WO2019225426A1 - Ozone gas generation system - Google Patents
Ozone gas generation system Download PDFInfo
- Publication number
- WO2019225426A1 WO2019225426A1 PCT/JP2019/019269 JP2019019269W WO2019225426A1 WO 2019225426 A1 WO2019225426 A1 WO 2019225426A1 JP 2019019269 W JP2019019269 W JP 2019019269W WO 2019225426 A1 WO2019225426 A1 WO 2019225426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- discharge
- ozone
- gas
- ozone gas
- generator
- Prior art date
Links
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 title claims abstract description 1225
- 238000001816 cooling Methods 0.000 claims abstract description 223
- 238000000605 extraction Methods 0.000 claims abstract description 48
- 239000007789 gas Substances 0.000 claims description 811
- 239000002994 raw material Substances 0.000 claims description 70
- 125000006850 spacer group Chemical group 0.000 claims description 38
- 230000004888 barrier function Effects 0.000 claims description 22
- 230000007246 mechanism Effects 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 210000004027 cell Anatomy 0.000 description 546
- 239000000498 cooling water Substances 0.000 description 95
- 238000000354 decomposition reaction Methods 0.000 description 87
- 230000000694 effects Effects 0.000 description 34
- 238000000034 method Methods 0.000 description 19
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 15
- 229910001882 dioxygen Inorganic materials 0.000 description 15
- 230000002093 peripheral effect Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 239000011941 photocatalyst Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000010494 dissociation reaction Methods 0.000 description 8
- 230000005593 dissociations Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 125000004430 oxygen atom Chemical group O* 0.000 description 7
- 230000005284 excitation Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000001699 photocatalysis Effects 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000005949 ozonolysis reaction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/10—Preparation of ozone
- C01B13/11—Preparation of ozone by electric discharge
Definitions
- the present invention relates to an ozone gas generation system that outputs high-concentration ozone gas by a combined configuration of an ozone power source and an ozone generator using a discharge phenomenon.
- the present invention relates to an ozone gas generation system capable of outputting a high-concentration ozone gas or a high generation amount of ozone gas in a combination of an ozone generator using discharge and a power source for ozone.
- a discharge-type ozone gas generator is composed of a combination of an ozone power source for supplying power for generating ozone gas and an ozone generator having a discharge cell (ozone generation cell) for generating ozone gas.
- the discharge cell has a discharge space through a dielectric, and a dielectric barrier discharge (within the discharge space of the discharge cell is applied by applying a high-voltage ozone generation AC voltage to the ozone generator from the ozone power source. (Silent discharge) can be induced.
- a discharge generator that employs oxygen gas added with a catalyst gas for generating ozone gas as a source gas in a discharge space in which a dielectric barrier discharge is generated, or a high-purity oxygen gas without addition of a catalyst gas is used as a source gas
- a discharge generator which is supplied and coated with a photocatalyst material for generating ozone gas on the dielectric barrier discharge surface. By applying discharge energy to the raw material gas supplied to each of these two types of discharge generators, high-concentration ozone gas is generated via the catalyst.
- An ozone gas generator is configured to collect ozone gas generated in a discharge cell and take out ozone gas having a predetermined ozone concentration from an ozone generator.
- an ozone generator used for an ozone gas generator there exists an ozone generator disclosed by patent document 1, for example.
- the ozone generators disclosed in various prior art documents are intended for ozone generators that are added with a catalyst gas for generating ozone gas or coated with a photocatalytic material on the discharge surface.
- the above treatment is naturally applied, omitting the specification of the raw material gas obtained by adding the catalytic gas to the raw material gas or the ozone generator in which the photocatalytic material is applied to the discharge surface.
- the explanation is based on the assumption of an ozone generator.
- the total ozone production amount Y (g / h) generated per unit time by the ozone generator is input to the ozone generator and the total gas flow rate Q (L / min) of the raw material gas supplied to the discharge space of the discharge cell.
- the amount corresponds to the total discharge power DW (W) to be satisfied, and satisfies the following formula (1).
- Equation (1) is the ozone generation concentration (g / m 3 ) generated in the discharge cell.
- the total ozone generation amount Y (g / h) generated by the ozone generator is the product of the generated ozone generation concentration C (g / m 3 ) and the total gas flow rate Q (L / min) of the supplied source gas. Corresponding value.
- the unit gas volume V (cm 3 ) simply satisfies the following formula (2) in the entire ozone gas generator.
- V (cm 3 / sec) 1000 ⁇ Q / 60 (2)
- the ozone generation concentration C (g / m 3 ) generated in the discharge cell is a specific power value DW corresponding to the discharge energy amount (joule / cm 3 ) injected into the unit gas volume V (cm 3 ) of the ozone generation cell.
- DW specific power value
- the ozone generation concentration C (g / m 3 ) increases in proportion to the specific power value DW / Q (W ⁇ min / L).
- the ozone generation concentration C (g / m 3 ) is expressed by the following formula (3).
- C (g / m 3 ) A ⁇ DW / Q (3)
- Equation (3) “A (g / J)” is an inherent proportional constant indicating the ability of ozone generation per unit discharge energy by the discharge cell.
- the eigenvalue “A (g / J)” indicates an ability value capable of generating ozone through various catalytic chemical reactions caused by electron collision or discharge. More specifically, it can be said that “A (g / J)” is an eigenvalue depending on the discharge form, gas type, discharge surface material, and gap length d.
- Ys (g) C ⁇ d ⁇ S / 1000000 (4)
- d is the discharge gap length (cm)
- S is the total discharge area (cm 2 ) of the ozone generator.
- the amount of ozone Ys staying in the discharge space of the discharge cell is not only the ability value A and specific power value DW / Q value that can generate ozone, but also the discharge gap length d and the total discharge area S that are discharge cell structure factors. It is also a parameter value that cannot be changed once the discharge cell structure is determined.
- FIG. 15 is a graph showing the characteristics of the extracted ozone concentration Ct with respect to the specific power value DW / Q in the conventional ozone generator.
- the characteristic of the extracted ozone concentration Ct with respect to the specific power value DW / Q of the ozone generator is a characteristic 8000a.
- the tangent line (two-dot chain line) indicating the characteristic of the extracted ozone concentration Ct with respect to the low specific power value DW / Q indicates the ozone generation concentration C corresponding to the ozone amount Ys staying in each discharge cell.
- the extracted ozone concentration Ct at a high specific power value DW / Q is a value obtained by removing the concentration Cd for decomposing ozone generated in each discharge cell from the ozone generation concentration C (two-dot chain line) generated from each discharge cell. It becomes. That is, the extracted ozone concentration Ct indicates the actual ozone concentration that can be extracted from the ozone gas generator.
- an ozone generator using high-purity oxygen gas as a raw material gas is examined.
- the main factor of the ozone generation capability indicated by the generated ozone concentration characteristic (two-dot chain line) determined with respect to the specific power value DW / Q (W ⁇ min / L) is the patent It is considered that the dielectric barrier discharge (silent discharge) is generated in the discharge space of the discharge cell shown in Document 2 to Patent Document 6.
- the dissociation amount of oxygen atoms due to electron collision in the discharge space is very small, and the ozone generation ability caused by this electron collision is only a part of the high concentration ozone generation. Absent.
- the oxygen atom dissociation ability due to a small amount of nitrogen gas and the oxygen atom dissociation ability of the photocatalyst disposed on the electrode surface are the main causes of ozone gas generation.
- the ozone generation concentration C (g / m 3 ) generated in the discharge cell increases as the oxygen atom dissociation capability described above increases, and the A (g / J) value indicated by the equation (3) increases. A large amount of ozone gas is produced.
- ozone gas having an ozone concentration according to Equation (3) with A (g / J) as a parameter is generated by injecting discharge energy (J).
- discharge energy (J) There are self-decomposition in the discharge cell and decomposition by collision with the discharge gas.
- the amount of ozone decomposition which is the sum of the self-decomposition of ozone gas in the discharge cell and the decomposition due to collision with the discharge gas, is larger than the amount of self-decomposition of normal ozone gas in the extracted atmosphere.
- the concentration Cd that decomposes the generated ozone gas in each discharge cell is also considered to be a factor that depends on the total discharge power DW to be input and the total gas flow rate Q.
- the total gas flow rate Q of the raw material gas requires a gas flow rate region of approximately 2.4 L / min or more, and cooling for cooling the ozone generator. It is assumed that it is desirable that the temperature be 5 ° C. or higher.
- the ozone gas generator is operated assuming that the upper limit of the restriction condition of the cooling temperature for cooling the ozone generator is about 30 ° C. with respect to normal temperature (20 ° C.).
- the conventional ozone gas generator can produce high-concentration ozone gas exceeding 400 g / m 3. Can not be taken out.
- the conventional ozone gas generator is composed of an existing ozone power supply and an existing discharge cell-shaped ozone generator.
- the total discharge power DW is increased and set to a high specific power value DW / Q (near 500 W ⁇ min / L) under conditions of a large gas flow rate region where the total gas flow rate Q of the raw material gas is relatively large.
- the amount of ozone gas decomposed in the ozone gas generator is larger than the generated ozone generation concentration C, so that the extracted ozone concentration Ct cannot be increased to a predetermined concentration or higher.
- the conventional ozone gas generator has a limit in the extraction ozone concentration Ct, and the ozone concentration that can be extracted from the ozone gas generator is within a large gas flow rate range. There was a problem that higher concentration ozone gas could not be taken out.
- the discharge cell there was a problem that even if the discharge input power was increased and the ozone generation amount was increased, the ozone gas decomposition amount increased, and the concentration of ozone that could be taken out could not be increased. Further, when the discharge input power is increased and the discharge power density is increased in order to increase the extracted ozone amount Yt, there is also a problem that the load applied voltage increases. Furthermore, when the AC output has a higher frequency, there is a problem that the discharge power density in power control is restricted, such as the ozone power supply cannot be stably supplied with the ozone generating AC voltage.
- An object of the present invention is to provide an ozone gas generation system capable of solving the above-described problems, minimizing the system configuration, and outputting high-concentration ozone to the outside.
- An ozone gas generation system includes an ozone generator having a plurality of discharge cells stacked in multiple stages, and an ozone power source that applies an alternating voltage for ozone generation to the ozone generator.
- a source gas containing oxygen is supplied, and the ozone generator generates a dielectric barrier discharge in the discharge spaces of the plurality of discharge cells, generates ozone gas from the source gas supplied to the discharge spaces, and generates the ozone gas.
- the plurality of discharge cells each include a flat plate-like first and second electrodes, a dielectric is formed on the second electrode, and the discharge is between the first and second electrodes.
- a space is provided, and each of the plurality of discharge cells is provided on a discharge surface of the first electrode, and N ⁇ ozone gas outlets for taking out the ozone gas generated in the discharge space;
- An ozone gas extraction path provided inside the first electrode, connected to each of the N ⁇ ozone gas outlets, and collecting the ozone gas extracted from the N ⁇ ozone gas outlets and outputting the ozone gas to the outside;
- the ozone generator satisfies the following conditions (a) and (b).
- Conditions (a) and (b) are as follows.
- Condition (a) In the plurality of discharge cells, the divided area dso obtained by dividing the discharge area st of the discharge surface by the division number N ⁇ is set in a range of 30 cm 2 or more and less than 160 cm 2.
- Condition (b) The discharge The discharge gap length in the space is set to less than 80 ⁇ m.
- Ozone gas generating system of the present invention according to claim 1, by satisfying the above conditions (a) and the condition (b), the discharge area of the discharge surface of each N ⁇ number of virtual discharge cells 30 cm 2 or more, 160cm 2 It is possible to realize a state set in a range of less than.
- the ozone gas generation system of the present invention can satisfy the conditions (a) and (b) described above and can supply the raw material gas flow rate and the discharge power supplied to the discharge surface of each discharge cell.
- the maximum value within a certain range and maximizing the amount of extracted ozone, it is possible to create conditions for extracting high-concentration ozone gas.
- the discharge area st of each of the plurality of discharge cells can be set to N ⁇ times the divided area dso.
- the present invention according to claim 1 can reduce the number of parts required for the plurality of discharge cells provided in the ozone generator 300 by reducing the number of stacks in the plurality of discharge cells stacked in multiple stages. it can.
- FIG. 6 It is explanatory drawing which shows the structure of the ozone gas generation system which is Embodiment 1 of this invention. It is explanatory drawing which shows the structure of the discharge surface in the discharge cell of the ozone generator shown in FIG. 6 is a graph showing characteristics of total ozone decomposition amount Yd with respect to gas residence time To of ozone generators of A type to C type discharge cell shapes. 6 is a graph showing the characteristics of the extracted ozone concentration Ct with respect to the specific power value DW / Q of the ozone generator of each of the A type to C type discharge cell shapes.
- FIG. 6 is a graph showing the characteristics of the extracted ozone concentration Ct with respect to the total gas flow rate Q of the raw material gas of the ozone generator for each of the A type to C type discharge cell shapes. 6 is a graph showing characteristics of load peak voltage Vp applied to each of ozone generators of A type to C type discharge cell shapes with respect to an operating frequency f of an ozone power source.
- FIG. 6 is an explanatory diagram schematically showing a planar structure of a ground cooling electrode which is a first aspect of the second embodiment.
- FIG. 6 is an explanatory diagram schematically showing a planar structure of a dielectric electrode which is a first aspect of the second embodiment.
- FIG. 10 is an explanatory diagram schematically showing a planar structure of a ground cooling electrode which is a second mode of the second embodiment.
- FIG. 6 is an explanatory diagram schematically showing a planar structure of a dielectric electrode which is a second mode of the second embodiment.
- FIG. 10 is an explanatory diagram schematically showing a planar structure of a ground cooling electrode which is a third aspect of the second embodiment.
- FIG. 10 is an explanatory diagram schematically showing a planar structure of a dielectric electrode which is a third aspect of the second embodiment.
- FIG. 10 is an explanatory diagram schematically showing a planar structure of a ground cooling electrode which is a fourth aspect of the second embodiment.
- FIG. 10 is an explanatory diagram schematically showing a planar structure of a ground cooling electrode which is a fourth aspect of the second embodiment.
- FIG. 10 is an explanatory diagram schematically showing a planar structure of a dielectric electrode which is a fourth mode of the second embodiment. It is a graph which shows the characteristic of the extraction ozone concentration Ct with respect to the specific power value DW / Q in the conventional ozone generator.
- FIG. 1 is an explanatory diagram showing a configuration of an ozone gas generation system according to Embodiment 1 of the present invention.
- the ozone gas generation system 1000 according to the first embodiment includes an ozone generator 200 having discharge cells (a combination of S1 and S2) disposed on a plate electrode (1, 3a, 3b) via a dielectric.
- the ozone generator 200 includes an ozone power source 100 that applies an alternating voltage for ozone generation.
- a dielectric barrier discharge is generated in the discharge space of the discharge cells (S1, S2) in the ozone generator 200, ozone gas is generated from the source gas containing oxygen gas supplied to the discharge space, and the ozone gas is taken out to the outside. ing.
- the ozone gas generation system 1000 is configured to have one discharge space (a space formed by a pair of discharge surfaces) and one ozone gas outlet per unit discharge cell.
- a pair of discharge surfaces constituting the discharge space may be referred to as “one unit discharge surface” or “one discharge surface”.
- the discharge power dw (W), discharge area so (cm 2 ), raw material gas flow rate qo (L / min), etc., supplied to one unit discharge cell are parameter symbols relating to ozone gas generation per unit discharge cell. Shown in lowercase.
- the total discharge power DW (W), the total discharge area S (cm 2 ), the total gas flow rate Q (L / min) of the raw material gas, etc. supplied to all the plurality of discharge cells in the ozone generator 200 are the ozone generation.
- the parameter symbol of the device 200 is shown in capital letters. In principle, symbols whose parameter values do not change due to differences in one unit discharge cell or ozone generator will be described in capital letters.
- the discharge area so related to the discharge shape of the discharge space and the discharge that can be charged into one unit of discharge space (discharge surface)
- the optimization of the power density J and the raw material gas flow rate qo flowing in the discharge space of 1 unit will be examined.
- the range of the discharge gap length d of the discharge space of the discharge cell in the ozone gas generation system 1000 is applied to an ozone generator of several tens ⁇ m to less than several hundred ⁇ m.
- the effect is further enhanced when the discharge gap length d is in the range of 20 ⁇ m to 100 ⁇ m.
- the discharge condition of one unit is particularly preferable as a condition for extracting a higher concentration of ozone gas.
- the average gas flow velocity vo / d flowing in the cell is set to be within a range of less than about (1.6 / d) cm / s.
- the ozone gas generation system 1000 can obtain a high concentration of extracted ozone concentration Ct from the ozone generator 200, and can maximize the extracted ozone amount Yt of the ozone gas with respect to the gas flow rate Q to be supplied.
- the output frequency of the high-frequency / high-voltage ozone generating AC voltage output from the ozone power source 100 is increased within the range of 20 kHz to 50 kHz compared to the conventional output frequency of 20 kHz or less.
- the ozone power supply 100 can supply the total discharge power DW to the ozone generator 200 by setting the peak voltage value of the alternating voltage for ozone generation applied to the ozone generator 200 to 7 kVp or less.
- the discharge surface of the discharge cells (basic cells S1, S2) is formed in a circular shape in plan view, and the diameter (outer diameter) of the discharge surface is reduced so that the source gas passes through the discharge space of the discharge cell.
- the amount of gas supplied relative to the amount of ozone generated in the discharge cell can be suppressed, In FIG. 5, a high ozone generation concentration C is ensured, and the decomposition amount Yd, which combines ozone decomposition due to collision of ozone gas and self-decomposition of the generated ozone itself, is kept low. As a result, the extraction ozone concentration Ct that can be extracted from the ozone generator 200 can be increased.
- the internal excitation inductance value Lt of the parallel resonance transformer 25 that functions as a high-frequency / high-voltage transformer that constitutes the ozone power supply 100 and the capacitance value of the ozone generator 200 that is composed of a plurality of multi-layered discharge cells.
- C0 constitutes an ozone power supply 100 that outputs and controls a high frequency matched to an operating frequency range in which parallel resonance is possible.
- the ozone power source 100 becomes an ozone power source in which a parallel resonant circuit is formed at the output of the parallel resonant transformer 25, which is a step-up transformer, and supplies a more stabilized ozone generating AC voltage to the ozone generator 200. can do.
- FIG. 1 is an explanatory diagram showing a configuration of an ozone gas generation system 1000 according to Embodiment 1 of the present invention.
- an ozone gas generation system 1000 according to Embodiment 1 includes an ozone generator 200 that generates ozone gas and an ozone power source 100 that applies an ozone generation AC voltage for total discharge power DW to the ozone generator 200. Is included as a main component.
- the ozone gas generation system 1000 according to Embodiment 1 is often provided together with other devices such as a semiconductor manufacturing device and a cleaning device.
- high-purity ozone gas is required, and it is required to increase the processing speed and the processing capacity. Therefore, the ozone gas generation system 1000 is desirably a system that can extract ozone gas having a higher concentration than the ozone concentration obtained by existing apparatuses and that the extracted ozone amount Yt is larger than the supplied gas flow rate Q.
- FIG. 2 is an explanatory view showing the structure of the discharge surface in the discharge cell of the ozone generator 200 shown in FIG. 1 and 2, an ozone gas generation system 1000 includes an ozone generator 200 that generates ozone gas, and an ozone power source 100 that supplies the ozone generator 200 with an ozone generation AC voltage for the total discharge power DW. ing.
- the ozone power supply 100 includes an AC-DC converter circuit unit 21, an inverter circuit unit 22, a current limiting reactor 23, a power supply control circuit 24, and a parallel resonance transformer 25 as main components.
- the inverter circuit unit 22 which is an inverter unit, receives power (voltage) input from a commercial power supply via the AC-DC converter circuit unit 21, and converts a high-frequency AC voltage obtained by converting this voltage into a necessary high-frequency AC voltage.
- the current is output to the parallel resonance transformer 25 via the current limiting reactor 23.
- the output frequency f of the high-frequency AC voltage by the inverter circuit unit 22 is set in the range of 20 kHz to 50 kHz. That is, the operating frequency f of the ozone power supply 100 is in the range of 20 kHz to 50 kHz.
- AA to BB basically indicates AA or more and less than BB.
- the parallel resonance transformer 25 which is a step-up transformer, boosts the high-frequency AC voltage to a high voltage to obtain an ozone generation AC voltage.
- the ozone generation AC voltage is supplied to the high voltage terminal HV and the low voltage of the ozone generator 200.
- the voltage is supplied between the voltage terminals LV.
- the total discharge power DW supplied to the ozone generator 200 is defined by the alternating voltage for ozone generation. Further, as will be described in detail later, the parallel resonance transformer 25 is provided with a measure for improving the power factor of the load.
- the high voltage terminal HV is electrically connected to the high voltage electrodes 3a and 3b of each discharge cell in the ozone generator 200.
- the low voltage terminal LV is electrically connected to the ground cooling electrode 1 in the ozone generator 200.
- the voltage value of the ozone generating AC voltage supplied to the ozone generator 200 is controlled. Can do.
- the ozone generator 200 is configured by laminating a plurality of basic cells S1, S2 each having a basic discharge surface.
- a pair of basic cells S1 and S2 has a basic configuration.
- this basic configuration is referred to as a “basic discharge cell set”.
- the basic discharge cell set includes a ground cooling electrode 1, dielectric electrodes 2a and 2b, high voltage electrodes 3a and 3b, and insulating plates 4a and 4b.
- the basic cell S1 includes a laminated structure of a ground cooling electrode 1, a dielectric electrode 2a, a high voltage electrode 3a, and an insulating plate 4a, which are directed from the bottom to the top.
- the basic cell S2 includes a laminated structure of a ground cooling electrode 1, a dielectric electrode 2b, a high voltage electrode 3b, and an insulating plate 4b, which are directed from the top to the bottom.
- the ground cooling electrode 1 is shared between the basic cells S1 and S2.
- a basic discharge cell set composed of a pair of basic cells S1, S2 having such a configuration is stacked in multiple stages.
- Each unit basic cell has a pair of discharge surfaces for forming a discharge space. That is, when six basic discharge cell groups each including the basic cells S1 and S2 are stacked, twelve basic cells of one unit are stacked.
- a predetermined number of basic discharge cell sets are stacked on the base 10 in the vertical direction of FIG. 1 and constitute the main part of the ozone generator 200.
- a plurality of stacked discharge cells (a plurality of basic discharge cell sets) includes a stacked presser plate 7 provided on the uppermost basic cell (basic cell S1), the stacked presser plate 7 and each basic cell S1. , S2 is clamped to the base 10 with a predetermined clamping force via the stacked cell presser spring 6 by the stacked cell presser bar 8.
- a plurality of discharge cells are entirely covered with the generator cover 11.
- the generator cover 11 has a general box shape with one side removed, and a flange provided on the peripheral edge of the opening is fastened to the base 10 with a cover fastening bolt (not shown).
- An O-ring (not shown) is sandwiched between the peripheral edge of the opening of the generator cover 11 and the base 10, and the internal space formed by the generator cover 11 and the base 10 has a sealed structure. Yes.
- the base 10 is provided with a raw material gas inlet 31 for supplying a raw material gas such as high-purity oxygen gas in this internal space.
- the raw material gas G IN supplied from the source gas inlet 31 is filled in the internal space within the generator cover 11, it enters the gap between the discharge space of the plurality of discharge cells.
- the base 10 has an ozone gas outlet 32 for supplying ozone gas generated in the discharge space to the outside from the ozone generator 200 through the manifold block 9 and a cooling water inlet / outlet (not shown) through which cooling water for cooling the discharge cells enters and exits. ) Is provided.
- the ozone gas outlet 32 for outputting the ozone gas G OUT to the outside is an end opening of the ozone gas passage provided in the base 10, and the cooling water inlet / outlet is connected to the cooling water passage provided in the base 10. (Not shown).
- the cooling water passage and the ozone gas passage provided in the base 10 are formed as independent passages.
- the ratio is a ratio to the discharge power DW input to the discharge surfaces (total discharge area S) of the plurality of discharge cells in the ozone generator 200.
- the discharge of one unit basic cell is defined so as to define the average gas flow velocity vo / d supplied to one unit discharge cell (basic cell S1 or S2). Reduce the surface diameter.
- the amount of ozone decomposition yd in one discharge cell (basic cell) is kept low, and high-concentration ozone gas can be extracted.
- the supply gas is dispersed in a multistage stacked cell structure in which the basic discharge cell group (combination of the basic cells S1 and S2) is stacked in the stacking number n ( ⁇ 2), so that the source gas is 2n times the source gas flow rate qo.
- the load applied voltage Vd increases when the desired total discharge power DW is supplied.
- the output frequency of the ozone power supply 100 is increased to 20 to 50 kHz for the purpose of suppressing the load applied voltage Vd low and supplying the desired total discharge power DW to secure the maximum amount of extracted ozone Yt.
- the load application voltage Vd indicates the effective value of the ozone generation AC voltage output from the ozone power supply 100.
- the parallel excitation transformer L25 has an internal excitation inductance value Lt and a capacitance value C0 of the ozone generator 200 itself including a plurality of discharge cells stacked in multiple stages.
- a high frequency AC voltage having an output frequency capable of resonating is output from the inverter circuit unit 22.
- the ozone power source 100 sets the operating frequency f in the vicinity of the parallel resonance frequency fc that satisfies the following equation (5).
- the ozone power source 100 becomes an ozone power source in which a parallel resonance circuit is formed on the output side of the parallel resonance transformer 25, and a more stabilized ozone generating AC voltage can be supplied to the ozone generator 200.
- the ground cooling electrode 1 has a circular upper surface and lower surface as a discharge surface in plan view. That is, the upper surface of the ground cooling electrode 1 becomes the discharge surface of the basic cell S1, and the lower surface of the ground cooling electrode 1 becomes the discharge surface of the basic cell S2.
- the basic cell S1 forms a discharge space between a pair of discharge surfaces, with the upper surface of the ground cooling electrode 1 and the lower surface of the dielectric electrode 2a serving as a pair of discharge surfaces.
- the basic cell S2 forms a discharge space between a pair of discharge surfaces, with the lower surface of the ground cooling electrode 1 and the upper surface of the dielectric electrode 2b as a pair of discharge surfaces.
- An opening 15 is provided for extracting ozone gas generated in these two discharge spaces.
- a cooling water path (not shown) is provided inside the ground cooling electrode 1 in order to cool both surfaces of the basic discharge cells S1 and S2.
- the opening 15 is connected to an ozone gas output path 92 of the manifold block 9 via an output path 17 provided inside the ground cooling electrode 1.
- the cooling water output path 91 and the cooling water input path 93 provided in the manifold block 9 are connected to the cooling water path provided in the ground cooling electrode 1.
- the cooling water path provided in the base 10 the cooling water output path 91 and the cooling water input path 93 provided in the manifold block 9, and the cooling water path provided in the ground cooling electrode 1 are included.
- a cooling mechanism for cooling the plurality of discharge cells of the ozone generator 200 is configured.
- a plurality of discharge spacers 13 for forming a discharge gap length d (mm) are provided on each of the upper surface and the lower surface of the ground cooling electrode 1, and the dielectric electrodes 2a and 2b, and The high voltage electrodes 3a and 3b are overlapped. As a result, discharge spaces having a discharge gap length d can be formed between the ground cooling electrode 1 and the high voltage electrode 3a (dielectric electrode 2a) and between the ground cooling electrode 1 and the high voltage electrode 3b (dielectric electrode 2b). it can.
- the upper and lower surfaces of the ground cooling electrode 1 have an ozone generator configuration in which a photocatalyst material (not shown) for generating ozone is applied as one ozone generation method.
- the raw material gas GIN is supplied from the outer periphery of the ground cooling electrode 1.
- the raw material gas flow rate qo (Q / n) dispersed in the number n of basic discharge cell groups is supplied to each discharge cell (basic cell S1 or basic cell S2).
- a dielectric barrier discharge is formed on the entire discharge surface of each discharge cell by applying an ozone generating AC voltage between the ground cooling electrode 1 and the high voltage electrodes 3a, 3b. Therefore, in the discharge space, the oxygen energy dissociation of the oxygen gas contained in the source gas supplied to the discharge space is promoted by the activation of the light energy of the dielectric barrier discharge and the activation of the photocatalyst.
- the ozone generator 200 promotes the three-body collision chemical reaction between oxygen atoms and oxygen gas generated in the pause period of intermittent discharge, which is a feature of dielectric barrier discharge, and in the discharge space of each discharge cell, Highly efficient ozone generation ability can be demonstrated. That is, the ozone generator 200 can generate ozone gas having a concentration proportional to the total discharge area S of the plurality of discharge cells and the specific power value DW / Q.
- the source gas GIN is supplied from the outer periphery of the ground cooling electrode 1, the ozone gas generated in the discharge space of each discharge cell enters the opening 15 at the center of the ground cooling electrode 1 along the gas flow. Then, it is taken out as an output ozone gas G OUT via an output path 17 which is an ozone passage provided in the ground cooling electrode 1.
- Ozone gas generated by each discharge cell in the ozone generator 200 is collected, and finally ozone gas of a predetermined concentration is taken out from the ozone gas outlet 32 through the ozone gas output path 92 of the manifold block 9.
- the amount of extracted ozone Yt finally taken out from the ozone generator 200 is determined from the amount of ozone gas generated y in the discharge space of each unit discharge cell y, the amount of ozone decomposition due to collision during discharge in each discharge space, and the amount in the discharge cell.
- the ozone generation amount y (g / h) generated per unit time in each discharge cell of FIG. 2 is determined by the raw material gas flow rate qo (L / min) supplied to the discharge space and the discharge power dw (W ) And the photocatalytic function in which ozone is applied to the discharge surface acts, and is expressed by the following formula (6).
- C is the ozone concentration (g / m 3 ) calculated from the ozone generation amount y generated per unit time in one unit discharge cell and the raw material gas flow rate qo in the discharge space.
- one discharge space volume dv (cm 3 ) which is the volume of the discharge space formed in one unit discharge cell, is expressed by the following formula (7).
- dv (cm 3 ) d ⁇ so (7)
- the ozone amount ys (g) staying in the discharge space after being generated in one discharge space is the discharge space volume dv calculated by the generated ozone generation concentration C (g / m 3 ) and the equation (7).
- the ozone generation amount y corresponds to the product of (cm 3 ).
- d is the discharge gap length (cm)
- so is the discharge area (cm 2 ) of the discharge surface in one unit discharge cell
- these parameters “d”, “so” is a fixed value that defines the discharge cell structure.
- the ozone generation concentration C (g / m 3 ) generated in the discharge cell corresponds to the discharge power dw injected into the unit gas volume dv (cm 3 ) per unit time.
- the unit gas volume dv is shown again in the following formula (8) (same as formula (2)) for one unit discharge cell.
- the ozone generation concentration C (g / m 3 ) generated in one unit discharge cell is a specific power value dw / qo (W ⁇ q) corresponding to the discharge energy amount (joule / cm 3 ) injected into the unit gas volume dv.
- the amount of ozone ys (g) staying in the discharge space as shown in the following formula (9) is higher in proportion to the specific power value dw / qo (W ⁇ min / L).
- ys (g) C ⁇ d ⁇ s / 1000000 (9)
- the extracted ozone concentration Ct does not increase in proportion to the specific power value DW / Q, as shown in FIG.
- the characteristic of the density Ct is a characteristic 8000a.
- the tangent (two-dot chain line) of the extracted ozone concentration Ct characteristic with a low specific power value DW / Q is defined as the characteristic of the ozone generation concentration C (g / m 3 ) generated in the discharge cell (ozone generation cell).
- the extracted ozone concentration Ct in the region of the high specific power value DW / Q is derived from the ozone generation concentration C generated from each discharge cell, and the ozone generated in each discharge cell. It can be determined that the concentration Cd is a value obtained by removing the concentration Cd.
- the characteristic 8000a of the extracted ozone concentration Ct with respect to the specific power value DW / Q of the ozone generator is saturated at a predetermined concentration value in a large flow rate region where the raw material gas flow rate Q is approximately 3.0 L / min or more. doing. For this reason, even if the total discharge power DW is increased and the specific power value DW / Q is increased, the extraction ozone concentration Ct cannot be increased.
- the ozone concentration Ct extracted from the predetermined concentration value is not increased, but rather the cause of the decreasing tendency is generated in electrons, ions, discharge gas and discharge space generated in the discharge cell.
- the ozone gas is decomposed by collision with ozone, and the self-decomposition of ozone staying in the discharge cell is large.
- ozone gas generated in the discharge space passes through the electron space during discharge, it decomposes by combining the amount of decomposition that collides with electrons, ions, discharge gas, etc., and the amount of self-decomposition that ozone itself decomposes.
- the extracted ozone concentration Ct is reduced due to the large amount.
- the extracted ozone concentration Ct can be increased.
- the total ozone decomposition amount Yd that decomposes ozone in the plurality of discharge cells is the amount of ozone gas decomposed in the plurality of discharge spaces.
- the total gas flow rate Q is approximately 3.0 L / min or more. It can be seen that in the large flow rate region, the ratio is determined uniquely by the ratio (specific power value DW / Q) of the total discharge power DW input to generate ozone gas and the gas flow rate Q.
- the total ozone decomposition amount Yd depending on the specific power value DW / Q has an inherent characteristic determined by the conditions of the structure of the ozone generator itself. That is, if the structure of the ozone generator and the output condition of the ozone power source are reviewed, the total ozone decomposition amount Yd depending on the specific power value DW / Q can be reduced, and the extracted ozone amount Yt can be increased. The present invention focuses on this point.
- the gas residence time To is closely related to both the amount of ozone decomposition caused by collision of electrons, ions, discharge gas and ozone gas generated on the discharge surface in the discharge space, and the amount of self-ozone decomposition of ozone itself staying in the discharge space. is connected with.
- the average gas flow velocity vo / d (cm / s) based on the unit perimeter length l (cm) is closely related to the ozone generation ability generated in one unit discharge cell. If the average gas flow velocity vo / d of the gas is large relative to the capacity, the total gas flow rate Q is large, and the ozone concentration that can be extracted is low.
- the gas residence time To and the gas temperature Tg are factors that increase the decomposition amount due to the collision of ozone gas passing through the discharge space and the self-decomposition amount of ozone itself, and promote factors that increase the ozone decomposition amount in the discharge cell. ing. Further, when the average gas flow rate vo / d (cm / s) is larger than the ability to generate ozone in the discharge space, the extracted ozone concentration Ct is lowered.
- the ozone decomposition amount yd of the gas stay time To in the discharge space The impact cannot be ignored.
- the ozone decomposition amount yd which is the sum of the amount of decomposition due to collision with the discharge gas and the amount of self-decomposition of the ozone itself that is staying, is growing.
- the discharge power density J is increased, the gas temperature Tg tends to increase.
- the discharge surface has sufficient cooling ability to cool the entire discharge surface and sufficiently remove the discharge heat energy, the discharge power density J can be increased.
- the amount of ozone decomposition yd does not increase as much as the shape of the discharge cell, and can be suppressed to some extent by the cooling capacity.
- the temperature rise of the gas temperature Tg can be suppressed by making it a sufficient cooling capacity in relation to the cooling capacity of the discharge electrode surface. Since suppression of the temperature rise of the gas temperature Tg is an essential problem in the design of the ozone generator, the increase in the amount of ozone decomposition due to the gas temperature Tg is not considered here.
- S indicates the total discharge area (cm 2 ) in the ozone generator 200
- Q indicates the total gas flow rate (L / min) of the source gas supplied into the ozone generator 200
- n indicates the number (number) of the basic discharge cell groups (combination of the basic cells S1 and S2) in which the ozone generator 200 shown in FIG. 1 is stacked, and the number of discharge surfaces is 2 ⁇ n.
- the average gas flow velocity vo / d (cm / s) flowing on the discharge surface based on the unit perimeter length l (cm) depends on the shape of the discharge cell.
- the gas cross section sav flowing through the discharge cell with the unit peripheral length l (cm) as a reference is equal to the per unit gap length flowing into the discharge diameter corresponding to 1 ⁇ 2 of the discharge area so.
- the average gas flow velocity vo it is expressed by the following equation (12).
- the average gas flow velocity vo per unit gap length is a value that depends on the reciprocal of the function f (so) and the gas residence time To in the discharge space.
- discharge power density J (W / cm 2 ) that can be charged into one discharge space is represented by the following formula (13).
- the element that increases the amount of ozone decomposition yd in a proportional manner is the gas residence time To.
- the inventor of the present application reduces the discharge area so in one unit discharge cell, it is important to set the conditions for shortening the gas residence time To in the discharge space under the condition that the raw material gas flow rate qo supplied to the discharge space is low. I found out. That is, the inventor of the present application can shorten the time required for the decomposition including the ozone decomposition due to the collision of the generated ozone and the self-decomposition of the staying ozone by the above condition setting. As a result, the amount of ozone decomposition yd in the discharge space is reduced. Recognized that can be reduced.
- the diameter of the discharge surface in the discharge cell is reduced so that the discharge power density J is within a desired range, and the discharge space is formed by the discharge surface having a reduced diameter.
- a method for setting the discharge power dw is conceivable. According to this method, the amount of ozone decomposition yd in one discharge space can be reduced, and as a result, a predetermined amount of ozone gas can be extracted from the one discharge space at a higher concentration.
- the basic discharge cell groups having the basic cells S1 and S2 are stacked in multiple stages (n times). Is desired.
- the discharge area so of one discharge surface is reduced within a specified value range so that the gas residence time To in the discharge space can be shortened. It is desirable to use an ozone gas generation system.
- ozone gas generation system that can extract high-concentration ozone
- there are means for cooling the ozone generator at a lower gas flow rate or at a lower temperature but the required fields that require low flow ozone gas are limited.
- the means for cooling the ozone generator to a lower temperature requires a larger incidental facility in the ozone gas generation system, and the ozone gas generation system itself is more expensive and larger than the conventional apparatus.
- the restriction condition of the ozone gas generation system from which high-concentration ozone can be taken out is a cooling gas that cools the ozone generator 200 by setting the gas flow rate range of the total gas flow rate Q to a large gas flow rate of approximately 3.0 L / min or more.
- a condition where the temperature is 5 ° C. or higher Under this condition, for example, it is necessary to realize an ozone gas generation system 1000 that can extract high-concentration ozone of 400 g / m 3 or more as one embodiment and can extract ozone with an increased amount of extracted ozone Yt. Become.
- the ozone power source 100 needs to increase the discharge power density J of the ozone generator 200 by supplying the total discharge power DW to the ozone generator 200 in order to obtain a predetermined amount of ozone gas at a high concentration.
- the output frequency of the ozone generating AC voltage of the ozone power source 100 is less than the conventional output frequency of 20 kHz, the load voltage applied to the ozone generator 200 increases, and the ozone power source 100 and the ozone generator There arises a problem that the withstand voltage of 200 itself needs to be enhanced.
- the ozone power supply 100 for applying the load applied voltage Vd having a peak voltage of 7 kVp (5.0 kVrms) or less is a high-frequency ozone generating AC voltage having an output frequency f of 20 kHz to 50 kHz (20 kHz or more and less than 50 kHz). It is desirable to supply power for ozone. In addition, if the power supply for ozone has an output frequency f exceeding 30 kHz, noise generated from the power supply itself increases rapidly, and malfunctions of measuring instruments and external equipment incidental to the ozone gas generation system increase.
- ozone power sources that apply a high-frequency load applied voltage Vd of 20 kHz to 50 kHz.
- First power source a power source provided with a series resonance circuit between the inverter unit of the power source for ozone and the ozone generator
- Second power source a power source provided with a high-frequency / high-voltage transformer between the inverter of the ozone power source and the ozone generator.
- the transformer on the output side of the power supply for ozone is eliminated, a series resonance circuit having a high resonance Q value (for example, Q value of 10 or more) is provided between the inverter unit and the ozone generator, and a load is applied. It is necessary to boost the voltage to the voltage Vd.
- the ozone power supply itself can be made compact by the merit that there is no high-frequency / high-voltage transformer.
- the first power source resonates between the circuits straddling the three main components of the inverter unit, the series resonance circuit, and the ozone generator, the feedback current of the resonated load current returns to the inverter unit.
- the power loss of the part becomes very large.
- the first power supply since the first power supply resonates to the load application voltage Vd, the load application voltage Vd changes due to subtle fluctuations in the load condition, and even if the operating frequency of the inverter unit is controlled, a stable load application voltage Vd can be obtained. Difficult to put into ozone generator. In addition, since the operating frequency is always variable, there is a problem that power supply noise increases.
- the discharge power DW output from the high-frequency ozone power supply is practically suitable only for an ozone gas generation system of less than 1.5 kW.
- mounting a plurality of small ozone power supplies, which are the first power supply complicates the configuration of the ozone generator and the control, and further increases the control loss and the number of parts in the ozone power supply. The problem arises.
- the gas flow rate range of the total gas flow rate Q (raw material gas flow rate) of the raw material gas is about 3.0 L / min or more and the cooling temperature for cooling the ozone generator is 5 ° C. or more, 400 g / m It is unsuitable for the ozone gas generation system of Embodiment 1 aimed at extracting ozone gas having a high concentration of 3 or more. This is because the ozone gas generation system according to Embodiment 1 requires the total discharge power DW that satisfies the specific power value DW / Q of 600 W ⁇ min / L or more.
- the second power source by providing a high frequency / high voltage transformer (parallel resonance transformer 25) between the inverter unit (inverter circuit unit 22) and the ozone generator, the number of primary turns of the high frequency / high voltage transformer is increased.
- the voltage can be boosted at a constant value determined by the turns ratio between the secondary winding and the secondary winding.
- the output frequency supplied to the load and the load applied voltage Vd are set to substantially constant values, and the total discharge power DW is supplied to the ozone generator 200. Can be supplied.
- the load current that resonates in the inverter unit does not return as a feedback current, so that the power loss of the inverter unit can be made relatively small, the load applied voltage Vd is constant regardless of the degree of resonance with the load, and the load is stable. Discharge power DW can be supplied.
- the discharge power DW output from the high-frequency ozone power source can be set to 1.8 kW or more, and the second power source can provide a stable output to the ozone generator. There is.
- An ozone gas generation system 1000 is configured by combining the ozone power source 100 and the ozone generator 200.
- the gas flow rate range of the total gas flow rate Q of the raw material gas is set to approximately 3.0 L / min or more, and the cooling temperature for cooling the ozone generator 200 is set to 5 ° C. or more.
- high-concentration ozone of 400 g / m 3 or more can be taken out.
- the ozone gas generation system 1000 can increase the flow rate at which high-concentration ozone gas can be taken out, and the ozone gas generation system has the same level of cooling capability as the conventional ozone generator.
- the operating frequency of the inverter circuit unit 22 is set so as to be a resonance frequency between the internal inductance of the parallel resonance transformer 25 itself and the capacitance of the load (ozone generator 200). For this reason, there is an advantage that the parallel resonance transformer 25 can also share the resonance circuit on the secondary side and later of the parallel resonance transformer 25 without newly providing a resonance reactor on the output side of the parallel resonance transformer 25.
- the total discharge power DW input from the ozone power supply 100 is set to a constant 5.0 kW, and the number n of stages of the basic discharge cell set including the basic cells S1 and S2 of the ozone generator 200 is 6 (a total of 12 discharge spaces are provided).
- the following three types of ozone generators were prepared: the discharge gap length d was set to a fixed length satisfying the condition of several tens to several hundreds of ⁇ m.
- a type discharge cell-shaped generator the total discharge area S is 2500 cm 2 , B-type discharge cell-shaped generator ... Total discharge area S is 1250 cm 2 , C-type discharge cell-shaped generator ... total discharge area S is 625 cm 2 , Then, the ozone concentration that can be taken out by each of the A-type discharge cell-shaped generator to the C-type discharge cell-shaped generator was determined.
- one discharge area so is set to about 209 cm 2
- the discharge diameter (discharge surface diameter) is set to about ⁇ 170 (mm)
- the discharge power density J that can be charged is set to 2 W / cm 2 .
- one discharge area so is about 104 cm 2
- the discharge diameter is about ⁇ 115 (mm)
- the discharge power density J that can be charged is 4 W / cm 2 .
- one discharge area so is about 52 cm 2
- the discharge diameter is about ⁇ 81 (mm)
- the discharge power density J that can be applied is set to 8 W / cm 2 .
- the cooling water temperature for cooling the ozone generator was set to a constant 5 ° C.
- the gas residence time To in one discharge space is a discharge power density J that can be supplied to one unit discharge cell (basic cell S1 or S2).
- the A type discharge cell shape generator is 1 time
- the B type discharge cell shape generator is 1/2
- the C type discharge cell shape generator is 1/4.
- the average gas flow velocity vo / d in one unit discharge cell is an A-type discharge cell-shaped generator. Is 1/12, the generator of the B type discharge cell shape is 1/6, and the generator of the C type discharge cell shape is 1/3. Therefore, the average gas flow velocity vo / d is large only at a ratio of 1/12 corresponding to the number n of stacked layers (the number of discharge surfaces 12) in each type with respect to the increase rate of the discharge power density J. Don't be.
- the total ozone decomposition amount Yd when the ozone gas generated in the ozone generator 200 passes through the discharge space is smaller in the discharge cell having a smaller discharge diameter.
- FIG. 3 shows a case where the ozone generator 200 according to the first embodiment is an A discharge cell shape type generator, a B type discharge cell shape generator, or a C type discharge cell shape generator. It is a graph which shows the characteristic of the total ozone decomposition amount Yd with respect to the gas residence time To of the discharge space at the time of flowing.
- the ozone decomposition amount Yd characteristic is 5000c.
- the characteristics 5000s1 and 5000s2 indicated by the broken lines indicate the upper and lower limits in consideration of the setting boundary value in the discharge power density J.
- the characteristic 5000s1 is a boundary characteristic in which the discharge power density J between the A-type discharge cell-shaped generator and the B-type discharge cell-shaped generator corresponds to 2.5 W / cm 2 setting.
- the characteristic 5000s2 is a boundary characteristic in which the discharge power density J between the B-type discharge cell-shaped generator and the C-type discharge cell-shaped generator corresponds to a setting of 6.0 W / cm 2 .
- the characteristics 5000a, 5000b, and 5000c shown in FIG. 3 are compared. As shown in FIG. 3, if the discharge diameter is reduced, the total ozone decomposition amount Yd increases at a constant rate corresponding to the gas residence time To in the range where the gas residence time To is 50 ms or less. On the other hand, it was experimentally confirmed that the total ozone decomposition amount Yd is smaller as the discharge diameter is smaller in the range where the gas residence time To is 50 ms or more.
- the discharge diameter of the discharge surface is set to be small, the ozone decomposition amount yd in the discharge space is reduced, and the amount of ozone Yt taken out from the ozone generator 200 is increased correspondingly.
- a C-type discharge cell-shaped generator is most excellent.
- the region 99a indicated by the alternate long and short dash line corresponds to the total ozone decomposition amount Yd in a range where high-concentration ozone gas can be taken out, as will be described later.
- the total ozone decomposition amount Yd in the region 99a is suppressed to about 400 g / h to 900 g / h. Since it is sufficiently lower than the total ozone decomposition amount Yd, it can be expected to extract high-concentration ozone gas.
- FIG. 4 is a graph showing the characteristics of the extracted ozone concentration Ct with respect to the specific power value DW / Q of the A-type discharge cell-shaped generator, the B-type discharge cell-shaped generator, and the C-type discharge cell-shaped generator. .
- the ozone extraction concentration Ct characteristic 4000a of the A type discharge cell shape generator the ozone extraction concentration Ct characteristic 4000b of the B type discharge cell shape generator, and the ozone extraction concentration of the C type discharge cell shape generator.
- the Ct characteristic 4000c is shown.
- the characteristics 4000 s 1 and 4000 s 2 indicated by the broken lines indicate upper and lower limits in consideration of the boundary value of the discharge cell shape that can set the discharge power density J to the maximum possible range, as in FIG.
- the characteristic 4000s1 shows the characteristic result of the lower limit boundary of the discharge cell density of the discharge power density J at which the extracted ozone concentration Ct is 400 g / m 3 , and the discharge power density J can be set to about 2.5 W / cm 2. Cell shape.
- the characteristic 4000s2 shows the characteristic result of the upper limit boundary of the discharge cell density of the discharge power density J at which the extracted ozone concentration Ct is 400 g / m 3 , and the discharge power density J can be set to about 6.0 W / cm 2. Cell shape.
- the characteristic of the extracted ozone concentration Ct indicates the ozone generation concentration in the discharge space according to the specific power value DW / Q, but when the discharge power density J that can be supplied to the ozone generator is different in discharge cell shape, the extracted ozone concentration The characteristics of Ct are also different.
- the characteristic tangential characteristic of the two-dot chain line
- the specific power value DW / Q in FIG. 4 corresponding to the ozone generation concentration.
- the smaller the discharge diameter of the discharge surface and the higher the discharge power density J the smaller the discharge cell shape. That is, the ozone generation capability generated in the discharge space is smaller in the discharge cell shape that allows the discharge power density J to be increased.
- the characteristics 4000a, 4000b, and 4000c shown in FIG. 4 indicate the ozone generation concentration characteristics minus the ozone gas decomposition amount.
- the amount of ozone gas decomposed is the amount of ozone decomposed by the collision of the ozone gas with the electrons ne, ions n + and discharge gas ng when the ozone gas passes through the discharge space, and the ozone itself staying in the discharge. Total with self-decomposition amount.
- the ozone generation concentration characteristic which is a tangential characteristic of the specific power value DW / Q, is the largest in the A-type discharge cell shape generator, the discharge cell diameter is reduced, and the discharge power density J that can be input is increased.
- the product concentration characteristic tends to be low.
- the ozone generation ability is inversely proportional to the discharge power density J.
- the ozone generation ability by the catalytic action of nitrogen gas in the discharge space and the photocatalytic action on the discharge surface tends to decrease as the discharge cell density J increases.
- the gas residence time To in the discharge space can be shortened by reducing the discharge diameter, and the generated ozone The amount of decomposition can be reduced.
- the decomposition of ozone gas occurs during the period in which the ozone gas collides with electrons and discharge gas in the discharge space and during the stay in the discharge. For this reason, the total decomposition amount of the generated ozone itself due to self-decomposition and decomposition due to collision can be simply reduced by shortening the gas residence time To.
- the characteristics of the extracted ozone concentration Ct of the A type discharge cell shape generator, the B type discharge cell shape generator, and the C type discharge cell shape generator are different.
- the B type discharge cell shape generator In the region 99a shown in FIG. 4, high-concentration ozone of 400 g / m 3 or more can be extracted.
- the amount of ozone generated is high, but the gas residence time To is relatively long, so the amount of ozone decomposition, which is the sum of the decomposition due to collision and the self-decomposition of ozone itself, becomes large. As a result, it is shown that only ozone gas having a concentration of less than 400 g / m 3 at the maximum can be taken out.
- the B type generator can extract ozone having a high concentration of 400 g / m 3 or more in a range where the specific power value DW / Q is 600 W ⁇ min / L or more.
- the present invention is to find out the discharge cell shape and operating conditions of an ozone generator that can extract high-concentration ozone such as a B-type discharge cell shape generator, and it is desirable that the following requirements be satisfied.
- the total discharge power DW input from the ozone power supply 100 needs to be at least 1.8 kW or more. .
- the discharge power density J is increased in order to input the predetermined discharge power DW, and therefore the ozone generation amount determined by the ozone generation capability (two-dot chain line) in the discharge space is extremely high. It becomes low. Therefore, by reducing the gas residence time To, even if the decomposition amount of the ozone amount, which is the sum of the decomposition due to the collision and the self-decomposition of ozone itself, is reduced, the extracted ozone concentration Ct is lowered.
- a C-type discharge cell-shaped generator can extract only a concentration of less than 320 g / m 3 at the maximum under the conditions of the total gas flow rate Q of the raw material gas and the input discharge power DW.
- the upper limit of the discharge cell shape is present.
- the discharge power density J is limited to less than about 6 W / cm 2 as indicated by the boundary characteristic 4000 s 2
- the lower limit of the discharge power density J is the discharge characteristic as indicated by the boundary characteristic 4000 s 1.
- the power density J be set to about 2.5 W / cm 2 or more.
- FIG. 5 is a graph showing characteristics of the extracted ozone concentration Ct with respect to the total gas flow rate Q of the raw material gas of each of the A type discharge cell shape generator, the B type discharge cell shape generator, and the C type discharge cell shape generator. is there.
- a characteristic 3000a indicates a characteristic of an A type discharge cell shape generator
- a characteristic 3000b indicates a characteristic of a B type discharge cell shape generator
- a characteristic 3000c indicates a characteristic of a C type discharge cell shape generator.
- a region 99a which is a characteristic frame indicates a gas flow rate region in which a high concentration of ozone with an extracted ozone concentration of 400 g / m 3 or more is obtained, and the total gas flow rate Q of the raw material gas to be supplied in the generator of the B type discharge cell shape. It was found that a high concentration of 400 g / m 3 or more can be obtained at less than about 25 L / min.
- the characteristic frame 99b shows a gas flow rate region where ozone gas having a relatively high concentration can be obtained as compared with the ozone concentration characteristic 3000a obtained by the A type discharge cell-shaped generator corresponding to the conventional ozone generator, and the B type discharge. It was found that in the cell-shaped generator, high concentration ozone gas was obtained when the total gas flow rate Q of the raw material gas to be supplied was less than 50 L / min.
- the present ozone generator aims to obtain a high-concentration ozone gas from which a large flow-rate ozone gas can be taken out, so that a high-concentration ozone gas at a low gas flow rate is out of range.
- the cooling temperature of the generator is set to 5 degreeC or more.
- the ozone generator 200 applies an ozone generating AC voltage between the ground cooling electrode 1 and the high voltage electrodes 3a and 3b of each discharge cell, and causes a discharge phenomenon in the discharge space into which the raw material gas containing oxygen gas is injected. Ozone gas is generated.
- AC voltage for ozone generation is applied from the parallel resonance transformer 25 of the ozone power supply 100 shown in FIG. 1 to the high voltage terminal HV which is the power feeding part of the high voltage electrodes 3a and 3b via the high voltage bushing.
- the total discharge power DW is defined by the ozone generating AC voltage.
- dielectric barrier discharge is generated in the discharge space of each discharge cell (basic cell S1 or basic cell S2) via the dielectric electrodes 2a and 2b.
- the ozone gas generated in the discharge space of each discharge cell is output from the manifold block 9 through the output path 17 in the ground cooling electrode 1 from the opening 15 provided in the center of the discharge space. Collected in path 92 and removed from ozone generator 200.
- the ground cooling electrode 1 and the low-pressure cooling plate 5 are provided with cooling spaces (not shown) for cooling.
- a cooling mechanism that cools the discharge cell to a predetermined cooling temperature is configured including the ground cooling electrode 1, the low-pressure cooling plate 5, the base 10, and the manifold block 9.
- the conditions under which high-concentration ozone gas can be taken out by stacking the basic discharge cell groups having the basic cells S1 and S2 in multiple stages (6 stages) (discharge surface: 12 surfaces) have been described.
- the raw material gas flow rate qo supplied to one unit discharge cell satisfies the range of about 0.5 L / min to about 2.5 L / min.
- a means for increasing the number n of the basic discharge cell sets to be stacked in multiple stages of discharge cells of one unit is provided, and the discharge area so is about 30 cm. It is important to set 2 to approximately 160 cm 2 .
- one unit of discharge cells in which the discharge diameter of the discharge surface is reduced and the discharge area so is defined are stacked in multiple stages ( laminating increase the number n) taking steps, and substantially 2.5 W / cm 2 ⁇ substantially ozone gas generator system 1000 is set in a range of 6.0 W / cm 2 is desirable to put it discharge power density J.
- a B type discharge cell shape is employed in the range of 0.5 L / min to a little less than about 2.5 L / min.
- high-concentration ozone with an ozone concentration exceeding 400 g / m 3 can be extracted, and the ozone flow rate that can be extracted in proportion to the number n of layers stacked in multiple stages can be increased.
- the discharge in order to obtain the maximum extracted ozone amount Yt within the possible range with the total gas flow rate Q, the discharge is performed so as to satisfy the above-described conditions and to be the maximum within the possible range.
- the diameter of the discharge surface of a circular discharge cell in a plan view is set in a range of ⁇ 70 mm to ⁇ 140 mm, and the discharge area so is
- the discharge power density J that can be applied to one discharge surface is set to a high value within the most effective condition range in the ozone gas generation system 1000. It is desirable to do.
- the ozone gas generation system 1000 In order to configure the ozone gas generation system 1000 in which the total gas flow rate Q of the raw material gas from which high-concentration ozone gas can be extracted is increased to a larger gas flow rate, the discharge area so, the discharge power density J, the input discharge power dw, and one discharge With respect to the raw material gas flow rate qo supplied to the space, it is indispensable to realize one unit discharge cell that satisfies the above-described conditions and to increase the above-described number n of stacked layers.
- the discharge area so, the discharge power density J, the input discharge power dw
- the raw material gas flow rate qo to be supplied to one discharge space is set to the maximum value within a possible range, one discharge surface satisfying the above-described conditions is realized, and basic discharge cell sets are stacked in multiple stages with the number n stacked. Is required.
- the ⁇ value is a constant indicating the loss ratio when 2n 1 discharge surfaces are stacked and ozone gas is merged.
- FIG. 6 shows the application to the A-type discharge cell-shaped generator, the B-type discharge cell-shaped generator, and the C-type discharge cell-shaped generator when the total discharge power DW with respect to the operating frequency f of the ozone power supply 100 is input. It is a graph which shows the characteristic of the load peak voltage Vp performed.
- a characteristic 7000b indicates a characteristic of the load peak voltage Vp when the discharge power density J of the B-type discharge cell-shaped generator is 4 W / cm 2 .
- a characteristic 7000c indicates a load peak voltage Vp characteristic when the discharge power density J of the C-type generator is 8 W / cm 2 .
- Characteristic 7000s1 and characteristic 7000s2 indicated by broken lines are characteristic diagrams showing upper and lower limits in consideration of the boundary value of the discharge cell density of the discharge power density J in the range of the present invention.
- the characteristic 7000s1 shows the boundary characteristic of the discharge cell shape with the discharge power density J of at least 2.5 W / cm 2 .
- the characteristic 7000s2 is a boundary characteristic of the discharge cell shape of 6 W / cm 2 where the setting of the discharge power density J is the maximum limit.
- a high concentration ozone gas of 400 g / m 3 or more can be obtained at a predetermined gas flow rate Q, and the desired extracted ozone amount Yt at the gas flow rate Q to be supplied.
- the inverter circuit unit 22 which is a high-frequency inverter unit is adopted, and a parallel resonance type is realized between the parallel resonance transformer 25 which is a high-frequency / high-voltage transformer and the ozone generator 200.
- the parallel resonance transformer 25 which is a high-frequency / high-voltage transformer and the ozone generator 200.
- the inverter circuit unit 22 can be relatively compact and stable.
- the load peak voltage Vp is 7 kVp or more, it is necessary to increase the parallel resonance transformer 25 or increase the spatial distance between the high pressure portion and the low pressure portion of the ozone generator in order to ensure a withstand voltage. And the ozone generator itself becomes larger.
- the ozone gas generation system 1000 it is desirable for the ozone gas generation system 1000 to supply the desired total discharge power DW so that the load peak Vp at the load applied voltage Vd is less than 7 kVp (5.0 kVrms).
- the operating frequency f is preferably 20 kHz or more.
- the operating frequency f increases, the ozone generating ability generated by the ozone generator 200 tends to decrease. Therefore, as a high concentration ozone gas generator that can extract high concentration ozone of 400 g / m 3 or more, the operating frequency is f is preferably less than 50 kHz.
- high-concentration ozone gas of 400 g / m 3 or more can be taken out at a gas flow rate range of approximately 3.0 L / min or more in the gas flow range of the total gas flow rate Q (raw material gas flow rate), and can be taken out at the total gas flow rate Q.
- the ozone power source 100 that supplies the total discharge power DW of 1.8 kW or more is required. Therefore, as a parallel resonance transformer 25 capable of outputting 1.8 kW or more, the operating frequency f is particularly preferably 20 kHz or more and less than 30 kHz in consideration of the noise countermeasures of the ozone power supply and the stable supply of output power. .
- high-concentration ozone of 400 g / m 3 or more can be taken out at a gas flow rate range of the total gas flow rate Q (raw material gas flow rate) of the raw material gas of about 3.0 L / min or more. It can be seen that the ozone gas generation system 1000 needs to satisfy the following conditions.
- the discharge area so in one unit discharge cell is set to about 30 cm 2 to about 160 cm 2 .
- the following conditions be satisfied as conditions for configuring the ozone gas generation system 1000 that sets the total gas flow rate Q of the raw material gas to the maximum possible range and obtains a high output take-out ozone amount Yt. .
- the raw material gas flow rate qo supplied to one discharge space where the discharge gap length d is several tens to several hundreds ⁇ m is defined in a range of about 0.5 L / min to about 2.5 L / min.
- the average gas flow velocity vo / d in one discharge space is set to the optimum speed, and the gas residence time To in the discharge space is set. Can be shortened, and high-concentration ozone gas can be taken out.
- ozone generator in which the ozone concentration that can be taken out on one discharge surface is made high and the discharge cells having the basic cells S1 and S2 are stacked in multiple stages.
- the desired total discharge power DW can be output controlled by setting the output frequency of the alternating voltage for generating ozone to a range of 20 kHz to less than 50 kHz.
- the ozone gas generation system 1000 can be configured in a compact and inexpensive manner.
- the ozone concentration that can be taken out is high (400 g / m 3 ) when the gas flow range of the total gas flow Q (raw material gas flow) of the raw material gas is a large flow rate of about 3.0 L / min or more.
- the discharge cells are stacked in multiple stages.
- the ozone gas generation system 1000 is preferably provided with an ozone power source 100 and an ozone power source having a specific power value DW / Q in the range of 600 or more in order to extract ozone gas having a high concentration of 400 g / m 3 or more.
- the range of the total discharge power DW by the ozone generating AC voltage supplied from the ozone power supply 100 is preferably about 1.8 kW to 15 kW.
- the ozone power source 100 if the discharge gap length d of the discharge space is increased, the gas residence time To becomes very long, the amount of ozone decomposition with respect to the amount of ozone generated in the discharge space becomes very large, and high-concentration ozone gas Cannot be removed.
- the discharge gap length d is preferably in the short gap length range of several tens to several hundreds ⁇ m. In particular, in order to extract ozone gas having a higher concentration, it is more effective to set the discharge gap length d in the range of 20 ⁇ m to 100 ⁇ m.
- the range of the total gas flow rate Q of the raw material gas the range in which high concentration ozone gas of 400 g / m 3 or more is obtained is about 3 SLM to 25 SLM, and high concentration ozone gas is obtained as compared with the conventional apparatus.
- a range of about 3 SLM to 50 SLM is desirable.
- the ozone power supply 100 includes an ozone generator 200 having a pair of flat plate electrodes 1 each serving as a discharge surface and a basic cell S1 (S2) disposed on a high voltage electrode 3a (3b) via a dielectric.
- the ozone generator 200 is provided with an ozone power source 100 that applies an alternating voltage for ozone generation.
- a source gas containing oxygen is supplied to the ozone generator 200.
- the ozone generator 200 generates a dielectric barrier discharge in the discharge space formed by the discharge surface of the basic cell S1 (S2) and supplies the dielectric barrier discharge to the discharge space.
- Ozone gas is generated from the raw material gas, and the ozone gas is output to the outside.
- the ozone generator 200 includes a plurality of basic discharge cell sets (a combination of basic cells S1 and S2) stacked in multiple stages.
- the ozone generator 200 that increases the concentration of the output ozone satisfies the following conditions (1) and (2).
- the discharge area so formed by each discharge surface is set in a range of 30 cm 2 to 160 cm 2 (30 cm 2 or more and less than 160 cm 2 ).
- the source gas flow rate qo of the source gas supplied to the discharge space formed by the discharge surface of each of the plurality of discharge cells is 0.5 L / min to 2.5 L / min (0.5 L / min or more; Less than 5 L / min).
- the ozone generator 200 has the above-described conditions (1 In addition to the condition (2), the following condition (3) must be satisfied.
- the discharge power density J applied to the discharge space of each of the plurality of discharge cells is set in the range of 2.5 W / cm 2 to 6 W / cm 2 (2.5 W / cm 2 or more and less than 6 W / cm 2 ). Is done.
- the ozone gas generation system 1000 of Embodiment 1 has the following effects on the discharge surfaces of the plurality of discharge cells by satisfying the above-described conditions (1) to (3).
- a short gap dielectric barrier discharge with a discharge gap length of several tens to several hundreds of ⁇ m can realize a high electric field discharge.
- the short gap dielectric barrier discharge becomes a discharge having a high energy discharge light energy, which works more effectively to photoexcite the gas containing the catalyst gas and the photocatalyst applied to the discharge surface.
- the effect of promoting the dissociation of oxygen gas is further increased. Therefore, when realizing the ozone gas generation system and the ozone gas generation method that satisfy the conditions (1) to (3), it is desirable that the discharge gap length of the ozone generator is set to several tens to several hundreds ⁇ m.
- the ozone gas generation system 1000 reduces the total gas residence time To in the discharge space (formed by a pair of discharge surfaces) of each discharge cell by satisfying the above conditions (1) and (2).
- the amount of ozone decomposition Yd can be suppressed.
- the ozone gas generation system 1000 satisfies the conditions (1) and (2) described above and maximizes the raw material gas flow rate qo and the discharge power dw supplied to the discharge surface of each discharge cell.
- the extraction ozone amount yt By setting the extraction ozone amount yt to the maximum, the condition for extracting high-concentration ozone gas can be created.
- the ozone gas generation system 1000 can secure a predetermined amount or more of ozone generated from each discharge cell, can be efficiently extracted, and can further increase the amount of extracted ozone Yt. Can do.
- the ozone gas generation system 1000 has the effect that the system configuration can be minimized and the high-concentration ozone or the extracted ozone amount Yt can be efficiently increased and output to the outside.
- the ozone gas generation system 1000 satisfies the conditions (1) to (3) by further satisfying the above condition (3) in addition to the conditions (1) and (2), and It is possible to maximize the extracted ozone amount yt by setting the raw material gas flow rate qo and the discharge power dw supplied to the discharge space of each discharge cell to the maximum possible range.
- the ozone gas generation system 1000 has an effect of being able to output a high-concentration ozone gas or a high generation amount of ozone gas to the outside while minimizing the system configuration.
- the ozone generator 200 in the ozone gas generation system 1000 of Embodiment 1 further satisfies the following condition (4).
- the cooling temperature of the ozone generator 200 by the soot cooling mechanism is 5 ° C. or higher.
- the ozone generator 200 of the ozone gas generation system 1000 further eliminates the need to extremely reduce the cooling temperature of the ozone generator 200 by the cooling mechanism described above by satisfying the condition (4) described above.
- the cooling mechanism can be simplified.
- the upper limit of the said constraint conditions assumes about 30 degreeC with respect to normal temperature (20 degreeC).
- the ozone generator 200 in the ozone gas generation system 1000 of Embodiment 1 further satisfies the following conditions (5) and (6).
- the total gas flow rate Q supplied to the entire plurality of discharge cells in the ozone generator 200 is 3.0 L / min or more.
- the specific power value DW / Q which is the ratio of the total discharge power DW and the total gas flow rate Q applied to the entire plurality of discharge cells in the ozone generator 200, is 600 (W ⁇ min / L) or more. .
- Condition (5) is intended to extract high-concentration ozone gas, and as an accompanying effect of achieving the purpose of condition (5), condition (6) is an effect that maximizes the amount of ozone gas that can be output. Play.
- the ozone power source 100 and the ozone generator 200 of the ozone gas generation system 1000 have the following effects by further satisfying the above conditions (5) and (6).
- the ozone gas generation system 1000 has a sufficiently large total gas flow rate Q for a raw material gas supplied to a plurality of discharge cells that can take out high-concentration ozone of, for example, 400 g / m 3 or more by satisfying the above condition (5). Can be obtained, and finally high-concentration ozone gas can be obtained, and the amount of extracted ozone Yt can be increased.
- the ozone gas generation system 1000 can satisfy the conditions (1) to (6) in addition to the effect of the condition (5) by satisfying the condition (6) described above. Play. It is possible to maximize the extracted ozone amount Yt by maximizing the total gas flow rate Q and the total discharge power DW supplied to the ozone generator 200 as much as possible.
- the ozone gas generation system 1000 has an effect of being able to output ozone gas having a relatively large capacity and high concentration to the outside while minimizing the system configuration.
- the discharge surfaces of the basic cells S1 and S2 constituting the discharge cells in the ozone generator 200 each have a circular shape in plan view, and the ozone generator 200 further satisfies the following condition (7).
- the outer diameter of the discharge surface of each of the plurality of discharge cells is set in a range of 70 mm to 140 mm (70 mm or more and less than 140 mm).
- the ozone gas generation system 1000 realizes the discharge area so satisfying the condition (1) relatively easily by satisfying the condition (7) described above, and the average gas flow velocity vo flowing into the average cross section sav into which the gas flows. / d can be set to an appropriate value relatively easily.
- the ozone power source 100 of the ozone gas generation system 1000 outputs an alternating voltage for ozone generation to the ozone generator 200 with an output frequency f (operating frequency f) in the range of 20 kHz to 50 kHz (20 kHz or more and less than 50 kHz). doing.
- the output frequency f (operating frequency f) of the more practical ozone power supply 100 is desirably in the range of 20 kHz to 30 kHz (20 kHz or more and less than 30 kHz).
- the ozone gas generation system 1000 realizes the discharge power DW desired by the ozone generator 200 by setting the peak voltage value of the alternating current voltage for generating ozone applied to the plurality of discharge cells in the ozone generator 200 to 7 kVp or less. be able to.
- the parallel resonance transformer 25 of the ozone power supply 100 has an internal excitation inductance value Lt, and the plurality of discharge cells in the ozone generator 200 have an overall capacitance value C0.
- the ozone power supply 100 sets the output frequency f in the vicinity of the parallel resonance frequency fc that satisfies the above-described equation (5).
- the ozone gas generation system 1000 sets the output frequency f in the vicinity of the parallel resonance frequency fc, thereby performing parallel resonance when the total discharge power DW is input to the ozone generator 200, thereby causing an inverter unit (inverter circuit unit 22).
- the output power factor can be increased.
- the output power factor in the inverter circuit unit 22 can be increased.
- the ozone power source 100 can supply an ozone generator on the load side with an ozone generating AC voltage that satisfies the desired total discharge power DW.
- the desired total discharge power DW may be a total discharge power DW of 1.8 kW or more.
- the ozone gas generation system 1000 realizes the high-efficiency ozone power supply 100 to maximize the supplied total gas flow rate Q and the total discharge power DW in order to extract high-concentration ozone gas. Even if it sets, there exists an effect which can realize the ozone gas generating system of a compact structure as a whole.
- Embodiment 1 it demonstrated as the ozone gas generation system 1000 which is an apparatus invention. However, as a modification of the present invention, it is possible to develop the ozone gas generation method using the ozone power source 100 and the ozone generator 200 described above.
- an ozone generator 200 having a discharge cell disposed on a pair of flat plate electrodes 1 and 3 (3a and 3b) via a dielectric (2a and 2b), and an ozone generating AC voltage is applied to the ozone generator 200.
- the ozone power supply 100 can be used to develop an ozone gas generation method that generates high-concentration ozone gas.
- the ozone gas generation method which is a modification of the first embodiment, executes the following steps (1) and (2) corresponding to the conditions (1) and (2) of the ozone gas generation system 1000 described above.
- the ozone gas generation method includes the above steps ( In addition to 1) and step (2), it is desirable to execute the following step (3).
- step (1) and step (2) by executing step (1) and step (2), the gas residence time To in the discharge space of each discharge cell can be shortened, and the ozone gas decomposition amount can be suppressed.
- the raw material gas flow rate qo and the discharge power dw supplied to the discharge space of each discharge cell are set to the maximum possible range.
- the ozone gas can be extracted at a high concentration.
- the amount of extracted ozone yt is set to the maximum. There is an effect that can be maximized.
- the ozone gas generation method which is a modification of the present invention has an effect of outputting high-concentration ozone or a high generation amount of ozone gas to the outside.
- the ozone gas generation method can execute steps for satisfying the conditions (4) to (7) corresponding to the above conditions (4) to (7) of the ozone gas generation system 1000.
- the same effect as the ozone gas generation system 1000 is obtained.
- the ozone generator 200 is composed of n basic discharge cell groups stacked in multiple stages. (S1, S2) is included.
- the ozone generator 200 from which high-concentration ozone gas is extracted up to the high gas flow rate range satisfies the condition (1).
- the condition (1) is listed below again.
- the discharge area so formed by each discharge surface is set in a range of 30 cm 2 to 160 cm 2 (30 cm 2 or more and less than 160 cm 2 ).
- the restriction of the condition (1) is imposed on the discharge area so of one unit discharge cell.
- a high-concentration ozone gas is taken out at a high gas flow rate region, or a high output take-out ozone amount Yt is obtained in a region where the total gas flow rate Q of the raw material gas is large.
- the manufacturing cost of the ozone generator 200 is increased. Furthermore, problems such as the need to further improve the management of the discharge gap accuracy of each discharge cell of the ozone generator 200 itself and the stacking tightening accuracy will arise. For this reason, the manufacturing difficulty of the ozone generator 200 increases, As a result, the ozone gas generation system 1000 becomes large, and problems, such as cost increase, arise.
- the ozone gas generation system 2000 of the second embodiment is an improvement of the ozone generator 200 to the ozone generator 300 in view of the problems of the ozone generator 200 of the first embodiment described above.
- the ozone gas generation system 2000 and the ozone generator 300 are not shown in the drawing.
- Ozone generator 300 employs a structure that can reduce the number of internal parts, extract high-concentration ozone gas, and increase the flow rate of the extracted ozone gas.
- the discharge area st of one unit discharge cell corresponding to the basic cell S1 or basic cell S2 included in the basic discharge cell group is 3 to 6 times the area so defined in the condition (1), specifically, The discharge area st is set within several hundred cm 2 , and N ⁇ (N ⁇ ⁇ 2) ozone gas outlets for extracting ozone gas from the discharge surface of one unit discharge cell are distributed on the discharge cell surface.
- the ozone generator 300 used in the ozone gas generation system 2000 according to the second embodiment can reduce the number n of the basic discharge cell sets, as compared with the ozone generator 200 according to the first embodiment.
- the effect that the high-concentration ozone gas can be taken out can be exhibited in substantially the same manner as the effect of the first embodiment that satisfies 1).
- one ozone gas extraction passage that collects ozone gas extracted from the N ⁇ ozone gas extraction ports and outputs it to the outside. It is provided in an electrode constituting this discharge cell and is connected to N ⁇ ozone gas outlets.
- the ozone gas generated in the entire discharge cell can be taken out collectively in one set of basic discharge cell sets without using parts such as a pipe joint for providing a passage for passing ozone gas.
- the ozone generator 300 employs a configuration in which the discharge area st of one unit discharge cell having the above-described characteristics is set to a size of about several hundred cm 2 and the basic discharge cell groups are stacked in multiple stages.
- the ozone generator 300 has a configuration in which ozone gas generated in each of a plurality of discharge cells (n sets of basic discharge cells) stacked in multiple stages can be taken out to the outside. Compared with the vessel 200, a simple configuration in which the number n of stacked basic discharge cell sets is reduced can be realized. Therefore, the ozone generator 300 is an ozone generator that significantly reduces the number of assembly steps and the number of test steps compared to the ozone generator 200.
- the ozone generator 300 satisfies the following condition (a) for a virtual discharge space defined by N ⁇ divided areas dso obtained by dividing the discharge area st of one unit discharge cell surface by the division number N ⁇ . Yes.
- the divided area dso obtained by dividing the discharge area st of each discharge surface (discharge surface of one unit of discharge cell) by the division number N ⁇ is set in a range of 30 cm 2 or more and less than 160 cm 2.
- the discharge space in one unit discharge cell is divided into N ⁇ virtual discharge spaces, so that the generated ozone gas passes through the discharge space and is out of the N ⁇ ozone gas outlets.
- the gas residence time To until the latest ozone gas outlet is reached can be shortened.
- the ozone generator 300 has a total ozone decomposition amount due to decomposition in which ozone gas collides with electrons and discharge gas in the discharge space of one unit discharge cell, and self-decomposition of ozone gas itself staying in the discharge space. Yd can be suppressed, and a high-concentration ozone gas can be taken out at a relatively high gas flow rate, resulting in a compact and inexpensive ozone gas generator.
- the total raw material gas flow rate Q of the raw material gas containing oxygen supplied to the ozone generator 300 needs to be 3 SLM or more.
- the ozone generator 300 has a sufficiently large area of the discharge cell of one unit as compared with the ozone generator 200, so that the number n of stacked basic discharge cell sets can be reduced.
- the high-concentration ozone gas can be taken out by setting the discharge gap length d in the discharge space in the range of 20 ⁇ m to 100 ⁇ m.
- the ozone generator 300 of Embodiment 2 satisfies the following condition (b).
- the discharge gap length d in the discharge space is set to less than 80 ⁇ m.
- the condition (b) is satisfied in the gas pressure loss ⁇ P from the source gas supply port to the external ozone gas outlet 32 through the ozone generator 300.
- the ratio of the gas pressure loss ⁇ Pa in the discharge space defined by the discharge gap length d is high.
- the ozone generator 300 satisfies the condition (b) and restricts the discharge gap length to less than 80 ⁇ m, so that in one unit discharge cell having N ⁇ ozone extraction ports dispersedly arranged with the division number N ⁇ , Ozone gas can be flowed at a substantially uniform gas flow rate Q / n (L / min), and high-concentration ozone gas can be output.
- the discharge area of one unit discharge cell is 3 to 6 times the divided area dso defined in the condition (a). Therefore, the discharge area st of one unit discharge cell can be set relatively large within several hundred cm 2 .
- ozone gas outlets dispersedly arranged at the number of divisions N ⁇ on the surface of one discharge cell, and introducing a raw material gas from the outer periphery of one unit discharge cell and taking it out from N ⁇ ozone gas outlets, Variation in flow rate can be suppressed, and ozone gas can be extracted with a more uniform gas flow.
- the ozone generator 300 of Embodiment 2 further satisfies the following condition (d).
- the discharge power density J in the discharge space of each of the plurality of discharge cells is set to a range of 2.5 W / cm 2 or more and less than 6 W / cm 2 .
- the ozone generator 300 sets the discharge power DW to the maximum possible range at the total gas flow rate Q of the raw material gas to be supplied, and applies it to the ozone generator 300 as a load.
- the load voltage can be suppressed within an allowable value, and the ozone power source 100 using the compact ozone inverter unit (inverter circuit unit 22) can be realized.
- the ozone generator 300 satisfies the above condition (d), the amount of extracted ozone Yt can be increased in an environment of a total gas flow rate Q and a total discharge power DW that are gas flows exceeding about 5 SLM.
- the ozone generator 300 is an ozone generator that has both high-concentration ozone gas and high output extraction ozone amount Yt, and is compact and can be realized at low cost.
- one discharge area so is defined in a range of 30 to 100 m 2 in one unit discharge cell, An ozone generator in which the discharge area so is as small as possible and the number n of stacked basic discharge cell sets is large is essential.
- the number of stacked layers in the ozone generator 200 increases as the number n of stacked layers increases.
- the tightening stress management of the n basic discharge cell sets becomes difficult.
- the number n of stacked layers is desirably about 10, and the number n of stacked layers needs to be 20 or less in the stress stack design of the ozone generator. Therefore, in the structural design of the ozone generator 200, it is desirable to reduce the number n of stacked layers.
- the ozone generator 300 can extract high-concentration ozone gas even if the discharge area st in one unit discharge cell is set relatively wide, and the extracted ozone amount Yt equal to or greater than a predetermined amount.
- the resulting discharge cell shape is adopted.
- FIG. 7 to 14 schematically show the planar structures of the ground cooling electrode 51 (51A to 51D) and the dielectric electrode 52 (52A to 52D) in one unit discharge cell employed in the ozone generator 300 of the second embodiment. It is explanatory drawing shown in.
- FIG. 7 is an explanatory view schematically showing a planar structure of the ground cooling electrode 51A which is the first mode of the second embodiment.
- FIG. 8 is an explanatory view schematically showing a planar structure of a dielectric electrode 52A which is the first mode of the second embodiment.
- FIG. 9 is an explanatory diagram schematically showing a planar structure of the ground cooling electrode 51B which is the second mode of the second embodiment.
- FIG. 10 is an explanatory view schematically showing a planar structure of a dielectric electrode 52B which is the second mode of the second embodiment.
- FIG. 11 is an explanatory view schematically showing a planar structure of a ground cooling electrode 51C which is the third mode of the second embodiment.
- FIG. 12 is an explanatory view schematically showing a planar structure of a dielectric electrode 52C which is the third mode of the second embodiment.
- FIG. 13 is an explanatory view schematically showing a planar structure of the ground cooling electrode 51D which is the fourth mode of the second embodiment.
- FIG. 14 is an explanatory view schematically showing a planar structure of a dielectric electrode 52D which is the fourth mode of the second embodiment.
- ground cooling electrode 51 the ground cooling electrodes 51A to 51D are collectively referred to as “ground cooling electrode 51”, and the dielectric electrodes 52A to 52D are simply referred to as “dielectric electrode 52”.
- the first to fourth aspects employ a combination structure of the ground cooling electrode 51 and the dielectric electrode 52 as a pair of plate electrodes. That is, the flat first electrode is the ground cooling electrode 51, and the second electrode is the dielectric electrode 52. A discharge space is provided between the ground cooling electrode 51 and the dielectric electrode 52. A combination of the ground cooling electrode 51 and the dielectric electrode 52 constitutes one unit of discharge cell.
- the two dielectric electrodes 52 are arranged to face both surfaces of the ground cooling electrode 51. That is, the ground cooling electrode 51 corresponds to the ground cooling electrode 1 of the first embodiment shown in FIG. 1, and the dielectric electrode 52 corresponds to each of the dielectric electrodes 2a and 2b of the first embodiment.
- the first basic cell is provided by the ground cooling electrode 51 and the dielectric electrode 52 provided above the ground cooling electrode 51, and this first basic cell is the basic cell S1 of the first embodiment shown in FIG. Corresponding to
- a second basic cell is provided by ground cooling electrode 51 and dielectric electrode 52 provided below ground cooling electrode 51.
- This second basic cell is the basic cell S2 of the first embodiment shown in FIG. Corresponding to
- one unit of discharge cell serving as a basic unit of a plurality of discharge cells means one of the first and second basic cells, and the combination of the first and second basic cells is a combination of the first and second basic cells. It becomes a basic discharge cell set. Therefore, when the number of stacked basic discharge cell groups is n, the plurality of discharge cells are 2n 1 unit discharge cells, n basic discharge cell groups.
- basic discharge cell sets are stacked in a stacking number n, so that a plurality of discharge cells (2n 1 unit discharge cells, n basic discharge cell sets) are used.
- a discharge cell group is formed.
- the ozone gas generation system 2000 of the second embodiment has a structure in which the ozone generator 200 is replaced with the ozone generator 300 in the ozone gas generation system 1000 of FIG.
- the ozone generator 300 has a manifold block 59 (59A to 59D) described later in that the basic cell S1 is replaced with the first basic cell and the basic cell S2 is replaced with the second basic cell.
- the point replaced by is the main difference from the ozone generator 200.
- the ozone generator 300 of the second embodiment has the same configuration as the ozone generator 200 of the first embodiment.
- the total discharge area st of one unit of discharge cells is set to about five times the area so that satisfies the condition (1) described in the first embodiment. .
- the total discharge area st of one unit of discharge cells is set to about three times the area so that satisfies the condition (1) described in the first embodiment. .
- the total discharge area st of one unit of discharge cells is set to about four times the area so that satisfies the condition (1) described in the first embodiment. .
- the total discharge area st of one unit discharge cell is set to about 6 times the area so that satisfies the condition (1) described in the first embodiment. .
- a ground cooling electrode 51 and a manifold block 59 are provided adjacent to the ground cooling electrode 51.
- manifold block 59 the manifold blocks 59A to 59D will be simply referred to as “manifold block 59”.
- the ground cooling electrode 51 has a rectangular shape including a trapezoid in plan view, and N ⁇ (N ⁇ ⁇ 2) ozone gas outlets on the upper and lower surfaces thereof. 75 (75a to 75f) are provided in a dispersed manner.
- Both the upper surface and the lower surface of the ground cooling electrode 51 become discharge surfaces that form a discharge space, and the N ⁇ ozone gas outlets 75 provided on the upper surface and the N ⁇ ozone gas outlets 75 provided on the lower surface coincide with each other in plan view. ing.
- the ozone gas outlets 75a to 75f are collectively referred to as “ozone gas outlet 75”.
- an ozone gas extraction path connected to each of the N ⁇ ozone gas outlets 75 provided on the upper surface and the lower surface, and collects the ozone gas extracted from the N ⁇ ozone gas outlets 75 and outputs it to the outside.
- 77 (77A to 77D) and a cooling water channel 70 (70A to 70D) are provided.
- ozone gas extraction path 77 the ozone gas extraction paths 77A to 77D are collectively referred to as “ozone gas extraction path 77”, and the cooling water flow paths 70A to 70D are collectively referred to as a unit “cooling water flow path 70”.
- the ozone gas extraction path 77 is connected to an ozone gas output path 92 provided in the manifold block 59, and the ozone gas G OUT generated in each of the plurality of discharge cells can be output to the manifold block 59.
- Cooling water passage 70 is connected to a cooling water input path 93 of the manifold block 59 and the cooling water output path 91, the cooling water input path 93 and enter the cooling water W IN, after flowing the cooling water to the cooling water flow path 70
- the cooling water W OUT is output from the cooling water output path 91.
- the ground cooling electrode 51 can be cooled by flowing cooling water through the cooling water channel 70.
- discharge spacer 73 In the ground cooling electrode 51, a photocatalyst film (not shown) is applied to the discharge surface facing the dielectric electrode 52, and a predetermined number of discharge spacers 73 (discharge spacers 73A to 73A) for forming a discharge gap length d on the discharge surface. 73D).
- discharge spacer 73 discharge spacers 73A to 73D are collectively referred to as “discharge spacer 73”.
- the ground cooling electrode 51 is bonded to each other after the two thin plates are bonded to each other, and a half-etched groove is formed on at least one of the two bonded plates, thereby forming the ground cooling electrode 51.
- the cooling water flow path 70 and the ozone gas extraction path 77 described above can be provided inside.
- a unit discharge cell having a discharge area st of about 3 to 6 times the discharge area so of the unit discharge cell of the first embodiment is used.
- the discharge area st of the first aspect is set to about five times the discharge area so
- the discharge area st of the second aspect is set to about three times the discharge area so
- the discharge area st is set to about 4 times the discharge area so
- the discharge area st of the fourth aspect is set to about 6 times the discharge area so.
- the discharge power density J when the discharge power DW input to a plurality of discharge cells is set to the maximum possible range is 4.0 W / m 2
- the number n of stacked basic discharge cell sets is as follows. “10” is adopted, and the ozone generator 300 is realized with the reference minimum configuration.
- the first mode is about 1.7 times the standard
- the third mode is about 1. times the standard.
- the fourth mode is about twice the standard.
- one unit discharge cell in the first mode includes a ground cooling electrode 51A (flat first electrode) and a dielectric electrode 52A (flat plate) that constitute a pair of flat plate electrodes. And a second electrode).
- the dielectric electrode 52A is a ceramic plate, for example, and serves as an electrode having a dielectric.
- the space where the ground cooling electrode 51A and the dielectric electrode 52A face each other is a discharge space, and the area of the region where the ground cooling electrode 51A and the dielectric electrode 52A overlap in plan view is the discharge area st.
- “5” is adopted as the division number N ⁇ .
- the ground cooling electrode 51A has a trapezoidal shape with rounded corners in plan view, and five ozone gas outlets 75a to 75e are provided on the upper and lower surfaces, respectively.
- the dielectric electrode 52A has a trapezoidal shape with rounded corners when viewed from above, and has a trapezoidal conductivity slightly smaller than the dielectric electrode 52A when viewed from above on the dielectric electrode 52A. 62A is provided.
- the first basic cell of the aspect is configured.
- a second basic cell of the first aspect is configured.
- Each of the first and second basic cells is a unit discharge cell in the first mode.
- a combination of the first and second basic cells is a basic discharge cell set. Therefore, the upper surface of the ground cooling electrode 51A becomes the discharge surface of the first basic cell, and the lower surface of the ground cooling electrode 51A becomes the discharge surface of the second basic cell.
- the oxygen gas G IN as a source gas from the outer peripheral portion of the ground cooling the electrode 51A (the dielectric electrode 52A) is supplied.
- the discharge area st of one unit discharge cell of the first mode is set to about 350 cm 2 corresponding to five times the discharge area so of the first embodiment, and the basic discharge cell groups of the first mode are stacked in multiple stages.
- the ozone generator 300 has a plurality of discharge cells (discharge cell groups).
- an ozone generating AC voltage is applied from the ozone power source 100 between the conductive film 62A and the ground cooling electrode 51A, and thereby the first and second basic cells are provided.
- a dielectric barrier discharge is generated in the discharge space between the dielectric electrode 52A and the ground cooling electrode 51A.
- ozone gas is generated in the discharge space of each of the first and second basic cells, and the generated ozone gas is divided and flows into each of the five ozone gas outlets 75a to 75e.
- an ozone gas extraction path 77A is connected to each of the five ozone gas outlets 75a to 75e, collects the ozone gas extracted from the five ozone gas outlets 75a to 75e, and outputs the ozone gas to the outside.
- a water flow path 70A is provided.
- the ozone gas extraction path 77A is connected to an ozone gas output path 92 provided in the manifold block 59.
- the ozone gas generated in the discharge space of each of the first and second basic cells flows into the ozone gas outlets 75a to 75e provided on the upper and lower surfaces of the ground cooling electrode 51A. Thereafter, aggregated into merged ozone gas output G out one by ozone gas take-off path 77A, ozone gas G OUT is output to the ozone gas output path 92 of the manifold block 59A. As a result, ozone gas can be extracted from the ozone gas outlet 32 (see FIG. 1) via the ozone gas output path 92 of the manifold block 59A.
- the ozone gas extraction process described above is performed for each basic discharge cell group, and the ozone gas generated in each of the basic discharge cell groups stacked in multiple stages with the number n stacked is collected in the ozone gas output path 92 of the manifold block 59A.
- Cooling water passage 70A is connected to a cooling water input path 93 of the manifold block 59 and the cooling water output path 91, and enter the cooling water W IN from the cooling water input path 93 and flushed with cooling water in the cooling water passage 70A Thereafter, the cooling water W OUT is output from the cooling water output path 91.
- the ground cooling electrode 51A can be cooled by flowing cooling water through the cooling water channel 70A.
- a photocatalyst film (not shown) is applied to the discharge surface facing the dielectric electrode 52A, and four discharge spacers 73A for forming the discharge gap length d are dispersedly provided on the discharge surface. It is done.
- the discharge gap length d is defined by the formation height of the four discharge spacers 73A.
- the four discharge spacers 73A are integrally provided with (connected to) the ground cooling electrode 51A on the upper surface and the lower surface of the ground cooling electrode 51A, respectively, and the four discharge spacers 73A provided on the upper surface discharge the first basic cell.
- the gap length d is defined, and the four discharge spacers 73A provided on the lower surface define the discharge gap length d of the second basic cell.
- One unit of discharge cell in the first embodiment satisfies the following conditions (a) and (b).
- a divided area dso obtained by dividing the discharge area st by the division number N is set to a range of 30 cm 2 or more and less than 160 cm 2 .
- the discharge gap length in the discharge space is set to less than 80 ⁇ m.
- the discharge cell of the first aspect satisfies the following condition (c).
- the five virtual circular discharge regions 79a to 79e do not overlap the four discharge spacers 73A, the ozone gas extraction path 77A, and the cooling water flow path 70A in plan view.
- the virtual circular discharge areas 79a to 79e are set to an area of 80% of the divided area dso in consideration of the formation areas of the four discharge spacers 73A, the ozone gas extraction path 77A, the cooling water flow path 70A, and the like.
- one unit discharge cell in the second mode includes a ground cooling electrode 51B (a flat plate-like first electrode) and a dielectric electrode 52B (a flat plate) constituting a pair of flat plate electrodes. And a second electrode).
- the dielectric electrode 52B is, for example, a ceramic plate and serves as an electrode having a dielectric.
- the space where the ground cooling electrode 51B and the dielectric electrode 52B face each other is a discharge space, and the area of the region where the ground cooling electrode 51B and the dielectric electrode 52B overlap in plan view is the discharge area st.
- “3” is adopted as the division number N ⁇ .
- the ground cooling electrode 51B has a trapezoidal shape with rounded corners in plan view, and three ozone gas outlets 75a to 75c are provided on the upper and lower surfaces, respectively.
- the dielectric electrode 52B has a trapezoidal shape with rounded corners when viewed from above, and has a trapezoidal conductivity slightly smaller than the dielectric electrode 52B when viewed from above on the dielectric electrode 52B.
- a conductive film 62B is provided.
- the second The first basic cell of the aspect is configured.
- a second basic cell of the second aspect is configured.
- the first and second basic cells are each a unit discharge cell in the second mode.
- a combination of the first and second basic cells is a basic discharge cell set. Therefore, the upper surface of the ground cooling electrode 51B becomes the discharge surface of the first basic cell, and the lower surface of the ground cooling electrode 51B becomes the discharge surface of the second basic cell.
- the oxygen gas G IN as a source gas from the outer peripheral portion of the ground cooling electrode 51B (dielectric electrode 52B) is supplied.
- the discharge area st of the discharge cell of the second mode is set to about 230 cm 2 corresponding to three times the discharge area so of the first embodiment, and the basic discharge cell group of the second mode is stacked by the number n of stacks.
- the ozone generator 300 has a plurality of discharge cells (discharge cell group).
- an ozone generating AC voltage is applied from the ozone power source 100 between the conductive film 62B and the ground cooling electrode 51B, and the first and second basic cells In each of the basic cells, a dielectric barrier discharge is generated in the discharge space between the dielectric electrode 52B and the ground cooling electrode 51B.
- ozone gas is generated in the discharge space of each of the first and second basic cells, and the generated ozone gas is divided and flows into the three ozone gas outlets 75a to 75c.
- an ozone gas extraction path 77B that is connected to each of the three ozone gas outlets 75a to 75c, collects the ozone gas extracted from the three ozone gas outlets 75a to 75c, and outputs it to the outside, and cooling A water channel 70B is provided.
- the ozone gas extraction path 77B is connected to an ozone gas output path 92 provided in the manifold block 59.
- the ozone gas generated in the discharge space of each of the first and second basic cells flows into the ozone gas outlets 75a to 75c provided on the upper surface and the lower surface of the ground cooling electrode 51B. Thereafter, aggregated into merged ozone gas output G out one by ozone gas take-off path 77B, ozone gas G OUT is output to the ozone gas output path 92 of the manifold block 59B. As a result, ozone gas can be extracted through the ozone gas output path 92 of the manifold block 59B.
- the ozone gas extraction process described above is performed for each basic discharge cell group, and the ozone gas generated in each of the basic discharge cell groups stacked in multiple stages with the number of stacked layers n is collected in the ozone gas output path 92 of the manifold block 59B.
- Cooling water passage 70B is connected to a cooling water input path 93 of the manifold block 59 and the cooling water output path 91, the cooling water input path 93 and enter the cooling water W IN, after flowing the cooling water to the cooling water passage 70B
- the cooling water W OUT is output from the cooling water output path 91.
- the ground cooling electrode 51B can be cooled by flowing cooling water through the cooling water channel 70B.
- a photocatalyst film (not shown) is applied to the discharge surface facing the dielectric electrode 52B in the ground cooling electrode 51B, and four discharge spacers 73B for forming the discharge gap length d are provided in a dispersed manner on the discharge surface. .
- the discharge gap length d is defined by the formation height of the four discharge spacers 73B.
- the four discharge spacers 73B are integrally provided (connected) to the ground cooling electrode 51B on the upper surface and the lower surface of the ground cooling electrode 51B, respectively, and the four discharge spacers 73B provided on the upper surface are discharged from the first basic cell.
- the gap length d is defined, and the four discharge spacers 73B provided on the lower surface define the discharge gap length d of the second basic cell.
- the 1 unit discharge cell in the second mode satisfies the above-mentioned conditions (a) and (b) as in the first mode.
- the discharge cell of the second aspect satisfies the following condition (c).
- the three virtual circular discharge regions 79a to 79c do not overlap the four discharge spacers 73B, the ozone gas extraction path 77B, and the cooling water flow path 70B in plan view.
- the virtual circular discharge areas 79a to 79c are each set to an area of 80% of the divided area dso in consideration of the formation areas of the four discharge spacers 73B, the ozone gas extraction path 77B, and the cooling water flow path 70B.
- one unit of discharge cell in the third mode includes a ground cooling electrode 51C (flat first electrode) and a dielectric electrode 52C (flat plate) constituting a pair of flat plate electrodes. And a second electrode).
- the dielectric electrode 52C is, for example, a ceramic plate and serves as an electrode having a dielectric.
- the space where the ground cooling electrode 51C and the dielectric electrode 52C face each other is a discharge space, and the area of the region where the ground cooling electrode 51C and the dielectric electrode 52C overlap in plan view is the discharge area st.
- “4” is adopted as the division number N ⁇ .
- the ground cooling electrode 51C has a square shape with rounded corners in plan view, and four ozone gas outlets 75a to 75d are provided on the upper and lower surfaces, respectively.
- the dielectric electrode 52C has a square shape with rounded corners when viewed in plan, and has a square conductive shape slightly smaller than the dielectric electrode 52C when viewed in plan on the dielectric electrode 52C. 62C is provided.
- the third The first basic cell of the aspect is configured.
- a second basic cell of the third aspect is configured.
- the first and second basic cells are each a unit discharge cell in the third mode.
- a combination of the first and second basic cells is a basic discharge cell set. Therefore, the upper surface of the ground cooling electrode 51C serves as the discharge surface of the first basic cell, and the lower surface of the ground cooling electrode 51C serves as the discharge surface of the second basic cell.
- the oxygen gas G IN as a source gas from the outer peripheral portion of the ground cooling electrode 51C (dielectric electrode 52C) is supplied.
- the discharge area st of the discharge cell of the third mode is set to about 320 cm 2 corresponding to four times the discharge area so of the first embodiment, and the basic discharge cell group of the third mode is stacked in multiple stages with the stacking number n.
- the ozone generator 300 has a plurality of discharge cells (discharge cell groups).
- an ozone generating AC voltage is applied from the ozone power source 100 between the conductive film 62C and the ground cooling electrode 51C, and thereby the first and second basic cells are provided.
- a dielectric barrier discharge is generated in the discharge space between the dielectric electrode 52C and the ground cooling electrode 51C.
- ozone gas is generated in the discharge space of each of the first and second basic cells, and the generated ozone gas is divided and flows into each of the four ozone gas outlets 75a to 75d.
- an ozone gas extraction path 77C is connected to each of the four ozone gas outlets 75a to 75d, collects the ozone gas extracted from the four ozone gas outlets 75a to 75d, and outputs it to the outside.
- a water channel 70C is provided.
- the ozone gas extraction path 77 ⁇ / b> C is connected to an ozone gas output path 92 provided in the manifold block 59.
- the ozone gas generated in the discharge space of each of the first and second basic cells flows into the ozone gas outlets 75a to 75d provided on the upper surface and the lower surface of the ground cooling electrode 51C. Thereafter, aggregated into merged ozone gas output G out one by ozone gas take-off path 77C, the ozone gas G OUT is output to the ozone gas output path 92 of the manifold block 59C. As a result, ozone gas can be taken out through the ozone gas output path 92 of the manifold block 59C.
- the above-described ozone gas extraction process is performed for each basic discharge cell group, and the ozone gas generated in each of the basic discharge cell groups stacked in multiple stages with the number n stacked is collected in the ozone gas output path 92 of the manifold block 59C.
- Cooling water passage 70C is connected to a cooling water input path 93 of the manifold block 59 and the cooling water output path 91, the cooling water input path 93 and enter the cooling water W IN, after flowing the cooling water to the cooling water passage 70C
- the cooling water W OUT is output from the cooling water output path 91.
- the ground cooling electrode 51C can be cooled by flowing cooling water through the cooling water flow path 70C.
- a photocatalyst film (not shown) is applied to the discharge surface of the ground cooling electrode 51C facing the dielectric electrode 52C, and seven discharge spacers 73C for forming the discharge gap length d are provided on the discharge surface in a dispersed manner. .
- the discharge gap length d is defined by the formation height of the seven discharge spacers 73C.
- Seven discharge spacers 73C are integrally provided (connected) to the ground cooling electrode 51C on the upper surface and the lower surface of the ground cooling electrode 51C, respectively, and the seven discharge spacers 73C provided on the upper surface discharge the first basic cell.
- the gap length d is defined, and the seven discharge spacers 73C provided on the lower surface define the discharge gap length d of the second basic cell.
- the unit discharge cell in the third mode satisfies the above-described conditions (a) and (b) as in the first and second modes.
- the discharge cell of the third aspect satisfies the following condition (c).
- the four virtual circular discharge regions 79a to 79d do not overlap the seven discharge spacers 73C, the ozone gas extraction path 77C, and the cooling water flow path 70C in plan view.
- the virtual circular discharge areas 79a to 79d are each set to an area of 80% of the divided area dso in consideration of the formation areas of the seven discharge spacers 73C, the ozone gas extraction path 77C, and the cooling water flow path 70C.
- one unit of the discharge cell in the fourth mode includes a ground cooling electrode 51D (a flat plate-like first electrode) and a dielectric electrode 52D that constitute a pair of flat plate electrodes ( It is a combination structure of flat plate-like second electrodes).
- the dielectric electrode 52D is a ceramic plate, for example, and serves as an electrode having a dielectric.
- the space where the ground cooling electrode 51D and the dielectric electrode 52D face each other is a discharge space, and the area of the region where the ground cooling electrode 51D and the dielectric electrode 52D overlap in plan view is the discharge area st.
- “6” is adopted as the division number N ⁇ .
- the ground cooling electrode 51D has a trapezoidal shape with rounded corners in plan view, and is provided with six ozone gas outlets 75a to 75f.
- the dielectric electrode 52D has a trapezoidal shape with rounded corners when viewed in plan, and has a trapezoidal conductivity slightly smaller than the dielectric electrode 52D when viewed in plan on the dielectric electrode 52D. 62D is provided.
- the first basic cell of the aspect is configured.
- a second basic cell of the fourth aspect is configured.
- Each of the first and second basic cells is a unit discharge cell in the fourth mode.
- a combination of the first and second basic cells is a basic discharge cell set. Therefore, the upper surface of the ground cooling electrode 51D serves as the discharge surface of the first basic cell, and the lower surface of the ground cooling electrode 51D serves as the discharge surface of the second basic cell.
- the oxygen gas G IN as a source gas from the outer peripheral portion of the ground cooling electrode 51D (dielectric electrode 52D) is supplied.
- the discharge area st of the discharge cell of the fourth mode is set to about 480 cm 2 corresponding to 6 times the discharge area so of the first embodiment, and a plurality of basic discharge cell sets of the fourth mode are stacked in multiple stages.
- the ozone generator 300 has a discharge cell.
- an ozone generating AC voltage is applied from the ozone power source 100 between the conductive film 62D and the ground cooling electrode 51D, and the first and second basic cells In each of the basic cells, a dielectric barrier discharge is generated in the discharge space between the dielectric electrode 52D and the ground cooling electrode 51D.
- ozone gas is generated in the discharge space of each of the first and second basic cells, and the generated ozone gas is divided and flows into each of the six ozone gas outlets 75a to 75f.
- an ozone gas extraction path 77D is connected to each of the six ozone gas outlets 75a to 75f, collects the ozone gas extracted from the six ozone gas outlets 75a to 75f, and outputs the ozone gas to the outside.
- a water flow path 70D is provided.
- the ozone gas extraction path 77D is connected to an ozone gas output path 92 provided in the manifold block 59.
- the ozone gas generated in the discharge space of each of the first and second basic cells flows into the ozone gas outlets 75a to 75f provided on the upper surface and the lower surface of the ground cooling electrode 51D. Thereafter, aggregated into merged ozone gas output G out one by ozone gas take-off path 77D, ozone gas G OUT is output to the ozone gas output path 92 of the manifold block 59D. As a result, ozone gas can be taken out through the ozone gas output path 92 of the manifold block 59D.
- the ozone gas extraction process described above is performed for each basic discharge cell group, and the ozone gas generated in each of the basic discharge cell groups stacked in multiple stages with the number n of layers is collected in the ozone gas output path 92 of the manifold block 59D.
- Cooling water passage 70D is connected to a cooling water input path 93 of the manifold block 59 and the cooling water output path 91, and enter the cooling water W IN from the cooling water input path 93, after flowing the cooling water to the cooling water passage 70D
- the cooling water W OUT is output from the cooling water output path 91.
- the ground cooling electrode 51D can be cooled by flowing cooling water through the cooling water channel 70D.
- a photocatalyst film (not shown) is applied to the discharge surface facing the dielectric electrode 52D in the ground cooling electrode 51D, and six discharge spacers 73D for forming the discharge gap length d are provided on the discharge surface in a dispersed manner. .
- the discharge gap length d is defined by the formation height of the six discharge spacers 73D.
- the six discharge spacers 73D are provided (connected) integrally with the ground cooling electrode 51D on the upper surface and the lower surface of the ground cooling electrode 51D, respectively, and the six discharge spacers 73D provided on the upper surface discharge the first basic cell.
- the gap length d is defined, and the six discharge spacers 73D provided on the lower surface define the discharge gap length d of the second basic cell.
- the unit discharge cell in the fourth aspect satisfies the above-described conditions (a) and (b) as in the first to third aspects.
- the discharge cell of the fourth aspect satisfies the following condition (c).
- (c) The six virtual circular discharge regions 79a to 79f centering on the six ozone gas outlets 75a to 75f in plan view are not overlapped with each other in the discharge space (planar shape of the ground cooling electrode 51D).
- the six virtual circular discharge regions 79a to 79f do not overlap with the six discharge spacers 73D, the ozone gas extraction path 77D, and the cooling water flow path 70D in plan view.
- the virtual circular discharge areas 79a to 79f are set to an area of 80% of the divided area dso in consideration of the formation areas of the six discharge spacers 73D, the ozone gas extraction path 77D, the cooling water flow path 70D, and the like.
- conductive films 62A to 62D in the first to fourth aspects are simply referred to as “conductive film 62”.
- the cooling water passages 70A to 70D are collectively referred to as “cooling water passage 70”.
- the manifold blocks 59A to 59D are collectively referred to as “manifold block 59”.
- the high voltage terminal HV of the ozone power supply 100 is electrically connected to the conductive film 62 in the ozone generator 300.
- the low voltage terminal LV is electrically connected to the ground cooling electrode 51 in the ozone generator 300.
- the ozone generator 300 is similar to the ozone generator 200 of the first embodiment in that the ground cooling electrode 51 and the conductive film 62 of the discharge cell (first or second basic cell) of one unit from the ozone power source 100 are used. An ozone generating AC voltage is applied between the two.
- the ozone power supply 100 sets the output frequency f to a range of 20 kHz or more and less than 50 kHz, boosts the high-frequency AC voltage to a high voltage, and the inverter circuit unit 22 (inverter unit) that outputs the high-frequency AC voltage.
- a parallel resonance transformer 25 (a step-up transformer) for obtaining an ozone generating AC voltage.
- the ozone generation AC voltage is applied from the parallel resonance transformer 25 of the ozone power source 100 shown in FIG. 1 to the high voltage terminal HV which is the power feeding portion of the conductive film 62 through the high voltage bushing, so that the discharge power is reduced. It is thrown.
- This discharge power is defined as the discharge power DW set to the maximum possible range by the applied ozone generating AC voltage.
- a dielectric barrier discharge is generated via the dielectric electrode 52 in the discharge space of each discharge cell (first basic cell or second basic cell).
- Ozone gas is generated in the discharge space of each discharge cell.
- the cooling water flow path 70 is provided inside the ground cooling electrode 51, and the cooling space (not shown) for cooling is provided inside the low-pressure cooling plate 5, which is provided on the base 10.
- Each basic discharge is caused by flowing cooling water into the cooling water flow path 70 and the low-pressure cooling plate 5 of the ground cooling electrode 51 via the cooling water path, the cooling water output path 91 and the cooling water input path 93 of the manifold block 59.
- the cell set is cooled.
- a cooling mechanism for cooling the basic discharge cell set to a predetermined cooling temperature is configured including the cooling water flow path 70 of the ground cooling electrode 51, the low-pressure cooling plate 5, the base 10, and the manifold block 59.
- the ozone gas generation system 2000 of the second embodiment satisfies the following condition (e) as in the first embodiment.
- the cooling temperature of the ozone generator 300 by the cooling mechanism is 5 ° C. or higher.
- the ozone generator 300 in the ozone gas generation system 2000 of the second embodiment further satisfies the following condition (f) and condition (g) as in the first embodiment.
- the total gas flow rate Q supplied to the entire plurality of discharge cells (n sets of basic discharge cells) stacked in the ozone generator 300 is 3.0 L / min or more.
- the specific power value DW / Q which is the ratio of the total discharge power DW applied to the whole of the plurality of discharge cells and the total gas flow rate Q, is 600 (W ⁇ min / L) or more.
- the total discharge power DW is defined by the ozone generating AC voltage supplied from the ozone power source 100.
- Condition (f) is intended to extract high-concentration ozone gas, and as an accompanying effect of achieving the purpose of condition (f), condition (g) is an effect that maximizes the amount of ozone gas that can be output. Play.
- the ozone generator 300 of the second embodiment has the following characteristics.
- One unit of discharge cell which is one of the first and second basic cells, includes a ground cooling electrode 51 and a sickness dielectric electrode 52 as first and second electrodes constituting a pair of plate electrodes, A dielectric is formed on the dielectric electrode 52, and a discharge space is provided between the ground cooling electrode 51 and the dielectric electrode 52.
- One unit of discharge cells is provided on the upper and lower surfaces of the ground cooling electrode 51, and N ⁇ ( ⁇ 2) ozone gas outlets 75 for taking out ozone gas generated in the discharge space, and the inside of the ground cooling electrode 51
- the ozone gas extraction passage 77 is connected to each of the N ⁇ ozone gas outlets 75 and collects the ozone gas extracted from the N ⁇ ozone gas outlets 75 and outputs the ozone gas to the outside.
- the ozone generator 300 satisfies the following conditions (a) and (b).
- a divided area dso obtained by dividing the discharge area st of the discharge surface by the division number N ⁇ is set in a range of 30 cm 2 or more and less than 160 cm 2.
- the discharge gap length d in the discharge space is set to be less than 80 ⁇ m.
- the ozone gas generation system 2000 according to Embodiment 2 satisfies the above-described condition (a) and condition (b), so that the discharge area of the discharge surface of the N ⁇ virtual discharge cells is in the range of 30 cm 2 or more and less than 160 cm 2.
- the state set to can be realized.
- the ozone generator 300 can set a virtual state in which N ⁇ virtual circular discharge regions 79 centered on the N ⁇ ozone gas outlets 75 are distributed. Therefore, each of N ⁇ virtual discharge cells each having virtual circular discharge region 79 can exhibit the same effect as one unit discharge cell in the first embodiment that satisfies condition (1).
- one unit of discharge cell provided in the ozone generator 300 satisfies the above condition (b) in which the discharge gap length d is less than 80 ⁇ m.
- the discharge gap length d in the discharge space is set to a short gap length of less than 80 ⁇ m
- the gas pressure loss ⁇ P from the source gas supply port to the ozone gas outlet 32 via the ozone generator 300 is defined by the discharge gap length d.
- the proportion of the gas pressure loss ⁇ Pa in the discharge space increases.
- the ozone generator 300 satisfies the condition (b) and restricts the discharge gap length to less than 80 ⁇ m, so that N ⁇ ozone ozone particles are dispersedly arranged so that the virtual circular discharge region 79 can be formed.
- ozone gas can flow at a substantially uniform gas flow rate Q / n (L / min) around each of the N ⁇ ozone gas outlets 75, and high-concentration ozone gas Can be output.
- the ozone generator 300 satisfies the above condition (b)
- the degree of variation in the gas loss ⁇ Pp in the process from the N ⁇ ozone gas outlets 75 having different arrangements to the one ozone gas extraction path 77 is reduced. It can be ignored by the gas pressure loss ⁇ Pa in the discharge space defined by the gap length d.
- ozone gas outlets 75 distributed in a division number N ⁇ are provided, and a raw material gas is allowed to flow from the outer periphery of one set of basic discharge cell sets, so that N ⁇ ozone gas outlets 75 Variations in the flow rate of the extracted ozone gas can be suppressed, and ozone gas can be extracted with a more uniform gas flow.
- the ozone generator 300 according to the second embodiment satisfies the above conditions (a) and (b), so that the ozone gas having a high concentration is the same as in the case of the ozone generator 200 according to the first embodiment.
- the effect which can take out can be exhibited.
- the ozone gas generation system 2000 satisfies the conditions (a) and (b) described above and supplies the raw material gas flow rate qo and the discharge power dw supplied to the discharge surface of one unit discharge cell. Is set to the maximum possible range and the amount of extracted ozone yt is maximized to create a condition for extracting high-concentration ozone gas.
- the discharge area st of one unit discharge cell in the first to fourth aspects of the second embodiment is three times the discharge area so of one unit discharge cell of the first embodiment that satisfies the condition (1). It is up to 6 times wider.
- the ozone generator 300 of the second embodiment is more basic than the ozone generator 200 of the first embodiment. Since the number n of stacked discharge cell sets can be reduced, the number of parts such as the ground cooling electrode 51 and the dielectric electrode 52 can be minimized.
- the basic discharge cell set means a combination of the basic cells S1 and S2.
- the discharge area st of one unit of discharge cells is The divided area dso can be N ⁇ times.
- the ozone gas generation system 2000 of the second embodiment includes a plurality of discharge cells (n sets of basic discharge cell sets) provided in the ozone generator 300 by reducing the number n of basic discharge cell sets. The number of parts required for the discharge cell group can be reduced.
- the ozone gas extraction path 77 is provided inside the ground cooling electrode 51, the ozone gas extraction path member provided outside can be suppressed to the ozone gas output path 92 provided in the manifold block 59.
- the ozone generator 300 can greatly reduce the necessary number of members for the ozone gas extraction path provided outside, and can reduce the manufacturing cost.
- the ozone gas generation system 2000 according to Embodiment 2 satisfies the above condition (c) in addition to the above conditions (a) and (b), thereby further improving the discharge surface of one unit discharge cell.
- the identity with the case where the discharge area is set in the range of 30 cm 2 or more and less than 160 cm 2 (in the case of Embodiment 1) can be enhanced.
- N ⁇ ozone gas outlets 75 are arranged so as to satisfy the above condition (c), N ⁇ virtual discharge spaces (virtual circular discharge regions 79) having a reduced discharge cell diameter can be formed in one unit discharge cell. Since it can be formed, ozone gas can be taken out in the same state as the actual discharge space in which the discharge cell diameter is actually reduced.
- the gas residence time To which is the time for the ozone gas generated in the basic discharge cell set in the ozone generator 300 to pass through any of the N ⁇ virtual circular discharge regions 79, is shortened.
- the ozone gas collides with electrons and discharge gas in the N ⁇ virtual circular discharge regions 79 and the self-decomposition of ozone itself staying in the virtual circular discharge region 79. Since the total decomposition amount can be suppressed, high-concentration ozone gas can be taken out.
- the ozone gas generation system 2000 according to Embodiment 2 can further improve the conditions under which high-concentration ozone gas can be taken out by satisfying the above conditions (a) to (c).
- the ozone gas generation system 2000 since the ozone gas generation system 2000 according to the second embodiment further satisfies the condition (d) regarding the discharge power density J described above, the ozone generation amount that can be taken out from one unit of discharge cells can be secured at a predetermined amount or more, and It can be taken out efficiently, and the amount of extracted ozone Yt can be further increased.
- the ozone gas generation system 2000 has an effect that the system configuration can be minimized and the high-concentration ozone or the extracted ozone amount Yt can be efficiently increased and output to the outside.
- the ozone gas generation system 2000 satisfies the condition (a) to the condition (d) by further satisfying the above condition (d) in addition to the conditions (a) to (c), and It is possible to maximize the extracted ozone amount yt by setting the raw material gas flow rate qo and the discharge power dw supplied to the discharge space of each discharge cell to the maximum possible range.
- the ozone gas generation system 2000 has an effect of being able to output high-concentration ozone gas or a high generation amount of ozone gas to the outside while minimizing the system configuration.
- the ozone generator 300 of the ozone gas generation system 2000 further needs to extremely lower the cooling temperature of the ozone generator 300 by the above-described cooling mechanism by satisfying the above-described condition (e) regarding the cooling mechanism.
- the cooling mechanism can be simplified.
- the upper limit of the said constraint conditions assumes about 30 degreeC with respect to normal temperature (20 degreeC).
- the ozone power source 100 and the ozone generator 300 of the ozone gas generation system 2000 further satisfy the above-described condition (f) (condition relating to the total gas flow rate Q) and condition (g) (condition relating to the specific power value DW / Q).
- condition (f) condition relating to the total gas flow rate Q
- condition (g) condition relating to the specific power value DW / Q
- the ozone gas generation system 2000 has a sufficiently large total gas flow rate Q for a raw material gas supplied to a plurality of discharge cells that can take out high-concentration ozone of, for example, 400 g / m 3 or more by satisfying the above-described condition (f). Can be obtained, and finally high-concentration ozone gas can be obtained, and the amount of extracted ozone Yt can be increased.
- the ozone gas generation system 2000 supplies the ozone generator 300 to the ozone generator 300 in an environment satisfying the conditions (a) to (g) in addition to the effect of the condition (f) by satisfying the condition (g) described above. It is possible to maximize the extraction ozone amount Yt by maximizing the total gas flow rate Q and the total discharge power DW as much as possible.
- the ozone gas generation system 2000 has an effect of being able to output ozone gas having a relatively large capacity and high concentration to the outside while minimizing the system configuration.
- the discharge surface shape in plan view of the ground cooling electrode 51 and the dielectric electrode 52 which are the first and second electrodes constituting one unit of discharge cell is not circular, It has a rectangular shape including a trapezoid.
- the ozone gas generation system 2000 makes it easy to change the installation shape of the ozone generator 300, and the ozone gas generation system 2000 combined with peripheral devices such as the ozone generator 300 and the ozone power source 100 has a more compact configuration. Can do.
- the planar shape of the dielectric electrode 52 is rectangular, the advantage of facilitating the dielectric processing in the dielectric electrode 52 and the bonding of the conductive film 62 to the dielectric electrode 52 are relatively easy. Thus, the mass production of the dielectric electrode 52 becomes easier, and the effect of reducing the production cost of the discharge cell can be exhibited.
- the predetermined number of discharge spacers 73 may be integrally connected to the dielectric electrode 52 instead of the ground cooling electrode 51, and the ground cooling electrode 51, the dielectric electrode 52, and the conductive film 62 are integrally connected. May be.
- the ozone power source 100 of the ozone gas generation system 2000 has an output frequency f (operating frequency f) in the range of 20 kHz to 50 kHz (20 kHz or more and less than 50 kHz), as in the first embodiment. Is output to the ozone generator 300.
- the output frequency f (operating frequency f) of the more practical ozone power supply 100 is desirably in the range of 20 kHz to 30 kHz (20 kHz or more and less than 30 kHz).
- the ozone gas generation system 2000 generates ozone to be applied to a plurality of discharge cells (n sets of basic discharge cell sets) in the ozone generator 300, similarly to the ozone gas generation system 1000 according to the first embodiment.
- the discharge voltage DW desired by the ozone generator 300 can be realized by setting the peak voltage value of the AC voltage for use to 7 kVp or less.
- the parallel resonance transformer 25 of the ozone power supply 100 has an internal excitation inductance value Lt, and a plurality of discharge cells in the ozone generator 300 have an overall capacitance value C0.
- the ozone power source 100 sets the output frequency f in the vicinity of the parallel resonance frequency fc that satisfies the above-described equation (5).
- the ozone gas generation system 2000 sets the output frequency f in the vicinity of the parallel resonance frequency fc, thereby performing parallel resonance when the total discharge power DW is input to the ozone generator 300, thereby causing an inverter unit (inverter circuit unit 22).
- the output power factor can be increased.
- the output power factor in the inverter circuit unit 22 can be increased.
- the ozone power source 100 can supply the ozone generator 300 on the load side with an alternating voltage for ozone generation that satisfies the desired total discharge power DW.
- the ozone generator 200 in which the shape of the discharge surface of the discharge cell is circular when viewed in plan is shown.
- the discharge cell shape may be a square or rectangular flat plate cell.
- multi-stage discharge cells may be stacked by setting the discharge power density J within a range that can satisfy the condition (2).
- a coaxial cylindrical electrode tube may be used as a short tube, and the discharge power density J may be set within a range satisfying the condition (3).
- the configuration having the internal excitation inductance value Lt of the parallel resonance transformer 25 which is a high-frequency / high-voltage transformer of the ozone power supply 100 is shown.
- the ozone generator 200 and the ozone generator 300 a configuration in which oxygen gas is supplied as a source gas and a photocatalyst is applied to the discharge surface of the discharge cell is shown.
- the present invention is not limited to this, and an ozone generator that supplies oxygen gas containing nitrogen as a raw material gas may be used instead of the ozone generators 200 and 300.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
The purpose of the present invention is to provide an ozone gas generation system that minimizes system configuration and is capable of outputting high-concentration ozone to outside. This ozone gas generation system (2000) includes an ozone generator (300) having a plurality of discharge cells. The plurality of discharge cells each have a ground cooling electrode (51) and a dielectric electrode (52). An Nφ number of ozone gas extraction ports (75) for extracting ozone gas generated in a discharge space is provided in the discharge surfaces of the ground cooling electrodes (51). The ozone generator (300) satisfies conditions (a) and (b). Condition (a): The plurality of discharge cells have the divided area dso thereof set to at least 30 cm2 and less than 160 cm2, said divided area being the discharge area st of each discharge surface divided by a division number Nφ. Condition (b): The discharge gap length in the discharge space is set to less than 80 µm.
Description
この発明は、オゾン用電源と放電現象を利用したオゾン発生器との組合構成により、高濃度なオゾンガスを出力するオゾンガス発生システムに関する。特に、放電を用いたオゾン発生器とオゾン用電源との組合で、高濃度なオゾンガスまたは高発生量のオゾンガスを出力できるオゾンガス発生システムに関する。
The present invention relates to an ozone gas generation system that outputs high-concentration ozone gas by a combined configuration of an ozone power source and an ozone generator using a discharge phenomenon. In particular, the present invention relates to an ozone gas generation system capable of outputting a high-concentration ozone gas or a high generation amount of ozone gas in a combination of an ozone generator using discharge and a power source for ozone.
一般に、放電式のオゾンガス発生装置は、オゾンガスを発生させるための電源供給を行うオゾン用電源と、オゾンガス生成用の放電セル(オゾン発生セル)を内蔵したオゾン発生器との組合せで構成される。
Generally, a discharge-type ozone gas generator is composed of a combination of an ozone power source for supplying power for generating ozone gas and an ozone generator having a discharge cell (ozone generation cell) for generating ozone gas.
放電セルは誘電体を介した放電空間を有しており、オゾン用電源からオゾン発生器に高電圧のオゾン発生用交流電圧を印加することにより、放電セルの放電空間内で誘電体バリア放電(無声放電)を誘起させることができる。誘電体バリア放電を発生している放電空間に、オゾンガスを生成するための触媒ガスを添加した酸素ガスを原料ガスとして採用した放電発生装置、もしくは触媒ガスを添加しない高純度酸素ガスが原料ガスとして供給され、上記誘電体バリア放電面にオゾンガスを生成するための光触媒材料が塗布された放電発生装置の2通りの装置が構成される。これら2通りの放電発生装置それぞれに供給した原料ガスに放電エネルギーを与えることで、触媒を介した高濃度のオゾンガスが生成される。
The discharge cell has a discharge space through a dielectric, and a dielectric barrier discharge (within the discharge space of the discharge cell is applied by applying a high-voltage ozone generation AC voltage to the ozone generator from the ozone power source. (Silent discharge) can be induced. A discharge generator that employs oxygen gas added with a catalyst gas for generating ozone gas as a source gas in a discharge space in which a dielectric barrier discharge is generated, or a high-purity oxygen gas without addition of a catalyst gas is used as a source gas There are two types of devices, a discharge generator, which is supplied and coated with a photocatalyst material for generating ozone gas on the dielectric barrier discharge surface. By applying discharge energy to the raw material gas supplied to each of these two types of discharge generators, high-concentration ozone gas is generated via the catalyst.
放電セルで生成したオゾンガスを集め、オゾン発生器から所定のオゾン濃度のオゾンガスが取出せる構成にしたものが、オゾンガス発生装置である。オゾンガス発生装置に用いるオゾン発生器としては、例えば、特許文献1で開示されたオゾン発生器がある。
An ozone gas generator is configured to collect ozone gas generated in a discharge cell and take out ozone gas having a predetermined ozone concentration from an ozone generator. As an ozone generator used for an ozone gas generator, there exists an ozone generator disclosed by patent document 1, for example.
種々の先行技術文献で開示されたオゾン発生器は、当然オゾンガスを生成するための触媒ガスを添加することもしくは、放電面に光触媒材料を塗布するように施したオゾン発生器を対象にしている。以後の発明要素においては、原料ガスに触媒ガスを添加した原料ガスもしくは放電面に光触媒材料を塗布するようにしたオゾン発生器であることの明記は省略して、当然上記処置は施されているオゾン発生器を前提として説明する。
Naturally, the ozone generators disclosed in various prior art documents are intended for ozone generators that are added with a catalyst gas for generating ozone gas or coated with a photocatalytic material on the discharge surface. In the following invention elements, the above treatment is naturally applied, omitting the specification of the raw material gas obtained by adding the catalytic gas to the raw material gas or the ozone generator in which the photocatalytic material is applied to the discharge surface. The explanation is based on the assumption of an ozone generator.
また、オゾン発生器で単位時間当たりの生成した総オゾン生成量Y(g/h)は、放電セルの放電空間に供給した原料ガスの総ガス流量Q(L/min)とオゾン発生器に投入する総放電電力DW(W)に対応した量となり、以下の式(1)を満足する。
In addition, the total ozone production amount Y (g / h) generated per unit time by the ozone generator is input to the ozone generator and the total gas flow rate Q (L / min) of the raw material gas supplied to the discharge space of the discharge cell. The amount corresponds to the total discharge power DW (W) to be satisfied, and satisfies the following formula (1).
Y=Q・C…(1)
なお、式(1)における"C"は、放電セルで生成するオゾン生成濃度(g/m3)である。 Y = Q ・ C ... (1)
Note that “C” in equation (1) is the ozone generation concentration (g / m 3 ) generated in the discharge cell.
なお、式(1)における"C"は、放電セルで生成するオゾン生成濃度(g/m3)である。 Y = Q ・ C ... (1)
Note that “C” in equation (1) is the ozone generation concentration (g / m 3 ) generated in the discharge cell.
つまり、オゾン発生器で生成する総オゾン生成量Y(g/h)は、生成したオゾン生成濃度C(g/m3)と供給した原料ガスの総ガス流量Q(L/min)の積に対応した値となる。
In other words, the total ozone generation amount Y (g / h) generated by the ozone generator is the product of the generated ozone generation concentration C (g / m 3 ) and the total gas flow rate Q (L / min) of the supplied source gas. Corresponding value.
ちなみに、放電セルで生成するオゾン生成濃度C(g/m3)は、単位時間当たりの単位ガス体積V(cm3)に注入する放電電力DW(watt=joule/sec.)に対応する。なお、単に単位ガス体積V(cm3)はオゾンガス発生器全体において以下の式(2)を満足する。
V(cm3/sec)=1000・Q/60…(2) Incidentally, the ozone generation concentration C (g / m 3 ) generated in the discharge cell corresponds to the discharge power DW (watt = joule / sec.) Injected into the unit gas volume V (cm 3 ) per unit time. The unit gas volume V (cm 3 ) simply satisfies the following formula (2) in the entire ozone gas generator.
V (cm 3 / sec) = 1000 · Q / 60 (2)
V(cm3/sec)=1000・Q/60…(2) Incidentally, the ozone generation concentration C (g / m 3 ) generated in the discharge cell corresponds to the discharge power DW (watt = joule / sec.) Injected into the unit gas volume V (cm 3 ) per unit time. The unit gas volume V (cm 3 ) simply satisfies the following formula (2) in the entire ozone gas generator.
V (cm 3 / sec) = 1000 · Q / 60 (2)
つまり、放電セルで生成するオゾン生成濃度C(g/m3)は、オゾン発生セルの単位ガス体積V(cm3)に注入する放電エネルギー量(joule/cm3)に相当する比電力値DW/Q(W・min/L)によって決まる。
That is, the ozone generation concentration C (g / m 3 ) generated in the discharge cell is a specific power value DW corresponding to the discharge energy amount (joule / cm 3 ) injected into the unit gas volume V (cm 3 ) of the ozone generation cell. / Q (W · min / L)
したがって、オゾン生成濃度C(g/m3)は、比電力値DW/Q(W・min/L)に比例して生成濃度が高くなる。オゾン生成濃度C(g/m3)は、以下の式(3)で表される。
C(g/m3)=A・DW/Q…(3) Accordingly, the ozone generation concentration C (g / m 3 ) increases in proportion to the specific power value DW / Q (W · min / L). The ozone generation concentration C (g / m 3 ) is expressed by the following formula (3).
C (g / m 3 ) = A · DW / Q (3)
C(g/m3)=A・DW/Q…(3) Accordingly, the ozone generation concentration C (g / m 3 ) increases in proportion to the specific power value DW / Q (W · min / L). The ozone generation concentration C (g / m 3 ) is expressed by the following formula (3).
C (g / m 3 ) = A · DW / Q (3)
なお、式(3)において、"A(g/J)"は、放電セルによる単位放電エネルギー当たりのオゾン生成能力を示した固有の比例定数である。固有値である"A(g/J)"は、電子衝突や放電による種々の触媒化学反応を介してオゾンを生成できる能力値を示す。より詳細に説明すると、この"A(g/J)"は、放電形態、ガス種、放電面材料、ギャップ長dに依存する固有値といえる。
In Equation (3), “A (g / J)” is an inherent proportional constant indicating the ability of ozone generation per unit discharge energy by the discharge cell. The eigenvalue “A (g / J)” indicates an ability value capable of generating ozone through various catalytic chemical reactions caused by electron collision or discharge. More specifically, it can be said that “A (g / J)” is an eigenvalue depending on the discharge form, gas type, discharge surface material, and gap length d.
ちなみに、単位時間当たりの生成した総オゾン生成量Y(g/h)に対し、式(3)で導出されるオゾン生成濃度Cを生成する放電セルにおいて、放電空間内に滞在しているオゾン量Ys(g)は、下記の式(4)で表される。
Ys(g)=C・d・S/1000000…(4) Incidentally, the amount of ozone staying in the discharge space in the discharge cell that generates the ozone generation concentration C derived by the equation (3) with respect to the total ozone generation amount Y (g / h) generated per unit time. Ys (g) is represented by the following formula (4).
Ys (g) = C · d · S / 1000000 (4)
Ys(g)=C・d・S/1000000…(4) Incidentally, the amount of ozone staying in the discharge space in the discharge cell that generates the ozone generation concentration C derived by the equation (3) with respect to the total ozone generation amount Y (g / h) generated per unit time. Ys (g) is represented by the following formula (4).
Ys (g) = C · d · S / 1000000 (4)
式(4)における"d"は、放電ギャップ長(cm)で、"S"は、オゾン発生器の総放電面積(cm2)である。放電セルの放電空間内に滞在しているオゾン量Ysは、オゾンを生成できる能力値Aや比電力値DW/Q値だけでなく、放電セル構造因子である放電ギャップ長d、総放電面積Sで決まる固定値であって、放電セル構造が決まれば変更ができないパラメータ値でもある。
In equation (4), “d” is the discharge gap length (cm), and “S” is the total discharge area (cm 2 ) of the ozone generator. The amount of ozone Ys staying in the discharge space of the discharge cell is not only the ability value A and specific power value DW / Q value that can generate ozone, but also the discharge gap length d and the total discharge area S that are discharge cell structure factors. It is also a parameter value that cannot be changed once the discharge cell structure is determined.
図15は従来のオゾン発生装置における比電力値DW/Qに対する取出しオゾン濃度Ctの特性を示すグラフである。
FIG. 15 is a graph showing the characteristics of the extracted ozone concentration Ct with respect to the specific power value DW / Q in the conventional ozone generator.
なお、オゾン発生装置における取出しオゾン量Ytは、取出しオゾン濃度Ctと供給するガス流量Qとの積にほぼ対応した値となる。つまり、可能な範囲で最大となるガス流量Qの原料ガスを供給して、図15に示した取出しオゾン濃度Ct値と比電力値DW/Q値とから、オゾン発生装置における取出しオゾン量Yt(=Ct・Q)の最大値が求まり、注入する放電電力DW(=比電力値(DW/Q)・Q)の最大値も求まる。
It should be noted that the extracted ozone amount Yt in the ozone generator is a value substantially corresponding to the product of the extracted ozone concentration Ct and the supplied gas flow rate Q. That is, by supplying the raw material gas having the maximum gas flow rate Q in the possible range, the extracted ozone amount Yt (in the ozone generator) is obtained from the extracted ozone concentration Ct value and the specific power value DW / Q value shown in FIG. = Ct · Q) and the maximum discharge power DW to be injected (= specific power value (DW / Q) · Q) is also obtained.
オゾンガス発生装置においては、式(3)、式(4)で算出したオゾン生成濃度C、オゾン量Ysのオゾンが発生している。一方、図15に示すように、放電現象を利用するオゾンガス発生装置においては、オゾン発生器の比電力値DW/Qに対する取出しオゾン濃度Ctの特性は、特性8000aとなる。特性8000aにおいて、低い比電力値DW/Qに対する取出しオゾン濃度Ctの特性を示す接線(二点鎖線)が各放電セルに滞在しているオゾン量Ysに相当するオゾン生成濃度Cを示している。
In the ozone gas generator, ozone having the ozone generation concentration C and the ozone amount Ys calculated by the equations (3) and (4) is generated. On the other hand, as shown in FIG. 15, in the ozone gas generator using the discharge phenomenon, the characteristic of the extracted ozone concentration Ct with respect to the specific power value DW / Q of the ozone generator is a characteristic 8000a. In the characteristic 8000a, the tangent line (two-dot chain line) indicating the characteristic of the extracted ozone concentration Ct with respect to the low specific power value DW / Q indicates the ozone generation concentration C corresponding to the ozone amount Ys staying in each discharge cell.
一方、高い比電力値DW/Qにおける取出しオゾン濃度Ctは、各放電セルから生成するオゾン生成濃度C(二点鎖線)から各放電セル内での生成したオゾンを分解する濃度Cdを取り除いた値となる。すなわち、取出しオゾン濃度Ctは、オゾンガス発生装置から取出せる実際のオゾン濃度を示している。
On the other hand, the extracted ozone concentration Ct at a high specific power value DW / Q is a value obtained by removing the concentration Cd for decomposing ozone generated in each discharge cell from the ozone generation concentration C (two-dot chain line) generated from each discharge cell. It becomes. That is, the extracted ozone concentration Ct indicates the actual ozone concentration that can be extracted from the ozone gas generator.
ここで、原料ガスとして高純度酸素ガスを用いているオゾン発生器について検討する。このようなオゾン発生器においては、比電力値DW/Q(W・min/L)に対して決定される、生成オゾン濃度特性(二点鎖線)で示されるオゾン生成能力の主要因は、特許文献2~特許文献6で示された放電セルの放電空間で発生する誘電体バリア放電(無声放電)であると考えられる。各特許文献が示すように、放電空間における電子衝突による酸素原子の解離量は非常に少なく、この電子衝突を原因としたオゾン生成能力は、高濃度オゾン生成の内で極一部の量に過ぎない。
Here, an ozone generator using high-purity oxygen gas as a raw material gas is examined. In such an ozone generator, the main factor of the ozone generation capability indicated by the generated ozone concentration characteristic (two-dot chain line) determined with respect to the specific power value DW / Q (W · min / L) is the patent It is considered that the dielectric barrier discharge (silent discharge) is generated in the discharge space of the discharge cell shown in Document 2 to Patent Document 6. As shown in each patent document, the dissociation amount of oxygen atoms due to electron collision in the discharge space is very small, and the ozone generation ability caused by this electron collision is only a part of the high concentration ozone generation. Absent.
すなわち、総放電電力DWをオゾン発生器に供給し、放電セルの放電空間に誘電体バリア放電を発生させると、「供給された原料ガスに含まれる微量の窒素ガスの触媒作用」、または「放電セルを構成する電極面の全面に配設された光触媒機能」によって、酸素原子の解離量が多くなることから高濃度のオゾンガスを生成することができる。
That is, when the total discharge power DW is supplied to the ozone generator and a dielectric barrier discharge is generated in the discharge space of the discharge cell, “catalysis of a small amount of nitrogen gas contained in the supplied source gas” or “discharge Due to the “photocatalytic function disposed on the entire surface of the electrode constituting the cell”, the amount of dissociation of oxygen atoms increases, so that high-concentration ozone gas can be generated.
このように、微量の窒素ガス量による酸素原子解離能力や電極面に配設した光触媒の酸素原子解離能力が、オゾンガス発生の主要因となる。
As described above, the oxygen atom dissociation ability due to a small amount of nitrogen gas and the oxygen atom dissociation ability of the photocatalyst disposed on the electrode surface are the main causes of ozone gas generation.
放電セル中で生成されるオゾン生成濃度C(g/m3)は、上述した酸素原子解離能力が高いほど、式(3)で示したA(g/J)値が高くなり、放電空間で多量のオゾンガスが生産される。
The ozone generation concentration C (g / m 3 ) generated in the discharge cell increases as the oxygen atom dissociation capability described above increases, and the A (g / J) value indicated by the equation (3) increases. A large amount of ozone gas is produced.
また、放電セルでは、放電エネルギー(J)を注入することで、A(g/J)をパラメータとした式(3)に従うオゾン濃度のオゾンガスが生成されているが、生成されたオゾンガスは、同時に放電セル内で自己分解と放電ガスとの衝突による分解とがある。この放電セル内でのオゾンガスの自己分解と放電ガスとの衝突による分解との総和であるオゾン分解量は、取り出した雰囲気中での通常のオゾンガスの自己分解量よりも大きい。
In addition, in the discharge cell, ozone gas having an ozone concentration according to Equation (3) with A (g / J) as a parameter is generated by injecting discharge energy (J). There are self-decomposition in the discharge cell and decomposition by collision with the discharge gas. The amount of ozone decomposition, which is the sum of the self-decomposition of ozone gas in the discharge cell and the decomposition due to collision with the discharge gas, is larger than the amount of self-decomposition of normal ozone gas in the extracted atmosphere.
これは、電子衝突による酸素原子解離が放電空間内において、オゾン生成能力に対比して、大きい割合を占めることを意味する。つまり、放電プラズマ中の電子、イオン、放電ガスとの衝突による生成したオゾンを解離させ酸素に戻すオゾンガスの分解量、及び放電セル内での高濃度オゾン状態のオゾンが自己分解するオゾン分解量が、通常の大気中でのオゾンの分解量に比べ大きくなるため、放電プラズマ中におけるオゾンの分解量が無視できないことを示している。
This means that oxygen atom dissociation due to electron collision occupies a large proportion in the discharge space as compared to the ability to generate ozone. In other words, the amount of decomposition of ozone gas that dissociates ozone generated by collision with electrons, ions, and discharge gas in the discharge plasma and returns it to oxygen, and the amount of ozone decomposition that self-decomposes ozone in the high-concentration ozone state in the discharge cell. This indicates that the amount of ozone decomposed in the discharge plasma cannot be ignored because it is larger than the amount of ozone decomposed in normal air.
そのため、各放電セル内での生成したオゾンガスを分解する濃度Cdも、投入する総放電電力DWや総ガス流量Qに依存する要素となると考えられる。
Therefore, the concentration Cd that decomposes the generated ozone gas in each discharge cell is also considered to be a factor that depends on the total discharge power DW to be input and the total gas flow rate Q.
図15で示した従来のオゾンガス発生装置において、装置の実用環境を考慮すると、原料ガスの総ガス流量Qとして略2.4L/min以上のガス流量域を必要とし、オゾン発生器を冷却する冷却温度を5℃以上にした制約条件にすることが望ましいと想定される。なお、上記オゾン発生器を冷却する冷却温度の制約条件の上限は常温(20℃)に対し30℃程度を想定してオゾンガス発生装置が運用されている。
In the conventional ozone gas generator shown in FIG. 15, considering the practical environment of the apparatus, the total gas flow rate Q of the raw material gas requires a gas flow rate region of approximately 2.4 L / min or more, and cooling for cooling the ozone generator. It is assumed that it is desirable that the temperature be 5 ° C. or higher. In addition, the ozone gas generator is operated assuming that the upper limit of the restriction condition of the cooling temperature for cooling the ozone generator is about 30 ° C. with respect to normal temperature (20 ° C.).
上記制約条件下において、高い比電力値DW/Q(500W・min/L附近)にして取出しオゾン濃度Ctを高めても、従来のオゾンガス発生装置は、400g/m3を超える高濃度なオゾンガスを取出すことができなかった。
Even if the ozone concentration Ct is increased by increasing the specific electric power value DW / Q (near 500 W · min / L) under the above constraint conditions, the conventional ozone gas generator can produce high-concentration ozone gas exceeding 400 g / m 3. Could not be taken out.
従来のオゾンガス発生装置は、既存のオゾン用電源と既存の放電セル形状のオゾン発生器とで構成されている。
The conventional ozone gas generator is composed of an existing ozone power supply and an existing discharge cell-shaped ozone generator.
従来のオゾンガス発生装置では、原料ガスの総ガス流量Qが比較的大きい大ガス流量域条件で、総放電電力DWを高め、高い比電力値DW/Q(500W・min/L附近)に設定すると、各放電セルにおいて、生成するオゾン生成濃度Cに対し、オゾンガス発生装置内でのオゾンガスの分解量が大きいために、取出しオゾン濃度Ctが所定濃度以上に高めることができない状態になっている。
In the conventional ozone gas generator, the total discharge power DW is increased and set to a high specific power value DW / Q (near 500 W · min / L) under conditions of a large gas flow rate region where the total gas flow rate Q of the raw material gas is relatively large. In each discharge cell, the amount of ozone gas decomposed in the ozone gas generator is larger than the generated ozone generation concentration C, so that the extracted ozone concentration Ct cannot be increased to a predetermined concentration or higher.
このため、従来のオゾンガス発生装置では、取出しオゾン濃度Ctに限界があり、オゾンガス発生装置から取出せるオゾン濃度を大ガス流量域で。より高濃度なオゾンガスを取り出せることができないという問題点があった。
For this reason, the conventional ozone gas generator has a limit in the extraction ozone concentration Ct, and the ozone concentration that can be extracted from the ozone gas generator is within a large gas flow rate range. There was a problem that higher concentration ozone gas could not be taken out.
特に、図15で示す特性を有する従来のオゾンガス発生装置では、大ガス流量域の比電力値DW/Qに対するオゾン濃度特性において、400g/m3を超える高濃度(領域99a内の濃度)のオゾンガスを取り出せることができなかった。
In particular, in the conventional ozone gas generator having the characteristics shown in FIG. 15, in the ozone concentration characteristics with respect to the specific power value DW / Q in the large gas flow rate region, ozone gas having a high concentration exceeding 400 g / m 3 (concentration in the region 99a). Could not be taken out.
また、放電セルに関し、放電投入電力を上げ、オゾン生成量を増しても、却ってオゾンガスの分解量が大きくなり、取出せるオゾン濃度が高められない問題があった。また、取出しオゾン量Ytを高めるために、放電投入電力を上げ、放電電力密度を高めると、負荷印加電圧が高くなる問題点もあった。さらに、より高周波周波数の交流出力にすると、オゾン用電源が安定してオゾン発生用交流電圧を供給できない等、電源制御上における放電電力密度が制約を受けてしまう問題点があった。
Also, regarding the discharge cell, there was a problem that even if the discharge input power was increased and the ozone generation amount was increased, the ozone gas decomposition amount increased, and the concentration of ozone that could be taken out could not be increased. Further, when the discharge input power is increased and the discharge power density is increased in order to increase the extracted ozone amount Yt, there is also a problem that the load applied voltage increases. Furthermore, when the AC output has a higher frequency, there is a problem that the discharge power density in power control is restricted, such as the ozone power supply cannot be stably supplied with the ozone generating AC voltage.
本発明では、上記のような問題点を解決し、システム構成を必要最小限に抑えて、高濃度なオゾンを外部に出力することができるオゾンガス発生システムを提供することを目的とする。
An object of the present invention is to provide an ozone gas generation system capable of solving the above-described problems, minimizing the system configuration, and outputting high-concentration ozone to the outside.
この発明に係るオゾンガス発生システムは、多段に積層された複数の放電セルを有するオゾン発生器と、前記オゾン発生器にオゾン発生用交流電圧を付与するオゾン用電源とを備え、前記オゾン発生器に酸素を含んだ原料ガスが供給され、前記オゾン発生器は、前記複数の放電セルの放電空間に誘電体バリア放電を発生させ、前記放電空間に供給した原料ガスからオゾンガスを生成し、該オゾンガスを外部に出力し、前記複数の放電セルはそれぞれ、平板状の第1及び第2の電極を含み、前記第2の電極に誘電体が形成され、前記第1及び第2の電極間に前記放電空間が設けられ、前記複数の放電セルは、それぞれ前記第1の電極の放電面に設けられ、前記放電空間で生成された前記オゾンガスを取り出すためのNφ個のオゾンガス取出口と、前記第1の電極の内部に設けられ、前記Nφ個のオゾンガス取出口それぞれに繋がり、前記Nφ個のオゾンガス取出口から取り出された前記オゾンガスを集約して外部に出力するオゾンガス取出経路とを有し、前記オゾン発生器は以下の条件(a)及び条件(b)を満足することを特徴とする。条件(a)及び条件(b)は以下の通りです。条件(a) 前記複数の放電セルは、それぞれ放電面の放電面積stを分割数Nφで除算した分割面積dsoが、30cm2以上、160cm2未満の範囲に設定される、条件(b) 前記放電空間における放電ギャップ長が80μm未満に設定される。
An ozone gas generation system according to the present invention includes an ozone generator having a plurality of discharge cells stacked in multiple stages, and an ozone power source that applies an alternating voltage for ozone generation to the ozone generator. A source gas containing oxygen is supplied, and the ozone generator generates a dielectric barrier discharge in the discharge spaces of the plurality of discharge cells, generates ozone gas from the source gas supplied to the discharge spaces, and generates the ozone gas. The plurality of discharge cells each include a flat plate-like first and second electrodes, a dielectric is formed on the second electrode, and the discharge is between the first and second electrodes. A space is provided, and each of the plurality of discharge cells is provided on a discharge surface of the first electrode, and Nφ ozone gas outlets for taking out the ozone gas generated in the discharge space; An ozone gas extraction path provided inside the first electrode, connected to each of the Nφ ozone gas outlets, and collecting the ozone gas extracted from the Nφ ozone gas outlets and outputting the ozone gas to the outside; The ozone generator satisfies the following conditions (a) and (b). Conditions (a) and (b) are as follows. Condition (a) In the plurality of discharge cells, the divided area dso obtained by dividing the discharge area st of the discharge surface by the division number Nφ is set in a range of 30 cm 2 or more and less than 160 cm 2. Condition (b) The discharge The discharge gap length in the space is set to less than 80 μm.
請求項1記載の本願発明のオゾンガス発生システムは、上述した条件(a)及び条件(b)を満足することにより、Nφ個の仮想放電セルそれぞれの放電面の放電面積が30cm2以上、160cm2未満の範囲に設定される状態を実現することができる。
Ozone gas generating system of the present invention according to claim 1, by satisfying the above conditions (a) and the condition (b), the discharge area of the discharge surface of each Nφ number of virtual discharge cells 30 cm 2 or more, 160cm 2 It is possible to realize a state set in a range of less than.
したがって、請求項1記載の本願発明のオゾンガス発生システムは、上述した条件(a)及び条件(b)を満足させ、かつ、各放電セルの放電面に供給する原料ガス流量と放電電力とを可能な範囲で最大に設定して、取出しオゾン量を最大限に高めることにより、高濃度なオゾンガスを取り出せる条件を作りだせる。
Therefore, the ozone gas generation system of the present invention according to claim 1 can satisfy the conditions (a) and (b) described above and can supply the raw material gas flow rate and the discharge power supplied to the discharge surface of each discharge cell. By setting the maximum value within a certain range and maximizing the amount of extracted ozone, it is possible to create conditions for extracting high-concentration ozone gas.
さらに、請求項1記載の本願発明のオゾンガス発生システムは、条件(a)を満足すればよいため、複数の放電セルそれぞれの放電面積stを分割面積dsoのNφ倍に設定することができる。
Furthermore, since the ozone gas generation system of the present invention according to claim 1 only needs to satisfy the condition (a), the discharge area st of each of the plurality of discharge cells can be set to Nφ times the divided area dso.
その結果、請求項1記載の本願発明は、多段に積層された複数の放電セルにおける積層数を少なくして、オゾン発生器300内に設ける、複数の放電セルに要する部品点数を削減することができる。
As a result, the present invention according to claim 1 can reduce the number of parts required for the plurality of discharge cells provided in the ozone generator 300 by reducing the number of stacks in the plurality of discharge cells stacked in multiple stages. it can.
この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
<実施の形態1>
(原理及び概要)
図1はこの発明の実施の形態1であるオゾンガス発生システムの構成を示す説明図である。同図に示すように、実施の形態1のオゾンガス発生システム1000は、平板電極(1,3a,3b)に誘電体を介し配置した放電セル(S1及びS2の組合せ)を有するオゾン発生器200と、オゾン発生器200にオゾン発生用交流電圧を付与するオゾン用電源100とを備えている。 <Embodiment 1>
(Principle and outline)
FIG. 1 is an explanatory diagram showing a configuration of an ozone gas generation system according to Embodiment 1 of the present invention. As shown in the figure, the ozonegas generation system 1000 according to the first embodiment includes an ozone generator 200 having discharge cells (a combination of S1 and S2) disposed on a plate electrode (1, 3a, 3b) via a dielectric. The ozone generator 200 includes an ozone power source 100 that applies an alternating voltage for ozone generation.
(原理及び概要)
図1はこの発明の実施の形態1であるオゾンガス発生システムの構成を示す説明図である。同図に示すように、実施の形態1のオゾンガス発生システム1000は、平板電極(1,3a,3b)に誘電体を介し配置した放電セル(S1及びS2の組合せ)を有するオゾン発生器200と、オゾン発生器200にオゾン発生用交流電圧を付与するオゾン用電源100とを備えている。 <Embodiment 1>
(Principle and outline)
FIG. 1 is an explanatory diagram showing a configuration of an ozone gas generation system according to Embodiment 1 of the present invention. As shown in the figure, the ozone
そして、オゾン発生器200内の放電セル(S1,S2)の放電空間に誘電体バリア放電を発生させ、この放電空間に供給した酸素ガスを含む原料ガスからオゾンガスを生成し、オゾンガスを外部に取り出している。
Then, a dielectric barrier discharge is generated in the discharge space of the discharge cells (S1, S2) in the ozone generator 200, ozone gas is generated from the source gas containing oxygen gas supplied to the discharge space, and the ozone gas is taken out to the outside. ing.
オゾンガス発生システム1000において、1単位の放電セル当たり1つの放電空間(1対の放電面によって形成される空間)と1つのオゾンガス取り出し口を有するように構成されている。以下、放電空間を構成する1対の放電面を「1単位の放電面」あるいは「1放電面」と称する場合がある。また、1単位の放電セルに供給する放電電力dw(W)、放電面積so(cm2)、原料ガス流量qo(L/min)等は、1単位の放電セル当たりのオゾンガス発生に関するパラメータ記号として小文字で示す。
The ozone gas generation system 1000 is configured to have one discharge space (a space formed by a pair of discharge surfaces) and one ozone gas outlet per unit discharge cell. Hereinafter, a pair of discharge surfaces constituting the discharge space may be referred to as “one unit discharge surface” or “one discharge surface”. The discharge power dw (W), discharge area so (cm 2 ), raw material gas flow rate qo (L / min), etc., supplied to one unit discharge cell are parameter symbols relating to ozone gas generation per unit discharge cell. Shown in lowercase.
一方、オゾン発生器200内の複数の放電セル全体に供給する総放電電力DW(W)、総放電面積S(cm2)、原料ガスの総ガス流量Q(L/min)等は、オゾン発生器200のパラメータ記号として大文字表記で示す。なお、1単位の放電セルやオゾン発生器の違いによって、パラメータ値が変化しない記号については、原則として大文字表記で説明する。
On the other hand, the total discharge power DW (W), the total discharge area S (cm 2 ), the total gas flow rate Q (L / min) of the raw material gas, etc. supplied to all the plurality of discharge cells in the ozone generator 200 are the ozone generation. The parameter symbol of the device 200 is shown in capital letters. In principle, symbols whose parameter values do not change due to differences in one unit discharge cell or ozone generator will be described in capital letters.
オゾン発生器200の取出しオゾン濃度Ctを最大にする条件を求めるべく、1単位の放電セルにおいて、放電空間の放電形状に関わる放電面積soと、1単位の放電空間(放電面)に投入できる放電電力密度Jと、1単位の放電空間に流す原料ガス流量qoとの最適化を検討する。
In order to obtain the conditions for maximizing the ozone concentration Ct taken out from the ozone generator 200, in one unit of discharge cell, the discharge area so related to the discharge shape of the discharge space and the discharge that can be charged into one unit of discharge space (discharge surface) The optimization of the power density J and the raw material gas flow rate qo flowing in the discharge space of 1 unit will be examined.
ちなみに、オゾンガス発生システム1000での放電セルの放電空間の放電ギャップ長dの範囲は数十μm以上から数百μm未満のオゾン発生器に適用する。特に、放電ギャップ長dは20μm~100μmの範囲において、その効果がより高められるからである。
Incidentally, the range of the discharge gap length d of the discharge space of the discharge cell in the ozone gas generation system 1000 is applied to an ozone generator of several tens μm to less than several hundred μm. In particular, the effect is further enhanced when the discharge gap length d is in the range of 20 μm to 100 μm.
放電面積so(cm2)を所定面積範囲内に設定し、適用する放電ギャップ長dの範囲に設定したオゾン発生器おいて、特に、より高濃度のオゾンガスを取り出せる条件としては、1単位の放電セル内に流れる平均ガス流速vo/dを略(1.6/d)cm/s未満の範囲内になるようにする。
In the ozone generator in which the discharge area so (cm 2 ) is set within a predetermined area range and the discharge gap length d is set within the range, the discharge condition of one unit is particularly preferable as a condition for extracting a higher concentration of ozone gas. The average gas flow velocity vo / d flowing in the cell is set to be within a range of less than about (1.6 / d) cm / s.
さらに、1単位の放電セル(1放電面)に供給する原料ガス流量qoを略0.25L/min未満にしている。このため、オゾンガス発生システム1000の比電力値dw/qoを高く設定しても、1単位の放電セル内でのオゾンガス生成量y(=C・qo)に対し、オゾンガスの衝突によるオゾン分解と生成したオゾン自身の自己分解とを合わせた総オゾン分解量ydを低く抑えることができ、高濃度なオゾンガスを1単位の放電セルから取出せることができる。
Furthermore, the raw material gas flow rate qo supplied to one unit discharge cell (one discharge surface) is set to less than about 0.25 L / min. For this reason, even if the specific power value dw / qo of the ozone gas generation system 1000 is set high, the ozone gas generation amount y (= C · qo) in one unit discharge cell is decomposed and generated by ozone gas collision. The total ozone decomposition amount yd combined with the self-decomposition of the ozone itself can be kept low, and a high-concentration ozone gas can be taken out from one unit discharge cell.
また、1単位の放電セルに供給する放電電力密度が2.5W/cm2~6W/cm2範囲内となるように、放電電力dw(W)とすることで、1単位の放電セルにおけるオゾンガス生成量y(=C・qo)に対し、オゾンガスの衝突によるオゾン分解と生成したオゾン自身の自己分解とを合わせた総オゾン分解量ydを低く抑えることができる。その結果、放電セルから効率良く、オゾンガスの取出しオゾン量ytを最大限に溜めることができる。
Further, by setting the discharge power dw (W) so that the discharge power density supplied to one unit discharge cell is in the range of 2.5 W / cm 2 to 6 W / cm 2 , the ozone gas in one unit discharge cell With respect to the generation amount y (= C · qo), the total ozone decomposition amount yd, which is a combination of the ozone decomposition due to the collision of ozone gas and the self-decomposition of the generated ozone itself, can be kept low. As a result, it is possible to efficiently extract the ozone gas from the discharge cell and store the ozone amount yt to the maximum.
さらに、オゾンガス発生システム1000は、各々が1放電面(1つの放電空間)を有する放電セルS1,S2をn段積層してオゾン発生器200を構成している。したがって、放電面(放電空間)は2n個になり、オゾンガス発生システム1000は、2n倍の総放電電力DW(=2・n・dw)[W]を供給するオゾン用電源100と2n倍の総放電面積S(=2・n・so)[cm2]と2n倍の原料ガス流量Q(=2・n・qo)[L/min]を達成している。このため、オゾンガス発生システム1000は、高濃度な取出しオゾン濃度Ctをオゾン発生器200から得るとともに、供給するガス流量Qに対し、オゾンガスの取出しオゾン量Ytを最大限に高めることができる。
Further, the ozone gas generation system 1000 constitutes an ozone generator 200 by stacking n stages of discharge cells S1, S2 each having one discharge surface (one discharge space). Accordingly, the discharge surface (discharge space) is 2n, and the ozone gas generation system 1000 includes the ozone power supply 100 that supplies 2n times the total discharge power DW (= 2 · n · dw) [W] and the 2n times total power. The discharge area S (= 2 · n · so) [cm 2 ] and the source gas flow rate Q (= 2 · n · qo) [L / min] that is 2n times are achieved. For this reason, the ozone gas generation system 1000 can obtain a high concentration of extracted ozone concentration Ct from the ozone generator 200, and can maximize the extracted ozone amount Yt of the ozone gas with respect to the gas flow rate Q to be supplied.
また、オゾン用電源100から出力する高周波・高電圧のオゾン発生用交流電圧の出力周波数を20kHz~50kHz範囲内で、従来の出力周波数である20kHz以下に比べ高めている。このため、オゾン用電源100は、オゾン発生器200に印加するオゾン発生用交流電圧のピーク電圧値を7kVp以下にして、総放電電力DWをオゾン発生器200に供給することができる。
Also, the output frequency of the high-frequency / high-voltage ozone generating AC voltage output from the ozone power source 100 is increased within the range of 20 kHz to 50 kHz compared to the conventional output frequency of 20 kHz or less. For this reason, the ozone power supply 100 can supply the total discharge power DW to the ozone generator 200 by setting the peak voltage value of the alternating voltage for ozone generation applied to the ozone generator 200 to 7 kVp or less.
また、放電セル(基本セルS1,S2)の放電面を平面視して円状で構成し、放電面の直径(外径)を小さくすることで、放電セルの放電空間を原料ガスが通過する時間であるガス滞在時間To[ms]を短縮させている。
Further, the discharge surface of the discharge cells (basic cells S1, S2) is formed in a circular shape in plan view, and the diameter (outer diameter) of the discharge surface is reduced so that the source gas passes through the discharge space of the discharge cell. The gas residence time To [ms], which is the time, is shortened.
さらに、放電セルに流れる平均ガス流速vo/dを略0.035/d[cm/s]未満に抑えることで、放電セルで生成するオゾン生成量に対する供給するガス量も抑えられ、放電セル内において高いオゾン生成濃度Cを確保して、かつ、オゾンガスの衝突によるオゾン分解と生成したオゾン自身の自己分解とを合わせた分解量Ydを低く抑えている。その結果、オゾン発生器200から取出せる取出しオゾン濃度Ctを高めることができる。
Furthermore, by suppressing the average gas flow velocity vo / d flowing through the discharge cell to less than about 0.035 / d [cm / s], the amount of gas supplied relative to the amount of ozone generated in the discharge cell can be suppressed, In FIG. 5, a high ozone generation concentration C is ensured, and the decomposition amount Yd, which combines ozone decomposition due to collision of ozone gas and self-decomposition of the generated ozone itself, is kept low. As a result, the extraction ozone concentration Ct that can be extracted from the ozone generator 200 can be increased.
さらに、オゾン用電源100を構成する高周波・高電圧トランスとして機能する並列共振用トランス25の内部励磁インダクタンス値Ltと多段積層された複数の放電セルで構成したオゾン発生器200自身の静電容量値C0とにより、並列共振できる動作周波数域に合わせた高周波を出力制御するオゾン用電源100を構成している。
Furthermore, the internal excitation inductance value Lt of the parallel resonance transformer 25 that functions as a high-frequency / high-voltage transformer that constitutes the ozone power supply 100 and the capacitance value of the ozone generator 200 that is composed of a plurality of multi-layered discharge cells. C0 constitutes an ozone power supply 100 that outputs and controls a high frequency matched to an operating frequency range in which parallel resonance is possible.
その結果、オゾン用電源100は、昇圧用トランスである並列共振用トランス25の出力部において並列共振回路を形成したオゾン用電源となり、より安定化したオゾン発生用交流電圧をオゾン発生器200に供給することができる。
As a result, the ozone power source 100 becomes an ozone power source in which a parallel resonant circuit is formed at the output of the parallel resonant transformer 25, which is a step-up transformer, and supplies a more stabilized ozone generating AC voltage to the ozone generator 200. can do.
(全体構成)
この発明による実施の形態1であるオゾンガス発生システムの構成及び特徴を図1~図6を参照して説明する。 (overall structure)
The configuration and characteristics of the ozone gas generation system according to Embodiment 1 of the present invention will be described with reference to FIGS.
この発明による実施の形態1であるオゾンガス発生システムの構成及び特徴を図1~図6を参照して説明する。 (overall structure)
The configuration and characteristics of the ozone gas generation system according to Embodiment 1 of the present invention will be described with reference to FIGS.
図1はこの発明の実施の形態1であるオゾンガス発生システム1000の構成を示す説明図である。図1に示すように、実施の形態1のオゾンガス発生システム1000は、オゾンガスを生成するオゾン発生器200とオゾン発生器200に総放電電力DW用のオゾン発生用交流電圧を付与するオゾン用電源100とを主要構成部として含んでいる。
FIG. 1 is an explanatory diagram showing a configuration of an ozone gas generation system 1000 according to Embodiment 1 of the present invention. As shown in FIG. 1, an ozone gas generation system 1000 according to Embodiment 1 includes an ozone generator 200 that generates ozone gas and an ozone power source 100 that applies an ozone generation AC voltage for total discharge power DW to the ozone generator 200. Is included as a main component.
実施の形態1のオゾンガス発生システム1000は、半導体製造装置や洗浄装置等の他の装置と共に併設されることが多い。特に、高純度のオゾンガスが求められ、かつ、処理速度を高めることや処理能力をより高めることが要求されている。したがって、オゾンガス発生システム1000は、既存の装置で得られるオゾン濃度より高濃度なオゾンガスが取出せることや供給するガス流量Qに対し、取出しオゾン量Ytが大きくなるシステムが望ましい。
The ozone gas generation system 1000 according to Embodiment 1 is often provided together with other devices such as a semiconductor manufacturing device and a cleaning device. In particular, high-purity ozone gas is required, and it is required to increase the processing speed and the processing capacity. Therefore, the ozone gas generation system 1000 is desirably a system that can extract ozone gas having a higher concentration than the ozone concentration obtained by existing apparatuses and that the extracted ozone amount Yt is larger than the supplied gas flow rate Q.
図2は図1で示したオゾン発生器200の放電セルにおける放電面の構造を示す説明図である。図1及び図2において、オゾンガス発生システム1000は、オゾンガスを発生させるオゾン発生器200と、このオゾン発生器200に総放電電力DW用のオゾン発生用交流電圧を供給するオゾン用電源100から構成されている。
FIG. 2 is an explanatory view showing the structure of the discharge surface in the discharge cell of the ozone generator 200 shown in FIG. 1 and 2, an ozone gas generation system 1000 includes an ozone generator 200 that generates ozone gas, and an ozone power source 100 that supplies the ozone generator 200 with an ozone generation AC voltage for the total discharge power DW. ing.
オゾン用電源100は、AC-DCコンバータ回路部21、インバータ回路部22、限流リアクトル23、電源制御回路24及び並列共振用トランス25を主要構成として含んでいる。
The ozone power supply 100 includes an AC-DC converter circuit unit 21, an inverter circuit unit 22, a current limiting reactor 23, a power supply control circuit 24, and a parallel resonance transformer 25 as main components.
インバータ部であるインバータ回路部22は、AC-DCコンバータ回路部21を介して商用電源から入力された電力(電圧)を受け、この電圧を必要な高周波交流に変換して得られる高周波交流電圧を、限流リアクトル23を介して並列共振用トランス25に出力する。なお、インバータ回路部22による高周波交流電圧の出力周波数fを20kHz~50kHz範囲内としている。すなわち、オゾン用電源100の動作周波数fは20kHz~50kHzの範囲内となる。
The inverter circuit unit 22, which is an inverter unit, receives power (voltage) input from a commercial power supply via the AC-DC converter circuit unit 21, and converts a high-frequency AC voltage obtained by converting this voltage into a necessary high-frequency AC voltage. The current is output to the parallel resonance transformer 25 via the current limiting reactor 23. Note that the output frequency f of the high-frequency AC voltage by the inverter circuit unit 22 is set in the range of 20 kHz to 50 kHz. That is, the operating frequency f of the ozone power supply 100 is in the range of 20 kHz to 50 kHz.
なお、本願明細書において、「AA~BB」で示す範囲は、原則、AA以上BB未満を示す。
In the specification of the present application, the range indicated by “AA to BB” basically indicates AA or more and less than BB.
昇圧用トランスである並列共振用トランス25は、上記高周波交流電圧を高電圧に昇圧してオゾン発生用交流電圧を得て、このオゾン発生用交流電圧をオゾン発生器200の高電圧端子HV及び低電圧端子LV間に供給している。
The parallel resonance transformer 25, which is a step-up transformer, boosts the high-frequency AC voltage to a high voltage to obtain an ozone generation AC voltage. The ozone generation AC voltage is supplied to the high voltage terminal HV and the low voltage of the ozone generator 200. The voltage is supplied between the voltage terminals LV.
オゾン発生用交流電圧によってオゾン発生器200に供給する総放電電力DWが規定される。さらに、並列共振用トランス25は、後に詳述するように、負荷の力率を改善する措置がなされている。
The total discharge power DW supplied to the ozone generator 200 is defined by the alternating voltage for ozone generation. Further, as will be described in detail later, the parallel resonance transformer 25 is provided with a measure for improving the power factor of the load.
高電圧端子HVは、オゾン発生器200内の各放電セルの高圧電極3a、及び3bに電気的に接続されている。低電圧端子LVは、オゾン発生器200内の接地冷却電極1に電気的に接続されている。
The high voltage terminal HV is electrically connected to the high voltage electrodes 3a and 3b of each discharge cell in the ozone generator 200. The low voltage terminal LV is electrically connected to the ground cooling electrode 1 in the ozone generator 200.
電源制御回路24によってAC-DCコンバータ回路部21及び高周波インバータを含むインバータ回路部22の電流/電圧を制御することにより、オゾン発生器200に供給するオゾン発生用交流電圧の電圧値を制御することができる。
By controlling the current / voltage of the AC-DC converter circuit unit 21 and the inverter circuit unit 22 including the high-frequency inverter by the power control circuit 24, the voltage value of the ozone generating AC voltage supplied to the ozone generator 200 is controlled. Can do.
オゾン発生器200は、各々が基本放電面を有する複数の基本セルS1,S2が積層されて構成されている。1対の基本セルS1及びS2を基本構成としている。以下、この基本構成を「基本放電セル組」と称する。基本放電セル組は、接地冷却電極1及び誘電体電極2a、2b、高圧電極3a、3b、及び絶縁板4a、4bから構成される。
The ozone generator 200 is configured by laminating a plurality of basic cells S1, S2 each having a basic discharge surface. A pair of basic cells S1 and S2 has a basic configuration. Hereinafter, this basic configuration is referred to as a “basic discharge cell set”. The basic discharge cell set includes a ground cooling electrode 1, dielectric electrodes 2a and 2b, high voltage electrodes 3a and 3b, and insulating plates 4a and 4b.
基本セルS1は、下方から上方に向かう、接地冷却電極1、誘電体電極2a、高圧電極3a、絶縁板4aの積層構造を含んで構成される。
The basic cell S1 includes a laminated structure of a ground cooling electrode 1, a dielectric electrode 2a, a high voltage electrode 3a, and an insulating plate 4a, which are directed from the bottom to the top.
基本セルS2は、上方から下方に向かう、接地冷却電極1、誘電体電極2b、高圧電極3b、絶縁板4bの積層構造を含んで構成される。基本セルS1,S2間で接地冷却電極1は共用される。
The basic cell S2 includes a laminated structure of a ground cooling electrode 1, a dielectric electrode 2b, a high voltage electrode 3b, and an insulating plate 4b, which are directed from the top to the bottom. The ground cooling electrode 1 is shared between the basic cells S1 and S2.
そして、基本セルS1の上方及び基本セルS2の下方に低圧冷却板5が設けられる。このような構成の1対の基本セルS1,S2からなる基本放電セル組が多段に積層される。なお、1単位の基本セルは、それぞれ放電空間を形成するための1対の放電面を有する。すなわち、基本セルS1及びS2からなる基本放電セル組を6段積層した場合、1単位の基本セルが12個積層されたことになる。
And the low-pressure cooling plate 5 is provided above the basic cell S1 and below the basic cell S2. A basic discharge cell set composed of a pair of basic cells S1, S2 having such a configuration is stacked in multiple stages. Each unit basic cell has a pair of discharge surfaces for forming a discharge space. That is, when six basic discharge cell groups each including the basic cells S1 and S2 are stacked, twelve basic cells of one unit are stacked.
基本セルS1及びS2の構造の詳細については後述する。所定数の基本放電セル組が基台10上に図1の上下方向に積層されて、オゾン発生器200の主要部となっている。
Details of the structure of the basic cells S1 and S2 will be described later. A predetermined number of basic discharge cell sets are stacked on the base 10 in the vertical direction of FIG. 1 and constitute the main part of the ozone generator 200.
積層された複数の放電セル(複数組の基本放電セル組)は、最上部の基本セル(基本セルS1)上に重ねて設けられた積層押え板7と、積層押え板7及び各基本セルS1,S2を貫通する積層セル押え棒8によって、積層セル押えばね6を介して所定の締め付け力で基台10に締着されている。
A plurality of stacked discharge cells (a plurality of basic discharge cell sets) includes a stacked presser plate 7 provided on the uppermost basic cell (basic cell S1), the stacked presser plate 7 and each basic cell S1. , S2 is clamped to the base 10 with a predetermined clamping force via the stacked cell presser spring 6 by the stacked cell presser bar 8.
複数の放電セル全体が発生器カバー11で覆われている。発生器カバー11は一面を削除した概略の箱状を成し開口周縁部に設けられたフランジをカバー締付けボルト(図示せず)で基台10に締着されている。発生器カバー11の開口周縁部と基台10との間には、Oリング(図示せず)が挟まれており発生器カバー11と基台10とが形成する内部空間は密閉構造とされている。
A plurality of discharge cells are entirely covered with the generator cover 11. The generator cover 11 has a general box shape with one side removed, and a flange provided on the peripheral edge of the opening is fastened to the base 10 with a cover fastening bolt (not shown). An O-ring (not shown) is sandwiched between the peripheral edge of the opening of the generator cover 11 and the base 10, and the internal space formed by the generator cover 11 and the base 10 has a sealed structure. Yes.
基台10には、この内部空間に、高純度酸素ガス等の原料ガスを供給する原料ガス入口31が設けられている。原料ガス入口31から供給された原料ガスGINは、発生器カバー11内の内部空間に充満され、複数の放電セルの放電空間の間隙に入り込む。
The base 10 is provided with a raw material gas inlet 31 for supplying a raw material gas such as high-purity oxygen gas in this internal space. The raw material gas G IN supplied from the source gas inlet 31 is filled in the internal space within the generator cover 11, it enters the gap between the discharge space of the plurality of discharge cells.
基台10には、放電空間にて生成されたオゾンガスをオゾン発生器200からマニホールドブロック9を介して外部に出すオゾンガス出口32と放電セルを冷却する冷却水が出入りする冷却水出入口(図示せず)が設けられている。
The base 10 has an ozone gas outlet 32 for supplying ozone gas generated in the discharge space to the outside from the ozone generator 200 through the manifold block 9 and a cooling water inlet / outlet (not shown) through which cooling water for cooling the discharge cells enters and exits. ) Is provided.
つまり、オゾンガスGOUTを外部に出力するためのオゾンガス出口32は、基台10に設けられたオゾンガス通路の端部開口であり、冷却水出入口は基台10内に設けられた冷却水通路に繋がる(図示省略)。なお、基台10内に設けられた冷却水通路とオゾンガス通路とは互いに独立した通路で形成している。
That is, the ozone gas outlet 32 for outputting the ozone gas G OUT to the outside is an end opening of the ozone gas passage provided in the base 10, and the cooling water inlet / outlet is connected to the cooling water passage provided in the base 10. (Not shown). The cooling water passage and the ozone gas passage provided in the base 10 are formed as independent passages.
このような構成のオゾンガス発生システム1000において、取出しオゾン量Ytをより高めるために、オゾン発生器200内の複数の放電セルの放電面(総放電面積S)に投入する放電電力DW対する比である放電電力密度J(=DW/S)を規定する。さらに、取出しオゾン濃度Ctを高められる条件に設定するために、1単位の放電セル(基本セルS1あるいはS2)に供給する平均ガス流速vo/dを規定するように、1単位の基本セルの放電面の径を小さくする。このように小さくすることで、1放電セル(基本セル)におけるオゾン分解量ydを低く抑え、高濃度なオゾンガスを取り出せるようにしている。また、基本放電セル組(基本セルS1,S2の組合せ)が積層数n(≧2)で積層された多段積層セル構造で供給ガスを分散させることで、原料ガス流量qoの2n倍の原料ガスの総ガス流量Q(=2・n・qo)が供給できるようにしている。
In the ozone gas generation system 1000 having such a configuration, in order to further increase the amount of extracted ozone Yt, the ratio is a ratio to the discharge power DW input to the discharge surfaces (total discharge area S) of the plurality of discharge cells in the ozone generator 200. Discharge power density J (= DW / S) is defined. Further, in order to set the condition that the extracted ozone concentration Ct can be increased, the discharge of one unit basic cell is defined so as to define the average gas flow velocity vo / d supplied to one unit discharge cell (basic cell S1 or S2). Reduce the surface diameter. By making it small in this way, the amount of ozone decomposition yd in one discharge cell (basic cell) is kept low, and high-concentration ozone gas can be extracted. In addition, the supply gas is dispersed in a multistage stacked cell structure in which the basic discharge cell group (combination of the basic cells S1 and S2) is stacked in the stacking number n (≧ 2), so that the source gas is 2n times the source gas flow rate qo. The total gas flow rate Q (= 2 · n · qo) can be supplied.
また、オゾン発生器200内の各放電セルに投入できる放電電力密度J(=DW/S)を上昇させた場合、所望の総放電電力DWを供給すると、負荷印加電圧Vdが高くなる。この負荷印加電圧Vdを低く抑制して、所望の総放電電力DWを供給して、取出しオゾン量Ytを最大限に確保する目的で、オゾン用電源100の出力周波数を20~50kHzまで高めている。なお、負荷印加電圧Vdはオゾン用電源100から出力するオゾン発生用交流電圧の実効値を示している。
Further, when the discharge power density J (= DW / S) that can be supplied to each discharge cell in the ozone generator 200 is increased, the load applied voltage Vd increases when the desired total discharge power DW is supplied. The output frequency of the ozone power supply 100 is increased to 20 to 50 kHz for the purpose of suppressing the load applied voltage Vd low and supplying the desired total discharge power DW to secure the maximum amount of extracted ozone Yt. . Note that the load application voltage Vd indicates the effective value of the ozone generation AC voltage output from the ozone power supply 100.
さらに、オゾン用電源100内において、並列共振用トランス25の内部励磁インダクタンス値Ltと多段に積層された複数の放電セルを含んで構成したオゾン発生器200自身の静電容量値C0とにより、並列共振できる出力周波数の高周波交流電圧をインバータ回路部22から出力させている。
Further, in the ozone power source 100, the parallel excitation transformer L25 has an internal excitation inductance value Lt and a capacitance value C0 of the ozone generator 200 itself including a plurality of discharge cells stacked in multiple stages. A high frequency AC voltage having an output frequency capable of resonating is output from the inverter circuit unit 22.
具体的には、オゾン用電源100は、以下の式(5)を満足する並列共振周波数fcの近傍に動作周波数fを設定している。
Specifically, the ozone power source 100 sets the operating frequency f in the vicinity of the parallel resonance frequency fc that satisfies the following equation (5).
fc=1/(2π・(Lt・C0)0.5)…(5)
その結果、オゾン用電源100は、並列共振用トランス25の出力側に並列共振回路を形成したオゾン用電源となり、より安定化したオゾン発生用交流電圧をオゾン発生器200に供給できる。 fc = 1 / (2π · (Lt · C0) 0.5 ) (5)
As a result, theozone power source 100 becomes an ozone power source in which a parallel resonance circuit is formed on the output side of the parallel resonance transformer 25, and a more stabilized ozone generating AC voltage can be supplied to the ozone generator 200.
その結果、オゾン用電源100は、並列共振用トランス25の出力側に並列共振回路を形成したオゾン用電源となり、より安定化したオゾン発生用交流電圧をオゾン発生器200に供給できる。 fc = 1 / (2π · (Lt · C0) 0.5 ) (5)
As a result, the
図1及び図2に示すように、平面視して接地冷却電極1の周辺端部と一部重複して、複数の放電セル(S1,S2)の積層方向に延びるマニホールドブロック9を有している。
As shown in FIGS. 1 and 2, a manifold block 9 extending in the stacking direction of the plurality of discharge cells (S 1, S 2) partially overlaps with the peripheral end of the ground cooling electrode 1 in plan view. Yes.
接地冷却電極1は、平面視して円状の上面及び下面を放電面として有している。すなわち、接地冷却電極1の上面が基本セルS1の放電面となり、接地冷却電極1の下面が基本セルS2の放電面となる。このように、基本セルS1は接地冷却電極1の上面と、誘電体電極2aの下面とを1対の放電面として、1対の放電面間に放電空間を形成している。同様に、基本セルS2は接地冷却電極1の下面と誘電体電極2bの上面とを1対の放電面として、1対の放電面間に放電空間を形成している。これら2つの放電空間に発生したオゾンガスを取り出すための開口部15を設けている。また、基本放電セルS1及びS2の両面を冷却するために、接地冷却電極1の内部に冷却水経路(図示せず)を有している。
The ground cooling electrode 1 has a circular upper surface and lower surface as a discharge surface in plan view. That is, the upper surface of the ground cooling electrode 1 becomes the discharge surface of the basic cell S1, and the lower surface of the ground cooling electrode 1 becomes the discharge surface of the basic cell S2. Thus, the basic cell S1 forms a discharge space between a pair of discharge surfaces, with the upper surface of the ground cooling electrode 1 and the lower surface of the dielectric electrode 2a serving as a pair of discharge surfaces. Similarly, the basic cell S2 forms a discharge space between a pair of discharge surfaces, with the lower surface of the ground cooling electrode 1 and the upper surface of the dielectric electrode 2b as a pair of discharge surfaces. An opening 15 is provided for extracting ozone gas generated in these two discharge spaces. Further, a cooling water path (not shown) is provided inside the ground cooling electrode 1 in order to cool both surfaces of the basic discharge cells S1 and S2.
開口部15は接地冷却電極1の内部に設けられた出力経路17を介してマニホールドブロック9のオゾンガス出力経路92に繋がっている。一方、マニホールドブロック9に設けられた冷却水出力経路91及び冷却水入力経路93は、接地冷却電極1の内部に設けられた上記冷却水経路と接続されている。
The opening 15 is connected to an ozone gas output path 92 of the manifold block 9 via an output path 17 provided inside the ground cooling electrode 1. On the other hand, the cooling water output path 91 and the cooling water input path 93 provided in the manifold block 9 are connected to the cooling water path provided in the ground cooling electrode 1.
このように、基台10に設けられた冷却水経路と、マニホールドブロック9に設けられた冷却水出力経路91及び冷却水入力経路93と、接地冷却電極1に設けられた冷却水経路とを含んで、オゾン発生器200の複数の放電セルを冷却する冷却機構が構成される。
Thus, the cooling water path provided in the base 10, the cooling water output path 91 and the cooling water input path 93 provided in the manifold block 9, and the cooling water path provided in the ground cooling electrode 1 are included. Thus, a cooling mechanism for cooling the plurality of discharge cells of the ozone generator 200 is configured.
また、接地冷却電極1の上面及び下面それぞれ上に、放電ギャップ長d(mm)を構成するための放電スペーサ13が複数個設けられ、複数の放電スペーサ13を介して誘電体電極2a及び2b並びに高圧電極3a及び3bを重ね合わせる。その結果、接地冷却電極1,高圧電極3a(誘電体電極2a)間、及び、接地冷却電極1,高圧電極3b(誘電体電極2b)間それぞれに放電ギャップ長dの放電空間を形成することができる。
A plurality of discharge spacers 13 for forming a discharge gap length d (mm) are provided on each of the upper surface and the lower surface of the ground cooling electrode 1, and the dielectric electrodes 2a and 2b, and The high voltage electrodes 3a and 3b are overlapped. As a result, discharge spaces having a discharge gap length d can be formed between the ground cooling electrode 1 and the high voltage electrode 3a (dielectric electrode 2a) and between the ground cooling electrode 1 and the high voltage electrode 3b (dielectric electrode 2b). it can.
さらに、接地冷却電極1の上面及び下面には、1つのオゾン生成法として、オゾンを生成するための光触媒材(図示せず)が塗布されたオゾン発生器構成としている。
Furthermore, the upper and lower surfaces of the ground cooling electrode 1 have an ozone generator configuration in which a photocatalyst material (not shown) for generating ozone is applied as one ozone generation method.
接地冷却電極1の外周部から原料ガスGINが供給される。この際、積層数nの基本放電セル組に分散された原料ガス流量qo(Q/n)が各放電セル(基本セルS1あるいは基本セルS2)に供給される。そして、接地冷却電極1と高圧電極3a、3bとの間にオゾン発生用交流電圧が印加されることにより、各放電セルの放電面全面に誘電体バリア放電が形成される。したがって、放電空間内において、誘電体バリア放電の光エネルギーと光触媒の活性化により、放電空間に供給した原料ガスに含まれる酸素ガスの酸素原子解離が促進される。
The raw material gas GIN is supplied from the outer periphery of the ground cooling electrode 1. At this time, the raw material gas flow rate qo (Q / n) dispersed in the number n of basic discharge cell groups is supplied to each discharge cell (basic cell S1 or basic cell S2). A dielectric barrier discharge is formed on the entire discharge surface of each discharge cell by applying an ozone generating AC voltage between the ground cooling electrode 1 and the high voltage electrodes 3a, 3b. Therefore, in the discharge space, the oxygen energy dissociation of the oxygen gas contained in the source gas supplied to the discharge space is promoted by the activation of the light energy of the dielectric barrier discharge and the activation of the photocatalyst.
その結果、オゾン発生器200は、誘電体バリア放電の特徴である、間欠放電の休止期間で生成した酸素原子と酸素ガスとの三体衝突化学反応が促進され、各放電セルの放電空間において、高効率のオゾン生成能力を発揮することができる。つまり、オゾン発生器200は、複数の放電セルの総放電面積Sと比電力値DW/Qとに比例した濃度のオゾンガスを生成することができる。
As a result, the ozone generator 200 promotes the three-body collision chemical reaction between oxygen atoms and oxygen gas generated in the pause period of intermittent discharge, which is a feature of dielectric barrier discharge, and in the discharge space of each discharge cell, Highly efficient ozone generation ability can be demonstrated. That is, the ozone generator 200 can generate ozone gas having a concentration proportional to the total discharge area S of the plurality of discharge cells and the specific power value DW / Q.
接地冷却電極1の外周から原料ガスGINが供給されているため、各放電セルの放電空間で生成したオゾンガスは、ガスの流れに沿って、接地冷却電極1の中央部の開口部15に入り、接地冷却電極1内に設けたオゾン通路である出力経路17を経由して出力オゾンガスGOUTとして取り出される。
Since the source gas GIN is supplied from the outer periphery of the ground cooling electrode 1, the ozone gas generated in the discharge space of each discharge cell enters the opening 15 at the center of the ground cooling electrode 1 along the gas flow. Then, it is taken out as an output ozone gas G OUT via an output path 17 which is an ozone passage provided in the ground cooling electrode 1.
オゾン発生器200内において各放電セルにより生成されたオゾンガスが集められ、マニホールドブロック9のオゾンガス出力経路92を介し、最終的にオゾンガス出口32から所定濃度のオゾンガスが外部に取出される。
Ozone gas generated by each discharge cell in the ozone generator 200 is collected, and finally ozone gas of a predetermined concentration is taken out from the ozone gas outlet 32 through the ozone gas output path 92 of the manifold block 9.
オゾン発生器200から最終的に取り出される取出しオゾン量Ytは、1単位の放電セルそれぞれの放電空間で生成したオゾンガス生成量yから各放電空間での放電中の衝突によるオゾン分解量と放電セル中のオゾンの自己オゾン分解量とを合わせたオゾン分解量ydを差し引いた取出しオゾン量ytの総和となる。
The amount of extracted ozone Yt finally taken out from the ozone generator 200 is determined from the amount of ozone gas generated y in the discharge space of each unit discharge cell y, the amount of ozone decomposition due to collision during discharge in each discharge space, and the amount in the discharge cell. The total amount of extracted ozone yt obtained by subtracting the amount of ozone decomposition yd combined with the amount of self-ozone decomposition of ozone.
図2の各放電セルで単位時間当たりの生成したオゾン生成量y(g/h)は、放電空間に供給した原料ガス流量qo(L/min)と各放電セルに投入する放電電力dw(W)に対応し、オゾンが放電面に塗布した光触媒機能が作用することで、以下の式(6)で表される。
The ozone generation amount y (g / h) generated per unit time in each discharge cell of FIG. 2 is determined by the raw material gas flow rate qo (L / min) supplied to the discharge space and the discharge power dw (W ) And the photocatalytic function in which ozone is applied to the discharge surface acts, and is expressed by the following formula (6).
y=qo・C…(6)
式(6)において、"C"は、1単位の放電セルで単位時間当たりの生成するオゾン生成量yと放電空間中の原料ガス流量qoとで算出されるオゾン濃度(g/m3)となる。 y = qo · C (6)
In equation (6), “C” is the ozone concentration (g / m 3 ) calculated from the ozone generation amount y generated per unit time in one unit discharge cell and the raw material gas flow rate qo in the discharge space. Become.
式(6)において、"C"は、1単位の放電セルで単位時間当たりの生成するオゾン生成量yと放電空間中の原料ガス流量qoとで算出されるオゾン濃度(g/m3)となる。 y = qo · C (6)
In equation (6), “C” is the ozone concentration (g / m 3 ) calculated from the ozone generation amount y generated per unit time in one unit discharge cell and the raw material gas flow rate qo in the discharge space. Become.
すなわち、1単位の放電セルに形成される放電空間の体積である1放電空間体積dv(cm3)は、以下の式(7)で表される。
dv(cm3)=d・so…(7) That is, one discharge space volume dv (cm 3 ), which is the volume of the discharge space formed in one unit discharge cell, is expressed by the following formula (7).
dv (cm 3 ) = d · so (7)
dv(cm3)=d・so…(7) That is, one discharge space volume dv (cm 3 ), which is the volume of the discharge space formed in one unit discharge cell, is expressed by the following formula (7).
dv (cm 3 ) = d · so (7)
したがって、1放電空間で生成した後、放電空間に滞在しているオゾン量ys(g)は、生成したオゾン生成濃度C(g/m3)と式(7)で算出された放電空間体積dv(cm3)の積に対応したオゾン生成量yとなる。
Therefore, the ozone amount ys (g) staying in the discharge space after being generated in one discharge space is the discharge space volume dv calculated by the generated ozone generation concentration C (g / m 3 ) and the equation (7). The ozone generation amount y corresponds to the product of (cm 3 ).
なお、式(7)において、"d"は、放電ギャップ長(cm)、"so"は、1単位の放電セルにおける放電面の放電面積(cm2)であり、これらのパラメータ"d","so"は、放電セル構造を規定する固定値である。
In equation (7), “d” is the discharge gap length (cm), “so” is the discharge area (cm 2 ) of the discharge surface in one unit discharge cell, and these parameters “d”, “so” is a fixed value that defines the discharge cell structure.
放電セルで生成するオゾン生成濃度C(g/m3)は、単位時間当たりの単位ガス体積dv(cm3)に注入する放電電力dwに対応する。なお、単位ガス体積dvは、1単位の放電セルに関し以下の式(8)(式(2)に同じ)に再度示す。
The ozone generation concentration C (g / m 3 ) generated in the discharge cell corresponds to the discharge power dw injected into the unit gas volume dv (cm 3 ) per unit time. The unit gas volume dv is shown again in the following formula (8) (same as formula (2)) for one unit discharge cell.
dv(cm3/sec)=1000・Q/(n・60)…(8)
つまり、1単位の放電セルで生成するオゾン生成濃度C(g/m3)は、単位ガス体積dvに注入する放電エネルギー量(joule/cm3)に相当する比電力値dw/qo(W・min/L)によって決まり、以下で示す式(9)のように放電空間で滞在しているオゾン量ys(g)は、比電力値dw/qo(W・min/L)に比例して高くなる。
ys(g)=C・d・s/1000000…(9) dv (cm 3 / sec) = 1000 · Q / (n · 60) (8)
That is, the ozone generation concentration C (g / m 3 ) generated in one unit discharge cell is a specific power value dw / qo (W · q) corresponding to the discharge energy amount (joule / cm 3 ) injected into the unit gas volume dv. The amount of ozone ys (g) staying in the discharge space as shown in the following formula (9) is higher in proportion to the specific power value dw / qo (W · min / L). Become.
ys (g) = C · d · s / 1000000 (9)
つまり、1単位の放電セルで生成するオゾン生成濃度C(g/m3)は、単位ガス体積dvに注入する放電エネルギー量(joule/cm3)に相当する比電力値dw/qo(W・min/L)によって決まり、以下で示す式(9)のように放電空間で滞在しているオゾン量ys(g)は、比電力値dw/qo(W・min/L)に比例して高くなる。
ys(g)=C・d・s/1000000…(9) dv (cm 3 / sec) = 1000 · Q / (n · 60) (8)
That is, the ozone generation concentration C (g / m 3 ) generated in one unit discharge cell is a specific power value dw / qo (W · q) corresponding to the discharge energy amount (joule / cm 3 ) injected into the unit gas volume dv. The amount of ozone ys (g) staying in the discharge space as shown in the following formula (9) is higher in proportion to the specific power value dw / qo (W · min / L). Become.
ys (g) = C · d · s / 1000000 (9)
ここでは、1単位の放電セルにおける比電力値dw/qoで示したが、多段に積層した場合(2n倍)の全体の比電力値DW/Qとは同じ比で示されるため、今後、比電力値DW/Qで表記する。
Here, the specific power value dw / qo in one unit discharge cell is shown, but since the whole specific power value DW / Q when stacked in multiple stages (2n times) is shown in the same ratio, Expressed as power value DW / Q.
しかし、実際の放電を用いたオゾンガス発生装置においては、取出しオゾン濃度Ctは、図15に示すように、比電力値DW/Qに比例して増加せず、比電力値DW/Qに対する取出しオゾン濃度Ctの特性は特性8000aとなる。
However, in the ozone gas generator using actual discharge, the extracted ozone concentration Ct does not increase in proportion to the specific power value DW / Q, as shown in FIG. The characteristic of the density Ct is a characteristic 8000a.
特性8000aにおいて、低い比電力値DW/Qの取出しオゾン濃度Ct特性の接線(二点鎖線)が放電セル(オゾン発生セル)で生成するオゾン生成濃度C(g/m3)の特性と定義される。
In the characteristic 8000a, the tangent (two-dot chain line) of the extracted ozone concentration Ct characteristic with a low specific power value DW / Q is defined as the characteristic of the ozone generation concentration C (g / m 3 ) generated in the discharge cell (ozone generation cell). The
一方、図15の特性8000aに示すように、高い比電力値DW/Qの領域での取出しオゾン濃度Ctは、各放電セルから生成するオゾン生成濃度Cから、各放電セル内での生成したオゾンを分解する濃度Cdを取り除いた値となっていると判断できる。
On the other hand, as shown by the characteristic 8000a in FIG. 15, the extracted ozone concentration Ct in the region of the high specific power value DW / Q is derived from the ozone generation concentration C generated from each discharge cell, and the ozone generated in each discharge cell. It can be determined that the concentration Cd is a value obtained by removing the concentration Cd.
図15に示すように、原料ガス流量Qが略3.0L/min以上の大流量域において、オゾン発生器の比電力値DW/Qに対する取出しオゾン濃度Ctの特性8000aが所定の濃度値で飽和している。このため、総放電電力DWを増加し比電力値DW/Qを高めても取出しオゾン濃度Ctを高めることができない。
As shown in FIG. 15, the characteristic 8000a of the extracted ozone concentration Ct with respect to the specific power value DW / Q of the ozone generator is saturated at a predetermined concentration value in a large flow rate region where the raw material gas flow rate Q is approximately 3.0 L / min or more. doing. For this reason, even if the total discharge power DW is increased and the specific power value DW / Q is increased, the extraction ozone concentration Ct cannot be increased.
比電力値DW/Qを高くしても、所定濃度値から取出しオゾン濃度Ctが高くならず、むしろ低下傾向を示す原因は、放電セルで発生した電子、イオン、放電ガスと放電空間で生成したオゾンとの衝突でオゾンガスが分解することと、放電セル内で滞在しているオゾン自身の自己分解が大きいことにある。
Even if the specific power value DW / Q is increased, the ozone concentration Ct extracted from the predetermined concentration value is not increased, but rather the cause of the decreasing tendency is generated in electrons, ions, discharge gas and discharge space generated in the discharge cell. The ozone gas is decomposed by collision with ozone, and the self-decomposition of ozone staying in the discharge cell is large.
つまり、放電空間で生成したオゾンガスが、放電中の電子空間を通過する際、電子、イオン、放電ガス等と衝突して分解する分解量とオゾン自身の自己分解する自己分解量とを合わせた分解量が大きいことにより、取出しオゾン濃度Ctが低下している。
In other words, when ozone gas generated in the discharge space passes through the electron space during discharge, it decomposes by combining the amount of decomposition that collides with electrons, ions, discharge gas, etc., and the amount of self-decomposition that ozone itself decomposes. The extracted ozone concentration Ct is reduced due to the large amount.
放電セル内でオゾン分解する総オゾン分解量Yd(=2・n・yd)は、放電空間中での発生した電子量ne、放電ガスngの分子量、平均ガス流速vo/d、ガス滞在時間To及びガス温度Tgに依存して以下の式(10)で表される。なお、"yd"は1単位の放電セルのオゾン分解量を意味する。
The total ozonolysis amount Yd (= 2 · n · yd) for ozonolysis in the discharge cell is the amount of electrons ne generated in the discharge space, the molecular weight of the discharge gas ng, the average gas flow velocity vo / d, and the gas residence time To. And depending on the gas temperature Tg, it is expressed by the following equation (10). “Yd” means the amount of ozone decomposition of one unit discharge cell.
Yd=B(ne,ng,vo/d,To,Tg,C)…(10)
式(10)に示すように、総オゾン分解量Ydは、B(…)の関数で求まる。 Yd = B (ne, ng, vo / d, To, Tg, C) (10)
As shown in the equation (10), the total ozone decomposition amount Yd is obtained by a function of B (...).
式(10)に示すように、総オゾン分解量Ydは、B(…)の関数で求まる。 Yd = B (ne, ng, vo / d, To, Tg, C) (10)
As shown in the equation (10), the total ozone decomposition amount Yd is obtained by a function of B (...).
したがって、複数の放電セル内でオゾンガスを分解する総オゾン分解量Ydを比電力値DW/Qに対応して低減できれば、取出しオゾン濃度Ctを高めることができる。
Therefore, if the total ozone decomposition amount Yd for decomposing ozone gas in a plurality of discharge cells can be reduced corresponding to the specific power value DW / Q, the extracted ozone concentration Ct can be increased.
複数の放電セル内でオゾン分解する総オゾン分解量Ydは、複数の放電空間中でのオゾンガスの分解量であるが、図15に示すように、総ガス流量Qが略3.0L/min以上の大流量域においては、オゾンガスを生成するために投入する総放電電力DWとガス流量Qとの比(比電力値DW/Q)で一義的決まることが分かる。
The total ozone decomposition amount Yd that decomposes ozone in the plurality of discharge cells is the amount of ozone gas decomposed in the plurality of discharge spaces. As shown in FIG. 15, the total gas flow rate Q is approximately 3.0 L / min or more. It can be seen that in the large flow rate region, the ratio is determined uniquely by the ratio (specific power value DW / Q) of the total discharge power DW input to generate ozone gas and the gas flow rate Q.
このことから、比電力値DW/Qに依存した総オゾン分解量Ydは、オゾン発生器の構造そのもの条件で決まる固有の特性を有していることが分かった。つまり、オゾン発生器の構造やオゾン電源の出力条件を見直せば、比電力値DW/Qに依存した総オゾン分解量Ydも低減でき、かつ取出しオゾン量Ytが高められる。この点に着目したのが本願発明である。
From this, it was found that the total ozone decomposition amount Yd depending on the specific power value DW / Q has an inherent characteristic determined by the conditions of the structure of the ozone generator itself. That is, if the structure of the ozone generator and the output condition of the ozone power source are reviewed, the total ozone decomposition amount Yd depending on the specific power value DW / Q can be reduced, and the extracted ozone amount Yt can be increased. The present invention focuses on this point.
図2に示す接地冷却電極1における1放電面の断面において、放電セル中での生成したオゾンガスのオゾンの分解量に注目する。
In the cross section of one discharge surface in the ground cooling electrode 1 shown in FIG. 2, attention is paid to the amount of ozone decomposed in the generated ozone gas in the discharge cell.
原料ガス流量Q(原料ガス流量)で原料ガスを供給すると、2n個の1単位の放電セル(基本セルS1あるいはS2)それぞれに流れる原料ガス流量qo(=Q/(2・n))に分散して供給され、1単位の放電セル当たり放電電力dw(=DW/(2・n))を投入する場合を考える。
When the source gas is supplied at the source gas flow rate Q (source gas flow rate), it is dispersed to the source gas flow rate qo (= Q / (2 · n)) flowing through each of the 2n unit discharge cells (basic cells S1 or S2). Suppose that the discharge power dw (= DW / (2.n)) per unit discharge cell is supplied.
この場合、1つの放電空間で生成したオゾンガスのオゾン生成量y[=Y/(2・n)](g/h)は、放電空間を原料ガスが流れることにより生成される量である。そして、1単位の放電セルでのオゾン生成量yは、放電空間を通過する時間であるガス滞在時間Toと、1放電面における単位周囲長さl(cm)を基準とした放電セルに流れるガス断面sav(=l・d)における平均ガス流速vo/d(cm/s)(=qo・0.001/(60・sav))とからなる2つの要素と密接に関連する。これら2つの要素は、放電セルの形状で決まる固有値となる。なお、単位周囲長さl(cm)とは、1放電空間を形成する1対の放電面のうち、一の放電面である代表放電面の外周に沿った周囲長さ(cm)を示す。つまり、1放電面の平均面積sav(=so/2)の放電径の周囲長さ(cm)が単位周囲長さl(cm)となる。
In this case, the ozone generation amount y [= Y / (2.n)] (g / h) of the ozone gas generated in one discharge space is an amount generated when the source gas flows in the discharge space. The ozone generation amount y in one unit discharge cell is a gas flowing in the discharge cell based on the gas residence time To which is the time passing through the discharge space and the unit peripheral length l (cm) on one discharge surface. It is closely related to two elements consisting of the average gas flow velocity vo / d (cm / s) (= qo · 0.001 / (60 · sav)) in the cross section sav (= l · d). These two elements are eigenvalues determined by the shape of the discharge cell. The unit perimeter length l (cm) indicates a perimeter length (cm) along the outer periphery of the representative discharge surface which is one discharge surface among a pair of discharge surfaces forming one discharge space. That is, the peripheral length (cm) of the discharge diameter of the average area sav (= so / 2) of one discharge surface is the unit peripheral length l (cm).
ガス滞在時間Toは、放電空間における電子、イオン、放電ガスと放電面で生成したオゾンガスとの衝突によるオゾン分解量と、放電空間内で滞在しているオゾン自身の自己オゾン分解量の両方に密接に関連する。また、単位周囲長さl(cm)を基準とした平均ガス流速vo/d(cm/s)は、1単位の放電セル内で生成されるオゾン生成能力と密接に関係しており、オゾン生成能力に対しガスの平均ガス流速vo/dが大きければ、総ガス流量Qが大きいことになり、取出せるオゾン濃度が低くなることになる。
The gas residence time To is closely related to both the amount of ozone decomposition caused by collision of electrons, ions, discharge gas and ozone gas generated on the discharge surface in the discharge space, and the amount of self-ozone decomposition of ozone itself staying in the discharge space. is connected with. In addition, the average gas flow velocity vo / d (cm / s) based on the unit perimeter length l (cm) is closely related to the ozone generation ability generated in one unit discharge cell. If the average gas flow velocity vo / d of the gas is large relative to the capacity, the total gas flow rate Q is large, and the ozone concentration that can be extracted is low.
したがって、ガス滞在時間To及びガス温度Tgは、放電空間を通過中のオゾンガスの衝突による分解量とオゾン自身の自己分解量を高める要素となり、放電セル内でのオゾン分解量を高める要因を助長させている。また、放電空間内でオゾンを生成する能力よりも、平均ガス流速vo/d(cm/s)が大きくなると、取出しオゾン濃度Ctが低くなる。
Therefore, the gas residence time To and the gas temperature Tg are factors that increase the decomposition amount due to the collision of ozone gas passing through the discharge space and the self-decomposition amount of ozone itself, and promote factors that increase the ozone decomposition amount in the discharge cell. ing. Further, when the average gas flow rate vo / d (cm / s) is larger than the ability to generate ozone in the discharge space, the extracted ozone concentration Ct is lowered.
つまり、1つの放電空間において、投入できる放電電力密度J(=wd/so)の誘電体バリア放電のエネルギーで生成したオゾンガスのオゾン発生量y[=Y/(2・n)](g/h)のうち、放電空間内に滞在しているオゾン量ys(g)に関し、このオゾン量ysを高濃度でオゾンを取り出す際には、放電空間におけるガスのガス滞在時間Toによるオゾン分解量ydの影響が無視できない。
That is, the ozone generation amount y [= Y / (2.n)] (g / h) of ozone gas generated by the energy of the dielectric barrier discharge having the discharge power density J (= wd / so) that can be input in one discharge space. ) Among ozone amounts ys (g) staying in the discharge space, when ozone is extracted at a high concentration, the ozone decomposition amount yd of the gas stay time To in the discharge space The impact cannot be ignored.
具体的には、ガス滞在時間Toが大きいほど、オゾン分解時間が長くなるため、放電ガスとの衝突による分解量と滞在しているオゾン自身の自己分解量との総計であるオゾン分解量ydが大きくなる。
Specifically, the larger the gas residence time To, the longer the ozone decomposition time, so the ozone decomposition amount yd, which is the sum of the amount of decomposition due to collision with the discharge gas and the amount of self-decomposition of the ozone itself that is staying, is growing.
また、放電空間でオゾンが生成する能力よりも、平均ガス流速vo/d(cm/s)が大きくなると、取出しオゾン濃度Ctが低くなる。
Further, when the average gas flow velocity vo / d (cm / s) is larger than the ability of ozone to be generated in the discharge space, the extracted ozone concentration Ct is lowered.
さらに、放電電力密度Jを増すとガス温度Tgが高くなる傾向はあるが、放電面全面を冷却して、放電熱エネルギーを十分に取り除く冷却能力を有すれば、投入できる放電電力密度Jを増した放電セル形状ほどにオゾン分解量ydは増加せず、ある程度冷却能力で抑制できる。
Furthermore, if the discharge power density J is increased, the gas temperature Tg tends to increase. However, if the discharge surface has sufficient cooling ability to cool the entire discharge surface and sufficiently remove the discharge heat energy, the discharge power density J can be increased. The amount of ozone decomposition yd does not increase as much as the shape of the discharge cell, and can be suppressed to some extent by the cooling capacity.
ガス温度Tgによるオゾン分解については、放電電極面の冷却能力と関連し、十分な冷却能力にすることでガス温度Tgの温度上昇を抑制できる。ガス温度Tgの温度上昇抑制については、オゾン発生器の設計上の必須問題であるため、ここでは、ガス温度Tgによるオゾン分解量の増加については考慮しない。
Regarding the ozonolysis by the gas temperature Tg, the temperature rise of the gas temperature Tg can be suppressed by making it a sufficient cooling capacity in relation to the cooling capacity of the discharge electrode surface. Since suppression of the temperature rise of the gas temperature Tg is an essential problem in the design of the ozone generator, the increase in the amount of ozone decomposition due to the gas temperature Tg is not considered here.
次に、通常の3.0L/min以上の大流量の原料ガスを流した場合において、放電空間中のガス滞在時間To、単位周囲長さl(cm)を基準した放電空間を流れる平均ガス流速vo/d、及び放電電力密度Jに適した放電セル形状について考える。ガス滞在時間Toは以下の式(11)のようになる。
Next, when a large flow rate of a source gas of 3.0 L / min or more is flowed, the average gas flow rate flowing in the discharge space based on the gas residence time To and the unit perimeter length l (cm) in the discharge space Consider a discharge cell shape suitable for vo / d and discharge power density J. The gas residence time To is expressed by the following equation (11).
To(ms)=(d・so)/qo…(11)
なお、式(11)において、"d"は、放電ギャップ長(mm)、"so"は、1単位の放電セルの放電面における放電面積(cm2)、"qo"は1放電空間当たりの原料ガス流量(L/min)である。 To (ms) = (d · so) / qo (11)
In the equation (11), “d” is the discharge gap length (mm), “so” is the discharge area (cm 2 ) on the discharge surface of one unit discharge cell, and “qo” is per discharge space. Source gas flow rate (L / min).
なお、式(11)において、"d"は、放電ギャップ長(mm)、"so"は、1単位の放電セルの放電面における放電面積(cm2)、"qo"は1放電空間当たりの原料ガス流量(L/min)である。 To (ms) = (d · so) / qo (11)
In the equation (11), “d” is the discharge gap length (mm), “so” is the discharge area (cm 2 ) on the discharge surface of one unit discharge cell, and “qo” is per discharge space. Source gas flow rate (L / min).
一方、"S"は、オゾン発生器200内の総放電面積(cm2)を示し、"Q"は、オゾン発生器200内に供給する原料ガスの総ガス流量(L/min)を示し、"n"は、図1で示したオゾン発生器200の積層した基本放電セル組(基本セルS1及びS2の組合せ)の枚数(個)を示し、放電面数としては、2・nとなる。
On the other hand, “S” indicates the total discharge area (cm 2 ) in the ozone generator 200, “Q” indicates the total gas flow rate (L / min) of the source gas supplied into the ozone generator 200, “n” indicates the number (number) of the basic discharge cell groups (combination of the basic cells S1 and S2) in which the ozone generator 200 shown in FIG. 1 is stacked, and the number of discharge surfaces is 2 · n.
また、単位周囲長さl(cm)を基準とした放電面に流れる平均ガス流速vo/d(cm/s)は、放電セルの形状に依存する。例えば、円板状の放電セルの場合、単位周囲長さl(cm)を基準とした放電セルに流れるガス断面savは、放電面積soの1/2相当の放電径に流れ込む単位ギャップ長当たりの平均ガス流速voで定義すると以下の式(12)で表される。
Also, the average gas flow velocity vo / d (cm / s) flowing on the discharge surface based on the unit perimeter length l (cm) depends on the shape of the discharge cell. For example, in the case of a disc-shaped discharge cell, the gas cross section sav flowing through the discharge cell with the unit peripheral length l (cm) as a reference is equal to the per unit gap length flowing into the discharge diameter corresponding to ½ of the discharge area so. When defined by the average gas flow velocity vo, it is expressed by the following equation (12).
vo(cm/s)=qo/(2π・(so/2π)0.5)
=f(so)・{1/To}…(12)
なお、単位ギャップ長当たりの平均ガス流速voは、関数f(so)と放電空間中のガス滞在時間Toの逆数に依存する値である。 vo (cm / s) = qo / (2π · (so / 2π) 0.5 )
= F (so) · {1 / To} (12)
The average gas flow velocity vo per unit gap length is a value that depends on the reciprocal of the function f (so) and the gas residence time To in the discharge space.
=f(so)・{1/To}…(12)
なお、単位ギャップ長当たりの平均ガス流速voは、関数f(so)と放電空間中のガス滞在時間Toの逆数に依存する値である。 vo (cm / s) = qo / (2π · (so / 2π) 0.5 )
= F (so) · {1 / To} (12)
The average gas flow velocity vo per unit gap length is a value that depends on the reciprocal of the function f (so) and the gas residence time To in the discharge space.
また、1放電空間に投入できる放電電力密度J(W/cm2)は、以下の式(13)で表される。
Further, the discharge power density J (W / cm 2 ) that can be charged into one discharge space is represented by the following formula (13).
J(W/cm2)=DW/S=dw/so…(13)
なお、式(13)において、"DW"は総放電電力である。 J (W / cm 2 ) = DW / S = dw / so (13)
In Expression (13), “DW” is the total discharge power.
なお、式(13)において、"DW"は総放電電力である。 J (W / cm 2 ) = DW / S = dw / so (13)
In Expression (13), “DW” is the total discharge power.
放電空間において、単純に比例してオゾン分解量ydが増加する要素は、ガス滞在時間Toである。ガス滞在時間Toが短くなるようにするには、1単位の放電セルの放電面の放電面積soを小さくして、同じ放電電力dw[=DW/(2・n)]を投入すれば、式(11)で示すガス滞在時間Toが短くなる分、オゾン分解量ydを下げることができる。
In the discharge space, the element that increases the amount of ozone decomposition yd in a proportional manner is the gas residence time To. In order to shorten the gas residence time To, if the discharge area so of the discharge surface of one unit discharge cell is reduced and the same discharge power dw [= DW / (2.n)] is input, the equation As the gas residence time To shown in (11) becomes shorter, the ozone decomposition amount yd can be lowered.
しかしながら、1単位の放電セルの放電面積soを小さくすると、式(12)で示すように単位周囲長さ(cm)を基準とした放電面を流れる平均ガス流速vo/d(cm/s)が大きくなる。このため、放電面内に供給する原料ガス流量qoが低い条件下でも、オゾン取出し濃度Ctを高くすることができる。
However, when the discharge area so of one unit discharge cell is reduced, the average gas flow velocity vo / d (cm / s) flowing on the discharge surface based on the unit peripheral length (cm) is obtained as shown in the equation (12). growing. For this reason, the ozone extraction concentration Ct can be increased even under conditions where the raw material gas flow rate qo supplied into the discharge surface is low.
本願発明者は、1単位の放電セルにおける放電面積soを小さくすれば.放電空間に供給する原料ガス流量qoが低い条件で、放電空間でのガス滞在時間Toを短くする条件設定が重要であることを見出した。すなわち、本願発明者は、上記条件設定により、生成したオゾンの衝突によるオゾン分解と滞在しているオゾン自身の自己分解とを含む分解に要する時間が短縮でき、結果として放電空間におけるオゾン分解量ydを減らせることを認識した。
If the inventor of the present application reduces the discharge area so in one unit discharge cell, it is important to set the conditions for shortening the gas residence time To in the discharge space under the condition that the raw material gas flow rate qo supplied to the discharge space is low. I found out. That is, the inventor of the present application can shorten the time required for the decomposition including the ozone decomposition due to the collision of the generated ozone and the self-decomposition of the staying ozone by the above condition setting. As a result, the amount of ozone decomposition yd in the discharge space is reduced. Recognized that can be reduced.
したがって、高濃度オゾンが取出せるように、平均ガス流速vo/dを最適条件に設定し、ガス滞在時間Toを短くすることが望ましい。つまり、放電空間で生成したオゾンの取出す際におけるオゾン分解量ydを減らすには、1単位の放電セルにおける放電面積soを小さくすることが必要である。
Therefore, it is desirable to set the average gas flow rate vo / d as an optimum condition and to shorten the gas residence time To so that high-concentration ozone can be extracted. That is, in order to reduce the ozone decomposition amount yd when ozone generated in the discharge space is taken out, it is necessary to reduce the discharge area so in one unit of discharge cell.
そして、ガス滞在時間Toを短くする方法として、放電電力密度Jが望ましい範囲内になるように放電セルにおける放電面の径を小さくし、径を小さくした放電面により形成される放電空間に投入する放電電力dwを設定する方法が考えられる。この方法によれば、1放電空間におけるオゾン分解量ydを低減でき、結果として、1放電空間からより高濃度で、所定量のオゾンガスが取出せるようになる。
Then, as a method of shortening the gas residence time To, the diameter of the discharge surface in the discharge cell is reduced so that the discharge power density J is within a desired range, and the discharge space is formed by the discharge surface having a reduced diameter. A method for setting the discharge power dw is conceivable. According to this method, the amount of ozone decomposition yd in one discharge space can be reduced, and as a result, a predetermined amount of ozone gas can be extracted from the one discharge space at a higher concentration.
つまり、本願発明者は、高濃度なオゾンガスを取り出す手段として、1放電空間から高濃度のオゾンガスが取出せるオゾンセル構造(放電面の放電面積so)と、放電電力密度Jの設定を規定するため、1放電空間に投入する放電電力dwと、平均ガス流速vo/dを規定範囲内にするための原料ガス流量qoとを含む各種要因の条件範囲を適切に設定することが重要になる。
That is, in order to define the setting of the ozone cell structure (discharge area so of the discharge surface) from which the high concentration ozone gas can be extracted from one discharge space and the setting of the discharge power density J as means for extracting the high concentration ozone gas, It is important to appropriately set the condition range of various factors including the discharge power dw input to one discharge space and the raw material gas flow rate qo for keeping the average gas flow velocity vo / d within the specified range.
さらに、上記した1放電空間に関する条件を維持し、かつ、高濃度のオゾンガスが取出せるガス流量を高める方法として、基本セルS1及びS2を有する基本放電セル組を多段(n倍)に積層することが望まされる。基本放電セル組をn段に積層すると、放電電力DW(=2・n・dw)及び総ガス流量Q(=2・n・qo)を高めたオゾンガス発生システムを構成することができ、結果的に比較的大きなガス流量域で高濃度なオゾンガスを取出すことができる。
Further, as a method for maintaining the above-described conditions relating to one discharge space and increasing the gas flow rate at which high-concentration ozone gas can be extracted, the basic discharge cell groups having the basic cells S1 and S2 are stacked in multiple stages (n times). Is desired. When the basic discharge cell groups are stacked in n stages, an ozone gas generation system with an increased discharge power DW (= 2 · n · dw) and a total gas flow rate Q (= 2 · n · qo) can be configured. High concentration ozone gas can be taken out in a relatively large gas flow range.
加えて、上記構成のオゾンガスシステムにおいて、総放電電力DW(=2・n・dw)と総ガス流量Qとを可能な範囲で最大に設定することにより、取出しオゾン量Yt(=Ct・Q)を最大限に高めることができる。
In addition, in the ozone gas system configured as described above, by setting the total discharge power DW (= 2 · n · dw) and the total gas flow rate Q to the maximum possible range, the amount of extracted ozone Yt (= Ct · Q) Can be maximized.
以上、高濃度オゾンが取り出せるようにするため、オゾン分解量ydを減らす手段として、放電空間におけるガス滞在時間Toを短くできるようにするため、1放電面の放電面積soを規定値範囲内に小さくしたオゾンガス発生システムにすることが望ましい。
As described above, as a means for reducing the ozone decomposition amount yd so that high-concentration ozone can be extracted, the discharge area so of one discharge surface is reduced within a specified value range so that the gas residence time To in the discharge space can be shortened. It is desirable to use an ozone gas generation system.
また、取出しオゾン量Ytを高めるようにするため、総放電電力DW及び放電電力密度Jを規定値範囲内において最適にしたオゾンガス発生システムにすることが望ましい。
Also, in order to increase the amount of extracted ozone Yt, it is desirable to provide an ozone gas generation system in which the total discharge power DW and the discharge power density J are optimized within a specified value range.
次に、高濃度オゾンが取出せるオゾンガス発生システムとしては、ガス流量が低流量やオゾン発生器をより低温に冷却する手段はあるが、低流量のオゾンガスを必要とする要求分野は限られる。また、オゾン発生器をより低温に冷却する手段は、オゾンガス発生システムに付帯設備が大きくなり、オゾンガス発生システム自身も従来装置に比べ、高価で大きくなることになる。
Next, as an ozone gas generation system that can extract high-concentration ozone, there are means for cooling the ozone generator at a lower gas flow rate or at a lower temperature, but the required fields that require low flow ozone gas are limited. Further, the means for cooling the ozone generator to a lower temperature requires a larger incidental facility in the ozone gas generation system, and the ozone gas generation system itself is more expensive and larger than the conventional apparatus.
以上のことから、高濃度オゾンが取出せるオゾンガス発生システムの制約条件を総ガス流量Qのガス流量範囲を略3.0L/min以上の大流量のガス流量とし、オゾン発生器200を冷却する冷却温度を5℃以上にした条件を考える。この条件下で、例えば、一実施例としての400g/m3以上の高濃度オゾンを取り出せ、かつ、取出しオゾン量Ytを高めたオゾンを取り出せることのできるオゾンガス発生システム1000を実現させることが必要になる。この場合、オゾン発生器200の総放電面積Sを確保するだけでなく、放電空間に供給する放電電力密度J及び総放電電力DWを可能な範囲で最大に設定できる安定したオゾン用電源100を得ることも重要である。
Based on the above, the restriction condition of the ozone gas generation system from which high-concentration ozone can be taken out is a cooling gas that cools the ozone generator 200 by setting the gas flow rate range of the total gas flow rate Q to a large gas flow rate of approximately 3.0 L / min or more. Consider a condition where the temperature is 5 ° C. or higher. Under this condition, for example, it is necessary to realize an ozone gas generation system 1000 that can extract high-concentration ozone of 400 g / m 3 or more as one embodiment and can extract ozone with an increased amount of extracted ozone Yt. Become. In this case, not only the total discharge area S of the ozone generator 200 is secured, but also a stable ozone power supply 100 that can set the discharge power density J and the total discharge power DW supplied to the discharge space to the maximum possible range is obtained. It is also important.
オゾン用電源100は、高濃度で、所定量のオゾンガスを得るために、オゾン発生器200に総放電電力DWを投入してオゾン発生器200の放電電力密度Jを高める必要がある。この場合、オゾン用電源100のオゾン発生用交流電圧の出力周波数が従来の出力周波数である20kHz未満であると、オゾン発生器200に印加する負荷電圧が高くなり、オゾン用電源100、オゾン発生器200自身の耐電圧強化が必要になる等の問題点が生じる。
The ozone power source 100 needs to increase the discharge power density J of the ozone generator 200 by supplying the total discharge power DW to the ozone generator 200 in order to obtain a predetermined amount of ozone gas at a high concentration. In this case, when the output frequency of the ozone generating AC voltage of the ozone power source 100 is less than the conventional output frequency of 20 kHz, the load voltage applied to the ozone generator 200 increases, and the ozone power source 100 and the ozone generator There arises a problem that the withstand voltage of 200 itself needs to be enhanced.
このため、ピーク電圧が7kVp(5.0kVrms)以下の負荷印加電圧Vdを付与するオゾン用電源100としては、出力周波数fが20kHz~50kHz(20kHz以上、50kHz未満)の高周波のオゾン発生用交流電圧を出力するオゾン用電源することが望ましい。また、出力周波数fが30kHzを超えるオゾン用電源とすると、電源自身から発するノイズが急激に増え、オゾンガス発生システムに付帯する計測機器や外部機器の誤動作が増大することになる。さらに、オゾン発生器との負荷との共振周波数附近を維持するため、出力周波数fの負荷変動に応じた周波数制御が不可欠になり、オゾン用電源として安定な電力を出力させることが非常に困難になる。そのため、オゾン用電源100の出力周波数fは、20kHz~30kHz未満に制限することがより望ましい。
For this reason, the ozone power supply 100 for applying the load applied voltage Vd having a peak voltage of 7 kVp (5.0 kVrms) or less is a high-frequency ozone generating AC voltage having an output frequency f of 20 kHz to 50 kHz (20 kHz or more and less than 50 kHz). It is desirable to supply power for ozone. In addition, if the power supply for ozone has an output frequency f exceeding 30 kHz, noise generated from the power supply itself increases rapidly, and malfunctions of measuring instruments and external equipment incidental to the ozone gas generation system increase. Furthermore, in order to maintain the resonance frequency close to the load with the ozone generator, frequency control according to the load fluctuation of the output frequency f becomes indispensable, and it is very difficult to output stable power as an ozone power source. Become. Therefore, it is more desirable to limit the output frequency f of the ozone power supply 100 to 20 kHz to less than 30 kHz.
20kHz~50kHzの高周波の負荷印加電圧Vdを付与するオゾン用電源として、以下の2種類の電源が考えられる。
The following two types of power sources are conceivable as ozone power sources that apply a high-frequency load applied voltage Vd of 20 kHz to 50 kHz.
第1の電源…オゾン用電源のインバータ部とオゾン発生器との間に直列共振回路を設けた電源、
第2の電源…オゾン用電源のインバータ部とオゾン発生器との間に高周波・高電圧トランスを設けた電源。 First power source: a power source provided with a series resonance circuit between the inverter unit of the power source for ozone and the ozone generator,
Second power source: a power source provided with a high-frequency / high-voltage transformer between the inverter of the ozone power source and the ozone generator.
第2の電源…オゾン用電源のインバータ部とオゾン発生器との間に高周波・高電圧トランスを設けた電源。 First power source: a power source provided with a series resonance circuit between the inverter unit of the power source for ozone and the ozone generator,
Second power source: a power source provided with a high-frequency / high-voltage transformer between the inverter of the ozone power source and the ozone generator.
第1の電源においては、オゾン用電源の出力側のトランスを無くし、インバータ部とオゾン発生器との間に共振Q値の高い(例えば、Q値が10以上)直列共振回路を設け、負荷印加電圧Vdまで昇圧するようにする必要がある。第1の電源においては、高周波・高電圧トランスが無いというメリットでオゾン用電源自身をコンパクト化できる。
In the first power supply, the transformer on the output side of the power supply for ozone is eliminated, a series resonance circuit having a high resonance Q value (for example, Q value of 10 or more) is provided between the inverter unit and the ozone generator, and a load is applied. It is necessary to boost the voltage to the voltage Vd. In the first power supply, the ozone power supply itself can be made compact by the merit that there is no high-frequency / high-voltage transformer.
しかし、第1の電源は、インバータ部と直列共振回路とオゾン発生器との3つの主要構成部を跨る回路間で共振させるため、共振した負荷電流の帰還電流がインバータ部まで戻ることにより、インバータ部の電源ロスが非常に大きくなる。
However, since the first power source resonates between the circuits straddling the three main components of the inverter unit, the series resonance circuit, and the ozone generator, the feedback current of the resonated load current returns to the inverter unit. The power loss of the part becomes very large.
さらに、第1の電源は、負荷印加電圧Vdまで昇圧共振させるため、微妙な負荷条件変動で負荷印加電圧Vdが変化し、インバータ部の動作周波数を制御しても、安定した負荷印加電圧Vdをオゾン発生器に投入することが難しい。加えて、動作周波数が常に可変であるため、電源ノイズが大きくなるなどの問題点がある。
In addition, since the first power supply resonates to the load application voltage Vd, the load application voltage Vd changes due to subtle fluctuations in the load condition, and even if the operating frequency of the inverter unit is controlled, a stable load application voltage Vd can be obtained. Difficult to put into ozone generator. In addition, since the operating frequency is always variable, there is a problem that power supply noise increases.
以上の問題点があるため、実用上は、高周波のオゾン用電源が出力する放電電力DWは1.5kW未満のオゾンガス発生システムにしか適さない。また、第1の電源である小さなオゾン用電源を複数個搭載することは、オゾン発生器構成の複雑化や制御の複雑化を招き、さらに、オゾン用電源内の制御ロスや部品点数が増える等の問題点が生じる。
Because of the above problems, the discharge power DW output from the high-frequency ozone power supply is practically suitable only for an ozone gas generation system of less than 1.5 kW. In addition, mounting a plurality of small ozone power supplies, which are the first power supply, complicates the configuration of the ozone generator and the control, and further increases the control loss and the number of parts in the ozone power supply. The problem arises.
そのため、原料ガスの総ガス流量Q(原料ガス流量)のガス流量範囲を略3.0L/min以上とし、上記オゾン発生器を冷却する冷却温度を5℃以上にした条件下で、400g/m3以上の高濃度のオゾンガスを取り出すことを目的とした実施の形態1のオゾンガス発生システムには不適である。なぜなら、実施の形態1のオゾンガス発生システムは、比電力値DW/Qが600W・min/L以上を満足する総放電電力DWが必要であるからである。
Therefore, under the condition that the gas flow rate range of the total gas flow rate Q (raw material gas flow rate) of the raw material gas is about 3.0 L / min or more and the cooling temperature for cooling the ozone generator is 5 ° C. or more, 400 g / m It is unsuitable for the ozone gas generation system of Embodiment 1 aimed at extracting ozone gas having a high concentration of 3 or more. This is because the ozone gas generation system according to Embodiment 1 requires the total discharge power DW that satisfies the specific power value DW / Q of 600 W · min / L or more.
第2の電源においては、インバータ部(インバータ回路部22)とオゾン発生器との間に高周波・高電圧トランス(並列共振用トランス25)を設けることにより、高周波・高電圧トランスの1次側巻数と2次側巻数との巻数比で決まる一定値で電圧昇圧できる。さらに、トランスの2次側以降で、負荷との並列共振回路を設けることで、負荷に供給する出力周波数と負荷印加電圧Vdとをほぼ一定値にして、総放電電力DWをオゾン発生器200に供給することができる。
In the second power source, by providing a high frequency / high voltage transformer (parallel resonance transformer 25) between the inverter unit (inverter circuit unit 22) and the ozone generator, the number of primary turns of the high frequency / high voltage transformer is increased. The voltage can be boosted at a constant value determined by the turns ratio between the secondary winding and the secondary winding. Further, by providing a parallel resonance circuit with the load after the secondary side of the transformer, the output frequency supplied to the load and the load applied voltage Vd are set to substantially constant values, and the total discharge power DW is supplied to the ozone generator 200. Can be supplied.
その結果、インバータ部に共振した負荷電流が帰還電流として戻ることなく、インバータ部の電源ロスを比較的小さくでき、負荷との共振度合に依らず負荷印加電圧Vdが一定で、負荷に安定した総放電電力DWを供給できる。
As a result, the load current that resonates in the inverter unit does not return as a feedback current, so that the power loss of the inverter unit can be made relatively small, the load applied voltage Vd is constant regardless of the degree of resonance with the load, and the load is stable. Discharge power DW can be supplied.
このため、第2の電源では、高周波のオゾン用電源が出力する放電電力DWを1.8kW以上にすることができ、第2の電源は安定した出力をオゾン発生器に投入することができるメリットがある。
Therefore, in the second power source, the discharge power DW output from the high-frequency ozone power source can be set to 1.8 kW or more, and the second power source can provide a stable output to the ozone generator. There is.
実施の形態1のけるオゾン用電源100は、上述した第2の電源の要件を満足させている。そして、オゾン用電源100とオゾン発生器200とを組み合わせてオゾンガス発生システム1000を構成している。
The power supply for ozone 100 according to the first embodiment satisfies the requirements for the second power supply described above. An ozone gas generation system 1000 is configured by combining the ozone power source 100 and the ozone generator 200.
このため、実施の形態1のオゾンガス発生システム1000は、原料ガスの総ガス流量Qのガス流量範囲を略3.0L/min以上とし、オゾン発生器200を冷却する冷却温度を5℃以上にした条件下で、400g/m3以上の高濃度オゾンを取り出すことができる。さらに、オゾンガス発生システム1000は、高濃度オゾンガスが取出せる流量が大流量化でき、かつオゾン発生器の冷却能力も従来と同等レベルのオゾンガス発生システムになる。
For this reason, in the ozone gas generation system 1000 of the first embodiment, the gas flow rate range of the total gas flow rate Q of the raw material gas is set to approximately 3.0 L / min or more, and the cooling temperature for cooling the ozone generator 200 is set to 5 ° C. or more. Under conditions, high-concentration ozone of 400 g / m 3 or more can be taken out. Further, the ozone gas generation system 1000 can increase the flow rate at which high-concentration ozone gas can be taken out, and the ozone gas generation system has the same level of cooling capability as the conventional ozone generator.
さらに、並列共振用トランス25自身の内部インダクタンスと負荷(オゾン発生器200)の静電容量との共振周波数になるように、インバータ回路部22の動作周波数を設定している。このため、並列共振用トランス25の出力側に新規に共振用リアクトルを設けることなく、並列共振用トランス25の2次側以降の共振回路もこの並列共振用トランス25で共用できるメリットがある。
Furthermore, the operating frequency of the inverter circuit unit 22 is set so as to be a resonance frequency between the internal inductance of the parallel resonance transformer 25 itself and the capacitance of the load (ozone generator 200). For this reason, there is an advantage that the parallel resonance transformer 25 can also share the resonance circuit on the secondary side and later of the parallel resonance transformer 25 without newly providing a resonance reactor on the output side of the parallel resonance transformer 25.
以上、原料ガスが比較的大きな総ガス流量Qで、高濃度なオゾンガスを取り出すオゾン発生器の手段として、発生器内の1単位の放電セルにおける放電空間を最適な範囲に設定することの重要性を説明した。以下、実施の形態1のオゾンガス発生システム1000の詳細について図1を参照して説明する。
As described above, the importance of setting the discharge space in the discharge cell of one unit in the generator to an optimum range as a means of an ozone generator for extracting high-concentration ozone gas at a relatively large total gas flow rate Q. Explained. Hereinafter, the details of the ozone gas generation system 1000 of Embodiment 1 will be described with reference to FIG.
オゾン用電源100からの投入する総放電電力DWを一定の5.0kWにして、オゾン発生器200の基本セルS1,S2を有する基本放電セル組の段数nを6(計12個の放電空間が形成される)とし、放電ギャップ長dを数十~数百μm条件を満足する一定長とし、以下の3種類のオゾン発生器を準備した。
The total discharge power DW input from the ozone power supply 100 is set to a constant 5.0 kW, and the number n of stages of the basic discharge cell set including the basic cells S1 and S2 of the ozone generator 200 is 6 (a total of 12 discharge spaces are provided). The following three types of ozone generators were prepared: the discharge gap length d was set to a fixed length satisfying the condition of several tens to several hundreds of μm.
Aタイプ放電セル形状の発生器…総放電面積Sが2500cm2、
Bタイプ放電セル形状の発生器…総放電面積Sが1250cm2、
Cタイプ放電セル形状の発生器…総放電面積Sが625cm2、
そして、Aタイプ放電セル形状の発生器~Cタイプ放電セル形状の発生器それぞれで取出せるオゾン濃度を求めた。 A type discharge cell-shaped generator: the total discharge area S is 2500 cm 2 ,
B-type discharge cell-shaped generator ... Total discharge area S is 1250 cm 2 ,
C-type discharge cell-shaped generator ... total discharge area S is 625 cm 2 ,
Then, the ozone concentration that can be taken out by each of the A-type discharge cell-shaped generator to the C-type discharge cell-shaped generator was determined.
Bタイプ放電セル形状の発生器…総放電面積Sが1250cm2、
Cタイプ放電セル形状の発生器…総放電面積Sが625cm2、
そして、Aタイプ放電セル形状の発生器~Cタイプ放電セル形状の発生器それぞれで取出せるオゾン濃度を求めた。 A type discharge cell-shaped generator: the total discharge area S is 2500 cm 2 ,
B-type discharge cell-shaped generator ... Total discharge area S is 1250 cm 2 ,
C-type discharge cell-shaped generator ... total discharge area S is 625 cm 2 ,
Then, the ozone concentration that can be taken out by each of the A-type discharge cell-shaped generator to the C-type discharge cell-shaped generator was determined.
Aタイプ放電セル形状の発生器では、1放電面積soが約209cm2、放電径(放電面の直径)が約φ170(mm)、投入できる放電電力密度Jが2W/cm2の設定となる。
In the A-type discharge cell-shaped generator, one discharge area so is set to about 209 cm 2 , the discharge diameter (discharge surface diameter) is set to about φ170 (mm), and the discharge power density J that can be charged is set to 2 W / cm 2 .
Bタイプ放電セル形状の発生器では、1放電面積soが約104cm2、放電径が約φ115(mm)、投入できる放電電力密度Jが4W/cm2の設定となる。
In the generator of the B type discharge cell shape, one discharge area so is about 104 cm 2 , the discharge diameter is about φ115 (mm), and the discharge power density J that can be charged is 4 W / cm 2 .
Cタイプ放電セル形状の発生器では、1放電面積soが約52cm2で、放電径が約φ81(mm)で、投入できる放電電力密度Jが8W/cm2の設定となる。
In the generator of the C type discharge cell shape, one discharge area so is about 52 cm 2 , the discharge diameter is about φ81 (mm), and the discharge power density J that can be applied is set to 8 W / cm 2 .
なお、オゾン発生器を冷却する冷却水温は一定の5℃に設定した。
The cooling water temperature for cooling the ozone generator was set to a constant 5 ° C.
図2に示すように、1放電面の放電径を比較的小さくすることにより、1放電空間におけるガス滞在時間Toは、1単位の放電セル(基本セルS1あるいはS2)に投入できる放電電力密度Jの増大割合に対し、Aタイプ放電セル形状の発生器は1倍、Bタイプ放電セル形状の発生器は1/2、Cタイプ放電セル形状の発生器は1/4となる。
As shown in FIG. 2, by making the discharge diameter of one discharge surface relatively small, the gas residence time To in one discharge space is a discharge power density J that can be supplied to one unit discharge cell (basic cell S1 or S2). The A type discharge cell shape generator is 1 time, the B type discharge cell shape generator is 1/2, and the C type discharge cell shape generator is 1/4.
基本放電セル組の積層数nを6(放電面数12(放電空間数12))にすることで、1単位の放電セルでの平均ガス流速vo/dは、Aタイプ放電セル形状の発生器は1/12、Bタイプ放電セル形状の発生器は1/6、Cタイプ放電セル形状の発生器は1/3になる。したがって、1放電空間の流速は放電電力密度Jの増大割合に対し、それぞれのタイプで、積層数n(放電面数12)に対応した1/12の割合でしか平均ガス流速vo/dは大きくならない。
By setting the number n of the stacks of the basic discharge cell groups to 6 (the number of discharge surfaces 12 (the number of discharge spaces 12)), the average gas flow velocity vo / d in one unit discharge cell is an A-type discharge cell-shaped generator. Is 1/12, the generator of the B type discharge cell shape is 1/6, and the generator of the C type discharge cell shape is 1/3. Therefore, the average gas flow velocity vo / d is large only at a ratio of 1/12 corresponding to the number n of stacked layers (the number of discharge surfaces 12) in each type with respect to the increase rate of the discharge power density J. Don't be.
その結果、オゾン発生器200内で生成したオゾンガスが放電空間を通過する際における総オゾン分解量Ydは、放電径が小さい放電セルの方が小さくなることが解る。1単位の放電セルの形状と放電セルの積層に対する高濃度オゾンガスが取出せる効果の詳細については後述する。
As a result, it is understood that the total ozone decomposition amount Yd when the ozone gas generated in the ozone generator 200 passes through the discharge space is smaller in the discharge cell having a smaller discharge diameter. The details of the effect of extracting high-concentration ozone gas with respect to the shape of one unit discharge cell and the stack of discharge cells will be described later.
図3は、実施の形態1のオゾン発生器200がA放電セル形状のタイプ発生器、Bタイプ放電セル形状の発生器、Cタイプ放電セル形状の発生器の場合、各々の放電面に原料ガスを流した場合における放電空間のガス滞在時間Toに対する総オゾン分解量Ydの特性を示すグラフである。
FIG. 3 shows a case where the ozone generator 200 according to the first embodiment is an A discharge cell shape type generator, a B type discharge cell shape generator, or a C type discharge cell shape generator. It is a graph which shows the characteristic of the total ozone decomposition amount Yd with respect to the gas residence time To of the discharge space at the time of flowing.
図3において、Aタイプ放電セル形状の発生器の総オゾン分解量Ydの特性5000a、Bタイプ放電セル形状の発生器の総オゾン分解量Ydの特性5000b、Cタイプ放電セル形状の発生器の総オゾン分解量Yd特性5000cとなる。
In FIG. 3, the characteristic 5000a of the total ozone decomposition amount Yd of the generator of the A type discharge cell shape, the characteristic 5000b of the total ozone decomposition amount Yd of the generator of the B type discharge cell shape, the total of the generator of the C type discharge cell shape The ozone decomposition amount Yd characteristic is 5000c.
また、破線で示した特性5000s1、特性5000s2は、放電電力密度Jにおける設定の境界値を考察した上下限を示している。
Further, the characteristics 5000s1 and 5000s2 indicated by the broken lines indicate the upper and lower limits in consideration of the setting boundary value in the discharge power density J.
特性5000s1は、Aタイプ放電セル形状の発生器とBタイプ放電セル形状の発生器との間の放電電力密度Jが2.5W/cm2設定に相当する境界特性である。
The characteristic 5000s1 is a boundary characteristic in which the discharge power density J between the A-type discharge cell-shaped generator and the B-type discharge cell-shaped generator corresponds to 2.5 W / cm 2 setting.
特性5000s2は、Bタイプ放電セル形状の発生器とCタイプ放電セル形状の発生器との間の放電電力密度Jが6.0W/cm2設定に相当する境界特性である。
The characteristic 5000s2 is a boundary characteristic in which the discharge power density J between the B-type discharge cell-shaped generator and the C-type discharge cell-shaped generator corresponds to a setting of 6.0 W / cm 2 .
図3で示す特性5000a、5000b、及び5000cを比較する。図3に示すように、放電径を小さくすれば、ガス滞在時間Toが50ms以下の範囲において、ガス滞在時間Toに対応して、一定の割合で、総オゾン分解量Ydが高まる。一方、ガス滞在時間Toが50ms以上の範囲において、総オゾン分解量Ydは放電径が小さいほど少なくことが実験的に確かめられた。
The characteristics 5000a, 5000b, and 5000c shown in FIG. 3 are compared. As shown in FIG. 3, if the discharge diameter is reduced, the total ozone decomposition amount Yd increases at a constant rate corresponding to the gas residence time To in the range where the gas residence time To is 50 ms or less. On the other hand, it was experimentally confirmed that the total ozone decomposition amount Yd is smaller as the discharge diameter is smaller in the range where the gas residence time To is 50 ms or more.
つまり、放電面の放電径が小さい条件設定にすれば、放電空間でのオゾン分解量ydが少なくなり、その分、オゾン発生器200からの取出しオゾン量Ytが増加することを意味する。この点においては、Cタイプ放電セル形状の発生器が最も優れている。
That is, if the discharge diameter of the discharge surface is set to be small, the ozone decomposition amount yd in the discharge space is reduced, and the amount of ozone Yt taken out from the ozone generator 200 is increased correspondingly. In this respect, a C-type discharge cell-shaped generator is most excellent.
一点鎖線で示した領域99aは、後に説明するが、高濃度のオゾンガスが取出せる範囲での総オゾン分解量Ydに相当する。図3に示すように、放電空間でのガス滞在時間Toは20ms~80msの範囲において、領域99aの総オゾン分解量Ydは、約400g/h~900g/hに抑えられており、特性5000aの総オゾン分解量Ydに比べ十分に低くなっているため、高濃度のオゾンガスを取出すことが期待できる。
The region 99a indicated by the alternate long and short dash line corresponds to the total ozone decomposition amount Yd in a range where high-concentration ozone gas can be taken out, as will be described later. As shown in FIG. 3, when the gas residence time To in the discharge space is in the range of 20 ms to 80 ms, the total ozone decomposition amount Yd in the region 99a is suppressed to about 400 g / h to 900 g / h. Since it is sufficiently lower than the total ozone decomposition amount Yd, it can be expected to extract high-concentration ozone gas.
図4は、Aタイプ放電セル形状の発生器、Bタイプ放電セル形状の発生器及びCタイプ放電セル形状の発生器それぞれの比電力値DW/Qに対する取出しオゾン濃度Ctの特性を示すグラフである。
FIG. 4 is a graph showing the characteristics of the extracted ozone concentration Ct with respect to the specific power value DW / Q of the A-type discharge cell-shaped generator, the B-type discharge cell-shaped generator, and the C-type discharge cell-shaped generator. .
図4において、Aタイプ放電セル形状の発生器のオゾン取出し濃度Ctの特性4000a、Bタイプ放電セル形状の発生器のオゾン取出し濃度Ctの特性4000b、Cタイプ放電セル形状の発生器のオゾン取出し濃度Ctの特性4000cが示されている。
In FIG. 4, the ozone extraction concentration Ct characteristic 4000a of the A type discharge cell shape generator, the ozone extraction concentration Ct characteristic 4000b of the B type discharge cell shape generator, and the ozone extraction concentration of the C type discharge cell shape generator. The Ct characteristic 4000c is shown.
また、破線で示した特性4000s1、特性4000s2は、図3と同じように、放電電力密度Jを可能な範囲で最大に設定できる放電セル形状の境界値を考察した上下限を示している。
Also, the characteristics 4000 s 1 and 4000 s 2 indicated by the broken lines indicate upper and lower limits in consideration of the boundary value of the discharge cell shape that can set the discharge power density J to the maximum possible range, as in FIG.
特性4000s1は、取出しオゾン濃度Ctが400g/m3が得られる放電電力密度Jの放電セル形状の下限境界の特性結果を示し、その放電電力密度Jは約2.5W/cm2まで設定できる放電セル形状である。
The characteristic 4000s1 shows the characteristic result of the lower limit boundary of the discharge cell density of the discharge power density J at which the extracted ozone concentration Ct is 400 g / m 3 , and the discharge power density J can be set to about 2.5 W / cm 2. Cell shape.
特性4000s2は、取出しオゾン濃Ctが400g/m3が得られる放電電力密度Jの放電セル形状の上限境界の特性結果を示し、その放電電力密度Jは約6.0W/cm2まで設定できる放電セル形状である。
The characteristic 4000s2 shows the characteristic result of the upper limit boundary of the discharge cell density of the discharge power density J at which the extracted ozone concentration Ct is 400 g / m 3 , and the discharge power density J can be set to about 6.0 W / cm 2. Cell shape.
取出しオゾン濃度Ctの特性は、比電力値DW/Qに応じた放電空間でのオゾン生成濃度を示すが、オゾン発生器に投入できる放電電力密度Jが異なる放電セル形状にした場合、取出しオゾン濃度Ctの特性も異なる。
The characteristic of the extracted ozone concentration Ct indicates the ozone generation concentration in the discharge space according to the specific power value DW / Q, but when the discharge power density J that can be supplied to the ozone generator is different in discharge cell shape, the extracted ozone concentration The characteristics of Ct are also different.
しかしながら、各特性(4000a、4000b、4000c)を有するAタイプ~Cタイプのオゾン発生器において、オゾン生成濃度に相当する図4の比電力値DW/Qに対する特性(二点鎖線の接線特性)の勾配を見ると、放電面の放電径の小さい、放電電力密度Jを高くできるようにした放電セル形状ほど、小さい結果となる。つまり、放電空間で生成するオゾン生成能力は、放電電力密度Jが高くできるようにした放電セル形状の方が小さくなることを示している。
However, in the A type to C type ozone generator having each characteristic (4000a, 4000b, 4000c), the characteristic (tangential characteristic of the two-dot chain line) with respect to the specific power value DW / Q in FIG. 4 corresponding to the ozone generation concentration. Looking at the gradient, the smaller the discharge diameter of the discharge surface and the higher the discharge power density J, the smaller the discharge cell shape. That is, the ozone generation capability generated in the discharge space is smaller in the discharge cell shape that allows the discharge power density J to be increased.
図4で示す特性4000a、4000b、及び4000cは、オゾン生成濃度特性からオゾンガスの分解量を差し引いたものを示している。オゾンガスの分解量は、放電空間でオゾンガスが通過する際、オゾンガスが放電中の電子ne、イオンn+や放電ガスngと衝突することによって生じるオゾン分解量と放電中に滞在しているオゾン自身の自己分解量との総和になる。
The characteristics 4000a, 4000b, and 4000c shown in FIG. 4 indicate the ozone generation concentration characteristics minus the ozone gas decomposition amount. The amount of ozone gas decomposed is the amount of ozone decomposed by the collision of the ozone gas with the electrons ne, ions n + and discharge gas ng when the ozone gas passes through the discharge space, and the ozone itself staying in the discharge. Total with self-decomposition amount.
比電力値DW/Qに対する特性の接線特性であるオゾン生成濃度特性は、Aタイプ放電セル形状の発生器が最も大きく、放電セル径が小さくなり、投入できる放電電力密度Jを大きくしたものほどオゾン生成濃度特性は低くなる傾向を示している。
The ozone generation concentration characteristic, which is a tangential characteristic of the specific power value DW / Q, is the largest in the A-type discharge cell shape generator, the discharge cell diameter is reduced, and the discharge power density J that can be input is increased. The product concentration characteristic tends to be low.
つまり、オゾン生成能力は、放電電力密度Jに逆比例する結果になる。放電空間中の窒素ガスの触媒作用や放電面での光触媒作用によるオゾン生成能力は放電電力密度Jを高くした放電セル形状ほど低くなる傾向を示している。
That is, the ozone generation ability is inversely proportional to the discharge power density J. The ozone generation ability by the catalytic action of nitrogen gas in the discharge space and the photocatalytic action on the discharge surface tends to decrease as the discharge cell density J increases.
しかし、図3で示したように、放電径を変えた放電セルを多段に積層したオゾン発生器においては、放電径を小さくすると放電空間のガス滞在時間Toを短くすることができ、生成したオゾンの分解量を少なくすることができる。なぜなら、オゾンガスの分解は、放電空間内でオゾンガスが電子や放電ガスと衝突する分解と放電内で滞在している期間に生じる。そのため、生成したオゾン自身の自己分解と衝突による分解との総分解量は、ガス滞在時間Toを短くすることによって単純に小さくすることができるからである。
However, as shown in FIG. 3, in an ozone generator in which discharge cells with different discharge diameters are stacked in multiple stages, the gas residence time To in the discharge space can be shortened by reducing the discharge diameter, and the generated ozone The amount of decomposition can be reduced. This is because the decomposition of ozone gas occurs during the period in which the ozone gas collides with electrons and discharge gas in the discharge space and during the stay in the discharge. For this reason, the total decomposition amount of the generated ozone itself due to self-decomposition and decomposition due to collision can be simply reduced by shortening the gas residence time To.
上記要因により、Aタイプ放電セル形状の発生器、Bタイプ放電セル形状の発生器及びCタイプ放電セル形状の発生器の取出しオゾン濃度Ctの特性が異なり、Bタイプ放電セル形状の発生器では、図4で示す領域99a内において、400g/m3以上の高濃度オゾンを取り出すことができる。
Due to the above factors, the characteristics of the extracted ozone concentration Ct of the A type discharge cell shape generator, the B type discharge cell shape generator, and the C type discharge cell shape generator are different. In the B type discharge cell shape generator, In the region 99a shown in FIG. 4, high-concentration ozone of 400 g / m 3 or more can be extracted.
つまり、Aタイプ放電セル形状の発生器では、オゾン生成量は高いが、ガス滞在時間Toが比較的長いため、衝突による分解とオゾン自身の自己分解との総和であるオゾンの分解量が大きくなり、結果として、最大でも400g/m3未満の濃度のオゾンガスしか取り出せないことを示している。
In other words, in the A-type discharge cell-shaped generator, the amount of ozone generated is high, but the gas residence time To is relatively long, so the amount of ozone decomposition, which is the sum of the decomposition due to collision and the self-decomposition of ozone itself, becomes large. As a result, it is shown that only ozone gas having a concentration of less than 400 g / m 3 at the maximum can be taken out.
Bタイプ放電セル形状の発生器では、オゾン生成量はAタイプ放電セル形状の発生器に比べ低くなるが、ガス滞在時間Toが短くなるため、衝突による分解とオゾン自身の自己分解との総和であるオゾンの分解量が小さくなる。したがって、Bタイプ発生器は、結果として、比電力値DW/Qが600W・min/L以上の範囲で、400g/m3以上の高濃度のオゾンが取出せることになる。
In the generator of the B type discharge cell shape, the amount of ozone generated is lower than that of the generator of the A type discharge cell, but since the gas residence time To is shortened, the total of decomposition by collision and self-decomposition of ozone itself A certain amount of ozone is reduced. Therefore, as a result, the B type generator can extract ozone having a high concentration of 400 g / m 3 or more in a range where the specific power value DW / Q is 600 W · min / L or more.
本願発明は、Bタイプ放電セル形状の発生器のような高濃度のオゾンが取出せるオゾン発生器の放電セル形状と動作条件を見つけ出すことにあり、以下の要件を満足することが望ましいことを本願発明者は見出した。
The present invention is to find out the discharge cell shape and operating conditions of an ozone generator that can extract high-concentration ozone such as a B-type discharge cell shape generator, and it is desirable that the following requirements be satisfied. The inventor found out.
オゾン発生器200に供給する原料ガスの総ガス流量Qを略3.0L/min以上にすると、オゾン用電源100から投入する総放電電力DWは少なくとも1.8kW以上の電力を投入する必要がある。
When the total gas flow rate Q of the raw material gas supplied to the ozone generator 200 is approximately 3.0 L / min or more, the total discharge power DW input from the ozone power supply 100 needs to be at least 1.8 kW or more. .
さらに、Cタイプ放電セル形状の発生器では、所定の放電電力DWを投入するために放電電力密度Jを高くするため、放電空間におけるオゾン生成能力(二点鎖線)で決定するオゾン生成量が極端に低くなる。そのため、ガス滞在時間Toを短くなることで、衝突による分解とオゾン自身の自己分解との総和であるオゾン量の分解量を小さくしても、取出しオゾン濃度Ctは低くなる。
Furthermore, in the generator of the C type discharge cell shape, the discharge power density J is increased in order to input the predetermined discharge power DW, and therefore the ozone generation amount determined by the ozone generation capability (two-dot chain line) in the discharge space is extremely high. It becomes low. Therefore, by reducing the gas residence time To, even if the decomposition amount of the ozone amount, which is the sum of the decomposition due to the collision and the self-decomposition of ozone itself, is reduced, the extracted ozone concentration Ct is lowered.
結果として、Cタイプ放電セル形状の発生器では、原料ガスの総ガス流量Qと投入した放電電力DWの条件において、最大でも320g/m3未満の濃度しか取り出せないことが判明した。
As a result, it was found that a C-type discharge cell-shaped generator can extract only a concentration of less than 320 g / m 3 at the maximum under the conditions of the total gas flow rate Q of the raw material gas and the input discharge power DW.
このことから、400g/m3以上の高濃度のオゾンが取出せるオゾン発生器を実現するには、最適な放電セル形状があり、実施の形態1のオゾン発生器においては、放電セル形状の上限範囲としては、境界特性4000s2で示したように、放電電力密度Jを約6W/cm2未満に限定したものが望ましく、放電電力密度Jの下限としては、境界特性4000s1で示したように、放電電力密度Jを約2.5W/cm2以上に設定したものが望ましいという結果になった。
From this, there is an optimum discharge cell shape to realize an ozone generator capable of extracting ozone with a high concentration of 400 g / m 3 or more. In the ozone generator of Embodiment 1, the upper limit of the discharge cell shape is present. As the range, it is desirable that the discharge power density J is limited to less than about 6 W / cm 2 as indicated by the boundary characteristic 4000 s 2, and the lower limit of the discharge power density J is the discharge characteristic as indicated by the boundary characteristic 4000 s 1. As a result, it was desirable that the power density J be set to about 2.5 W / cm 2 or more.
図5は、Aタイプ放電セル形状の発生器、Bタイプ放電セル形状の発生器及びCタイプ放電セル形状の発生器それぞれの原料ガスの総ガス流量Qに対する取出しオゾン濃度Ctの特性を示すグラフである。
FIG. 5 is a graph showing characteristics of the extracted ozone concentration Ct with respect to the total gas flow rate Q of the raw material gas of each of the A type discharge cell shape generator, the B type discharge cell shape generator, and the C type discharge cell shape generator. is there.
図5において、特性3000aはAタイプ放電セル形状の発生器の特性を示し、特性3000bはBタイプ放電セル形状の発生器の特性を示し、特性3000cはCタイプ放電セル形状の発生器の特性を示す。
In FIG. 5, a characteristic 3000a indicates a characteristic of an A type discharge cell shape generator, a characteristic 3000b indicates a characteristic of a B type discharge cell shape generator, and a characteristic 3000c indicates a characteristic of a C type discharge cell shape generator. Show.
特性枠である領域99aは、取出しオゾン濃度が400g/m3以上の高濃度のオゾンが得られるガス流量域を示し、Bタイプ放電セル形状の発生器において、供給する原料ガスの総ガス流量Qは、約25L/min未満で400g/m3以上の高濃度が得られることが分かった。
A region 99a which is a characteristic frame indicates a gas flow rate region in which a high concentration of ozone with an extracted ozone concentration of 400 g / m 3 or more is obtained, and the total gas flow rate Q of the raw material gas to be supplied in the generator of the B type discharge cell shape. It was found that a high concentration of 400 g / m 3 or more can be obtained at less than about 25 L / min.
さらに、特性枠99bは、従来のオゾン発生器相当のAタイプ放電セル形状の発生器で得られるオゾン濃度特性3000aに比べ、比較的高濃度なオゾンガスが得られるガス流量域を示し、Bタイプ放電セル形状の発生器において、供給する原料ガスの総ガス流量Qは、50L/min未満で高濃度なオゾンガスが得られることが分かった。
Further, the characteristic frame 99b shows a gas flow rate region where ozone gas having a relatively high concentration can be obtained as compared with the ozone concentration characteristic 3000a obtained by the A type discharge cell-shaped generator corresponding to the conventional ozone generator, and the B type discharge. It was found that in the cell-shaped generator, high concentration ozone gas was obtained when the total gas flow rate Q of the raw material gas to be supplied was less than 50 L / min.
また、図5では、供給する原料ガスの総ガス流量Qが、略3.0L/min未満においては、Aタイプ放電セル形状の発生器においても、400g/m3以上の高濃度のオゾンガスを得ることができる。しかし、この場合、取出せる総オゾン量は100g/h未満であり、少量のオゾン量を必要とする市場は少ない。また、本オゾン発生器では、大流量のオゾンガスが取り出せ、かつ、高濃度なオゾンガスが得られることを目的としているため、低ガス流量における高濃度のオゾンガスを得られるものは射程外となる。
Further, in FIG. 5, when the total gas flow rate Q of the source gas to be supplied is less than about 3.0 L / min, a high-concentration ozone gas of 400 g / m 3 or more is obtained even in the A-type discharge cell-shaped generator. be able to. However, in this case, the total amount of ozone that can be taken out is less than 100 g / h, and there are few markets that require a small amount of ozone. In addition, the present ozone generator aims to obtain a high-concentration ozone gas from which a large flow-rate ozone gas can be taken out, so that a high-concentration ozone gas at a low gas flow rate is out of range.
さらに、Aタイプ放電セル形状の発生器で、特殊なオゾン発生器として、発生器の冷却温度を5℃未満にして、400g/m3以上の高濃度のオゾンガスを得ることが考えられる。しかしながら、冷却温度を5℃未満にしたものは冷却能力をアップした付帯設備が必要になり、実用上のメリットがないため、実施の形態1では、オゾンガス発生システム1000として冷却温度の適用温度としては5℃以上に設定とした。
Furthermore, it is conceivable to obtain a high-concentration ozone gas of 400 g / m 3 or more by setting the cooling temperature of the generator to less than 5 ° C. as a special ozone generator with a generator of A type discharge cell shape. However, since the cooling temperature of less than 5 ° C. requires ancillary equipment with an increased cooling capacity, and there is no practical merit, in the first embodiment, as the ozone gas generation system 1000, the application temperature of the cooling temperature is It set to 5 degreeC or more.
オゾン発生器200は、各放電セルの接地冷却電極1と高圧電極3a、3bとの間にオゾン発生用交流電圧を印加し、酸素ガスを含んだ原料ガスが注入された放電空間に放電現象を生じさせてオゾンガスを発生させている。
The ozone generator 200 applies an ozone generating AC voltage between the ground cooling electrode 1 and the high voltage electrodes 3a and 3b of each discharge cell, and causes a discharge phenomenon in the discharge space into which the raw material gas containing oxygen gas is injected. Ozone gas is generated.
図1に示したオゾン用電源100の並列共振用トランス25から高圧ブッシングを介して高圧電極3a、3bの給電部である高電圧端子HVにオゾン発生用交流電圧が印加される。このオゾン発生用交流電圧によって総放電電力DWが規定される。
AC voltage for ozone generation is applied from the parallel resonance transformer 25 of the ozone power supply 100 shown in FIG. 1 to the high voltage terminal HV which is the power feeding part of the high voltage electrodes 3a and 3b via the high voltage bushing. The total discharge power DW is defined by the ozone generating AC voltage.
すると、各放電セル(基本セルS1あるいは基本セルS2)の放電空間に誘電体電極2a、2bを介して誘電体バリア放電が発生する。この際、総放電電力DWに基づき各放電セルに投入できる放電電力密度J(=DW/S)(W/cm2)の電力密度が放電セルに投入される。各放電セルの放電空間で生成されたオゾンガスは、図2で示すように、放電空間の中央に設けた開口部15から接地冷却電極1内の出力経路17を介して、マニホールドブロック9のオゾンガス出力経路92に集められ、オゾン発生器200から取出される。
Then, dielectric barrier discharge is generated in the discharge space of each discharge cell (basic cell S1 or basic cell S2) via the dielectric electrodes 2a and 2b. At this time, a power density of discharge power density J (= DW / S) (W / cm 2 ) that can be input to each discharge cell based on the total discharge power DW is input to the discharge cell. As shown in FIG. 2, the ozone gas generated in the discharge space of each discharge cell is output from the manifold block 9 through the output path 17 in the ground cooling electrode 1 from the opening 15 provided in the center of the discharge space. Collected in path 92 and removed from ozone generator 200.
接地冷却電極1及び低圧冷却板5の内部は冷却するための冷却空間(図示せず)が設けられており、基台10に設けられた冷却水経路、マニホールドブロック9の冷却水出力経路91及び冷却水入力経路93を経由して、接地冷却電極1及び低圧冷却板5内に冷却水を流すことで各放電セルを冷却している。このように、接地冷却電極1、低圧冷却板5、基台10、及びマニホールドブロック9を含んで、放電セルを所定の冷却温度に冷却する冷却機構が構成される。
The ground cooling electrode 1 and the low-pressure cooling plate 5 are provided with cooling spaces (not shown) for cooling. The cooling water path provided in the base 10, the cooling water output path 91 of the manifold block 9, Each discharge cell is cooled by flowing cooling water into the ground cooling electrode 1 and the low-pressure cooling plate 5 via the cooling water input path 93. Thus, a cooling mechanism that cools the discharge cell to a predetermined cooling temperature is configured including the ground cooling electrode 1, the low-pressure cooling plate 5, the base 10, and the manifold block 9.
以下、1単位の放電セルにおける1放電面の形状について説明し、さらに、複数の放電セルを積層する効果について説明する。
Hereinafter, the shape of one discharge surface in one unit discharge cell will be described, and further, the effect of stacking a plurality of discharge cells will be described.
オゾンガス発生システム1000において、基本セルS1及びS2を有する基本放電セル組を多段(6段)に積層したもの(放電面:12面)で高濃度なオゾンガスが取出せる条件について説明した。
In the ozone gas generation system 1000, the conditions under which high-concentration ozone gas can be taken out by stacking the basic discharge cell groups having the basic cells S1 and S2 in multiple stages (6 stages) (discharge surface: 12 surfaces) have been described.
ここでは、より本願発明の適用範囲を明確にするため、1単位の放電セルにおける1放電空間での高濃度オゾンガスが取出せる条件を説明する。以下、原料ガスの総ガス流量Q(原料ガス流量)のガス流量範囲を略3.0L/min以上の大流量域において、より高濃度(400g/m3相当以上)なオゾンガスが取出せる放電セルの積層する効果について説明する。
Here, in order to clarify the application range of the present invention, the conditions under which high-concentration ozone gas can be taken out in one discharge space in one unit discharge cell will be described. Hereinafter, a discharge cell capable of extracting ozone gas with a higher concentration (equivalent to 400 g / m 3 or more) in a large flow rate range of approximately 3.0 L / min or more in the gas flow rate range of the total gas flow rate Q (source gas flow rate) of the source gas The effect of stacking will be described.
積層したオゾン発生器における図5で示した総ガス流量Qに対する取り出しオゾン濃度Ct特性から。高濃度で所定量のオゾンガスを効率よく取出すべく、1単位の放電セル(1放電面)に供給する原料ガス流量qoが略0.5L/min~略2.5L/min弱の範囲を満足するように、1放電面の放電面積soを小さくした放電セル形状に設定することが望ましい。
From the extracted ozone concentration Ct characteristics with respect to the total gas flow rate Q shown in FIG. 5 in the laminated ozone generator. In order to efficiently extract a predetermined amount of ozone gas at a high concentration, the raw material gas flow rate qo supplied to one unit discharge cell (one discharge surface) satisfies the range of about 0.5 L / min to about 2.5 L / min. Thus, it is desirable to set the discharge cell shape so that the discharge area so of one discharge surface is small.
すなわち、高ガス流量域まで高濃度なオゾンガスが取出すために、1単位の放電セルの多段に積層すべく、基本放電セル組の積層枚数nを増やす手段を講じ、1放電面積soを略約30cm2~略160cm2に設定することが重要である。また、原料ガスの総ガス流量Qおいて、高出力の取出しオゾン量Ytを得るために、放電面の放電径を小さくして放電面積soを規定した1単位の放電セルを多段に積層する(積層枚数nを増やす)手段を講じ、かつ、投入できる放電電力密度Jを略2.5W/cm2~略6.0W/cm2の範囲に設定したオゾンガス発生システム1000が望ましい。
That is, in order to take out high-concentration ozone gas up to a high gas flow rate range, a means for increasing the number n of the basic discharge cell sets to be stacked in multiple stages of discharge cells of one unit is provided, and the discharge area so is about 30 cm. It is important to set 2 to approximately 160 cm 2 . Further, in order to obtain a high output take-out ozone amount Yt at the total gas flow rate Q of the raw material gas, one unit of discharge cells in which the discharge diameter of the discharge surface is reduced and the discharge area so is defined are stacked in multiple stages ( laminating increase the number n) taking steps, and substantially 2.5 W / cm 2 ~ substantially ozone gas generator system 1000 is set in a range of 6.0 W / cm 2 is desirable to put it discharge power density J.
そして、1放電面積soと放電電力密度Jとから放電電力dw(=so・J)が求まり、放電ギャップ長dを数十~数百μmとした1放電空間に供給する原料ガス流量qoを略0.5L/min~略2.5L/min弱範囲において、Bタイプの放電セル形状を採用した場合を考える。この場合、オゾン濃度が400g/m3を超える高濃度オゾンが取出せ、多段に積層する枚数nに比例して取出せるオゾン流量を増やせることになる。また、Bタイプの放電セル形状において、総ガス流量Qで、可能な範囲で最大の取出しオゾン量Ytを得るため、上述した条件を満足し、かつ、可能な範囲で最大となるように、放電電力密度Jから放電電力dw(=so・J)を決定し、放電ギャップ長dを数十~数百μmとした1放電空間に供給する原料ガス流量qoを可能な範囲で最大に設定することが望ましい。
Then, the discharge power dw (= so · J) is obtained from one discharge area so and the discharge power density J, and the raw material gas flow rate qo supplied to one discharge space in which the discharge gap length d is several tens to several hundreds μm is abbreviated. Consider a case where a B type discharge cell shape is employed in the range of 0.5 L / min to a little less than about 2.5 L / min. In this case, high-concentration ozone with an ozone concentration exceeding 400 g / m 3 can be extracted, and the ozone flow rate that can be extracted in proportion to the number n of layers stacked in multiple stages can be increased. Further, in the B type discharge cell shape, in order to obtain the maximum extracted ozone amount Yt within the possible range with the total gas flow rate Q, the discharge is performed so as to satisfy the above-described conditions and to be the maximum within the possible range. The discharge power dw (= so · J) is determined from the power density J, and the raw material gas flow rate qo supplied to one discharge space with a discharge gap length d of several tens to several hundred μm is set to the maximum possible range. Is desirable.
1放電面積soを30cm2~160cm2に規定する具体的方法としては、1例としては平面視して円状の放電セルの放電面の直径をφ70mm~φ140mmの範囲にして、放電面積soを規定していることになり、原料ガスの総ガス流量Qを高めたオゾン発生器にするには、1単位の放電セルを多段に積層して、発生器の総放電面積S(=2・n・so)を確保する必要がある。
As a specific method for defining one discharge area so to be 30 cm 2 to 160 cm 2 , as an example, the diameter of the discharge surface of a circular discharge cell in a plan view is set in a range of φ70 mm to φ140 mm, and the discharge area so is In order to make an ozone generator with a higher total gas flow rate Q of raw material gas, one unit of discharge cells is stacked in multiple stages, and the total discharge area S (= 2 · n・ So) needs to be secured.
また、1放電面の放電面積soを30cm2~160cm2に規定した放電セル形状の発生器において、投入する総放電電力DWをパラメータとする放電電力密度J(=DW/S)を低い値に規定するには、オゾン発生器の総放電面積Sを大きくしなければならなくなり、基準放電セル組の積層枚数n(=S/(2・so))を増やす必要が生じる。積層枚数nを増やすとオゾン発生器の製作コスト等が高くなることを避けるには、1放電面に投入できる放電電力密度Jを、オゾンガス発生システム1000において最も有効な条件範囲内で高い値に設定することが望ましい。
Further, in a discharge cell-shaped generator in which the discharge area so of one discharge surface is defined as 30 cm 2 to 160 cm 2 , the discharge power density J (= DW / S) with the total discharge power DW input as a parameter is set to a low value. In order to define, it is necessary to increase the total discharge area S of the ozone generator, and it is necessary to increase the number n (= S / (2 · so)) of reference discharge cell sets. In order to avoid an increase in the production cost of the ozone generator when the number n of stacked layers is increased, the discharge power density J that can be applied to one discharge surface is set to a high value within the most effective condition range in the ozone gas generation system 1000. It is desirable to do.
高濃度なオゾンガスが取出せる原料ガスの総ガス流量Qをより大ガス流量までアップさせたオゾンガス発生システム1000を構成するには、放電面積so、放電電力密度J、投入した放電電力dwおよび1放電空間に供給する原料ガス流量qoに関し、上述した条件を満足する1単位の放電セルを実現し、上述した積層枚数nを増やすことが不可欠になる。
In order to configure the ozone gas generation system 1000 in which the total gas flow rate Q of the raw material gas from which high-concentration ozone gas can be extracted is increased to a larger gas flow rate, the discharge area so, the discharge power density J, the input discharge power dw, and one discharge With respect to the raw material gas flow rate qo supplied to the space, it is indispensable to realize one unit discharge cell that satisfies the above-described conditions and to increase the above-described number n of stacked layers.
また、原料ガスの総ガス流量Qが大きい領域において、高出力の取出しオゾン量Ytを最大限に高めるオゾンガス発生システム1000を構成するには、放電面積so、放電電力密度J、投入した放電電力dwおよび1放電空間に供給する原料ガス流量qoを、可能な範囲で最大値に設定し、上述した条件を満足する1放電面を実現し、積層枚数nで多段に基本放電セル組を積層することが必要となる。
In order to configure the ozone gas generation system 1000 that maximizes the high output take-out ozone amount Yt in the region where the total gas flow rate Q of the raw material gas is large, the discharge area so, the discharge power density J, the input discharge power dw The raw material gas flow rate qo to be supplied to one discharge space is set to the maximum value within a possible range, one discharge surface satisfying the above-described conditions is realized, and basic discharge cell sets are stacked in multiple stages with the number n stacked. Is required.
つまり、オゾン発生器200において、上述した条件を満足する1放電面を2n個設け、投入する総放電電力DW(=2・n・dw)を満足するオゾン発生用交流電圧を出力するオゾン用電源100が必要になる。
That is, in the ozone generator 200, 2n discharge surfaces that satisfy the above-described conditions are provided, and an ozone power source that outputs an alternating current voltage for generating ozone that satisfies the total discharge power DW (= 2 · n · dw) to be input. 100 is required.
その結果、オゾンガス発生システム1000は、2n個の放電空間に供給する原料ガスの総ガス流量Q(=α・2・n・qo)を供給可能になる。なお、α値は、1放電面を2n個分積層してオゾンガスを合流させた場合の減損率を示す定数である。
As a result, the ozone gas generation system 1000 can supply the total gas flow rate Q (= α · 2 · n · qo) of the source gas supplied to the 2n discharge spaces. Note that the α value is a constant indicating the loss ratio when 2n 1 discharge surfaces are stacked and ozone gas is merged.
次に高濃度オゾンガスを取り出すためのオゾン発生器の動作に関しての諸条件について説明する。
Next, various conditions regarding the operation of the ozone generator for extracting high-concentration ozone gas will be described.
図6は、オゾン用電源100の動作周波数fに対する総放電電力DWを投入した際のAタイプ放電セル形状の発生器、Bタイプ放電セル形状の発生器及びCタイプ放電セル形状の発生器に印加される負荷ピーク電圧Vpの特性を示すグラフである。
FIG. 6 shows the application to the A-type discharge cell-shaped generator, the B-type discharge cell-shaped generator, and the C-type discharge cell-shaped generator when the total discharge power DW with respect to the operating frequency f of the ozone power supply 100 is input. It is a graph which shows the characteristic of the load peak voltage Vp performed.
以下、オゾン用電源100の動作周波数を20kHz~50kHzにした根拠について図6を参照して説明する。
Hereinafter, the basis for setting the operating frequency of the ozone power supply 100 to 20 kHz to 50 kHz will be described with reference to FIG.
図6において、特性7000aはAタイプ放電セル形状の発生器の放電電力密度J(=DW/S)が2W/cm2条件時の負荷ピーク電圧Vpの特性を示す。
In FIG. 6, a characteristic 7000a indicates a characteristic of the load peak voltage Vp when the discharge power density J (= DW / S) of the A-type discharge cell-shaped generator is 2 W / cm 2 .
特性7000bは、Bタイプ放電セル形状の発生器の放電電力密度Jが4W/cm2条件時の負荷ピーク電圧Vpの特性を示す。
A characteristic 7000b indicates a characteristic of the load peak voltage Vp when the discharge power density J of the B-type discharge cell-shaped generator is 4 W / cm 2 .
また、特性7000cはCタイプ発生器の放電電力密度Jが8W/cm2条件時の負荷ピーク電圧Vp特性を示す。
A characteristic 7000c indicates a load peak voltage Vp characteristic when the discharge power density J of the C-type generator is 8 W / cm 2 .
放電電力密度Jが4W/cm2条件時の負荷ピーク電圧Vpの特性7000bにおいて、Bタイプ放電セル形状の発生器では、領域99a内で最も高濃度のオゾンガスが取出せることが実験的に判明した。
In the characteristic 7000b of the load peak voltage Vp when the discharge power density J is 4 W / cm 2, it was experimentally found that the B-type discharge cell-shaped generator can extract the ozone gas with the highest concentration in the region 99a. .
破線で示した特性7000s1、特性7000s2は、本発明範囲の放電電力密度Jの放電セル形状の境界値を考察した上下限を示した特性図である。
Characteristic 7000s1 and characteristic 7000s2 indicated by broken lines are characteristic diagrams showing upper and lower limits in consideration of the boundary value of the discharge cell density of the discharge power density J in the range of the present invention.
特性7000s1は、放電電力密度Jが少なくとも2.5W/cm2の放電セル形状の境界特性を示している。特性7000s2は、放電電力密度Jの設定が最大限界の6W/cm2の放電セル形状の境界特性である。
The characteristic 7000s1 shows the boundary characteristic of the discharge cell shape with the discharge power density J of at least 2.5 W / cm 2 . The characteristic 7000s2 is a boundary characteristic of the discharge cell shape of 6 W / cm 2 where the setting of the discharge power density J is the maximum limit.
したがって、領域99aと特性7000s1,7000s2との関係から、所定のガス流量Qにおいて、400g/m3以上の高濃度のオゾンガスが得られ、かつ、供給するガス流量Qで、所望の取出しオゾン量Ytが得られる装置にする放電電力密度J(=DW/S)を得るためには、放電電力密度Jの下限は約2.5W/cm2付近以上で、放電電力密度Jの上限は約6.0W/cm2の条件範囲にするのが望ましい結果になった。
Therefore, from the relationship between the region 99a and the characteristics 7000s1 and 7000s2, a high concentration ozone gas of 400 g / m 3 or more can be obtained at a predetermined gas flow rate Q, and the desired extracted ozone amount Yt at the gas flow rate Q to be supplied. In order to obtain the discharge power density J (= DW / S) for a device capable of obtaining the above, the lower limit of the discharge power density J is about 2.5 W / cm 2 or more, and the upper limit of the discharge power density J is about 6. Desirable results were obtained when the condition range was 0 W / cm 2 .
以下、オゾン用電源100の動作周波数fを20kHz~50kHzの電源方式を説明する。そして、オゾン用電源100において、高周波インバータ部であるインバータ回路部22を採用したこと、及び、高周波・高電圧トランスである並列共振用トランス25とオゾン発生器200との間に並列共振型を実現したことについて説明する。
Hereinafter, a power supply system in which the operating frequency f of the ozone power supply 100 is 20 kHz to 50 kHz will be described. In the ozone power source 100, the inverter circuit unit 22 which is a high-frequency inverter unit is adopted, and a parallel resonance type is realized between the parallel resonance transformer 25 which is a high-frequency / high-voltage transformer and the ozone generator 200. Explain what you did.
図6に示すように、動作周波数fが低くなると、比較的大きい総放電電力DWを投入して、放電電力密度J(=DW/S)を高くすると、負荷ピーク電圧Vpが高くなる特性を示す。
As shown in FIG. 6, when the operating frequency f is lowered, a relatively large total discharge power DW is input, and when the discharge power density J (= DW / S) is increased, the load peak voltage Vp increases. .
負荷ピーク電圧Vpが高くなると、オゾン発生器200の耐電圧を十分確保するために、オゾン発生器200を大きくする必要がある。負荷ピーク電圧Vpは、オゾン用電源100としては10kVp未満であれば、インバータ回路部22は、比較的コンパクトで安定したものが可能である。
When the load peak voltage Vp becomes high, it is necessary to enlarge the ozone generator 200 in order to ensure a sufficient withstand voltage of the ozone generator 200. If the load peak voltage Vp is less than 10 kVp for the ozone power source 100, the inverter circuit unit 22 can be relatively compact and stable.
また、負荷ピーク電圧Vpが7kVp以上になれば、耐電圧を確保すべく、並列共振用トランス25を大きくしたり、オゾン発生器の高圧部と低圧部との空間距離を大きくしたりする必要が生じ、オゾン発生器自身が大きくなる。
Further, if the load peak voltage Vp is 7 kVp or more, it is necessary to increase the parallel resonance transformer 25 or increase the spatial distance between the high pressure portion and the low pressure portion of the ozone generator in order to ensure a withstand voltage. And the ozone generator itself becomes larger.
さらに、並列共振用トランス25の巻数比が大きくなるなどの問題点が生じる。そのため、オゾンガス発生システム1000としては、負荷印加電圧Vdにおける負荷ピークであるVpは7kVp(5.0kVrms)未満となるようにして、所望の総放電電力DWを供給することが望ましい。
Furthermore, problems such as an increase in the turn ratio of the parallel resonance transformer 25 occur. Therefore, it is desirable for the ozone gas generation system 1000 to supply the desired total discharge power DW so that the load peak Vp at the load applied voltage Vd is less than 7 kVp (5.0 kVrms).
図6に示すように、負荷ピーク電圧Vpが7kVp(5.0kVrms)未満としたオゾン用電源100に限定した場合、400g/m3以上の高濃度なオゾンガスが取出せ、かつ、総ガス流量Qで取出しオゾン量Ytを最大とするオゾンガス発生システム1000としては、動作周波数fは20kHz以上が望ましい。
As shown in FIG. 6, when the load peak voltage Vp is limited to the ozone power source 100 having a load peak voltage of less than 7 kVp (5.0 kVrms), a high-concentration ozone gas of 400 g / m 3 or more can be taken out and the total gas flow rate Q is In the ozone gas generation system 1000 that maximizes the extracted ozone amount Yt, the operating frequency f is preferably 20 kHz or more.
一方、動作周波数fが高くなると、オゾン発生器200で生成されるオゾン生成能力が低下する傾向があるため、400g/m3以上の高濃度オゾンが取出せる高濃度オゾンガス発生装置としては、動作周波数fは50kHz未満が望ましい。
On the other hand, as the operating frequency f increases, the ozone generating ability generated by the ozone generator 200 tends to decrease. Therefore, as a high concentration ozone gas generator that can extract high concentration ozone of 400 g / m 3 or more, the operating frequency is f is preferably less than 50 kHz.
それに加え、総ガス流量Q(原料ガス流量)のガス流量範囲を略3.0L/min以上のガス流量で、400g/m3以上の高濃度なオゾンガスを取り出せ、かつ、総ガス流量Qで取出しオゾン量Ytを最大にするためのオゾンガス発生システム1000にするには、1.8kW以上の総放電電力DWを供給するオゾン用電源100が必要となる。したがって、1.8kW以上が出力できる並列共振用トランス25としては、オゾン用電源のノイズ対策面や出力電力の安定供給面を考慮すると、実用上、動作周波数fは20kHz以上で30kHz未満が特に望ましい。
In addition, high-concentration ozone gas of 400 g / m 3 or more can be taken out at a gas flow rate range of approximately 3.0 L / min or more in the gas flow range of the total gas flow rate Q (raw material gas flow rate), and can be taken out at the total gas flow rate Q. In order to obtain the ozone gas generation system 1000 for maximizing the ozone amount Yt, the ozone power source 100 that supplies the total discharge power DW of 1.8 kW or more is required. Therefore, as a parallel resonance transformer 25 capable of outputting 1.8 kW or more, the operating frequency f is particularly preferably 20 kHz or more and less than 30 kHz in consideration of the noise countermeasures of the ozone power supply and the stable supply of output power. .
以上、図6で示したように、原料ガスの総ガス流量Q(原料ガス流量)のガス流量範囲を略3.0L/min以上のガス流量で、400g/m3以上の高濃度オゾンを取り出せるオゾンガス発生システム1000としては、以下の条件を満足する必要があることがわかる。
As described above, as shown in FIG. 6, high-concentration ozone of 400 g / m 3 or more can be taken out at a gas flow rate range of the total gas flow rate Q (raw material gas flow rate) of the raw material gas of about 3.0 L / min or more. It can be seen that the ozone gas generation system 1000 needs to satisfy the following conditions.
・1単位の放電セルにおける1放電面積soを略約30cm2~略160cm2に設定する。
・1放電面積soと放電電力密度Jから1単位の放電セルの放電空間における放電電力dw(=so・J)を規定する。 The discharge area so in one unit discharge cell is set to about 30 cm 2 to about 160 cm 2 .
The discharge power dw (= so · J) in the discharge space of one unit discharge cell is defined from one discharge area so and discharge power density J.
・1放電面積soと放電電力密度Jから1単位の放電セルの放電空間における放電電力dw(=so・J)を規定する。 The discharge area so in one unit discharge cell is set to about 30 cm 2 to about 160 cm 2 .
The discharge power dw (= so · J) in the discharge space of one unit discharge cell is defined from one discharge area so and discharge power density J.
また、原料ガスの総ガス流量Qを可能な範囲で最大に設定して、高出力の取出しオゾン量Ytが得られるオゾンガス発生システム1000を構成する条件としては、以下の条件を満足することが望ましい。
Further, it is desirable that the following conditions be satisfied as conditions for configuring the ozone gas generation system 1000 that sets the total gas flow rate Q of the raw material gas to the maximum possible range and obtains a high output take-out ozone amount Yt. .
・放電電力密度J(=DW/S)を2.5W/cm2~6W/cm2の範囲設定に規定する。
・放電ギャップ長dを数十~数百μmとした1放電空間に供給する原料ガス流量qoを略0.5L/min~略2.5L/min弱範囲に規定する。 The discharge power density J (= DW / S) is defined to be in the range of 2.5 W / cm 2 to 6 W / cm 2 .
The raw material gas flow rate qo supplied to one discharge space where the discharge gap length d is several tens to several hundreds μm is defined in a range of about 0.5 L / min to about 2.5 L / min.
・放電ギャップ長dを数十~数百μmとした1放電空間に供給する原料ガス流量qoを略0.5L/min~略2.5L/min弱範囲に規定する。 The discharge power density J (= DW / S) is defined to be in the range of 2.5 W / cm 2 to 6 W / cm 2 .
The raw material gas flow rate qo supplied to one discharge space where the discharge gap length d is several tens to several hundreds μm is defined in a range of about 0.5 L / min to about 2.5 L / min.
原料ガス流量qoと1放電面積soとを上述した条件を満足するように設定することで、1放電空間における平均ガス流速vo/dを最適速度に設定するとともに、放電空間でのガス滞在時間Toを短くすることができ、高濃度なオゾンガスを取出すことが可能となる。
By setting the raw material gas flow rate qo and one discharge area so to satisfy the above-mentioned conditions, the average gas flow velocity vo / d in one discharge space is set to the optimum speed, and the gas residence time To in the discharge space is set. Can be shortened, and high-concentration ozone gas can be taken out.
さらに、以下のようにオゾン発生器を構成することが望ましい。
・1放電面で取り出せるオゾン濃度を高濃度にし、基本セルS1及びS2を有する放電セルを多段に積層したオゾン発生器とする。 Furthermore, it is desirable to configure the ozone generator as follows.
An ozone generator in which the ozone concentration that can be taken out on one discharge surface is made high and the discharge cells having the basic cells S1 and S2 are stacked in multiple stages.
・1放電面で取り出せるオゾン濃度を高濃度にし、基本セルS1及びS2を有する放電セルを多段に積層したオゾン発生器とする。 Furthermore, it is desirable to configure the ozone generator as follows.
An ozone generator in which the ozone concentration that can be taken out on one discharge surface is made high and the discharge cells having the basic cells S1 and S2 are stacked in multiple stages.
また、オゾン用電源100は以下の条件を満足することが望ましい。
・オゾン発生用交流電圧の出力周波数を20kHz~50kHz未満の範囲にして、所望の総放電電力DWを出力制御できる。 Further, it is desirable that theozone power source 100 satisfies the following conditions.
The desired total discharge power DW can be output controlled by setting the output frequency of the alternating voltage for generating ozone to a range of 20 kHz to less than 50 kHz.
・オゾン発生用交流電圧の出力周波数を20kHz~50kHz未満の範囲にして、所望の総放電電力DWを出力制御できる。 Further, it is desirable that the
The desired total discharge power DW can be output controlled by setting the output frequency of the alternating voltage for generating ozone to a range of 20 kHz to less than 50 kHz.
上記条件を満足させて、オゾンガス発生システム1000を構成することにより、大流量、高濃度なオゾンガスを取り出せる効果を奏する。さらに、オゾンガス発生システム1000をコンパクト、かつ安価に構成することができる。
¡By satisfying the above conditions and configuring the ozone gas generation system 1000, it is possible to extract ozone gas having a large flow rate and high concentration. Furthermore, the ozone gas generation system 1000 can be configured in a compact and inexpensive manner.
(オゾンガス発生システム1000の種々の条件)
オゾンガス発生システム1000は、原料ガスの総ガス流量Q(原料ガス流量)のガス流量範囲を略3.0L/min以上の大流量で、取出せるオゾン濃度が高濃度(400g/m3)となるように、放電セルを多段に積層している。 (Various conditions of the ozone gas generation system 1000)
In the ozonegas generation system 1000, the ozone concentration that can be taken out is high (400 g / m 3 ) when the gas flow range of the total gas flow Q (raw material gas flow) of the raw material gas is a large flow rate of about 3.0 L / min or more. As described above, the discharge cells are stacked in multiple stages.
オゾンガス発生システム1000は、原料ガスの総ガス流量Q(原料ガス流量)のガス流量範囲を略3.0L/min以上の大流量で、取出せるオゾン濃度が高濃度(400g/m3)となるように、放電セルを多段に積層している。 (Various conditions of the ozone gas generation system 1000)
In the ozone
オゾンガス発生システム1000は、400g/m3以上の高濃度なオゾンガスを取り出すべく、比電力値DW/Qの範囲を600以上にしたオゾン用電源100オゾン用電源を設けることが望ましい。
The ozone gas generation system 1000 is preferably provided with an ozone power source 100 and an ozone power source having a specific power value DW / Q in the range of 600 or more in order to extract ozone gas having a high concentration of 400 g / m 3 or more.
特に、オゾン用電源100が供給するオゾン発生用交流電圧による総放電電力DWの範囲としては、1.8kW~15kW程度が望ましい。
In particular, the range of the total discharge power DW by the ozone generating AC voltage supplied from the ozone power supply 100 is preferably about 1.8 kW to 15 kW.
オゾン用電源100は、放電空間の放電ギャップ長dが長くなれば、ガス滞在時間Toが非常に長くなり、放電空間で生成するオゾン生成量に対するオゾン分解量が非常に大きくなり、高濃度なオゾンガスを取り出せなくなる。
In the ozone power source 100, if the discharge gap length d of the discharge space is increased, the gas residence time To becomes very long, the amount of ozone decomposition with respect to the amount of ozone generated in the discharge space becomes very large, and high-concentration ozone gas Cannot be removed.
また、放電ギャップ長dが短くなり過ぎると、また、放電空間を通過するガス流速が増し、放電面が接近することで生成したオゾンガスと放電面の壁との衝突や放電空間でのガス衝突や発生した電子、イオン、放電ガスとの衝突が増すため、オゾン分解量が非常に大きくなる。このように、放電ギャップ長dが短くなり過ぎると、高濃度なオゾンガスを取り出せなくなるため、放電ギャップ長dは、数十~数百μm条件の短ギャップ長範囲にすることが望ましい。特に、より高濃度なオゾンガスを取り出すためには、放電ギャップ長dを20μm~100μmの範囲にすることで、より効果を奏する。
Further, if the discharge gap length d becomes too short, the gas flow velocity passing through the discharge space increases, the collision between the ozone gas generated by the approach of the discharge surface and the wall of the discharge surface, the gas collision in the discharge space, Since collisions with generated electrons, ions, and discharge gas increase, the amount of ozone decomposition becomes very large. As described above, if the discharge gap length d is too short, high-concentration ozone gas cannot be taken out. Therefore, the discharge gap length d is preferably in the short gap length range of several tens to several hundreds μm. In particular, in order to extract ozone gas having a higher concentration, it is more effective to set the discharge gap length d in the range of 20 μm to 100 μm.
原料ガスの総ガス流量Qの範囲としては、400g/m3以上の高濃度なオゾンガスが得られる範囲は、3SLM~25SLM程度であり、また、従来の装置に比較して高濃度なオゾンガスが得られる範囲としては、3SLM~50SLM程度の範囲が望ましい。
As the range of the total gas flow rate Q of the raw material gas, the range in which high concentration ozone gas of 400 g / m 3 or more is obtained is about 3 SLM to 25 SLM, and high concentration ozone gas is obtained as compared with the conventional apparatus. A range of about 3 SLM to 50 SLM is desirable.
(実施の形態1の効果)
実施の形態1のオゾン用電源100は、各々が放電面となる1対の平板電極1と高圧電極3a(3b)に誘電体を介し配置した基本セルS1(S2)を有するオゾン発生器200と、オゾン発生器200にオゾン発生用交流電圧を付与するオゾン用電源100とを備えて構成されている。 (Effect of Embodiment 1)
Theozone power supply 100 according to the first embodiment includes an ozone generator 200 having a pair of flat plate electrodes 1 each serving as a discharge surface and a basic cell S1 (S2) disposed on a high voltage electrode 3a (3b) via a dielectric. The ozone generator 200 is provided with an ozone power source 100 that applies an alternating voltage for ozone generation.
実施の形態1のオゾン用電源100は、各々が放電面となる1対の平板電極1と高圧電極3a(3b)に誘電体を介し配置した基本セルS1(S2)を有するオゾン発生器200と、オゾン発生器200にオゾン発生用交流電圧を付与するオゾン用電源100とを備えて構成されている。 (Effect of Embodiment 1)
The
オゾン発生器200に酸素を含んだ原料ガスが供給され、オゾン発生器200は、基本セルS1(S2)の放電面によって形成される放電空間に誘電体バリア放電を発生させ、放電空間に供給した原料ガスからオゾンガスを生成し、該オゾンガスを外部に出力している。
A source gas containing oxygen is supplied to the ozone generator 200. The ozone generator 200 generates a dielectric barrier discharge in the discharge space formed by the discharge surface of the basic cell S1 (S2) and supplies the dielectric barrier discharge to the discharge space. Ozone gas is generated from the raw material gas, and the ozone gas is output to the outside.
オゾン発生器200は、多段に積層された複数の基本放電セル組(基本セルS1,S2の組合せ)を含んで構成される。そして、出力するオゾンの高濃度化されるオゾン発生器200は、以下の条件(1)及び条件(2)を満足している。
The ozone generator 200 includes a plurality of basic discharge cell sets (a combination of basic cells S1 and S2) stacked in multiple stages. The ozone generator 200 that increases the concentration of the output ozone satisfies the following conditions (1) and (2).
(1) 複数の放電セルは、それぞれの放電面(1単位の放電セルの放電面)によって形成される放電面積soが30cm2~160cm2(30cm2以上、160cm2未満)の範囲に設定される。
(1) In the plurality of discharge cells, the discharge area so formed by each discharge surface (discharge surface of one unit of discharge cell) is set in a range of 30 cm 2 to 160 cm 2 (30 cm 2 or more and less than 160 cm 2 ). The
(2) 複数の放電セルそれぞれの放電面によって形成される放電空間に供給する原料ガスの原料ガス流量qoは、0.5L/min~2.5L/min(0.5L/min以上、2.5L/min未満)の範囲に設定される。
(2) The source gas flow rate qo of the source gas supplied to the discharge space formed by the discharge surface of each of the plurality of discharge cells is 0.5 L / min to 2.5 L / min (0.5 L / min or more; Less than 5 L / min).
また、オゾン発生器200に供給するガス流量Qと放電電力DWを可能な範囲で最大に設定して、より高い取出しオゾン量Ytを得るためには、オゾン発生器200は、上記の条件(1)、条件(2)に加え、以下の条件(3)を満足している必要がある。
Further, in order to set the gas flow rate Q and the discharge power DW supplied to the ozone generator 200 to the maximum possible range and obtain a higher extracted ozone amount Yt, the ozone generator 200 has the above-described conditions (1 In addition to the condition (2), the following condition (3) must be satisfied.
(3) 複数の放電セルそれぞれの放電空間に投入する放電電力密度Jは、2.5W/cm2~6W/cm2(2.5W/cm2以上、6W/cm2未満)の範囲に設定される。
(3) The discharge power density J applied to the discharge space of each of the plurality of discharge cells is set in the range of 2.5 W / cm 2 to 6 W / cm 2 (2.5 W / cm 2 or more and less than 6 W / cm 2 ). Is done.
実施の形態1のオゾンガス発生システム1000は、上述した条件(1)~条件(3)を満足することにより、複数の放電セルそれぞれの放電面に関し以下の効果を奏する。なお、3つの条件を満足する際、オゾン発生器の放電ギャップ長dは数十~数百μmnの短ギャップ長に設定する必要がある。以下、この点を詳述する。
The ozone gas generation system 1000 of Embodiment 1 has the following effects on the discharge surfaces of the plurality of discharge cells by satisfying the above-described conditions (1) to (3). When satisfying the three conditions, it is necessary to set the discharge gap length d of the ozone generator to a short gap length of several tens to several hundreds μm. Hereinafter, this point will be described in detail.
放電ギャップ長を数十~数百μmの短ギャップの誘電体バリア放電の方が、高電界の放電が実現できる。すなわち、短ギャップの誘電体バリア放電の方が、高エネルギーの放電光エネルギーを有した放電になり、触媒ガスを含んだガスや放電面に塗布した光触媒を光励起させるのに有効に働き、結果として酸素ガスの解離を促進させる効果がより高まる。このため、条件(1)~条件(3)を満足したオゾンガス発生システム及びオゾンガス発生方法を実現する際、オゾン発生器の放電ギャップ長は数十~数百μmに設定することが望ましい。
A short gap dielectric barrier discharge with a discharge gap length of several tens to several hundreds of μm can realize a high electric field discharge. In other words, the short gap dielectric barrier discharge becomes a discharge having a high energy discharge light energy, which works more effectively to photoexcite the gas containing the catalyst gas and the photocatalyst applied to the discharge surface. The effect of promoting the dissociation of oxygen gas is further increased. Therefore, when realizing the ozone gas generation system and the ozone gas generation method that satisfy the conditions (1) to (3), it is desirable that the discharge gap length of the ozone generator is set to several tens to several hundreds μm.
オゾンガス発生システム1000は、上述した条件(1)及び条件(2)を満足することにより、各放電セルの(1対の放電面によって形成される)放電空間におけるガス滞在時間Toを短くして総オゾン分解量Ydを抑えることができる。
The ozone gas generation system 1000 reduces the total gas residence time To in the discharge space (formed by a pair of discharge surfaces) of each discharge cell by satisfying the above conditions (1) and (2). The amount of ozone decomposition Yd can be suppressed.
その結果、オゾンガス発生システム1000は、上述した条件(1)及び条件(2)を満足させ、かつ、各放電セルの放電面に供給する原料ガス流量qoと放電電力dwとを可能な範囲で最大に設定して、取出しオゾン量ytを最大限に高めることにより、高濃度なオゾンガスを取り出せる条件を作りだせる。
As a result, the ozone gas generation system 1000 satisfies the conditions (1) and (2) described above and maximizes the raw material gas flow rate qo and the discharge power dw supplied to the discharge surface of each discharge cell. By setting the extraction ozone amount yt to the maximum, the condition for extracting high-concentration ozone gas can be created.
オゾンガス発生システム1000は、さらに条件(3)を満足することにより、各放電セルから取り出せるオゾンの生成量を所定量以上確保でき、かつ、効率よく取り出せることができ、取出しオゾン量Ytをより高めることができる。
By further satisfying the condition (3), the ozone gas generation system 1000 can secure a predetermined amount or more of ozone generated from each discharge cell, can be efficiently extracted, and can further increase the amount of extracted ozone Yt. Can do.
その結果、オゾンガス発生システム1000は、システム構成を必要最小限に抑えて、高濃度なオゾンもしくは、取出しオゾン量Ytを効率的に高め、外部に出力することができる効果を奏する。
As a result, the ozone gas generation system 1000 has the effect that the system configuration can be minimized and the high-concentration ozone or the extracted ozone amount Yt can be efficiently increased and output to the outside.
このように、オゾンガス発生システム1000は、条件(1)及び条件(2)に加え、上述した条件(3)をさらに満足することにより、条件(1)~条件(3)を満足させ、かつ、各放電セルの放電空間に供給する原料ガス流量qoと放電電力dwとを可能な範囲で最大に設定して、取り出しオゾン量ytを最大限に高めることができる。
As described above, the ozone gas generation system 1000 satisfies the conditions (1) to (3) by further satisfying the above condition (3) in addition to the conditions (1) and (2), and It is possible to maximize the extracted ozone amount yt by setting the raw material gas flow rate qo and the discharge power dw supplied to the discharge space of each discharge cell to the maximum possible range.
その結果、実施の形態1のオゾンガス発生システム1000は、システム構成を必要最小限に抑えて、高濃度なオゾンガスもしくは高発生量のオゾンガスを外部に出力することができる効果を奏する。
As a result, the ozone gas generation system 1000 according to the first embodiment has an effect of being able to output a high-concentration ozone gas or a high generation amount of ozone gas to the outside while minimizing the system configuration.
さらに、実施の形態1のオゾンガス発生システム1000におけるオゾン発生器200は、以下の条件(4)をさらに満足している。
Furthermore, the ozone generator 200 in the ozone gas generation system 1000 of Embodiment 1 further satisfies the following condition (4).
(4) 冷却機構によるオゾン発生器200の冷却温度は5℃以上である。
(4) The cooling temperature of the ozone generator 200 by the soot cooling mechanism is 5 ° C. or higher.
実施の形態1のオゾンガス発生システム1000のオゾン発生器200は、さらに上述した条件(4)を満足することにより、上述した冷却機構によるオゾン発生器200の冷却温度を極端に低くする必要性をなくし、冷却機構の簡略化を図ることができる。なお、上記制約条件の上限は常温(20℃)に対し30℃程度を想定している。また、より冷却効果を重視する場合は、水が凍る温度である0℃以上に冷却温度を設定することが望ましい。
The ozone generator 200 of the ozone gas generation system 1000 according to the first embodiment further eliminates the need to extremely reduce the cooling temperature of the ozone generator 200 by the cooling mechanism described above by satisfying the condition (4) described above. The cooling mechanism can be simplified. In addition, the upper limit of the said constraint conditions assumes about 30 degreeC with respect to normal temperature (20 degreeC). When the cooling effect is more important, it is desirable to set the cooling temperature to 0 ° C. or higher, which is the temperature at which water freezes.
さらに、実施の形態1のオゾンガス発生システム1000におけるオゾン発生器200は、以下の条件(5)及び条件(6)をさらに満足している。
Furthermore, the ozone generator 200 in the ozone gas generation system 1000 of Embodiment 1 further satisfies the following conditions (5) and (6).
(5) オゾン発生器200内の複数の放電セル全体に供給する総ガス流量Qは3.0L/min以上である。
(5) The total gas flow rate Q supplied to the entire plurality of discharge cells in the ozone generator 200 is 3.0 L / min or more.
(6) オゾン発生器200内の複数の放電セル全体に付与する総放電電力DWと総ガス流量Qとの比である比電力値DW/Qは、600(W・min/L)以上である。
(6) The specific power value DW / Q, which is the ratio of the total discharge power DW and the total gas flow rate Q applied to the entire plurality of discharge cells in the ozone generator 200, is 600 (W · min / L) or more. .
なお、条件(5)は高濃度のオゾンガスを取出せることを目的としており、条件(5)の目的を達成することの付随効果として、条件(6)は出力するオゾンガス量を最大限に高める効果を奏する。
Condition (5) is intended to extract high-concentration ozone gas, and as an accompanying effect of achieving the purpose of condition (5), condition (6) is an effect that maximizes the amount of ozone gas that can be output. Play.
オゾンガス発生システム1000のオゾン用電源100及びオゾン発生器200は、さらに上述した条件(5)及び条件(6)を満足することにより、以下の効果を奏する。
The ozone power source 100 and the ozone generator 200 of the ozone gas generation system 1000 have the following effects by further satisfying the above conditions (5) and (6).
オゾンガス発生システム1000は、上述した条件(5)を満足することにより、例えば400g/m3以上の高濃度オゾンを取り出すことができる複数の放電セルに供給する原料ガスに関し、十分大きな総ガス流量Qを確保し、最終的に高濃度なオゾンガスが得られ、取出しオゾン量Ytを高めることができる。
The ozone gas generation system 1000 has a sufficiently large total gas flow rate Q for a raw material gas supplied to a plurality of discharge cells that can take out high-concentration ozone of, for example, 400 g / m 3 or more by satisfying the above condition (5). Can be obtained, and finally high-concentration ozone gas can be obtained, and the amount of extracted ozone Yt can be increased.
オゾンガス発生システム1000は、上述した条件(6)を満足することにより、条件(5)の効果に加え、条件(1)~条件(6)を満足することを環境下で、例えば以下の効果を奏する。オゾン発生器200に供給する総ガス流量Q及び総放電電力DWを可能な範囲で最大限投入にして、取出しオゾン量Ytを最大限に高めることができる。
The ozone gas generation system 1000 can satisfy the conditions (1) to (6) in addition to the effect of the condition (5) by satisfying the condition (6) described above. Play. It is possible to maximize the extracted ozone amount Yt by maximizing the total gas flow rate Q and the total discharge power DW supplied to the ozone generator 200 as much as possible.
その結果、実施の形態1のオゾンガス発生システム1000は、システム構成を必要最小限に抑えて、比較的大容量、かつ高濃度なオゾンガスを外部に出力することができる効果を奏する。
As a result, the ozone gas generation system 1000 according to the first embodiment has an effect of being able to output ozone gas having a relatively large capacity and high concentration to the outside while minimizing the system configuration.
また、オゾン発生器200内の放電セルを構成する基本セルS1,S2それぞれの放電面はそれぞれ平面視して円状を呈し、オゾン発生器200は以下の条件(7)をさらに満足する。
Further, the discharge surfaces of the basic cells S1 and S2 constituting the discharge cells in the ozone generator 200 each have a circular shape in plan view, and the ozone generator 200 further satisfies the following condition (7).
(7) 複数の放電セルそれぞれの放電面の外径が70mm~140mm(70mm以上、140mm未満)の範囲に設定される。
(7) The outer diameter of the discharge surface of each of the plurality of discharge cells is set in a range of 70 mm to 140 mm (70 mm or more and less than 140 mm).
また、上述した放電面を有する基本放電セル組(基本セルS1及びS2の組合せ)をオゾン発生器にn個同一平面上に並べて、放電セル数を増やしたオゾンガス発生システム1000の変形例を構成すれば、図1で示した基本構成と同様な効果を奏する。
In addition, a modified example of the ozone gas generation system 1000 in which the number of discharge cells is increased by arranging n basic discharge cell sets (combinations of basic cells S1 and S2) having the above-described discharge surfaces on the same plane on the ozone generator. For example, the same effect as the basic configuration shown in FIG.
オゾンガス発生システム1000は、上述した条件(7)を満足することにより、条件(1)を満足する放電面積soを比較的容易に実現し、かつ、ガス流入する平均断面savに流れ込む平均ガス流速vo/dを適切な値に比較的容易に設定することができる。
The ozone gas generation system 1000 realizes the discharge area so satisfying the condition (1) relatively easily by satisfying the condition (7) described above, and the average gas flow velocity vo flowing into the average cross section sav into which the gas flows. / d can be set to an appropriate value relatively easily.
加えて、オゾンガス発生システム1000のオゾン用電源100は、出力周波数f(動作周波数f)を20kHz~50kHz(20kHz以上、50kHz未満)範囲内にして、オゾン発生用交流電圧をオゾン発生器200に出力している。より実用的なオゾン用電源100の出力周波数f(動作周波数f)は、20kHz~30kHz(20kHz以上、30kHz未満)範囲が望ましい。
In addition, the ozone power source 100 of the ozone gas generation system 1000 outputs an alternating voltage for ozone generation to the ozone generator 200 with an output frequency f (operating frequency f) in the range of 20 kHz to 50 kHz (20 kHz or more and less than 50 kHz). doing. The output frequency f (operating frequency f) of the more practical ozone power supply 100 is desirably in the range of 20 kHz to 30 kHz (20 kHz or more and less than 30 kHz).
このため、オゾンガス発生システム1000は、オゾン発生器200内の複数の放電セルに印加するオゾン発生用交流電圧のピーク電圧値を7kVp以下にして、オゾン発生器200が所望する放電電力DWを実現することができる。
For this reason, the ozone gas generation system 1000 realizes the discharge power DW desired by the ozone generator 200 by setting the peak voltage value of the alternating current voltage for generating ozone applied to the plurality of discharge cells in the ozone generator 200 to 7 kVp or less. be able to.
さらに、オゾン用電源100の並列共振用トランス25は、内部励磁インダクタンス値Ltを有し、オゾン発生器200内の複数の放電セルは全体の静電容量値C0を有している。
Furthermore, the parallel resonance transformer 25 of the ozone power supply 100 has an internal excitation inductance value Lt, and the plurality of discharge cells in the ozone generator 200 have an overall capacitance value C0.
そして、オゾン用電源100は、上述した式(5)を満足する並列共振周波数fcの近傍に出力周波数fを設定している。
The ozone power supply 100 sets the output frequency f in the vicinity of the parallel resonance frequency fc that satisfies the above-described equation (5).
オゾンガス発生システム1000は、並列共振周波数fcの近傍に出力周波数fを設定することにより、オゾン発生器200への総放電電力DWの投入時に並列共振を行うことで、インバータ部(インバータ回路部22)の出力力率を高めることができる。
The ozone gas generation system 1000 sets the output frequency f in the vicinity of the parallel resonance frequency fc, thereby performing parallel resonance when the total discharge power DW is input to the ozone generator 200, thereby causing an inverter unit (inverter circuit unit 22). The output power factor can be increased.
すなわち、並列共振用トランス25とオゾン発生器200との間で総放電電力DWの投入時に並列共振を行うことにより、インバータ回路部22での出力力率を高めることができる。
That is, by performing the parallel resonance between the parallel resonance transformer 25 and the ozone generator 200 when the total discharge power DW is turned on, the output power factor in the inverter circuit unit 22 can be increased.
その結果、オゾン用電源100は、所望の総放電電力DWを満足するオゾン発生用交流電圧を負荷側であるオゾン発生器に供給できる。
As a result, the ozone power source 100 can supply an ozone generator on the load side with an ozone generating AC voltage that satisfies the desired total discharge power DW.
なお、所望の総放電電力DWはとして1.8kW以上の総放電電力DWが考えられる。そうすると、オゾン発生器200内の各放電セルに投入できる放電電力密度J(=DW/S)を2.5W/cm2~6W/cm2の範囲に設定することができる。
The desired total discharge power DW may be a total discharge power DW of 1.8 kW or more. Then, the discharge power density J (= DW / S) that can be input to each discharge cell in the ozone generator 200 can be set in the range of 2.5 W / cm 2 to 6 W / cm 2 .
その結果、オゾンガス発生システム1000は、高効率のオゾン用電源100を実現することにより、高濃度のオゾンガスを取り出せすべく、供給する総ガス流量Qと総放電電力DWを可能な範囲で最大値に設定しても、全体としてコンパクトな構成のオゾンガス発生システムを実現することができる効果を奏する。
As a result, the ozone gas generation system 1000 realizes the high-efficiency ozone power supply 100 to maximize the supplied total gas flow rate Q and the total discharge power DW in order to extract high-concentration ozone gas. Even if it sets, there exists an effect which can realize the ozone gas generating system of a compact structure as a whole.
<方法発明への展開>
実施の形態1では、装置発明であるオゾンガス発生システム1000として説明した。しかしながら、本願発明の変形例として、上述したオゾン用電源100及びオゾン発生器200を用いたオゾンガス発生方法に展開することも可能である。 <Development of method invention>
In Embodiment 1, it demonstrated as the ozonegas generation system 1000 which is an apparatus invention. However, as a modification of the present invention, it is possible to develop the ozone gas generation method using the ozone power source 100 and the ozone generator 200 described above.
実施の形態1では、装置発明であるオゾンガス発生システム1000として説明した。しかしながら、本願発明の変形例として、上述したオゾン用電源100及びオゾン発生器200を用いたオゾンガス発生方法に展開することも可能である。 <Development of method invention>
In Embodiment 1, it demonstrated as the ozone
すなわち、1対の平板電極1,3(3a,3b)に誘電体(2a,2b)を介し配置した放電セルを有するオゾン発生器200と、オゾン発生器200にオゾン発生用交流電圧を付与するオゾン用電源100とを用いて、高濃度なオゾンガスを発生するオゾンガス発生方法に展開することができる。
That is, an ozone generator 200 having a discharge cell disposed on a pair of flat plate electrodes 1 and 3 (3a and 3b) via a dielectric (2a and 2b), and an ozone generating AC voltage is applied to the ozone generator 200. The ozone power supply 100 can be used to develop an ozone gas generation method that generates high-concentration ozone gas.
実施の形態1の変形例であるオゾンガス発生方法は、上述したオゾンガス発生システム1000の条件(1)及び条件(2)に対応して以下のステップ(1)及びステップ(2)を実行する。
The ozone gas generation method, which is a modification of the first embodiment, executes the following steps (1) and (2) corresponding to the conditions (1) and (2) of the ozone gas generation system 1000 described above.
(1) 前記複数の放電セルそれぞれの放電面における放電面積soを、約30cm2以上、160cm2未満の範囲に設定するステップ、
(2) 前記複数の放電セルそれぞれの1対の放電面によって形成される放電空間に供給する原料ガスの原料ガス流量qoを、0.5L/min以上、2.5L/min未満の範囲に設定するステップ。 (1) setting a discharge area so on a discharge surface of each of the plurality of discharge cells to a range of about 30 cm 2 or more and less than 160 cm 2 ;
(2) The raw material gas flow rate qo of the raw material gas supplied to the discharge space formed by the pair of discharge surfaces of each of the plurality of discharge cells is set in a range of 0.5 L / min or more and less than 2.5 L / min. Step to do.
(2) 前記複数の放電セルそれぞれの1対の放電面によって形成される放電空間に供給する原料ガスの原料ガス流量qoを、0.5L/min以上、2.5L/min未満の範囲に設定するステップ。 (1) setting a discharge area so on a discharge surface of each of the plurality of discharge cells to a range of about 30 cm 2 or more and less than 160 cm 2 ;
(2) The raw material gas flow rate qo of the raw material gas supplied to the discharge space formed by the pair of discharge surfaces of each of the plurality of discharge cells is set in a range of 0.5 L / min or more and less than 2.5 L / min. Step to do.
また、オゾン発生器200に供給するガス流量Qと総放電電力DWを可能な範囲で最大限投入にして、取出しオゾン量Ytを最大限に得るためには、オゾンガス発生方法は、上記のステップ(1)及びステップ(2)に加え、以下のステップ(3)を実行することが望ましい。
In addition, in order to maximize the gas flow rate Q and the total discharge power DW supplied to the ozone generator 200 and obtain the maximum amount of extracted ozone Yt, the ozone gas generation method includes the above steps ( In addition to 1) and step (2), it is desirable to execute the following step (3).
(3) 前記複数の放電セルそれぞれの放電空間に投入する放電電力密度Jを、2.5W/cm2~6W/cm2の範囲に設定するステップ。
(3) A step of setting the discharge power density J input to the discharge space of each of the plurality of discharge cells in a range of 2.5 W / cm 2 to 6 W / cm 2 .
上記オゾンガス発生方法は、ステップ(1)及びステップ(2)を実行することにより、各放電セルの放電空間におけるガス滞在時間Toを短くしてオゾンガス分解量を抑えることができる。
In the above ozone gas generation method, by executing step (1) and step (2), the gas residence time To in the discharge space of each discharge cell can be shortened, and the ozone gas decomposition amount can be suppressed.
したがって、上記オゾンガス発生方法は、ステップ(1)及びステップ(2)を実行することにより、各放電セルの放電空間に供給する原料ガス流量qo及び放電電力dwを可能な範囲で最大に設定すれば、オゾンガスを高濃度に取り出せる効果を奏する。
Therefore, in the ozone gas generation method, by performing step (1) and step (2), the raw material gas flow rate qo and the discharge power dw supplied to the discharge space of each discharge cell are set to the maximum possible range. The ozone gas can be extracted at a high concentration.
上記オゾンガス発生方法は、さらに、ステップ(3)を実行することにより、各放電セルの放電面に供給するガス流量q及び放電電力dwを可能な範囲で最大に設定すれば、取出しオゾン量ytを最大に高めることができる効果を奏する。
In the ozone gas generation method, if the gas flow rate q and the discharge power dw supplied to the discharge surface of each discharge cell are set to the maximum possible range by executing step (3), the amount of extracted ozone yt is set to the maximum. There is an effect that can be maximized.
その結果、本願発明の変形例であるオゾンガス発生方法は、高濃度なオゾンもしくは高発生量のオゾンガスを外部に出力することができる効果を奏する。
As a result, the ozone gas generation method which is a modification of the present invention has an effect of outputting high-concentration ozone or a high generation amount of ozone gas to the outside.
さらに、上記オゾンガス発生方法は、オゾンガス発生システム1000の上述した条件(4)~条件(7)に対応して、条件(4)~条件(7)を満足させるためのステップを実行することができ、オゾンガス発生システム1000と同様な効果を奏する。
Furthermore, the ozone gas generation method can execute steps for satisfying the conditions (4) to (7) corresponding to the above conditions (4) to (7) of the ozone gas generation system 1000. The same effect as the ozone gas generation system 1000 is obtained.
<実施の形態2>
(実施の形態1の課題)
上述した実施の形態1において、実証試験と高濃度オゾンが取出すための放電セル形状の原理及び概要にて示したように、オゾン発生器200は、多段に積層されたn個の基本放電セル組(S1,S2)を含んで構成される。そして、高ガス流量域まで高濃度なオゾンガスが取出すオゾン発生器200は、条件(1)を満足している。以下に、条件(1)を再掲する。 <Embodiment 2>
(Problem of the first embodiment)
In the first embodiment described above, as shown in the verification test and the principle and outline of the discharge cell shape for taking out high-concentration ozone, theozone generator 200 is composed of n basic discharge cell groups stacked in multiple stages. (S1, S2) is included. The ozone generator 200 from which high-concentration ozone gas is extracted up to the high gas flow rate range satisfies the condition (1). The condition (1) is listed below again.
(実施の形態1の課題)
上述した実施の形態1において、実証試験と高濃度オゾンが取出すための放電セル形状の原理及び概要にて示したように、オゾン発生器200は、多段に積層されたn個の基本放電セル組(S1,S2)を含んで構成される。そして、高ガス流量域まで高濃度なオゾンガスが取出すオゾン発生器200は、条件(1)を満足している。以下に、条件(1)を再掲する。 <
(Problem of the first embodiment)
In the first embodiment described above, as shown in the verification test and the principle and outline of the discharge cell shape for taking out high-concentration ozone, the
(1) 複数の放電セルは、それぞれの放電面(1単位の放電セルにおける放電面)によって形成される放電面積soが30cm2~160cm2(30cm2以上、160cm2未満)の範囲に設定される。
(1) In the plurality of discharge cells, the discharge area so formed by each discharge surface (discharge surface in one unit discharge cell) is set in a range of 30 cm 2 to 160 cm 2 (30 cm 2 or more and less than 160 cm 2 ). The
上述したように、実施の形態1のオゾンガス発生システム1000では、1単位の放電セルの放電面積soは条件(1)の制約が課されていた。ここで、オゾンガス発生システム1000において、高ガス流量域で高濃度なオゾンガスを取出したり、原料ガスの総ガス流量Qが大きい領域において、高出力の取出しオゾン量Ytが得られるようにしたりする構成を想定する。
As described above, in the ozone gas generation system 1000 according to the first embodiment, the restriction of the condition (1) is imposed on the discharge area so of one unit discharge cell. Here, in the ozone gas generation system 1000, a high-concentration ozone gas is taken out at a high gas flow rate region, or a high output take-out ozone amount Yt is obtained in a region where the total gas flow rate Q of the raw material gas is large. Suppose.
上記構成を想定した場合、1単位の放電セルの放電面積soが小さいほど、オゾン発生器200に必要とする放電面積S(=2n・so)を確保すべく、基本放電セル組を積層する積層枚数nを多くする必要があった。
Assuming the above configuration, a stack in which the basic discharge cell set is stacked in order to secure the discharge area S (= 2n · so) required for the ozone generator 200 as the discharge area so of one unit discharge cell is smaller. It was necessary to increase the number n.
積層枚数nを大きく設定してオゾン発生器200を構成した場合、必要とされる基本放電セル組の組数が増加する分、部品点数が増え、かつ、オゾン発生器200内の組立て作業工程数や試験検査作業が増えることになる。このため、オゾン発生器200の製作コスト高を招く。さらに、オゾン発生器200自身の各放電セルの放電ギャップ精度の管理、積層締め付け精度の管理をより高める必要などの課題も生じることになる。このため、オゾン発生器200の製作困難性が増し、その結果、オゾンガス発生システム1000が大きくなり、コストアップ等の課題が生じてしまう。
When the ozone generator 200 is configured with a large number n of stacked layers, the number of parts increases as the number of required basic discharge cell sets increases, and the number of assembly work steps in the ozone generator 200 increases. And test inspection work will increase. For this reason, the manufacturing cost of the ozone generator 200 is increased. Furthermore, problems such as the need to further improve the management of the discharge gap accuracy of each discharge cell of the ozone generator 200 itself and the stacking tightening accuracy will arise. For this reason, the manufacturing difficulty of the ozone generator 200 increases, As a result, the ozone gas generation system 1000 becomes large, and problems, such as cost increase, arise.
(オゾン発生器200の改良)
実施の形態2のオゾンガス発生システム2000は、上述した実施の形態1のオゾン発生器200の課題を鑑みて、オゾン発生器200をオゾン発生器300に改良したものでである。なお、オゾンガス発生システム2000及びオゾン発生器300は図面上では示していない。 (Improved ozone generator 200)
The ozonegas generation system 2000 of the second embodiment is an improvement of the ozone generator 200 to the ozone generator 300 in view of the problems of the ozone generator 200 of the first embodiment described above. The ozone gas generation system 2000 and the ozone generator 300 are not shown in the drawing.
実施の形態2のオゾンガス発生システム2000は、上述した実施の形態1のオゾン発生器200の課題を鑑みて、オゾン発生器200をオゾン発生器300に改良したものでである。なお、オゾンガス発生システム2000及びオゾン発生器300は図面上では示していない。 (Improved ozone generator 200)
The ozone
オゾン発生器300は、内部の部品点数を減らし、高濃度なオゾンガスが取出せ、かつ、取出したオゾンガスの流量を大きくできる構造を採用している。
Ozone generator 300 employs a structure that can reduce the number of internal parts, extract high-concentration ozone gas, and increase the flow rate of the extracted ozone gas.
このため、基本放電セル組に含まれる基本セルS1あるいは基本セルS2に相当する1単位の放電セルの放電面積stを条件(1)で規定した面積soの3倍~6倍、具体的には放電面積stを数百cm2以内に設定し、1単位の放電セルの放電面からオゾンガスを取り出すオゾンガス取出口を放電セル面にNφ(Nφ≧2)個を分散配置している。
For this reason, the discharge area st of one unit discharge cell corresponding to the basic cell S1 or basic cell S2 included in the basic discharge cell group is 3 to 6 times the area so defined in the condition (1), specifically, The discharge area st is set within several hundred cm 2 , and Nφ (Nφ ≧ 2) ozone gas outlets for extracting ozone gas from the discharge surface of one unit discharge cell are distributed on the discharge cell surface.
Nφ個のオゾンガス取出口を設けることにより、1単位の放電セルの全放電面積stを分割数Nφで分割したNφ個の分割面積dso(=st/Nφ)を有する仮想放電セルがNφ個存在する場合と実質的に同一視できる。
By providing Nφ ozone gas outlets, there are Nφ virtual discharge cells having Nφ divided areas dso (= st / Nφ) obtained by dividing the total discharge area st of one unit discharge cell by the division number Nφ. It can be virtually identical to the case.
その結果、実施の形態2のオゾンガス発生システム2000に用いられるオゾン発生器300は、実施の形態1のオゾン発生器200と比較して、基本放電セル組の積層枚数nを減らせ、かつ、条件(1)を満足する実施の形態1の効果とほぼ同様に、高濃度のオゾンガスが取出せる効果を発揮することができる。
As a result, the ozone generator 300 used in the ozone gas generation system 2000 according to the second embodiment can reduce the number n of the basic discharge cell sets, as compared with the ozone generator 200 according to the first embodiment. The effect that the high-concentration ozone gas can be taken out can be exhibited in substantially the same manner as the effect of the first embodiment that satisfies 1).
また、オゾン発生器300では、1組の基本放電セル組において、Nφ個のオゾンガス取出口から取り出したオゾンガスを集約して外部に出力する1つのオゾンガス取出し通路を設ける。この放電セルを構成する電極内に設けられ、Nφ個のオゾンガス取出口に繋がっている。
Further, in the ozone generator 300, in one set of basic discharge cells, there is provided one ozone gas extraction passage that collects ozone gas extracted from the Nφ ozone gas extraction ports and outputs it to the outside. It is provided in an electrode constituting this discharge cell and is connected to Nφ ozone gas outlets.
このため、オゾンガス通過用の通路を設けるための配管継手等の部品を用いることなく、1組の基本放電セル組において、放電セル全体で発生したオゾンガスを一括で取出すことができる。さらに、オゾン発生器300は、上述した特徴を有する1単位の放電セルの放電面積stを数百cm2程度の大きさにして、基本放電セル組を多段に積層する構成を採用する。
For this reason, the ozone gas generated in the entire discharge cell can be taken out collectively in one set of basic discharge cell sets without using parts such as a pipe joint for providing a passage for passing ozone gas. Further, the ozone generator 300 employs a configuration in which the discharge area st of one unit discharge cell having the above-described characteristics is set to a size of about several hundred cm 2 and the basic discharge cell groups are stacked in multiple stages.
その結果、オゾン発生器300は、多段に積層された複数の放電セル(n組の基本放電セル組)それぞれで発生したオゾンガスを一括して外部に取出せる構成となり、実施の形態1のオゾン発生器200と比較して、基本放電セル組の積層枚数nを減らしたシンプルな構成を実現することができる。したがって、オゾン発生器300は、オゾン発生器200と比較して組立て工数の削減や試験工数を大幅に削減したオゾン発生器となる。
As a result, the ozone generator 300 has a configuration in which ozone gas generated in each of a plurality of discharge cells (n sets of basic discharge cells) stacked in multiple stages can be taken out to the outside. Compared with the vessel 200, a simple configuration in which the number n of stacked basic discharge cell sets is reduced can be realized. Therefore, the ozone generator 300 is an ozone generator that significantly reduces the number of assembly steps and the number of test steps compared to the ozone generator 200.
オゾン発生器300は、1単位の放電セル面の放電面積stを分割数Nφで分割したNφ個の分割面積dsoで規定される仮想の放電空間に対し、以下の条件(a)を満足している。
The ozone generator 300 satisfies the following condition (a) for a virtual discharge space defined by Nφ divided areas dso obtained by dividing the discharge area st of one unit discharge cell surface by the division number Nφ. Yes.
(a) 複数の放電セルはそれぞれの放電面(1単位の放電セルの放電面)の放電面積stを分割数Nφで除算した分割面積dsoが、30cm2以上、160cm2未満の範囲に設定される。
(a) In the plurality of discharge cells, the divided area dso obtained by dividing the discharge area st of each discharge surface (discharge surface of one unit of discharge cell) by the division number Nφ is set in a range of 30 cm 2 or more and less than 160 cm 2. The
その結果、オゾン発生器300において、1単位の放電セルにおける放電空間がNφ個の仮想放電空間に分割されることにより、生成したオゾンガスが放電空間を通過して、Nφ個のオゾンガス取出口のうち、直近のオゾンガス取出口に達するまでのガス滞在時間Toを短くすることができる。
As a result, in the ozone generator 300, the discharge space in one unit discharge cell is divided into Nφ virtual discharge spaces, so that the generated ozone gas passes through the discharge space and is out of the Nφ ozone gas outlets. The gas residence time To until the latest ozone gas outlet is reached can be shortened.
したがって、オゾン発生器300は、1単位の放電セルの放電空間内でのオゾンガスが電子や放電ガスと衝突する分解と、放電空間内で滞在しているオゾンガス自身の自己分解とによる総オゾン分解量Ydを抑えることができ、比較的高いガス流量において、高濃度のオゾンガスが取り出せ、コンパクトで、安価なオゾンガス発生器となる。
Therefore, the ozone generator 300 has a total ozone decomposition amount due to decomposition in which ozone gas collides with electrons and discharge gas in the discharge space of one unit discharge cell, and self-decomposition of ozone gas itself staying in the discharge space. Yd can be suppressed, and a high-concentration ozone gas can be taken out at a relatively high gas flow rate, resulting in a compact and inexpensive ozone gas generator.
オゾン発生器300において、取出しオゾン濃度Ctが400g/m3以上の高濃度のオゾンガスが出力でき、かつ、取出しオゾンガス量Yt(=Ct・Q)を72g/h以上の高オゾン量のオゾンガスをとりだせるようにするには、オゾン発生器300に供給する酸素を含む原料ガスの総原料ガス流量Qを3SLM以上にする必要がある。
In the ozone generator 300, a high-concentration ozone gas with an extracted ozone concentration Ct of 400 g / m 3 or more can be output, and an ozone gas with a high ozone amount of 72 g / h or more is extracted as the extracted ozone gas amount Yt (= Ct · Q). In order to achieve this, the total raw material gas flow rate Q of the raw material gas containing oxygen supplied to the ozone generator 300 needs to be 3 SLM or more.
このため、オゾン発生器300において基本放電セル組を多段に積層する必要がある。この際、オゾン発生器300はオゾン発生器200に比べ、1単位の放電セルの面積が十分大きいため、基本放電セル組の積層枚数nを少なく抑えることができる。
Therefore, it is necessary to stack the basic discharge cell groups in multiple stages in the ozone generator 300. At this time, the ozone generator 300 has a sufficiently large area of the discharge cell of one unit as compared with the ozone generator 200, so that the number n of stacked basic discharge cell sets can be reduced.
また、実施の形態1のオゾン発生器200において、放電空間における放電ギャップ長dは、特に、20μm~100μmの範囲にすることで、高濃度オゾンガスを取出せることを示した。
Further, in the ozone generator 200 of the first embodiment, it has been shown that the high-concentration ozone gas can be taken out by setting the discharge gap length d in the discharge space in the range of 20 μm to 100 μm.
実施の形態2のオゾン発生器300は、以下の条件(b)を満足する。
(b) 放電空間における放電ギャップ長dが80μm未満に設定される。 Theozone generator 300 of Embodiment 2 satisfies the following condition (b).
(b) The discharge gap length d in the discharge space is set to less than 80 μm.
(b) 放電空間における放電ギャップ長dが80μm未満に設定される。 The
(b) The discharge gap length d in the discharge space is set to less than 80 μm.
放電空間における放電ギャップ長dを80μm未満の短ギャップ長にすると、原料ガスの供給口からオゾン発生器300を介し、外部のオゾンガス出口32までのガス圧力損出ΔPにおいて、条件(b)を満足する放電ギャップ長dで規定される放電空間でのガス圧力損出ΔPaの占める割合が高くなる。
When the discharge gap length d in the discharge space is set to a short gap length of less than 80 μm, the condition (b) is satisfied in the gas pressure loss ΔP from the source gas supply port to the external ozone gas outlet 32 through the ozone generator 300. The ratio of the gas pressure loss ΔPa in the discharge space defined by the discharge gap length d is high.
したがって、オゾン発生器300は、条件(b)を満足させて放電ギャップ長を80μm未満に制限することにより、分割数Nφで分散配置したNφ個のオゾン取出し口を有する1単位の放電セルにおいて、ほぼ均一なガス流量Q/n(L/min)でオゾンガスを流せることができ、高濃度のオゾンガスを出力することができる。
Therefore, the ozone generator 300 satisfies the condition (b) and restricts the discharge gap length to less than 80 μm, so that in one unit discharge cell having Nφ ozone extraction ports dispersedly arranged with the division number Nφ, Ozone gas can be flowed at a substantially uniform gas flow rate Q / n (L / min), and high-concentration ozone gas can be output.
1放電セル面において、放電空間における放電ギャップ長dを精度良く設定することにより、配置が異なるNφ個のオゾンガス取出口から、1つのオゾンガス取出し経路に至る過程におけるガス損出ΔPpのバラツキ度合いが、放電ギャップ長dで規定される放電空間でのガス圧力損出ΔPaによって無視できることになる。
By accurately setting the discharge gap length d in the discharge space on the surface of one discharge cell, the degree of variation in the gas loss ΔPp in the process from Nφ ozone gas outlets with different arrangements to one ozone gas extraction path, This can be ignored by the gas pressure loss ΔPa in the discharge space defined by the discharge gap length d.
その結果、1単位の放電セルにおけるガス流量の流れシミュレーションを実行すると、1単位の放電セルの放電面積を条件(a)で規定した分割面積dsoの3倍から6倍の大きさを、1単位の放電セル全体の放電面積stとすることができるため、1単位の放電セルの放電面積stを数百cm2以内で比較的大きく設定することができる。
As a result, when the flow simulation of the gas flow rate in one unit discharge cell is executed, the discharge area of one unit discharge cell is 3 to 6 times the divided area dso defined in the condition (a). Therefore, the discharge area st of one unit discharge cell can be set relatively large within several hundred cm 2 .
そして、1放電セル面において、分割数Nφで分散配置したオゾンガス取出口を設け、1単位の放電セルの外周から原料ガスを流し、Nφ個のオゾンガス取出口から取出す方式を採用することにより、オゾンガス流量のバラツキが抑制でき、より均一なガス流れでオゾンガスを取出せることになる。
By providing ozone gas outlets dispersedly arranged at the number of divisions Nφ on the surface of one discharge cell, and introducing a raw material gas from the outer periphery of one unit discharge cell and taking it out from Nφ ozone gas outlets, Variation in flow rate can be suppressed, and ozone gas can be extracted with a more uniform gas flow.
また、実施の形態2のオゾン発生器300は、以下の条件(d)をさらに満足する。
(d) 複数の放電セルそれぞれの放電空間における放電電力密度Jは、2.5W/cm2以上、6W/cm2未満の範囲に設定される。 Moreover, theozone generator 300 of Embodiment 2 further satisfies the following condition (d).
(d) The discharge power density J in the discharge space of each of the plurality of discharge cells is set to a range of 2.5 W / cm 2 or more and less than 6 W / cm 2 .
(d) 複数の放電セルそれぞれの放電空間における放電電力密度Jは、2.5W/cm2以上、6W/cm2未満の範囲に設定される。 Moreover, the
(d) The discharge power density J in the discharge space of each of the plurality of discharge cells is set to a range of 2.5 W / cm 2 or more and less than 6 W / cm 2 .
オゾン発生器300は上記条件(d)を満足するため、供給する原料ガスの総ガス流量Qで、放電電力DWを可能な範囲で最大に設定にして、負荷であるオゾン発生器300に印加する負荷電圧を許容値内に抑制でき、コンパクトなオゾン用のインバータ部(インバータ回路部22)を利用したオゾン用電源100を実現することができる。
In order to satisfy the above condition (d), the ozone generator 300 sets the discharge power DW to the maximum possible range at the total gas flow rate Q of the raw material gas to be supplied, and applies it to the ozone generator 300 as a load. The load voltage can be suppressed within an allowable value, and the ozone power source 100 using the compact ozone inverter unit (inverter circuit unit 22) can be realized.
さらに、オゾン発生器300は上記条件(d)を満足するため、約5SLMを超えるガス流量である総ガス流量Q及び総放電電力DWの環境下において、取出しオゾン量Ytを大きくすることができる。
Furthermore, since the ozone generator 300 satisfies the above condition (d), the amount of extracted ozone Yt can be increased in an environment of a total gas flow rate Q and a total discharge power DW that are gas flows exceeding about 5 SLM.
その結果、オゾン発生器300は、高濃度のオゾンガスと高出力の取出しオゾン量Ytの両方を兼ね備えたオゾン発生器となり、かつ、コンパクトで、安価に実現できる。
As a result, the ozone generator 300 is an ozone generator that has both high-concentration ozone gas and high output extraction ozone amount Yt, and is compact and can be realized at low cost.
以下に、実施の形態2のオゾンガス発生システム2000において、オゾン発生器300で用いられる具体的な放電セル形状について説明する。
Hereinafter, a specific discharge cell shape used in the ozone generator 300 in the ozone gas generation system 2000 of the second embodiment will be described.
高濃度、かつ大流量のオゾンガスを取出すためには、実施の形態1のオゾン発生器200のように、1単位の放電セルにおいて1放電面積soは、30~100m2の範囲に規定して、できるだけ放電面積soを小さくし、基本放電セル組の積層枚数nを多く設けたオゾン発生器が不可欠である。
In order to extract ozone gas having a high concentration and a large flow rate, as in the ozone generator 200 of Embodiment 1, one discharge area so is defined in a range of 30 to 100 m 2 in one unit discharge cell, An ozone generator in which the discharge area so is as small as possible and the number n of stacked basic discharge cell sets is large is essential.
この場合、基本放電セル組を多段に積層する場合、オゾン発生器200内の放電セルの部品点数等が増えることに加え、積層枚数nが増える程、オゾン発生器200内で積層された積層枚数nの基本放電セル組の締め付け応力管理が困難になる。
In this case, when the basic discharge cell groups are stacked in multiple stages, in addition to the increase in the number of components of the discharge cells in the ozone generator 200, the number of stacked layers in the ozone generator 200 increases as the number n of stacked layers increases. The tightening stress management of the n basic discharge cell sets becomes difficult.
このため、オゾン発生器200においては、積層枚数nは10程度が望ましく、オゾン発生器の応力積層設計において、積層枚数nは20以下にすることが必要である。そのため、オゾン発生器200の構造設計上においては、積層枚数nを少なくすることが望ましい。
Therefore, in the ozone generator 200, the number n of stacked layers is desirably about 10, and the number n of stacked layers needs to be 20 or less in the stress stack design of the ozone generator. Therefore, in the structural design of the ozone generator 200, it is desirable to reduce the number n of stacked layers.
以上の観点から、実施の形態2のオゾン発生器300は、1単位の放電セルにおける放電面積stを比較的広く設定しても、高濃度のオゾンガスが取り出せ、所定量以上の取出しオゾン量Ytが得られる放電セル形状を採用している。
From the above viewpoint, the ozone generator 300 according to the second embodiment can extract high-concentration ozone gas even if the discharge area st in one unit discharge cell is set relatively wide, and the extracted ozone amount Yt equal to or greater than a predetermined amount. The resulting discharge cell shape is adopted.
図7~図14は実施の形態2のオゾン発生器300において採用された1単位の放電セルにおける接地冷却電極51(51A~51D)及び誘電体電極52(52A~52D)の平面構造を模式的に示す説明図である。
7 to 14 schematically show the planar structures of the ground cooling electrode 51 (51A to 51D) and the dielectric electrode 52 (52A to 52D) in one unit discharge cell employed in the ozone generator 300 of the second embodiment. It is explanatory drawing shown in.
図7は実施の形態2の第1の態様である接地冷却電極51Aの平面構造を模式的に示す説明図である。図8は実施の形態2の第1の態様である誘電体電極52Aの平面構造を模式的に示す説明図である。
FIG. 7 is an explanatory view schematically showing a planar structure of the ground cooling electrode 51A which is the first mode of the second embodiment. FIG. 8 is an explanatory view schematically showing a planar structure of a dielectric electrode 52A which is the first mode of the second embodiment.
図9は実施の形態2の第2の態様である接地冷却電極51Bの平面構造を模式的に示す説明図である。図10は実施の形態2の第2の態様である誘電体電極52Bの平面構造を模式的に示す説明図である。
FIG. 9 is an explanatory diagram schematically showing a planar structure of the ground cooling electrode 51B which is the second mode of the second embodiment. FIG. 10 is an explanatory view schematically showing a planar structure of a dielectric electrode 52B which is the second mode of the second embodiment.
図11は実施の形態2の第3の態様である接地冷却電極51Cの平面構造を模式的に示す説明図である。図12は実施の形態2の第3の態様である誘電体電極52Cの平面構造を模式的に示す説明図である。
FIG. 11 is an explanatory view schematically showing a planar structure of a ground cooling electrode 51C which is the third mode of the second embodiment. FIG. 12 is an explanatory view schematically showing a planar structure of a dielectric electrode 52C which is the third mode of the second embodiment.
図13は実施の形態2の第4の態様である接地冷却電極51Dの平面構造を模式的に示す説明図である。図14は実施の形態2の第4の態様である誘電体電極52Dの平面構造を模式的に示す説明図である。
FIG. 13 is an explanatory view schematically showing a planar structure of the ground cooling electrode 51D which is the fourth mode of the second embodiment. FIG. 14 is an explanatory view schematically showing a planar structure of a dielectric electrode 52D which is the fourth mode of the second embodiment.
以下、接地冷却電極51A~51Dを総称する場合は単に「接地冷却電極51」と称し、誘電体電極52A~52Dを総称する場合は単に「誘電体電極52」と称する。
Hereinafter, the ground cooling electrodes 51A to 51D are collectively referred to as “ground cooling electrode 51”, and the dielectric electrodes 52A to 52D are simply referred to as “dielectric electrode 52”.
第1~第4の態様は、一対の平板電極として接地冷却電極51と誘電体電極52との組合せ構造を採用している。すなわち、平板状の第1の電極が接地冷却電極51となり、第2の電極が誘電体電極52となる。そして、接地冷却電極51,誘電体電極52との間に放電空間が設けられる。接地冷却電極51と誘電体電極52との組合せにより、1単位の放電セルが構成される。
The first to fourth aspects employ a combination structure of the ground cooling electrode 51 and the dielectric electrode 52 as a pair of plate electrodes. That is, the flat first electrode is the ground cooling electrode 51, and the second electrode is the dielectric electrode 52. A discharge space is provided between the ground cooling electrode 51 and the dielectric electrode 52. A combination of the ground cooling electrode 51 and the dielectric electrode 52 constitutes one unit of discharge cell.
実際には、実施の形態2のオゾン発生器300は、接地冷却電極51の両面に対向して、2つの誘電体電極52が配置される。すなわち、図1で示す実施の形態1の接地冷却電極1に接地冷却電極51が対応し、実施の形態1の誘電体電極2a及び2bそれぞれに誘電体電極52が対応する。
Actually, in the ozone generator 300 according to the second embodiment, the two dielectric electrodes 52 are arranged to face both surfaces of the ground cooling electrode 51. That is, the ground cooling electrode 51 corresponds to the ground cooling electrode 1 of the first embodiment shown in FIG. 1, and the dielectric electrode 52 corresponds to each of the dielectric electrodes 2a and 2b of the first embodiment.
したがって、接地冷却電極51と接地冷却電極51の上方に設けられる誘電体電極52とにより第1の基本セルが設けられ、この第1の基本セルが図1で示す実施の形態1の基本セルS1に対応する。
Therefore, the first basic cell is provided by the ground cooling electrode 51 and the dielectric electrode 52 provided above the ground cooling electrode 51, and this first basic cell is the basic cell S1 of the first embodiment shown in FIG. Corresponding to
さらに、接地冷却電極51と接地冷却電極51の下方に設けられる誘電体電極52とにより第2の基本セルが設けられ、この第2の基本セルが図1で示す実施の形態1の基本セルS2に対応する。
Further, a second basic cell is provided by ground cooling electrode 51 and dielectric electrode 52 provided below ground cooling electrode 51. This second basic cell is the basic cell S2 of the first embodiment shown in FIG. Corresponding to
実施の形態2において、複数の放電セルの基本単位となる1単位の放電セルとは、第1及び第2の基本セルのうちの一方を意味し、第1及び第2の基本セルの組合せが基本放電セル組となる。したがって、基本放電セル組の積層枚数がnの場合、複数の放電セルは、2n個の1単位の放電セル、n組の基本放電セル組となる。
In the second embodiment, one unit of discharge cell serving as a basic unit of a plurality of discharge cells means one of the first and second basic cells, and the combination of the first and second basic cells is a combination of the first and second basic cells. It becomes a basic discharge cell set. Therefore, when the number of stacked basic discharge cell groups is n, the plurality of discharge cells are 2n 1 unit discharge cells, n basic discharge cell groups.
実施の形態2のオゾン発生器300内に、基本放電セル組が積層枚数nで積層されることにより、複数の放電セル(2n個の1単位の放電セル、n組の基本放電セル組)からなる放電セル群が構成される。
In the ozone generator 300 of the second embodiment, basic discharge cell sets are stacked in a stacking number n, so that a plurality of discharge cells (2n 1 unit discharge cells, n basic discharge cell sets) are used. A discharge cell group is formed.
したがって、実施の形態2のオゾンガス発生システム2000は、図1のオゾンガス発生システム1000のうちオゾン発生器200がオゾン発生器300に置き換わった構造となる。
Therefore, the ozone gas generation system 2000 of the second embodiment has a structure in which the ozone generator 200 is replaced with the ozone generator 300 in the ozone gas generation system 1000 of FIG.
また、オゾン発生器300は、基本セルS1が上記第1の基本セルに置き換わり、基本セルS2が上記第2の基本セルに置き換わった点、マニホールドブロック9が後述するマニホールドブロック59(59A~59D)に置き換わった点が、オゾン発生器200との主要な相違点となる。
Further, the ozone generator 300 has a manifold block 59 (59A to 59D) described later in that the basic cell S1 is replaced with the first basic cell and the basic cell S2 is replaced with the second basic cell. The point replaced by is the main difference from the ozone generator 200.
なお、上記した主要な相違点を除き、実施の形態2のオゾン発生器300は実施の形態1のオゾン発生器200と同様な構成となっている。
Except for the main differences described above, the ozone generator 300 of the second embodiment has the same configuration as the ozone generator 200 of the first embodiment.
図7及び図8で示す第1の態様では、1単位の放電セルの全放電面積stを、実施の形態1で述べた条件(1)を満足する面積soの5倍程度に設定している。
In the first mode shown in FIGS. 7 and 8, the total discharge area st of one unit of discharge cells is set to about five times the area so that satisfies the condition (1) described in the first embodiment. .
図9及び図10で示す第2の態様では、1単位の放電セルの全放電面積stを、実施の形態1で述べた条件(1)を満足する面積soの3倍程度に設定している。
In the second mode shown in FIGS. 9 and 10, the total discharge area st of one unit of discharge cells is set to about three times the area so that satisfies the condition (1) described in the first embodiment. .
図11及び図12で示す第3の態様では、1単位の放電セルの全放電面積stを、実施の形態1で述べた条件(1)を満足する面積soの4倍程度に設定している。
In the third mode shown in FIGS. 11 and 12, the total discharge area st of one unit of discharge cells is set to about four times the area so that satisfies the condition (1) described in the first embodiment. .
図13及び図14で示す第4の態様では、1単位の放電セルの全放電面積stを、実施の形態1で述べた条件(1)を満足する面積soの6倍程度に設定している。
In the fourth mode shown in FIGS. 13 and 14, the total discharge area st of one unit discharge cell is set to about 6 times the area so that satisfies the condition (1) described in the first embodiment. .
図7,図9、図11及び図13に示すように、接地冷却電極51と接地冷却電極51に隣接してマニホールドブロック59(59A~59D)が設けられる。
As shown in FIGS. 7, 9, 11 and 13, a ground cooling electrode 51 and a manifold block 59 (59A to 59D) are provided adjacent to the ground cooling electrode 51.
以下、マニホールドブロック59A~59Dを総称する場合、単に「マニホールドブロック59」と称する。
Hereinafter, the manifold blocks 59A to 59D will be simply referred to as “manifold block 59”.
図7,図9,図11及び図13に示すように、接地冷却電極51は、平面視して台形を含む矩形状を呈し、その上面及び下面にNφ(Nφ≧2)個のオゾンガス取出口75(75a~75f)が分散して設けられる。
As shown in FIGS. 7, 9, 11 and 13, the ground cooling electrode 51 has a rectangular shape including a trapezoid in plan view, and Nφ (Nφ ≧ 2) ozone gas outlets on the upper and lower surfaces thereof. 75 (75a to 75f) are provided in a dispersed manner.
接地冷却電極51の上面及び下面は共に放電空間を形成する放電面となり、上面に設けられるNφ個のオゾンガス取出口75と下面に設けられるNφ個のオゾンガス取出口75とは平面視して合致している。以下、オゾンガス取出口75a~75fを総称する場合、単に「オゾンガス取出口75」と称する。
Both the upper surface and the lower surface of the ground cooling electrode 51 become discharge surfaces that form a discharge space, and the Nφ ozone gas outlets 75 provided on the upper surface and the Nφ ozone gas outlets 75 provided on the lower surface coincide with each other in plan view. ing. Hereinafter, the ozone gas outlets 75a to 75f are collectively referred to as “ozone gas outlet 75”.
接地冷却電極51の内部において、上面及び下面それぞれに設けられたNφ個のオゾンガス取出口75それぞれに繋がり、Nφ個のオゾンガス取出口75から取り出されたオゾンガスを集約して外部に出力するオゾンガス取出経路77(77A~77D)と、冷却水流路70(70A~70D)とが設けられる。
Inside the ground cooling electrode 51, an ozone gas extraction path connected to each of the Nφ ozone gas outlets 75 provided on the upper surface and the lower surface, and collects the ozone gas extracted from the Nφ ozone gas outlets 75 and outputs it to the outside. 77 (77A to 77D) and a cooling water channel 70 (70A to 70D) are provided.
以下、オゾンガス取出経路77A~77Dを総称する場合、単に「オゾンガス取出経路77」と称し、冷却水流路70A~70Dを総称する場合、単位「冷却水流路70」と称する。
Hereinafter, the ozone gas extraction paths 77A to 77D are collectively referred to as “ozone gas extraction path 77”, and the cooling water flow paths 70A to 70D are collectively referred to as a unit “cooling water flow path 70”.
オゾンガス取出経路77はマニホールドブロック59に設けられるオゾンガス出力経路92に繋がっており、複数の放電セルそれぞれで生成したオゾンガスGOUTをマニホールドブロック59に出力することができる。
The ozone gas extraction path 77 is connected to an ozone gas output path 92 provided in the manifold block 59, and the ozone gas G OUT generated in each of the plurality of discharge cells can be output to the manifold block 59.
冷却水流路70はマニホールドブロック59の冷却水入力経路93と冷却水出力経路91とに接続され、冷却水入力経路93より冷却水WINを入力し、冷却水流路70に冷却水を流した後、冷却水出力経路91より冷却水WOUTを出力する。冷却水流路70に冷却水を流すことにより接地冷却電極51を冷却することができる。
Cooling water passage 70 is connected to a cooling water input path 93 of the manifold block 59 and the cooling water output path 91, the cooling water input path 93 and enter the cooling water W IN, after flowing the cooling water to the cooling water flow path 70 The cooling water W OUT is output from the cooling water output path 91. The ground cooling electrode 51 can be cooled by flowing cooling water through the cooling water channel 70.
接地冷却電極51において、誘電体電極52と対向する放電面に、図示しない光触媒膜が塗布されるとともに、放電面に放電ギャップ長dを形成するための所定数の放電スペーサ73(放電スペーサ73A~73D)が設けられる。以下、放電スペーサ73A~73Dを総称する場合、単に「放電スペーサ73」と称する。
In the ground cooling electrode 51, a photocatalyst film (not shown) is applied to the discharge surface facing the dielectric electrode 52, and a predetermined number of discharge spacers 73 (discharge spacers 73A to 73A) for forming a discharge gap length d on the discharge surface. 73D). Hereinafter, the discharge spacers 73A to 73D are collectively referred to as “discharge spacer 73”.
また、接地冷却電極51は、2枚の薄い板の張り合わせた後、密着加圧接続され、この張り合わせた2枚の板の少なくとも一方にハーフエッチングした溝形成をすることにより、接地冷却電極51の内部に上述した冷却水流路70及びオゾンガス取出経路77を設けることができる。
In addition, the ground cooling electrode 51 is bonded to each other after the two thin plates are bonded to each other, and a half-etched groove is formed on at least one of the two bonded plates, thereby forming the ground cooling electrode 51. The cooling water flow path 70 and the ozone gas extraction path 77 described above can be provided inside.
実施の形態2の第1~第4の態様においては、実施の形態1の1単位の放電セルの放電面積soと比較して3~6倍程度の放電面積stを有する1単位の放電セルを採用している。具体的には、第1の態様の放電面積stが放電面積soの5倍程度に設定され、第2の態様の放電面積stが放電面積soの3倍程度に設定され、第3の態様の放電面積stが放電面積soの4倍程度に設定され、第4の態様の放電面積stが放電面積soの6倍程度に設定される。
In the first to fourth aspects of the second embodiment, a unit discharge cell having a discharge area st of about 3 to 6 times the discharge area so of the unit discharge cell of the first embodiment is used. Adopted. Specifically, the discharge area st of the first aspect is set to about five times the discharge area so, the discharge area st of the second aspect is set to about three times the discharge area so, The discharge area st is set to about 4 times the discharge area so, and the discharge area st of the fourth aspect is set to about 6 times the discharge area so.
実施の形態2では、複数の放電セルに投入する放電電力DWを可能な範囲で最大に設定した場合の放電電力密度Jは4.0W/m2とし、基本放電セル組の積層枚数nとしては“10”を採用し、基準最小構成でオゾン発生器300を実現している。
In the second embodiment, the discharge power density J when the discharge power DW input to a plurality of discharge cells is set to the maximum possible range is 4.0 W / m 2, and the number n of stacked basic discharge cell sets is as follows. “10” is adopted, and the ozone generator 300 is realized with the reference minimum configuration.
図9及び図10で示す第2の態様の放電面積stを基準の“1”とした場合、第1の態様は基準に対し約1.7倍、第3の態様は基準に対し約1.3倍、第4の態様は基準に対し約2倍となる。
When the discharge area st of the second mode shown in FIGS. 9 and 10 is set to “1” as a reference, the first mode is about 1.7 times the standard, and the third mode is about 1. times the standard. Three times, and the fourth mode is about twice the standard.
(第1の態様)
以下、図7及び図8を参照して第1の態様における1単位の放電セルの構造を説明する。図7及び図8に示すように、第1の態様における1単位の放電セルは、一対の平板電極を構成する、接地冷却電極51A(平板状の第1の電極)と誘電体電極52A(平板状の第2の電極)との組合せ構造となっている。誘電体電極52Aは例えばセラミックス板であり、誘電体を有する電極となる。 (First aspect)
Hereinafter, the structure of the discharge cell of one unit in the first mode will be described with reference to FIGS. As shown in FIG. 7 and FIG. 8, one unit discharge cell in the first mode includes aground cooling electrode 51A (flat first electrode) and a dielectric electrode 52A (flat plate) that constitute a pair of flat plate electrodes. And a second electrode). The dielectric electrode 52A is a ceramic plate, for example, and serves as an electrode having a dielectric.
以下、図7及び図8を参照して第1の態様における1単位の放電セルの構造を説明する。図7及び図8に示すように、第1の態様における1単位の放電セルは、一対の平板電極を構成する、接地冷却電極51A(平板状の第1の電極)と誘電体電極52A(平板状の第2の電極)との組合せ構造となっている。誘電体電極52Aは例えばセラミックス板であり、誘電体を有する電極となる。 (First aspect)
Hereinafter, the structure of the discharge cell of one unit in the first mode will be described with reference to FIGS. As shown in FIG. 7 and FIG. 8, one unit discharge cell in the first mode includes a
そして、接地冷却電極51Aと誘電体電極52Aとが互いに対向する空間が放電空間となり、接地冷却電極51Aと誘電体電極52Aとが平面視して重複する領域の面積が放電面積stとなる。第1の態様では分割数Nφとして“5”を採用している。
The space where the ground cooling electrode 51A and the dielectric electrode 52A face each other is a discharge space, and the area of the region where the ground cooling electrode 51A and the dielectric electrode 52A overlap in plan view is the discharge area st. In the first mode, “5” is adopted as the division number Nφ.
接地冷却電極51Aは、平面視して角部が丸められた台形状を呈し、その上面及び下面それぞれに5個のオゾンガス取出口75a~75eが設けられる。
The ground cooling electrode 51A has a trapezoidal shape with rounded corners in plan view, and five ozone gas outlets 75a to 75e are provided on the upper and lower surfaces, respectively.
誘電体電極52Aは、接地冷却電極51Aと同様に平面視して角部が丸められた台形状を呈し、誘電体電極52A上には平面視して誘電体電極52Aより少し小さい台形状の導電性膜62Aが設けられる。
Similarly to the ground cooling electrode 51A, the dielectric electrode 52A has a trapezoidal shape with rounded corners when viewed from above, and has a trapezoidal conductivity slightly smaller than the dielectric electrode 52A when viewed from above on the dielectric electrode 52A. 62A is provided.
導電性膜62Aが上方に位置する状態で、接地冷却電極51Aと誘電体電極52Aとが平面視して合致するように、接地冷却電極51A上に誘電体電極52Aを配置することにより、第1の態様の第1の基本セルが構成される。
By disposing the dielectric electrode 52A on the ground cooling electrode 51A so that the ground cooling electrode 51A and the dielectric electrode 52A match in plan view with the conductive film 62A positioned above, the first The first basic cell of the aspect is configured.
さらに、導電性膜62Aが下方に位置する状態で、接地冷却電極51Aと誘電体電極52Aとが平面視して合致するように、接地冷却電極51A下に誘電体電極52Aを配置することにより、第1の態様の第2の基本セルが構成される。
Furthermore, by disposing the dielectric electrode 52A under the ground cooling electrode 51A so that the ground cooling electrode 51A and the dielectric electrode 52A match in plan view with the conductive film 62A positioned below, A second basic cell of the first aspect is configured.
第1及び第2の基本セルがそれぞれ第1の態様における1単位の放電セルとなる。また、第1及び第2の基本セルの組合せが基本放電セル組となる。したがって、接地冷却電極51Aの上面は第1の基本セルの放電面となり、接地冷却電極51Aの下面は第2の基本セルの放電面となる。
Each of the first and second basic cells is a unit discharge cell in the first mode. A combination of the first and second basic cells is a basic discharge cell set. Therefore, the upper surface of the ground cooling electrode 51A becomes the discharge surface of the first basic cell, and the lower surface of the ground cooling electrode 51A becomes the discharge surface of the second basic cell.
基本放電セル組に対し、図7に示す様に、接地冷却電極51A(誘電体電極52A)の外周部から原料ガスである酸素ガスGINが供給される。
To basic discharge cell group, as shown in FIG. 7, the oxygen gas G IN as a source gas from the outer peripheral portion of the ground cooling the electrode 51A (the dielectric electrode 52A) is supplied.
第1の態様の1単位の放電セルの放電面積stは実施の形態1の放電面積soの5倍相当の約350cm2に設定され、第1の態様の基本放電セル組を多段に積層してなる複数の放電セル(放電セル群)をオゾン発生器300が有することになる。
The discharge area st of one unit discharge cell of the first mode is set to about 350 cm 2 corresponding to five times the discharge area so of the first embodiment, and the basic discharge cell groups of the first mode are stacked in multiple stages. The ozone generator 300 has a plurality of discharge cells (discharge cell groups).
第1の態様の第1及び第2の基本セルそれぞれに対し、導電性膜62Aと接地冷却電極51Aとの間にオゾン用電源100からオゾン発生用交流電圧を印加して、第1及び第2の基本セルそれぞれにおいて、誘電体電極52Aと接地冷却電極51Aとの間の放電空間に誘電体バリア放電を発生させる。その結果、第1及び第2の基本セルそれぞれの放電空間でオゾンガスが生成され、生成されたオゾンガスは、5個のオゾンガス取出口75a~75eそれぞれに分流して流れ込む。
For each of the first and second basic cells of the first aspect, an ozone generating AC voltage is applied from the ozone power source 100 between the conductive film 62A and the ground cooling electrode 51A, and thereby the first and second basic cells are provided. In each of the basic cells, a dielectric barrier discharge is generated in the discharge space between the dielectric electrode 52A and the ground cooling electrode 51A. As a result, ozone gas is generated in the discharge space of each of the first and second basic cells, and the generated ozone gas is divided and flows into each of the five ozone gas outlets 75a to 75e.
接地冷却電極51Aの内部において、5個のオゾンガス取出口75a~75eそれぞれに繋がり、5個のオゾンガス取出口75a~75eから取り出されたオゾンガスを集約して外部に出力するオゾンガス取出経路77Aと、冷却水流路70Aとが設けられる。
Inside the ground cooling electrode 51A, an ozone gas extraction path 77A is connected to each of the five ozone gas outlets 75a to 75e, collects the ozone gas extracted from the five ozone gas outlets 75a to 75e, and outputs the ozone gas to the outside. A water flow path 70A is provided.
オゾンガス取出経路77Aはマニホールドブロック59に設けられるオゾンガス出力経路92に繋がっている。
The ozone gas extraction path 77A is connected to an ozone gas output path 92 provided in the manifold block 59.
したがって、上記した第1及び第2の基本セルそれぞれの放電空間で生成したオゾンガスは、接地冷却電極51Aの上面及び下面それぞれに設けられたオゾンガス取出口75a~75eに流れ込む。その後、オゾンガス取出経路77Aで1つに合流しオゾンガス出力Goutに集約され、オゾンガスGOUTがマニホールドブロック59Aのオゾンガス出力経路92に出力される。その結果、マニホールドブロック59Aのオゾンガス出力経路92を介して、オゾンガス出口32(図1参照)からオゾンガスを取り出すことができる。
Accordingly, the ozone gas generated in the discharge space of each of the first and second basic cells flows into the ozone gas outlets 75a to 75e provided on the upper and lower surfaces of the ground cooling electrode 51A. Thereafter, aggregated into merged ozone gas output G out one by ozone gas take-off path 77A, ozone gas G OUT is output to the ozone gas output path 92 of the manifold block 59A. As a result, ozone gas can be extracted from the ozone gas outlet 32 (see FIG. 1) via the ozone gas output path 92 of the manifold block 59A.
したがって、基本放電セル組毎に、上述したオゾンガス取り出し処理が行われ、積層枚数nで多段に積層された基本放電セル組それぞれで生成されたオゾンガスがマニホールドブロック59Aのオゾンガス出力経路92に集められる。
Therefore, the ozone gas extraction process described above is performed for each basic discharge cell group, and the ozone gas generated in each of the basic discharge cell groups stacked in multiple stages with the number n stacked is collected in the ozone gas output path 92 of the manifold block 59A.
冷却水流路70Aは、マニホールドブロック59の冷却水入力経路93と冷却水出力経路91とに接続され、冷却水入力経路93より冷却水WINを入力し、冷却水流路70Aに冷却水を流した後、冷却水出力経路91より冷却水WOUTを出力する。冷却水流路70Aに冷却水を流すことにより接地冷却電極51Aを冷却することができる。
Cooling water passage 70A is connected to a cooling water input path 93 of the manifold block 59 and the cooling water output path 91, and enter the cooling water W IN from the cooling water input path 93 and flushed with cooling water in the cooling water passage 70A Thereafter, the cooling water W OUT is output from the cooling water output path 91. The ground cooling electrode 51A can be cooled by flowing cooling water through the cooling water channel 70A.
この接地冷却電極51Aにおいて誘電体電極52Aと対向する放電面に、図示しない光触媒膜が塗布されるとともに、放電面に放電ギャップ長dを形成するための4個の放電スペーサ73Aが分散して設けられる。4個の放電スペーサ73Aの形成高さによって放電ギャップ長dが規定される。
In this ground cooling electrode 51A, a photocatalyst film (not shown) is applied to the discharge surface facing the dielectric electrode 52A, and four discharge spacers 73A for forming the discharge gap length d are dispersedly provided on the discharge surface. It is done. The discharge gap length d is defined by the formation height of the four discharge spacers 73A.
4個の放電スペーサ73Aは接地冷却電極51Aの上面及び下面それぞれで接地冷却電極51Aと一体化して設けられ(連結され)、上面に設けられる4個の放電スペーサ73Aが第1の基本セルの放電ギャップ長dを規定し、下面に設けられる4個の放電スペーサ73Aが第2の基本セルの放電ギャップ長dを規定する。
The four discharge spacers 73A are integrally provided with (connected to) the ground cooling electrode 51A on the upper surface and the lower surface of the ground cooling electrode 51A, respectively, and the four discharge spacers 73A provided on the upper surface discharge the first basic cell. The gap length d is defined, and the four discharge spacers 73A provided on the lower surface define the discharge gap length d of the second basic cell.
第1の態様における1単位の放電セルは、以下の条件(a)及び(b)を満足する。
(a) 放電面積stを分割数Nで除算した分割面積dsoが、30cm2以上、160cm2未満の範囲に設定される。
(b) 放電空間における放電ギャップ長が80μm未満に設定される。 One unit of discharge cell in the first embodiment satisfies the following conditions (a) and (b).
(a) A divided area dso obtained by dividing the discharge area st by the division number N is set to a range of 30 cm 2 or more and less than 160 cm 2 .
(b) The discharge gap length in the discharge space is set to less than 80 μm.
(a) 放電面積stを分割数Nで除算した分割面積dsoが、30cm2以上、160cm2未満の範囲に設定される。
(b) 放電空間における放電ギャップ長が80μm未満に設定される。 One unit of discharge cell in the first embodiment satisfies the following conditions (a) and (b).
(a) A divided area dso obtained by dividing the discharge area st by the division number N is set to a range of 30 cm 2 or more and less than 160 cm 2 .
(b) The discharge gap length in the discharge space is set to less than 80 μm.
さらに、第1の態様の放電セルは、以下の条件(c)を満足する。
(c) 平面視して5個のオゾンガス取出口75a~75eを中心とした5個の仮想円状放電領域79a~79eが互いに重複することなく放電空間(接地冷却電極51Aの平面形状)内に形成されるように、5個のオゾンガス取出口75a~75eは配置され、5個の仮想円状放電領域79a~79eそれぞれの半径r(放電径D1/2)は{r=(0.8・dso/π)0.5}を満足する。 Furthermore, the discharge cell of the first aspect satisfies the following condition (c).
(c) Five virtualcircular discharge regions 79a to 79e centered on the five ozone gas outlets 75a to 75e in plan view are not overlapped with each other in the discharge space (planar shape of the ground cooling electrode 51A). As shown, five ozone gas outlets 75a to 75e are arranged, and the radius r (discharge diameter D1 / 2) of each of the five virtual circular discharge regions 79a to 79e is {r = (0.8 · dso / π) 0.5 }.
(c) 平面視して5個のオゾンガス取出口75a~75eを中心とした5個の仮想円状放電領域79a~79eが互いに重複することなく放電空間(接地冷却電極51Aの平面形状)内に形成されるように、5個のオゾンガス取出口75a~75eは配置され、5個の仮想円状放電領域79a~79eそれぞれの半径r(放電径D1/2)は{r=(0.8・dso/π)0.5}を満足する。 Furthermore, the discharge cell of the first aspect satisfies the following condition (c).
(c) Five virtual
なお、5個の仮想円状放電領域79a~79eは、平面視して4個の放電スペーサ73A、オゾンガス取出経路77A及び冷却水流路70Aにも重複しない。
The five virtual circular discharge regions 79a to 79e do not overlap the four discharge spacers 73A, the ozone gas extraction path 77A, and the cooling water flow path 70A in plan view.
仮想円状放電領域79a~79eはそれぞれ、4個の放電スペーサ73A、オゾンガス取出経路77A及び冷却水流路70Aの形成領域等を考慮して、分割面積dsoの8割の面積に設定されている。
The virtual circular discharge areas 79a to 79e are set to an area of 80% of the divided area dso in consideration of the formation areas of the four discharge spacers 73A, the ozone gas extraction path 77A, the cooling water flow path 70A, and the like.
(第2の態様)
以下、図9及び図10を参照して第2の態様における1単位の放電セルの構造を説明する。図9及び図10に示すように、第2の態様における1単位の放電セルは、一対の平板電極を構成する、接地冷却電極51B(平板状の第1の電極)と誘電体電極52B(平板状の第2の電極)との組合せ構造となっている。誘電体電極52Bは例えばセラミックス板であり、誘電体を有する電極となる。 (Second aspect)
Hereinafter, the structure of the discharge cell of one unit in the second embodiment will be described with reference to FIGS. As shown in FIGS. 9 and 10, one unit discharge cell in the second mode includes aground cooling electrode 51B (a flat plate-like first electrode) and a dielectric electrode 52B (a flat plate) constituting a pair of flat plate electrodes. And a second electrode). The dielectric electrode 52B is, for example, a ceramic plate and serves as an electrode having a dielectric.
以下、図9及び図10を参照して第2の態様における1単位の放電セルの構造を説明する。図9及び図10に示すように、第2の態様における1単位の放電セルは、一対の平板電極を構成する、接地冷却電極51B(平板状の第1の電極)と誘電体電極52B(平板状の第2の電極)との組合せ構造となっている。誘電体電極52Bは例えばセラミックス板であり、誘電体を有する電極となる。 (Second aspect)
Hereinafter, the structure of the discharge cell of one unit in the second embodiment will be described with reference to FIGS. As shown in FIGS. 9 and 10, one unit discharge cell in the second mode includes a
そして、接地冷却電極51Bと誘電体電極52Bとが互いに対向する空間が放電空間となり、接地冷却電極51Bと誘電体電極52Bとが平面視して重複する領域の面積が放電面積stとなる。第2の態様では分割数Nφとして“3”を採用している。
The space where the ground cooling electrode 51B and the dielectric electrode 52B face each other is a discharge space, and the area of the region where the ground cooling electrode 51B and the dielectric electrode 52B overlap in plan view is the discharge area st. In the second mode, “3” is adopted as the division number Nφ.
接地冷却電極51Bは、平面視して角部が丸められた台形状を呈し、その上面及び下面それぞれに3個のオゾンガス取出口75a~75cが設けられる。
The ground cooling electrode 51B has a trapezoidal shape with rounded corners in plan view, and three ozone gas outlets 75a to 75c are provided on the upper and lower surfaces, respectively.
誘電体電極52Bは、接地冷却電極51Bと同様に平面視して角部が丸められた台形状を呈し、誘電体電極52B上には平面視して誘電体電極52Bより少し小さい台形状の導電性膜62Bが設けられる。
Similarly to the ground cooling electrode 51B, the dielectric electrode 52B has a trapezoidal shape with rounded corners when viewed from above, and has a trapezoidal conductivity slightly smaller than the dielectric electrode 52B when viewed from above on the dielectric electrode 52B. A conductive film 62B is provided.
導電性膜62Bが上方に位置する状態で、接地冷却電極51Bと誘電体電極52Bとが平面視して合致するように、接地冷却電極51B上に誘電体電極52Bを配置することにより、第2の態様の第1の基本セルが構成される。
By disposing the dielectric electrode 52B on the ground cooling electrode 51B so that the ground cooling electrode 51B and the dielectric electrode 52B match in a plan view with the conductive film 62B positioned above, the second The first basic cell of the aspect is configured.
さらに、導電性膜62Bが下方に位置する状態で、接地冷却電極51Bと誘電体電極52Bとが平面視して合致するように、接地冷却電極51B下に誘電体電極52Bを配置することにより、第2の態様の第2の基本セルが構成される。
Furthermore, by disposing the dielectric electrode 52B below the ground cooling electrode 51B so that the ground cooling electrode 51B and the dielectric electrode 52B match in plan view with the conductive film 62B positioned below, A second basic cell of the second aspect is configured.
第1及び第2の基本セルがそれぞれ第2の態様における1単位の放電セルとなる。また、第1及び第2の基本セルの組合せが基本放電セル組となる。したがって、接地冷却電極51Bの上面は第1の基本セルの放電面となり、接地冷却電極51Bの下面は第2の基本セルの放電面となる。
The first and second basic cells are each a unit discharge cell in the second mode. A combination of the first and second basic cells is a basic discharge cell set. Therefore, the upper surface of the ground cooling electrode 51B becomes the discharge surface of the first basic cell, and the lower surface of the ground cooling electrode 51B becomes the discharge surface of the second basic cell.
基本放電セル組に対し、図9に示す様に、接地冷却電極51B(誘電体電極52B)の外周部から原料ガスである酸素ガスGINが供給される。
To basic discharge cell group, as shown in FIG. 9, the oxygen gas G IN as a source gas from the outer peripheral portion of the ground cooling electrode 51B (dielectric electrode 52B) is supplied.
第2の態様の放電セルの放電面積stは実施の形態1の放電面積soの3倍相当の約230cm2に設定され、第2の態様の基本放電セル組を積層枚数nで積層してなる複数の放電セル(放電セル群)をオゾン発生器300が有することになる。
The discharge area st of the discharge cell of the second mode is set to about 230 cm 2 corresponding to three times the discharge area so of the first embodiment, and the basic discharge cell group of the second mode is stacked by the number n of stacks. The ozone generator 300 has a plurality of discharge cells (discharge cell group).
第2の態様の第1及び第2の基本セルそれぞれに対し、導電性膜62Bと接地冷却電極51Bとの間にオゾン用電源100からオゾン発生用交流電圧を印加して、第1及び第2の基本セルそれぞれにおいて、誘電体電極52Bと接地冷却電極51Bとの間の放電空間に誘電体バリア放電を発生させる。その結果、第1及び第2の基本セルそれぞれの放電空間でオゾンガスが生成され、生成されたオゾンガスは、3個のオゾンガス取出口75a~75cそれぞれに分流して流れ込む。
For each of the first and second basic cells of the second aspect, an ozone generating AC voltage is applied from the ozone power source 100 between the conductive film 62B and the ground cooling electrode 51B, and the first and second basic cells In each of the basic cells, a dielectric barrier discharge is generated in the discharge space between the dielectric electrode 52B and the ground cooling electrode 51B. As a result, ozone gas is generated in the discharge space of each of the first and second basic cells, and the generated ozone gas is divided and flows into the three ozone gas outlets 75a to 75c.
接地冷却電極51Bの内部において、3個のオゾンガス取出口75a~75cそれぞれに繋がり、3個のオゾンガス取出口75a~75cから取り出されたオゾンガスを集約して外部に出力するオゾンガス取出経路77Bと、冷却水流路70Bとが設けられる。
Inside the ground cooling electrode 51B, an ozone gas extraction path 77B that is connected to each of the three ozone gas outlets 75a to 75c, collects the ozone gas extracted from the three ozone gas outlets 75a to 75c, and outputs it to the outside, and cooling A water channel 70B is provided.
オゾンガス取出経路77Bはマニホールドブロック59に設けられるオゾンガス出力経路92に繋がっている。
The ozone gas extraction path 77B is connected to an ozone gas output path 92 provided in the manifold block 59.
したがって、上記した第1及び第2の基本セルそれぞれの放電空間で生成したオゾンガスは、接地冷却電極51Bの上面及び下面それぞれに設けられたオゾンガス取出口75a~75cに流れ込む。その後、オゾンガス取出経路77Bで1つに合流しオゾンガス出力Goutに集約され、オゾンガスGOUTがマニホールドブロック59Bのオゾンガス出力経路92に出力される。その結果、マニホールドブロック59Bのオゾンガス出力経路92を介してオゾンガスを取り出すことができる。
Accordingly, the ozone gas generated in the discharge space of each of the first and second basic cells flows into the ozone gas outlets 75a to 75c provided on the upper surface and the lower surface of the ground cooling electrode 51B. Thereafter, aggregated into merged ozone gas output G out one by ozone gas take-off path 77B, ozone gas G OUT is output to the ozone gas output path 92 of the manifold block 59B. As a result, ozone gas can be extracted through the ozone gas output path 92 of the manifold block 59B.
したがって、基本放電セル組毎に、上述したオゾンガス取り出し処理が行われ、積層枚数nで多段に積層された基本放電セル組それぞれで生成されたオゾンガスがマニホールドブロック59Bのオゾンガス出力経路92に集められる。
Therefore, the ozone gas extraction process described above is performed for each basic discharge cell group, and the ozone gas generated in each of the basic discharge cell groups stacked in multiple stages with the number of stacked layers n is collected in the ozone gas output path 92 of the manifold block 59B.
冷却水流路70Bはマニホールドブロック59の冷却水入力経路93と冷却水出力経路91とに接続され、冷却水入力経路93より冷却水WINを入力し、冷却水流路70Bに冷却水を流した後、冷却水出力経路91より冷却水WOUTを出力する。冷却水流路70Bに冷却水を流すことにより接地冷却電極51Bを冷却することができる。
Cooling water passage 70B is connected to a cooling water input path 93 of the manifold block 59 and the cooling water output path 91, the cooling water input path 93 and enter the cooling water W IN, after flowing the cooling water to the cooling water passage 70B The cooling water W OUT is output from the cooling water output path 91. The ground cooling electrode 51B can be cooled by flowing cooling water through the cooling water channel 70B.
接地冷却電極51Bにおいて誘電体電極52Bと対向する放電面に、図示しない光触媒膜が塗布されるとともに、放電面に放電ギャップ長dを形成するための4個の放電スペーサ73Bが分散して設けられる。4個の放電スペーサ73Bの形成高さによって放電ギャップ長dが規定される。
A photocatalyst film (not shown) is applied to the discharge surface facing the dielectric electrode 52B in the ground cooling electrode 51B, and four discharge spacers 73B for forming the discharge gap length d are provided in a dispersed manner on the discharge surface. . The discharge gap length d is defined by the formation height of the four discharge spacers 73B.
4個の放電スペーサ73Bは接地冷却電極51Bの上面及び下面それぞれで接地冷却電極51Bと一体化して設けられ(連結され)、上面に設けられる4個の放電スペーサ73Bが第1の基本セルの放電ギャップ長dを規定し、下面に設けられる4個の放電スペーサ73Bが第2の基本セルの放電ギャップ長dを規定する。
The four discharge spacers 73B are integrally provided (connected) to the ground cooling electrode 51B on the upper surface and the lower surface of the ground cooling electrode 51B, respectively, and the four discharge spacers 73B provided on the upper surface are discharged from the first basic cell. The gap length d is defined, and the four discharge spacers 73B provided on the lower surface define the discharge gap length d of the second basic cell.
第2の態様における1単位の放電セルは、第1の態様と同様、上述した条件(a)及び(b)を満足する。
The 1 unit discharge cell in the second mode satisfies the above-mentioned conditions (a) and (b) as in the first mode.
さらに、第2の態様の放電セルは、以下の条件(c)を満足する。
(c) 平面視して3個のオゾンガス取出口75a~75cを中心とした3個の仮想円状放電領域79a~79cが互いに重複することなく放電空間(接地冷却電極51Bの平面形状)内に形成されるように、3個のオゾンガス取出口75a~75cは配置され、3個の仮想円状放電領域79a~79cそれぞれの半径r(放電径D1/2)は{r=(0.8・dso/π)0.5}を満足する。 Furthermore, the discharge cell of the second aspect satisfies the following condition (c).
(c) The three virtualcircular discharge regions 79a to 79c centering on the three ozone gas outlets 75a to 75c in plan view do not overlap each other in the discharge space (planar shape of the ground cooling electrode 51B). As shown, the three ozone gas outlets 75a to 75c are arranged, and the radius r (discharge diameter D1 / 2) of each of the three virtual circular discharge regions 79a to 79c is {r = (0.8 · dso / π) 0.5 }.
(c) 平面視して3個のオゾンガス取出口75a~75cを中心とした3個の仮想円状放電領域79a~79cが互いに重複することなく放電空間(接地冷却電極51Bの平面形状)内に形成されるように、3個のオゾンガス取出口75a~75cは配置され、3個の仮想円状放電領域79a~79cそれぞれの半径r(放電径D1/2)は{r=(0.8・dso/π)0.5}を満足する。 Furthermore, the discharge cell of the second aspect satisfies the following condition (c).
(c) The three virtual
なお、3個の仮想円状放電領域79a~79cは、平面視して4個の放電スペーサ73B、オゾンガス取出経路77B及び冷却水流路70Bにも重複しない。
Note that the three virtual circular discharge regions 79a to 79c do not overlap the four discharge spacers 73B, the ozone gas extraction path 77B, and the cooling water flow path 70B in plan view.
仮想円状放電領域79a~79cはそれぞれ、4個の放電スペーサ73B、オゾンガス取出経路77B及び冷却水流路70Bの形成領域等を考慮して、分割面積dsoの8割の面積に設定されている。
The virtual circular discharge areas 79a to 79c are each set to an area of 80% of the divided area dso in consideration of the formation areas of the four discharge spacers 73B, the ozone gas extraction path 77B, and the cooling water flow path 70B.
(第3の態様)
以下、図11及び図12を参照して第3の態様における1単位の放電セルの構造を説明する。図11及び図12に示すように、第3の態様における1単位の放電セルは、一対の平板電極を構成する、接地冷却電極51C(平板状の第1の電極)と誘電体電極52C(平板状の第2の電極)との組合せ構造となっている。誘電体電極52Cは例えばセラミックス板であり、誘電体を有する電極となる。 (Third aspect)
Hereinafter, the structure of one unit of discharge cells in the third embodiment will be described with reference to FIGS. As shown in FIG. 11 and FIG. 12, one unit of discharge cell in the third mode includes aground cooling electrode 51C (flat first electrode) and a dielectric electrode 52C (flat plate) constituting a pair of flat plate electrodes. And a second electrode). The dielectric electrode 52C is, for example, a ceramic plate and serves as an electrode having a dielectric.
以下、図11及び図12を参照して第3の態様における1単位の放電セルの構造を説明する。図11及び図12に示すように、第3の態様における1単位の放電セルは、一対の平板電極を構成する、接地冷却電極51C(平板状の第1の電極)と誘電体電極52C(平板状の第2の電極)との組合せ構造となっている。誘電体電極52Cは例えばセラミックス板であり、誘電体を有する電極となる。 (Third aspect)
Hereinafter, the structure of one unit of discharge cells in the third embodiment will be described with reference to FIGS. As shown in FIG. 11 and FIG. 12, one unit of discharge cell in the third mode includes a
そして、接地冷却電極51Cと誘電体電極52Cとが互いに対向する空間が放電空間となり、接地冷却電極51Cと誘電体電極52Cとが平面視して重複する領域の面積が放電面積stとなる。第3の態様では分割数Nφとして“4”を採用している。
The space where the ground cooling electrode 51C and the dielectric electrode 52C face each other is a discharge space, and the area of the region where the ground cooling electrode 51C and the dielectric electrode 52C overlap in plan view is the discharge area st. In the third mode, “4” is adopted as the division number Nφ.
接地冷却電極51Cは、平面視して角部が丸められた正方形状を呈し、その上面及び下面にそれぞれ4個のオゾンガス取出口75a~75dが設けられる。
The ground cooling electrode 51C has a square shape with rounded corners in plan view, and four ozone gas outlets 75a to 75d are provided on the upper and lower surfaces, respectively.
誘電体電極52Cは、接地冷却電極51Cと同様に平面視して角部が丸められた正方形状を呈し、誘電体電極52C上には平面視して誘電体電極52Cより少し小さい正方形状の導電性膜62Cが設けられる。
Similarly to the ground cooling electrode 51C, the dielectric electrode 52C has a square shape with rounded corners when viewed in plan, and has a square conductive shape slightly smaller than the dielectric electrode 52C when viewed in plan on the dielectric electrode 52C. 62C is provided.
導電性膜62Cが上方に位置する状態で、接地冷却電極51Cと誘電体電極52Cとが平面視して合致するように、接地冷却電極51C上に誘電体電極52Cを配置することにより、第3の態様の第1の基本セルが構成される。
By disposing the dielectric electrode 52C on the ground cooling electrode 51C so that the ground cooling electrode 51C and the dielectric electrode 52C match in plan view with the conductive film 62C positioned above, the third The first basic cell of the aspect is configured.
さらに、導電性膜62Cが下方に位置する状態で、接地冷却電極51Cと誘電体電極52Cとが平面視して合致するように、接地冷却電極51C下に誘電体電極52Cを配置することにより、第3の態様の第2の基本セルが構成される。
Furthermore, by disposing the dielectric electrode 52C under the ground cooling electrode 51C so that the ground cooling electrode 51C and the dielectric electrode 52C match in plan view with the conductive film 62C positioned below, A second basic cell of the third aspect is configured.
第1及び第2の基本セルがそれぞれ第3の態様における1単位の放電セルとなる。また、第1及び第2の基本セルの組合せが基本放電セル組となる。したがって、接地冷却電極51Cの上面は第1の基本セルの放電面となり、接地冷却電極51Cの下面は第2の基本セルの放電面となる。
The first and second basic cells are each a unit discharge cell in the third mode. A combination of the first and second basic cells is a basic discharge cell set. Therefore, the upper surface of the ground cooling electrode 51C serves as the discharge surface of the first basic cell, and the lower surface of the ground cooling electrode 51C serves as the discharge surface of the second basic cell.
基本放電セル組に対し、図11に示す様に、接地冷却電極51C(誘電体電極52C)の外周部から原料ガスである酸素ガスGINが供給される。
To basic discharge cell group, as shown in FIG. 11, the oxygen gas G IN as a source gas from the outer peripheral portion of the ground cooling electrode 51C (dielectric electrode 52C) is supplied.
第3の態様の放電セルの放電面積stは実施の形態1の放電面積soの4倍相当の約320cm2に設定され、第3の態様の基本放電セル組を積層枚数nで多段に積層してなる複数の放電セル(放電セル群)をオゾン発生器300が有することになる。
The discharge area st of the discharge cell of the third mode is set to about 320 cm 2 corresponding to four times the discharge area so of the first embodiment, and the basic discharge cell group of the third mode is stacked in multiple stages with the stacking number n. The ozone generator 300 has a plurality of discharge cells (discharge cell groups).
第3の態様の第1及び第2の基本セルそれぞれに対し、導電性膜62Cと接地冷却電極51Cとの間にオゾン用電源100からオゾン発生用交流電圧を印加して、第1及び第2の基本セルそれぞれにおいて、誘電体電極52Cと接地冷却電極51Cとの間の放電空間に誘電体バリア放電を発生させる。その結果、第1及び第2の基本セルそれぞれの放電空間でオゾンガスが生成され、生成されたオゾンガスは、4個のオゾンガス取出口75a~75dそれぞれに分流して流れ込む。
For each of the first and second basic cells of the third aspect, an ozone generating AC voltage is applied from the ozone power source 100 between the conductive film 62C and the ground cooling electrode 51C, and thereby the first and second basic cells are provided. In each of the basic cells, a dielectric barrier discharge is generated in the discharge space between the dielectric electrode 52C and the ground cooling electrode 51C. As a result, ozone gas is generated in the discharge space of each of the first and second basic cells, and the generated ozone gas is divided and flows into each of the four ozone gas outlets 75a to 75d.
接地冷却電極51Cの内部において、4個のオゾンガス取出口75a~75dそれぞれに繋がり、4個のオゾンガス取出口75a~75dから取り出されたオゾンガスを集約して外部に出力するオゾンガス取出経路77Cと、冷却水流路70Cとが設けられる。
Inside the ground cooling electrode 51C, an ozone gas extraction path 77C is connected to each of the four ozone gas outlets 75a to 75d, collects the ozone gas extracted from the four ozone gas outlets 75a to 75d, and outputs it to the outside. A water channel 70C is provided.
オゾンガス取出経路77Cはマニホールドブロック59に設けられるオゾンガス出力経路92に繋がっている。
The ozone gas extraction path 77 </ b> C is connected to an ozone gas output path 92 provided in the manifold block 59.
したがって、上記した第1及び第2の基本セルそれぞれの放電空間で生成したオゾンガスは、接地冷却電極51Cの上面及び下面それぞれに設けられたオゾンガス取出口75a~75dに流れ込む。その後、オゾンガス取出経路77Cで1つに合流しオゾンガス出力Goutに集約され、オゾンガスGOUTがマニホールドブロック59Cのオゾンガス出力経路92に出力される。その結果、マニホールドブロック59Cのオゾンガス出力経路92を介してオゾンガスを取り出すことができる。
Accordingly, the ozone gas generated in the discharge space of each of the first and second basic cells flows into the ozone gas outlets 75a to 75d provided on the upper surface and the lower surface of the ground cooling electrode 51C. Thereafter, aggregated into merged ozone gas output G out one by ozone gas take-off path 77C, the ozone gas G OUT is output to the ozone gas output path 92 of the manifold block 59C. As a result, ozone gas can be taken out through the ozone gas output path 92 of the manifold block 59C.
したがって、基本放電セル組毎に、上述したオゾンガス取り出し処理が行われ、積層枚数nで多段に積層された基本放電セル組それぞれで生成されたオゾンガスがマニホールドブロック59Cのオゾンガス出力経路92に集められる。
Therefore, the above-described ozone gas extraction process is performed for each basic discharge cell group, and the ozone gas generated in each of the basic discharge cell groups stacked in multiple stages with the number n stacked is collected in the ozone gas output path 92 of the manifold block 59C.
冷却水流路70Cはマニホールドブロック59の冷却水入力経路93と冷却水出力経路91とに接続され、冷却水入力経路93より冷却水WINを入力し、冷却水流路70Cに冷却水を流した後、冷却水出力経路91より冷却水WOUTを出力する。冷却水流路70Cに冷却水を流すことにより接地冷却電極51Cを冷却することができる。
Cooling water passage 70C is connected to a cooling water input path 93 of the manifold block 59 and the cooling water output path 91, the cooling water input path 93 and enter the cooling water W IN, after flowing the cooling water to the cooling water passage 70C The cooling water W OUT is output from the cooling water output path 91. The ground cooling electrode 51C can be cooled by flowing cooling water through the cooling water flow path 70C.
接地冷却電極51Cにおいて誘電体電極52Cと対向する放電面に、図示しない光触媒膜が塗布されるとともに、放電面に放電ギャップ長dを形成するための7個の放電スペーサ73Cが分散して設けられる。7個の放電スペーサ73Cの形成高さによって放電ギャップ長dが規定される。
A photocatalyst film (not shown) is applied to the discharge surface of the ground cooling electrode 51C facing the dielectric electrode 52C, and seven discharge spacers 73C for forming the discharge gap length d are provided on the discharge surface in a dispersed manner. . The discharge gap length d is defined by the formation height of the seven discharge spacers 73C.
7個の放電スペーサ73Cは接地冷却電極51Cの上面及び下面それぞれで接地冷却電極51Cと一体化して設けられ(連結され)、上面に設けられる7個の放電スペーサ73Cが第1の基本セルの放電ギャップ長dを規定し、下面に設けられる7個の放電スペーサ73Cが第2の基本セルの放電ギャップ長dを規定する。
Seven discharge spacers 73C are integrally provided (connected) to the ground cooling electrode 51C on the upper surface and the lower surface of the ground cooling electrode 51C, respectively, and the seven discharge spacers 73C provided on the upper surface discharge the first basic cell. The gap length d is defined, and the seven discharge spacers 73C provided on the lower surface define the discharge gap length d of the second basic cell.
第3の態様における1単位の放電セルは、第1及び第2の態様と同様、上述した条件(a)及び(b)を満足する。
The unit discharge cell in the third mode satisfies the above-described conditions (a) and (b) as in the first and second modes.
さらに、第3の態様の放電セルは、以下の条件(c)を満足する。
(c) 平面視して4個のオゾンガス取出口75a~75dを中心とした4個の仮想円状放電領域79a~79dが互いに重複することなく放電空間(接地冷却電極51Cの平面形状)内に形成されるように、4個のオゾンガス取出口75a~75dは配置され、4個の仮想円状放電領域79a~79dそれぞれの半径r(放電径D1/2)は{r=(0.8・dso/π)0.5}を満足する。 Furthermore, the discharge cell of the third aspect satisfies the following condition (c).
(c) The four virtualcircular discharge regions 79a to 79d centering on the four ozone gas outlets 75a to 75d in plan view do not overlap each other in the discharge space (planar shape of the ground cooling electrode 51C). As shown, the four ozone gas outlets 75a to 75d are arranged, and the radius r (discharge diameter D1 / 2) of each of the four virtual circular discharge regions 79a to 79d is {r = (0.8 · dso / π) 0.5 }.
(c) 平面視して4個のオゾンガス取出口75a~75dを中心とした4個の仮想円状放電領域79a~79dが互いに重複することなく放電空間(接地冷却電極51Cの平面形状)内に形成されるように、4個のオゾンガス取出口75a~75dは配置され、4個の仮想円状放電領域79a~79dそれぞれの半径r(放電径D1/2)は{r=(0.8・dso/π)0.5}を満足する。 Furthermore, the discharge cell of the third aspect satisfies the following condition (c).
(c) The four virtual
なお、4個の仮想円状放電領域79a~79dは、平面視して7個の放電スペーサ73C、オゾンガス取出経路77C及び冷却水流路70Cにも重複しない。
Note that the four virtual circular discharge regions 79a to 79d do not overlap the seven discharge spacers 73C, the ozone gas extraction path 77C, and the cooling water flow path 70C in plan view.
仮想円状放電領域79a~79dはそれぞれ、7個の放電スペーサ73C、オゾンガス取出経路77C及び冷却水流路70Cの形成領域等を考慮して、分割面積dsoの8割の面積に設定されている。
The virtual circular discharge areas 79a to 79d are each set to an area of 80% of the divided area dso in consideration of the formation areas of the seven discharge spacers 73C, the ozone gas extraction path 77C, and the cooling water flow path 70C.
(第4の態様)
以下、図13及び図14を参照して第4の態様における1単位の放電セルの構造を説明する。図13及び図14に示すように、第4の態様における1単位の放電セルは、一対の平板電極を構成する、接地冷却電極51D(平板状の第1の電極)と誘電体電極52Dと(平板状の第2の電極)の組合せ構造となっている。誘電体電極52Dは例えばセラミックス板であり、誘電体を有する電極となる。 (Fourth aspect)
Hereinafter, the structure of one unit discharge cell in the fourth embodiment will be described with reference to FIGS. As shown in FIGS. 13 and 14, one unit of the discharge cell in the fourth mode includes aground cooling electrode 51D (a flat plate-like first electrode) and a dielectric electrode 52D that constitute a pair of flat plate electrodes ( It is a combination structure of flat plate-like second electrodes). The dielectric electrode 52D is a ceramic plate, for example, and serves as an electrode having a dielectric.
以下、図13及び図14を参照して第4の態様における1単位の放電セルの構造を説明する。図13及び図14に示すように、第4の態様における1単位の放電セルは、一対の平板電極を構成する、接地冷却電極51D(平板状の第1の電極)と誘電体電極52Dと(平板状の第2の電極)の組合せ構造となっている。誘電体電極52Dは例えばセラミックス板であり、誘電体を有する電極となる。 (Fourth aspect)
Hereinafter, the structure of one unit discharge cell in the fourth embodiment will be described with reference to FIGS. As shown in FIGS. 13 and 14, one unit of the discharge cell in the fourth mode includes a
そして、接地冷却電極51Dと誘電体電極52Dとが互いに対向する空間が放電空間となり、接地冷却電極51Dと誘電体電極52Dとが平面視して重複する領域の面積が放電面積stとなる。第4の態様では分割数Nφとして“6”を採用している。
The space where the ground cooling electrode 51D and the dielectric electrode 52D face each other is a discharge space, and the area of the region where the ground cooling electrode 51D and the dielectric electrode 52D overlap in plan view is the discharge area st. In the fourth mode, “6” is adopted as the division number Nφ.
接地冷却電極51Dは、平面視して角部が丸められた台形状を呈し、6個のオゾンガス取出口75a~75fが設けられる。
The ground cooling electrode 51D has a trapezoidal shape with rounded corners in plan view, and is provided with six ozone gas outlets 75a to 75f.
誘電体電極52Dは、接地冷却電極51Dと同様に平面視して角部が丸められた台形状を呈し、誘電体電極52D上には平面視して誘電体電極52Dより少し小さい台形状の導電性膜62Dが設けられる。
Similarly to the ground cooling electrode 51D, the dielectric electrode 52D has a trapezoidal shape with rounded corners when viewed in plan, and has a trapezoidal conductivity slightly smaller than the dielectric electrode 52D when viewed in plan on the dielectric electrode 52D. 62D is provided.
導電性膜62Dが上方に位置する状態で、接地冷却電極51Dと誘電体電極52Dとが平面視して合致するように、接地冷却電極51D上に誘電体電極52Dを配置することにより、第4の態様の第1の基本セルが構成される。
By disposing the dielectric electrode 52D on the ground cooling electrode 51D so that the ground cooling electrode 51D and the dielectric electrode 52D match in plan view with the conductive film 62D positioned above, The first basic cell of the aspect is configured.
さらに、導電性膜62Dが下方に位置する状態で、接地冷却電極51Dと誘電体電極52Dとが平面視して合致するように、接地冷却電極51D下に誘電体電極52Dを配置することにより、第4の態様の第2の基本セルが構成される。
Furthermore, by disposing the dielectric electrode 52D under the ground cooling electrode 51D so that the ground cooling electrode 51D and the dielectric electrode 52D match in plan view with the conductive film 62D positioned below, A second basic cell of the fourth aspect is configured.
第1及び第2の基本セルがそれぞれ第4の態様における1単位の放電セルとなる。また、第1及び第2の基本セルの組合せが基本放電セル組となる。したがって、接地冷却電極51Dの上面は第1の基本セルの放電面となり、接地冷却電極51Dの下面は第2の基本セルの放電面となる。
Each of the first and second basic cells is a unit discharge cell in the fourth mode. A combination of the first and second basic cells is a basic discharge cell set. Therefore, the upper surface of the ground cooling electrode 51D serves as the discharge surface of the first basic cell, and the lower surface of the ground cooling electrode 51D serves as the discharge surface of the second basic cell.
基本放電セル組に対し、図13に示す様に、接地冷却電極51D(誘電体電極52D)の外周部から原料ガスである酸素ガスGINが供給される。
To basic discharge cell group, as shown in FIG. 13, the oxygen gas G IN as a source gas from the outer peripheral portion of the ground cooling electrode 51D (dielectric electrode 52D) is supplied.
第4の態様の放電セルの放電面積stは実施の形態1の放電面積soの6倍相当の約480cm2に設定され、第4の態様の基本放電セル組を多段に積層してなる複数の放電セルをオゾン発生器300が有することになる。
The discharge area st of the discharge cell of the fourth mode is set to about 480 cm 2 corresponding to 6 times the discharge area so of the first embodiment, and a plurality of basic discharge cell sets of the fourth mode are stacked in multiple stages. The ozone generator 300 has a discharge cell.
第4の態様の第1及び第2の基本セルそれぞれに対し、導電性膜62Dと接地冷却電極51Dとの間にオゾン用電源100からオゾン発生用交流電圧を印加して、第1及び第2の基本セルそれぞれにおいて、誘電体電極52Dと接地冷却電極51Dとの間の放電空間に誘電体バリア放電を発生させる。その結果、第1及び第2の基本セルそれぞれの放電空間でオゾンガスが生成され、生成されたオゾンガスは、6個のオゾンガス取出口75a~75fそれぞれに分流して流れ込む。
For each of the first and second basic cells of the fourth mode, an ozone generating AC voltage is applied from the ozone power source 100 between the conductive film 62D and the ground cooling electrode 51D, and the first and second basic cells In each of the basic cells, a dielectric barrier discharge is generated in the discharge space between the dielectric electrode 52D and the ground cooling electrode 51D. As a result, ozone gas is generated in the discharge space of each of the first and second basic cells, and the generated ozone gas is divided and flows into each of the six ozone gas outlets 75a to 75f.
接地冷却電極51Dの内部において、6個のオゾンガス取出口75a~75fそれぞれに繋がり、6個のオゾンガス取出口75a~75fから取り出されたオゾンガスを集約して外部に出力するオゾンガス取出経路77Dと、冷却水流路70Dとが設けられる。
Inside the ground cooling electrode 51D, an ozone gas extraction path 77D is connected to each of the six ozone gas outlets 75a to 75f, collects the ozone gas extracted from the six ozone gas outlets 75a to 75f, and outputs the ozone gas to the outside. A water flow path 70D is provided.
オゾンガス取出経路77Dはマニホールドブロック59に設けられるオゾンガス出力経路92に繋がっている。
The ozone gas extraction path 77D is connected to an ozone gas output path 92 provided in the manifold block 59.
したがって、上記した第1及び第2の基本セルそれぞれの放電空間で生成したオゾンガスは、接地冷却電極51Dの上面及び下面それぞれに設けられたオゾンガス取出口75a~75fに流れ込む。その後、オゾンガス取出経路77Dで1つに合流しオゾンガス出力Goutに集約され、オゾンガスGOUTがマニホールドブロック59Dのオゾンガス出力経路92に出力される。その結果、マニホールドブロック59Dのオゾンガス出力経路92を介してオゾンガスを取り出すことができる。
Accordingly, the ozone gas generated in the discharge space of each of the first and second basic cells flows into the ozone gas outlets 75a to 75f provided on the upper surface and the lower surface of the ground cooling electrode 51D. Thereafter, aggregated into merged ozone gas output G out one by ozone gas take-off path 77D, ozone gas G OUT is output to the ozone gas output path 92 of the manifold block 59D. As a result, ozone gas can be taken out through the ozone gas output path 92 of the manifold block 59D.
したがって、基本放電セル組毎に、上述したオゾンガス取り出し処理が行われ、積層枚数nで多段に積層された基本放電セル組それぞれで生成されたオゾンガスがマニホールドブロック59Dのオゾンガス出力経路92に集められる。
Therefore, the ozone gas extraction process described above is performed for each basic discharge cell group, and the ozone gas generated in each of the basic discharge cell groups stacked in multiple stages with the number n of layers is collected in the ozone gas output path 92 of the manifold block 59D.
冷却水流路70Dはマニホールドブロック59の冷却水入力経路93と冷却水出力経路91とに接続され、冷却水入力経路93より冷却水WINを入力し、冷却水流路70Dに冷却水を流した後、冷却水出力経路91より冷却水WOUTを出力する。冷却水流路70Dに冷却水を流すことにより接地冷却電極51Dを冷却することができる。
Cooling water passage 70D is connected to a cooling water input path 93 of the manifold block 59 and the cooling water output path 91, and enter the cooling water W IN from the cooling water input path 93, after flowing the cooling water to the cooling water passage 70D The cooling water W OUT is output from the cooling water output path 91. The ground cooling electrode 51D can be cooled by flowing cooling water through the cooling water channel 70D.
接地冷却電極51Dにおいて誘電体電極52Dと対向する放電面に、図示しない光触媒膜が塗布されるとともに、放電面に放電ギャップ長dを形成するための6個の放電スペーサ73Dが分散して設けられる。6個の放電スペーサ73Dの形成高さによって放電ギャップ長dが規定される。
A photocatalyst film (not shown) is applied to the discharge surface facing the dielectric electrode 52D in the ground cooling electrode 51D, and six discharge spacers 73D for forming the discharge gap length d are provided on the discharge surface in a dispersed manner. . The discharge gap length d is defined by the formation height of the six discharge spacers 73D.
6個の放電スペーサ73Dは接地冷却電極51Dの上面及び下面それぞれで接地冷却電極51Dと一体化して設けられ(連結され)、上面に設けられる6個の放電スペーサ73Dが第1の基本セルの放電ギャップ長dを規定し、下面に設けられる6個の放電スペーサ73Dが第2の基本セルの放電ギャップ長dを規定する。
The six discharge spacers 73D are provided (connected) integrally with the ground cooling electrode 51D on the upper surface and the lower surface of the ground cooling electrode 51D, respectively, and the six discharge spacers 73D provided on the upper surface discharge the first basic cell. The gap length d is defined, and the six discharge spacers 73D provided on the lower surface define the discharge gap length d of the second basic cell.
第4の態様における1単位の放電セルは、第1~第3の態様と同様、上述した条件(a)及び(b)を満足する。
The unit discharge cell in the fourth aspect satisfies the above-described conditions (a) and (b) as in the first to third aspects.
さらに、第4の態様の放電セルは、以下の条件(c)を満足する。
(c) 平面視して6個のオゾンガス取出口75a~75fを中心とした6個の仮想円状放電領域79a~79fが互いに重複することなく放電空間(接地冷却電極51Dの平面形状)内に形成されるように、6個のオゾンガス取出口75a~75fは配置され、6個の仮想円状放電領域79a~79fそれぞれの半径r(放電径D1/2)は{r=(0.8・dso/π)0.5}を満足する。 Furthermore, the discharge cell of the fourth aspect satisfies the following condition (c).
(c) The six virtualcircular discharge regions 79a to 79f centering on the six ozone gas outlets 75a to 75f in plan view are not overlapped with each other in the discharge space (planar shape of the ground cooling electrode 51D). The six ozone gas outlets 75a to 75f are arranged so that the radius r (discharge diameter D1 / 2) of each of the six virtual circular discharge regions 79a to 79f is {r = (0.8 · dso / π) 0.5 }.
(c) 平面視して6個のオゾンガス取出口75a~75fを中心とした6個の仮想円状放電領域79a~79fが互いに重複することなく放電空間(接地冷却電極51Dの平面形状)内に形成されるように、6個のオゾンガス取出口75a~75fは配置され、6個の仮想円状放電領域79a~79fそれぞれの半径r(放電径D1/2)は{r=(0.8・dso/π)0.5}を満足する。 Furthermore, the discharge cell of the fourth aspect satisfies the following condition (c).
(c) The six virtual
なお、6個の仮想円状放電領域79a~79fは、平面視して6個の放電スペーサ73D、オゾンガス取出経路77D及び冷却水流路70Dにも重複しない。
The six virtual circular discharge regions 79a to 79f do not overlap with the six discharge spacers 73D, the ozone gas extraction path 77D, and the cooling water flow path 70D in plan view.
仮想円状放電領域79a~79fはそれぞれ、6個の放電スペーサ73D、オゾンガス取出経路77D及び冷却水流路70Dの形成領域等を考慮して、分割面積dsoの8割の面積に設定されている。
The virtual circular discharge areas 79a to 79f are set to an area of 80% of the divided area dso in consideration of the formation areas of the six discharge spacers 73D, the ozone gas extraction path 77D, the cooling water flow path 70D, and the like.
上述した第1~第4の態様における1単位の放電セルに対する、オゾン用電源100からオゾン発生用交流電圧の供給について説明する。
The supply of the ozone generating AC voltage from the ozone power source 100 to the discharge cell of one unit in the first to fourth modes described above will be described.
なお、第1~第4の態様における導電性膜62A~62Dを総称する場合、単に「導電性膜62」と称する。冷却水流路70A~70Dを総称する場合は単に「冷却水流路70」と称する。マニホールドブロック59A~59Dを総称する場合は単に「マニホールドブロック59」と称する。
Note that the conductive films 62A to 62D in the first to fourth aspects are simply referred to as “conductive film 62”. The cooling water passages 70A to 70D are collectively referred to as “cooling water passage 70”. The manifold blocks 59A to 59D are collectively referred to as “manifold block 59”.
オゾン用電源100の高電圧端子HVは、オゾン発生器300内の導電性膜62に電気的に接続されている。低電圧端子LVは、オゾン発生器300内の接地冷却電極51に電気的に接続されている。
The high voltage terminal HV of the ozone power supply 100 is electrically connected to the conductive film 62 in the ozone generator 300. The low voltage terminal LV is electrically connected to the ground cooling electrode 51 in the ozone generator 300.
したがって、オゾン発生器300は、実施の形態1のオゾン発生器200と同様、オゾン用電源100から1単位の放電セル(第1あるいは第2の基本セル)の接地冷却電極51と導電性膜62との間にオゾン発生用交流電圧が印加される。
Therefore, the ozone generator 300 is similar to the ozone generator 200 of the first embodiment in that the ground cooling electrode 51 and the conductive film 62 of the discharge cell (first or second basic cell) of one unit from the ozone power source 100 are used. An ozone generating AC voltage is applied between the two.
すなわち、オゾン用電源100は、出力周波数fを20kHz以上、50kHz未満の範囲に設定して、高周波交流電圧を出力するインバータ回路部22(インバータ部)と、上記高周波交流電圧を高電圧に昇圧してオゾン発生用交流電圧を得る並列共振用トランス25(昇圧用トランス)とを含んでいる。
That is, the ozone power supply 100 sets the output frequency f to a range of 20 kHz or more and less than 50 kHz, boosts the high-frequency AC voltage to a high voltage, and the inverter circuit unit 22 (inverter unit) that outputs the high-frequency AC voltage. And a parallel resonance transformer 25 (a step-up transformer) for obtaining an ozone generating AC voltage.
図1に示したオゾン用電源100の並列共振用トランス25から高圧ブッシングを介して導電性膜62の給電部である高電圧端子HVにオゾン発生用交流電圧が印加されることにより、放電電力が投入される。この放電電力は、印加したオゾン発生用交流電圧によって可能な範囲で最大に設定した放電電力DWに規定される。
The ozone generation AC voltage is applied from the parallel resonance transformer 25 of the ozone power source 100 shown in FIG. 1 to the high voltage terminal HV which is the power feeding portion of the conductive film 62 through the high voltage bushing, so that the discharge power is reduced. It is thrown. This discharge power is defined as the discharge power DW set to the maximum possible range by the applied ozone generating AC voltage.
すると、各放電セル(第1の基本セルあるいは第2の基本セル)の放電空間に誘電体電極52を介して誘電体バリア放電が発生する。この際、放電電力DWに基づき各放電セルに投入できる放電電力の放電電力密度J(=DW/S)(W/m2)で放電セルに電力が投入される。各放電セルの放電空間でオゾンガスが生成される。
Then, a dielectric barrier discharge is generated via the dielectric electrode 52 in the discharge space of each discharge cell (first basic cell or second basic cell). At this time, power is supplied to the discharge cells at a discharge power density J (= DW / S) (W / m 2 ) of the discharge power that can be supplied to each discharge cell based on the discharge power DW. Ozone gas is generated in the discharge space of each discharge cell.
前述したように、接地冷却電極51の内部に冷却水流路70が設けられ、低圧冷却板5の内部は冷却するための冷却空間(図示せず)が設けられており、基台10に設けられた冷却水経路、マニホールドブロック59の冷却水出力経路91及び冷却水入力経路93を経由して、接地冷却電極51の冷却水流路70及び低圧冷却板5内に冷却水を流すことで各基本放電セル組を冷却している。
As described above, the cooling water flow path 70 is provided inside the ground cooling electrode 51, and the cooling space (not shown) for cooling is provided inside the low-pressure cooling plate 5, which is provided on the base 10. Each basic discharge is caused by flowing cooling water into the cooling water flow path 70 and the low-pressure cooling plate 5 of the ground cooling electrode 51 via the cooling water path, the cooling water output path 91 and the cooling water input path 93 of the manifold block 59. The cell set is cooled.
このように、接地冷却電極51の冷却水流路70、低圧冷却板5、基台10、及びマニホールドブロック59を含んで、基本放電セル組を所定の冷却温度に冷却する冷却機構が構成される。
Thus, a cooling mechanism for cooling the basic discharge cell set to a predetermined cooling temperature is configured including the cooling water flow path 70 of the ground cooling electrode 51, the low-pressure cooling plate 5, the base 10, and the manifold block 59.
そして、実施の形態2のオゾンガス発生システム2000は、実施の形態1と同様、以下の条件(e)を満足している。
(e) 冷却機構によるオゾン発生器300の冷却温度は5℃以上である。 The ozonegas generation system 2000 of the second embodiment satisfies the following condition (e) as in the first embodiment.
(e) The cooling temperature of theozone generator 300 by the cooling mechanism is 5 ° C. or higher.
(e) 冷却機構によるオゾン発生器300の冷却温度は5℃以上である。 The ozone
(e) The cooling temperature of the
さらに、実施の形態2のオゾンガス発生システム2000におけるオゾン発生器300は、実施の形態1と同様、以下の条件(f)及び条件(g)をさらに満足している。
Furthermore, the ozone generator 300 in the ozone gas generation system 2000 of the second embodiment further satisfies the following condition (f) and condition (g) as in the first embodiment.
(f) オゾン発生器300内に積層される複数の放電セル(n組の基本放電セル組)全体に供給する総ガス流量Qは3.0L/min以上である。
(g) 上記複数の放電セル全体に付与する総放電電力DWと総ガス流量Qとの比である比電力値DW/Qは、600(W・min/L)以上である。 (f) The total gas flow rate Q supplied to the entire plurality of discharge cells (n sets of basic discharge cells) stacked in theozone generator 300 is 3.0 L / min or more.
(g) The specific power value DW / Q, which is the ratio of the total discharge power DW applied to the whole of the plurality of discharge cells and the total gas flow rate Q, is 600 (W · min / L) or more.
(g) 上記複数の放電セル全体に付与する総放電電力DWと総ガス流量Qとの比である比電力値DW/Qは、600(W・min/L)以上である。 (f) The total gas flow rate Q supplied to the entire plurality of discharge cells (n sets of basic discharge cells) stacked in the
(g) The specific power value DW / Q, which is the ratio of the total discharge power DW applied to the whole of the plurality of discharge cells and the total gas flow rate Q, is 600 (W · min / L) or more.
なお、総放電電力DWはオゾン用電源100から供給されるオゾン発生用交流電圧によって規定される。
The total discharge power DW is defined by the ozone generating AC voltage supplied from the ozone power source 100.
なお、条件(f)は高濃度のオゾンガスを取出せることを目的としており、条件(f)の目的を達成することの付随効果として、条件(g)は出力するオゾンガス量を最大限に高める効果を奏する。
Condition (f) is intended to extract high-concentration ozone gas, and as an accompanying effect of achieving the purpose of condition (f), condition (g) is an effect that maximizes the amount of ozone gas that can be output. Play.
(実施の形態2の効果)
上述したように、実施の形態2のオゾン発生器300は、以下の特徴を有している。 (Effect of Embodiment 2)
As described above, theozone generator 300 of the second embodiment has the following characteristics.
上述したように、実施の形態2のオゾン発生器300は、以下の特徴を有している。 (Effect of Embodiment 2)
As described above, the
第1及び第2の基本セルの一方である1単位の放電セルは、一対の平板電極を構成する第1及び第2の電極である接地冷却電極51お酔い誘電体電極52を含み、第2の電極である誘電体電極52に誘電体が形成され、接地冷却電極51,誘電体電極52極間に放電空間が設けられている。
One unit of discharge cell, which is one of the first and second basic cells, includes a ground cooling electrode 51 and a sickness dielectric electrode 52 as first and second electrodes constituting a pair of plate electrodes, A dielectric is formed on the dielectric electrode 52, and a discharge space is provided between the ground cooling electrode 51 and the dielectric electrode 52.
1単位の放電セルは、接地冷却電極51の上面及び下面に設けられ、上記放電空間で生成されたオゾンガスを取り出すためのNφ(≧2)個のオゾンガス取出口75と、接地冷却電極51の内部に設けられ、Nφ個のオゾンガス取出口75それぞれに繋がり、Nφ個のオゾンガス取出口75から取り出されたオゾンガスを集約して外部に出力すオゾンガス取出経路77とを有している。
One unit of discharge cells is provided on the upper and lower surfaces of the ground cooling electrode 51, and Nφ (≧ 2) ozone gas outlets 75 for taking out ozone gas generated in the discharge space, and the inside of the ground cooling electrode 51 The ozone gas extraction passage 77 is connected to each of the Nφ ozone gas outlets 75 and collects the ozone gas extracted from the Nφ ozone gas outlets 75 and outputs the ozone gas to the outside.
そして、オゾン発生器300は以下の条件(a)及び条件(b)を満足する。
(a) 複数の放電セルの構成単位である1単位の放電セルは、放電面の放電面積stを分割数Nφで除算した分割面積dsoが、30cm2以上、160cm2未満の範囲に設定される。
(b) 上記放電空間における放電ギャップ長dが80μm未満に設定される。 Theozone generator 300 satisfies the following conditions (a) and (b).
(a) In one unit discharge cell which is a constituent unit of a plurality of discharge cells, a divided area dso obtained by dividing the discharge area st of the discharge surface by the division number Nφ is set in a range of 30 cm 2 or more and less than 160 cm 2. .
(b) The discharge gap length d in the discharge space is set to be less than 80 μm.
(a) 複数の放電セルの構成単位である1単位の放電セルは、放電面の放電面積stを分割数Nφで除算した分割面積dsoが、30cm2以上、160cm2未満の範囲に設定される。
(b) 上記放電空間における放電ギャップ長dが80μm未満に設定される。 The
(a) In one unit discharge cell which is a constituent unit of a plurality of discharge cells, a divided area dso obtained by dividing the discharge area st of the discharge surface by the division number Nφ is set in a range of 30 cm 2 or more and less than 160 cm 2. .
(b) The discharge gap length d in the discharge space is set to be less than 80 μm.
実施の形態2のオゾンガス発生システム2000は、上述した条件(a)及び条件(b)を満足することにより、Nφ個の仮想放電セルの放電面の放電面積が30cm2以上、160cm2未満の範囲に設定される状態を実現することができる。
The ozone gas generation system 2000 according to Embodiment 2 satisfies the above-described condition (a) and condition (b), so that the discharge area of the discharge surface of the Nφ virtual discharge cells is in the range of 30 cm 2 or more and less than 160 cm 2. The state set to can be realized.
以下この点を詳述する。オゾン発生器300は上記条件(a)を満足することにより、Nφ個のオゾンガス取出口75を中心としたNφ個の仮想円状放電領域79を分散配置した仮想状態を設定することができる。このため、各々が仮想円状放電領域79を有するNφ個の仮想放電セルはそれぞれ、条件(1)を満足する実施の形態1における1単位の放電セルと同等の効果を発揮することができる。
This point will be described in detail below. By satisfying the above condition (a), the ozone generator 300 can set a virtual state in which Nφ virtual circular discharge regions 79 centered on the Nφ ozone gas outlets 75 are distributed. Therefore, each of Nφ virtual discharge cells each having virtual circular discharge region 79 can exhibit the same effect as one unit discharge cell in the first embodiment that satisfies condition (1).
さらに、オゾン発生器300内に設けられる1単位の放電セルは放電ギャップ長dを80μm未満となる上記条件(b)を満足している。
Furthermore, one unit of discharge cell provided in the ozone generator 300 satisfies the above condition (b) in which the discharge gap length d is less than 80 μm.
放電空間における放電ギャップ長dを80μm未満の短ギャップ長にすると、原料ガスの供給口からオゾン発生器300を介したオゾンガス出口32に至るまでのガス圧力損失ΔPにおいて、放電ギャップ長dで規定される放電空間でのガス圧力損失ΔPaの占める割合が高くなる。
When the discharge gap length d in the discharge space is set to a short gap length of less than 80 μm, the gas pressure loss ΔP from the source gas supply port to the ozone gas outlet 32 via the ozone generator 300 is defined by the discharge gap length d. The proportion of the gas pressure loss ΔPa in the discharge space increases.
したがって、オゾン発生器300は、条件(b)を満足させて放電ギャップ長を80μm未満に制限することにより、仮想円状放電領域79が形成可能なように各々が分散配置されたNφ個のオゾン取出口75を有する1組の基本放電セル組において、Nφ個のオゾンガス取出口75それぞれを中心としてほぼ均一なガス流量Q/n(L/min)でオゾンガスを流すことができ、高濃度のオゾンガスを出力することができる。
Accordingly, the ozone generator 300 satisfies the condition (b) and restricts the discharge gap length to less than 80 μm, so that Nφ ozone ozone particles are dispersedly arranged so that the virtual circular discharge region 79 can be formed. In one set of basic discharge cells having outlets 75, ozone gas can flow at a substantially uniform gas flow rate Q / n (L / min) around each of the Nφ ozone gas outlets 75, and high-concentration ozone gas Can be output.
すなわち、オゾン発生器300は、上記条件(b)を満足することにより、配置が異なるNφ個のオゾンガス取出口75から、1つのオゾンガス取出経路77に至る過程におけるガス損失ΔPpのバラツキ度合いが、放電ギャップ長dで規定される放電空間でのガス圧力損失ΔPaによって無視できることになる。
That is, when the ozone generator 300 satisfies the above condition (b), the degree of variation in the gas loss ΔPp in the process from the Nφ ozone gas outlets 75 having different arrangements to the one ozone gas extraction path 77 is reduced. It can be ignored by the gas pressure loss ΔPa in the discharge space defined by the gap length d.
さらに、1組の基本放電セル組において、分割数Nφで分散配置したオゾンガス取出口75を設け、1組の基本放電セル組の外周から原料ガスを流すことにより、Nφ個のオゾンガス取出口75から取出すオゾンガスの流量のバラツキが抑制でき、より均一なガス流れでオゾンガスを取出せる。
Further, in one set of basic discharge cell sets, ozone gas outlets 75 distributed in a division number Nφ are provided, and a raw material gas is allowed to flow from the outer periphery of one set of basic discharge cell sets, so that Nφ ozone gas outlets 75 Variations in the flow rate of the extracted ozone gas can be suppressed, and ozone gas can be extracted with a more uniform gas flow.
このように、実施の形態2のオゾン発生器300は上記した条件(a)及び条件(b)を満足することにより、実施の形態1のオゾン発生器200の場合と同様に、高濃度のオゾンガスを取り出せる効果を発揮することができる。
As described above, the ozone generator 300 according to the second embodiment satisfies the above conditions (a) and (b), so that the ozone gas having a high concentration is the same as in the case of the ozone generator 200 according to the first embodiment. The effect which can take out can be exhibited.
したがって、実施の形態2のオゾンガス発生システム2000は、上述した条件(a)及び条件(b)を満足させ、かつ、1単位の放電セルの放電面に供給する原料ガス流量qoと放電電力dwとを可能な範囲で最大に設定して、取出しオゾン量ytを最大限に高めることにより、高濃度なオゾンガスを取り出せる条件を作りだせる。
Therefore, the ozone gas generation system 2000 according to the second embodiment satisfies the conditions (a) and (b) described above and supplies the raw material gas flow rate qo and the discharge power dw supplied to the discharge surface of one unit discharge cell. Is set to the maximum possible range and the amount of extracted ozone yt is maximized to create a condition for extracting high-concentration ozone gas.
また、実施の形態2の第1~第4の態様における1単位の放電セルの放電面積stは、条件(1)を満足する実施の形態1の1単位の放電セルの放電面積soの3倍~6倍の広さを有している。
Further, the discharge area st of one unit discharge cell in the first to fourth aspects of the second embodiment is three times the discharge area so of one unit discharge cell of the first embodiment that satisfies the condition (1). It is up to 6 times wider.
このため、基本放電セル組を多段に積層してオゾン発生器300内に放電セル群を設ける場合、実施の形態2のオゾン発生器300は、実施の形態1のオゾン発生器200に比べ、基本放電セル組の積層枚数nを少なくすることができるため、接地冷却電極51や誘電体電極52等の部品点数を最小限に抑えることができる。なお、前述したように、実施の形態1において、基本放電セル組は基本セルS1及びS2の組合せを意味する。
For this reason, when the discharge cell group is provided in the ozone generator 300 by stacking the basic discharge cell groups in multiple stages, the ozone generator 300 of the second embodiment is more basic than the ozone generator 200 of the first embodiment. Since the number n of stacked discharge cell sets can be reduced, the number of parts such as the ground cooling electrode 51 and the dielectric electrode 52 can be minimized. As described above, in the first embodiment, the basic discharge cell set means a combination of the basic cells S1 and S2.
すなわち、実施の形態2のオゾンガス発生システム2000は、実施の形態1で必要とされた条件(1)ではなく、条件(a)を満足すればよいため、1単位の放電セルの放電面積stを分割面積dsoのNφ倍にすることができる。
That is, since the ozone gas generation system 2000 of the second embodiment only needs to satisfy the condition (a) instead of the condition (1) required in the first embodiment, the discharge area st of one unit of discharge cells is The divided area dso can be Nφ times.
その結果、実施の形態2のオゾンガス発生システム2000は、基本放電セル組の積層枚数nを少なくして、オゾン発生器300内に設ける、複数の放電セル(n組の基本放電セル組)よりなる放電セル群に要する部品点数を削減することができる。
As a result, the ozone gas generation system 2000 of the second embodiment includes a plurality of discharge cells (n sets of basic discharge cell sets) provided in the ozone generator 300 by reducing the number n of basic discharge cell sets. The number of parts required for the discharge cell group can be reduced.
また、接地冷却電極51の内部にオゾンガス取出経路77を設けている分、外部に設けるオゾンガスを取出経路用の部材を、マニホールドブロック59に設けられるオゾンガス出力経路92に抑えることができる。
Further, since the ozone gas extraction path 77 is provided inside the ground cooling electrode 51, the ozone gas extraction path member provided outside can be suppressed to the ozone gas output path 92 provided in the manifold block 59.
このため、オゾン発生器300は、外部に設けるオゾンガス取出経路用の部材の必要数を大幅に削減し、製作コスト削減を図ることができる。
For this reason, the ozone generator 300 can greatly reduce the necessary number of members for the ozone gas extraction path provided outside, and can reduce the manufacturing cost.
上述したように、実施の形態2のオゾンガス発生システム2000は、上記条件(a)及び条件(b)に加え、さらに上記条件(c)を満足することにより、1単位の放電セルの放電面の放電面積が30cm2以上、160cm2未満の範囲に設定される場合(実施の形態1の場合)との同一性を高めることができる。
As described above, the ozone gas generation system 2000 according to Embodiment 2 satisfies the above condition (c) in addition to the above conditions (a) and (b), thereby further improving the discharge surface of one unit discharge cell. The identity with the case where the discharge area is set in the range of 30 cm 2 or more and less than 160 cm 2 (in the case of Embodiment 1) can be enhanced.
上記条件(c)を満足するようにNφ個のオゾンガス取出口75を配置すれば、1単位の放電セルにおいて、放電セル径を小さくしたNφ個の仮想放電空間(仮想円状放電領域79)を形成することができるため、実際に放電セル径を小さくした実放電空間と同じ状態でオゾンガスが取り出せる。
If Nφ ozone gas outlets 75 are arranged so as to satisfy the above condition (c), Nφ virtual discharge spaces (virtual circular discharge regions 79) having a reduced discharge cell diameter can be formed in one unit discharge cell. Since it can be formed, ozone gas can be taken out in the same state as the actual discharge space in which the discharge cell diameter is actually reduced.
したがって、オゾン発生器300内の基本放電セル組で生成されたオゾンガスがNφ個の仮想円状放電領域79のいずれかを通過する時間であるガス滞在時間Toが短くなる。このため、オゾン発生器300において、Nφ個の仮想円状放電領域79内でオゾンガスが電子や放電ガスと衝突する分解と仮想円状放電領域79内で滞在しているオゾン自身の自己分解とによる総分解量を抑えることができるため、高濃度オゾンガスを取り出すことができる。
Therefore, the gas residence time To, which is the time for the ozone gas generated in the basic discharge cell set in the ozone generator 300 to pass through any of the Nφ virtual circular discharge regions 79, is shortened. For this reason, in the ozone generator 300, the ozone gas collides with electrons and discharge gas in the Nφ virtual circular discharge regions 79 and the self-decomposition of ozone itself staying in the virtual circular discharge region 79. Since the total decomposition amount can be suppressed, high-concentration ozone gas can be taken out.
以上の説明したように、実施の形態2のオゾンガス発生システム2000は、上述した条件(a)~条件(c)を満足することにより、高濃度なオゾンガスを取り出せる条件をより高めることができる。
As described above, the ozone gas generation system 2000 according to Embodiment 2 can further improve the conditions under which high-concentration ozone gas can be taken out by satisfying the above conditions (a) to (c).
実施の形態2のオゾンガス発生システム2000は、さらに上述した放電電力密度Jに関する条件(d)を満足しているため、1単位の放電セルから取り出せるオゾンの生成量を所定量以上確保でき、かつ、効率よく取り出せることができ、取出しオゾン量Ytをより高めることができる。
Since the ozone gas generation system 2000 according to the second embodiment further satisfies the condition (d) regarding the discharge power density J described above, the ozone generation amount that can be taken out from one unit of discharge cells can be secured at a predetermined amount or more, and It can be taken out efficiently, and the amount of extracted ozone Yt can be further increased.
その結果、オゾンガス発生システム2000は、システム構成を必要最小限に抑えて、高濃度なオゾンもしくは、取出しオゾン量Ytを効率的に高め、外部に出力することができる効果を奏する。
As a result, the ozone gas generation system 2000 has an effect that the system configuration can be minimized and the high-concentration ozone or the extracted ozone amount Yt can be efficiently increased and output to the outside.
このように、オゾンガス発生システム2000は、条件(a)~条件(c)に加え、上述した条件(d)をさらに満足することにより、条件(a)~条件(d)を満足させ、かつ、各放電セルの放電空間に供給する原料ガス流量qoと放電電力dwとを可能な範囲で最大に設定して、取り出しオゾン量ytを最大限に高めることができる。
As described above, the ozone gas generation system 2000 satisfies the condition (a) to the condition (d) by further satisfying the above condition (d) in addition to the conditions (a) to (c), and It is possible to maximize the extracted ozone amount yt by setting the raw material gas flow rate qo and the discharge power dw supplied to the discharge space of each discharge cell to the maximum possible range.
その結果、実施の形態2のオゾンガス発生システム2000は、システム構成を必要最小限に抑えて、高濃度なオゾンガスもしくは高発生量のオゾンガスを外部に出力することができる効果を奏する。
As a result, the ozone gas generation system 2000 according to the second embodiment has an effect of being able to output high-concentration ozone gas or a high generation amount of ozone gas to the outside while minimizing the system configuration.
実施の形態2のオゾンガス発生システム2000のオゾン発生器300は、さらに上述した冷却機構に関する条件(e)を満足することにより、上述した冷却機構によるオゾン発生器300の冷却温度を極端に低くする必要性をなくし、冷却機構の簡略化を図ることができる。なお、上記制約条件の上限は常温(20℃)に対し30℃程度を想定している。また、より冷却効果を重視する場合は、水が凍る温度である0℃以上に冷却温度を設定することが望ましい。
The ozone generator 300 of the ozone gas generation system 2000 according to the second embodiment further needs to extremely lower the cooling temperature of the ozone generator 300 by the above-described cooling mechanism by satisfying the above-described condition (e) regarding the cooling mechanism. The cooling mechanism can be simplified. In addition, the upper limit of the said constraint conditions assumes about 30 degreeC with respect to normal temperature (20 degreeC). When the cooling effect is more important, it is desirable to set the cooling temperature to 0 ° C. or higher, which is the temperature at which water freezes.
オゾンガス発生システム2000のオゾン用電源100及びオゾン発生器300は、さらに上述した条件(f)(総ガス流量Qに関する条件)及び条件(g)(比電力値DW/Qに関する条件)を満足することにより、以下の効果を奏する。
The ozone power source 100 and the ozone generator 300 of the ozone gas generation system 2000 further satisfy the above-described condition (f) (condition relating to the total gas flow rate Q) and condition (g) (condition relating to the specific power value DW / Q). Thus, the following effects can be obtained.
オゾンガス発生システム2000は、上述した条件(f)を満足することにより、例えば400g/m3以上の高濃度オゾンを取り出すことができる複数の放電セルに供給する原料ガスに関し、十分大きな総ガス流量Qを確保し、最終的に高濃度なオゾンガスが得られ、取出しオゾン量Ytを高めることができる。
The ozone gas generation system 2000 has a sufficiently large total gas flow rate Q for a raw material gas supplied to a plurality of discharge cells that can take out high-concentration ozone of, for example, 400 g / m 3 or more by satisfying the above-described condition (f). Can be obtained, and finally high-concentration ozone gas can be obtained, and the amount of extracted ozone Yt can be increased.
オゾンガス発生システム2000は、上述した条件(g)を満足することにより、条件(f)の効果に加え、条件(a)~条件(g)を満足する環境下で、オゾン発生器300に供給する総ガス流量Q及び総放電電力DWを可能な範囲で最大限投入にして、取出しオゾン量Ytを最大限に高めることができる。
The ozone gas generation system 2000 supplies the ozone generator 300 to the ozone generator 300 in an environment satisfying the conditions (a) to (g) in addition to the effect of the condition (f) by satisfying the condition (g) described above. It is possible to maximize the extraction ozone amount Yt by maximizing the total gas flow rate Q and the total discharge power DW as much as possible.
その結果、実施の形態2のオゾンガス発生システム2000は、システム構成を必要最小限に抑えて、比較的大容量、かつ高濃度なオゾンガスを外部に出力することができる効果を奏する。
As a result, the ozone gas generation system 2000 according to the second embodiment has an effect of being able to output ozone gas having a relatively large capacity and high concentration to the outside while minimizing the system configuration.
実施の形態2のオゾンガス発生システム2000では、1単位の放電セルを構成する第1及び第2の電極である接地冷却電極51及び誘電体電極52それぞれの平面視した放電面形状を円形でなく、台形を含む矩形状で構成している。
In the ozone gas generation system 2000 of the second embodiment, the discharge surface shape in plan view of the ground cooling electrode 51 and the dielectric electrode 52 which are the first and second electrodes constituting one unit of discharge cell is not circular, It has a rectangular shape including a trapezoid.
このため、オゾンガス発生システム2000は、オゾン発生器300の設置形状の変更を容易にし、オゾン発生器300とオゾン用電源100等の周辺機器と組み合わせたオゾンガス発生システム2000をよりコンパクトな構成にすることができる。
For this reason, the ozone gas generation system 2000 makes it easy to change the installation shape of the ozone generator 300, and the ozone gas generation system 2000 combined with peripheral devices such as the ozone generator 300 and the ozone power source 100 has a more compact configuration. Can do.
さらに、誘電体電極52の平面形状を矩形状にしたため、誘電体電極52における誘電体加工が容易になる利点や、導電性の導電性膜62の誘電体電極52への張り合わせが比較的簡単に行え、誘電体電極52の量産製作がより容易になり、放電セルの製作コスト削減効果を発揮することができる。
Furthermore, since the planar shape of the dielectric electrode 52 is rectangular, the advantage of facilitating the dielectric processing in the dielectric electrode 52 and the bonding of the conductive film 62 to the dielectric electrode 52 are relatively easy. Thus, the mass production of the dielectric electrode 52 becomes easier, and the effect of reducing the production cost of the discharge cell can be exhibited.
加えて、接地冷却電極51と所定数の放電スペーサ73(73A~73D)とを一体的に連結することにより、1単位の放電セルにおける部品点数を削減することができる。
In addition, by integrally connecting the ground cooling electrode 51 and the predetermined number of discharge spacers 73 (73A to 73D), it is possible to reduce the number of parts in one unit of discharge cell.
なお、所定数の放電スペーサ73は、接地冷却電極51でなく誘電体電極52と一体的に連結してもよく、接地冷却電極51、誘電体電極52及び導電性膜62を一体的に連結しても良い。
The predetermined number of discharge spacers 73 may be integrally connected to the dielectric electrode 52 instead of the ground cooling electrode 51, and the ground cooling electrode 51, the dielectric electrode 52, and the conductive film 62 are integrally connected. May be.
加えて、オゾンガス発生システム2000のオゾン用電源100は、実施の形態1と同様、出力周波数f(動作周波数f)を20kHz~50kHz(20kHz以上、50kHz未満)範囲内にして、オゾン発生用交流電圧をオゾン発生器300に出力している。より実用的なオゾン用電源100の出力周波数f(動作周波数f)は、20kHz~30kHz(20kHz以上、30kHz未満)範囲が望ましい。
In addition, the ozone power source 100 of the ozone gas generation system 2000 has an output frequency f (operating frequency f) in the range of 20 kHz to 50 kHz (20 kHz or more and less than 50 kHz), as in the first embodiment. Is output to the ozone generator 300. The output frequency f (operating frequency f) of the more practical ozone power supply 100 is desirably in the range of 20 kHz to 30 kHz (20 kHz or more and less than 30 kHz).
このため、実施の形態2のオゾンガス発生システム2000は、実施の形態1のオゾンガス発生システム1000と同様、オゾン発生器300内の複数の放電セル(n組の基本放電セル組)に印加するオゾン発生用交流電圧のピーク電圧値を7kVp以下にして、オゾン発生器300が所望する放電電力DWを実現することができる。
Therefore, the ozone gas generation system 2000 according to the second embodiment generates ozone to be applied to a plurality of discharge cells (n sets of basic discharge cell sets) in the ozone generator 300, similarly to the ozone gas generation system 1000 according to the first embodiment. The discharge voltage DW desired by the ozone generator 300 can be realized by setting the peak voltage value of the AC voltage for use to 7 kVp or less.
さらに、オゾン用電源100の並列共振用トランス25は、内部励磁インダクタンス値Ltを有し、オゾン発生器300内の複数の放電セルは全体の静電容量値C0を有している。
Furthermore, the parallel resonance transformer 25 of the ozone power supply 100 has an internal excitation inductance value Lt, and a plurality of discharge cells in the ozone generator 300 have an overall capacitance value C0.
そして、オゾン用電源100は、実施の形態1と同様、上述した式(5)を満足する並列共振周波数fcの近傍に出力周波数fを設定している。
And, similarly to the first embodiment, the ozone power source 100 sets the output frequency f in the vicinity of the parallel resonance frequency fc that satisfies the above-described equation (5).
オゾンガス発生システム2000は、並列共振周波数fcの近傍に出力周波数fを設定することにより、オゾン発生器300への総放電電力DWの投入時に並列共振を行うことで、インバータ部(インバータ回路部22)の出力力率を高めることができる。
The ozone gas generation system 2000 sets the output frequency f in the vicinity of the parallel resonance frequency fc, thereby performing parallel resonance when the total discharge power DW is input to the ozone generator 300, thereby causing an inverter unit (inverter circuit unit 22). The output power factor can be increased.
すなわち、並列共振用トランス25とオゾン発生器300との間で総放電電力DWの投入時に並列共振を行うことにより、インバータ回路部22での出力力率を高めることができる。
That is, by performing parallel resonance between the parallel resonance transformer 25 and the ozone generator 300 when the total discharge power DW is turned on, the output power factor in the inverter circuit unit 22 can be increased.
その結果、オゾン用電源100は、所望の総放電電力DWを満足するオゾン発生用交流電圧を負荷側であるオゾン発生器300に供給できる。
As a result, the ozone power source 100 can supply the ozone generator 300 on the load side with an alternating voltage for ozone generation that satisfies the desired total discharge power DW.
<その他>
実施の形態1では、放電セルにおける放電面の形状を平面視して円状に構成したオゾン発生器200を示したが、放電セル形状を正方形もしく長方形形状の平板セルで構成してもよい。この場合も、条件(2)を満足する投入できる放電電力密度Jの範囲に設定して、多段の放電セルを積層すれば良い。 <Others>
In the first embodiment, theozone generator 200 in which the shape of the discharge surface of the discharge cell is circular when viewed in plan is shown. However, the discharge cell shape may be a square or rectangular flat plate cell. . In this case as well, multi-stage discharge cells may be stacked by setting the discharge power density J within a range that can satisfy the condition (2).
実施の形態1では、放電セルにおける放電面の形状を平面視して円状に構成したオゾン発生器200を示したが、放電セル形状を正方形もしく長方形形状の平板セルで構成してもよい。この場合も、条件(2)を満足する投入できる放電電力密度Jの範囲に設定して、多段の放電セルを積層すれば良い。 <Others>
In the first embodiment, the
また、放電セルとして、同軸円筒電極管を短管にして、条件(3)を満足する放電電力密度Jの範囲に設定して、1つの極管を多数並べて構成しても良い。
Also, as the discharge cell, a coaxial cylindrical electrode tube may be used as a short tube, and the discharge power density J may be set within a range satisfying the condition (3).
実施の形態1及び実施の形態2では、オゾン用電源100の高周波・高電圧トランスである並列共振用トランス25の内部励磁インダクタンス値Ltを有する構成を示した。この構成以外に、並列共振用トランス25の出力部に、並列共振する共振用リアクトルを追加してオゾン用電源を構成することも可能である。
In the first and second embodiments, the configuration having the internal excitation inductance value Lt of the parallel resonance transformer 25 which is a high-frequency / high-voltage transformer of the ozone power supply 100 is shown. In addition to this configuration, it is also possible to configure an ozone power source by adding a resonance reactor that resonates in parallel to the output portion of the parallel resonance transformer 25.
また、オゾン発生器200及びオゾン発生器300として、原料ガスとし酸素ガスを供給し、放電セルの放電面に光触媒を塗布した構成を示した。これに限定されず、オゾン発生器200及び300に代えて、窒素を含んだ酸素ガスを原料ガスとして供給するオゾン発生器を用いても良い。
In addition, as the ozone generator 200 and the ozone generator 300, a configuration in which oxygen gas is supplied as a source gas and a photocatalyst is applied to the discharge surface of the discharge cell is shown. However, the present invention is not limited to this, and an ozone generator that supplies oxygen gas containing nitrogen as a raw material gas may be used instead of the ozone generators 200 and 300.
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
1,51,51A~51D 接地冷却電極
2a,2b,52,52A~52D 誘電体電極
3a,3b 高圧電極
4a,4b 絶縁板
5 低圧冷却板
6 積層セル押えばね
7 積層セル押え板
8 積層セル押え棒
9,59,59A~59D マニホールドブロック
10 基台
11 オゾン発生器カバー
21 AC-DCコンバータ回路部
22 インバータ回路部
23 限流リアクトル
24 電源制御回路
25 並列共振用トランス
62.62A~62D 導電性膜
70,70A~70D 冷却水流路
73,73A~73D 放電スペーサ
75,75a~75f オゾンガス取出口
77,77A~77D オゾンガス出力経路
79,79a~70f 仮想円状放電領域
100 オゾン用電源
200,300 オゾン発生器
1000,2000 オゾンガス発生システム 1, 51, 51A to 51D Grounding cooling electrode 2a, 2b, 52, 52A to 52D Dielectric electrode 3a, 3b High voltage electrode 4a, 4b Insulating plate 5 Low pressure cooling plate 6 Laminated cell presser spring 7 Laminated cell presser plate 8 Laminated cell presser Rod 9, 59, 59A to 59D Manifold block 10 Base 11 Ozone generator cover 21 AC-DC converter circuit section 22 Inverter circuit section 23 Current limiting reactor 24 Power supply control circuit 25 Parallel resonance transformer 62.62A to 62D Conductive film 70, 70A to 70D Cooling water flow path 73, 73A to 73D Discharge spacer 75, 75a to 75f Ozone gas outlet 77, 77A to 77D Ozone gas output path 79, 79a to 70f Virtual circular discharge area 100 Power supply for ozone 200,300 Ozone generation 1000, 2000 Ozone gas generation system
2a,2b,52,52A~52D 誘電体電極
3a,3b 高圧電極
4a,4b 絶縁板
5 低圧冷却板
6 積層セル押えばね
7 積層セル押え板
8 積層セル押え棒
9,59,59A~59D マニホールドブロック
10 基台
11 オゾン発生器カバー
21 AC-DCコンバータ回路部
22 インバータ回路部
23 限流リアクトル
24 電源制御回路
25 並列共振用トランス
62.62A~62D 導電性膜
70,70A~70D 冷却水流路
73,73A~73D 放電スペーサ
75,75a~75f オゾンガス取出口
77,77A~77D オゾンガス出力経路
79,79a~70f 仮想円状放電領域
100 オゾン用電源
200,300 オゾン発生器
1000,2000 オゾンガス発生システム 1, 51, 51A to 51D Grounding cooling
Claims (7)
- 多段に積層された複数の放電セルを有するオゾン発生器(300)と、
前記オゾン発生器にオゾン発生用交流電圧を付与するオゾン用電源(100)とを備え、
前記オゾン発生器に酸素を含んだ原料ガスが供給され、
前記オゾン発生器は、前記複数の放電セルの放電空間に誘電体バリア放電を発生させ、前記放電空間に供給した原料ガスからオゾンガスを生成し、該オゾンガスを外部に出力し、
前記複数の放電セルはそれぞれ、平板状の第1及び第2の電極(51A~51D,52A~52D)を含み、前記第2の電極に誘電体が形成され、前記第1及び第2の電極間に前記放電空間が設けられ、
前記複数の放電セルは、それぞれ
前記第1の電極の放電面に設けられ、前記放電空間で生成された前記オゾンガスを取り出すためのNφ(≧2)個のオゾンガス取出口(75a~75f)と、
前記第1の電極の内部に設けられ、前記Nφ個のオゾンガス取出口それぞれに繋がり、前記Nφ個のオゾンガス取出口から取り出された前記オゾンガスを集約して外部に出力するオゾンガス取出経路(77A~77D)とを有し、
前記オゾン発生器は以下の条件(a)及び条件(b)を満足することを特徴とする、
(a) 前記複数の放電セルは、それぞれ放電面の放電面積stを分割数Nφで除算した分割面積dsoが、30cm2以上、160cm2未満の範囲に設定される、
(b) 前記放電空間における放電ギャップ長が80μm未満に設定される、
オゾンガス発生システム。 An ozone generator (300) having a plurality of discharge cells stacked in multiple stages;
A power supply for ozone (100) that applies an alternating voltage for ozone generation to the ozone generator;
A source gas containing oxygen is supplied to the ozone generator,
The ozone generator generates a dielectric barrier discharge in the discharge spaces of the plurality of discharge cells, generates ozone gas from the raw material gas supplied to the discharge space, and outputs the ozone gas to the outside.
Each of the plurality of discharge cells includes flat first and second electrodes (51A to 51D, 52A to 52D), a dielectric is formed on the second electrode, and the first and second electrodes The discharge space is provided in between,
Each of the plurality of discharge cells is provided on a discharge surface of the first electrode, and Nφ (≧ 2) ozone gas outlets (75a to 75f) for taking out the ozone gas generated in the discharge space;
An ozone gas extraction path (77A to 77D) provided inside the first electrode and connected to each of the Nφ ozone gas outlets to collect and output the ozone gas extracted from the Nφ ozone gas outlets to the outside. )
The ozone generator satisfies the following conditions (a) and (b):
(a) In each of the plurality of discharge cells, a divided area dso obtained by dividing the discharge area st of the discharge surface by the division number Nφ is set in a range of 30 cm 2 or more and less than 160 cm 2 .
(b) the discharge gap length in the discharge space is set to less than 80 μm,
Ozone gas generation system. - 請求項1記載のオゾンガス発生システムであって、
前記オゾン発生器は以下の条件(c)をさらに満足することを特徴とする、
(c) 平面視して前記Nφ個のオゾンガス取出口を中心としたNφ個の仮想円状放電領域(79a~79f)が互いに重複することなく前記放電空間内に形成されるように、前記Nφ個のオゾンガス取出口は配置され、前記Nφ個の仮想円状放電領域の半径rは{r=(0.8・dso/π)0.5}を満足する、
オゾンガス発生システム。 The ozone gas generation system according to claim 1,
The ozone generator further satisfies the following condition (c):
(c) The Nφ virtual circular discharge regions (79a to 79f) centering on the Nφ ozone gas outlets in plan view are formed in the discharge space without overlapping each other. Ozone gas outlets are arranged, and the radius r of the Nφ virtual circular discharge regions satisfies {r = (0.8 · dso / π) 0.5 }.
Ozone gas generation system. - 請求項2記載のオゾンガス発生システムであって、
前記オゾン発生器は以下の条件(d)をさらに満足することを特徴とする、
(d) 前記複数の放電セルそれぞれの前記放電空間における放電電力密度Jは、2.5W/cm2以上、6W/cm2未満の範囲に設定される、
オゾンガス発生システム。 The ozone gas generation system according to claim 2,
The ozone generator further satisfies the following condition (d):
(d) The discharge power density J in the discharge space of each of the plurality of discharge cells is set to a range of 2.5 W / cm 2 or more and less than 6 W / cm 2 .
Ozone gas generation system. - 請求項3記載のオゾンガス発生システムであって、
前記オゾン発生器は、前記複数の放電セルを所定の冷却温度に冷却する冷却機構をさらに含み、
前記オゾン発生器は以下の条件(e)をさらに満足することを特徴とする、
(e) 前記所定の冷却温度は5℃以上に設定される、
オゾンガス発生システム。 The ozone gas generation system according to claim 3,
The ozone generator further includes a cooling mechanism for cooling the plurality of discharge cells to a predetermined cooling temperature,
The ozone generator further satisfies the following condition (e):
(e) The predetermined cooling temperature is set to 5 ° C. or higher.
Ozone gas generation system. - 請求項4記載のオゾンガス発生システムであって、
前記オゾン用電源及び前記オゾン発生器は以下の条件(f)及び条件(g)をさらに満足することを特徴とする、
(f) 前記複数の放電セル全体に供給する総ガス流量Qは3.0L/min以上である、
(g) 前記複数の放電セル全体に付与する総放電電力DWと前記総ガス流量Qとの比である比電力値DW/Qは、600(W・min/L)以上であり、前記総放電電力DWは前記オゾン発生用交流電圧によって規定される、
オゾンガス発生システム。 The ozone gas generation system according to claim 4,
The ozone power supply and the ozone generator further satisfy the following conditions (f) and (g):
(f) The total gas flow rate Q supplied to the whole of the plurality of discharge cells is 3.0 L / min or more.
(g) The specific power value DW / Q, which is the ratio of the total discharge power DW applied to the whole of the plurality of discharge cells and the total gas flow rate Q, is 600 (W · min / L) or more, and the total discharge The electric power DW is defined by the ozone generating AC voltage.
Ozone gas generation system. - 請求項1から請求項5のうち、いずれか1項に記載のオゾンガス発生システムであって、
前記複数の放電セルそれぞれにおいて、
前記第1及び第2の電極は平面視して台形を含む矩形状を有し、
前記第1及び第2の電極間に前記放電ギャップ長を規定する所定数の放電スペーサ(73A~73D)が設けられ、
前記第1及び第2の電極のうちの少なくも一方と前記所定数の放電スペーサとは一体的に連結される、
オゾンガス発生システム。 The ozone gas generation system according to any one of claims 1 to 5,
In each of the plurality of discharge cells,
The first and second electrodes have a rectangular shape including a trapezoid in plan view,
A predetermined number of discharge spacers (73A to 73D) defining the discharge gap length are provided between the first and second electrodes,
At least one of the first and second electrodes and the predetermined number of discharge spacers are integrally coupled;
Ozone gas generation system. - 請求項1から請求項6のうち、いずれか1項に記載のオゾンガス発生システムであって、
前記オゾン用電源は、
出力周波数fを20kHz以上、50kHz未満の範囲に設定して、高周波交流電圧を出力するインバータ部(22)と、
前記高周波交流電圧を高電圧に昇圧して前記オゾン発生用交流電圧を得る昇圧用トランス(25)とを含む、
オゾンガス発生システム。 The ozone gas generation system according to any one of claims 1 to 6,
The ozone power supply
An inverter unit (22) for setting the output frequency f to a range of 20 kHz or more and less than 50 kHz and outputting a high-frequency AC voltage;
A boosting transformer (25) that boosts the high-frequency AC voltage to a high voltage to obtain the ozone-generating AC voltage;
Ozone gas generation system.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020521178A JP6893755B2 (en) | 2018-05-21 | 2019-05-15 | Ozone gas generation system |
TW108117342A TWI708737B (en) | 2018-05-21 | 2019-05-20 | Ozone gas generation system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018019452 | 2018-05-21 | ||
JPPCT/JP2018/019452 | 2018-05-21 | ||
PCT/JP2018/041914 WO2019225033A1 (en) | 2018-05-21 | 2018-11-13 | Ozone gas generation system and ozone gas generation method |
JPPCT/JP2018/041914 | 2018-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019225426A1 true WO2019225426A1 (en) | 2019-11-28 |
Family
ID=68616114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/019269 WO2019225426A1 (en) | 2018-05-21 | 2019-05-15 | Ozone gas generation system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019225426A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7334309B1 (en) | 2022-07-15 | 2023-08-28 | 日本特殊陶業株式会社 | Ozone generator and ozone generator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003160310A (en) * | 2001-11-22 | 2003-06-03 | Mitsubishi Electric Corp | Ozonizer |
JP2004142963A (en) * | 2002-10-22 | 2004-05-20 | Mitsubishi Electric Corp | Ozonizer |
WO2006035506A1 (en) * | 2004-09-29 | 2006-04-06 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | N-phase ozone generator apparatus |
WO2014033870A1 (en) * | 2012-08-30 | 2014-03-06 | 東芝三菱電機産業システム株式会社 | Ozone generation system |
WO2017098575A1 (en) * | 2015-12-08 | 2017-06-15 | 東芝三菱電機産業システム株式会社 | Ozone generating method |
-
2019
- 2019-05-15 WO PCT/JP2019/019269 patent/WO2019225426A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003160310A (en) * | 2001-11-22 | 2003-06-03 | Mitsubishi Electric Corp | Ozonizer |
JP2004142963A (en) * | 2002-10-22 | 2004-05-20 | Mitsubishi Electric Corp | Ozonizer |
WO2006035506A1 (en) * | 2004-09-29 | 2006-04-06 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | N-phase ozone generator apparatus |
WO2014033870A1 (en) * | 2012-08-30 | 2014-03-06 | 東芝三菱電機産業システム株式会社 | Ozone generation system |
WO2017098575A1 (en) * | 2015-12-08 | 2017-06-15 | 東芝三菱電機産業システム株式会社 | Ozone generating method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7334309B1 (en) | 2022-07-15 | 2023-08-28 | 日本特殊陶業株式会社 | Ozone generator and ozone generator |
JP2024011537A (en) * | 2022-07-15 | 2024-01-25 | 日本特殊陶業株式会社 | Ozone generating body and ozone generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2520543B1 (en) | Ozone generator | |
JP3109664B2 (en) | Hazardous gas purifier | |
Malik | Ozone synthesis using shielded sliding discharge: effect of oxygen content and positive versus negative streamer mode | |
WO2019225426A1 (en) | Ozone gas generation system | |
JP6893755B2 (en) | Ozone gas generation system | |
JP2012206898A (en) | Ozone generator | |
CA3225442A1 (en) | Apparatus and method for electron irradiation scrubbing | |
JP7563810B1 (en) | Hydrogen gas production method and production device | |
JP5379496B2 (en) | Ozone generator | |
Yu et al. | Partitioned operation method for reactive oxygen species reactor array at atmospheric pressure | |
JP6235162B2 (en) | Ozone generator | |
US11639555B2 (en) | Compact ozone generator with multi-gap electrode assembly | |
JP4342991B2 (en) | Ozone generator | |
KR101655885B1 (en) | Carbon dioxide decompositon apparatus and carbon dioxide decomposition method | |
NO20220117A1 (en) | Plasma electrode configuration for a high-voltage non-thermal plasma system and a non-thermal plasma-based gas-treatment system comprising such plasma electrode configuration | |
Xu et al. | Characteristics of Double-Layer, Large-Flow Dielectric Barrier Discharge Plasma Source for Toluene Decomposition. Plasma 2023, 6, 212–224 | |
JP2002137907A (en) | Ozone generating apparatus | |
WO2002052060A1 (en) | Inductively coupled plasma reactor | |
KR20130093213A (en) | Appratus for accelerating combustion using negative ion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19807992 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020521178 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19807992 Country of ref document: EP Kind code of ref document: A1 |