the center in the tire width direction larger than the outer diameter at both ends in the tire width direction, and when viewed in a cross section along the tire axis,
  • the present invention is not limited thereto, and the resin annular belt 20 is formed with a constant diameter and a constant thickness, and is straight when viewed in a cross section along the tire axis. It can also be.
  • the thickness dimension of the resin annular belt 20 of the present embodiment is preferably 0.70 mm or more when the pneumatic tire 10 is for a passenger car.
  • the width BW of the resin annular belt 20 is preferably 75% or more and 110% or less with respect to the contact width TW (distance between the contact ends E) of the tread 30 measured along the tire axial direction.
  • a tread 30 made of a rubber material is disposed on the outer side of the resin annular belt 20 in the tire radial direction. Conventionally known rubber materials are used for the tread 30. A main groove 32 for drainage is formed in the tread 30.
  • the crown portion 16 of the carcass 18 is reinforced by the resin annular belt 20. Therefore, a higher in-plane shear rigidity can be obtained as compared with the case where the rubber is reinforced by the belt in which the rubber is disposed between the reinforcing cords.
  • the in-plane shear rigidity of the resin annular belt 20 it is possible to sufficiently generate a lateral force when a slip angle is applied to the pneumatic tire 10, and to ensure steering stability. Responsiveness can also be improved.
  • the out-of-plane bending rigidity is secured by the resin annular belt 20, and when a large lateral force is input to the pneumatic tire 10, the tread 30 buckling (the surface of the tread 30 is undulated and a part thereof is separated from the road surface). Phenomenon).
  • the groove width W1 of the groove 24 is narrower than the inter-cord pitch P of the reinforcing cord 20A in the tire width direction. Accordingly, the groove 24 can be formed by avoiding the position where the reinforcing cord 20A is disposed closest to the surface in the resin annular belt 20, and the thickness of the resin main body 20B covering the reinforcing cord 20A can be ensured. .
  • the groove 24 is formed in a spiral shape along the reinforcing cord 20A.
  • the angle of the groove 24 is larger than that of the reinforcing cord 20A with respect to the tire circumferential direction so as to intersect the reinforcing cord 20A. It may be formed in a spiral shape, or may be formed in a spiral shape with a smaller angle with respect to the tire circumferential direction. As shown in FIG. 3B, a plurality of grooves 24 may be formed in an annular shape in the same direction as the tire circumferential direction.
  • the resin annular belt 20 is formed on both the inner side and the outer side in the tire radial direction, but may be formed only on either one. That is, only one of the inner groove 24A and the outer groove 24B may be formed.
  • grooves 24 may be formed at an interval finer than the pitch P of the reinforcing cord 20A, or may be formed at an interval larger than the pitch P.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

A pneumatic tire (10) comprises: a pair of bead cores (12A); a carcass (18) formed straddling the pair of bead cores (12A); and a resin ring-shaped belt positioned to the tire radius direction outside of the carcass (18) and having reinforcement cords (20A) that extend in the tire circumference direction and are arranged with intervals therebetween in the tire width direction, and a resin body (12B) that is formed from a resin, is ring-shaped, covers the reinforcement cords (20A), and has a groove formed, along the tire circumference direction, in a tire width direction outside section of a tire radius direction outside surface and/or inside surface.

Description

空気入りタイヤPneumatic tire
 本発明は、ベルト層を備えた空気入りタイヤに関する。 The present invention relates to a pneumatic tire provided with a belt layer.
 自動車に装着する空気入りタイヤとしては、カーカスのタイヤ径方向外側にタイヤ周方向に対して傾斜したコードを含んで構成された2枚以上の傾斜ベルトプライ、及び補強層等を備えたベルトを備えた構造が一般的である(例えば、特開2013-244930号公報(特許文献1)、特開2013-220741号公報(特許文献2)参照)。 As a pneumatic tire to be mounted on an automobile, a belt including two or more inclined belt plies configured to include a cord inclined toward the tire circumferential direction on the outer side in the tire radial direction of the carcass, and a belt provided with a reinforcing layer and the like. Such structures are common (see, for example, Japanese Patent Application Laid-Open No. 2013-244930 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2013-220741 (Patent Document 2)).
 特許文献1、2の空気入りタイヤは、2枚以上の傾斜ベルトプライを備えることにより面内剪断剛性を確保しているが、プライや補強層の層数が多いため、タイヤの軽量化は困難となっている。 The pneumatic tires of Patent Documents 1 and 2 ensure in-plane shear rigidity by providing two or more inclined belt plies, but it is difficult to reduce the weight of the tire because of the large number of plies and reinforcing layers. It has become.
 本発明は上記事実を考慮し、ベルトの面内剪断剛性を向上させつつ、タイヤの軽量化を図った空気入りタイヤの提供を目的とする。 The present invention has been made in consideration of the above-mentioned facts, and an object of the present invention is to provide a pneumatic tire that reduces the weight of the tire while improving the in-plane shear rigidity of the belt.
 本発明の第1の態様に係る空気入りタイヤは、一対のビードコアと、前記一対のビードコアに跨って形成されたカーカスと、前記カーカスのタイヤ径方向外側に配置され、タイヤ周方向に延在すると共にタイヤ幅方向に間隔をあけて並ぶ補強コードと、樹脂で形成されて環状とされ前記補強コードを被覆しタイヤ径方向の外側及び内側の少なくとも一方面のタイヤ幅方向外側部にタイヤ周方向に沿って溝が形成された樹脂本体と、を有する樹脂環状ベルトと、を備えている。 The pneumatic tire according to the first aspect of the present invention includes a pair of bead cores, a carcass formed straddling the pair of bead cores, and arranged on the outer side in the tire radial direction of the carcass and extends in the tire circumferential direction. And reinforcing cords arranged at intervals in the tire width direction and an annular shape formed of a resin and covering the reinforcing cord in the tire circumferential direction on the outer side in the tire width direction on at least one of the outer side and the inner side in the tire radial direction. And a resin annular belt having a resin main body with a groove formed along.
 第1の態様に係る空気入りタイヤは、カーカスのタイヤ径方向外側に樹脂環状ベルトが配置されている。樹脂環状ベルトは、樹脂で形成された環状の樹脂本体、及び、樹脂本体に被覆された補強コードを備えている。補強コードは、タイヤ周方向に延在すると共にタイヤ幅方向に間隔をあけて並んでいる。 In the pneumatic tire according to the first aspect, a resin annular belt is disposed on the outer side in the tire radial direction of the carcass. The resin annular belt includes an annular resin main body made of resin and a reinforcing cord covered with the resin main body. The reinforcing cords extend in the tire circumferential direction and are arranged at intervals in the tire width direction.
 このように、樹脂環状ベルトでは、タイヤ幅方向に間隔を開けて並ぶ補強コード間に樹脂が配置されているので、補強コード間にゴムが配置されたベルトに比較して高い面内剪断剛性を得ることができる。また、タイヤの軽量化も図ることができる。 As described above, in the resin annular belt, the resin is arranged between the reinforcing cords arranged at intervals in the tire width direction. Therefore, the resin annular belt has higher in-plane shear rigidity than the belt in which the rubber is arranged between the reinforcing cords. Can be obtained. In addition, the weight of the tire can be reduced.
 高い面内剪断剛性を得ることができる一方で、樹脂環状ベルトのタイヤ幅方向端部には応力が集中しやすくなるが、本発明では、樹脂本体のタイヤ径方向の外側及び内側の少なくとも一方面のタイヤ幅方向外側部に、タイヤ周方向に沿って溝が形成されている。この溝により、樹脂環状ベルトのタイヤ幅方向外側部が変形しやすくなり、樹脂環状ベルトのタイヤ幅方向外側部における応力集中を緩和することができる。また、溝は、タイヤ周方向に沿って形成されているので、タイヤ周方向と交差する方向の変形は抑制される。 While high in-plane shear rigidity can be obtained, stress tends to concentrate on the end of the resin annular belt in the tire width direction, but in the present invention, at least one of the outer side and the inner side in the tire radial direction of the resin body Grooves are formed along the tire circumferential direction on the outer side in the tire width direction. By this groove, the outer side portion in the tire width direction of the resin annular belt is easily deformed, and the stress concentration in the outer portion in the tire width direction of the resin annular belt can be reduced. Moreover, since the groove is formed along the tire circumferential direction, deformation in the direction intersecting the tire circumferential direction is suppressed.
 本発明の第2の態様に係る空気入りタイヤは、前記溝の溝幅は、前記タイヤ幅方向における前記補強コードのコード間ピッチよりも狭い。 In the pneumatic tire according to the second aspect of the present invention, the groove width of the groove is narrower than the inter-cord pitch of the reinforcing cord in the tire width direction.
 このように、溝幅をタイヤ幅方向における補強コードのコード間ピッチよりも狭くすることにより、樹脂環状ベルトにおいて補強コードが最も表面近くに配置される位置を避けて溝を形成することができ、補強コードを被覆する樹脂本体の厚みを確保することができる。 Thus, by making the groove width narrower than the pitch between the cords of the reinforcing cords in the tire width direction, the groove can be formed avoiding the position where the reinforcing cords are arranged closest to the surface in the resin annular belt, The thickness of the resin body covering the reinforcing cord can be ensured.
 本発明の第3の態様に係る空気入りタイヤは、前記溝の溝深さは、前記樹脂環状ベルトの厚みの1/10以上、1/2以下である。 In the pneumatic tire according to the third aspect of the present invention, the groove depth of the groove is 1/10 or more and 1/2 or less of the thickness of the resin annular belt.
 溝深さを樹脂環状ベルトの厚みの1/10以上1/2以下とすることにより、溝への応力集中を緩和しつつ、適切に樹脂環状ベルトを変形しやすくすることができる。 By setting the groove depth to 1/10 or more and 1/2 or less of the thickness of the resin annular belt, it is possible to appropriately deform the resin annular belt while alleviating stress concentration in the groove.
 本発明の第4の態様に係る空気入りタイヤは、前記溝は、前記樹脂環状ベルトのタイヤ赤道面からタイヤ径方向外端までのベルト半幅におけるタイヤ幅方向外側の1/2の範囲内の少なくとも一部に形成されている。 In the pneumatic tire according to the fourth aspect of the present invention, the groove is at least within a range of 1/2 of the outer side in the tire width direction in the belt half width from the tire equatorial plane to the outer end in the tire radial direction of the resin annular belt. Partly formed.
 樹脂環状ベルトのタイヤ赤道面からタイヤ径方向外端までのベルト半幅におけるタイヤ幅方向外側の1/2の範囲内に溝を形成することにより、当該溝を形成した部分が変形しやすくなり、樹脂環状ベルトのタイヤ幅方向外側部における応力集中を効果的に緩和することができる。 By forming a groove in the range of the outer half in the tire width direction in the half width of the belt from the tire equator surface of the resin annular belt to the outer end in the tire radial direction, the portion where the groove is formed is easily deformed. Stress concentration at the outer side portion of the annular belt in the tire width direction can be effectively reduced.
 本発明に係る空気入りタイヤによれば、ベルトの面内剪断剛性の確保とタイヤ軽量化の両立を図ることができる。 The pneumatic tire according to the present invention can achieve both the in-plane shear rigidity of the belt and the tire weight reduction.
本実施形態に係る空気入りタイヤを、タイヤ幅方向及びタイヤ径方向に沿って切断した状態を示す半断面図である。It is a half sectional view showing the state where the pneumatic tire concerning this embodiment was cut along the tire width direction and the tire radial direction. 図1の一部拡大図である。FIG. 2 is a partially enlarged view of FIG. 1. 本実施形態に係る空気入りタイヤの樹脂環状ベルトの一部破断平面図である。It is a partially broken top view of the resin annular belt of the pneumatic tire which concerns on this embodiment. 本実施形態に係る空気入りタイヤの樹脂環状ベルトの一部破断平面図である。It is a partially broken top view of the resin annular belt of the pneumatic tire which concerns on this embodiment.
 本発明の実施形態に係る空気入りタイヤ10について、図面を参照して説明する。本実施形態の空気入りタイヤ10は、例えば、乗用車に用いられる所謂ラジアルタイヤである。図1には、空気入りタイヤ10のタイヤ幅方向及びタイヤ径方向に沿って切断した切断面(タイヤ周方向に沿った方向から見た断面)の片側が示されている。なお、図中矢印Wは空気入りタイヤ10の幅方向(タイヤ幅方向)を示し、矢印Rは空気入りタイヤ10の径方向(タイヤ径方向)を示す。ここでいうタイヤ幅方向とは、空気入りタイヤ10の回転軸と平行な方向を指している。また、タイヤ径方向とは、空気入りタイヤ10の回転軸と直交する方向をいう。また、符号CLは空気入りタイヤ10の赤道面(タイヤ赤道面)を示している。 A pneumatic tire 10 according to an embodiment of the present invention will be described with reference to the drawings. The pneumatic tire 10 of the present embodiment is a so-called radial tire used for a passenger car, for example. FIG. 1 shows one side of a cut surface (a cross section viewed from the direction along the tire circumferential direction) cut along the tire width direction and the tire radial direction of the pneumatic tire 10. In the drawing, an arrow W indicates the width direction (tire width direction) of the pneumatic tire 10, and an arrow R indicates the radial direction (tire radial direction) of the pneumatic tire 10. The tire width direction here refers to a direction parallel to the rotation axis of the pneumatic tire 10. Further, the tire radial direction refers to a direction orthogonal to the rotation axis of the pneumatic tire 10. Reference sign CL indicates the equator plane (tire equator plane) of the pneumatic tire 10.
 また、本実施形態では、タイヤ径方向に沿って空気入りタイヤ10の回転軸に近い側を「タイヤ径方向内側」、タイヤ径方向に沿って空気入りタイヤ10の回転軸から遠い側を「タイヤ径方向外側」と記載する。一方、タイヤ幅方向に沿ってタイヤ赤道面CLに近い側を「タイヤ幅方向内側」、タイヤ幅方向に沿ってタイヤ赤道面CLから遠い側を「タイヤ幅方向外側」と記載する。 In the present embodiment, the side closer to the rotational axis of the pneumatic tire 10 along the tire radial direction is “inner side in the tire radial direction”, and the side farther from the rotational axis of the pneumatic tire 10 along the tire radial direction is “tire”. “Outside in the radial direction”. On the other hand, the side close to the tire equator plane CL along the tire width direction is described as “inner side in the tire width direction”, and the side far from the tire equator plane CL along the tire width direction is described as “outer side in the tire width direction”.
 また、本実施形態において、後述するトレッド30の接地端E、接地幅TWとは、空気入りタイヤ10をJATMA YEAR BOOK(2018年度版、日本自動車タイヤ協会規格)に規定されている標準リムに装着し、JATMA YEAR BOOKでの適用サイズ・プライレーティングにおける最大負荷能力(内圧-負荷能力対応表の太字荷重)に対応する空気圧(最大空気圧)の100%の内圧を充填し、静止した状態で水平な平板に対して回転軸が平行となるように配置し、最大の負荷能力に対応する質量を加えたときのものである。なお、使用地又は製造地において、TRA規格、ETRTO規格が適用される場合は各々の規格に従う。 Further, in this embodiment, the grounding end E and the grounding width TW of the tread 30 to be described later are that the pneumatic tire 10 is mounted on a standard rim defined in JATMA YEAR BOOK (2018 version, Japan Automobile Tire Association Standard). Filled with 100% internal pressure of the air pressure (maximum air pressure) corresponding to the maximum load capacity (bold load in the internal pressure-load capacity correspondence table) in the application size and ply rating in JATMA YEAR BOOK The rotation axis is arranged parallel to the flat plate, and the mass corresponding to the maximum load capacity is added. When the TRA standard or ETRTO standard is applied at the place of use or manufacturing, the respective standards are followed.
 図1に示されるように、空気入りタイヤ10は、ビードコア12Aが埋設された一対のビード部12、一対のビード部12からそれぞれタイヤ径方向外側に延びる一対のサイド部14、サイド部14からタイヤ幅方向内側に延びるクラウン部16、を有している。一方のビード部12と他方のビード部12との間には、1枚のカーカスプライ18Aからなるカーカス18が跨っている。カーカス18のタイヤ径方向外側のクラウン部16には、樹脂環状ベルト20が設けられている。樹脂環状ベルト20のタイヤ径方向外側には、トレッド30が配置されている。トレッド30には、タイヤ周方向に沿って複数の主溝32が形成されている。なお、図1では、空気入りタイヤ10におけるタイヤ赤道面CLの片側のみが図示されている。 As shown in FIG. 1, a pneumatic tire 10 includes a pair of bead portions 12 in which a bead core 12 </ b> A is embedded, a pair of side portions 14 that extend outward from the pair of bead portions 12 in the tire radial direction, and tires from the side portions 14. The crown portion 16 extends inward in the width direction. A carcass 18 including one carcass ply 18 </ b> A straddles between one bead portion 12 and the other bead portion 12. A resin annular belt 20 is provided on the crown portion 16 on the outer side in the tire radial direction of the carcass 18. A tread 30 is disposed on the outer side of the resin annular belt 20 in the tire radial direction. A plurality of main grooves 32 are formed in the tread 30 along the tire circumferential direction. In FIG. 1, only one side of the tire equatorial plane CL in the pneumatic tire 10 is illustrated.
 カーカスプライ18Aは、空気入りタイヤ10のラジアル方向に延びる複数本のコード(図示せず)をコーティングゴム(図示せず)で被覆して形成されている。カーカスプライ18Aのコードの材料は、例えば、PETであるが、従来公知の他の材料であっても良い。 The carcass ply 18A is formed by coating a plurality of cords (not shown) extending in the radial direction of the pneumatic tire 10 with a coating rubber (not shown). The material of the cord of the carcass ply 18A is, for example, PET, but may be another conventionally known material.
 カーカスプライ18Aは、タイヤ幅方向の端部分がビードコア12Aでタイヤ径方向外側に折り返されている。カーカスプライ18Aは、一方のビードコア12Aから他方のビードコア12Aに跨る部分が本体部18Bと呼ばれ、ビードコア12Aから折り返されている部分が折り返し部18Cと呼ばれる。 The end portion in the tire width direction of the carcass ply 18A is folded back outward in the tire radial direction by a bead core 12A. In the carcass ply 18A, a portion extending from one bead core 12A to the other bead core 12A is called a main body portion 18B, and a portion folded from the bead core 12A is called a folded portion 18C.
 カーカスプライ18Aの本体部18Bと折返し部18Cとの間には、ビードコア12Aからタイヤ径方向外側に向けて厚さが漸減するビードフィラー12Bが配置されている。なお、空気入りタイヤ10において、ビードフィラー12Bのタイヤ径方向外側端12Cからタイヤ径方向内側の部分がビード部12とされている。 Between the main body portion 18B and the turn-up portion 18C of the carcass ply 18A, a bead filler 12B whose thickness gradually decreases from the bead core 12A toward the outer side in the tire radial direction is disposed. In the pneumatic tire 10, a bead portion 12 is a portion on the inner side in the tire radial direction from the tire radial direction outer end 12C of the bead filler 12B.
 カーカス18のタイヤ内側にはゴムからなるインナーライナー26が配置されており、カーカス18のタイヤ幅方向外側には、ゴム材料からなるサイドゴム層24が配置されている。 An inner liner 26 made of rubber is arranged inside the tire of the carcass 18, and a side rubber layer 24 made of rubber material is arranged outside the carcass 18 in the tire width direction.
  図2に示すように、樹脂環状ベルト20は、タイヤ周方向に螺旋状に巻回された補強コード20Aと、補強コード20Aを被覆する樹脂材料の樹脂本体20Bを有している。補強コード20A間の間隔は、ピッチPとされている。樹脂環状ベルト20は、補強コード20Aが樹脂本体20Bで被覆された樹脂被覆コード20Cを螺旋状に巻回して一体化させたリング状の箍(たが)で構成することができる。図3Aに示されるように、補強コード20Aは、タイヤ周方向に対して角度θ1で傾斜するように配置されている。なお、図3A及び図3Bでは、補強コード20Aの延出方向CDを一点鎖線で示し、タイヤ周方向Sを実線で示している。 As shown in FIG. 2, the resin annular belt 20 has a reinforcing cord 20A wound spirally in the tire circumferential direction and a resin main body 20B made of a resin material that covers the reinforcing cord 20A. The interval between the reinforcing cords 20A is a pitch P. The resin annular belt 20 can be formed of a ring-shaped ridge obtained by spirally winding a resin-coated cord 20C in which a reinforcing cord 20A is covered with a resin main body 20B. As shown in FIG. 3A, the reinforcing cord 20A is disposed so as to be inclined at an angle θ1 with respect to the tire circumferential direction. 3A and 3B, the extending direction CD of the reinforcing cord 20A is indicated by a one-dot chain line, and the tire circumferential direction S is indicated by a solid line.
 なお、本実施形態では、1本の樹脂被覆コード20Cをタイヤ周方向に螺旋状に巻いて樹脂環状ベルト20を形成したが、他の構成でタイヤ周方向に沿って延在する補強コード20Aを樹脂本体20B内に埋設させてもよい。例えば、樹脂被覆コード20Cをリング状に形成し、リング状の複数の樹脂被覆コード20Cをタイヤ幅方向に並べて形成することもできる。樹脂本体20Bには、サイドゴム層24を構成するゴム材料、及び後述するトレッド30を形成するゴム材料よりも引張弾性率の高い樹脂材料が用いられている。樹脂本体20Bの引張弾性率(JIS K7113:1995に規定される)は、100MPa以上が好ましい。また、樹脂本体20Bの引張弾性率の上限は、1000MPa以下とすることが好ましい。なお、樹脂本体20Bの引張弾性率は、200~700MPaの範囲内が特に好ましい。 In the present embodiment, one resin-coated cord 20C is spirally wound in the tire circumferential direction to form the resin annular belt 20. However, the reinforcing cord 20A extending along the tire circumferential direction in another configuration is provided. It may be embedded in the resin main body 20B. For example, the resin-coated cord 20C may be formed in a ring shape, and a plurality of ring-shaped resin-coated cords 20C may be formed side by side in the tire width direction. A resin material having a higher tensile elastic modulus than that of the rubber material constituting the side rubber layer 24 and the rubber material forming the tread 30 described later is used for the resin main body 20B. The tensile elastic modulus (specified in JIS K7113: 1995) of the resin main body 20B is preferably 100 MPa or more. Moreover, it is preferable that the upper limit of the tensile elasticity modulus of the resin main body 20B shall be 1000 Mpa or less. The tensile elastic modulus of the resin main body 20B is particularly preferably in the range of 200 to 700 MPa.
 樹脂本体20Bの材料としては、例えば、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂、及び(メタ)アクリル系樹脂、EVA樹脂、塩化ビニル樹脂、フッ素系樹脂、シリコーン系樹脂等の汎用樹脂のほか、エンジニアリングプラスチック(スーパーエンジニアリングプラスチックを含む)等を用いることができる。なお、ここでの樹脂材料には、加硫ゴムは含まれない。 Examples of the material of the resin main body 20B include thermoplastic resins, thermoplastic elastomers, thermosetting resins, and (meth) acrylic resins, EVA resins, vinyl chloride resins, fluorine resins, silicone resins, and other general-purpose resins. In addition, engineering plastics (including super engineering plastics) can be used. The resin material here does not include vulcanized rubber.
 熱可塑性樹脂(熱可塑性エラストマーを含む)とは、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になる高分子化合物をいう。本明細書では、このうち、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物を熱可塑性エラストマーとし、温度上昇と共に材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有しない高分子化合物をエラストマーでない熱可塑性樹脂として、区別する。 Thermoplastic resin (including thermoplastic elastomer) refers to a polymer compound that softens and flows as the temperature rises and becomes relatively hard and strong when cooled. In the present specification, among these, the material softens and flows with increasing temperature, and becomes relatively hard and strong when cooled, and a high molecular compound having rubber-like elasticity is a thermoplastic elastomer, and the material increases with increasing temperature. Is softened, fluidized, and becomes a relatively hard and strong state when cooled, and a high molecular compound having no rubber-like elasticity is distinguished as a thermoplastic resin that is not an elastomer.
 熱可塑性樹脂(熱可塑性エラストマーを含む)としては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、及び、動的架橋型熱可塑性エラストマー(TPV)、ならびに、ポリオレフィン系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂、ポリアミド系熱可塑性樹脂、及び、ポリエステル系熱可塑性樹脂等が挙げられる。 Thermoplastic resins (including thermoplastic elastomers) include polyolefin-based thermoplastic elastomers (TPO), polystyrene-based thermoplastic elastomers (TPS), polyamide-based thermoplastic elastomers (TPA), polyurethane-based thermoplastic elastomers (TPU), and polyesters. Thermoplastic thermoplastic elastomer (TPC), dynamically crosslinked thermoplastic elastomer (TPV), polyolefin thermoplastic resin, polystyrene thermoplastic resin, polyamide thermoplastic resin, polyester thermoplastic resin, etc. Can be mentioned.
 熱硬化性樹脂とは、温度上昇と共に3次元的網目構造を形成し、硬化する高分子化合物をいい、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂等が挙げられる。 The thermosetting resin refers to a polymer compound that forms a three-dimensional network structure as the temperature rises and cures, and examples thereof include a phenol resin, an epoxy resin, a melamine resin, and a urea resin.
 また、補強コード20Aはスチールコードとされている。このスチールコードは、スチールを主成分とし、炭素、マンガン、ケイ素、リン、硫黄、銅、クロムなど種々の微量含有物を含むことができる。 The reinforcement cord 20A is a steel cord. The steel cord is mainly composed of steel and can contain various trace contents such as carbon, manganese, silicon, phosphorus, sulfur, copper, and chromium.
 図2に示されるように、樹脂環状ベルト20のタイヤ幅方向の外側部には、溝24が形成されている。溝24は、樹脂本体20Bのタイヤ径方向外側及び内側に形成されている。樹脂本体20Bのタイヤ径方向内側に形成された溝24を内溝24Aと称し、タイヤ径方向外側に形成された溝24を外溝24Bと称する。溝24は、補強コード20Aの延在方向に沿って螺旋状に形成されている。溝24は、補強コード20Aと同様に、タイヤ周方向に対して角度θ1で傾斜するように配置されている(図3A参照)。また、溝24は、タイヤ幅方向において、隣接する補強コード20A間に形成されている。溝24の溝底は、R状とされている。溝24の溝幅W1は、補強コード20AのピッチPよりも狭幅とされている。溝24は、樹脂環状ベルト20の表面から補強コード20Aが最も近くなる位置を避けるように形成されている。 As shown in FIG. 2, a groove 24 is formed on the outer side of the resin annular belt 20 in the tire width direction. The grooves 24 are formed on the outer side and the inner side in the tire radial direction of the resin main body 20B. The groove 24 formed on the inner side in the tire radial direction of the resin main body 20B is referred to as an inner groove 24A, and the groove 24 formed on the outer side in the tire radial direction is referred to as an outer groove 24B. The groove 24 is formed in a spiral shape along the extending direction of the reinforcing cord 20A. Similar to the reinforcing cord 20A, the groove 24 is disposed so as to be inclined at an angle θ1 with respect to the tire circumferential direction (see FIG. 3A). Further, the groove 24 is formed between adjacent reinforcing cords 20A in the tire width direction. The groove bottom of the groove 24 has an R shape. The groove width W1 of the groove 24 is narrower than the pitch P of the reinforcing cord 20A. The groove 24 is formed so as to avoid a position where the reinforcing cord 20 </ b> A is closest to the surface of the resin annular belt 20.
 溝24が形成されている範囲を溝領域22とすると、溝領域22は、少なくとも、樹脂環状ベルト20のタイヤ赤道面CLからタイヤ径方向外端までのベルト半幅BW/2における、タイヤ幅方向外側の1/2の範囲内にあることが好ましい。また、溝領域22は、タイヤ幅方向の最外側に配置された主溝32よりも、タイヤ幅方向の外側に配置されていることが好ましい。なお、溝領域22は、タイヤ幅方向の両端に存在している。 When the region where the groove 24 is formed is defined as the groove region 22, the groove region 22 is at least the outer side in the tire width direction in the belt half width BW / 2 from the tire equatorial plane CL of the resin annular belt 20 to the outer end in the tire radial direction. It is preferable that it exists in the range of 1/2. Moreover, it is preferable that the groove | channel area | region 22 is arrange | positioned on the outer side of a tire width direction rather than the main groove 32 arrange | positioned on the outermost side of a tire width direction. In addition, the groove area | region 22 exists in the both ends of a tire width direction.
 溝24の深さD1は、樹脂本体20B(樹脂環状ベルト20)の厚みの1/2以下であることが好ましい。また、溝24の深さD1は、樹脂本体20B(樹脂環状ベルト20)の厚みの1/10以上であることが好ましい。溝24の深さD1を樹脂本体20B(樹脂環状ベルト20)の厚みの1/2以下とすることにより、樹脂環状ベルト20のタイヤ幅方向外側の強度を確保することができる。また、溝24の深さを、樹脂本体20B(樹脂環状ベルト20)の厚みの1/10以上とすることにより、効果的に剛性緩和を行うことができる。 The depth D1 of the groove 24 is preferably ½ or less of the thickness of the resin main body 20B (resin annular belt 20). Moreover, it is preferable that the depth D1 of the groove | channel 24 is 1/10 or more of the thickness of the resin main body 20B (resin annular belt 20). By setting the depth D1 of the groove 24 to ½ or less of the thickness of the resin main body 20B (resin annular belt 20), the strength of the resin annular belt 20 on the outer side in the tire width direction can be ensured. Moreover, rigidity reduction can be effectively performed by making the depth of the groove | channel 24 into 1/10 or more of the thickness of the resin main body 20B (resin annular belt 20).
 溝24は、樹脂環状ベルト20を製造する際に形成することができる。タイヤ径方向内側の内溝24Aは、樹脂環状ベルト成形時に樹脂被覆コード20Cを螺旋状に巻回すドラムの外周面に、内溝24Aに対応する凸状を設けておき、当該凸状を転写することにより形成することができる。タイヤ径方向外側の外溝24Bは、樹脂被覆コード20Cをドラムの外周面に巻回す際に、樹脂被覆コード20Cをドラムへ押し付けるためのローラーに、外溝24Bに対応する凸状を設けておき、当該凸状を転写することにより形成することができる。なお、内溝24A及び外溝24Bは、樹脂環状ベルト20を製造した後の切削加工により形成することもできる。 The groove 24 can be formed when the resin annular belt 20 is manufactured. The inner groove 24A on the inner side in the tire radial direction is provided with a convex shape corresponding to the inner groove 24A on the outer peripheral surface of a drum around which the resin-coated cord 20C is spirally wound during resin annular belt molding, and the convex shape is transferred. Can be formed. The outer groove 24B on the outer side in the tire radial direction is provided with a convex shape corresponding to the outer groove 24B on a roller for pressing the resin-coated cord 20C against the drum when the resin-coated cord 20C is wound around the outer peripheral surface of the drum. It can be formed by transferring the convex shape. The inner grooves 24A and the outer grooves 24B can be formed by cutting after the resin annular belt 20 is manufactured.
 本実施形態の樹脂環状ベルト20は、タイヤ幅方向中央部の外径をタイヤ幅方向両端部の外径よりも大径とし、タイヤ軸線に沿った断面で見たときに、タイヤ幅方向中央部がタイヤ径方向外側へ凸となる緩やかな円弧状としたが、これに限らず、樹脂環状ベルト20を一定径、一定厚さで形成し、タイヤ軸線に沿った断面で見たときに一直線状とすることもできる。 The resin annular belt 20 of the present embodiment has an outer diameter at the center in the tire width direction larger than the outer diameter at both ends in the tire width direction, and when viewed in a cross section along the tire axis, However, the present invention is not limited thereto, and the resin annular belt 20 is formed with a constant diameter and a constant thickness, and is straight when viewed in a cross section along the tire axis. It can also be.
 本実施形態の樹脂環状ベルト20の厚さ寸法は、空気入りタイヤ10が乗用車用の場合、具体的には、0.70mm以上とすることが好ましい。また、樹脂環状ベルト20の幅BWは、タイヤ軸方向に沿って計測するトレッド30の接地幅TW(接地端E間の距離)に対して75%以上、110%以下とすることが好ましい。 The thickness dimension of the resin annular belt 20 of the present embodiment is preferably 0.70 mm or more when the pneumatic tire 10 is for a passenger car. The width BW of the resin annular belt 20 is preferably 75% or more and 110% or less with respect to the contact width TW (distance between the contact ends E) of the tread 30 measured along the tire axial direction.
 樹脂環状ベルト20のタイヤ径方向外側には、ゴム材料からなるトレッド30が配置されている。トレッド30に用いるゴム材料は、従来一般公知のものが用いられる。トレッド30には、排水用の主溝32が形成されている。 A tread 30 made of a rubber material is disposed on the outer side of the resin annular belt 20 in the tire radial direction. Conventionally known rubber materials are used for the tread 30. A main groove 32 for drainage is formed in the tread 30.
(作用、効果)
 次に、本実施形態の空気入りタイヤ10の作用、効果を説明する。
(Function, effect)
Next, functions and effects of the pneumatic tire 10 of the present embodiment will be described.
 本実施形態の空気入りタイヤ10では、カーカス18のクラウン部16が、樹脂環状ベルト20で補強されている。したがって、補強コード間にゴムが配置されたベルトで補強されている場合と比較して高い面内剪断剛性を得ることができる。樹脂環状ベルト20の面内剪断剛性が確保されることで、空気入りタイヤ10にスリップ角を付与した場合の横力を十分に発生させることができ、操縦安定性を確保することができ、また、応答性も向上させることができる。 In the pneumatic tire 10 of the present embodiment, the crown portion 16 of the carcass 18 is reinforced by the resin annular belt 20. Therefore, a higher in-plane shear rigidity can be obtained as compared with the case where the rubber is reinforced by the belt in which the rubber is disposed between the reinforcing cords. By ensuring the in-plane shear rigidity of the resin annular belt 20, it is possible to sufficiently generate a lateral force when a slip angle is applied to the pneumatic tire 10, and to ensure steering stability. Responsiveness can also be improved.
 また、樹脂環状ベルト20により、面外曲げ剛性も確保され、空気入りタイヤ10に大きな横力が入力した際、トレッド30のバックリング(トレッド30の表面が波打って、一部が路面から離間する現象)を抑制することができる。 Further, the out-of-plane bending rigidity is secured by the resin annular belt 20, and when a large lateral force is input to the pneumatic tire 10, the tread 30 buckling (the surface of the tread 30 is undulated and a part thereof is separated from the road surface). Phenomenon).
 高い面内剪断剛性が得られる一方で、樹脂環状ベルト20のタイヤ幅方向端部には応力が集中しやすくなるが、樹脂環状ベルト20の溝領域22には、溝24が形成されている。したがって、樹脂環状ベルト20のタイヤ幅方向外側部は変形しやすくなり、タイヤ幅方向外側部における応力集中を緩和することができる。また、溝24は、タイヤ周方向に沿って形成されているので、タイヤ周方向と交差する方向の変形、即ち、タイヤ幅方向に沿った変形を抑制することができる。 While high in-plane shear rigidity can be obtained, stress tends to concentrate on the end of the resin annular belt 20 in the tire width direction, but a groove 24 is formed in the groove region 22 of the resin annular belt 20. Therefore, the outer side portion in the tire width direction of the resin annular belt 20 is easily deformed, and the stress concentration in the outer side portion in the tire width direction can be reduced. Moreover, since the groove | channel 24 is formed along the tire circumferential direction, it can suppress the deformation | transformation of the direction which cross | intersects a tire circumferential direction, ie, the deformation | transformation along a tire width direction.
 また、本実施形態では、溝24の溝幅W1は、タイヤ幅方向における補強コード20Aのコード間ピッチPよりも狭い。これにより、樹脂環状ベルト20において補強コード20Aドが最も表面近くに配置される位置を避けて溝24を形成することができ、補強コード20Aを被覆する樹脂本体20Bの厚みを確保することができる。 In the present embodiment, the groove width W1 of the groove 24 is narrower than the inter-cord pitch P of the reinforcing cord 20A in the tire width direction. Accordingly, the groove 24 can be formed by avoiding the position where the reinforcing cord 20A is disposed closest to the surface in the resin annular belt 20, and the thickness of the resin main body 20B covering the reinforcing cord 20A can be ensured. .
 なお、本実施形態では、溝24を補強コード20Aに沿って螺旋状に形成したが、溝24を補強コード20Aと交差するように、補強コード20Aよりもタイヤ周方向に対して角度を大きくして螺旋状に形成してもよいし、タイヤ周方向に対して角度を小さくして螺旋状に形成してもよい。また、図3Bに示されるように、溝24をタイヤ周方向と同方向に円環状に複数本形成してもよい。 In this embodiment, the groove 24 is formed in a spiral shape along the reinforcing cord 20A. However, the angle of the groove 24 is larger than that of the reinforcing cord 20A with respect to the tire circumferential direction so as to intersect the reinforcing cord 20A. It may be formed in a spiral shape, or may be formed in a spiral shape with a smaller angle with respect to the tire circumferential direction. As shown in FIG. 3B, a plurality of grooves 24 may be formed in an annular shape in the same direction as the tire circumferential direction.
 また、本実施形態では、樹脂環状ベルト20のタイヤ径方向内側と外側の両方に形成したが、いずれか一方にのみ形成してもよい。すなわち、内溝24Aまたは外溝24Bのいずれか一方のみを形成してもよい。 In the present embodiment, the resin annular belt 20 is formed on both the inner side and the outer side in the tire radial direction, but may be formed only on either one. That is, only one of the inner groove 24A and the outer groove 24B may be formed.
 また、溝24は、補強コード20AのピッチPよりも細かい間隔で形成してもよいし、ピッチPよりも大きい間隔で形成してもよい。 Further, the grooves 24 may be formed at an interval finer than the pitch P of the reinforcing cord 20A, or may be formed at an interval larger than the pitch P.
 2018年6月8日に出願された日本国特許出願2018-109987号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-109987 filed on June 8, 2018 is incorporated herein by reference in its entirety.
All references, patent applications, and technical standards mentioned in this specification are to the same extent as if each reference, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (4)

  1.  一対のビードコアと、
     前記一対のビードコアに跨って形成されたカーカスと、
     前記カーカスのタイヤ径方向外側に配置され、タイヤ周方向に延在すると共にタイヤ幅方向に間隔をあけて並ぶ補強コードと、樹脂で形成されて環状とされ前記補強コードを被覆しタイヤ径方向の外側及び内側の少なくとも一方面のタイヤ幅方向外側部にタイヤ周方向に沿って溝が形成された樹脂本体と、を有する樹脂環状ベルトと、
     を備えた空気入りタイヤ。
    A pair of bead cores;
    A carcass formed across the pair of bead cores;
    Reinforcement cords arranged outside the carcass in the tire radial direction, extending in the tire circumferential direction and lined up at intervals in the tire width direction, and formed in resin to form an annular shape, covering the reinforcement cord and extending in the tire radial direction A resin annular belt having a resin main body formed with grooves along the tire circumferential direction on the outer side in the tire width direction on at least one side of the outer side and the inner side;
    Pneumatic tire with
  2.  前記溝の溝幅は、前記タイヤ幅方向における前記補強コードのコード間ピッチよりも狭い、請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein a groove width of the groove is narrower than a pitch between cords of the reinforcing cord in the tire width direction.
  3.  前記溝の溝深さは、前記樹脂環状ベルトの厚みの1/10以上、1/2以下である、請求項1または請求項2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein a groove depth of the groove is 1/10 or more and 1/2 or less of a thickness of the resin annular belt.
  4.  前記溝は、前記樹脂環状ベルトのタイヤ赤道面からタイヤ径方向外端までのベルト半幅におけるタイヤ幅方向外側の1/2の範囲内の少なくとも一部に形成されている、請求項1~請求項3のいずれか1項に記載の空気入りタイヤ。 The groove is formed in at least a part of a half of the belt half width from the tire equatorial plane to the outer end in the tire radial direction of the resin annular belt within a range of the outer side in the tire width direction. 4. The pneumatic tire according to any one of 3 above.
PCT/JP2019/021324 2018-06-08 2019-05-29 Pneumatic tire WO2019235323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-109987 2018-06-08
JP2018109987A JP2019209922A (en) 2018-06-08 2018-06-08 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2019235323A1 true WO2019235323A1 (en) 2019-12-12

Family

ID=68770810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021324 WO2019235323A1 (en) 2018-06-08 2019-05-29 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP2019209922A (en)
WO (1) WO2019235323A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069745A (en) * 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2011207156A (en) * 2010-03-30 2011-10-20 Bridgestone Corp Method of manufacturing tire, apparatus for manufacturing tire, and tire
JP2014210487A (en) * 2013-04-18 2014-11-13 株式会社ブリヂストン Tire and tire manufacturing method
WO2018074196A1 (en) * 2016-10-18 2018-04-26 株式会社ブリヂストン Tire
WO2018131423A1 (en) * 2017-01-11 2018-07-19 株式会社ブリヂストン Tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069745A (en) * 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2011207156A (en) * 2010-03-30 2011-10-20 Bridgestone Corp Method of manufacturing tire, apparatus for manufacturing tire, and tire
JP2014210487A (en) * 2013-04-18 2014-11-13 株式会社ブリヂストン Tire and tire manufacturing method
WO2018074196A1 (en) * 2016-10-18 2018-04-26 株式会社ブリヂストン Tire
WO2018131423A1 (en) * 2017-01-11 2018-07-19 株式会社ブリヂストン Tire

Also Published As

Publication number Publication date
JP2019209922A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP6211320B2 (en) tire
WO2019244738A1 (en) Pneumatic tire
WO2019220888A1 (en) Pneumatic tire
WO2019235323A1 (en) Pneumatic tire
WO2018235569A1 (en) Run-flat tire
WO2017188409A1 (en) Run flat radial tire
WO2019239898A1 (en) Pneumatic tire
WO2015156154A1 (en) Tire
WO2019244740A1 (en) Pneumatic tire
WO2020137627A1 (en) Run-flat tire
WO2019244770A1 (en) Tire
JP6781671B2 (en) Run flat tire
WO2019220889A1 (en) Pneumatic tire
WO2019244737A1 (en) Pneumatic tire
WO2019244741A1 (en) Pneumatic tire
WO2019230402A1 (en) Run-flat tire
WO2019230811A1 (en) Pneumatic tire
WO2018235570A1 (en) Run-flat tire
WO2019244739A1 (en) Pneumatic tire
WO2019244851A1 (en) Pneumatic tire
JP4819713B2 (en) Pneumatic tire
WO2019244773A1 (en) Pneumatic tire
WO2020004040A1 (en) Pneumatic tire
WO2019230812A1 (en) Pneumatic tire
WO2019239895A1 (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815553

Country of ref document: EP

Kind code of ref document: A1