[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019225448A1 - 送信装置、送信方法、受信装置および受信方法 - Google Patents

送信装置、送信方法、受信装置および受信方法 Download PDF

Info

Publication number
WO2019225448A1
WO2019225448A1 PCT/JP2019/019407 JP2019019407W WO2019225448A1 WO 2019225448 A1 WO2019225448 A1 WO 2019225448A1 JP 2019019407 W JP2019019407 W JP 2019019407W WO 2019225448 A1 WO2019225448 A1 WO 2019225448A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
linear pcm
audio signal
unit
transmission
Prior art date
Application number
PCT/JP2019/019407
Other languages
English (en)
French (fr)
Inventor
市村 元
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/049,177 priority Critical patent/US11942103B2/en
Priority to KR1020207032569A priority patent/KR20210011916A/ko
Priority to EP19807446.0A priority patent/EP3799042A4/en
Priority to CN201980032554.0A priority patent/CN112136176B/zh
Publication of WO2019225448A1 publication Critical patent/WO2019225448A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/233Processing of audio elementary streams
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/10Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a multipulse excitation
    • G10L19/113Regular pulse excitation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/162Interface to dedicated audio devices, e.g. audio drivers, interface to CODECs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video stream to a specific local network, e.g. a Bluetooth® network
    • H04N21/43632Adapting the video stream to a specific local network, e.g. a Bluetooth® network involving a wired protocol, e.g. IEEE 1394
    • H04N21/43635HDMI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/439Processing of audio elementary streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/8106Monomedia components thereof involving special audio data, e.g. different tracks for different languages

Definitions

  • the present technology relates to a transmission device, a transmission method, a reception device, and a reception method.
  • IEC 60958 As a digital audio interface, transmission of linear PCM signals according to IEC 60958 is widely used.
  • Patent Document 1 describes IEC 60958.
  • IEC 61937 which transmits a compressed audio signal on the protocol of IEC 60958, is also widespread and used for various audio codec transmissions.
  • HDMI High-Definition Multimedia Interface
  • MHL Mobile ⁇ High-definition ⁇ Link
  • SPDIF Synchronization Digital InterFace
  • IEC-60958 protocol is mapped to the format of DisplayPort (DisplayPort) for commercial use.
  • the transmission of the compressed audio signal and the transmission of the linear PCM signal are sequentially switched and reproduced, the continuity of the content reproduction is significantly lost and the reproduction quality is deteriorated.
  • the above-described application requiring real-time property is not preferable.
  • background music is provided in MPEG-4 AAC, but a linear PCM signal in response to a user's operation with a game controller cannot be played comfortably if there is a delay.
  • the purpose of this technology is to realize the simultaneous transmission and reproduction of the compressed audio signal and the linear PCM signal satisfactorily.
  • the concept of this technology is A transmission unit that sequentially transmits an audio signal of a predetermined unit to a reception side via a predetermined transmission path,
  • the audio signal of the predetermined unit is in a transmission device that is a mixed signal of a compressed audio signal and a linear PCM signal.
  • a predetermined unit of audio signal is sequentially transmitted to the reception side via a predetermined transmission path by the transmission unit.
  • the predetermined transmission path may be a coaxial cable, an optical cable, an Ethernet (IEC 61883-6) cable, an HDMI cable, an MHL cable, or a display port cable.
  • the audio signal of a predetermined unit is a mixed signal of a compressed audio signal and a linear PCM signal.
  • the linear PCM signal may be an audio signal that requires real-time characteristics.
  • a first acquisition unit that acquires a compressed audio signal and a second acquisition unit that acquires a linear PCM signal may be further provided.
  • the audio signal of a predetermined unit may be an audio signal of a subframe unit.
  • the compressed audio signal may be arranged on the upper bit side, and the linear PCM signal may be arranged on the lower bit side.
  • a predetermined unit audio signal which is a mixed signal of a compressed audio signal and a linear PCM signal, is sequentially transmitted to the receiving side via a predetermined transmission path. Therefore, simultaneous transmission of the compressed audio signal and the linear PCM signal can be realized satisfactorily.
  • an information addition unit that adds identification information indicating that the audio signal in a predetermined unit is a mixed signal of a compressed audio signal and a linear PCM signal is further provided to the audio signal transmitted by the transmission unit.
  • the information adding unit may add the identification information using a predetermined bit area of the channel status of each block configured for each predetermined number of predetermined units.
  • an information addition unit that adds configuration information indicating the configuration of the linear PCM signal to the audio signal transmitted by the transmission unit may be further provided.
  • the information adding unit may add the configuration information using a predetermined bit area of the channel status of each block configured for a predetermined number of predetermined units. By adding the configuration information in this way, the receiving side can easily recognize the configuration of the linear PCM signal.
  • an information addition unit that adds information related to the linear PCM signal to the audio signal transmitted by the transmission unit may be further provided.
  • the information adding unit may add information related to the linear PCM signal by using a predetermined number of consecutive user data bits. By adding information related to the linear PCM signal in this way, the receiving side can appropriately process the linear PCM signal.
  • a receiving unit that sequentially receives a predetermined unit of an audio signal from a transmitting side via a predetermined transmission path,
  • the audio signal of the predetermined unit is in a receiving apparatus that is a mixed signal of a compressed audio signal and a linear PCM signal.
  • a predetermined unit of an audio signal is sequentially received from the transmission side via a predetermined transmission path by the receiving unit.
  • the audio signal of a predetermined unit is a mixed signal of a compressed audio signal and a linear PCM signal.
  • the processing unit may further include a processing unit that processes the compressed audio signal and the linear PCM signal to obtain an output linear PCM signal.
  • a predetermined unit of an audio signal which is a mixed signal of a compressed audio signal and a linear PCM signal, is sequentially received from a transmission side via a predetermined transmission path. Therefore, simultaneous reproduction of the compressed audio signal and the linear PCM signal can be satisfactorily realized.
  • configuration information indicating the configuration of the linear PCM signal is added to the audio signal received by the reception unit, and the processing unit processes the linear PCM signal based on the configuration information. It may be made like. Accordingly, the processing unit can appropriately process the linear PCM signal according to the configuration of the linear PCM signal.
  • information related to the linear PCM signal is added to the audio signal received by the receiving unit, and the processing unit processes the linear PCM signal based on this information. May be. Accordingly, the processing unit can appropriately process the linear PCM signal based on information related to the linear PCM signal.
  • FIG. 1 shows a configuration example of an AV system 10 as an embodiment.
  • This AV system 10 includes a television receiver 100 and an audio amplifier 200.
  • a television broadcast receiving antenna 121, a BD (Blu-ray Disc) player 122, and the Internet 123 are connected to the television receiver 100.
  • the audio amplifier 200 is connected to a 2-channel or multi-channel speaker system 250. “Blu-ray” is a registered trademark.
  • the television receiver 100 and the audio amplifier 200 are connected via an HDMI cable 300.
  • HDMI is a registered trademark.
  • the television receiver 100 is provided with an HDMI terminal 101 to which an HDMI receiving unit (HDMI RX) 102 and a high-speed bus interface 103 constituting a communication unit are connected.
  • the audio amplifier 200 is provided with an HDMI terminal 201 to which an HDMI transmission unit (HDMI TX) 202 and a high-speed bus interface 203 constituting a communication unit are connected.
  • One end of the HDMI cable 300 is connected to the HDMI terminal 101 of the television receiver 100, and the other end is connected to the HDMI terminal 201 of the audio amplifier 200.
  • the television receiver 100 includes an HDMI receiving unit 102, a high-speed bus interface 103, and an SPDIF transmission circuit 104.
  • the television receiver 100 includes a system controller 105, a user interface 106, a digital broadcast receiving circuit 107, a content reproduction circuit 108, a voice synthesis circuit 109, an Ethernet interface 110, and a downmix unit 111.
  • a system controller 105 a user interface 106, a digital broadcast receiving circuit 107, a content reproduction circuit 108, a voice synthesis circuit 109, an Ethernet interface 110, and a downmix unit 111.
  • “Ethernet” and “Ethernet” are registered trademarks. In the illustrated example, each part of the image system is omitted as appropriate for the sake of simplicity.
  • the system controller 105 controls the operation of each part of the television receiver 100.
  • the user interface 106 is connected to the system controller 105.
  • the user interface 106 constitutes an operation unit for a user to perform various operations. For example, a remote control, a touch panel, a mouse, a keyboard, a gesture input unit that detects an instruction input with a camera, and an audio input that inputs an instruction by voice. It consists of parts.
  • the digital broadcast receiving circuit 107 processes the television broadcast signal input from the receiving antenna 121 and outputs a compressed audio signal related to the broadcast content.
  • the Ethernet interface 110 communicates with other servers via the Internet 123.
  • the content reproduction circuit 108 receives the compressed audio signal of the broadcast content obtained from the digital broadcast receiving circuit 107, the compressed audio signal of the reproduced content supplied from the BD player 122, or the compressed audio signal of the net content obtained from the Ethernet interface 110. This is selectively extracted and sent to the SPDIF transmission circuit 104.
  • the voice synthesis circuit 109 receives operation sound data corresponding to the operation of the user interface 106 from the system controller 105, generates a linear PCM signal of the operation sound, and sends it to the SPDIF transmission circuit 104. Such a linear PCM signal of operation sound is required to have real-time characteristics.
  • the voice synthesis circuit 109 receives notification sound data for notifying the user that the mail has been received from the system controller 105, generates a linear PCM signal of the notification sound, and sends it to the SPDIF transmission circuit 104.
  • the speech synthesis circuit 109 receives caption data from the digital broadcast reception circuit 107, generates a linear PCM signal of caption sound by caption reading software, and sends it to the SPDIF transmission circuit 104.
  • a linear PCM signal of subtitle audio is required to have real-time characteristics.
  • the broadcast content is a foreign movie
  • the language of the sound by the compressed audio signal is a foreign language
  • the subtitle is a Japanese subtitle. This subtitle sound is the same when there is subtitle data related to the content reproduced from the BD player 122 instead of the broadcast content.
  • the speech synthesis circuit 109 receives the text data of the translated speech received from the translation server (not shown in FIG. 1) by the Ethernet interface 110, generates a linear PCM signal of the translated speech, and generates an SPDIF transmission circuit. 104.
  • the Ethernet interface 110 converts the PCM audio signal of the first language speech obtained by the compressed audio decoding circuit 206 of the audio amplifier 200 described later into the HDMI transmission unit 202 of the audio amplifier 200 and the TV receiver 100.
  • the first language speech PCM speech signal received through the HDMI receiving unit 102 and transmitting it to the translation server, the translated speech text data of the second language is received from the translation server.
  • the downmix unit 111 decodes and downmixes the multichannel compressed audio signal extracted by the content reproduction circuit 108 to generate a stereo 2-channel linear PCM signal and sends it to the SPDIF transmission circuit 104.
  • the multi-channel compressed audio signal and the stereo 2-channel linear PCM signal can be simultaneously transmitted from the SPDIF transmission circuit 104. In this case, it is left to the receiving side which one to reproduce.
  • the audio amplifier 200 is shown as the playback device on the receiving side, but this is effective when there are playback devices having different playback capabilities in a plurality of rooms.
  • the HDMI receiving unit 102 receives image and audio data supplied to the HDMI terminal 101 via the HDMI cable 300 by communication conforming to HDMI.
  • the high-speed bus interface 103 is an interface of a bidirectional communication path configured by using a reserved line and an HPD (Hot Plug Plug Detect) line constituting the HDMI cable 300. Details of the HDMI receiving unit 102 and the high-speed bus interface 103 will be described later.
  • the SPDIF transmission circuit 104 is a circuit for transmitting a digital audio transmission signal (hereinafter referred to as “SPDIF signal” as appropriate) of the IEC 60958 standard.
  • the SPDIF transmission circuit 104 is a transmission circuit that conforms to the IEC 60958 standard.
  • the SPDIF transmission circuit 104 transmits a compressed audio signal and a linear PCM signal simultaneously.
  • the audio signal in units of subframes is a mixed signal of a compressed audio signal and a linear PCM signal.
  • the SPDIF signal transmitted from the SPDIF transmission circuit 104 includes identification information indicating that the audio signal in units of subframes is a mixed signal of a compressed audio signal and a linear PCM signal, and a configuration indicating the configuration of the linear PCM signal.
  • Information, information related to the linear PCM signal, and the like are added.
  • the configuration information indicates, for example, a 2-channel configuration of an 8-bit linear PCM signal, a stereo 2-channel configuration of an 8-bit linear PCM signal, a 1-channel configuration of a 16-bit linear PCM signal, and the like.
  • the information related to the linear PCM signal is information such as language and speaker position, for example. Details of the SPDIF signal will be described later.
  • the audio amplifier 200 includes an HDMI transmission unit 202, a high-speed bus interface 203, and an SPDIF reception circuit 204.
  • the audio amplifier 200 includes a system controller 205, a compressed audio decoding circuit 206, an audio mixer 207, an amplifier 208, a display unit 209, and an Ethernet interface 210.
  • the system controller 205 controls the operation of each part of the audio amplifier 200.
  • the HDMI transmission unit 202 transmits baseband video (image) and audio data from the HDMI terminal 201 to the HDMI cable 300 by communication conforming to HDMI.
  • the high-speed bus interface 203 is an interface of a bidirectional communication path configured by using a reserved line and an HPD (Hot Plug Detect) line constituting the HDMI cable 300. Details of the HDMI transmission unit 202 and the high-speed bus interface 203 will be described later.
  • the SPDIF receiving circuit 204 is a circuit for receiving an SDPIF signal (IEC 60958 standard digital audio signal).
  • the SPDIF receiving circuit 204 is a receiving circuit compliant with the IEC 60958 standard.
  • the compressed audio decoding circuit 206 performs a decoding process on the compressed audio signal obtained by the SPDIF receiving circuit 204 to obtain a 2-channel or multi-channel linear PCM signal.
  • the audio mixer 207 mixes the linear PCM signal obtained by the SPDIF reception circuit 204 with the linear PCM signal obtained by the compression audio decoding circuit 206 based on the configuration information indicating the configuration of the linear PCM signal, thereby obtaining two or more channels. Obtain the output linear PCM signal of the channel.
  • the mix process mentioned here includes selecting only one of them.
  • the mix processing referred to here includes selecting one when there is transmission of a linear PCM signal of a plurality of channels.
  • the audio mixer 207 performs a rendering process so that a PCM audio signal of a channel suitable for the configuration of the speaker system 250 can be obtained. Further, when speaker position information is added to the linear PCM signal obtained by the SPDIF receiving circuit 204, for example, as information related to the linear PCM signal, the sound generated by the linear PCM signal is localized at the speaker position. Render processing.
  • the amplifier 208 amplifies the 2-channel or multi-channel output linear PCM signal obtained by the audio mixer 207 and supplies the amplified signal to the speaker system 250.
  • the display unit 209 displays the status of the audio amplifier 200 and the like. For example, when the linear PCM signal from the compressed audio decoding circuit 206 is the first language and the linear PCM signal obtained by the SPDIF circuit 204 is the second language, one of the audio mixers 207 is selected. However, the display unit 208 displays the language name related to the selected linear PCM signal.
  • the language information of the linear PCM signal from the compressed audio decoding circuit 206 is embedded in the compressed audio signal itself, but the language information of the linear PCM signal obtained by the SPDIF circuit 204 is received by the SPDIF receiving circuit 204.
  • 2A, 2 ⁇ / b> B, and 2 ⁇ / b> C show examples of language name display on the display unit 209.
  • FIG. 3 shows a configuration example of the HDMI receiving unit 102 of the television receiver 100 and the HDMI transmitting unit 202 of the audio amplifier 200 in the AV system 10 of FIG.
  • the HDMI transmission unit 202 is an effective image section that is a section obtained by removing a horizontal blanking period and a vertical blanking period from a section from a certain vertical synchronization signal to the next vertical synchronization signal (hereinafter, referred to as “video field” as appropriate).
  • video field a vertical synchronization signal
  • active video period a differential signal of image data for one screen of baseband (uncompressed) is transmitted to the HDMI receiving unit 102 in one direction through a plurality of channels.
  • the HDMI transmission unit 202 outputs a plurality of differential signals corresponding to audio data and control packets (Control Packets) accompanying the image data, other auxiliary data, and the like in the horizontal blanking period and the vertical blanking period.
  • the channel is transmitted to the HDMI receiving unit 102 in one direction.
  • the HDMI transmission unit 202 includes a source signal processing unit 71 and an HDMI transmitter 72.
  • the source signal processing unit 71 is supplied with baseband uncompressed image (Video) and audio (Audio) data.
  • the source signal processing unit 71 performs necessary processing on the supplied image and audio data and supplies the processed image and audio data to the HDMI transmitter 72. Further, the source signal processing unit 71 exchanges control information, status notification information (Control / Status), and the like with the HDMI transmitter 72 as necessary.
  • the HDMI transmitter 72 converts the image data supplied from the source signal processing unit 71 into corresponding differential signals, and connects the HDMI cable 300 with the three TMDS channels # 0, # 1, and # 2 that are a plurality of channels. The data is transmitted in one direction to the HDMI receiving unit 102 connected via the network.
  • auxiliary data auxiliary data supplied from the transmitter 72 and the source signal processing unit 71, the vertical synchronization signal (VSYNC), and the horizontal synchronization signal (HSYNC).
  • the transmitter 72 transmits pixel clocks synchronized with image data transmitted through the three TMDS channels # 0, # 1, and # 2 to the HDMI receiving unit 102 connected via the HDMI cable 300 using the TMDS clock channel. Send.
  • the HDMI receiving unit 102 receives a differential signal corresponding to image data transmitted in one direction from the HDMI transmitting unit 202 over a plurality of channels in the active video period, and also includes a horizontal blanking period and a vertical blanking period.
  • differential signals corresponding to auxiliary data and control data transmitted from the HDMI transmitting unit 202 are received through a plurality of channels.
  • the HDMI receiving unit 102 includes an HDMI receiver 81 and a sync signal processing unit 82.
  • the HDMI receiver 81 is a TMDS channel # 0, # 1, # 2, and a differential signal corresponding to image data transmitted in one direction from the HDMI transmission unit 202 connected via the HDMI cable 300; Similarly, the differential signal corresponding to the auxiliary data and the control data is received in synchronization with the pixel clock transmitted from the HDMI transmitting unit 202 through the TMDS clock channel. Further, the HDMI receiver 81 converts the differential signal into corresponding image data, auxiliary data, and control data, and supplies them to the sync signal processing unit 82 as necessary.
  • the sync signal processing unit 82 performs necessary processing on the data supplied from the HDMI receiver 81 and outputs the processed data. In addition, the sync signal processing unit 82 exchanges control information, status notification information (Control / Status), and the like with the HDMI receiver 81 as necessary.
  • the HDMI transmission channel includes three TMDS channels for serially transmitting image data, auxiliary data, and control data in one direction in synchronization with the pixel clock from the HDMI transmitting unit 202 to the HDMI receiving unit 102.
  • TMDS channels for serially transmitting image data, auxiliary data, and control data in one direction in synchronization with the pixel clock from the HDMI transmitting unit 202 to the HDMI receiving unit 102.
  • # 0, # 1, and # 2 and a TMDS clock channel as a transmission channel for transmitting a pixel clock
  • transmission channels called a DDC (Display Data Channel) 83 and a CEC line 84 are transmission channels called a DDC (Display Data Channel) 83 and a CEC line 84.
  • the DDC 83 is composed of two lines (signal lines) (not shown) included in the HDMI cable 300, and the source device receives E-EDID (Enhanced Extended Extended Display Identification) from the sink device connected via the HDMI cable 300. Used for reading. That is, the sink device has an EDIDROM 85. The source device reads the E-EDID stored in the EDIDROM 85 from the sink device connected via the HDMI cable 300 via the DDC 83, and recognizes the settings and performance of the sink device based on the E-EDID. To do.
  • E-EDID Enhanced Extended Extended Display Identification
  • the CEC line 84 is composed of a single line (not shown) included in the HDMI cable 300, and is used for bidirectional communication of control data between the source device and the sink device.
  • the HDMI cable 300 includes a line 86 connected to a pin called HPD (Hot Plug Detect). The source device can detect the connection of the sink device using the line 86. Further, the HDMI cable 300 includes a line 87 used for supplying power from the source device to the sink device. Further, the HDMI cable 300 includes a reserved line 88.
  • HPD Hot Plug Detect
  • FIG. 4 shows various transmission data sections when image data of horizontal ⁇ vertical 1920 pixels ⁇ 1080 lines is transmitted in the TMDS channel.
  • a video field 24 Video Data Period
  • a data island period 25 Data Island Period
  • a video field in which transmission data is transmitted using the three TMDS channels of HDMI There are three types of sections, namely, control section 26 (Control26Period).
  • the video field period is a period from a rising edge (Active Edge) of a certain vertical synchronizing signal to a rising edge of the next vertical synchronizing signal, and includes a horizontal blanking period 22 (Horizontal Blanking) and a vertical blanking period 23 ( Vertical Blanking) and an effective pixel section 21 (Active Video) that is a section obtained by removing the horizontal blanking period and the vertical blanking period from the video field section.
  • the video data section 24 is assigned to the effective pixel section 21.
  • data of 1920 pixels (pixels) ⁇ 1080 lines of effective pixels (Active Pixel) constituting uncompressed image data for one screen is transmitted.
  • the data island period 25 and the control period 26 are assigned to the horizontal blanking period 22 and the vertical blanking period 23.
  • auxiliary data (Auxiliary Data) is transmitted.
  • the data island section 25 is allocated to a part of the horizontal blanking period 22 and the vertical blanking period 23.
  • audio data packets that are not related to the control among the auxiliary data are transmitted.
  • the control section 26 is allocated to other portions of the horizontal blanking period 22 and the vertical blanking period 23.
  • vertical synchronization signals, horizontal synchronization signals, control packets, and the like, which are data related to control, of auxiliary data are transmitted.
  • FIG. 5 shows a pin arrangement of the HDMI connector.
  • This pin arrangement is an example of type A (type-A).
  • TMDS Data # i + which is the differential signal of TMDS channel #i
  • the two lines that transmit TMDS Data # i- are two lines that are assigned TMDS Data # i + (the pin number is 1). , 4 and 7) and TMDS Data # i- assigned pins (pin numbers 3, 6 and 9).
  • the CEC line 84 through which the CEC signal, which is control data, is transmitted is connected to the pin with the pin number 13, and the pin with the pin number 14 is a reserved pin.
  • a line through which an SDA (Serial Data) signal such as E-EDID is transmitted is connected to a pin having a pin number of 16 and an SCL (Serial Clock) which is a clock signal used for synchronization when the SDA signal is transmitted and received.
  • a line through which a signal is transmitted is connected to a pin having a pin number of 15.
  • the above-described DDC 83 includes a line for transmitting the SDA signal and a line for transmitting the SCL signal.
  • the HPD line 86 for detecting the connection of the sink device by the source device is connected to the pin having the pin number 19. Further, as described above, the power supply line 87 for supplying power is connected to the pin having the pin number 18.
  • FIG. 6 shows a configuration example of the high-speed bus interface 103 of the television receiver 100 in the AV system 10 of FIG.
  • the Ethernet interface 110 performs LAN (Local Area Network) communication, that is, transmission / reception of an Ethernet signal, using a transmission path configured by a pair of a reserved line and an HPD line among a plurality of lines constituting the HDMI cable 300.
  • the SPDIF transmission circuit 104 transmits the SPDIF signal using the transmission path constituted by the above-described pair of lines.
  • the television receiver 100 includes a LAN signal transmission circuit 441, a terminating resistor 442, AC coupling capacitors 443 and 444, a LAN signal reception circuit 445, a subtraction circuit 446, addition circuits 449 and 450, and an amplifier 451. These constitute the high-speed bus interface 103.
  • the television receiver 100 includes a choke coil 461, a resistor 462, and a resistor 463 that constitute the plug connection transmission circuit 128.
  • a series circuit of an AC coupling capacitor 443, a termination resistor 442, and an AC coupling capacitor 444 is connected between the 14-pin terminal 521 and the 19-pin terminal 522 of the HDMI terminal 101.
  • a series circuit of a resistor 462 and a resistor 463 is connected between the power supply line (+5.0 V) and the ground line.
  • a connection point between the resistor 462 and the resistor 463 is connected to a connection point Q4 between the 19-pin terminal 522 and the AC coupling capacitor 444 via the choke coil 461.
  • connection point P3 between the AC coupling capacitor 443 and the termination resistor 442 is connected to the output side of the adder circuit 449 and to the positive input side of the LAN signal receiving circuit 445.
  • a connection point P4 between the AC coupling capacitor 444 and the termination resistor 442 is connected to the output side of the adder circuit 450 and to the negative input side of the LAN signal receiving circuit 445.
  • One input side of the addition circuit 449 is connected to the positive output side of the LAN signal transmission circuit 441, and the SPDIF signal output from the SPDIF transmission circuit 104 is supplied to the other input side of the addition circuit 449 via the amplifier 451. Is done. Further, one input side of the adder circuit 450 is connected to the negative output side of the LAN signal transmission circuit 441, and the SPDIF signal output from the SPDIF transmission circuit 104 is connected to the other input side of the addition circuit 450 via the amplifier 451. Supplied.
  • a transmission signal (transmission data) SG417 is supplied from the Ethernet interface 110 to the input side of the LAN signal transmission circuit 441.
  • the output signal SG418 of the LAN signal receiving circuit 445 is supplied to the positive terminal of the subtracting circuit 446, and the transmission signal SG417 is supplied to the negative terminal of the subtracting circuit 446.
  • the transmission signal SG417 is subtracted from the output signal SG418 of the LAN signal receiving circuit 445 to obtain a reception signal (reception data) SG419.
  • This reception signal SG419 becomes the LAN signal when a LAN signal (Ethernet signal) is transmitted as a differential signal via the reserved line and the HPD line.
  • This reception signal SG419 is supplied to the Ethernet interface 110.
  • FIG. 7 shows a configuration example of the high-speed bus interface 203 of the audio amplifier 200 in the AV system 10 of FIG.
  • the Ethernet interface 210 performs LAN (Local Area Network) communication, that is, transmission and reception of an Ethernet signal, using a transmission path configured by a pair of lines of a reserved line and an HPD line among a plurality of lines constituting the HDMI cable 610.
  • the SPDIF receiving circuit 204 receives the SPDIF signal using the transmission path constituted by the above-described pair of lines.
  • the audio amplifier 200 includes a LAN signal transmission circuit 411, a termination resistor 412, AC coupling capacitors 413 and 414, a LAN signal reception circuit 415, a subtraction circuit 416, an addition circuit 419, and an amplifier 420. These constitute the high-speed bus interface 203.
  • the audio amplifier 200 includes a pull-down resistor 431, a resistor 432, a capacitor 433, and a comparator 434 that constitute a plug connection detection circuit 221.
  • the resistor 432 and the capacitor 433 constitute a low-pass filter.
  • a connection point P1 between the AC coupling capacitor 413 and the termination resistor 412 is connected to the positive output side of the LAN signal transmission circuit 411 and to the positive input side of the LAN signal reception circuit 415.
  • connection point P2 between the AC coupling capacitor 414 and the termination resistor 412 is connected to the negative output side of the LAN signal transmission circuit 411 and to the negative input side of the LAN signal reception circuit 415.
  • a transmission signal (transmission data) SG411 is supplied from the Ethernet interface 210 to the input side of the LAN signal transmission circuit 411.
  • the output signal SG412 of the LAN signal receiving circuit 415 is supplied to the positive terminal of the subtraction circuit 416, and the transmission signal (transmission data) SG411 is supplied to the negative terminal of the subtraction circuit 416.
  • the transmission signal SG411 is subtracted from the output signal SG412 of the LAN signal receiving circuit 415 to obtain a reception signal SG413.
  • This reception signal SG413 is the LAN signal when a LAN signal (Ethernet signal) is transmitted as a differential signal via the reserve line and the HPD line.
  • This reception signal SG413 is supplied to the Ethernet interface 210.
  • connection point Q2 between the AC coupling capacitor 414 and the 19-pin terminal 512 is connected to the ground line through the pull-down resistor 431 and is connected to the ground line through a series circuit of the resistor 432 and the capacitor 433.
  • the output signal of the low-pass filter obtained at the connection point between the resistor 432 and the capacitor 433 is supplied to one input terminal of the comparator 434.
  • the output signal of the low-pass filter is compared with a reference voltage Vref2 (+1.4 V) supplied to the other input terminal.
  • the output signal SG415 of the comparator 434 is supplied to a control unit (CPU) (not shown) of the audio amplifier 200.
  • connection point P1 between the AC coupling capacitor 413 and the termination resistor 412 is connected to one input terminal of the adder circuit 419.
  • connection point P2 between the AC coupling capacitor 414 and the termination resistor 412 is connected to the other input terminal of the adder circuit 419.
  • the output signal of the adding circuit 419 is supplied to the SPDIF receiving circuit 204 via the amplifier 420.
  • the output signal of the adding circuit 419 becomes the SPDIF signal when the SPDIF signal is transmitted as an in-phase signal via the reserved line and the HPD line.
  • FIG. 8 shows a frame configuration in the IEC 60958 standard. Each frame is composed of two subframes. In the case of two-channel stereo audio, the left channel signal is included in the first subframe, and the right channel signal is included in the second subframe.
  • a preamble is provided at the head of the subframe, and “M” is assigned as the preamble to the left channel signal, and “W” is assigned as the preamble to the right channel signal.
  • “B” indicating the start of a block is assigned to the leading preamble every 192 frames. That is, one block is composed of 192 frames.
  • a block is a unit constituting a channel status described later.
  • FIG. 9 shows a subframe configuration in the IEC 60958 standard.
  • the subframe is composed of a total of 32 time slots from the 0th to the 31st.
  • the 0th to 3rd time slots indicate a preamble (Sync preamble).
  • This preamble indicates one of “M”, “W”, and “B” in order to distinguish the left and right channels and to indicate the start position of the block as described above.
  • the 4th to 27th time slots are main data fields, and when the 24-bit code range is adopted, the whole represents audio data.
  • the 8th to 27th time slots represent audio data (Audio (sample word).
  • the fourth to seventh time slots can be used as additional information (Auxiliary sample bits).
  • the illustrated example shows the latter case.
  • the 28th time slot is a validity flag (Validity flag) of the main data field.
  • the 29th time slot represents one bit of user data (User data).
  • a series of user data can be constructed by accumulating the 29th time slot across each frame.
  • This user data message is configured in units of 8-bit information units (IU: Information Unit), and one message includes 3 to 129 information units.
  • [0] There can be 0 to 8 bits of “0” between information units.
  • the head of the information unit is identified by the start bit “1”.
  • the first seven information units in the message are reserved, and the user can set arbitrary information in the eighth and subsequent information units. Messages are divided by “0” of 8 bits or more.
  • the 30th time slot represents one bit of the channel status (Channel status).
  • a series of channel statuses can be constructed by accumulating the 30th time slot for each block across each frame.
  • the head position of the block is indicated by the “B” preamble (0th to 3rd time slots) as described above.
  • the 31st time slot is a parity bit. This parity bit is added so that the number of “0” and “1” included in the fourth to 31st time slots is an even number.
  • FIG. 10 shows a signal modulation method according to the IEC 60958 standard.
  • Bi-phase mark modulation is performed on the 4th to 31st time slots excluding the preamble in the subframe.
  • a clock that is twice as fast as the original signal (source coding) is used. If the clock cycle of the original signal is divided into the first half and the second half, the output of the biphase mark modulation is always inverted at the edge of the first half clock cycle. Further, at the edge of the second half clock cycle, the signal is inverted when the original signal indicates “1”, and is not inverted when the original signal indicates “0”. As a result, the clock component in the original signal can be extracted from the biphase mark modulated signal.
  • FIG. 11 shows channel coding of a preamble in the IEC 60958 standard.
  • the fourth to 31st time slots of the subframe are biphase mark modulated.
  • the preambles in the 0th to 3rd time slots are handled as bit patterns synchronized with the double speed clock, not the normal biphase mark modulation. That is, by assigning 2 bits to each time slot of the 0th to 3rd time slots, an 8-bit pattern as shown in the figure is obtained.
  • FIG. 12 shows the IEC 61937-1 interface format.
  • FIG. 12A shows a frame configuration. One block is composed of 192 frames, and the blocks are continuous.
  • FIG. 12B shows that each frame is composed of two subframes.
  • a preamble is provided at the head of the subframe, and “B” representing the start of the block is given to the preamble of the head subframe of the block. Then, “W” and “M” are alternately given to the leading preamble of each subsequent subframe.
  • FIG. 12C shows a subframe configuration.
  • the bit stream of the compressed audio signal is divided and sequentially inserted into the 12th to 27th time slots of each subframe. That is, the upper 16 bits of the 24-bit audio data area of the 4th to 27th time slots of each subframe are used for transmission of the compressed audio signal.
  • the compressed audio signal and the linear PCM signal are transmitted simultaneously.
  • the audio signal in units of subframes is a mixed signal of a compressed audio signal and a linear PCM signal.
  • FIG. 13 shows an interface format when a compressed audio signal and a linear PCM signal are transmitted simultaneously. 13A and 13B are the same as FIGS. 12A and 12B, respectively.
  • FIG. 13C shows a subframe configuration. Of the 24-bit audio data area in the 4th to 27th time slots of each subframe, the upper 16 bits are used for transmission of the compressed audio signal, and the lower 8 bits are used for transmission of the linear PCM signal.
  • the audio signal transmitted from the SPDIF transmission circuit 104 includes identification information indicating that the audio signal in units of subframes is a mixed signal of a compressed audio signal and a linear PCM signal, and the configuration of the linear PCM signal.
  • the configuration information shown is added. In this embodiment, these pieces of information are added using channel status bits.
  • FIG. 14 schematically shows a channel status format when a compressed audio signal and a linear PCM signal are transmitted simultaneously.
  • the entire channel status consists of 0th to 23rd bytes.
  • the 3 bits from the 3rd bit to the 5th bit are “000” in the conventional IEC 61937-1 interface format, and even if it is the same, it operates sufficiently. However, it may be a different value to distinguish it from the conventional IEC 37 61937-1 interface format. In the illustrated example, “100” is set.
  • the 4th bit from the 49th bit to the 52nd bit is “0000” in the conventional IEC 193937-1 interface format, but a different value is set, and the audio signal in units of subframes is compressed.
  • the identification information indicates a mixed signal of an audio signal and a linear PCM signal. In the illustrated example, it is “1111”. Further, when 4 bits from the 49th bit to the 52nd bit indicate a mixed signal, the following 8 bits from the 53rd bit to the 60th bit are effective.
  • FIG. 15 shows an example of the correspondence relationship between the value of “Multichannel configuration value (MCV)” from the 53rd bit to the 60th bit and the configuration of the linear PCM signal.
  • MCV Multichannel configuration value
  • “10000000” indicates “8-bit LPCM 2 channel”, that is, an 8-bit 2-channel configuration.
  • 01000000 indicates “8-bit LPCM Stereo 2 channel”, that is, an 8-bit stereo 2-channel configuration.
  • “00100000” indicates “16-bit LPCM 1 channel”, that is, a 16-bit 1 channel configuration.
  • “10100000” indicates “16-bit LPCM 2 channel”, that is, a 16-bit 2-channel configuration.
  • “01100000” indicates “16-bit-LPCM Stereo 2 channel”, that is, a 16-bit stereo 2-channel configuration.
  • “11100000” indicates “16-bit LPCM 4 channel”, that is, a 16-bit 4-channel configuration.
  • FIG. 16A shows an example of a frame configuration in the case of 8 bits and 2 channels.
  • the 8-bit linear PCM signal of channel 1 is assigned to the lower 8 bits of the A channel
  • the 8-bit linear PCM signal of channel 2 is assigned to the lower 8 bits of the B channel.
  • FIG. 16B shows an example of a frame configuration in the case of 16 bits and 1 channel.
  • the upper 8-bit linear PCM signal of channel 1 is assigned to the lower 8 bits of the A channel
  • the lower 8-bit linear PCM signal of channel 1 is assigned to the lower 8 bits of the B channel.
  • FIG. 17A shows an example of a frame configuration in the case of 16 bits and 2 channels.
  • the transfer rate is double, for example, when the original sampling frequency is 48 kHz and the transfer rate is 96 kHz, the sampling frequency of the linear PCM signal is not set to 96 kHz but is kept at 48 kHz.
  • the upper 8-bit linear PCM signal of channel 1 is assigned to the lower 8 bits of the odd A channel
  • the lower 8 bit linear PCM signal of channel 1 is assigned to the lower 8 bits of the odd B channel
  • the upper 8 bits linear PCM signal of channel 2 is assigned to the lower 8 bits of the even A channel
  • the lower 8 bits linear PCM signal of channel 2 is assigned to the lower 8 bits of the even B channel.
  • FIG. 17B shows an example of a frame configuration in the case of 16-bit stereo 2 channels.
  • the transfer rate is double, for example, when the original sampling frequency is 48 kHz and the transfer rate is 96 kHz, the sampling frequency of the linear PCM signal is not set to 96 kHz but is kept at 48 kHz.
  • the lower 8-bit linear PCM signal of the L channel is assigned to the lower 8 bits of the odd A channel
  • the lower 8 bit linear PCM signal of the L channel is assigned to the lower 8 bits of the odd B channel.
  • the upper 8 bits linear PCM signal of the R channel is assigned to the lower 8 bits of the even channel A
  • the lower 8 bits linear PCM signal of the R channel is assigned to the lower 8 bits of the even channel B.
  • a 4-channel linear PCM signal is assigned with the transfer rate being quadrupled.
  • the number of channels can be increased, the number of bits can be increased to 32 bits, and a linear PCM signal such as a 5.1 channel can also be transmitted.
  • FIG. 18 shows an example of a frame configuration when a stereo 2-channel linear PCM signal and a 5.1-channel linear PCM signal are transmitted.
  • a stereo 2-channel linear PCM signal is assigned to one pair of the first A channel and B channel
  • a 5.1 channel linear PCM is assigned to the following three pairs of A channel and B channel. The signal is assigned, and so on.
  • various information related to the linear PCM signal is added to the audio signal transmitted from the SPDIF transmission circuit 104.
  • this information is added using user bits.
  • FIG. 19 shows an example of a user data message.
  • This user data message is composed of 10 information units (IU).
  • the information of “IEC 61937-1 ID”, that is, the identification information indicating the type of information is arranged in the 4th bit to the 0th bit of the second IU and the 5th bit to the 2nd bit of the third IU. Yes.
  • An information field of 4 bytes is provided from the first bit to the 0th bit of the third IU and from the fifth bit to the 0th bit of the fourth to eighth IUs.
  • the information field is not limited to 4 bytes.
  • FIG. 20 shows an example of information.
  • IEC 61937-1 ID is “10000000”
  • ASCII character information indicating an abbreviation of the language name
  • the information is the position of the sound reproduction speaker by the linear PCM signal.
  • information indicating the channel number, angle, height, and distance is arranged in the information field for 4 bytes. Note that the information shown here is merely an example, and the present invention is not limited to this.
  • a mixed signal of a compressed audio signal and a linear PCM signal can be transmitted from the television receiver 100 to the audio player 200 in units of subframes. Therefore, the television receiver 100 can realize the simultaneous transmission of the compressed audio signal and the linear PCM signal, and the audio player 200 can realize the simultaneous reproduction of the compressed audio signal and the linear PCM signal.
  • Operation sound of the user interface 106 can be reproduced.
  • Audio converted from subtitle data can be played back.
  • the language of the reproduced sound in the audio amplifier 200 can be switched, and the language name can be displayed on the display unit 209 of the audio amplifier 200.
  • Sound can be reproduced using a linear PCM signal, and its localization can be changed based on speaker position information.
  • FIG. 21 is a diagram for explaining the operation in that case, and a route related to this operation is indicated by a broken line.
  • the user performs an audio switching operation using the user interface 106 of the television receiver 100, for example, a remote controller.
  • the system controller 105 of the television receiver 100 sends an audio switching command to the system controller 205 of the audio amplifier 200 via the CEC line of the HDMI cable 300.
  • the system controller 205 of the audio amplifier 200 controls the audio mixer 207 to perform audio switching, and also performs audio switching to the system controller 105 of the television receiver 100 via the CEC line of the HDMI cable 300. Report completion. Based on this report, the system controller 105 of the television receiver 100 displays the language name of the side switched to the display 112 on the display 112.
  • FIG. 22 shows a configuration example when a game is played by connecting the game machine 124 to the television receiver 100.
  • the game machine 124 outputs a compressed audio signal of a sound track and also outputs a linear PCM signal of a real-time response sound of the game controller.
  • These multi-channel compressed audio signal and linear PCM signal are supplied to the SPDIF transmission circuit 104 and simultaneously transmitted to the audio amplifier 200. In the audio amplifier 200, the sound track and the real time response sound are reproduced simultaneously.
  • a linear PCM signal of a sound source whose localization is freely changed is output from the game machine 124, this linear PCM signal is supplied to the SPDIF transmission circuit 104, and this linear PCM signal is transmitted to the audio amplifier 200 simultaneously with the compressed audio signal. It is also conceivable. In this case, localization processing is performed in real time by the audio mixer 207 of the audio amplifier 200 by adding speaker position information as information related to the linear PCM signal.
  • FIG. 23 shows a configuration example when karaoke is performed by connecting the microphone 125 to the television receiver 100.
  • the karaoke compressed audio signal is obtained from the BD player 122, for example.
  • a linear PCM signal corresponding to the user's song is obtained from the microphone 125.
  • the karaoke compressed audio signal and the linear PCM signal from the microphone 125 are supplied to the SPDIF transmission circuit 104 and transmitted to the audio amplifier 200 simultaneously. In the audio amplifier 200, the back performance sound and the singing sound are reproduced simultaneously.
  • the back performance sound is related to the karaoke compressed audio signal
  • the singing sound is related to the linear PCM signal and is provided with higher sound quality than the back performance sound, so that the singing sound can be heard well.
  • the singing voice is transmitted as a linear PCM signal, the latency is small, so that the singing voice is easy to sing.
  • FIG. 24 is assumed to be used in a vehicle, and shows a configuration example when the navigation system 126 is connected to the television receiver 100 for use.
  • the voice-guided linear PCM signal from the navigation system 126 is supplied to the SPDIF transmission circuit 104 and transmitted to the audio amplifier 200 simultaneously with the compressed audio signal.
  • the audio amplifier 200 the navigation sound is superimposed and reproduced in real time on the reproduction sound of the broadcast content and the reproduction content.
  • the present technology can also be applied to a case where a background sound and a synthesized sound that changes in real time are separately transmitted simultaneously in a VR / AR application.
  • the background sound is transmitted as a compressed audio signal
  • the synthesized sound is transmitted as a linear PCM signal.
  • the present technology can also be applied to a case where a motor control signal is transmitted on a linear PCM channel while playing multi-channel music with a massage chair in health care. Although compression is impossible, linear PCM can express DC levels.
  • HDMI ARC is used as the IEC 60958 transmission path.
  • a coaxial cable or an optical cable is used as the IEC 60958 transmission path.
  • an HDMI transmission path is used as the IEC 60958 transmission path.
  • the SPDIF signal is mapped to an audio sample packet (audio sample packet) and transmitted in the same forward direction as video transmission.
  • the IEC 60958 transmission path an example in which an IEC 618883-6 transmission path, an MHL transmission path, a display port transmission path (DP transmission path), or the like can be considered.
  • the SPDIF signal is mapped to an audio sample packet (audio sample packet) and transmitted in the same forward direction as the video transmission.
  • the technology can have the following configurations.
  • a transmission unit that sequentially transmits an audio signal of a predetermined unit to a reception side via a predetermined transmission path,
  • the audio signal of the predetermined unit is a mixed signal of a compressed audio signal and a linear PCM signal.
  • the transmission device according to (1) wherein the audio signal in the predetermined unit is an audio signal in a subframe unit.
  • the linear PCM signal is an audio signal that requires real-time characteristics.
  • the audio signal transmitted by the transmitter further includes an information adding unit that adds identification information indicating that the audio signal of the predetermined unit is a mixed signal of a compressed audio signal and a linear PCM signal.
  • the transmission device adds the identification information using a predetermined bit area of a channel status of each block configured for a predetermined number of the predetermined units.
  • the transmission device according to any one of (1) to (6), further including an information addition unit that adds configuration information indicating the configuration of the linear PCM signal to the audio signal transmitted by the transmission unit.
  • the transmission device (8) The transmission device according to (7), wherein the information adding unit adds the configuration information using a predetermined bit area of a channel status of each block configured for each predetermined unit.
  • the transmission device according to any one of (1) to (8), further including an information addition unit that adds information related to the linear PCM signal to the audio signal transmitted by the transmission unit.
  • the transmission apparatus according to (9), wherein the information adding unit adds information related to the linear PCM signal using a predetermined number of consecutive user data bits.
  • the transmission device according to any one of (1) to (10), further including: a first acquisition unit that acquires the compressed audio signal; and a second acquisition unit that acquires the linear PCM signal.
  • the transmission device according to any one of (1) to (11), wherein the predetermined transmission path is a coaxial cable, an optical cable, an Ethernet (IEC 61883-6) cable, an HDMI cable, an MHL cable, or a display port cable. .
  • a reception unit that sequentially receives audio signals of a predetermined unit from the transmission side via a predetermined transmission path, The receiving apparatus, wherein the audio signal of the predetermined unit is a mixed signal of a compressed audio signal and a linear PCM signal.
  • the receiving apparatus further including a processing unit that processes the compressed audio signal and the linear PCM signal to obtain an output linear PCM signal.
  • Configuration information indicating the configuration of the linear PCM signal is added to the audio signal received by the reception unit, The receiving device according to (15), wherein the processing unit processes the linear PCM signal based on the configuration information.
  • Information related to the linear PCM signal is added to the audio signal received by the receiving unit; The receiving device according to (15) or (16), wherein the processing unit processes the linear PCM signal based on information related to the linear PCM signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

圧縮オーディオ信号とリニアPCM信号の同時伝送および再生を良好に実現する。 所定単位のオーディオ信号を順次所定伝送路を介して受信側に送信する。所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である。例えば、所定単位のオーディオ信号は、サブフレーム単位のオーディオ信号である。この場合、例えば、サブフレーム単位のオーディオ信号において、圧縮オーディオ信号は上位ビット側に配置され、リニアPCM信号は下位ビット側に配置される。

Description

送信装置、送信方法、受信装置および受信方法
 本技術は、送信装置、送信方法、受信装置および受信方法に関する。
 デジタルオーディオインタフェースとして、IEC 60958によるリニアPCM信号の伝送が広く使用されている。例えば、特許文献1には、IEC 60958についての記載がある。また、IEC 60958のプロコルの上で圧縮オーディオ信号を伝送するIEC 61937も普及しており、各種オーディオコーデック伝送に使用されている。
 これらは、実際の商品ではSPDIF(Sony Philips Digital InterFace)と呼称される同軸端子、光アウト端子、またビデオも含むマルチメディアインタフェースであるHDMI(High-Definition Multimedia Interface)、MHL(Mobile High-definition Link)、ディスプレイポート(DisplayPort)のフォーマットにIEC 60958プロトコルがマップされて商用利用されている。
特開2009-130606号公報
 テレビ受信機が送信機となりオーディオアンプが受信機・再生機となる場合、テレビ受信機の画面に映し出されたコンテンツの音の部分のみがオーディオアンプに送られて再生されていた。そのコンテンツにおいては、通常は圧縮オーディオコーデックが使用され、マルチチャンネルやオブジェクトオーディオ等高品質な再生を可能とする技術が発展してきた。これらのコーデックは、デコードに大きなDSP(Digital Signal Processor)能力が必要であるとか、5.1チャネル等の多数のスピーカを配置する必要がある。
 そのため、テレビ受信機の内部でデコード・再生するには負荷が高いことから、圧縮されたままの形でオーディオアンプにデジタルオーディオインタフェースを通じて送信して再生を任せるのが通常化してきた。コンテンツも放送により受信するもの、ブルーレイディスクなどのメディアを再生してテレビ受信機に入力されるもの、インターネットを通じてストリーミングあるいはダウンロードされるものなどさまざまな形態が増えてきている。
 一方、テレビ受信機の内部において音の再生が必要となるのはコンテンツ再生のみではない。リモコン等のユーザインタフェースの応答音や、AI(Artificial Intelligence)機能やナビゲーション機能による人工音声合成音、多言語対応(コンテンツにもともと複数入っていたり、インターネットやテレビ受信機の内部等でリアルタイム翻訳したりする)などで、コンテンツ再生に比べてリアルタイム性を要求するものが多い。その際は、リニアPCM信号を伝送してデコードによる遅延を避ける。同様の状況は、車の中の車載機器間のデジタルオーディオ伝送でも生じている。
 ここで、圧縮オーディオ信号の伝送とリニアPCM信号の伝送を逐次切り替えて再生すると、コンテンツ再生の連続性が著しく失われ、再生品質を落としてしまう。圧縮オーディオ信号をデコードしてリニアPCM信号とミックスして送信する方法もあるが、テレビ受信機が全ての圧縮オーディオ信号のデコード機能をもっているわけではなく、さらにデコード・ミックスの課程で遅延が生じるので、上述のリアルタイム性を要求するアプリケーションには好ましくない場合がある。例えば、ゲームコンテンツの場合、背景音楽はMPEG-4 AACで提供されるが、ユーザがゲームコントローラで操作したことに対する応答のリニアPCM信号などは遅延があると快適にゲームをプレイできない。
 つまり、圧縮オーディオ信号とリニアPCM信号の同時伝送および再生を実現しうるデジタルオーディオインタフェース方法、装置が提供されていないことが問題である。このため、リニアPCM信号のみをテレビ受信機内の低品質のスピーカ再生を使用したりしているが、著しくユーザ体験の質を落としている。また、複数のデジタルオーディオインタフェースを持ち、圧縮オーディオ信号とリニアPCM信号を別々のオーディオアンプに送って再生すれば解決できるが、コストは上がり、機器セッティングの煩雑さも増し、一般ユーザには敷居の高いシステムとなる。
 本技術の目的は、圧縮オーディオ信号とリニアPCM信号の同時伝送および再生を良好に実現することにある。
 本技術の概念は、
 所定単位のオーディオ信号を順次所定伝送路を介して受信側に送信する送信部を備え、
 上記所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である
 送信装置にある。
 本技術において、送信部により、所定単位のオーディオ信号が順次所定伝送路を介して受信側に送信される。例えば、所定伝送路は、同軸ケーブル、光ケーブル、イーサネット(IEC 61883-6)ケーブル、HDMIケーブル、MHLケーブルまたはディスプレイポートケーブルである、ようにされてもよい。
 所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号とされる。例えば、リニアPCM信号は、リアルタイム性を要求するオーディオ信号である、ようにされてもよい。また、例えば、圧縮オーディオ信号を取得する第1の取得部と、リニアPCM信号を取得する第2の取得部をさらに備える、ようにされてもよい。
 また、例えば、所定単位のオーディオ信号は、サブフレーム単位のオーディオ信号である、ようにされてもよい。この場合、例えば、サブフレーム単位のオーディオ信号において、圧縮オーディオ信号は上位ビット側に配置され、リニアPCM信号は下位ビット側に配置される、ようにされてもよい。
 このように本技術においては、圧縮オーディオ信号およびリニアPCM信号の混在信号である所定単位のオーディオ信号を順次所定伝送路を介して受信側に送信するものである。そのため、圧縮オーディオ信号とリニアPCM信号の同時伝送を良好に実現できる。
 なお、本技術において、例えば、送信部で送信されるオーディオ信号に、所定単位のオーディオ信号は圧縮オーディオ信号およびリニアPCM信号の混在信号であることを示す識別情報を付加する情報付加部をさらに備える、ようにされてもよい。この場合、例えば、情報付加部は、所定数の所定単位毎に構成される各ブロックのチャネルステータスの所定ビット領域を用いて識別情報を付加する、ようにされてもよい。このように識別情報が付加されることで、受信側では、所定単位のオーディオ信号は圧縮オーディオ信号およびリニアPCM信号の混在信号であることを容易に認識できる。
 また、本技術において、例えば、送信部で送信されるオーディオ信号に、リニアPCM信号の構成を示す構成情報を付加する情報付加部をさらに備える、ようにされてもよい。この場合、例えば、情報付加部は、所定数の所定単位毎に構成される各ブロックのチャネルステータスの所定ビット領域を用いて構成情報を付加する、ようにされてもよい。このように構成情報が付加されることで、受信側では、リニアPCM信号の構成を容易に認識できる。
 また、本技術において、例えば、送信部で送信されるオーディオ信号に、リニアPCM信号に関係する情報を付加する情報付加部をさらに備える、ようにされてもよい。この場合、例えば、情報付加部は、連続する所定数の所定単位のユーザデータビットを用いてリニアPCM信号に関係する情報を付加する、ようにされてもよい。このようにリニアPCM信号に関係する情報が付加されることで、受信側では、リニアPCM信号の処理を適切に行うことが可能となる。
 また、本技術の他の概念は、
 所定単位のオーディオ信号を送信側から順次所定伝送路を介して受信する受信部を備え、
 上記所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である
 受信装置にある。
 本技術において、受信部により、所定単位のオーディオ信号が送信側から順次所定伝送路を介して受信される。所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号とされる。例えば、圧縮オーディオ信号およびリニアPCM信号を処理して出力リニアPCM信号を得る処理部をさらに備える、ようにされてもよい。
 このように本技術においては、圧縮オーディオ信号およびリニアPCM信号の混在信号である所定単位のオーディオ信号を送信側から順次所定伝送路を介して受信するものである。そのため、圧縮オーディオ信号とリニアPCM信号の同時再生を良好に実現できる。
 なお、本技術において、例えば、受信部で受信されるオーディオ信号に、リニアPCM信号の構成を示す構成情報が付加されており、処理部は、構成情報に基づいて、リニアPCM信号を処理する、ようにされてもよい。これにより、処理部は、リニアPCM信号の構成に応じてこのリニアPCM信号を適切に処理することが可能となる。
 また、本技術において、例えば、受信部で受信されるオーディオ信号に、リニアPCM信号に関係する情報が付加されており、処理部は、この情報に基づいて、リニアPCM信号を処理する、ようにされてもよい。これにより、処理部は、リニアPCM信号に関係する情報に基づいてこのリニアPCM信号を適切に処理することが可能となる。
 本技術によれば、圧縮オーディオ信号とリニアPCM信号の同時伝送および再生を良好に実現できる。なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
実施の形態としてのAVシステムの構成例を示すブロック図である。 オーディオアンプの表示部における言語名の表示の一例を示す図である。 テレビ受信機のHDMI受信部とオーディオアンプのHDMI送信部の構成例を示すブロック図である。 TMDSチャネルにおいて横×縦が1920ピクセル×1080ラインの画像データが伝送される場合の各種の伝送データの区間を示す図である。 HDMIコネクタのピン配列を示す図である。 テレビ受信機の高速バスインタフェースの構成例を示す図である。 オーディオアンプの高速バスインタフェースの構成例を示す図である。 IEC 60958規格におけるフレーム構成を示す図である。 IEC 60958規格におけるサブフレーム構成を示す図である。 IEC 60958規格における信号変調方式を示す図である。 IEC 60958規格におけるプリアンブルのチャネルコーディングを示す図である。 IEC 61937-1インタフェース・フォーマットを示す図である。 圧縮オーディオ信号とリニアPCM信号を同時に送信する場合におけるインタフェース・フォーマットを示す図である。 圧縮オーディオ信号とリニアPCM信号を同時に送信する場合におけるチャネルステータスのフォーマットを概略的に示す図である。 「Multichannel configuration value (MCV)」の値とリニアPCM信号の構成との対応関係の一例を示す図である。 8ビット2チャネルの場合および16ビット1チャネルの場合におけるフレーム構成の一例を示す図である。 16ビット2チャネルの場合および16ビットステレオ2チャネルの場合におけるフレーム構成の一例を示す図である。 ステレオ2チャネルリニアPCM信号と5.1チャネルリニアPCM信号を伝送する場合におけるフレーム構成の一例を示す図である。 ユーザデータメッセージの一例を示す図である。 リニアPCM信号に関係する情報の一例を示す図である。 音声(言語)切り替え操作をテレビ受信機側から行う場合の動作を説明するための図である。 テレビ受信機にゲーム機を接続してゲームを行う場合の構成例を示すブロック図である。 テレビ受信機にマイクロホンを接続してカラオケを行う場合の構成例を示すブロック図である。 テレビ受信機にナビゲーションシステムを接続して使用する場合の構成例を示すブロック図である。
 以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明を以下の順序で行う。
 1.実施の形態
 2.変形例
 <1.実施の形態>
 [AVシステムの構成例]
 図1は、実施の形態としてのAVシステム10の構成例を示している。このAVシステム10は、テレビ受信機100とオーディオアンプ200を有している。テレビ受信機100には、テレビ放送の受信アンテナ121と、BD(Blu-ray Disc)プレーヤ122と、インターネット123が接続されている。また、オーディオアンプ200には、2チャネル用あるいはマルチチャネル用のスピーカシステム250が接続されている。なお、「Blu-ray」は登録商標である。
 テレビ受信機100およびオーディオアンプ200はHDMIケーブル300を介して接続されている。なお、「HDMI」は登録商標である。テレビ受信機100には、HDMI受信部(HDMI RX)102と、通信部を構成する高速バスインタフェース103とが接続されたHDMI端子101が設けられている。オーディオアンプ200には、HDMI送信部(HDMI TX)202と、通信部を構成する高速バスインタフェース203とが接続されたHDMI端子201が設けられている。HDMIケーブル300の一端はテレビ受信機100のHDMI端子101に接続され、その他端はオーディオアンプ200のHDMI端子201に接続されている。
 テレビ受信機100は、HDMI受信部102と、高速バスインタフェース103と、SPDIF送信回路104を有している。また、テレビ受信機100は、システムコントローラ105と、ユーザインタフェース106と、デジタル放送受信回路107と、コンテンツ再生回路108と、音声合成回路109と、イーサネットインタフェース110と、ダウンミックス部111を有している。なお、「イーサネット」および「Ethernet」は登録商標である。また、図示の例では、説明の簡単化のために、画像系の各部については適宜省略されている。
 システムコントローラ105は、テレビ受信機100の各部の動作を制御する。ユーザインタフェース106は、システムコントローラ105に接続されている。このユーザインタフェース106は、ユーザが種々の操作を行うための操作部を構成し、例えば、リモコン、タッチパネル、マウス、キーボード、カメラで指示入力を検出するジェスチャ入力部、音声により指示入力を行う音声入力部などからなっている。
 デジタル放送受信回路107は、受信アンテナ121から入力されたテレビ放送信号を処理して、放送コンテンツに係る圧縮オーディオ信号を出力する。イーサネットインタフェース110はインターネット123を介して他のサーバと通信をする。コンテンツ再生回路108は、デジタル放送受信回路107で得られる放送コンテンツの圧縮オーディオ信号、BDプレーヤ122から供給される再生コンテンツの圧縮オーディオ信号、あるいはイーサネットインタフェース110で得られたネットコンテンツの圧縮オーディオ信号を選択的に取り出して、SPDIF送信回路104に送る。
 音声合成回路109は、ユーザインタフェース106の操作に応じた操作音データをシステムコントローラ105から受けて、操作音のリニアPCM信号を生成して、SPDIF送信回路104に送る。このような操作音のリニアPCM信号はリアルタイム性が要求されるものである。また、音声合成回路109は、メールを受信したことをユーザに通知する通知音データをシステムコントローラ105から受けて、通知音のリニアPCM信号を生成して、SPDIF送信回路104に送る。
 また、音声合成回路109は、デジタル放送受信回路107から字幕データを受けて、字幕読み上げソフトにより字幕音声のリニアPCM信号を生成して、SPDIF送信回路104に送る。このような字幕音声のリニアPCM信号はリアルタイム性が要求されるものである。例えば、放送コンテンツが外国映画であって、圧縮オーディオ信号による音声の言語が外国語であって、字幕が日本語字幕である場合などである。なお、この字幕音声に関しては、放送コンテンツではなく、BDプレーヤ122からの再生コンテンツに係る字幕データが存在する場合も同様である。
 また、音声合成回路109は、イーサネットインタフェース110で翻訳サーバ(図1には図示せず)から受信された翻訳音声のテキストデータを受けて、翻訳音声のリニアPCM信号を生成して、SPDIF送信回路104に送る。
 ここで、イーサネットインタフェース110は、例えば、後述するオーディオアンプ200の圧縮オーディオデコード回路206で得られた第1の言語のセリフのPCM音声信号をオーディオアンプ200のHDMI送信部202、テレビ受信機100のHDMI受信部102を通じて受け、この第1の言語のセリフのPCM音声信号を翻訳サーバに送信することで、翻訳サーバから第2の言語のセリフの翻訳音声のテキストデータを受信する。
 ダウンミックス部111は、コンテンツ再生回路108で取り出されるマルチチャネル圧縮オーディオ信号に対してデコードおよびダウンミキシングの処理を行ってステレオ2チャネルリニアPCM信号を生成して、SPDIF送信回路104に送る。これにより、SPDIF送信回路104からマルチチャネル圧縮オーディオ信号とステレオ2チャネルリニアPCM信号を同時に送ることが可能となる。この場合、どちらを再生するかは受信側に任せることになる。図示の例においては、受信側の再生機器としてオーディオアンプ200のみを示しているが、複数の部屋にそれぞれ再生能力の異なる再生機器が存在する場合に有効なものとなる。
 HDMI受信部102は、HDMIに準拠した通信により、HDMIケーブル300を介してHDMI端子101に供給される画像や音声のデータを受信する。高速バスインタフェース103は、HDMIケーブル300を構成するリザーブラインおよびHPD(Hot Plug Detect)ラインを用いて構成される双方向通信路のインタフェースである。なお、HDMI受信部102と高速バスインタフェース103の詳細は後述する。
 SPDIF送信回路104は、IEC 60958規格のデジタルオーディオ伝送信号(以下、適宜、「SPDIF信号」という)を送信するための回路である。このSPDIF送信回路104はIEC 60958規格に準拠した送信回路である。この実施の形態において、SPDIF送信回路104は、圧縮オーディオ信号とリニアPCM信号を同時に送信する。この場合、サブフレーム単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号とされる。
 この際、このSPDIF送信回路104から送信されるSPDIF信号には、サブフレーム単位のオーディオ信号は圧縮オーディオ信号およびリニアPCM信号の混在信号であることを示す識別情報、リニアPCM信号の構成を示す構成情報、リニアPCM信号に関係する情報などが付加される。構成情報は、例えば、8ビットリニアPCM信号の2チャネル構成、8ビットリニアPCM信号のステレオ2チャネル構成、16ビットリニアPCM信号の1チャネル構成、などを示す。また、リニアPCM信号に関係する情報は、例えば、言語、スピーカ位置などの情報である。なお、SPDIF信号の詳細は後述する。
 オーディオアンプ200は、HDMI送信部202と、高速バスインタフェース203と、SPDIF受信回路204を有している。また、オーディオアンプ200は、システムコントローラ205と、圧縮オーディオデコード回路206と、オーディオミキサ207と、アンプ208と、表示部209と、イーサネットインタフェース210を有している。
 システムコントローラ205は、オーディオアンプ200の各部の動作を制御する。HDMI送信部202は、HDMIに準拠した通信により、ベースバンドの映像(画像)と音声のデータを、HDMI端子201からHDMIケーブル300に送出する。高速バスインタフェース203は、HDMIケーブル300を構成するリザーブラインおよびHPD(Hot Plug Detect)ラインを用いて構成される双方向通信路のインタフェースである。なお、HDMI送信部202と高速バスインタフェース203の詳細は後述する。SPDIF受信回路204は、SDPIF信号(IEC 60958規格のデジタルオーディオ信号)を受信するための回路である。このSPDIF受信回路204はIEC 60958規格に準拠した受信回路である。
 圧縮オーディオデコード回路206は、SPDIF受信回路204で得られた圧縮オーディオ信号に対してデコード処理を行って、2チャネルあるいはマルチチャネルのリニアPCM信号を得る。オーディオミキサ207は、リニアPCM信号の構成を示す構成情報に基づき、圧縮オーディオデコード回路206で得られたリニアPCM信号にSPDIF受信回路204で得られたリニアPCM信号をミックスして、2チャネルあるいはマルチチャネルの出力リニアPCM信号を得る。なお、ここで言うミックス処理には、片方だけを選択することも含まれる。また、ここで言うミックス処理には、複数チャネルのリニアPCM信号の送信がある場合に、いずれかを選択することも含まれる。
 ここで、オーディオミキサ207は、スピーカシステム250の構成に合ったチャネルのPCM音声信号が得られるように、レンダリング処理をする。また、SPDIF受信回路204で得られたリニアPCM信号に、例えばリニアPCM信号に関係する情報としてスピーカ位置情報が付加されている場合には、リニアPCM信号による音がそのスピーカ位置に定位するように、レンダリング処理をする。アンプ208は、オーディオミキサ207で得られた2チャネルあるいはマルチチャネルの出力リニアPCM信号を増幅して、スピーカシステム250に供給する。
 表示部209は、オーディオアンプ200の状態などを表示する。例えば、圧縮オーディオデコード回路206からのリニアPCM信号が第1の言語であって、SPDIF回路204で得られるリニアPCM信号が第2の言語であるとき、オーディオミキサ207ではいずれかが選択されることになるが、表示部208には、選択されたリニアPCM信号に係る言語名が表示される。ここで、圧縮オーディオデコード回路206からのリニアPCM信号の言語情報は圧縮オーディオ信号自体に埋め込まれているが、SPDIF回路204で得られるリニアPCM信号の言語情報は、このSPDIF受信回路204で受信されるオーディオ信号に付加されている。図2(a),(b),(c)は、表示部209における言語名の表示の一例を示している。
 「HDMI送信部/受信部の構成例」
 図3は、図1のAVシステム10における、テレビ受信機100のHDMI受信部102とオーディオアンプ200のHDMI送信部202の構成例を示している。
 HDMI送信部202は、ある垂直同期信号から次の垂直同期信号までの区間(以下、適宜、「ビデオフィールド」という)から、水平ブランキング期間および垂直ブランキング期間を除いた区間である有効画像区間(以下、適宜、「アクティブビデオ区間」という)において、ベースバンド(非圧縮)の一画面分の画像データの差動信号を、複数のチャネルで、HDMI受信部102に一方向に送信する。また、HDMI送信部202は、水平ブランキング期間および垂直ブランキング期間において、画像データに付随する音声データおよび制御パケット(Control Packet)、さらにその他の補助データ等に対応する差動信号を、複数のチャネルで、HDMI受信部102に一方向に送信する。
 HDMI送信部202は、ソース信号処理部71およびHDMIトランスミッタ72を有する。ソース信号処理部71には、ベースバンドの非圧縮の画像(Video)および音声(Audio)のデータが供給される。ソース信号処理部71は、供給される画像および音声のデータに必要な処理を施し、HDMIトランスミッタ72に供給する。また、ソース信号処理部71は、HDMIトランスミッタ72との間で、必要に応じて、制御用の情報やステータスを知らせる情報(Control/Status)等をやりとりする。
 HDMIトランスミッタ72は、ソース信号処理部71から供給される画像データを、対応する差動信号に変換し、複数のチャネルである3つのTMDSチャネル#0,#1,#2で、HDMIケーブル300を介して接続されているHDMI受信部102に、一方向に送信する。
 さらに、トランスミッタ72、ソース信号処理部71から供給される、非圧縮の画像データに付随する音声データや制御パケットその他の補助データ(auxiliary data)と、垂直同期信号(VSYNC)、水平同期信号(HSYNC)等の制御データ(control data)とを、対応する差動信号に変換し、3つのTMDSチャネル#0,#1,#2で、HDMIケーブル300を介して接続されているHDMI受信部102に、一方向に送信する。
 また、トランスミッタ72は、3つのTMDSチャネル#0,#1,#2で送信する画像データに同期したピクセルクロックを、TMDSクロックチャネルで、HDMIケーブル300を介して接続されているHDMI受信部102に送信する。
 HDMI受信部102は、アクティブビデオ区間において、複数チャネルで、HDMI送信部202から一方向に送信されてくる、画像データに対応する差動信号を受信すると共に、水平ブランキング期間および垂直ブランキング期間において、複数のチャネルで、HDMI送信部202から送信されてくる、補助データや制御データに対応する差動信号を受信する。
 HDMI受信部102は、HDMIレシーバ81およびシンク信号処理部82を有する。HDMIレシーバ81は、TMDSチャネル#0,#1,#2で、HDMIケーブル300を介して接続されているHDMI送信部202から一方向に送信されてくる、画像データに対応する差動信号と、補助データや制御データに対応する差動信号を、同じくHDMI送信部202からTMDSクロックチャネルで送信されてくるピクセルクロックに同期して受信する。さらに、HDMIレシーバ81は、差動信号を、対応する画像データ、補助データ、制御データに変換し、必要に応じて、シンク信号処理部82に供給する。
 シンク信号処理部82は、HDMIレシーバ81から供給されるデータに必要な処理を施して出力する。その他、シンク信号処理部82は、HDMIレシーバ81との間で、必要に応じて、制御用の情報やステータスを知らせる情報(Control/Status)等をやりとりする。
 HDMIの伝送チャネルには、HDMI送信部202からHDMI受信部102に対して、画像データ、補助データ、および制御データを、ピクセルクロックに同期して、一方向にシリアル伝送するための3つのTMDSチャネル#0,#1,#2と、ピクセルクロックを伝送する伝送チャネルとしてのTMDSクロックチャネルとの他に、DDC(Display Data Channel)83、さらには、CECライン84と呼ばれる伝送チャネルがある。
 DDC83は、HDMIケーブル300に含まれる図示しない2本のライン(信号線)からなり、ソース機器が、HDMIケーブル300を介して接続されたシンク機器から、E-EDID(Enhanced-Extended Display Identification)を読み出すために使用される。すなわち、シンク機器は、EDIDROM85を有している。ソース機器は、HDMIケーブル300を介して接続されているシンク機器から、EDIDROM85が記憶しているE-EDIDを、DDC83を介して読み出し、当該E-EDIDに基づき、シンク機器の設定、性能を認識する。
 CECライン84は、HDMIケーブル300に含まれる図示しない1本のラインからなり、ソース機器とシンク機器との間で、制御用のデータの双方向通信を行うために用いられる。
 また、HDMIケーブル300には、HPD(Hot Plug Detect)と呼ばれるピンに接続されるライン86が含まれている。ソース機器は、当該ライン86を利用して、シンク機器の接続を検出することができる。また、HDMIケーブル300には、ソース機器からシンク機器に電源を供給するために用いられるライン87が含まれている。さらに、HDMIケーブル300には、リザーブライン88が含まれている。
 図4は、TMDSチャネルにおいて、横×縦が1920ピクセル×1080ラインの画像データが伝送される場合の、各種の伝送データの区間を示している。HDMIの3つのTMDSチャネルで伝送データが伝送されるビデオフィールド(Video Field)には、伝送データの種類に応じて、ビデオデータ区間24(Video Data Period)、データアイランド区間25(Data Island Period)、およびコントロール区間26(Control Period)の3種類の区間が存在する。
 ここで、ビデオフィールド区間は、ある垂直同期信号の立ち上がりエッジ(Active Edge)から次の垂直同期信号の立ち上がりエッジまでの区間であり、水平帰線期間22(Horizontal Blanking)、垂直帰線期間23(Vertical Blanking)、並びに、ビデオフィールド区間から、水平帰線期間および垂直帰線期間を除いた区間である有効画素区間21(Active Video)に分けられる。
 ビデオデータ区間24は、有効画素区間21に割り当てられる。このビデオデータ区間24では、非圧縮の1画面分の画像データを構成する1920ピクセル(画素)×1080ライン分の有効画素(Active Pixel)のデータが伝送される。データアイランド区間25およびコントロール区間26は、水平帰線期間22および垂直帰線期間23に割り当てられる。このデータアイランド区間25およびコントロール区間26では、補助データ(Auxiliary Data)が伝送される。
 すなわち、データアイランド区間25は、水平帰線期間22と垂直帰線期間23の一部分に割り当てられている。このデータアイランド区間25では、補助データのうち、制御に関係しないデータである、例えば、音声データのパケット等が伝送される。コントロール区間26は、水平帰線期間22と垂直帰線期間23の他の部分に割り当てられている。このコントロール区間26では、補助データのうちの、制御に関係するデータである、例えば、垂直同期信号および水平同期信号、制御パケット等が伝送される。
 図5は、HDMIコネクタのピン配列を示している。このピン配列は、タイプA(type-A)の例である。TMDSチャネル#iの差動信号であるTMDS Data#i+とTMDS Data#i-が伝送される差動線である2本のラインは、TMDS Data#i+が割り当てられているピン(ピン番号が1,4,7のピン)と、TMDS Data#i-が割り当てられているピン(ピン番号が3,6,9のピン)に接続される。
 また、制御用のデータであるCEC信号が伝送されるCECライン84は、ピン番号が13であるピンに接続され、ピン番号が14のピンは空き(Reserved)ピンとなっている。また、E-EDID等のSDA(Serial Data)信号が伝送されるラインは、ピン番号が16であるピンに接続され、SDA信号の送受信時の同期に用いられるクロック信号であるSCL(Serial Clock)信号が伝送されるラインは、ピン番号が15であるピンに接続される。上述のDDC83は、SDA信号が伝送されるラインおよびSCL信号が伝送されるラインにより構成される。
 また、上述したようにソース機器がシンク機器の接続を検出するためのHPDライン86は、ピン番号が19であるピンに接続される。また、上述したように電源を供給するための電源ライン87は、ピン番号が18であるピンに接続される。
 「高速バスインタフェースの構成例」
 図6は、図1のAVシステム10におけるテレビ受信機100の高速バスインタフェース103の構成例を示している。イーサネットインタフェース110は、HDMIケーブル300を構成する複数のラインのうち、リザーブラインおよびHPDラインの一対のラインにより構成された伝送路を用いてLAN(Local Area Network)通信、つまりイーサネット信号の送受信を行う。SPDIF送信回路104は、上述の一対のラインにより構成された伝送路を用いて、SPDIF信号を送信する。
 テレビ受信機100は、LAN信号送信回路441、終端抵抗442、AC結合容量443,444、LAN信号受信回路445、減算回路446、加算回路449,450および増幅器451を有している。これらは、これらは高速バスインタフェース103を構成している。また、テレビ受信機100は、プラグ接続伝達回路128を構成する、チョークコイル461、抵抗462および抵抗463を有している。
 HDMI端子101の14ピン端子521と19ピン端子522との間には、AC結合容量443、終端抵抗442およびAC結合容量444の直列回路が接続される。また、電源線(+5.0V)と接地線との間には、抵抗462および抵抗463の直列回路が接続される。そして、この抵抗462と抵抗463の互いの接続点は、チョークコイル461を介して、19ピン端子522とAC結合容量444との接続点Q4に接続される。
 AC結合容量443と終端抵抗442の互いの接続点P3は、加算回路449の出力側に接続されると共に、LAN信号受信回路445の正入力側に接続される。また、AC結合容量444と終端抵抗442の互いの接続点P4は、加算回路450の出力側に接続されると共に、LAN信号受信回路445の負入力側に接続される。
 加算回路449の一方の入力側はLAN信号送信回路441の正出力側に接続され、この加算回路449の他方の入力側にはSPDIF送信回路104から出力されるSPDIF信号が増幅器451を介して供給される。また、加算回路450の一方の入力側はLAN信号送信回路441の負出力側に接続され、この加算回路450の他方の入力側にはSPDIF送信回路104から出力されるSPDIF信号が増幅器451を介して供給される。
 LAN信号送信回路441の入力側には、イーサネットインタフェース110から送信信号(送信データ)SG417が供給される。また、減算回路446の正側端子には、LAN信号受信回路445の出力信号SG418が供給され、この減算回路446の負側端子には、送信信号SG417が供給される。この減算回路446では、LAN信号受信回路445の出力信号SG418から送信信号SG417が減算され、受信信号(受信データ)SG419が得られる。この受信信号SG419は、リザーブラインおよびHPDラインを介してLAN信号(イーサネット信号)が差動信号として送信されてくる場合には、当該LAN信号となる。この受信信号SG419は、イーサネットインタフェース110に供給される。
 図7は、図1のAVシステム10におけるオーディオアンプ200の高速バスインタフェース203の構成例を示している。イーサネットインタフェース210は、HDMIケーブル610を構成する複数のラインのうち、リザーブラインおよびHPDラインの一対のラインにより構成された伝送路を用いてLAN(Local Area Network)通信、つまりイーサネット信号の送受信を行う。SPDIF受信回路204は、上述の一対のラインにより構成された伝送路を用いて、SPDIF信号を受信する。
 オーディオアンプ200は、LAN信号送信回路411、終端抵抗412、AC結合容量413,414、LAN信号受信回路415、減算回路416、加算回路419および増幅器420を有している。これらは、高速バスインタフェース203を構成している。また、オーディオアンプ200は、プラグ接続検出回路221を構成する、プルダウン抵抗431、抵抗432、容量433および比較器434を有している。ここで、抵抗432および容量433は、ローパスフィルタを構成している。
 HDMI端子201の14ピン端子511と19ピン端子512との間には、AC結合容量413、終端抵抗412およびAC結合容量414の直列回路が接続される。AC結合容量413と終端抵抗412の互いの接続点P1は、LAN信号送信回路411の正出力側に接続されると共に、LAN信号受信回路415の正入力側に接続される。
 AC結合容量414と終端抵抗412の互いの接続点P2は、LAN信号送信回路411の負出力側に接続されると共に、LAN信号受信回路415の負入力側に接続される。LAN信号送信回路411の入力側には、イーサネットインタフェース210から送信信号(送信データ)SG411が供給される。
 減算回路416の正側端子には、LAN信号受信回路415の出力信号SG412が供給され、この減算回路416の負側端子には、送信信号(送信データ)SG411が供給される。この減算回路416では、LAN信号受信回路415の出力信号SG412から送信信号SG411が減算され、受信信号SG413が得られる。この受信信号SG413は、リザーブラインおよびHPDラインを介して、LAN信号(イーサネット信号)が差動信号として送信されてくる場合には、当該LAN信号となる。この受信信号SG413は、イーサネットインタフェース210に供給される。
 AC結合容量414と19ピン端子512との接続点Q2は、プルダウン抵抗431を介して接地線に接続されると共に、抵抗432および容量433の直列回路を介して接地線に接続される。そして、抵抗432および容量433の互いの接続点に得られるローパスフィルタの出力信号は比較器434の一方の入力端子に供給される。この比較器434では、ローパスフィルタの出力信号が他方の入力端子に供給される基準電圧Vref2(+1.4V)と比較される。この比較器434の出力信号SG415は、オーディオアンプ200の図示しない制御部(CPU)に供給される。
 また、AC結合容量413と終端抵抗412の互いの接続点P1は、加算回路419の一方の入力端子に接続される。また、AC結合容量414と終端抵抗412の互いの接続点P2は、加算回路419の他方の入力端子に接続される。この加算回路419の出力信号は、増幅器420を介してSPDIF受信回路204に供給される。この加算回路419の出力信号は、リザーブラインおよびHPDラインを介して、SPDIF信号が同相信号として送信されてくる場合には、当該SPDIF信号となる。
 「SPDIF信号の詳細」
 最初に、IEC 60958規格の概要について説明する。図8は、IEC 60958規格におけるフレーム構成を示している。各フレームは2つのサブフレームから構成される。2チャネルステレオ音声の場合、1つ目のサブフレームに左チャネル信号が含まれ、2つ目のサブフレームに右チャネル信号が含まれる。
 サブフレームの先頭には後述するようにプリアンブルが設けられ、左チャネル信号にはプリアンブルとして「M」が、右チャネル信号にはプリアンブルとして「W」が付与される。ただし、192フレーム毎に先頭のプリアンブルにはブロックの開始を表す「B」が付与される。すなわち、1ブロックは192フレームにより構成される。ブロックは、後述するチャネルステータスを構成する単位である。
 図9は、IEC 60958規格におけるサブフレーム構成を示している。サブフレームは、第0乃至第31の計32のタイムスロットから構成される。第0乃至第3タイムスロットは、プリアンブル(Sync preamble)を示す。このプリアンブルは、上述のように左右チャネルの区別やブロックの開始位置を表すために、「M」、「W」または「B」の何れかを示す。
 第4乃至第27タイムスロットはメインデータフィールドであり、24ビットコードレンジが採用される場合には全体がオーディオデータを表す。また、20ビットコードレンジが採用される場合には第8乃至第27タイムスロットがオーディオデータ(Audio sample word)を表す。後者の場合、第4乃至第7タイムスロットは追加情報(Auxiliary sample bits)として利用することができる。図示の例は、後者の場合を示している。
 第28タイムスロットは、メインデータフィールドの有効フラグ(Validity flag)である。第29タイムスロットは、ユーザデータ(User data)の1ビット分を表す。各フレームにまたがってこの第29タイムスロットを累積することによって一連のユーザデータを構成することができる。このユーザデータのメッセージは8ビットの情報ユニット(IU:Information Unit)を単位として構成され、1つのメッセージには3乃至129個の情報ユニットが含まれる。
 情報ユニット間には0乃至8ビットの「0」が存在し得る。情報ユニットの先頭は開始ビット「1」により識別される。メッセージ内の最初の7個の情報ユニットは予約されており、8個目以降の情報ユニットにユーザは任意の情報を設定することができる。メッセージ間は8ビット以上の「0」により分割される。
 第30タイムスロットは、チャネルステータス(Channel status)の1ビット分を表す。各フレームにまたがってブロック毎に第30タイムスロットを累積することによって一連のチャネルステータスを構成することができる。なお、ブロックの先頭位置は、上述のように、「B」のプリアンブル(第0乃至第3タイムスロット)により示される。
 第31タイムスロットは、パリティビット(Parity bit)である。第4乃至第31タイムスロットに含まれる「0」および「1」の数が偶数になるように、このパリティビットが付与される。
 図10は、IEC 60958規格における信号変調方式を示している。サブフレームのうちプリアンブルを除く第4乃至第31タイムスロットがバイフェーズマーク変調される。このバイフェーズマーク変調の際には、元の信号(ソースコーディング)の2倍速のクロックが用いられる。元の信号のクロックサイクルを前半と後半に分けると、前半のクロックサイクルのエッジで、バイフェーズマーク変調の出力は必ず反転する。また、後半クロックサイクルのエッジにおいて、元の信号が「1」を示しているときには反転し、元の信号が「0」を示しているときには反転しない。これにより、バイフェーズマーク変調された信号から元の信号におけるクロック成分を抽出できることになる。
 図11は、IEC 60958規格におけるプリアンブルのチャネルコーディングを示している。上述のように、サブフレームのうち第4乃至第31タイムスロットはバイフェーズマーク変調される。一方、第0乃至第3タイムスロットのプリアンブルは通常のバイフェーズマーク変調ではなく、2倍速のクロックに同期したビットパターンとして扱われる。すなわち、第0乃至第3タイムスロットの各タイムスロットに2ビットずつ割り当てることにより、同図のような8ビットパターンを得る。
 直前の状態が「0」であれば、プリアンブル「B」には「11101000」が、「M」には「11100010」が、「W」には「1100100」がそれぞれ割り当てられる。一方、直前の状態が「1」であれば、プリアンブル「B」には「00010111」が、「M」には「00011101」が、「W」には「00011011」がそれぞれ割り当てられる。
 IEC 60958規格のプロトコル上で圧縮オーディオ信号を伝送するフォーマットが、IEC 61937-1規格で規定されている。図12は、IEC 61937-1インタフェース・フォーマットを示している。図12(a)は、フレーム構成を示している。192フレームにより1ブロックが構成され、そのブロックが連続した構成となっている。図12(b)は、各フレームが2つのサブフレームからなっていることを示している。
 サブフレームの先頭にはプリアンブルが設けられ、ブロックの先頭のサブフレームのプリアンブルには、ブロックの開始を表す「B」が付与される。そして、それに続く各サブフレームの先頭のプリアンブルには、「W」と「M」が交互に付与される。
 図12(c)は、サブフレーム構成を示している。所定チャネル数の圧縮オーディオ信号を含むSPDIF信号の場合、各サブフレームの第12乃至第27タイムスロットに、圧縮オーディオ信号のビットストリームが分割されて順次挿入される。つまり、各サブフレームの第4乃至第27タイムスロットの24ビットのオーディオデータ領域のうち、上位の16ビットが圧縮オーディオ信号の伝送に使用されている。
 この実施の形態においては、圧縮オーディオ信号とリニアPCM信号が同時に送信される。この場合、サブフレーム単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号とされる。図13は、圧縮オーディオ信号とリニアPCM信号を同時に送信する場合におけるインタフェース・フォーマットを示している。図13(a),(b)は、それぞれ、図12(a),(b)と同じである。図13(c)は、サブフレーム構成を示している。各サブフレームの第4乃至第27タイムスロットの24ビットのオーディオデータ領域のうち、上位の16ビットが圧縮オーディオ信号の伝送に使用され、下位8ビットがリニアPCM信号の伝送に使用される。
 上述したように、このSPDIF送信回路104から送信されるオーディオ信号には、サブフレーム単位のオーディオ信号は圧縮オーディオ信号およびリニアPCM信号の混在信号であることを示す識別情報、リニアPCM信号の構成を示す構成情報が付加される。この実施の形態において、これらの情報は、チャネルステータスビットを用いて付加される。
 図14は、圧縮オーディオ信号とリニアPCM信号を同時に送信する場合におけるチャネルステータスのフォーマットを概略的に示している。チャネルステータスの全体は第0乃至第23バイトからなる。第0ビットのa=“0”は、このチャネルステータスが民生用であることを示している。また、第1ビットのb=“1”は、IEC 61937-1インタフェース・フォーマットと同様に、圧縮デジタルオーディオ信号の伝送における使用であることを示している。
 なお、第3ビットから第5ビットの3ビットは、従来のIEC 61937-1インタフェース・フォーマットにおいては“000”となっており、これと同じであっても充分に動作する。しかし、従来のIEC 61937-1インタフェース・フォーマットと識別するために、別な値とされてもよい。図示の例においては、“100”とされている。
 第49ビットから第52ビットの4ビットは、従来のIEC 61937-1インタフェース・フォーマットにおいては“0000”となっているが、これとは別の値が設定され、サブフレーム単位のオーディオ信号は圧縮オーディオ信号およびリニアPCM信号の混在信号であることを示す識別情報とされる。図示の例においては、“1111”とされている。また、この第49ビットから第52ビットの4ビットが混在信号であることを示すとき、続く第53ビットから第60ビットの8ビットが有効となる。
 この8ビットは、リニアPCM信号の構成を示す構成情報である。図15は、第53ビットから第60ビットの8ビットの「Multichannel configuration value (MCV)」の値とリニアPCM信号の構成との対応関係の一例を示している。例えば、“10000000”は、「8-bit LPCM 2 channel」、つまり8ビット2チャネルの構成であることを示す。また、例えば、“01000000”は、「8-bit LPCM Stereo 2 channel」、つまり8ビットステレオ2チャネルの構成であることを示す。
 また、例えば、“00100000”は、「16-bit LPCM 1 channel」、つまり16ビット1チャネルの構成であることを示す。また、例えば、“10100000”は、「16-bit LPCM 2 channel」、つまり16ビット2チャネルの構成であることを示す。また、例えば、“01100000”は、「16-bit LPCM Stereo 2 channel」、つまり16ビットステレオ2チャネルの構成であることを示す。また、例えば、“11100000”は、「16-bit LPCM 4 channel」、つまり16ビット4チャネルの構成であることを示す。
 図16(a)は、8ビット2チャネルの場合におけるフレーム構成の一例を示している。この場合、Aチャネルの下位8ビットにチャネル1の8ビットリニアPCM信号がアサインされ、Bチャネルの下位8ビットにチャネル2の8ビットリニアPCM信号がアサインされる。
 図16(b)は、16ビット1チャネルの場合におけるフレーム構成の一例を示している。この場合、Aチャネルの下位8ビットにチャネル1の上位8ビットリニアPCM信号がアサインされ、Bチャネルの下位8ビットにチャネル1の下位8ビットリニアPCM信号がアサインされる。
 図17(a)は、16ビット2チャネルの場合におけるフレーム構成の一例を示している。転送レートが2倍の場合、例えば、オリジナルサンプリング周波数が48kHzで転送レートが96kHzの場合に、リニアPCM信号のサンプリング周波数を96kHzにせず、48kHzのままとする。
 この場合、ブロックの始めからカウントして、奇数Aチャネルの下位8ビットにチャネル1の上位8ビットリニアPCM信号がアサインされ、奇数Bチャネルの下位8ビットにチャネル1の下位8ビットリニアPCM信号がアサインされ、偶数Aチャネルの下位8ビットにチャネル2の上位8ビットリニアPCM信号がアサインされ、偶数Bチャネルの下位8ビットにチャネル2の下位8ビットリニアPCM信号がアサインされる。
 図17(b)は、16ビットステレオ2チャネルの場合におけるフレーム構成の一例を示している。転送レートが2倍の場合、例えば、オリジナルサンプリング周波数が48kHzで転送レートが96kHzの場合に、リニアPCM信号のサンプリング周波数を96kHzにせず、48kHzのままとする。
 この場合、ブロックの始めからカウントして、奇数Aチャネルの下位8ビットにLチャネルの上位8ビットリニアPCM信号がアサインされ、奇数Bチャネルの下位8ビットにLチャネルの下位8ビットリニアPCM信号がアサインされ、偶数Aチャネルの下位8ビットにRチャネルの上位8ビットリニアPCM信号がアサインされ、偶数Bチャネルの下位8ビットにRチャネルの下位8ビットリニアPCM信号がアサインされる。
 また、図示は、省略するが、16ビット4チャネルの場合におけるフレーム構成では、転送レートを4倍として、4チャネルのリニアPCM信号がアサインされる。また、詳細説明は省略するが、同様にして、チャネル数を増やしたり、ビット数を32ビットにしたりすることもでき、さらに、5.1チャネルなどのリニアPCM信号を伝送することもできる。
 図18は、ステレオ2チャネルリニアPCM信号と5.1チャネルリニアPCM信号を伝送する場合におけるフレーム構成の一例を示している。この場合、ブロックの始めからカウントして、最初のAチャネル、Bチャネルの1つのペアにステレオ2チャネルリニアPCM信号がアサインされ、続くAチャネル、Bチャネルの3つのペアに5.1チャネルリニアPCM信号がアサインされ、以下、その繰り返しとされる。
 上述したように、SPDIF送信回路104から送信されるオーディオ信号には、リニアPCM信号に関係する種々の情報が付加される。この実施の形態において、この情報は、ユーザビットを用いて付加される。
 図19は、ユーザデータメッセージの一例を示している。このユーザデータメッセージは、10個の情報ユニット(IU)で構成されている。第2のIUの第4ビットから第0ビットと、第3のIUの第5ビットから第2ビットに、「IEC 61937-1 ID」の情報、つまり情報の種類を示す識別情報が配置されている。そして、第3のIUの第1ビットから第0ビット、第4~第8のIUの第5ビットから第0ビットに、4バイト分の情報フィールドが設けられている。なお、情報フィールドは4バイト分に限定されるものではない。
 図20は、情報の一例を示している。例えば、「IEC 61937-1 ID」が“10000000”である場合、リニアPCM信号による音声の言語情報であることを示す。この場合、4バイト分の情報フィールドには言語名称の略号を示すアスキー文字情報が配置される。また、例えば、「IEC 61937-1 ID」が“01000000”である場合、リニアPCM信号による音声の再生スピーカ位置の情報であることを示す。この場合、4バイト分の情報フィールドには、チャネル番号、角度、高さ、距離を示す情報が配置される。なお、ここで示す情報はあくまでも一例であって、これに限定されるものでない。図19に示すようなユーザデータメッセージを用いることで、リニアPCM信号に関係する種々の情報を受信側に送ることができる。
 上述したように、図1に示すAVシステム10においては、テレビ受信機100からオーディオプレーヤ200に、サブフレーム単位で、圧縮オーディオ信号およびリニアPCM信号の混在信号を送信し得るものである。そのため、テレビ受信機100では圧縮オーディオ信号とリニアPCM信号の同時伝送を良好に実現でき、また、オーディオプレーヤ200では圧縮オーディオ信号とリニアPCM信号の同時再生を良好に実現できる。
 また、図1に示すAVシステム10においては、例えば、テレビ受信機100で放送コンテンツの画像を見ながらオーディオアンプ200で5.1チャネルサラウンドを楽しんでいる際に、以下のことが可能となる。(1)メールを受信したことを知らせる通知音の再生が可能となる。(2)ユーザインタフェース106の操作音の再生が可能となる。(3)字幕データから変換した音声の再生が可能となる。(4)オーディオアンプ200における再生音声の言語切り替えが可能となり、言語名をオーディオアンプ200の表示部209に表示することが可能となる。(5)リニアPCM信号による音の再生が可能となり、その定位をスピーカ位置情報に基づいて変更することが可能となる。
 <2.変形例>
 なお、上述実施の形態においては、圧縮オーディオ信号による音声が第1の言語でリニアPCM信号による音声が第2の言語である場合、オーディオアンプ200におけるユーザ操作で言語切り替えを行い得るものである。しかし、この切り替え操作を、テレビ受信機100側から行い得るようにすることも考えられる。
 図21は、その場合の動作を説明するための図であり、この動作に係る経路を破線で示している。この図21において、図1と対応する部分には同一符号を付して示している。まず、ユーザがテレビ受信機100のユーザインタフェース106、例えばリモコンで音声切り替え操作をする。これに応じて、テレビ受信機100のシステムコントローラ105は、HDMIケーブル300のCECラインを介してオーディオアンプ200のシステムコントローラ205に音声切り替えコマンドを送る。
 オーディオアンプ200のシステムコントローラ205は、音声切り替えコマンドに基づいて、オーディオミキサ207を制御して音声切り替えをすると共に、HDMIケーブル300のCECラインを介してテレビ受信機100のシステムコントローラ105に音声切り替えの完了を報告する。テレビ受信機100のシステムコントローラ105は、この報告に基づいて、ディスプレイ112に切り替わった側の言語名をディスプレイ112に表示する。
 図22は、テレビ受信機100にゲーム機124を接続してゲームを行う場合の構成例を示している。この図22において、図1と対応する部分には同一符号を付して示している。この場合、ゲーム機124からはサウンドトラックの圧縮オーディオ信号が出力されると共に、ゲームコントローラのリアルタイム応答音のリニアPCM信号が出力される。これらのマルチチャネル圧縮オーディオ信号およびリニアPCM信号はSPDIF送信回路104に供給され、オーディオアンプ200に同時に送信される。オーディオアンプ200では、サウンドトラックとリアルタイム応答音が同時に再生される。
 なお、ゲーム機124から、自由に定位が変化する音源のリニアPCM信号が出力され、このリニアPCM信号がSPDIF送信回路104に供給され、このリニアPCM信号が圧縮オーディオ信号と同時にオーディオアンプ200に送信される場合も考えられる。この場合、リニアPCM信号に関係する情報としてスピーカ位置情報が付加されることで、オーディオアンプ200のオーディオミキサ207でリアルタイムに定位の処理がなされる。
 図23は、テレビ受信機100にマイクロホン125を接続してカラオケを行う場合の構成例を示している。この図23において、図1と対応する部分には同一符号を付して示している。この場合、カラオケ圧縮オーディオ信号は、例えば、BDプレーヤ122から得られる。また、マイクロホン125からはユーザの歌唱に応じたリニアPCM信号が得られる。カラオケ圧縮オーディオ信号およびマイクロホン125からのリニアPCM信号はSPDIF送信回路104に供給され、オーディオアンプ200に同時に送信される。オーディオアンプ200では、バック演奏音と歌唱音声が同時に再生される。
 この場合、バック演奏音はカラオケ圧縮オーディオ信号に係るものであるのに対して、歌唱音声はリニアPCM信号に係るものでバック演奏音より高音質で提供されるので、歌唱音声が上手に聞こえるというメリットがある。また、歌唱音声はリニアPCM信号で送信されるので、レイテンシが小さいため、歌唱しやすいものとなる。
 図24は、車載で使用する場合を想定したもので、テレビ受信機100にナビゲーションシステム126を接続して使用する場合の構成例を示している。この図24において、図1と対応する部分には同一符号を付して示している。この場合、ナビゲーションシステム126からの音声ガイドのリニアPCM信号はSPDIF送信回路104に供給され、オーディオアンプ200に圧縮オーディオ信号と同時に送信される。オーディオアンプ200では、放送コンテンツや再生コンテンツの再生音にナビゲーションの音声がリアルタイムで重畳されて再生される。
 なお、詳細説明は省略するが、本技術は、さらに、VR/ARアプリケーションで、背景音とリアルタイムに変化する合成音を分けて同時伝送する場合にも適用できる。この場合、背景音は圧縮オーディオ信号として伝送され、合成音はリニアPCM信号で伝送される。また、本技術は、ヘルスケアで、マッサージチェアでマルチチャンネル音楽を再生しながら、各所のモータ制御信号をリニアPCMチャンネルで送る場合にも適用できる。圧縮では無理だがリニアPCMではDCレベルを表現できる。
 なお、上述実施の形態においては、IEC 60958伝送路としてHDMI ARCを利用する例を示したが、IEC 60958伝送路として、同軸ケーブルや光ケーブルを利用する例も考えられる。また、IEC 60958伝送路として、HDMI伝送路を利用する例も考えられる。この場合、SPDIF信号(IEC 60958信号)はオーディオサンプルパケット(audio sample packet)にマッピングされ、ビデオ伝送と同じ順方向に伝送される。同様に、IEC 60958伝送路として、IEC 61883-6伝送路、MHL伝送路、ディスプレイポート伝送路(DP伝送路)などを利用する例も考えられる。これらの場合も、SPDIF信号(IEC 60958信号)はオーディオサンプルパケット(audio sample packet)にマッピングされ、ビデオ伝送と同じ順方向に伝送される。
 また、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、技術は、以下のような構成もとることができる。
 (1)所定単位のオーディオ信号を順次所定伝送路を介して受信側に送信する送信部を備え、
 上記所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である
 送信装置。
 (2)上記所定単位のオーディオ信号は、サブフレーム単位のオーディオ信号である
 前記(1)に記載の送信装置。
 (3)上記サブフレーム単位のオーディオ信号において、上記圧縮オーディオ信号は上位ビット側に配置され、上記リニアPCM信号は下位ビット側に配置される
 前記(2)に記載の送信装置。
 (4)上記リニアPCM信号は、リアルタイム性を要求するオーディオ信号である
 前記(1)から(3)のいずれかに記載の送信装置。
 (5)上記送信部で送信されるオーディオ信号に、上記所定単位のオーディオ信号は圧縮オーディオ信号およびリニアPCM信号の混在信号であることを示す識別情報を付加する情報付加部をさらに備える
 前記(1)から(4)のいずれかに記載の送信装置。
 (6)上記情報付加部は、所定数の上記所定単位毎に構成される各ブロックのチャネルステータスの所定ビット領域を用いて上記識別情報を付加する
 前記(5)に記載の送信装置。
 (7)上記送信部で送信されるオーディオ信号に、上記リニアPCM信号の構成を示す構成情報を付加する情報付加部をさらに備える
 前記(1)から(6)のいずれかに記載の送信装置。
 (8)上記情報付加部は、所定数の上記所定単位毎に構成される各ブロックのチャネルステータスの所定ビット領域を用いて上記構成情報を付加する
 前記(7)に記載の送信装置。
 (9)上記送信部で送信されるオーディオ信号に、上記リニアPCM信号に関係する情報を付加する情報付加部をさらに備える
 前記(1)から(8)のいずれかに記載の送信装置。
 (10)上記情報付加部は、連続する所定数の上記所定単位のユーザデータビットを用いて上記リニアPCM信号に関係する情報を付加する
 前記(9)に記載の送信装置。
 (11)上記圧縮オーディオ信号を取得する第1の取得部と、上記リニアPCM信号を取得する第2の取得部をさらに備える
 前記(1)から(10)のいずれかに記載の送信装置。
 (12)上記所定伝送路は、同軸ケーブル、光ケーブル、イーサネット(IEC 61883-6)ケーブル、HDMIケーブル、MHLケーブルまたはディスプレイポートケーブルである
 前記(1)から(11)のいずれかに記載の送信装置。
 (13)所定単位のオーディオ信号を順次所定伝送路を介して受信側に送信する手順を有し、
 上記サブフレーム単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である
 送信方法。
 (14)所定単位のオーディオ信号を送信側から順次所定伝送路を介して受信する受信部を備え、
 上記所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である
 受信装置。
 (15)上記圧縮オーディオ信号およびリニアPCM信号を処理して出力リニアPCM信号を得る処理部をさらに備える
 前記(14)に記載の受信装置。
 (16)上記受信部で受信されるオーディオ信号に、上記リニアPCM信号の構成を示す構成情報が付加されており、
 上記処理部は、上記構成情報に基づいて、上記リニアPCM信号を処理する
 前記(15)に記載の受信装置。
 (17)上記受信部で受信されるオーディオ信号に、上記リニアPCM信号に関係する情報が付加されており、
 上記処理部は、上記リニアPCM信号に関係する情報に基づいて、上記リニアPCM信号を処理する
 前記(15)または(16)に記載の受信装置。
 (18)所定単位のオーディオ信号を送信側から順次所定伝送路を介して受信する手順を有し、
 上記所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である
 受信方法。
 10・・・・AVシステム
 100・・・テレビ受信機
 101・・・HDMI端子
 102・・・HDMI受信部
 103・・・高速バスインタフェース
 104・・・SPDIF送信回路
 105・・・システムコントローラ
 106・・・ユーザインタフェース
 107・・・デジタル放送受信回路
 108・・・コンテンツ再生回路
 109・・・音声合成回路
 110・・・イーサネットインタフェース
 111・・・ダウンミックス部
 112・・・ディスプレイ
 121・・・受信アンテナ
 122・・・BDプレーヤ
 123・・・インターネット
 124・・・ゲーム機
 125・・・マイクロホン
 126・・・ナビゲーションシステム
 200・・・オーディオアンプ
 201・・・HDMI端子
 202・・・HDMI送信部
 203・・・高速バスインタフェース
 204・・・SPDIF受信回路
 205・・・システムコントローラ
 206・・・圧縮オーディオデコード回路
 207・・・オーディオミキサ
 208・・・アンプ
 209・・・表示部
 210・・・イーサネットインタフェース
 250・・・スピーカシステム
 300・・・HDMIケーブル

Claims (18)

  1.  所定単位のオーディオ信号を順次所定伝送路を介して受信側に送信する送信部を備え、
     上記所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である
     送信装置。
  2.  上記所定単位のオーディオ信号は、サブフレーム単位のオーディオ信号である
     請求項1に記載の送信装置。
  3.  上記サブフレーム単位のオーディオ信号において、上記圧縮オーディオ信号は上位ビット側に配置され、上記リニアPCM信号は下位ビット側に配置される
     請求項2に記載の送信装置。
  4.  上記リニアPCM信号は、リアルタイム性を要求するオーディオ信号である
     請求項1に記載の送信装置。
  5.  上記送信部で送信されるオーディオ信号に、上記所定単位のオーディオ信号は圧縮オーディオ信号およびリニアPCM信号の混在信号であることを示す識別情報を付加する情報付加部をさらに備える
     請求項1に記載の送信装置。
  6.  上記情報付加部は、所定数の上記所定単位毎に構成される各ブロックのチャネルステータスの所定ビット領域を用いて上記識別情報を付加する
     請求項5に記載の送信装置。
  7.  上記送信部で送信されるオーディオ信号に、上記リニアPCM信号の構成を示す構成情報を付加する情報付加部をさらに備える
     請求項1に記載の送信装置。
  8.  上記情報付加部は、所定数の上記所定単位毎に構成される各ブロックのチャネルステータスの所定ビット領域を用いて上記構成情報を付加する
     請求項7に記載の送信装置。
  9.  上記送信部で送信されるオーディオ信号に、上記リニアPCM信号に関係する情報を付加する情報付加部をさらに備える
     請求項1に記載の送信装置。
  10.  上記情報付加部は、連続する所定数の上記所定単位のユーザデータビットを用いて上記リニアPCM信号に関係する情報を付加する
     請求項9に記載の送信装置。
  11.  上記圧縮オーディオ信号を取得する第1の取得部と、上記リニアPCM信号を取得する第2の取得部をさらに備える
     請求項1に記載の送信装置。
  12.  上記所定伝送路は、同軸ケーブル、光ケーブル、イーサネット(IEC 61883-6)ケーブル、HDMIケーブル、MHLケーブルまたはディスプレイポートケーブルである
     請求項1に記載の送信装置。
  13.  所定単位のオーディオ信号を順次所定伝送路を介して受信側に送信する手順を有し、
     上記サブフレーム単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である
     送信方法。
  14.  所定単位のオーディオ信号を送信側から順次所定伝送路を介して受信する受信部を備え、
     上記所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である
     受信装置。
  15.  上記圧縮オーディオ信号およびリニアPCM信号を処理して出力リニアPCM信号を得る処理部をさらに備える
     請求項14に記載の受信装置。
  16.  上記受信部で受信されるオーディオ信号に、上記リニアPCM信号の構成を示す構成情報が付加されており、
     上記処理部は、上記構成情報に基づいて、上記リニアPCM信号を処理する
     請求項15に記載の受信装置。
  17.  上記受信部で受信されるオーディオ信号に、上記リニアPCM信号に関係する情報が付加されており、
     上記処理部は、上記リニアPCM信号に関係する情報に基づいて、上記リニアPCM信号を処理する
     請求項15に記載の受信装置。
  18.  所定単位のオーディオ信号を送信側から順次所定伝送路を介して受信する手順を有し、
     上記所定単位のオーディオ信号は、圧縮オーディオ信号およびリニアPCM信号の混在信号である
     受信方法。
PCT/JP2019/019407 2018-05-23 2019-05-15 送信装置、送信方法、受信装置および受信方法 WO2019225448A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/049,177 US11942103B2 (en) 2018-05-23 2019-05-15 Transmission apparatus, transmission method, reception apparatus, and reception method for transmitting and receiving an audio signal including a mixed signal simultaneously transmitted by mixing a compressed audio signal and a linear pulse code modulation signal
KR1020207032569A KR20210011916A (ko) 2018-05-23 2019-05-15 송신 장치, 송신 방법, 수신 장치 및 수신 방법
EP19807446.0A EP3799042A4 (en) 2018-05-23 2019-05-15 TRANSMISSION DEVICE, TRANSMISSION PROCESS, RECEPTION DEVICE AND RECEPTION PROCESS
CN201980032554.0A CN112136176B (zh) 2018-05-23 2019-05-15 发送设备、发送方法、接收设备和接收方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018098382 2018-05-23
JP2018-098382 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019225448A1 true WO2019225448A1 (ja) 2019-11-28

Family

ID=68616107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019407 WO2019225448A1 (ja) 2018-05-23 2019-05-15 送信装置、送信方法、受信装置および受信方法

Country Status (5)

Country Link
US (1) US11942103B2 (ja)
EP (1) EP3799042A4 (ja)
KR (1) KR20210011916A (ja)
CN (1) CN112136176B (ja)
WO (1) WO2019225448A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114697817B (zh) * 2020-12-30 2023-06-02 华为技术有限公司 音频数据处理系统和电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130606A (ja) 2007-11-22 2009-06-11 Sony Corp インターフェース回路
WO2017010358A1 (ja) * 2015-07-10 2017-01-19 ソニー株式会社 送信装置、送信方法、受信装置および受信方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622365B2 (ja) * 1996-09-26 2005-02-23 ヤマハ株式会社 音声符号化伝送方式
JP3403636B2 (ja) * 1998-04-06 2003-05-06 パイオニア株式会社 情報記録媒体及びその再生装置
DE69917489T2 (de) * 1998-11-09 2005-06-02 Broadcom Corp., Irvine Anzeigesystem zur mischung von graphischen daten und videodaten
US6757659B1 (en) * 1998-11-16 2004-06-29 Victor Company Of Japan, Ltd. Audio signal processing apparatus
US7295883B2 (en) * 1999-11-23 2007-11-13 Dell Products L.P. Method and apparatus for providing audio signals
WO2003032296A1 (fr) * 2001-10-03 2003-04-17 Sony Corporation Appareil et procede de codage, appareil et procede de decodage et appareil et procede d'enregistrement de support d'enregistrement
JP4687215B2 (ja) * 2005-04-18 2011-05-25 ソニー株式会社 画像信号処理装置、カメラシステム、および画像信号処理方法
JP4687216B2 (ja) * 2005-04-18 2011-05-25 ソニー株式会社 画像信号処理装置、カメラシステム、および画像信号処理方法
JP2007288362A (ja) * 2006-04-13 2007-11-01 Sanyo Electric Co Ltd 音量変換装置
JP2009033649A (ja) * 2007-07-30 2009-02-12 Sony Corp コンテンツデータ送受信システム、コンテンツデータ送信装置、コンテンツデータ受信装置、コンテンツデータ送信方法、コンテンツデータ受信処理方法
CN103177725B (zh) * 2008-10-06 2017-01-18 爱立信电话股份有限公司 用于输送对齐的多通道音频的方法和设备
JP5641849B2 (ja) * 2010-09-30 2014-12-17 キヤノン株式会社 送信装置
US10986070B2 (en) * 2014-09-29 2021-04-20 Sony Corporation Transmission apparatus, transmission method, reception apparatus, and reception method
KR20170134367A (ko) * 2015-04-07 2017-12-06 소니 주식회사 송신 장치, 송신 방법, 수신 장치 및 수신 방법
CN107925794B (zh) * 2015-09-07 2021-02-09 索尼公司 发送设备、发送方法、接收设备和接收方法
US20210242879A1 (en) * 2018-05-23 2021-08-05 Sony Corporation Transmission apparatus, transmission method, reception apparatus, and reception method
US20220059109A1 (en) * 2019-02-27 2022-02-24 Sony Group Corporation Transmission apparatus, transmission method, reception apparatus, and reception method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130606A (ja) 2007-11-22 2009-06-11 Sony Corp インターフェース回路
WO2017010358A1 (ja) * 2015-07-10 2017-01-19 ソニー株式会社 送信装置、送信方法、受信装置および受信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3799042A4
YOSHIO, JUNICHI: "Standardization Education Program: Individual Technical Fields-- Electrical/Electronic", INTERNATIONAL STANDARDIZATION OF DIGITAL AUDIO INTERFACE STANDARDS, February 2009 (2009-02-01), pages 1 - 42, XP055657693, Retrieved from the Internet <URL:https:www.jsa.or.jp/datas/media/10000/md-2462.pdf> [retrieved on 20190610] *

Also Published As

Publication number Publication date
CN112136176A (zh) 2020-12-25
CN112136176B (zh) 2024-06-18
US11942103B2 (en) 2024-03-26
EP3799042A1 (en) 2021-03-31
EP3799042A4 (en) 2021-07-14
KR20210011916A (ko) 2021-02-02
US20210249026A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
JP6863282B2 (ja) 受信装置および受信方法
JP4785989B2 (ja) 映像音声送信装置および映像音声受信装置
US12003886B2 (en) Transmission device, transmission method, reception device, and reception method
JP6809470B2 (ja) 送信装置、送信方法、受信装置および受信方法
WO2020045044A1 (ja) 送信装置、送信方法、受信装置および受信方法
JP7452526B2 (ja) 送信装置、送信方法、受信装置および受信方法
JP7559772B2 (ja) 送信装置、送信方法、受信装置および受信方法
WO2019225448A1 (ja) 送信装置、送信方法、受信装置および受信方法
WO2019225449A1 (ja) 送信装置、送信方法、受信装置および受信方法
US12014709B2 (en) Transmission device, transmission method, reception device and reception method
WO2021039189A1 (ja) 送信装置、送信方法、受信装置および受信方法
JP2010200324A (ja) インターフェース回路
JP6669071B2 (ja) 送信装置、送信方法、受信装置および受信方法
WO2018061810A1 (ja) 送信装置、送信方法、受信装置および受信方法
WO2023189162A1 (ja) 送信装置、受信装置および送受信システム
WO2018061809A1 (ja) 送信装置、送信方法、受信装置および受信方法
JP4596085B2 (ja) インターフェース回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019807446

Country of ref document: EP

Effective date: 20201223

NENP Non-entry into the national phase

Ref country code: JP