[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019229943A1 - 作業分析装置 - Google Patents

作業分析装置 Download PDF

Info

Publication number
WO2019229943A1
WO2019229943A1 PCT/JP2018/021006 JP2018021006W WO2019229943A1 WO 2019229943 A1 WO2019229943 A1 WO 2019229943A1 JP 2018021006 W JP2018021006 W JP 2018021006W WO 2019229943 A1 WO2019229943 A1 WO 2019229943A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
class
work
class data
data
Prior art date
Application number
PCT/JP2018/021006
Other languages
English (en)
French (fr)
Inventor
俊之 八田
亮輔 川西
浩司 白土
加藤 健太
奥田 晴久
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/044,332 priority Critical patent/US11599083B2/en
Priority to CN201880093331.0A priority patent/CN112136087B/zh
Priority to JP2020522512A priority patent/JP6779413B2/ja
Priority to PCT/JP2018/021006 priority patent/WO2019229943A1/ja
Priority to DE112018007522.2T priority patent/DE112018007522T5/de
Publication of WO2019229943A1 publication Critical patent/WO2019229943A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31449Monitor workflow, to optimize business, industrial processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32293Minimize work in progress, system at maximum productivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a work analysis device that analyzes work consisting of a series of operations performed by a predetermined work subject.
  • IE Information Engineering
  • an analysis subject is a task in which a work subject repeatedly performs a cycle composed of a series of elemental tasks (one segment of actions with a purpose).
  • the analyst uses the required time measured for each element work to calculate characteristic values such as the standard work time for each element work and the variation in the required time among a plurality of cycles.
  • characteristic values such as the standard work time for each element work and the variation in the required time among a plurality of cycles.
  • the work analysis by measuring the required time is generally performed by an analyst using a stopwatch and / or a video camera. Since the analyst needs to visually measure the time required for each element work in a plurality of cycles, it takes enormous time and labor. On the other hand, various work analysis apparatuses aiming at reducing the time required for work analysis have been proposed.
  • Patent Document 1 discloses a work analysis system that identifies a start point and an end point of an executed work based on a parameter representing a positional relationship between the position where the work should be executed and the position of the work detection target.
  • the system of Patent Literature 1 includes work position information (that is, a pre-designed template) that predefines a position where a work is to be performed, and position information (that is, the work subject's position) obtained from the position of the work detection target.
  • the element work at each time is classified by comparing with the sensor data measured from the work.
  • the system of Patent Document 1 calculates the work time of the element work by specifying the start time and the end time of the element work.
  • the system of patent document 1 determines whether each element work needs improvement by comparing the work time of each element work with the standard work time for every element work designed beforehand.
  • the object of the present invention is to solve the above-mentioned problems, do not need to design a template and standard work time in advance, and measure from the work to be analyzed even when the work subject has made a mistake in the work procedure.
  • Another object of the present invention is to provide a work analysis apparatus capable of calculating characteristic values such as standard work time and variation for each element work based only on the sensor data.
  • a work analysis device that analyzes work consisting of a series of operations performed by a predetermined work subject, A sensor data string indicating a time-series sensor value generated by measuring the work of the work subject with a sensor, and corresponding to each iteration when the work subject repeatedly performs the work multiple times.
  • a sensor data input device for acquiring a plurality of sensor data strings generated A plurality of sections obtained by temporally dividing the sensor data strings based on the sensor values included in the sensor data strings, and the sections indicating types of temporal changes in the sensor values included in the sections.
  • a class data generator that generates, for each of the plurality of sensor data sequences, a plurality of first class data sequences that respectively indicate the sections and the classes of the sensor data sequence; , A class data linker that associates the sections corresponding to each other with the same class among the plurality of first class data strings based on the plurality of first class data strings; And a determiner that calculates characteristic values of the sections associated with each other by the class data linker.
  • the work analysis target work can be performed. Based on only the measured sensor data, characteristic values such as standard work time and variation for each element work can be calculated.
  • FIG. 1 is a diagram illustrating an example of a configuration of a work analysis apparatus 1 according to Embodiment 1 of the present invention.
  • the work analysis apparatus 1 analyzes a work including a series of a plurality of operations performed by a predetermined work subject.
  • the work subject may be one or a plurality of persons, one or a plurality of machines, or a combination thereof. In the present specification, description will be given with reference to the case of one person. To do.
  • the work analysis apparatus 1 is mounted on a terminal device in a factory or the like together with the sensor 2 and the display device 3, for example.
  • the work analysis apparatus 1 includes a sensor data input device 10, a sensor data storage device 31, a class data generator 20, a class data linker 40, and a determiner 50. Furthermore, a sensor 2 and a display device 3 are connected to the work analysis apparatus 1. The work analysis device 1 analyzes the work using the data measured by the sensor 2 and displays the analysis result on the display device 3.
  • FIG. 2 is a diagram showing an example of the configuration of the class data generator 20 according to the present embodiment.
  • the configuration of the class data generator 20 will be described with reference to FIG.
  • the class data generator 20 includes a first classifier 21, a class data storage device 32, a standard pattern generator 22, a second classifier 23, and a class data evaluator 24.
  • FIG. 3 is a diagram for explaining an example of use of the work analysis apparatus according to the present embodiment.
  • the work subject 100 repeatedly performs a cycle work, which is a work including a series of a plurality of operations, a plurality of times.
  • the sensor 2 operates in a cycle section that is a time from the start to the end of each cycle operation.
  • the sensor 2 outputs time-series sensor values generated (detected) by measuring the cycle work in the cycle section.
  • the sensor 2 is, for example, a depth sensor, and is arranged so as to be able to photograph a cycle work with the left hand 101 and the right hand 102 of the work subject 100.
  • the sensor 2 includes, for example, a light source that emits infrared rays in a specific pattern and an image sensor that receives infrared rays reflected by the object, and generates depth image data having the depth to the object as a pixel value. Further, the sensor 2 detects the height positions of the left hand 101 and the right hand 102 of the work subject 100 from the depth image data, and outputs these height positions as sensor values every 200 milliseconds.
  • a specific example of the depth sensor is an existing depth sensor such as Kinect (registered trademark).
  • Kinect registered trademark
  • the process for detecting the position of the hand from the depth image data can be an existing process used by a depth sensor.
  • FIG. 4 is a diagram illustrating an example of sensor values output by the sensor 2 according to the present embodiment.
  • the horizontal axis indicates the time when the sensor value is acquired
  • the vertical axis indicates the sensor value, that is, the coordinate value of the height position of the left hand 101 and the right hand 102 represented by the sensor value.
  • the sensor values are two-dimensional values because they are the height positions of the left hand 101 and the right hand 102 of the work subject 100.
  • a depth sensor is used as the sensor 2
  • the present invention is not limited to this, and any sensor that can generate a sensor value by measuring the work of the work subject may be used.
  • a video camera for example, a three-dimensional acceleration sensor, a three-dimensional angular velocity sensor, or the like can be used.
  • the positions of the right and left hands of the work subject are to be detected, but the present invention is not limited to this, and the head position of the work subject, the angles of a plurality of joints in the body, or the work
  • the subject's ecological information for example, heartbeat and respiration may be detected.
  • the sensor data input device 10 acquires a sensor data string xd indicating each time-series sensor value output from the sensor 2 in a plurality of cycle operations.
  • Each sensor data string xd indicates a time-series sensor value generated by measuring the cycle work of the work subject by the sensor 2, and each time when the work subject repeatedly performs the cycle work a plurality of times. Generated in response to iteration.
  • d is a number for identifying each of the plurality of cycle operations, and is an integer from 1 to D.
  • D is the number of repetitions of a plurality of cycle operations.
  • the sensor data string x d ⁇ x d (1), x d (2),..., X d (N (d)) ⁇ .
  • x d (n) is a sensor value output nth in the cycle operation d.
  • N (d) is the number of sensor values output in the cycle section of the cycle operation d.
  • the senor 2 outputs a sensor value every 200 milliseconds. (D) is 50 pieces.
  • FIG. 5 is a diagram for explaining the data structure of the sensor data sequence stored in the sensor data storage device 31 according to the present embodiment.
  • each sensor data string is assigned a cycle work number d from which the sensor data string is acquired.
  • the sensor data storage device 31 since the sensor value is a two-dimensional value, stores the sensor value x d (n) as two values.
  • FIG. 6 is a diagram showing a plurality of sensor data strings shown in FIG. 5 in a time series graph. In each stage (a) to (d) of FIG. 6, the horizontal axis indicates the number n at which time-series sensor values are output in the cycle operation d, and the vertical axis indicates the sensor values.
  • the class data generator 20 corresponds to each of the plurality of sensor data strings xd based on the plurality of sensor data strings xd acquired by the sensor data input device 10 in a plurality of cycle operations, and satisfies a predetermined evaluation criterion.
  • a plurality of class data strings s d are generated and output.
  • class data generator 20 includes a plurality of sections each sensor data string x d, based on the sensor value temporally divided included in each sensor data sequence x d, time of the sensor values contained in each interval The class of each interval indicating the type of change is determined. Further, the class data generator 20 generates a plurality of class data sequences s d indicating each section and each class of the sensor data sequence x d for each of the plurality of sensor data sequences x d .
  • d is a number for identifying each of a plurality of cycle operations, and is an integer from 1 to D.
  • the class data string s d ⁇ s d, 1 , s d, 2 ,..., S d, m ,..., S d , M (d) ⁇ .
  • M (d) is the number of sections obtained by dividing the sensor data string xd .
  • m is a number for identifying each of the plurality of divided sections, and is an integer from 1 to M (d).
  • the class data generator 20 includes the first classifier 21, the class data storage device 32, the standard pattern generator 22, the second classifier 23, and the class data evaluator. 24. Next, each component of the class data generator 20 will be described.
  • FIG. 7 is a diagram for explaining the data structure of the class data string generated by the first classifier 21 according to the present embodiment.
  • FIG. 8 is a diagram showing the class data string shown in FIG. 7 in a time series graph. In each stage (a) to (d) in FIG. 8, the horizontal axis is the number n at which the time-series sensor values are output in the cycle operation d, as in FIG. 6, and the numbers “1” to “6”.
  • the rectangles respectively including [] represent each section [ ad, m , ad, m + bd, m- 1] obtained by dividing the sensor data string xd .
  • the first classifier 21 can estimate the class data string with high accuracy by generating the initial value of the class data string in this way, and can converge the estimation process in a short time.
  • the standard pattern indicates a standard temporal change in sensor values included in each section, and corresponds to one of a plurality of classes.
  • the standard pattern generator 22 uses a plurality of standard patterns g respectively corresponding to a plurality of classes j based on a plurality of sensor data strings xd and a plurality of class data strings s d stored in the class data storage device 32. j is generated.
  • j is a number for identifying a plurality of classes, and is an integer from 1 to J.
  • J is the number of classes described above, that is, the number of standard patterns.
  • the standard pattern generator 22 generates a standard pattern g j as a set of Gaussian distributions of sensor values at each time by using Gaussian process regression.
  • the standard pattern g j is obtained as a parameter of a Gaussian distribution of sensor values in the section classified into the class j.
  • Standard pattern g j ⁇ g j (1), g j (2),..., G j (L) ⁇ .
  • ⁇ j (i) is the average of the Gaussian distribution
  • ⁇ j 2 (i) is the variance of the Gaussian distribution
  • L is the length of the standard pattern, that is, the maximum value of the number of sensor values included in each section obtained by dividing the sensor data string.
  • ⁇ j (i) is the average of the Gaussian distribution of the i-th sensor value in the section classified as class j.
  • ⁇ j (i) is a two-dimensional value like the sensor value.
  • ⁇ j 2 (i) is the variance of the Gaussian distribution of the i-th sensor value in the section classified as class j.
  • ⁇ j 2 (i) is a one-dimensional value.
  • the standard pattern g j includes a set X j of sensor values in the section classified into the class j by the class data string, and a set I j of numbers output sensor values in the section classified into the class j by the class data string.
  • X j ⁇ X j (1), X j (2),..., X j (N2 j ) ⁇
  • I j ⁇ I j (1), I j (2) ,. a N2 j) ⁇ .
  • X j (1) is the sensor value output at the I j (1) th in the section classified as class j.
  • N2 j is the number of elements in the set X j and I j.
  • N2 j is the sum of the number of sensor values included in the section classified into the class j among the sections obtained by dividing the D sensor data strings.
  • is a predetermined parameter
  • E represents a unit matrix
  • K j is a matrix calculated by equation (3)
  • v j, i is a vector calculated by equation (4).
  • k is a kernel function, and a Gaussian kernel represented by Expression (5) can be used.
  • ⁇ 0 , ⁇ 1 , ⁇ 2 , and ⁇ 3 are predetermined parameters in the kernel function k.
  • FIG. 9 is a diagram for explaining the data structure of the standard pattern generated by the standard pattern generator 22 according to the present embodiment.
  • the number of classes J 6.
  • j is a number for identifying a class.
  • the length L of the standard pattern is 30.
  • FIG. 10 is a diagram showing the standard pattern shown in FIG. 9 in a time series graph.
  • the horizontal axis represents the sensor value number i in the section classified into each class j.
  • the vertical axis represents the mean and variance of the Gaussian distribution of sensor values in the section classified as class j.
  • the average of the Gaussian distribution is a two-dimensional value like the sensor value.
  • the variance of the Gaussian distribution is the same in all dimensions, and thus is a one-dimensional value.
  • the class data string can be estimated with high accuracy.
  • the second classifier 23 uses the plurality of standard patterns g j generated by the standard pattern generator 22 to generate a class data string s d for each of the plurality of sensor data strings x d .
  • FF-BS forward filtering-backward sampling
  • the sensor data string is divided into a plurality of sections, and the time-series sensor values in each of the divided sections are assigned to any one of a plurality of classes. Classify into one.
  • the FF-BS is composed of two steps of probability calculation related to the FF step and division and classification related to the BS step.
  • the FF step will be described.
  • X j , I j ) is calculated as a Gaussian distribution using Equation (6).
  • the class of the n-th section is j using equation (7).
  • the probability ⁇ d [n] [i] [j] is calculated.
  • j ′) is a class transition probability, and is calculated by Expression (8).
  • N3 j ′, j is the number of times that the mth section obtained by dividing the sensor data string is classified as class j ′ and the (m + 1) th section is classified as class j in all sensor data strings.
  • N4 j ′ is the number of times the class that classifies the section into which the sensor data string is divided becomes j.
  • is a predetermined parameter.
  • the class data string is sampled using the equation (9) for the section obtained by dividing the sensor data string xd .
  • Equation (9) b d, m ′ and c d, m ′ in the first row are random variables obtained from the probability distribution on the right side, and the second row is a recurrence formula of the variables a d, m ′. is there.
  • M2 (d) is the number of sections obtained by dividing the sensor data string xd by Expression (9).
  • s d, m ′ is a class data string in the m′-th section from the back after dividing the sensor data string x d .
  • FIG. 11 is a diagram for explaining the data structure of the class data string generated by the second classifier 23 according to the present embodiment.
  • FIG. 12 is a diagram showing the class data sequence shown in FIG. 11 in a time series graph. In each stage (a) to (d) of FIG. 12, the horizontal axis is the number n at which the time-series sensor values are output in the cycle operation d, as in FIG. 6, and the numbers “1” to “6”.
  • the rectangles respectively including [] represent each section [ ad, m , ad, m + bd, m- 1] obtained by dividing the sensor data string xd .
  • the numbers “1” to “6” described in each section represent class numbers cd , m that classify each section.
  • the class of each section is also updated from the initial value.
  • the class data evaluator 24 evaluates each class data string generated by the second classifier 23 based on a predetermined evaluation criterion.
  • the class data evaluator 24 stores each class data string generated by the second classifier 23 in the class data storage device 32 when each class data string generated by the second classifier 23 does not satisfy the evaluation criteria. Update each class data column.
  • the class data evaluator 24 converts each class data string generated by the second classifier 23 into a class data linker 40 described later. Output to.
  • the class data evaluator 24 compares, for example, each class data string stored in the class data storage device 32 with each class data string generated by the second classifier 23, and these classes. A similarity indicating the ratio of the class values at each time that coincide between data strings is calculated. In this case, the class data evaluator 24 determines that each class data string generated by the second classifier 23 satisfies the evaluation criteria when the similarity exceeds a predetermined threshold value (for example, 90%). May be. Alternatively, the class data evaluator 24 determines that each class data string generated by the second classifier 23 satisfies the evaluation criteria when the number of evaluations by the class data evaluator 24 exceeds a predetermined threshold. May be.
  • a predetermined threshold value for example, 90%
  • the class data generator 20 generates the standard pattern by the standard pattern generator 22 and the second classifier 23 until the class data string generated by the second classifier 23 satisfies a predetermined evaluation criterion.
  • the class data string is repeatedly generated and the class data string stored in the class data storage device 32 is updated by the class data evaluator.
  • the class data generator 20 outputs the class data sequence and ends the operation.
  • the class data generator 20 can end the iterative process at an appropriate number of times by using the above-described evaluation criteria (similarity or number of evaluations), and shorten the processing time.
  • the class data generator 20 performs machine learning using a plurality of sensor data strings, generates a plurality of standard patterns so as to satisfy a predetermined evaluation criterion, and uses the generated plurality of standard patterns to class. Generate a data string.
  • the class data string output from the class data generator 20 is referred to as “first class data string”.
  • the class data string stored in the class data storage device 32 is referred to as a “second class data string”.
  • the class data string generated by the second classifier 23 is referred to as a “third class data string”.
  • the class data linker 40 Based on the plurality of class data strings generated by the class data generator 20, the class data linker 40 generates link data values having the same class among the plurality of class data strings and associating sections corresponding to each other. .
  • the class data linker 40 is, for example, a sequence of a plurality of class numbers ⁇ c 1,1 , c 1,2 ,..., C 1, M2 (1) ⁇ , ⁇ c 2,1 , c 2,2,.
  • a link data value is generated by using a multidimensional elastic matching method. That is, the class data linker 40 associates corresponding sections with each other based on the order of sections in each cycle operation and the classified classes.
  • FIG. 13 is a diagram for explaining the data structure of the link data value generated by the class data linker according to the present embodiment.
  • FIG. 13 shows the class data string s d, m generated by the second classifier 23 shown in FIG. 11 and the link data value l d, m generated by the class data linker 40 side by side.
  • FIG. 14 is a diagram showing the link data values shown in FIG. 13 in a time series graph. In each stage (a) to (d) of FIG. 14, the horizontal axis is the number n at which the time-series sensor values are output in the cycle operation d, as in FIG. 6, and the numbers “1” to “7”.
  • the rectangles respectively including [] represent each section [ ad, m , ad, m + bd, m- 1] obtained by dividing the sensor data string xd .
  • the numbers “1” to “7” described in each section represent the link data value l d, m .
  • the determiner 50 calculates a characteristic value of each section for each of a plurality of sections associated with each other by link data values (that is, having the same link data value).
  • the determiner 50 includes, as characteristic values of each section, a count value cnt d, m indicating the number of a plurality of sections associated with each other by the link data value, and a variation coefficient indicating a variation (variation) in the length of the plurality of sections.
  • cv d, m is calculated.
  • the variation coefficient cv d, m can be calculated, for example, by dividing the standard deviation of a set of lengths of sections to which the same link data value is assigned by the average of the lengths of these sections.
  • the determiner 50 determines determination data indicating a result of determining whether it is necessary to improve the operation of the work subject in each section based on the characteristic values calculated for each of the plurality of sections associated with each other. Can be calculated.
  • the determiner 50 calculates determination data rd , m using Equation (10) based on the count value cnt d, m and the variation coefficient cv d, m .
  • cnt th and cv th are predetermined threshold values.
  • the improvement target A is a label that determines a section having a small number of sections associated with each other in a plurality of cycle operations, that is, a section in which a non-stationary operation is performed in a series of operations.
  • the improvement target B is a label that determines a section in which the lengths of sections associated with each other in a plurality of cycle work are not constant, that is, a section of work that cannot be stably performed.
  • FIG. 16 is a diagram showing the determination data shown in FIG. 15 in a time series graph.
  • FIG. 16 shows the contents of the corresponding determination data rd , m instead of the numbers “1” to “7” representing the link data values l d, m described in each section of FIG. Since the determination data r 4,4 is calculated as “improvement target A”, “improvement target A” is described in the corresponding section [a 4,4 , a 4,4 + b 4,4 ⁇ 1]. .
  • the class data linker 40 calculates link data values in which sections corresponding to each other in a plurality of cycles are associated with each other, so that the determiners 50 can mutually It is possible to calculate the characteristic value of the correctly associated section.
  • the determiner 50 outputs the calculated characteristic value and determination data, which are the determination results, to the display device 3 provided outside the work analysis device 1.
  • the display device 3 is an image forming apparatus such as a liquid crystal display device that displays a determination result.
  • a storage device that stores the determination result, a communication device that transmits the determination result, and the like may be provided.
  • the work analysis apparatus 1 according to the present embodiment operates as described above.
  • FIG. 17 is a flowchart showing the operation of the work analysis apparatus 1 according to the present embodiment.
  • the sensor data input device 10 acquires a sensor data string based on sensor values output from the sensor 2 for a plurality of cycle operations.
  • the sensor data storage device 31 stores a plurality of sensor data strings acquired in step S101.
  • step S103 the first classifier 21 generates initial values of a plurality of class data strings based on the plurality of sensor data strings stored in the sensor data storage device 31 in step S102.
  • step S104 the class data storage device 32 stores a plurality of class data strings.
  • step S105 the standard pattern generator 22 is based on the plurality of sensor data strings stored in the sensor data storage device in step S102 and the plurality of class data strings stored in the class data storage device in step S104. To generate a plurality of standard patterns.
  • step S106 the second classifier 23 uses the plurality of class data based on the plurality of sensor data strings stored in the sensor data storage device in step S102 and the plurality of standard patterns generated in step S105.
  • step S107 the class data evaluator 24 evaluates the plurality of class data strings generated in step S106 with a predetermined evaluation criterion.
  • step S107 when each class data string does not satisfy the evaluation criteria, the operation of the work analysis apparatus 1 returns to step S104. On the other hand, if each class data string satisfies the evaluation criteria in step S107, the operation of the work analysis apparatus 1 proceeds to step S108.
  • step S108 the class data linker 40 generates a link data value in which corresponding sections between the class data strings are associated with each other based on the plurality of class data strings that satisfy the evaluation criteria in step S107.
  • step S109 the determiner 50 generates characteristic values and determination data for a plurality of sections associated with each other based on the link data value generated in step S108.
  • step S109 ends, the operation of the work analysis apparatus 1 ends.
  • the work analysis apparatus 1 operates as described above.
  • the functions of the sensor data input device 10, the first classifier 21, the standard pattern generator 22, the second classifier 23, the class data evaluator 24, the class data linker 40, and the determiner 50 in the work analysis apparatus 1 are processed. It may be realized by a circuit. Even if the processing circuit is a dedicated hardware device, a CPU (Central Processing Unit, central processing unit, processing device, arithmetic device, microprocessor, microcomputer, processor, Digital Signal Processor that executes a program stored in the memory It may also be a general-purpose device. Each function of the sensor data storage device 31 and the class data storage device 32 may be realized by a memory.
  • a CPU Central Processing Unit, central processing unit, processing device, arithmetic device, microprocessor, microcomputer, processor, Digital Signal Processor that executes a program stored in the memory
  • Each function of the sensor data storage device 31 and the class data storage device 32 may be realized by a memory.
  • the processing circuit When the processing circuit is a dedicated hardware device, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array). ), Or a combination thereof.
  • the functions of each part of the sensor data input device 10, the first classifier 21, the standard pattern generator 22, the second classifier 23, the class data evaluator 24, the class data linker 40, and the determiner 50 are individually realized by a processing circuit. Alternatively, the functions of the respective units may be collectively realized by a processing circuit.
  • each function of the sensor data input device 10, the first classifier 21, the standard pattern generator 22, the second classifier 23, the class data evaluator 24, the class data linker 40, and the determiner 50 Is realized by software, firmware, or a combination of software and firmware.
  • Software and / or firmware is described as a program and stored in memory.
  • the processing circuit implements the functions of the respective units by reading out and executing the program stored in the memory.
  • These programs are stored in the operation sequence of the sensor data input device 10, the first classifier 21, the standard pattern generator 22, the second classifier 23, the class data evaluator 24, the class data linker 40, and the determiner 50. Or you may make a computer perform a method.
  • the memory is a non-volatile or volatile semiconductor such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), etc. It may be a memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk), or the like.
  • a part of each function of the sensor data input device 10, the first classifier 21, the standard pattern generator 22, the second classifier 23, the class data evaluator 24, the class data linker 40, and the determiner 50 is dedicated. It may be realized by the hardware device, and the other part may be realized by software or firmware.
  • the function of the sensor data input device 10 is realized by a processing circuit as a dedicated hardware device, and a first classifier 21, a standard pattern generator 22, a second classifier 23, a class data evaluator 24, class data
  • the functions of the linker 40 and the determiner 50 may be realized by the processing circuit reading and executing the program stored in the memory.
  • FIG. 18 is a diagram illustrating an example of a hardware configuration of the work analysis apparatus 1 according to the present embodiment.
  • FIG. 18 shows an example in which the processing circuit 1001 is a dedicated hardware device.
  • the functions of the sensor data input device 10, the first classifier 21, the standard pattern generator 22, the second classifier 23, the class data evaluator 24, the class data linker 40, and the determiner 50 are This is realized by the processing circuit 1001.
  • Each function of the sensor data storage device 31 and the class data storage device 32 is realized by the memory 1002.
  • the processing circuit 1001 is connected to the memory 1002 via the data bus 1003.
  • FIG. 19 is a diagram showing another example of the hardware configuration of the work analysis apparatus 1 according to the present embodiment.
  • FIG. 19 shows an example of a hardware configuration when the processing circuit is a CPU.
  • each function of the sensor data input device 10, the first classifier 21, the standard pattern generator 22, the second classifier 23, the class data evaluator 24, the class data linker 40, and the determiner 50 is This is realized by the processor 1004 executing a program stored in the memory 1005.
  • Each function of the sensor data storage device 31 and the class data storage device 32 is realized by the memory 1002.
  • the processor 1004 is connected to the memory 1002 and the memory 1005 via the data bus 1003.
  • work analysis apparatus according to the second embodiment can also be realized with the same hardware configuration as the work analysis apparatus 1 according to the first embodiment.
  • the work analysis apparatus 1 it is not necessary to design a template and standard work time in advance, and even when the work subject has made a mistake in the work procedure, Based on only sensor data measured from the work to be analyzed, a characteristic value for each element work can be calculated, and a section requiring improvement can be determined.
  • the work analysis apparatus 1 it is not necessary to store a predesigned template, standard work time, and the like, so that a necessary memory area can be reduced. Furthermore, since the calculation time required for designing the template and the standard work time in advance is not required, there is an effect that the pre-calculation process for work analysis can be speeded up.
  • the improvement mode may occur as a result of the work subject performing the work.
  • the improvement mode is a collective term for items that require improvement in each cycle operation, such as that a defective product is manufactured by the operation and that the operation time is too long. Examples of the improvement mode include “forget screw tightening”, “exceeding cycle time”, and the like. In the cycle work in which “forget screw tightening” has occurred, there is a possibility that the work required for the normal work is skipped. In addition, when “exceeding the cycle time” occurs, there is a possibility that unnecessary work is being performed for normal work.
  • the work analysis apparatus calculates a difference in work for each improvement mode as a characteristic value when the user inputs the improvement mode. Accordingly, an object is to easily identify the section that causes the improvement mode.
  • FIG. 20 is a diagram illustrating an example of the configuration of the work analysis apparatus 1A according to the present embodiment.
  • the work analysis apparatus 1A according to the present embodiment inputs the improvement mode generated as a result of the work by the user determining the result of the work, and identifies the section including the operation requiring improvement that caused the improvement mode. This is different from the work analysis apparatus 1 according to the first embodiment.
  • the mode input device 4 is connected to the work analysis device 1A according to the present embodiment. Further, the work analysis apparatus 1A is different from the work analysis apparatus 1 according to Embodiment 1 in a part of the operation of the determination unit 50A. As a result, the work analysis apparatus 1A according to the present embodiment can easily specify the section including the operation requiring improvement that has caused the improvement mode. Hereinafter, the difference from the work analysis apparatus 1 according to the first embodiment will be mainly described.
  • the mode input device 4 acquires a user input indicating an improvement mode md d generated as a result of each of a plurality of cycle operations.
  • the mode input device 4 acquires a user input indicating “normal” or “excess” related to the cycle time taken for work as the improvement mode.
  • the mode input device 4 is configured by a device capable of inputting information from the outside, such as a keyboard or a touch panel, a memory card reading device.
  • the mode input device 4 may acquire a user input indicating “good” or “bad” regarding the quality of the product as the improvement mode.
  • the determination device 50A Based on the improvement mode md d input from the mode input device 4 and the link data values l d, m generated by the class data linker 40, the determiner 50A calculates the characteristic values for each section associated with each other. In addition, a section including an operation requiring improvement common to the cycle work in which the same improvement mode has occurred is determined as determination data.
  • FIG. 21 is a diagram for explaining the data structure of the link data value generated by the class data linker 40 according to the present embodiment.
  • FIG. 22 is a diagram showing the link data values shown in FIG. 21 in a time series graph. Referring to FIG. 22, the horizontal axis is the number n at which the time-series sensor values are output in the cycle operation d, the number n of the sensor values x d (n) in the sensor data string x d , and the number “1”.
  • the rectangles including “8” to “8” respectively represent sections [ ad, m , ad, m + bd, m ⁇ 1] obtained by dividing the sensor data string xd .
  • the numbers “1” to “8” described in each section represent the link data value l d, m .
  • the count value cnt2d , m which is the number of.
  • Determiner 50A further count value cnt2 d, based on m, using equation (11), determination data r2 d, calculates the m.
  • cnt2 th is a predetermined threshold value.
  • the improvement target C is a section that is characteristic of the cycle work in which the improvement mode “excess” is input, that is, a section in which an operation that causes “excess” is performed in a series of operations. Label.
  • FIG. 23 is a diagram for explaining the data structure of the characteristic value and determination data calculated by the determination device 50A according to the present embodiment.
  • the class data string s d, m generated by the second classifier 23 the link data value l d, m generated by the class data linker 40, and the count value cnt2 d calculated by the determiner 50A.
  • M and determination data r2 d, m are rearranged for each link data value l d, m .
  • FIG. 24 is a diagram illustrating the determination data illustrated in FIG. 23 in a time series graph.
  • FIG. 24 shows the contents of the corresponding determination data r2 d, m instead of the numbers “1” to “8” representing the link data values l d, m described in each section of FIG. Since the determination data r2 4,4 , r2 5,4 are calculated as the “improvement target C”, the corresponding sections [a 4,4 , a 4,4 + b 4,4 ⁇ 1], [a 5,4 , a5,4 + b5,4 -1] describes "improvement target C".
  • the determiner 50A further outputs determination data that is a determination result to the display device 3 provided outside the work analysis apparatus 1A.
  • the display device 3 is an image forming device such as a liquid crystal display device that displays determination data.
  • a storage device that stores the determination result, a communication device that transmits the determination result, and the like may be provided.
  • the work analysis apparatus 1A according to the present embodiment operates as described above.
  • the work analysis apparatus 1A As described above, according to the work analysis apparatus 1A according to the present embodiment, the data measured for the work of the work subject and the result of the work without designing the template and the standard work time in advance. As a result, it is possible to easily identify the section of the work that caused the improvement mode.
  • “normal” or “excess” related to the cycle time taken for the cycle work is set as the improvement mode, but “beginner” or “ “Expert” may be set. That is, there is a difference in the time involved in the work, the quality of the product, and the like between the case where the work subject is a beginner and the case where the work subject is an expert. In order to improve productivity, it is important to quickly improve the proficiency level of beginners. To that end, it is necessary to specifically indicate actions that require improvement in the work of beginners.
  • the difference between the input improvement modes can be calculated as the characteristic value.
  • the determination device 50A determines whether “beginner” or “expert” is “beginner” or “expert” is “beginner” or “expert” is “beginner” or “expert” is “beginner” or “expert” is “beginner” or “expert” occurs.
  • the count value is calculated as the characteristic value.
  • the present invention is not limited to this. For example, by calculating the variation coefficient, the determination mode cannot be stably implemented by the improvement mode (variation occurs). ) The section can be easily specified.
  • Each embodiment of the present invention can also be applied to a case where the work subject is other than a person.
  • the analyst when applied to the operation of a machine whose control content is unknown, such as a work robot that changes control adaptively to the external environment, the analyst identifies the factor for the cycle work improvement mode. Since it is considered that it is often difficult to do so, the application of the present invention becomes effective.
  • the standard pattern generator generates a standard pattern as a set of Gaussian distributions of sensor values at each time, another appropriate probability distribution may be used instead of the Gaussian distribution. Good.
  • the sensor data input device may include a removable storage medium reading device instead of being connected to the sensor. Accordingly, the sensor data input device may read a sensor data string measured in the past from the storage medium instead of acquiring the real-time sensor data string detected by the sensor.
  • the present invention can be applied to a work analysis apparatus that analyzes work composed of a series of operations performed by a predetermined work subject.
  • 1, 1A work analysis device 2 sensors, 3 display devices, 4 mode input device, 10 sensor data input device, 20 class data generator, 21 first classifier, 22 standard pattern generator, 23 second classifier, 24 Class data evaluator, 31 sensor data storage device, 32 class data storage device, 40 class data linker, 50, 50A determiner, 100 work subject, 101 work subject left hand, 102 work subject right hand, 1001 processing circuit, 1002, 1005 memory, 1003 data bus, 1004 processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • General Factory Administration (AREA)
  • Image Analysis (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

センサデータ入力装置(10)は、作業主体の作業をセンサで計測することによって生成される時系列のセンサ値を示すセンサデータ列であって、作業主体が作業を複数回にわたって反復的に実施するときに各反復に対応して生成されるセンサデータ列を取得する。クラスデータ生成器(20)は、各センサデータ列に含まれるセンサ値に基づいて各センサデータ列を時間的に分割した複数の区間と、各区間に含まれるセンサ値の時間的変化のタイプを示す各区間のクラスとを決定し、各センサデータ列に対して、当該センサデータ列の各区間及び各クラスを示す第1のクラスデータ列を生成する。クラスデータリンカ(40)は、複数の第1のクラスデータ列の間で同じクラスを有して互いに対応する各区間を互いに関連付ける。判定器(50)は、互いに関連付けられた各区間の特性値を算出する。

Description

作業分析装置
 本発明は、所定の作業主体によって実施される一連の複数の動作からなる作業を分析する作業分析装置に関する。
 製造業などにおいて、作業工程の改善による生産性の向上は重要な課題であり、そのためにIE(Industrial Engineering)と呼ばれる工学的手法がある。IEにより作業工程を改善するためには、まず現状分析として作業の所要時間を計測することが必要である。ここでは、作業主体が一連の要素作業(目的をもった動作のひと区切り)からなるサイクルを繰り返し行う作業を分析対象とする。分析者は、要素作業ごとに計測した所要時間を用いて、要素作業ごとの標準作業時間、複数のサイクル間での所要時間のばらつき、などといった特性値を算出する。これにより、分析者は、改善を要する要素作業を判定し、作業の見直し又は製造ラインの改善を行うことで、生産性の向上を図ることができる。
 所要時間を計測することによる作業分析は、一般的には、分析者がストップウォッチ及び/又はビデオカメラなどを用いることで行われている。分析者は複数のサイクルにおける要素作業ごとの所要時間を目視で計測する必要があるので、膨大な時間と労力がかかる。これに対して、作業分析に要する時間を短縮することを目的とした様々な作業分析装置が提案されている。
 例えば特許文献1は、作業が実行されるべき位置と作業の検出対象の位置との位置関係を表すパラメータに基づいて、実行された作業の始点及び終点を特定する作業分析システムを開示している。特許文献1のシステムは、作業が実行されるべき位置を予め定義した作業位置情報(すなわち、予め設計されたテンプレート)と、作業の検出対象の位置から取得された位置情報(すなわち、作業主体の作業から計測されたセンサデータ)とを比較することで、各時刻での要素作業を分類する。さらに、特許文献1のシステムは、要素作業の開始時刻と終了時刻とを特定することで、要素作業の作業時間を算出する。さらに、特許文献1のシステムは、各要素作業の作業時間と、予め設計された要素作業ごとの標準作業時間とを比較することで、各要素作業が改善を要するか否かを判定する。
特開2015-197847号公報
Da-Fei Feng and Russell F. Doolittle, "Progressive sequence alignment as a prerequisite to correct phylogenetic trees", Journal of Molecular Evolution, vol. 25, pp. 351-360, 1987
 特許文献1のシステムでは、各時刻における要素作業を分類するためのテンプレート、及び、各要素作業が改善を要するか否かを判定するための標準作業時間、などを予め設計する必要があった。すなわち、特許文献1のシステムは、テンプレート及び標準作業時間などが未知の状態では使用することができないので、事前の設計に時間と労力がかかる。また、予め設計したテンプレート及び標準的な作業時間などを記録しておくために、メモリの使用量が増加するという問題がある。さらに、作業主体が作業の手順を誤り、要素作業を繰り返した場合又はスキップした場合などに、複数のサイクル間で対応する要素作業が不定となり、要素作業ごとの標準作業時間及びばらつきなどを算出できなくなるという問題がある。
 本発明の目的は、上述の問題を解決し、予めテンプレート及び標準作業時間などを設計することを必要とせず、また、作業主体が作業の手順を誤った場合にも、分析対象の作業から計測されたセンサデータのみに基づいて要素作業ごとの標準作業時間及びばらつきといった特性値を算出できる作業分析装置を提供することにある。
 本発明の一態様に係る作業分析装置によれば、
 所定の作業主体によって実施される一連の複数の動作からなる作業を分析する作業分析装置であって、
 前記作業主体の作業をセンサで計測することによって生成される時系列のセンサ値を示すセンサデータ列であって、前記作業主体が前記作業を複数回にわたって反復的に実施するときに各反復に対応して生成される複数のセンサデータ列を取得するセンサデータ入力装置と、
 前記各センサデータ列に含まれる前記センサ値に基づいて前記各センサデータ列を時間的に分割した複数の区間と、前記各区間に含まれる前記センサ値の時間的変化のタイプを示す前記各区間のクラスとを決定し、前記複数のセンサデータ列のそれぞれに対して、当該センサデータ列の前記各区間及び前記各クラスをそれぞれ示す複数の第1のクラスデータ列を生成するクラスデータ生成器と、
 前記複数の第1のクラスデータ列に基づいて、前記複数の第1のクラスデータ列の間で同じクラスを有して互いに対応する前記各区間を互いに関連付けるクラスデータリンカと、
 前記クラスデータリンカによって互いに関連付けられた前記各区間の特性値を算出する判定器とを備える。
 本発明の一態様に係る作業分析装置によれば、予めテンプレート及び標準作業時間などを設計することを必要とせず、また、作業主体が作業の手順を誤った場合にも、分析対象の作業から計測されたセンサデータのみに基づいて要素作業ごとの標準作業時間及びばらつきといった特性値を算出することができる。
本発明の実施の形態1に係る作業分析装置の構成の一例を示す図である。 本発明の実施の形態1に係るクラスデータ生成器の構成の一例を示す図である。 本発明の実施の形態1に係る作業分析装置の使用例を説明する図である。 本発明の実施の形態1に係るセンサによって計測されるセンサ値の一例を示す図である。 本発明の実施の形態1に係るセンサデータ記憶装置に記憶されるセンサデータ列のデータ構造を説明するための図である。 本発明の実施の形態1に係るセンサデータ記憶装置に記憶されるセンサデータ列を時系列グラフで示す図である。 本発明の実施の形態1に係る第1分類器により生成されるクラスデータ列のデータ構造を説明するための図である。 本発明の実施の形態1に係る第1分類器により生成されるクラスデータ列を時系列グラフで示す図である。 本発明の実施の形態1に係る標準パターン生成器により生成される標準パターンのデータ構造を説明するための図である。 本発明の実施の形態1に係る標準パターン生成器により生成される標準パターンを時系列グラフで示す図である。 本発明の実施の形態1に係る第2分類器により生成されるクラスデータ列のデータ構造を説明するための図である。 本発明の実施の形態1に係る第2分類器により生成されるクラスデータ列を時系列グラフで示す図である。 本発明の実施の形態1に係るクラスデータリンカにより生成されるリンクデータ値のデータ構造を説明するための図である。 本発明の実施の形態1に係るクラスデータリンカにより生成されるリンクデータ値を時系列グラフで示す図である。 本発明の実施の形態1に係る判定器により算出される特性値及び判定データのデータ構造を説明するための図である。 本発明の実施の形態1に係る判定器により算出される判定データを時系列グラフで示す図である。 本発明の実施の形態1に係る作業分析装置の動作を示すフローチャートである。 本発明の実施の形態1に係る作業分析装置のハードウェア構成の一例を示す図である。 本発明の実施の形態1に係る作業分析装置のハードウェア構成の別の例を示す図である。 本発明の実施の形態2に係る作業分析装置の構成の一例を示す図である。 本発明の実施の形態2に係るクラスデータリンカにより生成されるリンクデータ値のデータ構造を説明するための図である。 本発明の実施の形態2に係るクラスデータリンカにより生成されるリンクデータ値を時系列グラフで示す図である。 本発明の実施の形態2に係る判定器により算出される特性値及び判定データのデータ構造を説明するための図である。 本発明の実施の形態2に係る判定器により算出される判定データを時系列グラフで示す図である。
実施の形態1.
 図1は、本発明の実施の形態1における作業分析装置1の構成の一例を示す図である。作業分析装置1は、所定の作業主体によって実施される一連の複数の動作からなる作業を分析する。本明細書において、作業主体は、1人もしくは複数人の人物、1つもしくは複数の機械、又はそれらの組み合わせであってもよく、本明細書では、1人の人物の場合を参照して説明する。作業分析装置1は、例えば、センサ2及び表示装置3とともに、工場などにおける何らかの端末装置に搭載される。
 図1を参照して、作業分析装置1の全体構成について述べる。作業分析装置1は、センサデータ入力装置10と、センサデータ記憶装置31と、クラスデータ生成器20と、クラスデータリンカ40と、判定器50とを備える。さらに、作業分析装置1には、センサ2と、表示装置3とが接続される。作業分析装置1は、センサ2によって計測されたデータを用いて作業を分析し、分析した結果を表示装置3に表示する。
 図2は、本実施の形態に係るクラスデータ生成器20の構成の一例を示す図である。図2を参照して、クラスデータ生成器20の構成について述べる。クラスデータ生成器20は、第1分類器21と、クラスデータ記憶装置32と、標準パターン生成器22と、第2分類器23と、クラスデータ評価器24とを備える。
 図3は、本実施の形態に係る作業分析装置の使用例を説明する図である。本実施の形態において、作業主体100は、一連の複数の動作からなる作業であるサイクル作業を複数回にわたって反復的に実施する。センサ2は、各1回のサイクル作業が開始されてから終了されるまでの時間であるサイクル区間において動作する。センサ2は、サイクル区間においてサイクル作業を計測することによって生成(検出)される時系列のセンサ値を出力する。センサ2は例えばデプスセンサであり、作業主体100の左手101と右手102とによるサイクル作業を撮影できるように配置される。センサ2は、例えば、特定のパターンで赤外線を発光する光源と、対象物が反射した赤外線を受光する撮像素子とを備え、対象物までの深度を画素値として有する深度画像データを生成する。さらに、センサ2は、深度画像データから、作業主体100の左手101及び右手102の高さ位置をそれぞれ検出し、これらの高さ位置をセンサ値として200ミリ秒毎に出力する。なお、デプスセンサの具体例としては、Kinect(登録商標)といった既存のデプスセンサが挙げられる。深度画像データから手の位置を検出するための処理は、デプスセンサで利用される既存の処理を用いることができる。
 図4は、本実施の形態に係るセンサ2によって出力されるセンサ値の一例を示す図である。図4において、横軸は、センサ値を取得した時刻を示し、縦軸は、センサ値、すなわち、センサ値によって表される左手101及び右手102の高さ位置の座標値を示す。本実施の形態では、センサ値は、作業主体100の左手101及び右手102の高さ位置であるので、2次元の値となる。
 なお、本実施の形態においては、センサ2としてデプスセンサを使用した場合について説明するが、これに限定されるものではなく、作業主体の作業を計測してセンサ値を生成できるセンサであればよい。デプスセンサ以外であれば、例えば、ビデオカメラ、3次元加速度センサ、3次元角速度センサ、などを使用可能である。また、本実施の形態においては、作業主体の右手及び左手の位置を検出対象とするが、これに限定されるものではなく、作業主体の頭部位置、身体における複数の関節の角度、あるいは作業主体の生態情報(例えば心拍及び呼吸)を検出対象としてもよい。
 次に、本実施の形態に係る作業分析装置1の各構成要素の動作について述べる。
 センサデータ入力装置10は、複数のサイクル作業において、センサ2から出力される時系列のセンサ値をそれぞれ示すセンサデータ列xを取得する。各センサデータ列xは、作業主体のサイクル作業をセンサ2で計測することによって生成される時系列のセンサ値をそれぞれ示し、作業主体がサイクル作業を複数回にわたって反復的に実施するときに各反復に対応して生成される。
 ここで、dは、複数のサイクル作業のそれぞれを識別するための番号であり、1からDまでの整数である。Dは、複数のサイクル作業の反復回数である。本実施の形態において、センサデータ列x={x(1),x(2),…,x(N(d))}である。ここで、x(n)は、サイクル作業dにおいてn番目に出力されたセンサ値である。また、N(d)は、サイクル作業dのサイクル区間において出力されたセンサ値の個数である。
 例えば、サイクル作業dのサイクル区間の長さが10秒であった場合、上述したように、本実施の形態では、センサ2は200ミリ秒毎にセンサ値を出力するので、センサ値の個数N(d)は50個となる。
 次に、本実施の形態に係るセンサデータ記憶装置31について述べる。センサデータ記憶装置31は、センサデータ入力装置10によって取得された複数のセンサデータ列を記憶する。図5は、本実施の形態に係るセンサデータ記憶装置31に記憶されたセンサデータ列のデータ構造を説明するための図である。図5を参照すると、センサデータ記憶装置31は、D=4回のサイクル作業で取得されたセンサデータ列を記憶している。上述したように、各センサデータ列には、センサデータ列が取得されたサイクル作業の番号dが割り当てられている。ここで、本実施の形態ではセンサ値は2次元の値であるので、センサデータ記憶装置31はセンサ値x(n)を2個の値として記憶している。図6は、図5に示した複数のセンサデータ列を時系列グラフで示す図である。図6の各段(a)~(d)において、横軸は、サイクル作業dにおいて時系列のセンサ値が出力された番号nを示し、縦軸はセンサ値を示す。
 次に、本実施の形態に係るクラスデータ生成器20について述べる。クラスデータ生成器20は、複数のサイクル作業においてセンサデータ入力装置10によって取得された複数のセンサデータ列xに基づいて、複数のセンサデータ列xにそれぞれ対応し、所定の評価基準を満たす複数のクラスデータ列sを生成して出力する。詳しくは、クラスデータ生成器20は、各センサデータ列xに含まれるセンサ値に基づいて各センサデータ列xを時間的に分割した複数の区間と、各区間に含まれるセンサ値の時間的変化のタイプを示す各区間のクラスとを決定する。さらに、クラスデータ生成器20は、複数のセンサデータ列xのそれぞれに対して、当該センサデータ列xの各区間及び各クラスをそれぞれ示す複数のクラスデータ列sを生成する。
 クラスデータ列sにおいて、センサデータ列xと同様に、dは複数のサイクル作業のそれぞれを識別するための番号であり、1からDまでの整数である。ここで、クラスデータ列s={sd,1,sd,2,…,sd,m,…,sM(d)}である。M(d)は、センサデータ列xを分割した区間の個数である。mは、分割された複数の区間のそれぞれを識別するための番号であり、1からM(d)までの整数である。sd,mは、センサデータ列xを分割したm番目の区間におけるクラスデータ列の要素であり、sd,m={ad,m,bd,m,cd,m}である。ad,mは、センサデータ列xを分割したm番目の区間の開始番号であり、bd,mは、センサデータ列xを分割したm番目の区間の長さであり、cd,mは、センサデータ列xを分割したm番目の区間を分類したクラス番号である。クラスデータ列sd,m={ad,m,bd,m,cd,m}を用いることで、例えば、センサデータ列xを分割したm番目の区間に含まれる時系列のセンサ値xd,mは、xd,m={x(ad,m),x(ad,m+1),…,x(ad,m+bd,m-1)}と表すことができる。すなわち、センサデータ列x={xd,1,xd,2,…,xd,M(d)}であり、センサデータ列xを分割した最初の区間の開始番号ad,1=1であり、センサデータ列xを分割した最後の区間の開始番号ad,M(d)=N(d)-bd,M(d)+1である。
 前述したように、本実施の形態に係るクラスデータ生成器20は、第1分類器21と、クラスデータ記憶装置32と、標準パターン生成器22と、第2分類器23と、クラスデータ評価器24とを備える。次に、クラスデータ生成器20の各構成要素について説明する。
 まず、本実施の形態に係る第1分類器21について述べる。第1分類器21は、複数のセンサデータ列xのそれぞれに対して、クラスデータ列sの初期値を算出してクラスデータ記憶装置32に記憶する。詳しくは、第1分類器21は、複数のセンサデータ列xのそれぞれを、クラスの個数Jに等しい個数の区間であって、可能な限り互いに等しい長さを有する複数の区間に分割する。すなわち、センサデータ列xを分割した区間の個数M(d)=Jである。また、第1分類器21は、複数のセンサデータ列xのそれぞれについて、当該センサデータ列xを分割した複数の区間を、各区間の時間的な順序に基づいて、複数のクラスのうちのいずれか1つに分類する。例えば、分割されたm番目の区間にクラス番号cd,m=mのクラスが割り当てられる。従って、本実施の形態では、第1分類器21は、これらの区間及びクラスにより、クラスデータ列の初期値を生成する。
 図7は、本実施の形態に係る第1分類器21により生成されるクラスデータ列のデータ構造を説明するための図である。図7は、D=4回のサイクル作業で取得されたセンサデータ列に基づいて生成されたクラスデータ列の初期値を示す。また、クラスの個数J=6であり、各センサデータ列xは、可能な限り互いに等しい長さの6個の区間に分割されている。図8は、図7で示したクラスデータ列を時系列グラフで示す図である。図8の各段(a)~(d)において、横軸は、図6と同様に、サイクル作業dにおいて時系列のセンサ値が出力された番号nであり、数字「1」~「6」をそれぞれ含む矩形は、センサデータ列xを分割した各区間[ad,m,ad,m+bd,m-1]を表す。また、各区間に記述された数字「1」~「6」は、各区間を分類したクラス番号cd,mを表す。第1分類器21は、センサデータ列xを可能な限り互いに等しい長さの6個の区間に分割したので、各段(a)~(d)のグラフには6個の矩形が含まれている。また、分割したm番目の区間にクラス番号cd,m=mのクラスを割り当てるので、各区間に記述されたクラス番号は順に「1」,「2」,…,「6」となっている。
 第1分類器21は、このようにクラスデータ列の初期値を生成することにより、クラスデータ列を高精度に推定し、推定処理を短時間で収束させることができる。
 次に、本実施の形態に係る標準パターン生成器22について述べる。標準パターンは、各区間に含まれるセンサ値の標準的な時間的変化をそれぞれ示し、複数のクラスのうちの1つに対応する。標準パターン生成器22は、複数のセンサデータ列xと、クラスデータ記憶装置32に記憶された複数のクラスデータ列sとに基づいて、複数のクラスjにそれぞれ対応する複数の標準パターンgを生成する。ここで、jは、複数のクラスを識別するための番号であり、1からJまでの整数である。Jは、上述したクラスの個数であり、すなわち、標準パターンの個数である。
 本実施の形態では、標準パターン生成器22は、ガウス過程回帰を用いることで、各時刻におけるセンサ値のガウス分布からなる集合として標準パターンgを生成する。このとき、標準パターンgは、クラスjに分類された区間におけるセンサ値のガウス分布のパラメータとして求められる。標準パターンg={g(1),g(2),…,g(L)}である。g(i)は、クラスjに分類された区間におけるi番目のセンサ値のガウス分布のパラメータであり、g(i)={μ(i),σ (i)}である。ここで、μ(i)は、ガウス分布の平均であり、σ (i)は、ガウス分布の分散である。また、Lは標準パターンの長さであり、すなわちセンサデータ列を分割した各区間に含まれるセンサ値の個数の最大値を表す。
 本実施の形態に係る標準パターンgについて、より具体的に説明する。上述したように、μ(i)は、クラスjに分類された区間におけるi番目のセンサ値のガウス分布の平均である。μ(i)は、センサ値と同様に、2次元の値である。また、σ (i)は、クラスjに分類された区間におけるi番目のセンサ値のガウス分布の分散である。本実施の形態では、センサ値のガウス分布の分散はいずれの次元においても同様となることを仮定し、従って、σ (i)は1次元の値である。
 標準パターンgは、クラスデータ列によってクラスjに分類された区間におけるセンサ値の集合Xと、クラスデータ列によってクラスjに分類された区間においてセンサ値が出力された番号の集合Iとを用いて推定できる。ここで、X={X(1),X(2),…,X(N2)}、I={I(1),I(2),…,I(N2)}である。例えば、X(1)は、クラスjに分類された区間においてI(1)番目に出力されたセンサ値である。また、N2は、集合X及びIに含まれる要素の個数である。すなわちN2は、D個のセンサデータ列を分割した区間のうち、クラスjに分類した区間に含まれるセンサ値の個数の和である。本実施の形態では、式(1)及び式(2)により、標準パターンg(i)={μ(i),σ (i)}を推定する。ここで、βは所定のパラメータであり、Eは単位行列を表す。また、Kは式(3)により計算される行列であり、vj,iは式(4)により計算されるベクトルである。また、kはカーネル関数であり、式(5)で示すガウスカーネルを利用することができる。θ、θ、θ、θはカーネル関数kにおける所定のパラメータである。
Figure JPOXMLDOC01-appb-M000001
・・・・・式(1)
Figure JPOXMLDOC01-appb-M000002
・・・・・式(2)
Figure JPOXMLDOC01-appb-M000003
・・・・・式(3)
Figure JPOXMLDOC01-appb-M000004
・・・・・式(4)
Figure JPOXMLDOC01-appb-M000005
・・・・・式(5)
 図9は、本実施の形態に係る標準パターン生成器22により生成される標準パターンのデータ構造を説明するための図である。図9の例では、クラスの個数J=6である。上述したように、jはクラスを識別するための番号である。また、図9の例では、標準パターンの長さL=30である。図10は、図9で示した標準パターンを時系列グラフで示す図である。図10(a)~(l)において、横軸は、各クラスjに分類された区間におけるセンサ値の番号iである。縦軸は、クラスjに分類された区間におけるセンサ値のガウス分布の平均及び分散である。前述したように、ガウス分布の平均はセンサ値と同様に2次元の値である。また、ガウス分布の分散はいずれの次元においても同様となることを仮定し、従って、1次元の値である。
 所定の分散を有する標準パターンを生成することで、クラスデータ列を高精度に推定することができる。
 次に、本実施の形態に係る第2分類器23について述べる。第2分類器23は、標準パターン生成器22により生成された複数の標準パターンgを用いて、複数のセンサデータ列xのそれぞれに対してクラスデータ列sを生成する。本実施の形態では、Forward filtering-Backward sampling(FF-BS)を用いることで、センサデータ列を複数の区間に分割し、分割された区間のそれぞれにおける時系列のセンサ値を複数のクラスのいずれか1つに分類する。FF-BSは、FFステップに係る確率計算と、BSステップに係る分割及び分類の2つのステップから構成される。
 まず、FFステップについて述べる。FFステップでは、センサデータ列xにおけるn番目のセンサ値x(n)が、クラスjに対応する標準パターンのi番目のガウス分布g(i)から生成される確率P(x(n)|X,I)を、式(6)を用いてガウス分布Normalとして計算する。また、1番目からn-i番目の区間を既に分割したセンサデータ列xから、さらにn番目の区間を分割するとき、式(7)を用いて、n番目の区間のクラスがjである確率α[n][i][j]を計算する。このとき、P(j|j’)はクラス遷移確率であり、式(8)によって計算する。また、N3j’,jは、全てのセンサデータ列において、センサデータ列を分割したm番目の区間がクラスj’に分類され、かつ、m+1番目の区間がクラスjに分類される回数である。また、N4j’は、センサデータ列を分割した区間を分類したクラスがjとなる回数である。γは、所定のパラメータである。式(7)は漸化式であり、n=1からn=N(d)まで順番に確率α[n][i][j]を計算することができる。
Figure JPOXMLDOC01-appb-M000006
・・・・・式(6)
Figure JPOXMLDOC01-appb-M000007
・・・・・式(7)
Figure JPOXMLDOC01-appb-M000008
・・・・・式(8)
 次に、BSステップについて述べる。BSステップでは、センサデータ列xを分割した区間について、式(9)を用いてクラスデータ列をサンプリングする。式(9)において、1行目のbd,m’及びcd,m’は、右辺の確率分布から得られるランダム変数であり、2行目は変数ad,m’の漸化式である。式(9)によれば、m’=1からm’=M2(d)まで順番にクラスデータ列sd,m’={ad,m’,bd,m’,cd,m’}を生成することができる。ここで、M2(d)は、式(9)によってセンサデータ列xを分割した区間の個数である。また、sd,m’は、センサデータ列xを分割した後ろからm’番目の区間におけるクラスデータ列である。式(9)では、センサデータ列xを分割した区間におけるクラスデータ列を、センサデータ列xの後方から順に計算している。すなわち、センサデータ列xを分割したm番目の区間におけるクラスデータ列sd,m={ad,m,bd,m,cd,m}={ad,M2(d)-m+1,bd,M2(d)-m+1,cd,M2(d)-m+1}である。
Figure JPOXMLDOC01-appb-M000009
・・・・・式(9)
 図11は、本実施の形態に係る第2分類器23により生成されるクラスデータ列のデータ構造を説明するための図である。図11は、D=4回のサイクル作業で取得されたセンサデータ列から、複数の標準パターンに基づいて生成されたクラスデータ列を示す。また、クラスの個数J=6である。図12は、図11で示したクラスデータ列を時系列グラフで示す図である。図12の各段(a)~(d)において、横軸は、図6と同様に、サイクル作業dにおいて時系列のセンサ値が出力された番号nであり、数字「1」~「6」をそれぞれ含む矩形は、センサデータ列xを分割した各区間[ad,m,ad,m+bd,m-1]を表す。また、各区間に記述された数字「1」~「6」は、各区間を分類したクラス番号cd,mを表す。図12の例では、各区間の範囲は、第1分類器21によって生成されたクラスデータ列の初期値(図7及び図8を参照)から更新され、例えばセンサデータ列xはM2(4)=7個の区間に分割されている。また、各区間のクラスも初期値から更新されている。
 次に、本実施の形態に係るクラスデータ評価器24について述べる。クラスデータ評価器24は、所定の評価基準に基づいて、第2分類器23によって生成された各クラスデータ列を評価する。クラスデータ評価器24は、第2分類器23によって生成された各クラスデータ列が評価基準を満たさないとき、第2分類器23によって生成された各クラスデータ列で、クラスデータ記憶装置32に記憶された各クラスデータ列を更新する。一方、クラスデータ評価器24は、第2分類器23によって生成された各クラスデータ列が評価基準を満たすとき、第2分類器23によって生成された各クラスデータ列を、後述するクラスデータリンカ40へ出力する。
 本実施の形態では、クラスデータ評価器24は、例えば、クラスデータ記憶装置32に記憶された各クラスデータ列と、第2分類器23によって生成された各クラスデータ列と比較し、これらのクラスデータ列の間で各時刻におけるクラスの値が一致する割合を示す類似度を算出する。この場合、クラスデータ評価器24は、類似度が予め決められたしきい値(例えば90%)を上回るとき、第2分類器23によって生成された各クラスデータ列が評価基準を満たすと決定してもよい。代替として、クラスデータ評価器24は、クラスデータ評価器24による評価の回数が所定のしきい値を越えたとき、第2分類器23によって生成された各クラスデータ列が評価基準を満たしたと決定してもよい。
 クラスデータ生成器20は、以上のように、第2分類器23によって生成されたクラスデータ列が所定の評価基準を満たすまで、標準パターン生成器22による標準パターンの生成と、第2分類器23によるクラスデータ列の生成と、クラスデータ評価器によるクラスデータ記憶装置32に記憶されるクラスデータ列の更新と反復する。クラスデータ生成器20は、第2分類器23によって生成されたクラスデータ列が評価基準を満たしたとき、クラスデータ列を出力し、動作を終了する。
 クラスデータ生成器20は、前述の評価基準(類似度又は評価の回数)を用いることにより、反復処理を適切な回数で終了し、その処理時間を短縮することができる。
 言い換えると、クラスデータ生成器20は、複数のセンサデータ列を用いて機械学習を行い、所定の評価基準を満たすように複数の標準パターンを生成し、生成された複数の標準パターンを用いてクラスデータ列を生成する。
 なお、クラスデータ生成器20から出力されるクラスデータ列を「第1のクラスデータ列」と呼ぶ。また、クラスデータ記憶装置32に記憶されるクラスデータ列を「第2のクラスデータ列」と呼ぶ。なお、第2分類器23で生成されるクラスデータ列を「第3のクラスデータ列」と呼ぶ。
 次に、本実施の形態に係るクラスデータリンカ40について述べる。クラスデータリンカ40は、クラスデータ生成器20によって生成された複数のクラスデータ列に基づき、複数のクラスデータ列間で同じクラスを有して互いに対応する区間を互いに関連付けたリンクデータ値を生成する。クラスデータリンカ40は、例えば、複数のクラス番号の系列{c1,1,c1,2,…,c1,M2(1)},{c2,1,c2,2,…,c2,M2(2)},…,{cD,1,cD,2,…,cD,M2(D)}に対して、多重シーケンス整列(例えば、非特許文献1を参照)などの多次元の弾性マッチング手法を用いることで、リンクデータ値を生成する。すなわち、クラスデータリンカ40は、各サイクル作業における区間の順序と、分類されたクラスとに基づいて、対応する区間を互いに関連付ける。
 図13は、本実施の形態に係るクラスデータリンカにより生成されるリンクデータ値のデータ構造を説明するための図である。図13は、図11で示した第2分類器23によって生成されたクラスデータ列sd,mと、クラスデータリンカ40によって生成されたリンクデータ値ld,mとを並べて示す。また図14は、図13で示したリンクデータ値を時系列グラフで示す図である。図14の各段(a)~(d)において、横軸は、図6と同様に、サイクル作業dにおいて時系列のセンサ値が出力された番号nであり、数字「1」~「7」をそれぞれ含む矩形は、センサデータ列xを分割した各区間[ad,m,ad,m+bd,m-1]を表す。また、各区間に記述された数字「1」~「7」はリンクデータ値ld,mを表す。
 次に、本実施の形態に係る判定器50について述べる。判定器50は、リンクデータ値によって互いに関連付けられた(すなわち、同じリンクデータ値を有する)複数の区間ごとに各区間の特性値を算出する。判定器50は、各区間の特性値として、リンクデータ値によって互いに関連付けられた複数の区間の個数を示すカウント値cntd,mと、複数の区間の長さの変動(ばらつき)を示す変動係数cvd,mとを算出する。変動係数cvd,mは、例えば、同一のリンクデータ値が割り当てられた区間の長さの集合の標準偏差を、これらの区間の長さの平均で除算することで算出できる。さらに、判定器50は、互いに関連付けられた複数の区間ごとに算出された特性値に基づいて、各区間における作業主体の動作を改善する必要があるか否かを判定した結果を示す判定データを算出することができる。判定器50は、カウント値cntd,mと変動係数cvd,mとに基づいて、式(10)を用いて、判定データrd,mを算出する。ここで、cntthとcvthは所定のしきい値である。
Figure JPOXMLDOC01-appb-M000010
・・・・・式(10)
 ここで、改善目標Aは、複数回のサイクル作業において互いに関連付けられた区間が少ない区間、すなわち、一連の動作の中で非定常的な動作が行われた区間を判定したラベルである。また、改善目標Bは、複数回のサイクル作業において互いに関連付けられた区間の長さが一定とならない区間、すなわち、安定して実施できない作業の区間を判定したラベルである。判定器50は、しきい値cntthを下回るカウント値を有する区間が存在するとき、当該区間における作業主体の動作を改善する必要があると判定する。また、判定器50は、しきい値cvthを上回る変動係数を有する区間が存在するとき、当該区間における作業主体の動作を改善する必要があると判定する。
 図15は、本実施の形態に係る判定器50により算出される特性値及び判定データのデータ構造を説明するための図である。図15を参照すると、第2分類器23によって生成されたクラスデータ列sd,mと、クラスデータリンカ40によって算出されたリンクデータ値ld,mと、判定器50によって算出された特性値であるカウント値cntd,m及び変動係数cvd,mと、判定データrd,mとを、リンクデータ値ld,mごとに並べ替えて示している。図15の例では、判定器50は、式(10)にしきい値cntth=2、cvth=0.15を設定して、作業主体の動作を改善する必要があるか否かを判定している。
 図15を参照すると、例えば、1つのリンクデータ値l4,4のみが値「4」を有するので、リンクデータ値「4」に関連付けられた区間のカウント値は、cnt4,4=1<cntthである。従って、判定器50は、式(10)を用いて、判定データr4,4=「改善目標A」を算出する。
 また、4つのリンクデータ値{l1,4,l2,4,l3,4,l4,5}が値「5」を有するので、リンクデータ値「4」に関連付けられた区間のカウント値は、cnt1,4=cnt2,4=cnt3,4=cnt4,4=4>cntthである。また、リンクデータ値「4」に関連付けられた区間の長さは、{b1,4,b2,4、b3,4,b4,5}={22,17,16,24}であり、平均19.750及び標準偏差3.862を有するので、その変動係数は、cv1,4=cv2,4=cv3,4=cv4,5=0.196>cvthである。従って、判定器50は、式(10)を用いて、判定データr1,4、r2,4、r3,4、r4,5=「改善目標B」を算出する。
 また、4つのリンクデータ値{l1,1,l2,1,l3,1,l4,1}が値「1」を有するので、リンクデータ値「1」に関連付けられた区間のカウント値は、cnt1,1=cnt2,1=cnt3,1=cnt4,1=4>cntthである。また、リンクデータ値「1」に関連付けられた区間の長さは、{b1,1,b2,1、b3,1,b4,1}={6,5,5,5}であり、平均5.25及び標準偏差0.5を有するので、その変動係数は、cv1,1=cv2,1=cv3,1=cv4,1=0.095<cvthである。従って、判定器50は、式(10)を用いて、判定データr1,1、r2,1、r3,1、r4,1=「正常」を算出する。
 図16は、図15で示した判定データを時系列グラフで示す図である。図16は、図14の各区間に記述されたリンクデータ値ld,mを表す数字「1」~「7」に代えて、対応する判定データrd,mの内容を示す。判定データr4,4は「改善目標A」として算出されたので、対応する区間[a4,4,a4,4+b4,4-1]に、「改善目標A」と記述されている。また、判定データr1,4、r2,4、r3,4、r4,5は「改善目標B」として算出されたので、対応する区間[a1,4,a1,4+b1,4-1]、[a2,4,a2,4+b2,4-1]、[a3,4,a3,4+b3,4-1]、[a4,5,a4,5+b4,5-1]に、「改善目標B」と記述されている。
 ここで、図12において、サイクル作業d=1~3におけるクラス番号の系列では、5番目の区間のみがクラス番号5に分類されている。これに対して、サイクル作業d=4におけるクラス番号の系列では、4番目と6番目の区間がクラス番号5に分類されている。すなわち、作業主体がサイクル作業d=4において作業の手順を誤り、通常は1回のみ実施する要素作業(クラス番号5の標準パターンに類似したセンサデータ列が計測される要素作業)を2回実施している。この状況においては、各サイクル作業に含まれる区間の個数が異なり、また、1つのサイクル作業において同一のクラスに分類された複数の区間がある。このように、複数のサイクル作業間で対応する区間が明確でないので、従来技術では、区間ごとに特性値を算出できないと考えられる。これに対して、本実施の形態に係る作業分析装置1では、クラスデータリンカ40が複数のサイクル間で互いに対応する区間を互いに関連付けたリンクデータ値を算出することで、判定器50は、互いに正しく関連付けられた区間の特性値を算出することができる。
 さらに、判定器50は、判定結果である算出した特性値と判定データとを、作業分析装置1の外部に備える表示装置3へ出力する。表示装置3は、判定結果を表示する液晶表示装置などの画像形成装置である。表示装置3の代わりに、判定結果を記憶する記憶装置、判定結果を送信する通信装置、などを備えてもよい。本実施の形態に係る作業分析装置1は、以上のように動作する。
 さらに、本実施の形態に係る作業分析装置1の動作について、フローチャートを参照して説明する。
 図17は、本実施の形態に係る作業分析装置1の動作を示すフローチャートである。まずステップS101において、センサデータ入力装置10が、複数のサイクル作業に対して、センサ2から出力されるセンサ値に基づいて、センサデータ列を取得する。次にステップS102において、センサデータ記憶装置31が、ステップS101で取得された複数のセンサデータ列を記憶する。
 次にステップS103において、第1分類器21が、ステップS102でセンサデータ記憶装置31に記憶された複数のセンサデータ列に基づいて、複数のクラスデータ列の初期値を生成する。次にステップS104において、クラスデータ記憶装置32が、複数のクラスデータ列を記憶する。次にステップS105において、標準パターン生成器22が、ステップS102でセンサデータ記憶装置に記憶された複数のセンサデータ列と、ステップS104でクラスデータ記憶装置に記憶された複数のクラスデータ列とに基づいて、複数の標準パターンを生成する。次にステップS106において、第2分類器23が、ステップS102でセンサデータ記憶装置に記憶された複数のセンサデータ列と、ステップS105で生成された複数の標準パターンとに基づいて、複数のクラスデータ列を生成する。次にステップS107において、クラスデータ評価器24が、ステップS106で生成された複数のクラスデータ列を所定の評価基準で評価する。ステップS107において、各クラスデータ列が評価基準を満たさなかった場合、作業分析装置1の動作はステップS104に戻る。一方、ステップS107において、各クラスデータ列が評価基準を満たした場合、作業分析装置1の動作はステップS108へと進む。
 次にステップS108において、クラスデータリンカ40が、ステップS107で評価基準を満たした複数のクラスデータ列に基づき、クラスデータ列間の対応する区間を互いに関連付けたリンクデータ値を生成する。次にステップS109において、判定器50が、ステップS108で生成されたリンクデータ値に基づいて、互いに関連付けられた複数の区間ごとの特性値と、判定データとを生成する。
 ステップS109が終了すると、作業分析装置1の動作は終了する。作業分析装置1は、以上のように動作する。
 次に、本実施の形態に係る作業分析装置1を実現するハードウェア構成について述べる。作業分析装置1におけるセンサデータ入力装置10、第1分類器21、標準パターン生成器22、第2分類器23、クラスデータ評価器24、クラスデータリンカ40、及び判定器50の各機能は、処理回路により実現されてもよい。処理回路は、専用のハードウェア装置であっても、メモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、Digital Signal Processorともいう)などの汎用装置であってもよい。また、センサデータ記憶装置31及びクラスデータ記憶装置32の各機能は、メモリにより実現されてもよい。
 処理回路が専用のハードウェア装置である場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものであってもよい。センサデータ入力装置10、第1分類器21、標準パターン生成器22、第2分類器23、クラスデータ評価器24、クラスデータリンカ40、及び判定器50の各部の機能を個別に処理回路で実現してもよく、各部の機能をまとめて処理回路で実現してもよい。
 処理回路がCPUである場合、センサデータ入力装置10、第1分類器21、標準パターン生成器22、第2分類器23、クラスデータ評価器24、クラスデータリンカ40、及び判定器50の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及び/又はファームウェアはフログラムとして記述され、メモリに格納される。処理回路は、メモリに記憶されたフログラムを読み出して実行することにより、各部の機能を実現する。これらのフログラムは、センサデータ入力装置10、第1分類器21、標準パターン生成器22、第2分類器23、クラスデータ評価器24、クラスデータリンカ40、及び判定器50の動作の手順及び/又は方法をコンビュータに実行させるものであってもよい。ここで、メモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)などの、不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパク卜ディスク、ミニディスク、DVD(Digital Versatile Disc)などであってもよい。
 なお、センサデータ入力装置10、第1分類器21、標準パターン生成器22、第2分類器23、クラスデータ評価器24、クラスデータリンカ40、及び判定器50の各機能について、一部を専用のハードウェア装置で実現し、他の一部をソフトウェア又はファームウェアで実現するようにしてもよい。例えば、センサデータ入力装置10の機能については専用のハードウェア装置としての処理回路で実現し、第1分類器21、標準パターン生成器22、第2分類器23、クラスデータ評価器24、クラスデータリンカ40、及び判定器50の各機能については、処理回路がメモリに格納されたフログラムを読み出して実行することによって実現してもよい。
 図18は、本実施の形態に係る作業分析装置1のハードウェア構成の一例を示す図である。図18は、処理回路1001が専用のハードウェア装置である場合の例を示している。図18の例では、センサデータ入力装置10、第1分類器21、標準パターン生成器22、第2分類器23、クラスデータ評価器24、クラスデータリンカ40、及び判定器50の各機能は、処理回路1001で実現される。また、センサデータ記憶装置31及びクラスデータ記憶装置32の各機能は、メモリ1002により実現される。処理回路1001は、データバス1003を介してメモリ1002と接続される。
 また、図19は、本実施の形態に係る作業分析装置1のハードウェア構成の別の例を示す図である。図19は、処理回路がCPUである場合のハードウェア構成の例を示している。図19の例では、センサデータ入力装置10、第1分類器21、標準パターン生成器22、第2分類器23、クラスデータ評価器24、クラスデータリンカ40、及び判定器50の各機能は、メモリ1005に格納されるプログラムをプロセッサ1004が実行することで実現される。また、センサデータ記憶装置31及びクラスデータ記憶装置32の各機能は、メモリ1002により実現される。プロセッサ1004は、データバス1003を介してメモリ1002及びメモリ1005と接続される。
 なお、実施の形態2に係る作業分析装置においても、実施の形態1に係る作業分析装置1と同様のハードウェア構成で実現することができる。
 以上のように、本実施の形態に係る作業分析装置1によれば、予めテンプレート及び標準作業時間などを設計することを必要とせず、また、作業主体が作業の手順を誤った場合にも、分析対象の作業から計測されたセンサデータのみに基づいて、要素作業ごとの特性値を算出するとともに、改善を要する区間を判定することができる。
 また、本実施の形態に係る作業分析装置1によれば、予め設計したテンプレート及び標準作業時間などを記憶する必要がないので、必要なメモリ領域を削減することができる。さらには、予めテンプレート及び標準作業時間を設計するために必要だった計算時間が不要となるので、作業分析の事前の計算処理を高速化できるという効果がある。
実施の形態2.
 作業主体が作業を実施した結果、改善モードが生じる場合がある。改善モードとは、作業により不良な製品が製造されること、作業時間が長すぎること、など、各サイクル作業における改善を要する事項を総称したものである。改善モードとして、例えば、「ねじの締め忘れ」、「サイクル時間の超過」、などがある。「ねじの締め忘れ」が生じたサイクル作業では、通常の作業に対して必要な作業をスキップしている可能性がある。また、「サイクル時間の超過」が発生した場合には、通常の作業に対して不要な作業を実施している可能性がある。本実施の形態に係る作業分析装置は、ユーザが改善モードを入力することで、改善モードごとの作業の差異を特性値として算出する。これにより、改善モードの原因となった区間を容易に特定できるようにすることを目的とする。
 図20は、本実施の形態に係る作業分析装置1Aの構成の一例を示す図である。本実施の形態に係る作業分析装置1Aは、ユーザが作業の結果を判定して作業の結果として生じた改善モードを入力し、その改善モードの原因となった改善を要する動作を含む区間を特定するという点で、実施の形態1に係る作業分析装置1と異なる。
 本実施の形態に係る作業分析装置1Aには、モード入力装置4が接続される。また、作業分析装置1Aは、実施の形態1に係る作業分析装置1と比較して、判定器50Aの動作の一部が異なる。この結果、本実施の形態に係る作業分析装置1Aは、改善モードの原因となった改善を要する動作を含む区間を容易に特定することができる。以下、実施の形態1に係る作業分析装置1との差異を中心に説明する。
 まず、本実施の形態に係るモード入力装置4について述べる。モード入力装置4は、複数回のサイクル作業のそれぞれの結果として生じた改善モードmdを示すユーザ入力を取得する。本実施の形態では、モード入力装置4は、改善モードとして、作業にかかったサイクル時間に関する「通常」又は「超過」を示すユーザ入力を取得する。モード入力装置4は、キーボード又はタッチパネル、メモリカード読み取り装置、など、外部から情報を入力できる装置で構成される。ほかの例としては、モード入力装置4は、改善モードとして、製品の品質に関する「良」又は「不良」を示すユーザ入力を取得してもよい。
 次に、本実施の形態に係る判定器50Aについて述べる。判定器50Aは、モード入力装置4から入力された改善モードmdと、クラスデータリンカ40によって生成されたリンクデータ値ld,mとに基づいて、互いに関連付けられた区間ごとの特性値を算出するとともに、同一の改善モードが生じたサイクル作業に共通する改善を要する動作を含む区間を判定データとして判定する。
 図21は、本実施の形態に係るクラスデータリンカ40により生成されるリンクデータ値のデータ構造を説明するための図である。図21は、D=5回のサイクル作業で取得されたセンサデータ列から、第2分類器23によって生成されたクラスデータ列sd,mと、クラスデータリンカ40によって生成されたリンクデータ値ld,mとを並べて示す。図22は、図21で示したリンクデータ値を時系列グラフで示す図である。図22を参照すると、横軸は、サイクル作業dにおいて時系列のセンサ値が出力された番号nであり、センサデータ列xにおけるセンサ値x(n)の番号nであり、数字「1」~「8」をそれぞれ含む矩形は、センサデータ列xを分割した区間[ad,m,ad,m+bd,m-1]を表す。また、各区間に記述された数字「1」~「8」はリンクデータ値ld,mを表す。
 判定器50Aは、リンクデータ値ld,mに基づいて互いに関連付けられた区間ごとの特性値として、改善モードmd=「通常」であり、かつ、同一のリンク番号が割り当てられた複数の区間の個数であるカウント値cnt2d,mを算出する。判定器50Aは、さらに、カウント値cnt2d,mに基づいて、式(11)を用いて、判定データr2d,mを算出する。ここで、cnt2thは所定のしきい値である。
Figure JPOXMLDOC01-appb-M000011
・・・・・式(11)
 ここで、改善目標Cは、改善モード「超過」が入力されたサイクル作業に特徴的な区間、すなわち、一連の動作の中で「超過」を生じさせる原因となる動作が行われた区間を判定したラベルである。
 図23は、本実施の形態に係る判定器50Aにより算出される特性値及び判定データのデータ構造を説明するための図である。図23において、第2分類器23によって生成されたクラスデータ列sd,mと、クラスデータリンカ40によって生成されたリンクデータ値ld,mと、判定器50Aによって算出されたカウント値cnt2d,m及び判定データr2d,mとを、リンクデータ値ld,mごとに並べ替えて示している。図23の例では、判定器50Aは、式(11)にしきい値cnt2th=0を設定して、作業主体の動作を改善する必要があるか否かを判定している。
 図23を参照すると、例えば、2つのリンクデータ値{l4,4,l5,4}が値「4」を有する。これに対応する改善モードmdとmdとはいずれも「超過」であるので、カウント値cnt24,4=cnt25,4=0≦cnt2thである。従って、判定器50Aは、式(11)を用いて、判定データr24,4=r25,4=「改善目標C」を算出する。
 また、1つのリンクデータ値{l2,7}のみが値「8」を有する。これに対応する改善モードmdは「通常」であるので、カウント値cnt22,7=1>cnt2thである。従って、判定器50Aは、式(11)を用いて、判定データr22,7=「正常」を算出する。
 図24は、図23で示した判定データを時系列グラフで示す図である。図24は、図22の各区間に記述されたリンクデータ値ld,mを表す数字「1」~「8」に代えて、対応する判定データr2d,mの内容を示す。判定データr24,4、r25,4は「改善目標C」として算出されたので、対応する区間[a4,4,a4,4+b4,4-1]、[a5,4,a5,4+b5,4-1]に、「改善目標C」と記述されている。
 判定器50Aは、さらに、判定結果である判定データを、作業分析装置1Aの外部に備える表示装置3へ出力する。表示装置3は、判定データを表示する液晶表示装置などの画像形成装置である。表示装置3の代わりに、判定結果を記憶する記憶装置、判定結果を送信する通信装置、などを備えてもよい。本実施の形態に係る作業分析装置1Aは、以上のように動作する。
 以上のように、本実施の形態に係る作業分析装置1Aによれば、予めテンプレート及び標準的な作業時間などを設計することなく、作業主体の作業に対して計測されたデータと、作業の結果として生じた改善モードのみから、改善モードの原因となった作業の区間を容易に特定できる。
 なお、本実施の形態では、改善モードとして、サイクル作業にかかったサイクル時間に関する「通常」又は「超過」などを設定したが、その他にも、サイクル作業を実施した作業主体に関する「初心者」又は「熟練者」などを設定してもよい。すなわち、作業主体が初心者である場合と、熟練者である場合とでは、作業に係る時間、製品の品質、などに違いが生じる。生産性の向上のためには、初心者の熟練度を速やかに向上することが重要であり、そのためには、初心者の作業において改善を要する動作を具体的に示すことが必要である。本実施の形態に係る作業分析装置1Aでは、前述したように、入力された改善モード間の差異を特性値として算出できる。したがって、改善モードとして「初心者」又は「熟練者」を入力することで、「初心者」と「熟練者」との差異が生じる区間を容易に特定することができる。また、本実施の形態に係る判定器50Aでは、特性値としてカウント値を算出したが、これに限らず、例えば変動係数を算出することで、改善モードによって、安定して実施できない(バラツキが生じる)区間を容易に特定することができる。
変形例.
 なお、本発明の各実施の形態は、作業主体が人以外の場合に対しても適用することができる。例えば、外部環境に対して制御を適応的に変化させる作業ロボットなど、制御内容が不明な機械の動作に対して適用する場合、分析者は、サイクル作業の改善モードに対して、その要因を特定することが困難な場合が多いと考えられるので、本発明の適用が効果的となる。
 本発明の核実施の形態に係る標準パターン生成器は、各時刻におけるセンサ値のガウス分布からなる集合として標準パターンを生成したが、ガウス分布に代えて、他の適切な確率分布を用いてもよい。
 センサデータ入力装置は、センサに接続されることに代えて、着脱可能な記憶媒体の読み取り装置を備えてもよい。これにより、センサデータ入力装置は、センサにより検出されたリアルタイムのセンサデータ列を取得することに代えて、過去に測定されたセンサデータ列を記憶媒体から読み出してもよい。
 本発明は、所定の作業主体によって実施される一連の複数の動作からなる作業を分析する作業分析装置に適用可能である。
1,1A 作業分析装置、 2 センサ、 3 表示装置、 4 モード入力装置、 10 センサデータ入力装置、 20 クラスデータ生成器、 21 第1分類器、 22 標準パターン生成器、 23 第2分類器、 24 クラスデータ評価器、 31 センサデータ記憶装置、 32 クラスデータ記憶装置、 40 クラスデータリンカ、 50,50A 判定器、 100 作業主体、 101 作業主体の左手、 102 作業主体の右手、 1001 処理回路、 1002,1005 メモリ、 1003 データバス、 1004 プロセッサ。

Claims (11)

  1.  所定の作業主体によって実施される一連の複数の動作からなる作業を分析する作業分析装置であって、
     前記作業主体の作業をセンサで計測することによって生成される時系列のセンサ値を示すセンサデータ列であって、前記作業主体が前記作業を複数回にわたって反復的に実施するときに各反復に対応して生成される複数のセンサデータ列を取得するセンサデータ入力装置と、
     前記各センサデータ列に含まれる前記センサ値に基づいて前記各センサデータ列を時間的に分割した複数の区間と、前記各区間に含まれる前記センサ値の時間的変化のタイプを示す前記各区間のクラスとを決定し、前記複数のセンサデータ列のそれぞれに対して、当該センサデータ列の前記各区間及び前記各クラスをそれぞれ示す複数の第1のクラスデータ列を生成するクラスデータ生成器と、
     前記複数の第1のクラスデータ列に基づいて、前記複数の第1のクラスデータ列の間で同じクラスを有して互いに対応する前記各区間を互いに関連付けるクラスデータリンカと、
     前記クラスデータリンカによって互いに関連付けられた前記各区間の特性値を算出する判定器とを備えた、
    作業分析装置。
  2.  前記クラスデータ生成器は、
     前記複数のセンサデータ列に基づいて、前記各区間に含まれる前記センサ値の標準的な時間的変化をそれぞれ示し、複数の前記クラスにそれぞれ対応する複数の標準パターンを生成し、
     前記複数の標準パターンを用いて前記複数の第1のクラスデータ列を生成する、
    請求項1記載の作業分析装置。
  3.  前記クラスデータ生成器は、前記複数のセンサデータ列を用いて機械学習を行い、所定の評価基準を満たすように前記複数の標準パターンを生成する、
    請求項2記載の作業分析装置。
  4.  前記クラスデータ生成器は、
     前記複数のセンサデータ列のそれぞれに対して、当該センサデータ列の前記各区間及び前記各クラスをそれぞれ示す複数の第2のクラスデータ列の初期値を生成する第1分類器と、
     前記複数のセンサデータ列及び前記複数の第2のクラスデータ列に基づいて前記複数の標準パターンを生成する標準パターン生成器と、
     前記複数の標準パターンを用いて、前記複数のセンサデータ列のそれぞれに対して、当該センサデータ列の前記各区間及び前記各クラスをそれぞれ示す複数の第3のクラスデータ列を生成する第2分類器と、
     前記各第3のクラスデータ列が所定の評価基準を満たさないとき、前記各第3のクラスデータ列で前記各第2のクラスデータ列を更新する一方、前記各第3のクラスデータ列が前記評価基準を満たすとき、前記各第3のクラスデータ列を前記各第1のクラスデータ列として生成するクラスデータ評価器とを備え、
     前記クラスデータ生成器は、前記各第3のクラスデータ列が前記評価基準を満たすまで、前記標準パターン生成器による前記複数の標準パターンの生成と、前記第2分類器による前記各第3のクラスデータ列の生成と、前記クラスデータ評価器による前記各第2のクラスデータ列の更新とを繰り返す、
    請求項2記載の作業分析装置。
  5.  前記第1分類器は、
     前記複数のセンサデータ列のそれぞれを、前記クラスの個数に等しい個数の区間であって、互いに等しい長さを有する複数の区間に分割し、
     前記複数のセンサデータ列のそれぞれについて、当該センサデータ列を分割した複数の区間を、前記各区間の時間的な順序に基づいて、複数の前記クラスのうちのいずれか1つに分類し、
     これにより、前記複数の第2のクラスデータ列の初期値を生成する、
    請求項4記載の作業分析装置。
  6.  前記クラスデータ評価器は、前記各第3のクラスデータ列と前記各第2のクラスデータ列との類似度を算出し、前記類似度が第1のしきい値を上回るとき、前記各第3のクラスデータ列が前記所定の評価基準を満たすと決定する、
    請求項4又は5記載の作業分析装置。
  7.  前記クラスデータ生成器は、各時刻における前記センサ値の確率分布として前記各標準パターンを生成する、
    請求項2~6のいずれか1つに記載の作業分析装置。
  8.  前記判定器は、前記各区間の特性値に基づいて、前記各区間における前記作業主体の動作を改善する必要があるか否かを判定する、
    請求項1~7のいずれか1つに記載の作業分析装置。
  9.  前記判定器は、
     前記各区間の特性値として、前記クラスデータリンカによって互いに関連付けられた前記区間の個数を示すカウント値を算出し、
     第2のしきい値を下回る前記カウント値を有する区間が存在するとき、当該区間における前記作業主体の動作を改善する必要があると判定する、
    請求項8記載の作業分析装置。
  10.  前記判定器は、
     前記各区間の特性値として、前記クラスデータリンカによって互いに関連付けられた前記各区間の長さの変動を示す変動係数を算出し、
     第3のしきい値を上回る前記変動係数を有する区間が存在するとき、当該区間における前記作業主体の動作を改善する必要があると判定する、
    請求項8又は9記載の作業分析装置。
  11.  前記作業分析装置は、前記作業のモードを入力するモード入力装置を備え、
     前記判定器は、前記クラスデータリンカによって互いに関連付けられた前記各区間と、前記モードとに基づいて、前記各区間の特性値を算出する、
    請求項1~10のいずれか1つに記載の作業分析装置。
PCT/JP2018/021006 2018-05-31 2018-05-31 作業分析装置 WO2019229943A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/044,332 US11599083B2 (en) 2018-05-31 2018-05-31 Work analysis apparatus for analyzing work including series of actions performed by working subject
CN201880093331.0A CN112136087B (zh) 2018-05-31 2018-05-31 作业分析装置
JP2020522512A JP6779413B2 (ja) 2018-05-31 2018-05-31 作業分析装置
PCT/JP2018/021006 WO2019229943A1 (ja) 2018-05-31 2018-05-31 作業分析装置
DE112018007522.2T DE112018007522T5 (de) 2018-05-31 2018-05-31 Arbeitsanalyseeinrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021006 WO2019229943A1 (ja) 2018-05-31 2018-05-31 作業分析装置

Publications (1)

Publication Number Publication Date
WO2019229943A1 true WO2019229943A1 (ja) 2019-12-05

Family

ID=68698743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021006 WO2019229943A1 (ja) 2018-05-31 2018-05-31 作業分析装置

Country Status (5)

Country Link
US (1) US11599083B2 (ja)
JP (1) JP6779413B2 (ja)
CN (1) CN112136087B (ja)
DE (1) DE112018007522T5 (ja)
WO (1) WO2019229943A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166402A1 (ja) * 2020-02-21 2021-08-26 オムロン株式会社 行動解析装置及び行動解析方法
WO2021255901A1 (ja) * 2020-06-18 2021-12-23 三菱電機株式会社 作業支援装置および作業支援方法
JP7581629B2 (ja) 2020-02-21 2024-11-13 オムロン株式会社 行動解析装置及び行動解析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338373A (ja) * 2005-06-02 2006-12-14 Toshiba Corp 多変数時系列データ分析装置、方法およびプログラム
JP2012221432A (ja) * 2011-04-13 2012-11-12 Toyota Motor East Japan Inc トレーシングシステム及びトレーシングシステム設定処理用プログラム
JP2017156978A (ja) * 2016-03-02 2017-09-07 株式会社日立製作所 作業動作認識システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4180960B2 (ja) * 2003-04-11 2008-11-12 キヤノンItソリューションズ株式会社 データ分析装置及びその制御方法、並びにコンピュータプログラム及びコンピュータ可読記憶媒体
JP2009157770A (ja) 2007-12-27 2009-07-16 Toshiba Corp 行動判定装置、行動判定方法および行動判定プログラム
JP5312807B2 (ja) * 2008-01-08 2013-10-09 オリンパス株式会社 画像処理装置および画像処理プログラム
EP2172820A1 (de) * 2008-10-06 2010-04-07 Basf Se Verfahren und System zur automatisierten Analyse von Prozessdaten
JP5525202B2 (ja) 2009-07-30 2014-06-18 株式会社構造計画研究所 動作分析装置、動作分析方法及び動作分析プログラム
US8606564B2 (en) * 2010-11-01 2013-12-10 Yahoo! Inc. Extracting rich temporal context for business entities and events
JP5868216B2 (ja) * 2012-02-27 2016-02-24 三菱電機株式会社 クラスタリング装置及びクラスタリングプログラム
KR101538843B1 (ko) * 2013-05-31 2015-07-22 삼성에스디에스 주식회사 제조 설비의 센서 데이터를 활용한 수율 분석 시스템 및 방법
KR101560274B1 (ko) * 2013-05-31 2015-10-14 삼성에스디에스 주식회사 데이터 분석 장치 및 방법
JP2015197847A (ja) 2014-04-02 2015-11-09 富士電機株式会社 作業分析システム、作業分析方法、及び作業分析プログラム
JP6421475B2 (ja) * 2014-06-30 2018-11-14 カシオ計算機株式会社 データ解析装置及びデータ解析方法、データ解析プログラム
JP6182279B2 (ja) * 2015-03-31 2017-08-16 株式会社Ubic データ分析システム、データ分析方法、データ分析プログラム、および、記録媒体
JP6458155B2 (ja) * 2015-08-31 2019-01-23 株式会社日立製作所 情報処理装置及び情報処理方法
JP6650305B2 (ja) * 2016-03-17 2020-02-19 国立研究開発法人産業技術総合研究所 行動分析システムおよびプログラム
JP6720010B2 (ja) * 2016-07-28 2020-07-08 キヤノン株式会社 情報処理装置、情報処理方法、およびプログラム
US10909451B2 (en) * 2016-09-01 2021-02-02 International Business Machines Corporation Apparatus and method for learning a model corresponding to time-series input data
US10768076B1 (en) * 2016-09-30 2020-09-08 Sight Machine, Inc. System and method for monitoring manufacturing
JP6714498B2 (ja) * 2016-11-17 2020-06-24 株式会社日立製作所 設備診断装置及び設備診断方法
JP6571741B2 (ja) * 2017-11-29 2019-09-04 ファナック株式会社 作業者管理装置
DE102017221501A1 (de) 2017-11-30 2019-06-06 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur automatischen Ermittlung von Zeitdaten für die Montage eines Produkts
US11763170B2 (en) * 2018-02-05 2023-09-19 Sony Group Corporation Method and system for predicting discrete sequences using deep context tree weighting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338373A (ja) * 2005-06-02 2006-12-14 Toshiba Corp 多変数時系列データ分析装置、方法およびプログラム
JP2012221432A (ja) * 2011-04-13 2012-11-12 Toyota Motor East Japan Inc トレーシングシステム及びトレーシングシステム設定処理用プログラム
JP2017156978A (ja) * 2016-03-02 2017-09-07 株式会社日立製作所 作業動作認識システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166402A1 (ja) * 2020-02-21 2021-08-26 オムロン株式会社 行動解析装置及び行動解析方法
JP7581629B2 (ja) 2020-02-21 2024-11-13 オムロン株式会社 行動解析装置及び行動解析方法
WO2021255901A1 (ja) * 2020-06-18 2021-12-23 三菱電機株式会社 作業支援装置および作業支援方法
JPWO2021255901A1 (ja) * 2020-06-18 2021-12-23
JP7383152B2 (ja) 2020-06-18 2023-11-17 三菱電機株式会社 作業支援装置および作業支援方法

Also Published As

Publication number Publication date
JP6779413B2 (ja) 2020-11-04
CN112136087B (zh) 2024-05-28
CN112136087A (zh) 2020-12-25
DE112018007522T5 (de) 2021-01-14
US20210080925A1 (en) 2021-03-18
JPWO2019229943A1 (ja) 2020-10-01
US11599083B2 (en) 2023-03-07

Similar Documents

Publication Publication Date Title
Chen et al. Recovering the missing components in a large noisy low-rank matrix: Application to SFM
US10956451B2 (en) Time-series data processing method, recording medium having recorded thereon time-series data processing program, and time-series data processing device
US11763603B2 (en) Physical activity quantification and monitoring
US20210125101A1 (en) Machine learning device and method
WO2011148596A1 (ja) 顔特徴点位置補正装置、顔特徴点位置補正方法および顔特徴点位置補正プログラム
US11631230B2 (en) Method, device, system and computer-program product for setting lighting condition and storage medium
JP2018026122A5 (ja)
JP6584250B2 (ja) 画像分類方法、分類器の構成方法および画像分類装置
Kamble et al. Comparision between accuracy and MSE, RMSE by using proposed method with imputation technique
WO2019229943A1 (ja) 作業分析装置
Raket et al. Separating timing, movement conditions and individual differences in the analysis of human movement
US11199561B2 (en) System and method for standardized evaluation of activity sequences
CN111385813B (zh) 用于重复活动序列中的循环持续时间测量的系统和方法
Zhang et al. Structural SVM with partial ranking for activity segmentation and classification
Christian et al. Application of deep learning to imu sensor motion
WO2021024246A4 (en) Methods and systems for improving asset operation based on identification of significant changes in sensor combinations in related events
JPWO2021130978A1 (ja) 動作分析システムおよび動作分析プログラム
US20230075705A1 (en) Work support device and work support method
JP7099296B2 (ja) 評価方法、システム構築方法、及び評価システム
JP7268509B2 (ja) 異常度算出方法、及び、異常度算出用コンピュータプログラム
KR20230055681A (ko) 불확실성을 고려한 딥러닝 기반 이상 탐지 장치 및 방법
Islamadina et al. Learning Rate Analysis for Pain Recognition Through Viola-Jones and Deep Learning Methods
Moukari et al. n-MeRCI: A new Metric to Evaluate the Correlation Between Predictive Uncertainty and True Error
CN105243392A (zh) 一种基于灵敏度分析的非线性支持向量回归特征提取方法
CN114041160A (zh) 应力分布图像处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522512

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18920311

Country of ref document: EP

Kind code of ref document: A1