[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019230772A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2019230772A1
WO2019230772A1 PCT/JP2019/021237 JP2019021237W WO2019230772A1 WO 2019230772 A1 WO2019230772 A1 WO 2019230772A1 JP 2019021237 W JP2019021237 W JP 2019021237W WO 2019230772 A1 WO2019230772 A1 WO 2019230772A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
annular body
width direction
tire
tire width
Prior art date
Application number
PCT/JP2019/021237
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 筆本
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2019230772A1 publication Critical patent/WO2019230772A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre

Definitions

  • the present invention relates to a pneumatic tire.
  • an inclined belt including a metal cord inclined with respect to the tire circumferential direction on the outer side in the tire radial direction of the carcass disposed across the bead portions, and a circumference including a metal cord extending along the tire circumferential direction.
  • a pneumatic tire in which a belt including a directional belt is disposed.
  • Patent Document 1 discloses a carcass, an active reinforcing material composed of a single layer of reinforcing elements inclined by 4 ° to 7 ° with respect to the tire circumferential direction, and a flat surface positioned in the central portion of the crown of the carcass.
  • a tire comprising a crown reinforcement comprising a circumferential polymer reinforcement element is disclosed.
  • the weight of the tire can be reduced by using a part of the belt layer including the cord as a flat circumferential polymer reinforcing element as a resin annular body.
  • the tire disclosed in Patent Document 1 still has room for improvement from the viewpoint of durability of the resin annular body.
  • An object of the present invention is to provide a pneumatic tire in which the durability of the resin annular body is improved while reducing the weight using the resin annular body.
  • the pneumatic tire according to the first aspect of the present invention is coated with a resin annular body having a reduced diameter portion whose outer diameter decreases toward the outer end in the tire width direction at both ends in the tire width direction, and a coating resin.
  • the resin-coated cord is formed of a resin-coated cord, and the resin-coated cord extends in the tire radial direction of the resin annular body across the reduced diameter portions at both ends in the tire width direction of the resin annular body.
  • a resin-coated belt formed in a spirally wound state with respect to the outer surface, and the resin-coated belt is joined to the resin annular body.
  • the maximum thickness at both ends in the tire width direction is thicker than the maximum thickness at the center in the tire width direction of the resin annular body.
  • “applicable rim” is an industrial standard that is effective in the area where pneumatic tires are produced and used.
  • JATMA Joint Automobile Tire Association
  • JATMA YEAR BOOK JATMA YEAR BOOK
  • ETRTO European STANDARDS MANUAL of TIRE and RIM Technical Organization
  • STANDARDS of ETRATO STANDARDS in the applicable size described in YEAR BOOK etc.
  • TRA The Tire and Rim Association, Inc.
  • Applied Rim refers to future sizes in addition to the current size
  • Sizes to be described in the future include the sizes described as “FUTURE DEVELOPMENTS” in the ETRTO 2013 edition).
  • a size not described in the industry standard it means a rim having a width corresponding to the bead width of the pneumatic tire.
  • the “specified internal pressure” refers to the air pressure (maximum air pressure) corresponding to the maximum load capacity of a single wheel in the applicable size / ply rating described in the above JATMA YEAR BOOK, etc. In the case of no size, the air pressure (maximum air pressure) corresponding to the maximum load capacity defined for each vehicle on which the tire is mounted is assumed. In addition, the “maximum load load” described later is defined for each vehicle on which a tire is mounted in the case of a tire maximum load capacity of the standard of JATMA or the like in the tire of an applicable size, or in the case of a size not described in the industrial standard. It means the load corresponding to the maximum load capacity.
  • FIG. 1 is a view showing a pneumatic tire 1 (hereinafter simply referred to as “tire 1”) as the present embodiment.
  • FIG. 1 is a cross-sectional view of the tire 1 in a cross section parallel to the tire width direction A.
  • this cross section is referred to as “tire width direction cross section”.
  • the tire 1 of this embodiment is a structure symmetrical with respect to the tire equatorial plane CL, a structure asymmetrical with respect to the tire equatorial plane CL may be sufficient.
  • the tire 1 includes a tread portion 1a, a pair of sidewall portions 1b extending inward in the tire radial direction B from both ends in the tire width direction A of the tread portion 1a, and each sidewall portion 1b. And a pair of bead portions 1c provided at the inner end in the tire radial direction B.
  • the tire 1 of this embodiment is a tubeless type radial tire for a passenger car.
  • the “tread portion 1a” means a portion sandwiched between the tread ends TE on both sides in the tire width direction A.
  • the “bead portion 1 c” means a portion where a bead member 3 described later is located in the tire radial direction B.
  • the “sidewall portion 1b” means a portion between the tread portion 1a and the bead portion 1c.
  • the “tread end TE” means a position on the outermost side in the tire width direction of the ground contact surface in a state where the tire is mounted on the above-described application rim, filled with the above-mentioned specified internal pressure, and a maximum load is applied. .
  • the tire 1 includes a bead member 3, a carcass 4, a resin annular body 5, a resin-coated belt 6, a tread rubber 7, a side rubber 8, and an inner liner 9.
  • the bead member 3 is embedded in the bead portion 1c.
  • the bead member 3 includes a bead core 3a and a rubber bead filler 3b positioned on the outer side in the tire radial direction B with respect to the bead core 3a.
  • the bead core 3a includes a plurality of bead wires that are covered with rubber.
  • the bead wire is formed of a steel cord.
  • the steel cord can be made of, for example, steel monofilament or stranded wire.
  • the carcass 4 extends between the pair of bead portions 1c, more specifically between the bead cores 3a of the pair of bead members 3, and extends in a toroidal shape.
  • the carcass 4 has at least a radial structure.
  • the carcass 4 includes one or more carcass plies 4a in which carcass cords are arranged at an angle of, for example, 75 ° to 90 ° with respect to the tire circumferential direction C (see FIG. 1 and the like).
  • the carcass ply 4a includes a ply body portion positioned between the pair of bead cores 3a, and a ply folding portion that is folded from the inside to the outside in the tire width direction A around the bead core 3a at both ends of the ply body portion.
  • a bead filler 3b extending from the bead core 3a to the outer side in the tire radial direction B is disposed between the ply main body portion and the ply folded portion.
  • the carcass cord constituting the carcass ply 4a a polyester cord is adopted in this embodiment, but other than this, an organic fiber cord such as nylon, rayon, aramid, or a metal cord such as steel is adopted as necessary. Also good. Also, the number of carcass plies 4a may be two or more.
  • the resin annular body 5 is disposed in the tread portion 1a. Further, the resin annular body 5 includes reduced diameter portions 13 and 14 whose outer diameters are reduced toward the outer ends in the tire width direction A at both ends in the tire width direction A. Specifically, the outer surface in the tire radial direction B of the resin annular body 5 of the present embodiment has a barrel shape, and not only the end portion in the tire width direction A but also both sides in the tire width direction A sandwiching the tire equatorial plane CL.
  • the diameter-reducing portions 13 and 14 are configured. However, a resin annular body in which the reduced diameter portions 13 and 14 are provided only at the end portion in the tire width direction A may be used. Further, the reduced diameter portions 13 and 14 at the ends of the resin annular body 5 in the tire width direction A extend to the outside in the tire width direction A from the tread ends TE.
  • the end of the resin annular body in the tire width direction A means a portion in the tire width direction A that is separated from the tire equator plane CL by a distance of 1/4 of the tire ground contact width W.
  • the central portion of the resin annular body in the tire width direction A means a portion in the tire width direction A that is within a distance of 1/4 of the tire ground contact width W from the tire equatorial plane CL.
  • the “tire contact width” is a distance in the tire width direction between the tread ends TE in a state where the tire is mounted on the above-described applied rim, filled with the specified internal pressure, and in a no-load state.
  • the resin annular body 5 includes the reduced diameter portions 13 and 14 and the reduced diameter portions 13 and 14 are not provided and the inner diameter and the outer diameter are uniform, the position in the vicinity of the tread end TE.
  • it is possible to suppress the ground pressure from locally increasing and to suppress uneven wear on the outer surface of the tread.
  • it can suppress that a distortion concentrates on the edge part of the tire width direction A of the resin annular body 5.
  • FIG. Thereby, it can suppress that damage, such as a crack, arises in the edge part of the tire width direction A of the resin annular body 5.
  • the resin constituting the resin annular body 5 for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam or a resin that is cured by thermal rearrangement can also be used.
  • the resin constituting the resin annular body 5 does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
  • thermoplastic elastomers polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV).
  • TPO polyolefin-based thermoplastic elastomer
  • TPS polystyrene-based thermoplastic elastomer
  • TPA polyamide-based thermoplastic elastomer
  • TPU polyurethane-based thermoplastic elastomer
  • TPC polyester-based thermoplastic elastomer
  • TPV dynamic crosslinkable thermoplastic elastomer
  • thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like.
  • the deflection temperature under load (at the time of 0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used.
  • a material having a tensile breaking elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used.
  • Particularly preferred are TPA, TPC, TPV, polyamide resin, polyester resin and blends thereof.
  • the elastic modulus of the resin annular body 5 can be set in the range of 100 MPa to 1000 MPa, more preferably in the range of 200 MPa to 700 MPa.
  • the elastic modulus of the resin annular body 5 means a tensile elastic modulus.
  • the tensile elastic modulus is measured according to JIS K7113: 1995. Specifically, using a Shimadzu Autograph AGS-J (5KN) manufactured by Shimadzu Corporation, the tensile modulus is set to 100 mm / min and the tensile elastic modulus is measured.
  • the measurement data may be adjusted by punching out from the resin annular body.
  • a measurement sample of the same material as the resin annular body is separately prepared and the elastic modulus is measured. May be.
  • the resin annular body 5 of the present embodiment extends in the tire width direction A to the outside of the resin-coated belt 6 described later.
  • the resin annular body 5 of the present embodiment is located inside the tire radial direction B of the resin-coated belt 6.
  • the resin annular body 5 does not include a cord. That is, no cord is arranged in the resin annular body 5.
  • the maximum thickness T1 of both ends of the resin annular body 5 in the tire width direction A is thicker than the maximum thickness T2 of the central part of the resin annular body 5 in the tire width direction A.
  • a resin annular body 5 whose thickness gradually increases from the center position in the tire width direction A intersecting the tire equatorial plane CL toward the outside in the tire width direction A is shown. ing.
  • the maximum thickness T1 at both ends in the tire width direction A of the resin annular body 5 of the present embodiment is the thickness at the position of the outer end in the tire width direction A.
  • the maximum thickness T2 of the central portion in the tire width direction A of the resin annular body 5 of the present embodiment is a thickness at a position adjacent to the end portion in the tire width direction A.
  • the resin annular body 5 While maintaining the weight reduction of the tire 1 without increasing the thickness of the center portion in the tire width direction A, the thickness of the end portion in the tire width direction A of the resin annular body 5 is increased, so that the tire of the resin annular body 5 is obtained. It can suppress that the diameter reduction parts 13 and 14 of the edge part of the width direction A are cracked by a ground pressure. That is, the durability of the resin annular body 5 can be improved while realizing the weight reduction of the tire 1 using the resin annular body 5.
  • the maximum thickness T1 of the end portion in the tire width direction A of the resin annular body 5 is set in the range of 0.1 mm to 3 mm, more preferably in the range of 0.3 mm to 2 mm. Further, the maximum thickness T2 of the central portion in the tire width direction A of the resin annular body 5 is set in the range of 0.1 mm to 2.5 mm, more preferably in the range of 0.2 mm to 1.5 mm.
  • the resin-coated belt 6 is disposed on the outer side in the tire radial direction B of the resin annular body 5 in the tread portion 1a.
  • the resin-coated belt 6 includes a cord 10b that is covered with a coating resin 10a.
  • the resin-coated belt 6 of the present embodiment has one or more layers (1 in the present embodiment) arranged on the outer side in the tire radial direction B with respect to the crown portion of the carcass 4 and the resin annular body 5. Layer) belt layer. More specifically, as shown in FIG. 1, the resin-coated belt 6 of the present embodiment is constituted by a circumferential belt 6a composed of only one circumferential belt layer.
  • a steel cord as a metal belt cord is 10 ° or less, preferably 5 ° or less, more preferably 5 ° or less with respect to the tire circumferential direction C (see FIG. 1 and the like). Is a spiral belt formed in a state of being spirally wound around the tire center axis at an angle of 2 ° or less. More specifically, the circumferential belt 6a as the resin-coated belt 6 of the present embodiment is formed by a resin-coated cord 10 made of a cord 10b such as a steel cord coated with a coating resin 10a.
  • the circumferential belt 6a as the resin-coated belt 6 extends between the reduced diameter portions 13 and 14 at both ends in the tire width direction A of the resin annular body 5 on the outer surface of the resin annular body 5 in the tire radial direction B.
  • the resin-coated cord 10 is wound around the outer surface of the resin annular body 5 in the tire radial direction B while being joined to the outer surface of the resin annular body 5 in the tire radial direction B.
  • the resin-coated cord 10 and the resin annular body 5 are joined by welding the coating resin 10 a of the resin-coated cord 10 and the resin annular body 5.
  • the coating resin 10a of the resin coating cord 10 and the resin annular body 5 are not limited to welding, and may be joined by bonding with an adhesive or the like.
  • the resin-coated cord 10 of the present embodiment is joined at adjacent portions in the tire width direction A.
  • the parts adjacent to the tire width direction A of the resin-coated cord 10 are joined together by welding the coating resin 10a.
  • the portions adjacent to the tire width direction A of the resin-coated cord 10 are not limited to welding, and may be joined by bonding with an adhesive or the like.
  • the portions adjacent to each other in the tire width direction A of the resin-coated cord 10 spirally wound around the resin annular body 5 are at least the positions of the reduced diameter portions 13 and 14 of the resin annular body 5 in the tire width direction A. It is preferable to adopt a configuration in which the two are joined. As described above, the diameter-reduced portions 13 and 14 of the annular resin body 5 are easily strained due to the contact pressure and easily damaged. Therefore, the ground pressure can be distributed over a wider range of the resin annular body 5 through the resin-coated belt 6 by joining the portions of the resin-coated cord 10 adjacent to each other in the tire width direction A. As a result, it is possible to suppress strain from concentrating on the reduced diameter portions 13 and 14 of the resin annular body 5, and the durability of the resin annular body 5 can be further improved.
  • the portions adjacent to each other in the tire width direction A of the resin-coated cord 10 spirally wound around the resin annular body 5 are the reduced diameter portion 13 of the resin annular body 5 in the tire width direction A and Not only the position 14 but also the entire region in the tire width direction A is joined.
  • the resin-coated belt 6 of the present embodiment has a substantially constant thickness regardless of the position in the tire width direction A.
  • the thickness of the resin-coated belt 6 of the present embodiment can be set, for example, in the range of 1.5 mm to 7 mm, more preferably in the range of 2 mm to 5 mm.
  • the elastic modulus of the coating resin 10a of the resin-coated belt 6 can be set in the range of 100 MPa to 1000 MPa, more preferably in the range of 200 MPa to 700 MPa.
  • the tensile elastic modulus is measured according to JIS K7113: 1995.
  • the tensile modulus is set to 100 mm / min and the tensile elastic modulus is measured.
  • the measurement data may be adjusted by punching out from the coating resin if possible.For example, a measurement sample of the same material as the coating resin is prepared separately and the elastic modulus is measured. May be.
  • the resin-coated cord 10 of the present embodiment includes two steel cords, but may be a resin-coated cord including only one steel cord, or a resin including three or more steel cords. It is good also as a covering cord.
  • the cord 10b can be any known material, for example, the above-described steel cord can be used.
  • the steel cord can be made of, for example, steel monofilament or stranded wire.
  • the cord 10b can also use organic fiber, carbon fiber, or those strands.
  • thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam, or a resin that is cured by thermal dislocation can also be used.
  • thermoplastic elastomers polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV).
  • thermoplastic resin examples include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like.
  • the deflection temperature under load (at the time of 0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used.
  • a material having a tensile breaking elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used.
  • the tensile elastic modulus (specified in JIS K7113: 1995) of the coating resin 10a that covers the cord 10b is preferably 50 MPa or more.
  • the tensile modulus of the coating resin 10a that covers the cord 10b is preferably 1000 MPa or less.
  • the coating resin 10a here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
  • the tread rubber 7 constitutes an outer surface of the tread portion 1a in the tire radial direction B (hereinafter referred to as “tread outer surface”), and the tread outer surface of the present embodiment has a tire circumferential direction C (see FIG. 1), a tread pattern including a circumferential groove 7a extending in the tire width direction A and a width direction groove (not shown) extending in the tire width direction A is formed.
  • the side rubber 8 constitutes the outer surface of the sidewall portion 1b in the tire width direction A, and is formed integrally with the tread rubber 7 described above.
  • the inner liner 9 is laminated on the inner surface of the carcass 4 and is formed of butyl rubber having low air permeability in the present embodiment.
  • the butyl rubber means butyl rubber and halogenated butyl rubber which is a derivative thereof.
  • the minimum thickness T3 of the resin annular body 5 of the present embodiment is preferably 80% or more of the maximum thickness T1 of the resin annular body 5, and preferably 90% or more. Is more preferable.
  • the minimum thickness T3 of the present embodiment means the thickness of the resin annular body 5 at the center position in the tire width direction A that intersects the tire equatorial plane CL.
  • the thickness of the resin annular body 5 is preferably in the range of 0.1 mm to 3.0 mm.
  • the minimum thickness T3 of the resin annular body 5 is preferably 0.1 mm or more
  • the maximum thickness T1 of the resin annular body 5 is preferably 3.0 mm or less.
  • FIG. 2 is an enlarged cross-sectional view showing an enlarged central portion in the tire width direction A of the resin annular body 5 shown in FIG.
  • the resin annular body 5 of the present embodiment is formed by joining a resin-made first annular portion 5 a and a resin-made second annular portion 5 b in the vicinity of the tire equatorial plane CL.
  • an annular end surface 11 on one side in the tire width direction A of the first annular portion 5a and an annular end surface 12 on the other side in the tire width direction A of the second annular portion 5b are provided.
  • the resin annular body 5 of the present embodiment has a seam formed by joining at a predetermined position in the tire width direction A.
  • the configuration is not limited to such a seam.
  • FIG. 3 is a view showing a resin annular body 305 as a modified example of the resin annular body 5 of the present embodiment.
  • the resin annular body 305 shown in FIG. 3 is an integrally molded product in which no seam is formed in the tire width direction A.
  • the manufacturing method of such a resin annular body 305 can utilize, for example, injection molding or blow molding, but the manufacturing method is not particularly limited.
  • the resin annular body 5 whose thickness gradually increases from the center position in the tire width direction A intersecting the tire equatorial plane CL toward the outside in the tire width direction A is shown.
  • the configuration is not particularly limited as long as the maximum thickness T1 of both end portions of A is thicker than the maximum thickness T2 of the central portion in the tire width direction A of the resin annular body.
  • FIG. 4 is a view showing a resin annular body 105 as a modified example of the resin annular body 5. Also in the resin annular body 105 shown in FIG. 4, the maximum thickness T ⁇ b> 1 at both ends in the tire width direction A is thicker than the maximum thickness T ⁇ b> 2 at the center in the tire width direction A of the resin annular body 105. In the resin annular body 105 shown in FIG. 4, the central portion in the tire width direction A is formed with a substantially constant thickness. Further, in the resin annular body 105 shown in FIG. 4, both end portions in the tire width direction A are formed with a substantially constant thickness different from the thickness of the central portion. Therefore, the maximum thickness T1 at both ends in the tire width direction A of the resin annular body 105 shown in FIG.
  • the maximum thickness T2 of the central portion in the tire width direction A of the resin annular body 105 shown in FIG. 4 is the thickness at an arbitrary position of the central portion in the tire width direction A.
  • a stepped surface extending toward the inner surface of the tire is formed on the inner surface of the resin annular body 105 in the tire radial direction B. The inner surface of the end portion in the tire width direction A of the resin annular body 105 and the inner surface of the center portion in the tire width direction A of the resin annular body 105 are connected via the above-described step surface.
  • FIG. 5 is a view showing a resin annular body 205 as another modified example of the resin annular body 5. Also in the resin annular body 205 shown in FIG. 5, the maximum thickness T ⁇ b> 1 at both ends in the tire width direction A is thicker than the maximum thickness T ⁇ b> 2 at the center in the tire width direction A of the resin annular body 205. In the resin annular body 205 shown in FIG. 5, the central portion in the tire width direction A is formed with a substantially constant thickness, but both end portions in the tire width direction A are thicker toward the outer ends in the tire width direction A. Is configured to increase gradually. Therefore, the maximum thickness T1 of both end portions in the tire width direction A of the resin annular body 205 shown in FIG.
  • the thickness at the position of the outer end in the tire width direction A is the thickness at the position of the outer end in the tire width direction A. Further, the maximum thickness T2 of the central portion in the tire width direction A of the resin annular body 205 shown in FIG. 5 is the thickness at an arbitrary position of the central portion in the tire width direction A.
  • a step surface, a corner, or the like is not formed on the inner surface and the outer surface in the tire radial direction B. . If it does in this way, resin annular bodies 5 and 205 will be easy to stick to a member which adjoins in tire diameter direction B, and it can control that failure, such as separation, occurs between adjacent members.
  • the resin annular bodies 5, 105, 205 and 305 shown in FIGS. 1 and 3 to 5 have a barrel-shaped outer shape, but there are reduced diameter portions only at both ends in the tire width direction A.
  • the central portion in the tire width direction A may be a resin annular body configured by a cylindrical portion having a uniform inner diameter and outer diameter.
  • the present invention relates to a pneumatic tire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

This pneumatic tire has provided on the tread section thereof: a resin annular body provided with reduced-diameter sections which are located at both end sections thereof in the tire width direction and which have an outer diameter decreasing toward outer ends in the tire width direction; and a resin-coated belt which is constituted of a resin-coated cord comprising a cord coated with a coating resin, the resin-coated cord being formed between the reduced-diameter sections at both end sections of the resin annular body in the tire width direction such that the resin-coated cord is wound helically on the outer surface of the resin annular body in the tire radial direction. The resin-coated belt is joined to the resin annular body, and the maximum thickness of both end sections of the resin annular body in the tire width direction is greater than the maximum thickness of the center section of the resin annular body in the tire width direction.

Description

空気入りタイヤPneumatic tire
 本発明は空気入りタイヤに関する。 The present invention relates to a pneumatic tire.
 従来から、ビード部間に跨って配置されるカーカスのタイヤ径方向外側に、タイヤ周方向に対して傾斜する金属コードを含む傾斜ベルトと、タイヤ周方向に沿って延在する金属コードを含む周方向ベルトと、を備えるベルトを配置する空気入りタイヤが知られている。 Conventionally, an inclined belt including a metal cord inclined with respect to the tire circumferential direction on the outer side in the tire radial direction of the carcass disposed across the bead portions, and a circumference including a metal cord extending along the tire circumferential direction. There is known a pneumatic tire in which a belt including a directional belt is disposed.
 特許文献1には、カーカスと、タイヤ周方向に対して4°~7°だけ傾けられた補強要素の単一の層から成る実働補強材と、カーカスのクラウンの中央部分内に位置決めされた扁平な円周方向ポリマー補強要素とから成る、クラウン補強材を備えるタイヤが開示されている。 Patent Document 1 discloses a carcass, an active reinforcing material composed of a single layer of reinforcing elements inclined by 4 ° to 7 ° with respect to the tire circumferential direction, and a flat surface positioned in the central portion of the crown of the carcass. A tire comprising a crown reinforcement comprising a circumferential polymer reinforcement element is disclosed.
特表2013-539734号公報Special table 2013-539734 gazette
 特許文献1に記載のタイヤによれば、コードを含むベルト層の一部を、樹脂環状体としての扁平な円周方向ポリマー補強要素にすることで、タイヤを低重量化することができる。しかしながら、特許文献1に開示のタイヤは、樹脂環状体の耐久性の観点で、依然として改善の余地がある。 According to the tire described in Patent Document 1, the weight of the tire can be reduced by using a part of the belt layer including the cord as a flat circumferential polymer reinforcing element as a resin annular body. However, the tire disclosed in Patent Document 1 still has room for improvement from the viewpoint of durability of the resin annular body.
 本発明は、樹脂環状体を用いて軽量化を実現しつつ、樹脂環状体の耐久性を向上させた空気入りタイヤを提供することを目的とする。 An object of the present invention is to provide a pneumatic tire in which the durability of the resin annular body is improved while reducing the weight using the resin annular body.
 本発明の第1の態様としての空気入りタイヤは、タイヤ幅方向の両端部において、タイヤ幅方向の外端に向かって外径が小さくなる縮径部を備える樹脂環状体と、被覆樹脂により被覆されているコードからなる樹脂被覆コードにより構成されており、前記樹脂環状体のタイヤ幅方向の両端部の前記縮径部間に亘って、前記樹脂被覆コードが前記樹脂環状体のタイヤ径方向の外面に対して、螺旋状に巻き回された状態に形成されている樹脂被覆ベルトと、をトレッド部に備え、前記樹脂被覆ベルトは、前記樹脂環状体に接合されており、前記樹脂環状体の、タイヤ幅方向の両端部の最大厚みは、前記樹脂環状体のタイヤ幅方向の中央部の最大厚みよりも厚い。 The pneumatic tire according to the first aspect of the present invention is coated with a resin annular body having a reduced diameter portion whose outer diameter decreases toward the outer end in the tire width direction at both ends in the tire width direction, and a coating resin. The resin-coated cord is formed of a resin-coated cord, and the resin-coated cord extends in the tire radial direction of the resin annular body across the reduced diameter portions at both ends in the tire width direction of the resin annular body. A resin-coated belt formed in a spirally wound state with respect to the outer surface, and the resin-coated belt is joined to the resin annular body. The maximum thickness at both ends in the tire width direction is thicker than the maximum thickness at the center in the tire width direction of the resin annular body.
 本発明によれば、樹脂環状体を用いて軽量化を実現しつつ、樹脂環状体の耐久性を向上させた空気入りタイヤを提供することができる。 According to the present invention, it is possible to provide a pneumatic tire in which the durability of the resin annular body is improved while reducing the weight using the resin annular body.
本発明の一実施形態としてのタイヤの、タイヤ幅方向に平行な断面での断面図である。It is sectional drawing in the cross section parallel to a tire width direction of the tire as one Embodiment of this invention. 図1に示す樹脂環状体のうちタイヤ幅方向の中央部を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows the center part of a tire width direction among the resin annular bodies shown in FIG. 図1に示す樹脂環状体の変形例を示す図である。It is a figure which shows the modification of the resin annular body shown in FIG. 図1に示す樹脂環状体の変形例を示す図である。It is a figure which shows the modification of the resin annular body shown in FIG. 図1に示す樹脂環状体の変形例を示す図である。It is a figure which shows the modification of the resin annular body shown in FIG.
 以下、本発明に係る空気入りタイヤの実施形態について、図1~図5を参照して説明する。各図において共通する部材・部位には同一の符号を付している。 Hereinafter, embodiments of a pneumatic tire according to the present invention will be described with reference to FIGS. 1 to 5. In each figure, the same code | symbol is attached | subjected to the common member and site | part.
 以下、特に断りのない限り、各要素の寸法、長さ関係、位置関係等は、空気入りタイヤを適用リムに装着し、規定内圧を充填し、無負荷とした、基準状態で測定されるものとする。 Hereinafter, unless otherwise specified, the dimensions, length relationships, positional relationships, etc. of each element are measured in a standard state where a pneumatic tire is mounted on the applicable rim, the specified internal pressure is filled, and no load is applied. And
 ここで、「適用リム」とは、空気入りタイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会)のJATMA YEAR BOOK、欧州ではETRTO(The European Tyre and Rim Technical Organisation)のSTANDARDS MANUAL、米国ではTRA(The Tire and Rim Association,Inc.)のYEAR BOOK等に記載されているまたは将来的に記載される、適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指す(即ち、上記の「適用リム」には、現行サイズに加えて将来的に上記産業規格に含まれ得るサイズも含む。「将来的に記載されるサイズ」の例としては、ETRTO 2013年度版において「FUTURE DEVELOPMENTS」として記載されているサイズを挙げることができる。)が、上記産業規格に記載のないサイズの場合は、空気入りタイヤのビード幅に対応した幅のリムをいう。
 また、「規定内圧」とは、上記のJATMA YEAR BOOK等に記載されている、適用サイズ・プライレーティングにおける単輪の最大負荷能力に対応する空気圧(最高空気圧)をいい、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する空気圧(最高空気圧)をいうものとする。また後述する「最大負荷荷重」は、適用サイズのタイヤにおける上記JATMA等の規格のタイヤ最大負荷能力、又は、上記産業規格に記載のないサイズの場合は、タイヤを装着する車両ごとに規定される最大負荷能力に対応する荷重を意味する。
Here, “applicable rim” is an industrial standard that is effective in the area where pneumatic tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, and in Europe, ETRTO (The European) STANDARDS MANUAL of TIRE and RIM Technical Organization, STANDARDS of ETRATO STANDARDS in the applicable size described in YEAR BOOK, etc. of TRA (The Tire and Rim Association, Inc.) in the United States or in the future Refers to Measuring Rim, and Design Rim on TRA's YEAR BOOK (i.e., "Applied Rim" above refers to future sizes in addition to the current size) Examples of “sizes to be described in the future” include the sizes described as “FUTURE DEVELOPMENTS” in the ETRTO 2013 edition). In the case of a size not described in the industry standard, it means a rim having a width corresponding to the bead width of the pneumatic tire.
The “specified internal pressure” refers to the air pressure (maximum air pressure) corresponding to the maximum load capacity of a single wheel in the applicable size / ply rating described in the above JATMA YEAR BOOK, etc. In the case of no size, the air pressure (maximum air pressure) corresponding to the maximum load capacity defined for each vehicle on which the tire is mounted is assumed. In addition, the “maximum load load” described later is defined for each vehicle on which a tire is mounted in the case of a tire maximum load capacity of the standard of JATMA or the like in the tire of an applicable size, or in the case of a size not described in the industrial standard. It means the load corresponding to the maximum load capacity.
 図1は、本実施形態としての空気入りタイヤ1(以下、単に「タイヤ1」と記載する。)を示す図である。図1は、タイヤ1の、タイヤ幅方向Aに平行な断面での断面図である。以下、この断面を「タイヤ幅方向断面」と記載する。なお、本実施形態のタイヤ1は、タイヤ赤道面CLに対して対称な構成であるが、タイヤ赤道面CLに対して非対称な構成であってもよい。 FIG. 1 is a view showing a pneumatic tire 1 (hereinafter simply referred to as “tire 1”) as the present embodiment. FIG. 1 is a cross-sectional view of the tire 1 in a cross section parallel to the tire width direction A. FIG. Hereinafter, this cross section is referred to as “tire width direction cross section”. In addition, although the tire 1 of this embodiment is a structure symmetrical with respect to the tire equatorial plane CL, a structure asymmetrical with respect to the tire equatorial plane CL may be sufficient.
 図1に示すように、タイヤ1は、トレッド部1aと、このトレッド部1aのタイヤ幅方向Aの両端部からタイヤ径方向Bの内側に延びる一対のサイドウォール部1bと、各サイドウォール部1bのタイヤ径方向Bの内側の端部に設けられた一対のビード部1cと、を備えている。本実施形態のタイヤ1は、チューブレスタイプの乗用車用ラジアルタイヤである。ここで「トレッド部1a」は、タイヤ幅方向Aにおいて両側のトレッド端TEにより挟まれる部分を意味する。また、「ビード部1c」とは、タイヤ径方向Bにおいて後述するビード部材3が位置する部分を意味する。そして「サイドウォール部1b」とは、トレッド部1aとビード部1cとの間の部分を意味する。なお、「トレッド端TE」とは、タイヤを上述の適用リムに装着し、上述の規定内圧を充填し、最大負荷荷重を負荷した状態での接地面のタイヤ幅方向最外側の位置を意味する。 As shown in FIG. 1, the tire 1 includes a tread portion 1a, a pair of sidewall portions 1b extending inward in the tire radial direction B from both ends in the tire width direction A of the tread portion 1a, and each sidewall portion 1b. And a pair of bead portions 1c provided at the inner end in the tire radial direction B. The tire 1 of this embodiment is a tubeless type radial tire for a passenger car. Here, the “tread portion 1a” means a portion sandwiched between the tread ends TE on both sides in the tire width direction A. Further, the “bead portion 1 c” means a portion where a bead member 3 described later is located in the tire radial direction B. The “sidewall portion 1b” means a portion between the tread portion 1a and the bead portion 1c. The “tread end TE” means a position on the outermost side in the tire width direction of the ground contact surface in a state where the tire is mounted on the above-described application rim, filled with the above-mentioned specified internal pressure, and a maximum load is applied. .
 タイヤ1は、ビード部材3、カーカス4、樹脂環状体5、樹脂被覆ベルト6、トレッドゴム7、サイドゴム8、及び、インナーライナ9、を備えている。 The tire 1 includes a bead member 3, a carcass 4, a resin annular body 5, a resin-coated belt 6, a tread rubber 7, a side rubber 8, and an inner liner 9.
[ビード部材3]
 ビード部材3は、ビード部1cに埋設されている。ビード部材3は、ビードコア3aと、このビードコア3aに対してタイヤ径方向Bの外側に位置するゴム製のビードフィラ3bと、を備えている。ビードコア3aは、周囲をゴムにより被覆されている複数のビードワイヤを備えている。ビードワイヤはスチールコードにより形成されている。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。
[Bead member 3]
The bead member 3 is embedded in the bead portion 1c. The bead member 3 includes a bead core 3a and a rubber bead filler 3b positioned on the outer side in the tire radial direction B with respect to the bead core 3a. The bead core 3a includes a plurality of bead wires that are covered with rubber. The bead wire is formed of a steel cord. The steel cord can be made of, for example, steel monofilament or stranded wire.
[カーカス4]
 カーカス4は、一対のビード部1c間、より具体的には一対のビード部材3のビードコア3a間に跨っており、トロイダル状に延在している。また、カーカス4は、少なくともラジアル構造を有している。
[Carcass 4]
The carcass 4 extends between the pair of bead portions 1c, more specifically between the bead cores 3a of the pair of bead members 3, and extends in a toroidal shape. The carcass 4 has at least a radial structure.
 更に、カーカス4は、カーカスコードをタイヤ周方向C(図1等参照)に対して例えば75°~90゜の角度で配列した1枚以上(本実施形態では1枚)のカーカスプライ4aから構成されている。このカーカスプライ4aは、一対のビードコア3a間に位置するプライ本体部と、このプライ本体部の両端で、ビードコア3aの廻りでタイヤ幅方向Aの内側から外側に折り返されるプライ折返し部と、を備えている。そして、プライ本体部とプライ折返し部との間には、ビードコア3aからタイヤ径方向Bの外側に先細状に延びるビードフィラ3bが配置されている。カーカスプライ4aを構成するカーカスコードとして、本実施形態ではポリエステルコードを採用しているが、これ以外にもナイロン、レーヨン、アラミドなどの有機繊維コードや、必要によりスチールなどの金属コードを採用してもよい。また、カーカスプライ4aの枚数についても、2枚以上としてもよい。 Further, the carcass 4 includes one or more carcass plies 4a in which carcass cords are arranged at an angle of, for example, 75 ° to 90 ° with respect to the tire circumferential direction C (see FIG. 1 and the like). Has been. The carcass ply 4a includes a ply body portion positioned between the pair of bead cores 3a, and a ply folding portion that is folded from the inside to the outside in the tire width direction A around the bead core 3a at both ends of the ply body portion. ing. A bead filler 3b extending from the bead core 3a to the outer side in the tire radial direction B is disposed between the ply main body portion and the ply folded portion. As the carcass cord constituting the carcass ply 4a, a polyester cord is adopted in this embodiment, but other than this, an organic fiber cord such as nylon, rayon, aramid, or a metal cord such as steel is adopted as necessary. Also good. Also, the number of carcass plies 4a may be two or more.
[樹脂環状体5]
 樹脂環状体5は、トレッド部1aに配置されている。また、樹脂環状体5は、タイヤ幅方向Aの両端部において、タイヤ幅方向Aの外端に向かって外径が小さくなる縮径部13及び14を備える。具体的に、本実施形態の樹脂環状体5のタイヤ径方向Bの外面は樽形状であり、タイヤ幅方向Aの端部のみならず、タイヤ赤道面CLを挟むタイヤ幅方向Aの両側全てが、縮径部13及び14により構成されている。但し、縮径部13及び14がタイヤ幅方向Aの端部のみに設けられている樹脂環状体であってもよい。また、樹脂環状体5のタイヤ幅方向Aの端部の縮径部13及び14は、トレッド端TEよりも、タイヤ幅方向Aの外側まで延在している。
[Resin ring 5]
The resin annular body 5 is disposed in the tread portion 1a. Further, the resin annular body 5 includes reduced diameter portions 13 and 14 whose outer diameters are reduced toward the outer ends in the tire width direction A at both ends in the tire width direction A. Specifically, the outer surface in the tire radial direction B of the resin annular body 5 of the present embodiment has a barrel shape, and not only the end portion in the tire width direction A but also both sides in the tire width direction A sandwiching the tire equatorial plane CL. The diameter-reducing portions 13 and 14 are configured. However, a resin annular body in which the reduced diameter portions 13 and 14 are provided only at the end portion in the tire width direction A may be used. Further, the reduced diameter portions 13 and 14 at the ends of the resin annular body 5 in the tire width direction A extend to the outside in the tire width direction A from the tread ends TE.
 なお、樹脂環状体のタイヤ幅方向Aの端部とは、タイヤ幅方向Aにおいて、タイヤ赤道面CLからタイヤ接地幅Wの1/4の距離よりも離れている部分を意味する。これに対して、樹脂環状体のタイヤ幅方向Aの中央部とは、タイヤ幅方向Aにおいて、タイヤ赤道面CLからタイヤ接地幅Wの1/4の距離以内にある部分を意味する。ここで、「タイヤ接地幅」とは、タイヤを上述の適用リムに装着し、規定内圧を充填し、無負荷状態とした状態でのトレッド端TE間のタイヤ幅方向距離とする。 The end of the resin annular body in the tire width direction A means a portion in the tire width direction A that is separated from the tire equator plane CL by a distance of 1/4 of the tire ground contact width W. On the other hand, the central portion of the resin annular body in the tire width direction A means a portion in the tire width direction A that is within a distance of 1/4 of the tire ground contact width W from the tire equatorial plane CL. Here, the “tire contact width” is a distance in the tire width direction between the tread ends TE in a state where the tire is mounted on the above-described applied rim, filled with the specified internal pressure, and in a no-load state.
 樹脂環状体5が縮径部13及び14を備えることにより、縮径部13及び14を設けず内径及び外径が一様な樹脂環状体とする場合と比較して、トレッド端TE近傍の位置で、接地圧が局所的に大きくなることを抑制し、トレッド外面の偏摩耗を抑制できる。また、樹脂環状体5のタイヤ幅方向Aの端部に歪みが集中することを抑制できる。これにより、樹脂環状体5のタイヤ幅方向Aの端部に亀裂等の損傷が生じることを抑制できる。すなわち、樹脂環状体5の耐久性を、より向上させることができる。 Compared with the case where the resin annular body 5 includes the reduced diameter portions 13 and 14 and the reduced diameter portions 13 and 14 are not provided and the inner diameter and the outer diameter are uniform, the position in the vicinity of the tread end TE. Thus, it is possible to suppress the ground pressure from locally increasing and to suppress uneven wear on the outer surface of the tread. Moreover, it can suppress that a distortion concentrates on the edge part of the tire width direction A of the resin annular body 5. FIG. Thereby, it can suppress that damage, such as a crack, arises in the edge part of the tire width direction A of the resin annular body 5. FIG. That is, the durability of the resin annular body 5 can be further improved.
 樹脂環状体5を構成する樹脂は、例えば、熱可塑性エラストマーや熱可塑性樹脂を用いることができ、また、熱や電子線によって架橋が生じる樹脂や、熱転位によって硬化する樹脂を用いることもできる。なお、樹脂環状体5を構成する樹脂には、ゴム(常温でゴム弾性を示す有機高分子物質)は含まれないものとする。 As the resin constituting the resin annular body 5, for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam or a resin that is cured by thermal rearrangement can also be used. The resin constituting the resin annular body 5 does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
 熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられる。また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂としては、例えば、ISO75-2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、かつ、JIS K7113に規定される引張降伏強さが10MPa以上、かつ、同じくJIS K7113に規定される引張破壊伸びが50%以上、かつ、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。特に好ましくは、TPA、TPC、TPV、並びにポリアミド樹脂、ポリエステル樹脂とその配合物が挙げられる。 As thermoplastic elastomers, polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV). Examples of the thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like. Further, as the thermoplastic resin, for example, the deflection temperature under load (at the time of 0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used. A material having a tensile breaking elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used. Particularly preferred are TPA, TPC, TPV, polyamide resin, polyester resin and blends thereof.
 樹脂環状体5の弾性率は、100MPa~1000MPaの範囲、より好ましくは200MPa~700MPaの範囲で設定できる。なお、樹脂環状体5の弾性率とは引張弾性率を意味している。引張弾性率の測定は、JIS K7113:1995に準拠して行う。詳細には、島津製作所社製、島津オートグラフAGS-J(5KN)を用い、引張速度を100mm/minに設定し、引張弾性率の測定を行う。なお、樹脂環状体の引張弾性率を測定する場合、樹脂環状体から打ち抜いて測定資料を調整してもよいし、例えば、樹脂環状体と同じ材料の測定試料を別途準備して弾性率測定してもよい。 The elastic modulus of the resin annular body 5 can be set in the range of 100 MPa to 1000 MPa, more preferably in the range of 200 MPa to 700 MPa. The elastic modulus of the resin annular body 5 means a tensile elastic modulus. The tensile elastic modulus is measured according to JIS K7113: 1995. Specifically, using a Shimadzu Autograph AGS-J (5KN) manufactured by Shimadzu Corporation, the tensile modulus is set to 100 mm / min and the tensile elastic modulus is measured. When measuring the tensile elastic modulus of the resin annular body, the measurement data may be adjusted by punching out from the resin annular body.For example, a measurement sample of the same material as the resin annular body is separately prepared and the elastic modulus is measured. May be.
 本実施形態の樹脂環状体5は、タイヤ幅方向Aにおいて、後述する樹脂被覆ベルト6よりも外側まで延在している。また、本実施形態の樹脂環状体5は、樹脂被覆ベルト6のタイヤ径方向Bの内側に位置している。また、樹脂環状体5は、樹脂被覆ベルト6と異なり、コードを備えていない。すなわち、樹脂環状体5内には、コードが配置されていない。 The resin annular body 5 of the present embodiment extends in the tire width direction A to the outside of the resin-coated belt 6 described later. In addition, the resin annular body 5 of the present embodiment is located inside the tire radial direction B of the resin-coated belt 6. Unlike the resin-coated belt 6, the resin annular body 5 does not include a cord. That is, no cord is arranged in the resin annular body 5.
 ここで、樹脂環状体5のタイヤ幅方向Aの両端部の最大厚みT1は、樹脂環状体5のタイヤ幅方向Aの中央部の最大厚みT2よりも厚い。本実施形態では、図1に示すように、一例として、タイヤ赤道面CLと交差するタイヤ幅方向Aの中央位置から、タイヤ幅方向Aの外側に向かうにつれて厚みが漸増する樹脂環状体5を示している。本実施形態の樹脂環状体5のタイヤ幅方向Aの両端部の最大厚みT1は、タイヤ幅方向Aの外側端の位置での厚みである。また、本実施形態の樹脂環状体5のタイヤ幅方向Aの中央部の最大厚みT2は、タイヤ幅方向Aの端部と隣接する位置での厚みである。 Here, the maximum thickness T1 of both ends of the resin annular body 5 in the tire width direction A is thicker than the maximum thickness T2 of the central part of the resin annular body 5 in the tire width direction A. In the present embodiment, as shown in FIG. 1, as an example, a resin annular body 5 whose thickness gradually increases from the center position in the tire width direction A intersecting the tire equatorial plane CL toward the outside in the tire width direction A is shown. ing. The maximum thickness T1 at both ends in the tire width direction A of the resin annular body 5 of the present embodiment is the thickness at the position of the outer end in the tire width direction A. Further, the maximum thickness T2 of the central portion in the tire width direction A of the resin annular body 5 of the present embodiment is a thickness at a position adjacent to the end portion in the tire width direction A.
 このように、樹脂環状体5のタイヤ幅方向Aの両端部の最大厚みT1を、樹脂環状体5のタイヤ幅方向Aの中央部の最大厚みT2よりも厚くすることにより、樹脂環状体5のタイヤ幅方向Aの中央部の厚みを増大させずに、タイヤ1の軽量化を維持すると共に、樹脂環状体5のタイヤ幅方向Aの端部の厚みを増大させて、樹脂環状体5のタイヤ幅方向Aの端部の縮径部13及び14が接地圧により割れることを抑制できる。すなわち、樹脂環状体5を用いてタイヤ1の軽量化を実現しつつ、樹脂環状体5の耐久性についても向上させることができる。 Thus, by making the maximum thickness T1 of both ends of the resin annular body 5 in the tire width direction A thicker than the maximum thickness T2 of the central portion of the resin annular body 5 in the tire width direction A, the resin annular body 5 While maintaining the weight reduction of the tire 1 without increasing the thickness of the center portion in the tire width direction A, the thickness of the end portion in the tire width direction A of the resin annular body 5 is increased, so that the tire of the resin annular body 5 is obtained. It can suppress that the diameter reduction parts 13 and 14 of the edge part of the width direction A are cracked by a ground pressure. That is, the durability of the resin annular body 5 can be improved while realizing the weight reduction of the tire 1 using the resin annular body 5.
 また、樹脂環状体5のタイヤ幅方向Aの端部の最大厚みT1は、0.1mm~3mmの範囲、より好ましくは0.3mm~2mmの範囲で設定される。更に、樹脂環状体5のタイヤ幅方向Aの中央部の最大厚みT2は、0.1mm~2.5mmの範囲、より好ましくは0.2mm~1.5mmの範囲で設定される。 Further, the maximum thickness T1 of the end portion in the tire width direction A of the resin annular body 5 is set in the range of 0.1 mm to 3 mm, more preferably in the range of 0.3 mm to 2 mm. Further, the maximum thickness T2 of the central portion in the tire width direction A of the resin annular body 5 is set in the range of 0.1 mm to 2.5 mm, more preferably in the range of 0.2 mm to 1.5 mm.
[樹脂被覆ベルト6]
 樹脂被覆ベルト6は、トレッド部1aにおいて、樹脂環状体5のタイヤ径方向Bの外側に配置されている。また、樹脂被覆ベルト6は、被覆樹脂10aにより被覆されているコード10bを備える。具体的に、本実施形態の樹脂被覆ベルト6は、カーカス4のクラウン部、及び、樹脂環状体5、に対してタイヤ径方向Bの外側に配置されている1層以上(本実施形態では1層)のベルト層を備えている。より具体的には、図1に示すように、本実施形態の樹脂被覆ベルト6は、1層のみの周方向ベルト層からなる周方向ベルト6aにより構成されている。
[Resin-coated belt 6]
The resin-coated belt 6 is disposed on the outer side in the tire radial direction B of the resin annular body 5 in the tread portion 1a. The resin-coated belt 6 includes a cord 10b that is covered with a coating resin 10a. Specifically, the resin-coated belt 6 of the present embodiment has one or more layers (1 in the present embodiment) arranged on the outer side in the tire radial direction B with respect to the crown portion of the carcass 4 and the resin annular body 5. Layer) belt layer. More specifically, as shown in FIG. 1, the resin-coated belt 6 of the present embodiment is constituted by a circumferential belt 6a composed of only one circumferential belt layer.
 本実施形態の樹脂被覆ベルト6としての周方向ベルト6aは、金属のベルトコードとしてのスチールコードをタイヤ周方向C(図1等参照)に対して10°以下、好ましくは5°以下、より好ましくは2°以下の角度で、タイヤ中心軸線の回りに螺旋状に巻回させた状態に形成されているスパイラルベルトである。より具体的に、本実施形態の樹脂被覆ベルト6としての周方向ベルト6aは、被覆樹脂10aにより被覆されているスチールコード等のコード10bからなる樹脂被覆コード10により形成されている。つまり、樹脂被覆ベルト6としての周方向ベルト6aは、樹脂環状体5のタイヤ幅方向Aの両端部の縮径部13及び14間に亘って、樹脂環状体5のタイヤ径方向Bの外面に対して螺旋状に巻き回された状態の樹脂被覆コード10により構成されている。 In the circumferential belt 6a as the resin-coated belt 6 of the present embodiment, a steel cord as a metal belt cord is 10 ° or less, preferably 5 ° or less, more preferably 5 ° or less with respect to the tire circumferential direction C (see FIG. 1 and the like). Is a spiral belt formed in a state of being spirally wound around the tire center axis at an angle of 2 ° or less. More specifically, the circumferential belt 6a as the resin-coated belt 6 of the present embodiment is formed by a resin-coated cord 10 made of a cord 10b such as a steel cord coated with a coating resin 10a. That is, the circumferential belt 6a as the resin-coated belt 6 extends between the reduced diameter portions 13 and 14 at both ends in the tire width direction A of the resin annular body 5 on the outer surface of the resin annular body 5 in the tire radial direction B. On the other hand, it is comprised by the resin-coated code | cord | chord 10 of the state wound helically.
 樹脂被覆コード10は、樹脂環状体5のタイヤ径方向Bの外面に接合されながら、樹脂環状体5のタイヤ径方向Bの外面に巻き回される。本実施形態では、樹脂被覆コード10の被覆樹脂10aと樹脂環状体5とを溶着することで、樹脂被覆コード10と樹脂環状体5とを接合する。但し、樹脂被覆コード10の被覆樹脂10aと樹脂環状体5とは、溶着に限らず、接着剤等で接着することにより接合されてもよい。 The resin-coated cord 10 is wound around the outer surface of the resin annular body 5 in the tire radial direction B while being joined to the outer surface of the resin annular body 5 in the tire radial direction B. In this embodiment, the resin-coated cord 10 and the resin annular body 5 are joined by welding the coating resin 10 a of the resin-coated cord 10 and the resin annular body 5. However, the coating resin 10a of the resin coating cord 10 and the resin annular body 5 are not limited to welding, and may be joined by bonding with an adhesive or the like.
 また、本実施形態の樹脂被覆コード10は、タイヤ幅方向Aに隣接する部分同士が接合されている。本実施形態では、樹脂被覆コード10のタイヤ幅方向Aに隣接する部分同士を、被覆樹脂10aを溶着することで接合する。但し、樹脂被覆コード10のタイヤ幅方向Aに隣接する部分同士は、溶着に限らず、接着剤等で接着することにより接合されてもよい。 Further, the resin-coated cord 10 of the present embodiment is joined at adjacent portions in the tire width direction A. In this embodiment, the parts adjacent to the tire width direction A of the resin-coated cord 10 are joined together by welding the coating resin 10a. However, the portions adjacent to the tire width direction A of the resin-coated cord 10 are not limited to welding, and may be joined by bonding with an adhesive or the like.
 なお、樹脂環状体5に螺旋状に巻き付けられている樹脂被覆コード10のタイヤ幅方向Aにおいて隣接する部分同士は、少なくともタイヤ幅方向Aの樹脂環状体5の縮径部13及び14の位置で、接合されている構成とすることが好ましい。上述したように、樹脂環状体5の縮径部13及び14は、接地圧により歪みが集中し易く、破損し易い。そのため、前記樹脂被覆コード10の、タイヤ幅方向Aに隣接する部分同士を接合することにより、樹脂被覆ベルト6を通じて接地圧を樹脂環状体5の、より広い範囲に分散できる。その結果、樹脂環状体5の縮径部13及び14に歪みが集中することを抑制でき、樹脂環状体5の耐久性を、より向上させることができる。 The portions adjacent to each other in the tire width direction A of the resin-coated cord 10 spirally wound around the resin annular body 5 are at least the positions of the reduced diameter portions 13 and 14 of the resin annular body 5 in the tire width direction A. It is preferable to adopt a configuration in which the two are joined. As described above, the diameter-reduced portions 13 and 14 of the annular resin body 5 are easily strained due to the contact pressure and easily damaged. Therefore, the ground pressure can be distributed over a wider range of the resin annular body 5 through the resin-coated belt 6 by joining the portions of the resin-coated cord 10 adjacent to each other in the tire width direction A. As a result, it is possible to suppress strain from concentrating on the reduced diameter portions 13 and 14 of the resin annular body 5, and the durability of the resin annular body 5 can be further improved.
 なお、本実施形態において、樹脂環状体5に螺旋状に巻き付けられている樹脂被覆コード10のタイヤ幅方向Aにおいて隣接する部分同士は、タイヤ幅方向Aの樹脂環状体5の縮径部13及び14の位置のみならず、タイヤ幅方向Aの全域で、接合されている。 In the present embodiment, the portions adjacent to each other in the tire width direction A of the resin-coated cord 10 spirally wound around the resin annular body 5 are the reduced diameter portion 13 of the resin annular body 5 in the tire width direction A and Not only the position 14 but also the entire region in the tire width direction A is joined.
 本実施形態の樹脂被覆ベルト6は、タイヤ幅方向Aの位置によらず略一定の厚みを有している。本実施形態の樹脂被覆ベルト6の厚みは、例えば1.5mm~7mmの範囲、より好ましくは2mm~5mmの範囲で設定できる。また、樹脂被覆ベルト6の被覆樹脂10aの弾性率は、100MPa~1000MPaの範囲、より好ましくは200MPa~700MPaの範囲で設定できる。引張弾性率の測定は、JIS K7113:1995に準拠して行う。詳細には、島津製作所社製、島津オートグラフAGS-J(5KN)を用い、引張速度を100mm/minに設定し、引張弾性率の測定を行う。なお、被覆樹脂の引張弾性率を測定する場合、可能ならば被覆樹脂から打ち抜いて測定資料を調整してもよいし、例えば、被覆樹脂と同じ材料の測定試料を別途準備して弾性率測定してもよい。 The resin-coated belt 6 of the present embodiment has a substantially constant thickness regardless of the position in the tire width direction A. The thickness of the resin-coated belt 6 of the present embodiment can be set, for example, in the range of 1.5 mm to 7 mm, more preferably in the range of 2 mm to 5 mm. The elastic modulus of the coating resin 10a of the resin-coated belt 6 can be set in the range of 100 MPa to 1000 MPa, more preferably in the range of 200 MPa to 700 MPa. The tensile elastic modulus is measured according to JIS K7113: 1995. Specifically, using a Shimadzu Autograph AGS-J (5KN) manufactured by Shimadzu Corporation, the tensile modulus is set to 100 mm / min and the tensile elastic modulus is measured. When measuring the tensile elastic modulus of the coating resin, the measurement data may be adjusted by punching out from the coating resin if possible.For example, a measurement sample of the same material as the coating resin is prepared separately and the elastic modulus is measured. May be.
 図1に示すように、本実施形態の樹脂被覆コード10は、2本のスチールコードを備えるが、1本のみのスチールコードを備える樹脂被覆コードとしてもよく、3本以上のスチールコードを備える樹脂被覆コードとしてもよい。 As shown in FIG. 1, the resin-coated cord 10 of the present embodiment includes two steel cords, but may be a resin-coated cord including only one steel cord, or a resin including three or more steel cords. It is good also as a covering cord.
 コード10bは、任意の既知の材料を用いることができ、例えば上述のスチールコードを用いることができる。スチールコードは、例えば、スチールのモノフィラメント又は撚り線からなるものとすることができる。また、コード10bは、有機繊維やカーボン繊維又はそれらの撚り線等を用いることもできる。 Any known material can be used for the cord 10b, for example, the above-described steel cord can be used. The steel cord can be made of, for example, steel monofilament or stranded wire. Moreover, the cord 10b can also use organic fiber, carbon fiber, or those strands.
 また、被覆樹脂10aは、例えば、熱可塑性エラストマーや熱可塑性樹脂を用いることができ、また、熱や電子線によって架橋が生じる樹脂や、熱転位によって硬化する樹脂を用いることもできる。熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられる。また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂としては、例えば、ISO75-2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、かつ、JIS K7113に規定される引張降伏強さが10MPa以上、かつ、同じくJIS K7113に規定される引張破壊伸びが50%以上、かつ、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。コード10bを被覆する被覆樹脂10aの引張弾性率(JIS K7113:1995に規定される)は、50MPa以上が好ましい。また、コード10bを被覆する被覆樹脂10aの引張弾性率は、1000MPa以下とすることが好ましい。なお、ここでいう被覆樹脂10aには、ゴム(常温でゴム弾性を示す有機高分子物質)は含まれないものとする。 Further, as the coating resin 10a, for example, a thermoplastic elastomer or a thermoplastic resin can be used, and a resin that is cross-linked by heat or an electron beam, or a resin that is cured by thermal dislocation can also be used. As thermoplastic elastomers, polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), polyester-based thermoplastic elastomer (TPC) And dynamic crosslinkable thermoplastic elastomer (TPV). Examples of the thermoplastic resin include polyurethane resin, polyolefin resin, vinyl chloride resin, polyamide resin and the like. Further, as the thermoplastic resin, for example, the deflection temperature under load (at the time of 0.45 MPa load) specified in ISO75-2 or ASTM D648 is 78 ° C or more, and the tensile yield strength specified in JIS K7113 is used. A material having a tensile breaking elongation of 50% or more as defined in JIS K7113 and a Vicat softening temperature (Method A) as defined in JIS K7206 of 130 ° C. or more can be used. The tensile elastic modulus (specified in JIS K7113: 1995) of the coating resin 10a that covers the cord 10b is preferably 50 MPa or more. The tensile modulus of the coating resin 10a that covers the cord 10b is preferably 1000 MPa or less. The coating resin 10a here does not include rubber (an organic polymer substance exhibiting rubber elasticity at room temperature).
[トレッドゴム7及びサイドゴム8]
 トレッドゴム7は、トレッド部1aのタイヤ径方向Bの外側の面(以下、「トレッド外面」と記載する。)を構成しており、本実施形態のトレッド外面には、タイヤ周方向C(図1等参照)に延在する周方向溝7aや、タイヤ幅方向Aに延在する、図示しない幅方向溝等、を含むトレッドパターンが形成されている。サイドゴム8は、サイドウォール部1bのタイヤ幅方向Aの外側の面を構成しており、上述のトレッドゴム7と一体で形成されている。
[Tread rubber 7 and side rubber 8]
The tread rubber 7 constitutes an outer surface of the tread portion 1a in the tire radial direction B (hereinafter referred to as “tread outer surface”), and the tread outer surface of the present embodiment has a tire circumferential direction C (see FIG. 1), a tread pattern including a circumferential groove 7a extending in the tire width direction A and a width direction groove (not shown) extending in the tire width direction A is formed. The side rubber 8 constitutes the outer surface of the sidewall portion 1b in the tire width direction A, and is formed integrally with the tread rubber 7 described above.
[インナーライナ9]
 インナーライナ9は、カーカス4の内面に積層されており、本実施形態では、空気透過性の低いブチル系ゴムにより形成されている。なお、ブチル系ゴムとは、ブチルゴム、及びその誘導体であるハロゲン化ブチルゴムを意味する。
[Inner liner 9]
The inner liner 9 is laminated on the inner surface of the carcass 4 and is formed of butyl rubber having low air permeability in the present embodiment. The butyl rubber means butyl rubber and halogenated butyl rubber which is a derivative thereof.
 以下、本実施形態のタイヤ1の更なる詳細について説明する。 Hereinafter, further details of the tire 1 of the present embodiment will be described.
 タイヤ幅方向断面視(図1参照)において、本実施形態の樹脂環状体5の最小厚みT3は、樹脂環状体5の最大厚みT1の80%以上とすることが好ましく、90%以上とすることがより好ましい。本実施形態の最小厚みT3は、タイヤ赤道面CLと交差するタイヤ幅方向Aの中央位置での樹脂環状体5の厚みを意味する。このような構成とすることにより、樹脂環状体5のタイヤ幅方向Aの端部を厚肉化して変形の歪を低減できる共に、樹脂環状体5のタイヤ幅方向Aの中央部と端部との間での剛性差が増大することを抑制し、トレッド部1aに加わる接地圧のタイヤ幅方向Aの分布を調整し易くなる。これにより、トレッド外面のタイヤ幅方向Aの一部に偏摩耗が生じることを抑制し、タイヤの耐久性を向上させることができる。 In a cross-sectional view in the tire width direction (see FIG. 1), the minimum thickness T3 of the resin annular body 5 of the present embodiment is preferably 80% or more of the maximum thickness T1 of the resin annular body 5, and preferably 90% or more. Is more preferable. The minimum thickness T3 of the present embodiment means the thickness of the resin annular body 5 at the center position in the tire width direction A that intersects the tire equatorial plane CL. By adopting such a configuration, the end portion in the tire width direction A of the resin annular body 5 can be thickened to reduce deformation distortion, and the center portion and the end portion in the tire width direction A of the resin annular body 5 can be reduced. It is easy to adjust the distribution in the tire width direction A of the contact pressure applied to the tread portion 1a. Thereby, it can suppress that partial wear arises in a part of tire width direction A of a tread outer surface, and can improve durability of a tire.
 また、樹脂環状体5の厚みは、0.1mm~3.0mmの範囲とすることが好ましい。具体的に、樹脂環状体5の最小厚みT3は、0.1mm以上とすることが好ましく、樹脂環状体5の最大厚みT1は、3.0mm以下とすることが好ましい。最小厚みT3を0.1mm以上とすることで、樹脂環状体5の強度を確保でき、割れなどの損傷の発生を抑制できる。その結果、樹脂環状体5の耐久性を、より向上させることができる。最大厚みT1を3.0mm以下とすることで、樹脂環状体5を用いることによるタイヤ重量の軽量化の効果を高めることができる。 The thickness of the resin annular body 5 is preferably in the range of 0.1 mm to 3.0 mm. Specifically, the minimum thickness T3 of the resin annular body 5 is preferably 0.1 mm or more, and the maximum thickness T1 of the resin annular body 5 is preferably 3.0 mm or less. By setting the minimum thickness T3 to 0.1 mm or more, the strength of the resin annular body 5 can be secured, and the occurrence of damage such as cracks can be suppressed. As a result, the durability of the resin annular body 5 can be further improved. By setting the maximum thickness T1 to 3.0 mm or less, the effect of reducing the tire weight by using the resin annular body 5 can be enhanced.
 図2は、図1に示す樹脂環状体5のうちタイヤ幅方向Aの中央部を拡大して示す拡大断面図である。図2に示すように、本実施形態の樹脂環状体5は、樹脂製の第1環状部5aと、樹脂製の第2環状部5bとが、タイヤ赤道面CL近傍で接合されることにより形成されている。具体的には、図2に示すように、第1環状部5aのタイヤ幅方向Aの一方側の環状端面11と、第2環状部5bのタイヤ幅方向Aの他方側の環状端面12とが、溶着により接合されている。このように、本実施形態の樹脂環状体5は、タイヤ幅方向Aの所定の位置に、接合により継ぎ目が形成されているが、このような継ぎ目がある構成に限られない。 FIG. 2 is an enlarged cross-sectional view showing an enlarged central portion in the tire width direction A of the resin annular body 5 shown in FIG. As shown in FIG. 2, the resin annular body 5 of the present embodiment is formed by joining a resin-made first annular portion 5 a and a resin-made second annular portion 5 b in the vicinity of the tire equatorial plane CL. Has been. Specifically, as shown in FIG. 2, an annular end surface 11 on one side in the tire width direction A of the first annular portion 5a and an annular end surface 12 on the other side in the tire width direction A of the second annular portion 5b are provided. Are joined by welding. As described above, the resin annular body 5 of the present embodiment has a seam formed by joining at a predetermined position in the tire width direction A. However, the configuration is not limited to such a seam.
 図3は、本実施形態の樹脂環状体5の変形例としての樹脂環状体305を示す図である。図3に示す樹脂環状体305は、タイヤ幅方向Aに継ぎ目が形成されていない一体成形品である。このような構成とすることで、割れなどの損傷が発生し易い継ぎ目を無くすことができるため、より耐久性の高い樹脂環状体305を実現できる。なお、このような樹脂環状体305の製法は、例えば、射出成形やブロー成形を利用できるが、その製法は特に限定されない。 FIG. 3 is a view showing a resin annular body 305 as a modified example of the resin annular body 5 of the present embodiment. The resin annular body 305 shown in FIG. 3 is an integrally molded product in which no seam is formed in the tire width direction A. By adopting such a configuration, it is possible to eliminate a joint where breakage or the like is likely to occur, and thus it is possible to realize a more durable resin annular body 305. In addition, the manufacturing method of such a resin annular body 305 can utilize, for example, injection molding or blow molding, but the manufacturing method is not particularly limited.
 本発明に係る空気入りタイヤは、上述した実施形態及び変形例に示す具体的な構成に限定されず、請求の範囲を逸脱しない限りで、種々の変形、変更が可能である。 The pneumatic tire according to the present invention is not limited to the specific configurations shown in the above-described embodiments and modifications, and various modifications and changes can be made without departing from the scope of the claims.
 図1では、タイヤ赤道面CLと交差するタイヤ幅方向Aの中央位置から、タイヤ幅方向Aの外側に向かうにつれて厚みが漸増する樹脂環状体5を示しているが、樹脂環状体のタイヤ幅方向Aの両端部の最大厚みT1が、樹脂環状体のタイヤ幅方向Aの中央部の最大厚みT2よりも厚ければ、その構成は特に限定されない。 In FIG. 1, the resin annular body 5 whose thickness gradually increases from the center position in the tire width direction A intersecting the tire equatorial plane CL toward the outside in the tire width direction A is shown. The configuration is not particularly limited as long as the maximum thickness T1 of both end portions of A is thicker than the maximum thickness T2 of the central portion in the tire width direction A of the resin annular body.
 図4は、樹脂環状体5の変形例としての樹脂環状体105を示す図である。図4に示す樹脂環状体105についても、タイヤ幅方向Aの両端部の最大厚みT1が、樹脂環状体105のタイヤ幅方向Aの中央部の最大厚みT2よりも厚い。図4に示す樹脂環状体105では、タイヤ幅方向Aの中央部が、略一定の厚みで形成されている。また、図4に示す樹脂環状体105では、タイヤ幅方向Aの両端部が、中央部の厚みとは異なる略一定の厚みで形成されている。したがって、図4に示す樹脂環状体105のタイヤ幅方向Aの両端部の最大厚みT1は、タイヤ幅方向Aの両端部の任意の位置での厚みである。また、図4に示す樹脂環状体105のタイヤ幅方向Aの中央部の最大厚みT2は、タイヤ幅方向Aの中央部の任意の位置での厚みである。なお、樹脂環状体105のタイヤ径方向Bの内面には、タイヤ内面側に向かって延在する段差面が形成されている。樹脂環状体105のタイヤ幅方向Aの端部の内面と、樹脂環状体105のタイヤ幅方向Aの中央部の内面と、は上述の段差面を介して繋がっている。 FIG. 4 is a view showing a resin annular body 105 as a modified example of the resin annular body 5. Also in the resin annular body 105 shown in FIG. 4, the maximum thickness T <b> 1 at both ends in the tire width direction A is thicker than the maximum thickness T <b> 2 at the center in the tire width direction A of the resin annular body 105. In the resin annular body 105 shown in FIG. 4, the central portion in the tire width direction A is formed with a substantially constant thickness. Further, in the resin annular body 105 shown in FIG. 4, both end portions in the tire width direction A are formed with a substantially constant thickness different from the thickness of the central portion. Therefore, the maximum thickness T1 at both ends in the tire width direction A of the resin annular body 105 shown in FIG. 4 is the thickness at an arbitrary position at both ends in the tire width direction A. Further, the maximum thickness T2 of the central portion in the tire width direction A of the resin annular body 105 shown in FIG. 4 is the thickness at an arbitrary position of the central portion in the tire width direction A. A stepped surface extending toward the inner surface of the tire is formed on the inner surface of the resin annular body 105 in the tire radial direction B. The inner surface of the end portion in the tire width direction A of the resin annular body 105 and the inner surface of the center portion in the tire width direction A of the resin annular body 105 are connected via the above-described step surface.
 図5は、樹脂環状体5の別の変形例としての樹脂環状体205を示す図である。図5に示す樹脂環状体205についても、タイヤ幅方向Aの両端部の最大厚みT1が、樹脂環状体205のタイヤ幅方向Aの中央部の最大厚みT2よりも厚い。図5に示す樹脂環状体205では、タイヤ幅方向Aの中央部が、略一定の厚みで形成されているが、タイヤ幅方向Aの両端部は、タイヤ幅方向Aの外側端に向かって厚みが漸増するように構成されている。したがって、図5に示す樹脂環状体205のタイヤ幅方向Aの両端部の最大厚みT1は、タイヤ幅方向Aの外側端の位置での厚みである。また、図5に示す樹脂環状体205のタイヤ幅方向Aの中央部の最大厚みT2は、タイヤ幅方向Aの中央部の任意の位置での厚みである。 FIG. 5 is a view showing a resin annular body 205 as another modified example of the resin annular body 5. Also in the resin annular body 205 shown in FIG. 5, the maximum thickness T <b> 1 at both ends in the tire width direction A is thicker than the maximum thickness T <b> 2 at the center in the tire width direction A of the resin annular body 205. In the resin annular body 205 shown in FIG. 5, the central portion in the tire width direction A is formed with a substantially constant thickness, but both end portions in the tire width direction A are thicker toward the outer ends in the tire width direction A. Is configured to increase gradually. Therefore, the maximum thickness T1 of both end portions in the tire width direction A of the resin annular body 205 shown in FIG. 5 is the thickness at the position of the outer end in the tire width direction A. Further, the maximum thickness T2 of the central portion in the tire width direction A of the resin annular body 205 shown in FIG. 5 is the thickness at an arbitrary position of the central portion in the tire width direction A.
 但し、図1に示す樹脂環状体5、及び、図5に示す樹脂環状体205、のように、タイヤ径方向Bの内面及び外面において段差面や角部などが形成されない構成とすることが好ましい。このようにすれば、樹脂環状体5及び205は、タイヤ径方向Bで隣接する部材と密着し易く、隣接する部材との間でセパレーション等の故障が発生することを抑制できる。 However, like the resin annular body 5 shown in FIG. 1 and the resin annular body 205 shown in FIG. 5, it is preferable that a step surface, a corner, or the like is not formed on the inner surface and the outer surface in the tire radial direction B. . If it does in this way, resin annular bodies 5 and 205 will be easy to stick to a member which adjoins in tire diameter direction B, and it can control that failure, such as separation, occurs between adjacent members.
 また、図1、図3~図5に示す樹脂環状体5、105、205及び305は、樽形状の外形を有する構成であるが、タイヤ幅方向Aの両端部のみに縮径部があり、タイヤ幅方向Aの中央部が内径及び外径が一様な筒部により構成されている樹脂環状体としてもよい。 The resin annular bodies 5, 105, 205 and 305 shown in FIGS. 1 and 3 to 5 have a barrel-shaped outer shape, but there are reduced diameter portions only at both ends in the tire width direction A. The central portion in the tire width direction A may be a resin annular body configured by a cylindrical portion having a uniform inner diameter and outer diameter.
 本発明は空気入りタイヤに関する。 The present invention relates to a pneumatic tire.
1:空気入りタイヤ、 1a:トレッド部、 1b:サイドウォール部、 1c:ビード部、 3:ビード部材、 3a:ビードコア、 3b:ビードフィラ、 4:カーカス、 4a:カーカスプライ、 5、105、205、305:樹脂環状体、 5a:第1環状部、 5b:第2環状部、 6:樹脂被覆ベルト、 6a:周方向ベルト、 7:トレッドゴム、 7a:周方向溝、 8:サイドゴム、 9:インナーライナ、 10:樹脂被覆コード、 10a:被覆樹脂、 10b:コード、 11:第1環状部の環状端面、 12:第2環状部の環状端面、 13、14:縮径部、 A:タイヤ幅方向、 B:タイヤ径方向、 C:タイヤ周方向、 T1:樹脂環状体のタイヤ幅方向の端部の最大厚み、 T2:樹脂環状体のタイヤ幅方向の中央部の最大厚み、 T3:樹脂環状体のタイヤ幅方向の中央部の最小厚み、 W:タイヤ接地幅、 CL:タイヤ赤道面、 TE:トレッド端 1: pneumatic tire, 1a: tread portion, 1b: sidewall portion, 1c: bead portion, 3: bead member, 3a: bead core, 3b: bead filler, 4: carcass, 4a: carcass ply, 5, 105, 205, 305: resin annular body, 5a: first annular portion, 5b: second annular portion, 6: resin coated belt, 6a: circumferential belt, 7: tread rubber, 7a: circumferential groove, 8: side rubber, 9: inner Liner, 10: resin coated cord, 10a: coated resin, 10b: cord, 11: annular end surface of first annular portion, 12: annular end surface of second annular portion, 13, 14: reduced diameter portion, A: tire width direction , B: tire radial direction, C: tire circumferential direction, T1: maximum thickness of the end of the resin annular body in the tire width direction, T2: resin annular tie The maximum thickness of the central portion in the width direction, T3: the minimum thickness of the central portion in the tire width direction of the resin annular body, W: tire contact width, CL: tire equatorial plane, TE: tread edge

Claims (5)

  1.  タイヤ幅方向の両端部において、タイヤ幅方向の外端に向かって外径が小さくなる縮径部を備える樹脂環状体と、
     被覆樹脂により被覆されているコードからなる樹脂被覆コードにより構成されており、前記樹脂環状体のタイヤ幅方向の両端部の前記縮径部間に亘って、前記樹脂被覆コードが前記樹脂環状体のタイヤ径方向の外面に対して、螺旋状に巻き回された状態に形成されている樹脂被覆ベルトと、をトレッド部に備え、
     前記樹脂被覆ベルトは、前記樹脂環状体に接合されており、
     前記樹脂環状体の、タイヤ幅方向の両端部の最大厚みは、前記樹脂環状体のタイヤ幅方向の中央部の最大厚みよりも厚い、空気入りタイヤ。
    At both ends in the tire width direction, a resin annular body provided with a reduced diameter portion whose outer diameter decreases toward the outer end in the tire width direction,
    The resin-coated cord is composed of a cord coated with a coating resin, and the resin-coated cord extends between the reduced diameter portions at both ends in the tire width direction of the resin annular body. With respect to the outer surface in the tire radial direction, a resin-coated belt formed in a spirally wound state is provided in the tread portion,
    The resin-coated belt is bonded to the resin annular body,
    The maximum thickness of the both ends of the said resin annular body of the tire width direction is a pneumatic tire thicker than the maximum thickness of the center part of the said resin annular body of the tire width direction.
  2.  前記樹脂被覆コードは、タイヤ幅方向に隣接する部分同士で接合されている、請求項1に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the resin-coated cords are joined at portions adjacent to each other in the tire width direction.
  3.  タイヤ幅方向に平行な断面視において、前記樹脂環状体の最小厚みは、前記樹脂環状体の最大厚みの80%以上である、請求項1又は2のいずれか1つに記載の空気入りタイヤ。 3. The pneumatic tire according to claim 1, wherein a minimum thickness of the resin annular body is 80% or more of a maximum thickness of the resin annular body in a cross-sectional view parallel to the tire width direction.
  4.  前記樹脂環状体は、タイヤ幅方向に継ぎ目が形成されていない一体成形品である、請求項1乃至3のいずれか1つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the resin annular body is an integrally molded product in which a seam is not formed in a tire width direction.
  5.  前記樹脂環状体の厚みは、0.1mm~3.0mmの範囲である、請求項1乃至4のいずれか1つに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 4, wherein a thickness of the resin annular body is in a range of 0.1 mm to 3.0 mm.
PCT/JP2019/021237 2018-05-31 2019-05-29 Pneumatic tire WO2019230772A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-105491 2018-05-31
JP2018105491A JP2019209750A (en) 2018-05-31 2018-05-31 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2019230772A1 true WO2019230772A1 (en) 2019-12-05

Family

ID=68698263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021237 WO2019230772A1 (en) 2018-05-31 2019-05-29 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP2019209750A (en)
WO (1) WO2019230772A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255314A (en) * 1993-03-08 1994-09-13 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH1035220A (en) * 1996-07-23 1998-02-10 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2002154307A (en) * 2000-11-21 2002-05-28 Bridgestone Corp Reinforced composite rubber material and pneumatic tire
JP2006069390A (en) * 2004-09-02 2006-03-16 Bridgestone Corp Pneumatic radial tire for high-speed heavy load
WO2017200061A1 (en) * 2016-05-20 2017-11-23 株式会社ブリヂストン Tire
WO2018012640A1 (en) * 2016-07-15 2018-01-18 株式会社ブリヂストン Tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06255314A (en) * 1993-03-08 1994-09-13 Yokohama Rubber Co Ltd:The Pneumatic tire
JPH1035220A (en) * 1996-07-23 1998-02-10 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2002154307A (en) * 2000-11-21 2002-05-28 Bridgestone Corp Reinforced composite rubber material and pneumatic tire
JP2006069390A (en) * 2004-09-02 2006-03-16 Bridgestone Corp Pneumatic radial tire for high-speed heavy load
WO2017200061A1 (en) * 2016-05-20 2017-11-23 株式会社ブリヂストン Tire
WO2018012640A1 (en) * 2016-07-15 2018-01-18 株式会社ブリヂストン Tire

Also Published As

Publication number Publication date
JP2019209750A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP6909068B2 (en) Bead members and pneumatic tires
JP2012126390A (en) Pneumatic tire
WO2019230770A1 (en) Pneumatic tire
CN110770043A (en) Pneumatic tire
WO2018235499A1 (en) Bead member, pneumatic tire, and assembly
JP7011461B2 (en) Pneumatic tires
WO2019230772A1 (en) Pneumatic tire
WO2018235500A1 (en) Production method for pneumatic tire, and pneumatic tire
JP6952647B2 (en) Pneumatic tires
WO2019239898A1 (en) Pneumatic tire
WO2019230771A1 (en) Pneumatic tire
JP6928495B2 (en) Pneumatic tires
JP6959895B2 (en) Manufacturing method for pneumatic tires and resin-coated belts
WO2019230496A1 (en) Pneumatic tire
JP6963496B2 (en) Pneumatic tires
JP6987022B2 (en) Pneumatic tires and manufacturing methods for pneumatic tires
WO2019230767A1 (en) Pneumatic tire and method for manufacturing pneumatic tire
WO2019244769A1 (en) Run flat tire
JP6786447B2 (en) Pneumatic tires
JP6774386B2 (en) Pneumatic tires
US20210252915A1 (en) Tire and method of manufacturing tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810644

Country of ref document: EP

Kind code of ref document: A1