[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019221436A1 - Method and device for collecting and reporting cell measurement information in next generation mobile communication system - Google Patents

Method and device for collecting and reporting cell measurement information in next generation mobile communication system Download PDF

Info

Publication number
WO2019221436A1
WO2019221436A1 PCT/KR2019/005426 KR2019005426W WO2019221436A1 WO 2019221436 A1 WO2019221436 A1 WO 2019221436A1 KR 2019005426 W KR2019005426 W KR 2019005426W WO 2019221436 A1 WO2019221436 A1 WO 2019221436A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
message
rrc
base station
information
Prior art date
Application number
PCT/KR2019/005426
Other languages
French (fr)
Korean (ko)
Inventor
김상범
정상엽
김성훈
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190016367A external-priority patent/KR20190131411A/en
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP19802767.4A priority Critical patent/EP3742791A4/en
Priority to US16/979,376 priority patent/US11477681B2/en
Priority to CN201980032995.0A priority patent/CN112119657B/en
Publication of WO2019221436A1 publication Critical patent/WO2019221436A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to a next generation mobile communication system, and relates to a method and apparatus for collecting and reporting cell measurement information by a terminal and a base station.
  • the present disclosure provides a sidelink radio bearer carrying V2X sidelink communication data (SLRB) terminal to support the V2X to support a variety of vehicle-to-everything (V2X) services in the next-generation mobile communication system And a method and apparatus for protecting integrity of a V2X packet in a PDCP layer.
  • SLRB V2X sidelink communication data
  • V2X vehicle-to-everything
  • a 5G communication system or a pre-5G communication system is called a Beyond 4G network communication system or a post LTE system.
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • mmWave ultra-high frequency
  • FD-MIMO full dimensional multiple input / output
  • Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • wireless backhaul moving network
  • cooperative communication Coordinated Multi-Points (CoMP), and interference cancellation
  • Hybrid FSK and QAM Modulation FQAM
  • SWSC sliding window superposition coding
  • ACM Advanced Coding Modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M machine to machine
  • MTC Machine Type Communication
  • IT intelligent Internet technology services can be provided that collect and analyze data generated from connected objects to create new value in human life.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
  • An object of the present disclosure is to enable efficient cell measurement by improving the collection and reporting process of cell measurement results in a next generation mobile communication system.
  • the present disclosure defines PPSe (ProSe Per Packet Integrity) to support integrity-protected V2X data in order to satisfy the requirements and use cases of the new V2X in the next-generation mobile communication system and accordingly By designing the behavior, we want to support various V2X services efficiently.
  • PPSe ProSe Per Packet Integrity
  • a method of a terminal may include transmitting a first message for requesting a radio resource control (RRC) resume to a base station; Receiving a message, and transmitting a third message to complete the RRC resumption to the base station, the third message indicating that the terminal stores the measurement results performed in the RRC inactive state (RRC inactive state) Contains information.
  • RRC radio resource control
  • the terminal configured to transmit and receive a signal, and transmits a first message requesting the radio resource control (RRC) resume (resume) to the base station, And a control unit configured to receive a second message indicating the resumption of RRC from the base station, and transmit a third message for completing the resumption of the RRC to the base station, wherein the third message is performed by the terminal in an RRC inactive state.
  • RRC radio resource control
  • a method of a base station comprising: receiving a first message requesting a radio resource control (RRC) resume from a terminal; And transmitting a third message, and receiving a third message for completing RRC resumption from the terminal, wherein the third message stores a measurement result performed by the terminal in an RRC inactive state.
  • RRC radio resource control
  • the transceiver unit configured to transmit and receive a signal, and receives a first message requesting the radio resource control (RRC) resume (resume) from the terminal, And a control unit configured to transmit a second message instructing the RRC resumption to the terminal and to receive a third message for completing the RRC resumption from the terminal, wherein the third message is performed by the terminal in an RRC inactive state.
  • RRC radio resource control
  • a method of a terminal comprising: receiving a V2X related parameter from a network entity, generating a V2X data packet, and wirelessly for a V2X data packet based on the V2X related parameter Determining a bearer, performing integrity protection for the V2X data packet, and transmitting the V2X data packet with integrity protection to the receiving device.
  • the terminal according to another embodiment to solve the problem, such as receiving and receiving the V2X-related parameters from the transceiver configured to transmit and receive a signal, and the network entity, generates a V2X data packet, based on the V2X-related parameters And a control unit configured to determine a radio bearer for the V2X data packet, to perform integrity protection for the V2X data packet, and to transmit the V2X data packet with the integrity protection to the receiving device.
  • the collection and reporting procedure of cell measurement information may be improved, and thus efficient cell measurement may be performed.
  • a PPPI may be defined to support various V2X services in a next generation mobile communication system. Accordingly, the terminal supporting the V2X based on PPPI selects the SLRB (Sidelink Radio Bearer carrying V2X sidelink communication data) and the PDCP PDU format determination method according to the V2X service and transmission method, thereby efficiently transmitting and receiving messages. Can be.
  • SLRB Segment Radio Bearer carrying V2X sidelink communication data
  • 1A is a diagram illustrating the structure of a next generation mobile communication system.
  • FIG. 1B is a diagram for explaining a state of wireless access state transition in a next generation mobile communication system.
  • 1C is a diagram illustrating a technique of collecting and reporting cell measurement information in the present embodiment.
  • 1D is a diagram illustrating a method of collecting and reporting cell measurement information in this embodiment.
  • 1E is a flowchart of an operation of collecting and reporting cell measurement information in this embodiment.
  • 1F is a flowchart of an operation of collecting and reporting cell measurement information according to the embodiment 1-1.
  • 1G is a flowchart of an operation of a base station for collecting and reporting cell measurement information in the embodiment 1-1.
  • 1H is a flowchart illustrating an operation of a terminal for collecting and reporting cell measurement information according to an embodiment 1-2.
  • 1I is a flowchart of an operation of a base station for collecting and reporting cell measurement information according to embodiments 1-2.
  • 1J is a flowchart of an operation of collecting and reporting cell measurement information in embodiments 1-3;
  • 1K is a block diagram showing the internal structure of a terminal to which the embodiment is applied.
  • 1L is a block diagram showing the configuration of a base station according to the present embodiment.
  • FIG. 2A is a diagram illustrating a structure of an LTE system to which an embodiment of the present invention can be applied.
  • 2b is a diagram illustrating a radio protocol structure in an LTE system to which the present embodiment can be applied.
  • 2C is a diagram illustrating the structure of a next generation mobile communication system to which the present embodiment can be applied.
  • 2d is a diagram illustrating a radio protocol structure of a next generation mobile communication system to which the present embodiment can be applied.
  • 2E is a diagram illustrating V2X communication in the next generation mobile communication system to which the present embodiment is applied.
  • FIG. 2F is a diagram illustrating a monitoring and data transmission procedure of a V2X terminal operating in mode 3 when a resource pool for each service and a resource pool irrespective of service type coexist in a next generation mobile communication system.
  • FIG. 2G illustrates a data transmission procedure of a V2X terminal operating in mode 4 when a resource pool for each service and a resource pool irrespective of service type coexist in a next generation mobile communication system.
  • 2i is a block diagram of a terminal according to the present embodiment.
  • 2J is a block diagram showing the configuration of a base station according to the present embodiment.
  • each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s).
  • Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
  • each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • logical function e.g., a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
  • the functions noted in the blocks may occur out of order.
  • the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
  • ' ⁇ part' used in the present embodiment refers to software or a hardware component such as an FPGA or an ASIC, and ' ⁇ part' performs certain roles.
  • ' ⁇ ' is not meant to be limited to software or hardware. May be configured to reside in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • the functionality provided within the components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
  • the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.
  • 1A is a diagram illustrating the structure of a next generation mobile communication system.
  • a radio access network of a next generation mobile communication system includes a next generation base station (New Radio Node B, gNB) 1a-10 and an AMF 1a-05, New Radio. Core Network).
  • the user terminal (New Radio User Equipment, NR UE or terminal) 1a-15 connects to the external network via gNB 1a-10 and AMF 1a-05.
  • a gNB corresponds to an eNB (Evolved Node B) of an existing LTE system.
  • the gNB is connected to the NR UE through a radio channel and can provide superior service than the existing Node B (1a-20).
  • an apparatus for scheduling by collecting state information such as buffer states, available transmit power states, and channel states of UEs is required. 1a-10).
  • One gNB typically controls multiple cells.
  • the AMF 1a-05 performs functions such as mobility support, bearer setup, and QoS setup.
  • the AMF is a device that is in charge of various control functions as well as mobility management function for the terminal and is connected to a plurality of base stations.
  • next-generation mobile communication system can be linked to the existing LTE system
  • the AMF is connected to the MME (1a-25) through a network interface.
  • the MME is connected to the eNB 1a-30 which is an existing base station.
  • the terminal supporting the LTE-NR Dual Connectivity may transmit and receive data while maintaining the connection to the eNB as well as the gNB (1a-35).
  • FIG. 1B is a diagram for explaining a state of wireless access state transition in a next generation mobile communication system.
  • the next generation mobile communication system has three RRC states.
  • the connected mode (RRC_CONNECTED, 1b-05) is a wireless connection state in which a terminal can transmit and receive data.
  • the standby mode (RRC_IDLE, 1b-30) is a wireless access state in which the terminal monitors whether paging is transmitted to itself.
  • the two modes are in a wireless access state applied to the existing LTE system, and the detailed technology is the same as that of the existing LTE system.
  • a newly inactive (RRC_INACTIVE) radio access state (1b-15) is defined. In the radio access state, the UE context is maintained in the base station and the terminal, RAN-based paging is supported.
  • the characteristics of the new wireless connection state are listed as follows.
  • CN-NR RAN connection (both C / U-planes) has been established for UE;
  • the UE AS context is stored in at least one gNB and the UE;
  • Paging is initiated by NR RAN;
  • RAN-based notification area is managed by NR RAN;
  • NR RAN knows the RAN-based notification area which the UE belongs to
  • the new INACTIVE wireless connection state may transition to connected mode or standby mode using a specific procedure.
  • the connection is switched from INACTIVE mode to connection mode according to the connection activation, and from the connection mode to the INACTIVE mode using the connection inactivation procedure (1b-10).
  • the connection activation / inactivation procedure is one or more RRC messages transmitted and received between the terminal and the base station, characterized in that composed of one or more steps. It is also possible to switch from INACTIVE mode to standby mode according to a specific procedure (1b-20).
  • a specific procedure As the specific procedure mentioned above, various methods such as specific message exchange or timer-based or event-based may be considered.
  • the transition between connected and standby mode follows existing LTE technology. That is, switching between the modes is performed through a connection establishment or release procedure (1b-25).
  • 1C is a diagram illustrating a technique of collecting and reporting cell measurement information in the present disclosure.
  • a mobile communication provider When constructing or optimizing a network, a mobile communication provider usually measures signal strength in an expected service area, and then arranges or readjusts base stations in the service area based on this. The operator loads signal measuring equipment in a vehicle and collects cell measurement information in the service area, which requires a lot of time and money. The process is commonly referred to as Drive Test, utilizing a vehicle.
  • Drive Test utilizing a vehicle.
  • the terminal In order to support operations such as cell reselection, handover, and adding a serving cell when moving between cells, the terminal is equipped with a function of measuring a signal to a base station. Accordingly, the terminal in the service area may be used instead of the drive test, which is called a minimization of drive test (MDT).
  • MDT minimization of drive test
  • the operator may set MDT operation to specific terminals through various components of the network, and the terminals may receive signals from serving cells and neighbor cells in a connected mode (RRC_Connected), a standby mode (RRC_Idle), or an inactive mode (RRC_Inactive). Collect and store intensity information. In addition, various information such as location information, time information, and signal quality information is also stored. The stored information may be reported to the network when the terminals are in the connected mode, and the information is transmitted to a specific server.
  • RRC_Connected a connected mode
  • RRC_Idle standby mode
  • RRC_Inactive an inactive mode
  • the MDT operation is classified into Immediate MDT and Logged MDT.
  • Immediate MDT is characterized by directly reporting the collected information to the network. Since it should be reported immediately, only the connected mode terminal can perform this. Typically, the RRM measurement process is recycled to support operations such as handover and adding a serving cell, and location information and time information are additionally reported.
  • Logged MDT stores the collected information without immediately reporting it to the network. After that, the terminal switches to the connected mode and reports the stored information. Usually, the terminal in the standby mode that cannot report directly to the network performs this.
  • the terminal in the inactive mode introduced in the next generation mobile communication system is characterized by performing Logged MDT.
  • the network provides the terminal with configuration information for performing a Logged MDT operation, and the terminal collects and stores the configured information after switching to the standby mode or the inactive mode.
  • 1D is a diagram illustrating a method of collecting and reporting cell measurement information in this disclosure.
  • the terminal 1d-05 switches from the standby mode or the inactive mode 1d-10 to the connected mode 1d-15.
  • MDT data is collected and reported to the base station through Immediate MDT operation.
  • the UE that has switched to the connected mode is provided with the Logged MDT configuration information performed in the standby mode or the inactive mode from the base station (1d-20).
  • the configuration information is stored in a predetermined RRC message is transmitted to the terminal, the terminal receiving the message drives the first timer (1d-55).
  • the terminal performs a Logged MDT operation in a standby mode or an inactive mode interval until the first timer expires.
  • the value of the first timer is included in the Logged MDT configuration information.
  • Logged MDT is performed according to the received configuration information (1d-25).
  • the terminal stores predetermined information collected every set period and logging interval (1d-35) (1d-30, 1d-45).
  • logging interval (1d-35) (1d-30, 1d-45).
  • valid location information (1d-40) if valid location information (1d-40) has been collected, the information must also be stored. Whether the location information is valid is determined to be valid after a predetermined time 1d-50 after collecting the information. The predetermined time is shorter or equal to the logged interval.
  • the terminal temporarily suspends the Logged MDT operation that was being performed when switching to the connected mode (1d-60). However, the first timer does not stop even in the connected mode period and continues to be driven.
  • the first timer continues to run regardless of the change in the RRC state.
  • the terminal memory for storing the MDT data is insufficient and cannot be stored anymore, or when the Logged MDT configuration information is released, the first timer is stopped.
  • the Logged MDT configuration information is released, other Logged MDT configuration information is provided from a serving RAT or another RAT, or the terminal is detached or powered off.
  • the UE reports to the base station that it has collected information (MDT data) that it stores using a predetermined RRC message during an RRC Connection Establishment or RRC Connection Resume (1d). -65).
  • the connection restart process is a process in which the terminal switches from the inactive mode to the connected mode. As follows, it is generally composed of three steps, and three types of RRC messages are used.
  • Step 1 UE sends an RRC Resume Request message to the base station
  • Step 2 the base station transmits an RRC Resume message to the terminal
  • Step 3 UE sends an RRC Resume Complete message to the base station
  • resume may be composed of two steps.
  • Resume process for RNA update the Resume process for RNA update
  • Step 1 UE sends an RRC Resume Request message to the base station
  • Step 2 the base station transmits an RRC Resume message to the terminal
  • Information indicating that the terminal has the collection information is reported to the target base station during the RRC connection reestablishment and handover process, in addition to the connection establishment process or the connection restart process. If the Logged MDT is set but there is no information collected and stored yet, the report is omitted. The base station receiving the report may request a report of the MDT data stored in the terminal, if necessary. The unreported MDT data should be continuously stored by the terminal for a predetermined time. If the terminal is switched to the standby mode or inactive mode again, and the first timer has not yet expired, the Logged MDT operation is restarted again (1d-70).
  • the Logged MDT operation stops (1d-75).
  • the terminal that has stopped the operation drives the second timer (1d-80) and maintains the stored MDT data until the timer expires.
  • the value of the second timer is included in the Logged MDT configuration information or is not set and a predefined value is applied.
  • the terminal When the terminal is switched to the connected mode again, it reports to the base station that it has the collected information (MDT data) that it stores (1d-85). This time, the base station requests a report of the MDT data stored by the terminal using a predetermined RRC message (1d-90). Accordingly, the terminal stores MDT data stored in a predetermined RRC message and reports the message to the base station (1d-95).
  • 1E is a flowchart of an operation of collecting and reporting cell measurement information in this disclosure.
  • the terminal 1e-05 establishes a connection with the base station 1e-10 (1e-15).
  • the terminal provides the terminal capability information to the base station (1e-20) and may indicate whether it supports the MDT operation and what frequency can be measured.
  • the base station stores the configuration information necessary to perform the Logged MDT operation in a predetermined RRC message and transmits it to the terminal (1e-25).
  • the setting information includes at least one of the following information.
  • TCE (Trace Collection Entity) ID information The base station transmits the MDT data information reported from the terminal to the data server designated by the TCE ID.
  • Absolute Time Absolute time in the current cell providing Logged MDT configuration information.
  • Area Configuration Through Logged MDT operation, area information that can collect and store measurement information is indicated by cell unit. It may also include RAT information for which measurement information should be collected.
  • the list included in the RAT information is a black list or a white list. In the black list, cell measurement information is collected for RATs not included in the list. If it is a white list, cell measurement information is not collected for RATs not included in the list.
  • Logging Duration A value of the first timer, when the timer is running, performs a Logged MDT operation in a standby mode or an inactive mode.
  • plmn-IdentityList PLMN list information, which stores PLMN information for reporting whether to store the MDT data and reporting MDT data as well as performing the logged MDT operation.
  • the Indicator indicating whether to perform Logged MDT operation in standby mode or inactive mode, or both.
  • the indicator may indicate an RRC state for performing a Logged MDT operation or may be defined to always perform a Logged MDT operation in a standby mode and an inactive mode without the indicator.
  • the UE performs the Logged MDT operation only in the RRC state indicated by the indicator.
  • An indicator indicating whether to collect and store beam level measurement information.
  • a beam antenna may be applied. Without the indicator, it can be defined to always collect and store beam level measurement measurements for frequencies that perform beam based operations.
  • the terminal omits the storage of beam information weaker than the minimum signal strength. If all beams are weaker than the set minimum signal value, the terminal may store one beam information having the strongest signal strength among them, or may include an indicator that all beams are weaker than the set minimum signal value.
  • the terminal receiving the Logged MDT configuration information drives the first timer (1e-30).
  • the value of the first timer is set equal to the value of the logging duration.
  • the base station switches the terminal to a standby mode or an inactive mode using an RRC Release message (1e-35).
  • the RRC Release message contains configuration information for operation in the RRC state.
  • the terminal performs Logged MDT in a standby mode or an inactive mode (1e-40).
  • the signal strength of the serving cell and neighboring cells is measured, and location information is obtained.
  • the beam level measurement is set, the signal strength value for the beam larger than the set minimum value is collected and stored in the serving cell and the adjacent cell.
  • the maximum number of beams that can be stored is also set or predefined.
  • the signal strength means RSRP or RSRQ or SINR.
  • the collected information is stored every Logged Interval period. Each log information stored in each cycle includes an indicator indicating whether the stored information is collected in a standby mode or in an inactive mode. Alternatively, the indicator may be included for each initial log of mode switching. This can minimize signaling overhead due to the indicator.
  • the Logged MDT operation is stopped (1e-50).
  • the terminal may store a first indicator indicating whether there is MDT data stored in the RRC Resume Request or RRC Resume Complete message. For example, when the Resume process is triggered for the purpose of RNA update and is in the second step, the first indicator is stored in an RRC Resume Request message. Otherwise, if the resume process is to change the connection mode for data transmission, the process consists of three steps, and the first indicator is stored in the RRC Resume Complete message.
  • the base station transmits an RRC Resume message to the terminal.
  • the RRC Resume Request message accommodates the first indicator (1e-55), and the base station wants to receive a report on the MDT data
  • the base station transmits the MDT data to the RRC Resume message (1e-60). It includes an indicator requesting a report for, or if the second stage Resume, the terminal includes an indicator to switch to the connected mode. Also, setting information necessary for switching to the connected mode is stored in the RRC Resume message.
  • the terminal having received the indicator, switches to the three-stage Resume process even if the RRC Resume Request message is triggered by the two-stage Resume process. If it is a three-step resume process, the first indicator is stored in the RRC Resume Complete message (1e-65).
  • the base station After receiving the RRC Resume Complete message, the base station requests a report of MDT data to the terminal using a predetermined RRC message (1e-70). Accordingly, the terminal reports the stored MDT data to the base station using a predetermined RRC message (1e-75).
  • the terminal If the terminal is in the standby mode by the RRC Release message and receives CN paging from the base station or if the MO data transmission is activated, the terminal initiates the establishment process for switching from the standby mode to the connected mode. .
  • the establishment process
  • Step 1 UE sends an RRC Connection Request message to the base station
  • Step 2 the base station transmits an RRC setup message to the terminal
  • Step 3 UE sends an RRC Setup Complete message to the base station
  • the terminal includes an indicator indicating that there is MDT data stored in the RRC Setup Complete message.
  • the base station Upon receipt of the RRC Setup Complete message, the base station requests a report of the MDT data using a predetermined RRC message when necessary. The terminal receiving the request reports the MDT data using a predetermined RRC message.
  • the first indicator may be included in a two or three step resume process. If the first indicator is stored in the Resume Request message in the two-stage resume process, it is switched to the three-stage resume process for MDT retrieval according to the determination of the base station.
  • the first indicator is included only in the three-step resume process. That is, in the first and second embodiments, the first indicator may be included only in the RRC Resume Complete message without including the first indicator in the RRC Resume Request message during the two-step resume process. Therefore, for the RNA update, if the two-step Resume process is triggered, the terminal cannot perform the MDT retrieval.
  • a method of subsequently reporting a failure of the resume process is proposed.
  • 1F is a flowchart of an operation of collecting and reporting cell measurement information according to the embodiment 1-1.
  • step 1f-01 the terminal receives Logged MDT configuration information from the base station.
  • the configuration information includes information necessary for performing a logged MDT operation in a standby mode or an inactive mode.
  • step 1f-03 the UE receives an RRC Release message from the base station and switches to an inactive mode.
  • step 1f-05 the terminal collects and stores cell measurement information and other additional information according to the Logged MDT configuration information.
  • step 1f-10 the UE triggers a step 2 or step 3 resume process.
  • the two stage Resume process is triggered mainly during RNA updates.
  • the terminal normally receives a Resume message from the base station, and then switches back to inactive mode.
  • the three-step resume process is triggered when the device switches to connected mode, primarily for data transfer.
  • step 1f-15 if the step 2 is a resume process, the UE stores an indicator indicating that it has MDT data in the RRC Resume Request message. Then, the message is transmitted to the base station.
  • step 1f-20 the UE receives an RRC Resume message including an indicator requesting report of MDT data or an indicator to switch to a connected mode from the base station.
  • an RRC Resume message including an indicator requesting report of MDT data or an indicator to switch to a connected mode from the base station.
  • step 1f-23 the terminal receives a predetermined RRC message requesting the report of MDT data from the base station.
  • step 1f-25 the terminal reports a predetermined RRC message including MDT data to the base station.
  • step 1f-30 if the step 3 is a resume process, the UE stores an indicator indicating that it has MDT data in the RRC Resume Complete message. Then, the message is transmitted to the base station.
  • step 1f-35 if the terminal receives a predetermined RRC message requesting the report of the MDT data from the base station, in response, the terminal reports the predetermined RRC message including the MDT data to the base station.
  • the terminal if the terminal receives an RRC Resume message including an indicator requesting the report of the MDT data from the base station in step 1f-20, the terminal stores the MDT data stored in the RRC Resume Complete message, Report to the base station.
  • 1G is a flowchart of an operation of a base station for collecting and reporting cell measurement information in the embodiment 1-1.
  • step 1g-05 the base station determines which RRC message including the first indicator received from the specific terminal.
  • step 1g-10 if the RRC message including the first indicator is an RRC Resume Request message, the base station determines whether to request MDT data from the terminal.
  • step 1g-15 the base station stores an indicator for requesting the MDT report or an indicator for switching to the connected mode in the RRC Resume message, and then transmits the message to the terminal.
  • step 1g-20 the base station receives an RRC Resume Request message from the terminal.
  • step 1g-25 the base station transmits a predetermined RRC message requesting the report of MDT data to the terminal.
  • step 1g-30 the base station receives a predetermined RRC message including MDT data from the terminal.
  • step 1g-35 if the RRC message including the first indicator is an RRC Resume Request message, the base station determines whether to request MDT data from the terminal.
  • step 1g-40 the base station transmits a predetermined RRC message requesting the report of MDT data to the terminal.
  • step 1g-45 the base station receives a predetermined RRC message including MDT data from the terminal.
  • 1H is a flowchart illustrating an operation of a terminal for collecting and reporting cell measurement information according to an embodiment 1-2.
  • step 1h-01 the terminal receives Logged MDT configuration information from the base station.
  • the configuration information includes information necessary for performing a logged MDT operation in a standby mode or an inactive mode.
  • step 1h-03 the terminal receives the RRC Release message from the base station, and switches to the inactive mode.
  • step 1h-05 the terminal collects and stores cell measurement information and other additional information according to the Logged MDT configuration information.
  • step 1h-10 the UE triggers a step 2 or step 3 resume process.
  • the UE If the 2-step Resume process is triggered in step 1h-15, the UE generates an RRC Resume Request message without the first indicator, and transmits it to the serving base station. That is, MDT retrieval is excluded in the two-step resume process.
  • step 3 Resume process is triggered in steps 1h-20, the UE stores an indicator indicating that it has MDT data in the RRC Resume Complete message. Then, the message is transmitted to the base station.
  • the terminal If the terminal receives a predetermined RRC message requesting the report of the MDT data from the base station in steps 1h-25, in response, the terminal reports the predetermined RRC message including the MDT data to the base station.
  • 1I is a flowchart of an operation of a base station for collecting and reporting cell measurement information according to embodiments 1-2.
  • step 1i-05 the base station receives an RRC Resume Complete message including a first indicator from a specific terminal.
  • step 1i-10 the base station determines whether to request MDT data from the terminal.
  • step 1i-15 the base station transmits a predetermined RRC message requesting reporting of MDT data to the terminal.
  • step 1i-20 the base station receives a predetermined RRC message including MDT data from the terminal.
  • 1J is a flowchart of an operation of collecting and reporting cell measurement information in embodiments 1-3;
  • the terminal reports the capability information of whether the terminal supports resume failure logging and reporting to the base station using a predetermined RRC message.
  • the base station instructs the connected mode terminal to resume failure logging by using a predetermined RRC message.
  • the configuration information may be included in an RRCRelease message containing a suspend configuration. Or it may be included in a predetermined RRC message such as RRConfiguration. If the Resume failure logging is configured, the terminal stores information useful for coverage optimization, such as cell measurement information at that time, when the resume process is not successfully completed.
  • the terminal supporting the operation may always perform the operation when the resume process fails.
  • the terminal 1j-05 in the inactive mode may switch to the connected mode or trigger a resume process to perform an RNA update.
  • the terminal starts the Resume process while transmitting an RRC Resume Request message to the base station 1j-10. While transmitting the RRC Resume Request message (1j-15), the terminal drives the second timer (1j-20). The second timer stops when receiving an RRC Resume message from the base station or when cell reselection is performed. If the RRC Resume message is not received from the BS until the second timer expires (1j-25), the UE considers that the triggered Resume process has failed. At this time, the terminal stores the collected cell measurement information and other additional information (1j-30). At least one of the information listed below is included.
  • a cause value value of the resume process in which the resume failure is detected.
  • RNA update MO-signalling, MO-data, mt-Access, emergency, highPriorityAccess, delayTolerantAcess, mo-VoiceCall, etc.
  • CGI information global cell ID
  • PCI information Physical cell ID
  • the cells support beam operation, beam level signal strength, RSRP and RSRQ and SINR information of the cell where the failure has been detected and its neighbors;
  • NUL normal uplink
  • SUL additional uplink
  • the terminal After a predetermined time has elapsed, the terminal retries the resume process for switching from the inactive mode to the connected mode.
  • the UE stores a third indicator indicating whether there is Establishment / Resume failure information stored in the RRC Resume Request or RRC Resume Complete message.
  • the third indicator is indicated separately from the first indicator. In order to indicate whether there is establishment failure and resume failure information, a separate indicator may be defined.
  • the resume process is triggered for the purpose of RNA update and is in the second step, the third indicator is stored in an RRC Resume Request message. Otherwise, if the resume process is to switch the connection mode for data transmission, the process consists of three steps, and the third indicator is stored in the RRC Resume Complete message.
  • the base station transmits an RRC Resume message to the terminal.
  • the RRC Resume Request message accommodates the third indicator (1j-35), and the base station wants to be reported about the establishment failure and Resume failure information
  • the base station in the RRC Resume message (1j-40) Include the indicator requesting the report on the establishment failure and Resume failure information, or if the second stage Resume, includes an indicator to switch to the connected mode. Also, setting information necessary for switching to the connected mode is stored in the RRC Resume message.
  • the terminal having received the indicator, switches to the three-stage Resume process even if the RRC Resume Request message is triggered by the two-stage Resume process. If the three-step resume process, the third indicator is stored in the RRC Resume Complete message (1j-45).
  • the base station After receiving the RRC Resume Complete message, the base station requests the terminal to report establishment failure and resume failure information using a predetermined RRC message (1j-50). Accordingly, the terminal reports the establishment failure and resume failure information to the base station using a predetermined RRC message (1j-55).
  • retrieval for establishment failure and resume failure information may not be allowed in the two-step resume process.
  • the terminal includes an indicator indicating that there is Establishment failure and Resume failure information stored in the RRC Setup Complete message.
  • the base station Upon receipt of the RRC Setup Complete message, the base station requests a report of the establishment failure and resume failure information using a predetermined RRC message when necessary.
  • the terminal receiving the request reports the establishment failure and resume failure information by using a predetermined RRC message.
  • the connected mode terminal reports capability information indicating whether to support the RRC resume failure reporting described in the first embodiment to the base station.
  • the RRC Inactive state is optional. Therefore, the terminal supporting the RRC Inactive state should always report the capability information. Or, the terminal supporting the RRC Inactive state always supports the RRC resume failure reporting.
  • the base station sets the RRC resume failure reporting to the connected mode terminal based on the capability information.
  • the base station transmits an RRCRelease message including a suspend configuration to the terminal, and the terminal switches to an inactive mode (RRC_Inactive).
  • the terminal triggers a resume process for the purpose of switching to the standby connection mode.
  • the terminal RRC triggers the transmission of the RRCResumeRequest message to the physical layer, the RRC starts a predetermined timer.
  • the timer is stopped when the RRCResume, RRCSetup, RRCRelease, or RRCReject message is received from the base station, a cell reselection operation is triggered, or the connection establishment is abandoned by a higher layer.
  • the terminal When the timer expires, the terminal considers resume failure and records valid measurement information collected at that time.
  • the terminal performs the resume process again, and if it fails again, deletes the previously recorded measurement information and records valid measurement information collected at the latest resume failure.
  • the terminal performs the resume process again. If the RRCResume or RRCSetup message is successfully received from the base station after transmitting the RRCResumeRequest message, the indicator indicating that the RRCResumeComplete or RRCSetupComplete message corresponding to the message records valid measurement information collected at the latest resume failure is stored. .
  • the terminal transmits the RRCResumeComplete or RRCSetupComplete message to the base station.
  • the terminal may simultaneously perform establishment failure reporting and resume failure reporting. At this time, the measurement information recorded at the establishment failure and the measurement information recorded at the resume failure are managed independently of each other.
  • This embodiment is characterized by integrating reporting at establishment failure or resume failure.
  • the measurement information recorded at the most recent establishment failure or resume failure may be maintained. For example, when a establishment failure occurs when a terminal having measurement information recorded at a previous resume failure occurs, the measurement information is deleted and the measurement information collected at a recent establishment failure is recorded.
  • the availability indicator included in the RRCSetupComplete or the RRCResumeComplete indicates that there is measurement information recorded due to the failures without discriminating establishment failure or resume failure.
  • the base station receiving the indicator may request the recorded measurement information.
  • the terminal reports the recorded measurement information to the base station.
  • the measurement information includes an indicator indicating whether the measurement information was collected at establishment failure or resume failure.
  • predetermined information is additionally collected according to an RRC state (standby mode or inactive mode).
  • the connected mode terminal receives configuration information required when performing logged MDT in the standby mode, the inactive mode, or both modes from the base station.
  • the configuration information includes an indicator indicating whether to collect information that can be collected only in a specific RRC state.
  • the terminal receiving the RRC message including the configuration information drives one timer by applying a timer duration (logging duration) included in the configuration information.
  • the connected mode terminal receives an RRCRelease message from the base station. If the suspend configuration information is included in the RRCRelease message, the terminal switches to inactive mode (RRC_Inactive), otherwise, switches to standby mode (RRC_Idle).
  • the suspend configuration information includes at least I-RNTI, paging cycle, RAN Notification Area information, T380 timer information, and security information.
  • the terminal that performs the logged MDT in the standby mode, the inactive mode, or the two modes stores the valid collection information at a set logging interval (logging time). The information stored at each logging point is stored in different entries and is distinguished from each other by including relative time information.
  • the terminal is configured to perform logged MDT in the deactivation mode, additionally collects information that can be collected only in the deactivation mode.
  • the collection information is a list of RAN Notification Areas visited by the terminal and the number of times of RNA change. This information helps the operator determine the appropriate RNA.
  • Another gathering information is an indicator of whether the RRC connection failed due to the expiration of the T319 timer. Normally logged MDT can be run in both inactive and standby mode. If the UE in the inactive mode performs a resume operation for switching the connected mode, but the resume process is considered to have failed due to the expiration of the T319 timer, the terminal is switched from the inactive mode to the standby mode.
  • the resume process may be configured to store collected information of the logged MDT when the transition from the inactive mode to the standby mode fails. At the earliest logging time after the failure time of the resume process, an indicator indicating that the resume process has changed from an inactive mode to a standby mode due to a failure is stored. In addition, the number of preamble transmissions transmitted during the resume process, whether contention occurs, and indicator information on whether the maximum terminal transmission power has been reached may be added.
  • the terminal is configured to perform logged MDT in the standby mode, additionally collects information that can be collected only in the standby mode.
  • the collection information is a list of the tracking areas visited by the terminal, the number of changes of the Tracking Area Update (TAU). This information assists the operator in determining the appropriate TAU.
  • TAU Tracking Area Update
  • the logged MDT operation is performed in standby mode or inactive mode or in both modes until the logging duration timer expires.
  • the RRCSetupComplete or RRCResumeComplete includes an indicator indicating that the stored MDT information.
  • the base station may request the terminal to report the MDT information through a predetermined RRC message.
  • the terminal reports the MDT information collected and stored using a predetermined RRC message.
  • the terminal includes a radio frequency (RF) processor 1k-10, a baseband processor 1k-20, a storage unit 1k-30, and a controller 1k-40. .
  • RF radio frequency
  • the RF processor 1k-10 performs a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the RF processor 1k-10 up-converts the baseband signal provided from the baseband processor 1k-20 into an RF band signal and transmits the same through an antenna, and receives the RF band signal received through the antenna. Downconverts to a baseband signal.
  • the RF processor 1k-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. Can be. In the figure, only one antenna is shown, but the terminal may include a plurality of antennas.
  • the RF processor 1k-10 may include a plurality of RF chains.
  • the RF processor 1k-10 may perform beamforming. For the beamforming, the RF processor 1k-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
  • the RF processor may perform MIMO, and may receive multiple layers when performing the MIMO operation.
  • the baseband processor 1k-20 performs a conversion function between the baseband signal and the bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processor 1k-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 1k-20 restores the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1k-10. For example, in accordance with an orthogonal frequency division multiplexing (OFDM) scheme, during data transmission, the baseband processor 1k-20 generates complex symbols by encoding and modulating a transmission bit stream, and the complex symbols are subcarriers.
  • OFDM orthogonal frequency division multiplexing
  • OFDM symbols are configured through inverse fast Fourier transform (IFFT) operation and cyclic prefix (CP) insertion.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the baseband processor 1k-20 divides the baseband signal provided from the RF processor 1k-10 into OFDM symbol units and subcarriers through fast Fourier transform (FFT) operations. After recovering the mapped signals, the received bit stream is recovered through demodulation and decoding.
  • FFT fast Fourier transform
  • the baseband processor 1k-20 and the RF processor 1k-10 transmit and receive signals as described above. Accordingly, the baseband processor 1k-20 and the RF processor 1k-10 may be referred to as a transmitter, a receiver, a transceiver, or a communicator. Furthermore, at least one of the baseband processor 1k-20 and the RF processor 1k-10 may include a plurality of communication modules to support a plurality of different radio access technologies. In addition, at least one of the baseband processor 1k-20 and the RF processor 1k-10 may include different communication modules to process signals of different frequency bands. For example, the different wireless access technologies may include a wireless LAN (eg, IEEE 802.11), a cellular network (eg, LTE), and the like. In addition, the different frequency bands may include a super high frequency (SHF) (eg 2.NRHz, NRhz) band and a millimeter wave (eg 60 GHz) band.
  • SHF super high frequency
  • the storage unit 1k-30 stores data such as a basic program, an application program, and setting information for the operation of the terminal.
  • the storage unit 1k-30 may store information related to a second access node that performs wireless communication using a second wireless access technology.
  • the storage unit 1k-30 provides stored data at the request of the controller 1k-40.
  • the controller 1k-40 controls overall operations of the terminal. For example, the controller 1k-40 transmits and receives a signal through the baseband processor 1k-20 and the RF processor 1k-10. Also, the controller 1k-40 records and reads data in the storage unit 1k-40. To this end, the controller 1k-40 may include at least one processor. For example, the controller 1k-40 may include a communication processor (CP) for performing control for communication and an application processor (AP) for controlling a higher layer such as an application program.
  • CP communication processor
  • AP application processor
  • 1H is a block diagram of a base station in a wireless communication system according to a first embodiment of the present disclosure.
  • the base station includes an RF processor 1l-10, a baseband processor 1l-20, a backhaul communication unit 1l-30, a storage unit 1l-40, and a controller 1l-50. It is configured to include.
  • the RF processor 1l-10 performs a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 1l-10 up-converts the baseband signal provided from the baseband processor 1l-20 into an RF band signal and transmits the same through an antenna, and receives the RF band signal received through the antenna. Downconverts to a baseband signal.
  • the RF processor 1l-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In the figure, only one antenna is shown, but the first access node may have a plurality of antennas.
  • the RF processor 1l-10 may include a plurality of RF chains.
  • the RF processor 11-10 may perform beamforming. For the beamforming, the RF processor 1l-10 may adjust the phase and magnitude of each of the signals transmitted and received through a plurality of antennas or antenna elements.
  • the RF processor may perform a downlink MIMO operation by transmitting one or more layers.
  • the baseband processor 1-20 performs a conversion function between the baseband signal and the bit string according to the physical layer standard of the first wireless access technology. For example, during data transmission, the baseband processor 1-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 1l-20 restores the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1l-10. For example, according to the OFDM scheme, during data transmission, the baseband processor 1-20 generates complex symbols by encoding and modulating a transmission bit stream, maps the complex symbols to subcarriers, and then IFFT. OFDM symbols are constructed by operation and CP insertion.
  • the baseband processor 1l-20 divides the baseband signal provided from the RF processor 1l-10 into OFDM symbol units and restores signals mapped to subcarriers through an FFT operation. After that, the received bit stream is recovered by demodulation and decoding.
  • the baseband processor 1l-20 and the RF processor 1l-10 transmit and receive signals as described above. Accordingly, the baseband processor 1l-20 and the RF processor 1l-10 may be referred to as a transmitter, a receiver, a transceiver, a communication unit, or a wireless communication unit.
  • the backhaul communication unit 1l-30 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 1l-30 converts a bit string transmitted from the main base station to another node, for example, an auxiliary base station, a core network, etc. into a physical signal, and converts the physical signal received from the other node Convert to heat
  • the storage unit 1-40 stores data such as a basic program, an application program, and setting information for the operation of the main station.
  • the storage unit 1-40 may store information on a bearer allocated to the connected terminal, a measurement result reported from the connected terminal, and the like.
  • the storage unit 1-40 may store information that is a criterion for determining whether to provide or terminate multiple connections to the terminal.
  • the storage unit 1-40 provides the stored data at the request of the control unit 1l-50.
  • the controllers 1l-50 control the overall operations of the main station. For example, the controller 1l-50 transmits and receives a signal through the baseband processor 1l-20 and the RF processor 1l-10 or through the backhaul communication unit 1l-30. In addition, the control unit 1l-50 records and reads data in the storage unit 1l-40. To this end, the controller 1-50 may include at least one processor.
  • connection nodes terms referring to network objects, terms referring to messages, terms referring to interfaces between network objects, terms referring to various identification information, used in the following description. Etc. are illustrated for convenience of description. Thus, the present disclosure is not limited to the terms described below, and other terms may be used to refer to objects having equivalent technical meanings.
  • the present disclosure uses terms and names defined in the 3GPP LTE (3rd Generation Partnership Project Long Term Evolution) standard.
  • the present disclosure is not limited to the above terms and names, and may be equally applied to systems conforming to other standards.
  • the eNB may be used interchangeably with gNB for convenience of description. That is, the base station described as an eNB may represent a gNB.
  • FIG. 2A is a diagram illustrating a structure of an LTE system to which the present disclosure may be applied.
  • a radio access network of an LTE system is shown in FIG. 2A with a next-generation base station (Evolved Node B, ENB, Node B or base station) 2a-05, 2a-10, 2a-15, and 2a-20. It consists of MME (2a-25, Mobility Management Entity) and S-GW (2a-30, Serving-Gateway).
  • the user equipment (UE or UE) 2a-35 connects to the external network through the ENBs 2a-05 to 2a-20 and the S-GW 2a-30.
  • the ENBs 2a-05 to 2a-20 correspond to existing Node Bs of the UMTS system.
  • the ENB is connected to the UEs 2a-35 by radio channel and performs a more complicated role than the existing Node B.
  • all user traffic including real-time services such as Voice over IP (VoIP) over the Internet protocol, is serviced through a shared channel, so information on the status of buffers, available transmit power, and channel status of UEs is available. It is necessary to have a device that collects the scheduling, and ENB (2a-05 ⁇ 2a-20) is in charge.
  • One ENB typically controls multiple cells.
  • the LTE system uses orthogonal frequency division multiplexing (hereinafter, referred to as OFDM) in a 20 MHz bandwidth as a radio access technology.
  • OFDM orthogonal frequency division multiplexing
  • AMC adaptive modulation & coding
  • the S-GW 2a-30 is a device for providing a data bearer, and generates or removes a data bearer under the control of the MME 2a-25.
  • the MME is a device that is in charge of various control functions as well as mobility management function for the terminal and is connected to a plurality of base stations.
  • 2B is a diagram illustrating a radio protocol architecture in an LTE system to which the present disclosure may be applied.
  • the wireless protocol of the LTE system is PDCP (Packet Data Convergence Protocol 2b-05, 2b-40), RLC (Radio Link Control 2b-10, 2b-35), MAC (Medium Access) at the UE and ENB, respectively. Control 2b-15, 2b-30).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control 2b-10, 2b-35
  • MAC Medium Access
  • Radio link control 2b-10 and 2b-35 may reconfigure PDCP PDUs (Packet Data Units) to appropriate sizes to perform ARQ operations.
  • PDCP PDUs Packet Data Units
  • Protocol error detection (only for AM data transfer)
  • the MACs 2b-15 and 2b-30 are connected to several RLC layer devices configured in one terminal, and multiplex RLC PDUs to MAC PDUs and demultiplex RLC PDUs from MAC PDUs.
  • the main functions of the MAC are summarized as follows.
  • the physical layer (2b-20, 2b-25) channel-coded and modulated the upper layer data, and made into OFDM symbols transmitted to the radio channel, or demodulated, channel decoded and transmitted to the upper layer by OFDM symbols received through the wireless channel Do the operation.
  • 2C is a diagram illustrating a structure of a next generation mobile communication system to which the present disclosure may be applied.
  • the radio access network of the next generation mobile communication system (hereinafter referred to as NR or 5G) is shown as a next generation base station (New Radio Node B, NR gNB or NR base station) 2c-10 and NR CN (2c). -05, New Radio Core Network).
  • the user terminal (New Radio User Equipment, NR UE or terminal) 2c-15 connects to the external network via NR gNB 2c-10 and NR CN 2c-05.
  • the NR gNB 2c-10 corresponds to an eNB (Evolved Node B) of the existing LTE system.
  • the NR gNB is connected to the NR UE 2c-15 in a wireless channel and may provide superior service than the existing Node B.
  • a device that collects and schedules state information such as buffer states, available transmit power states, and channel states of UEs is required. (2c-10) is in charge.
  • One NR gNB typically controls multiple cells.
  • the NR CN 2c-05 performs mobility support, bearer setup, QoS setup, and the like.
  • the NR CN is a device that is in charge of various control functions as well as mobility management function for a terminal and is connected to a plurality of base stations.
  • next generation mobile communication system can be interworked with the existing LTE system, and the NR CN is connected to the MME (2c-25) through a network interface.
  • MME is connected to the eNB (2c-30) which is an existing base station.
  • 2d is a diagram illustrating a radio protocol structure of a next generation mobile communication system to which the present disclosure can be applied.
  • the radio protocol of the next generation mobile communication system is NR PDCP (2d-05, 2d-40), NR RLC (2d-10, 2d-35), and NR MAC (2d-15) at the terminal and the NR base station, respectively. , 2d-30).
  • the main functions of the NR PDCP (2d-05, 2d-40) may include some of the following functions.
  • the order reordering function of the NR PDCP device refers to a function of reordering PDCP PDUs received from a lower layer based on a PDCP sequence number, and delivering data to an upper layer in a reordered order. It may include, or may include the ability to deliver immediately without considering the order, and may include the ability to rearrange the order to record the missing PDCP PDUs, status reporting for the missing PDCP PDUs May include a function for transmitting to the transmitting side, and may include a function for requesting retransmission for lost PDCP PDUs.
  • the main functions of the NR RLCs 2d-10 and 2d-35 may include some of the following functions.
  • In-sequence delivery of the NR RLC device refers to a function of sequentially delivering the RLC SDUs received from the lower layer to the upper layer, and the original RLC SDU is divided into several RLC SDUs and received. If so, it may include a function of reassembling and delivering the same, and may include a function of rearranging the received RLC PDUs based on the RLC sequence number (PD) SN or PDCP sequence number (SN), May include a function of recording lost RLC PDUs, may include a function of reporting status of lost RLC PDUs to the sender, and may include a function of requesting retransmission of lost RLC PDUs.
  • PD RLC sequence number
  • SN PDCP sequence number
  • the RLC PDUs may be processed in the order of receiving the RLC PDUs (regardless of the sequence number and sequence number), and delivered to the PDCP device in an out-of sequence delivery.
  • Received segments stored in the buffer or to be received later may be reconfigured into an intact RLC PDU, and then processed and delivered to the PDCP device.
  • the NR RLC layer may not include a concatenation function and may perform the function in the NR MAC layer or replace it with a multiplexing function of the NR MAC layer.
  • Out-of-sequence delivery of the NR RLC device refers to a function of directly delivering the RLC SDUs received from the lower layer to the upper layer regardless of the order, and the original one RLC SDU has several RLCs. When received divided into SDUs, it may include a function of reassembling and forwarding, and storing the lost RLC PDUs by storing and ordering the RLC SN or PDCP SN of the received RLC PDUs Can be.
  • the NR MACs 2d-15 and 2d-30 may be connected to several NR RLC layer devices configured in one terminal, and a main function of the NR MAC may include some of the following functions.
  • the NR PHY layer (2d-20, 2d-25) channel-codes and modulates the higher layer data, transforms it into OFDM symbols and transmits it to the wireless channel, or demodulates and channel decodes the OFDM symbols received through the wireless channel to the higher layer.
  • the transfer operation can be performed.
  • ProSe Per Packet Integrity is defined to support various V2X services in a next generation mobile communication system.
  • the present invention proposes a method for selecting a SLRB (Sidelink Radio Bearer carrying V2X sidelink communication data) according to a V2X packet or a transmission method based on the PPPI-based UE.
  • SLRB Segment Radio Bearer carrying V2X sidelink communication data
  • Table 2 shows the types, ranges, and data rates for each V2X service in the next generation mobile communication system to which the present disclosure is applied.
  • next-generation mobile communication systems have introduced various services such as Advanced Driving, Extended Sensor, Platooning, etc. It is expected to support public, private or private services. Accordingly, the present disclosure proposes a method of classifying V2X services based on requirements and use cases for each service, as shown in Table 2 below. Refer to the 3GPP specification TR 22.886 “Study on enhancement of 3GPP Support for 5G V2X services” for the proposed table as follows.
  • 2E is a diagram illustrating V2X communication in a next generation mobile communication system to which the present disclosure is applied.
  • V2X collectively refers to the communication technology through the vehicle and all interfaces, and depending on the form and the components that make up the communication, V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure), and V2P (vehicle-to-pedestrian) And vehicle-to-network (V2N).
  • V2P and V2V basically follow the structure and operation principle of Rel-13 device-to-device (D2D). For example, based on sidelink (PC5) operation, an actual data packet is transmitted / received through a sidelink, which is a transmission channel between terminals, not a base station and a terminal.
  • sidelink PC5
  • This basic concept can be applied not only to the V2X defined in LTE, but also to the newly defined V2X in NR, and to the newly introduced scenario.
  • the base station 2e-01 includes at least one vehicle terminal 2e-05, 2e-10 and a pedestrian portable terminal 2e-15 located in the cell 2e-02 that supports V2X.
  • the vehicle terminal 2e-05 performs cellular communication using the link between the base station 2e-01 and the vehicle terminal-base station (Uu, 2e-30, 2e-35), and the other vehicle terminal 2e. -10) or communication with the pedestrian portable terminal (2e-15) by using side links (PC5, 2e-20, 2e-25).
  • the base station may be an upgraded eNB supporting gNB or NR.
  • the vehicle terminal 2e-05 and another vehicle 2e-10 or the vehicle terminals 2e-05 and 2e-10 and the pedestrian portable terminal 5c-15 may use the side links 2e-20 and 2e-25.
  • the base station In order to send and receive information directly, the base station should allocate a resource pool that can be used for sidelink communication.
  • a resource pool that can be used for sidelink communication. The following is a detailed description of how the base station allocates resources to UEs in V2X of the LTE system, and a similar approach to LTE can be applied to V2X introduced in the NR system.
  • the sidelink resource pool may be designed somewhat differently accordingly.
  • the base station allocates resources used for sidelink transmission to the RRC-connected terminals in a dedicated scheduling manner.
  • the above method is effective for interference management and resource pool management (dynamic allocation, semi-persistence transmission) because the base station can manage the resources of the sidelink.
  • a scheduled resource allocation (mode 3) in which the base station allocates and manages resources for V2X, when the terminal connected to the RRC has data to transmit to other terminals, the base station allocates an RRC message or MAC control element (Control). Element, hereinafter, CE).
  • the MAC CE may be, for example, a buffer status report MAC CE in a new format (including at least an indicator indicating that the buffer status is reported for V2P communication and information on the size of data buffered for D2D communication).
  • a buffer status report MAC CE in a new format (including at least an indicator indicating that the buffer status is reported for V2P communication and information on the size of data buffered for D2D communication).
  • E-UTRA MAC Protocol Specification for the detailed format and contents of the buffer status report used by 3GPP.
  • UE autonomous resource allocation allows a base station to provide a sidelink transmit / receive resource pool for V2X as system information, and the terminal selects a resource pool according to a predetermined rule.
  • the resource selection method may include zone mapping, sensing-based resource selection, random selection, and the like, regardless of service or service type.
  • the structure of the resource pool for V2X is adjacent to resources (2e-40, 2e-50, 2e-60) for scheduling allocation (SA) and resources (2e-45, 2e-55, 2e-65) for data transmission.
  • One subchannel, and resources for SA (2e-70, 2e-75, 2e-80) and data (2e-85, 2e-90, 2e-95) may be used in a non-contiguous manner. It may be.
  • the SA consists of two consecutive PRBs and contains the content indicating the location of the resource for the data.
  • the number of terminals receiving V2X service in one cell may be large, and the relationship between the base station 2e-01 and the terminals 2e-05, 2e-10, and 2e-15 described above may be extended. .
  • 2F is a diagram illustrating a data transmission procedure of a V2X terminal operating in mode 3 in a next generation mobile communication system.
  • the V2X Application Server 2f-05 initially provides parameter provisioning so that the terminals 2f-01 and 2f-02 can perform V2X communication (2f-10).
  • the V2X Control Function (2f-04) may receive the parameter information from the V2X Application Server (2f-05) and initially provide the parameter information so that the terminal (2f-01, 2f-02) can perform V2X communication ( 2f-10).
  • the provisioned parameter includes mapping information of V2X services and Destination Layer-2 ID (s). For example, the next-generation mobile communication system needs to support new V2X services such as platooning, advanced driving, and extended sensors.
  • the new V2X service is a PSID (Provider Service Identifier) or ITS-AIDs (Intelligent Transport System-) of the V2X application.
  • Application Identifiers or new Identifiers are used to map to Destination Layer-2 ID (s).
  • the provisioned parameters may also include V2X frequencies and V2X services or V2X frequencies and V2X service types (e.g., PSID or ITS-AIDs or new Identifiers, etc.) or V2X frequencies and Radio Access Technology (RAT) as specified above.
  • RAT Radio Access Technology
  • V2X frequencies may represent the V2X LTE frequency or the V2X NR frequency, or both frequencies.
  • the radio access technology may also represent E-UTRA or NR or both technologies.
  • the mapping information specified above may additionally include information about a geographical area (s).
  • the V2X frequencies may not be available due to local regulations in certain geographic areas or the list of available V2X services or V2X service types may be different in a geographical area where privacy is sensitive. Information may also be included.
  • the provisioned parameter includes mapping information of a V2X service and a communication range or a transmission range.
  • the provisioned parameter includes mapping information on ProSe Per-Packet Priority (PPPP) and packet delay budget or V2X service and PPPP mapping information or V2X service and PPPR (ProSe Per-Packet Reliability) for V2X communication.
  • PPPP ProSe Per-Packet Priority
  • the provisioned parameter also includes mapping information of a V2X service and a data transmission type.
  • the data transmission method means broadcast, multicast, groupcast, and unicast.
  • the provisioned parameter also includes a transmission resource pool and a reception resource pool composed of PPPP or PPPR or a combination of PPPP and PPPR.
  • the terminals 2f-01 and 2f-02 pre-configur the parameters initially provided from the V2X Application Server 2f-05 or the V2X Control Function 2f-04.
  • the terminal 1 (2f-01) preset parameters are interested in a specific V2X service x, it performs a cell selection or cell selection procedure to find a suitable cell and find a cell to camp on (2f). -15).
  • the terminal means finding a cell to camp on at a V2X frequency supported by a Home Public Land Mobile Network (HPLMN) mapped to a specific V2X service x.
  • camping-on terminal 1 (2f-01) receives the SIB21 from the base station (2f-03) (2f-20).
  • the system information 2f-20 includes a transmission resource pool and a reception resource pool composed of PPPP or PPPR or a combination of PPPP and PPPR.
  • the information may include information of a transmission resource pool and a reception resource pool of a serving cell and information of a reception resource pool of a neighbor cell of inter-frequency.
  • system information includes information for establishing synchronization with the resource pool information of the inter-RAT, zone setting information for the terminal to autonomously select resources and transmit data, sidelink (PC5) and LTE / NR uplink ( Uu) priority setting information, resource pool setting information (e.g., time domain resources in the bitmap format, frequency domain resources, subcarrier spacing information or cyclic prefix length if NR is supported), maximum allowable transmission power (maximum) transmission power configuration information including allowed transmission power) and configuration information for sensing operation are included.
  • resource pool setting information e.g., time domain resources in the bitmap format, frequency domain resources, subcarrier spacing information or cyclic prefix length if NR is supported
  • the terminal 1 (2f-01) When the terminal 1 (2f-01) read the system information is generated V2X packet (2f-25) for transmission, the terminal is PPPP applicable to the packet based on the V2X service provided by the packet, PPPR and PPPI values are determined.
  • the terminal determines the transmission resource pool by a combination of PPPP and PPPR corresponding to the packet and then performs RRC connection with the base station (2f-30).
  • the UE may add information on a specific V2X service x (for example, PPPP, PPPR, or PPPI) to the base station or transmit information on the determined transmission resource pool as an RRC message.
  • the transmission resource pool determination may be performed after the RRC connection.
  • the RRC connection process may be performed before generating data traffic for a specific V2X service x (2f-30).
  • the terminal 1 2f-01 requests the base station 2f-03 to transmit resources capable of V2X communication with other terminals 2f-02 or the base station 2f-03 (2f-35). At this time, a transmission resource may be requested from a transmission resource pool determined by a combination of PPPP and PPPR corresponding to the V2X packet.
  • the terminal 1 2f-01 may request the base station using an RRC message or a MAC CE (Control Element). In this case, SidelinkUEInformation and UEAssistanceInformation messages may be used as the RRC message.
  • the MAC CE may be, for example, a buffer status report MAC CE in a new format (including at least an indicator indicating that the buffer status report is for V2X communication and information on the size of data buffered for D2D communication).
  • the base station 2f-03 allocates a V2X transmission resource to the terminal 1 2f-01 through a dedicated RRC message (2f-40). This message may be included in the RRCConnectionReconfiguration message.
  • the resource allocation may be a V2X resource through Uu or a resource for PC5 depending on the type of transmission resource or traffic requested by the terminal, whether a corresponding link is congested, or a V2X service.
  • the UE adds PPPP or PPPR or PPPI or LCID information of V2X traffic through UEAssistance Information or MAC CE. Since the base station also knows information on resources used by other terminals, the base station schedules the resources requested by the terminal among the remaining resources.
  • the SPS may be activated by DCI transmission through the PDCCH (2f-45).
  • Terminal 1 (5d-01) selects the transmission link and the transmission resource in accordance with the resources and transmission method allocated from the base station (5d-03) (2f-50).
  • the terminal 1 (2f-01) that has selected the transmission link and the transmission resource determines the sidelink radio bearer (SLRB) (2f-55).
  • SLRB consists of a PDCP entity and an RLC entity.
  • one SLRB is classified into a combination of an SRC / DST pair and a PPPP / PPPR / PPPI / LCID.
  • the SLRB may be classified as SRC / DST / PPPI or may also be classified as SRC / DST / PPPI / PPPR.
  • UE 1 (2f-01) selects the SLRB when the V2X packet generated for transmission has an SLRB classified into SRC / DST / PPPI.
  • SLRB selection or generation method can be applied by extending or contracting the relationship with any combination of SRC / DST / PPPI / PPPR / PPPP / LCID (2f-55).
  • the terminal 1 (2f-01) that selects / generates the SLRB processes the integrity protection of the V2X packet in the PDCP layer (2f-60). If PPPI is 1, the MAC-I is calculated and the PDCP Data PDU is formed by adding the MAC-I to the end of the V2X packet. In addition, after calculating the MAC-I according to the values of PPPP and PPPR, the PDCP Data PDU may be formed by adding MAC-I at the end of the V2X packet. In the present disclosure, it is proposed to introduce an indication value in which a calculated value of MAC-I exists by adding a 1 bit indicator to the PDCP header.
  • the terminal which forms the PDCP Data PDU, transmits data to the terminals 2f-02 or the base station 2f-03 using the transmission resource pool selected based on the PPPP / PPPR (2f-65).
  • 2g is a diagram illustrating a data transmission procedure of a V2X terminal operating in mode 4 in a next generation mobile communication system.
  • the V2X Application Server 2g-05 initially provides parameter information so that the terminals 2g-01 and 2g-02 can perform V2X communication (2g-10).
  • the V2X Control Function (2g-04) may receive the parameter information from the V2X Application Server (2g-05) and initially provide the parameter information so that the terminal (2g-01, 2g-02) can perform V2X communication ( 2g-10).
  • the provisioned parameter includes mapping information of V2X services and Destination Layer-2 ID (s). For example, the next-generation mobile communication system needs to support new V2X services such as platooning, advanced driving, and extended sensors.
  • the new V2X service is a PSID (Provider Service Identifier) or ITS-AIDs (Intelligent Transport System-) of the V2X application.
  • Application Identifiers or new Identifiers are used to map to Destination Layer-2 ID (s).
  • the provisioned parameters may also include V2X frequencies and V2X services or V2X frequencies and V2X service types (e.g., PSID or ITS-AIDs or new Identifiers, etc.) or V2X frequencies and Radio Access Technology (RAT) as specified above.
  • RAT Radio Access Technology
  • V2X frequencies may represent the V2X LTE frequency or the V2X NR frequency, or both frequencies.
  • the radio access technology may also represent E-UTRA or NR or both technologies.
  • the mapping information specified above may additionally include information about a geographical area (s).
  • the V2X frequencies may not be available due to local regulations in certain geographic areas or the list of available V2X services or V2X service types may be different in a geographical area where privacy is sensitive. Information may also be included.
  • the provisioned parameter includes mapping information of a V2X service and a communication range or a transmission range.
  • the provisioned parameters include mapping information on PPPP (Prose Per-Packet Priority) and packet delay budget or V2X service and PPPP mapping information or V2X service and PPPR (Prose Per-Packet Reliability) for V2X communication.
  • mapping information of V2X services and ProSe Per-Packet Integrity also includes mapping information of a V2X service and a data transmission type.
  • the data transmission method means broadcast, multicast, groupcast, and unicast. It includes a transmission resource pool and a reception resource pool composed of PPPP or PPPR or a combination of PPPP and PPPR.
  • the terminals 2g-01 and 2g-02 pre-configur the parameters initially provided from the V2X Application Server 2g-05 or the V2X Control Function 2f-04.
  • mode 4 operation autonomously selects a resource and transmits data based on a resource pool previously received by the terminal 1 (2g-01) through system information.
  • the base station 2g-03 proposes to allocate a sidelink resource pool (V2V resource pool, V2P resource pool) for the terminal 1 (2g-01) based on a combination of PPPP and PPPR.
  • the resource pool is composed of a resource pool that allows the terminal to autonomously select an available resource pool after sensing a resource used by other terminals, and a resource pool in which the terminal randomly selects a resource from a preset resource pool.
  • the terminal 2g-01 If the terminal 2g-01 preset parameters are interested in a specific V2X service x, the terminal 2g-01 performs a cell selection or a cell selection procedure to find a suitable cell and find a cell to camp on (2g-). 15). In this case, the terminal means finding a cell to camp on at a V2X frequency supported by a Home Public Land Mobile Network (HPLMN) mapped to a specific V2X service x.
  • the camping-on terminal 2g-01 receives SIB21 from the base station 2g-03 (2g-20).
  • the system information 2f-20 includes a transmission resource pool and a reception resource pool composed of PPPP or PPPR or a combination of PPPP and PPPR.
  • the information may include information of a transmission resource pool and a reception resource pool of a serving cell and information of a reception resource pool of a neighbor cell of inter-frequency.
  • the system information includes resource pool information for each service of the inter-RAT, information for setting synchronization, zone setting information for the terminal to autonomously select resources, and transmit data, and sidelink (PC5) and up / down LTE / NR Priority setting information of link (Uu), resource pool setting information (e.g., time domain resources, frequency domain resources in bitmap format, subcarrier spacing information or cyclic prefix length when NR is supported), and maximum allowable transmission power transmission power setting information including (maximum allowed transmission power) and setting information for sensing operation are included.
  • resource pool setting information e.g., time domain resources, frequency domain resources in bitmap format, subcarrier spacing information or cyclic prefix length when NR is supported
  • maximum allowable transmission power transmission power setting information including (maximum allowed transmission power) and setting information for sensing operation are included.
  • the terminal 1 (2g-01) When data traffic for V2X is generated (2g-15) in the terminal 1 (2g-01), the terminal 1 (2g-01) is a transmission operation (set from the resource pool received through the system information from the base station 2g-03) Transmission resources in the time / frequency domain are selected (2g-30) according to dynamic allocation once transmission, dynamic allocation multiple transmission, sensing based one transmission, sensing based multiple transmission, random transmission) or PPPP / PPPR.
  • Terminal 1 (2g-01) that selects a transmission resource determines the sidelink radio bearer (SLRB) (2g-35).
  • SLRB consists of a PDCP entity and an RLC entity.
  • one SLRB is classified into a combination of an SRC / DST pair and a PPPP / PPPR / PPPI / LCID.
  • the SLRB may be classified as SRC / DST / PPPI or may also be classified as SRC / DST / PPPI / PPPR.
  • UE 1 (2g-01) selects the SLRB when the V2X packet generated for transmission has an SLRB classified into SRC / DST / PPPI. If there is no SLRB divided into SRC / DST / PPPI, a new SLRB is created / created.
  • the above-described SLRB selection or generation method can be applied by extending or contracting the relationship with any combination of SRC / DST / PPPI / PPPR / PPPP / LCID (2g-35).
  • the terminal 1 (2g-01) that selects / generates the SLRB processes the integrity protection of the V2X packet in the PDCP layer (2g-40). If PPPI is 1, the MAC-I is calculated and the PDCP Data PDU is formed by adding the MAC-I to the end of the V2X packet. In addition, after calculating the MAC-I according to the values of PPPP and PPPR, the PDCP Data PDU may be formed by adding MAC-I at the end of the V2X packet. In the present disclosure, it is proposed to introduce an indication value in which a calculated value of MAC-I exists by adding a 1 bit indicator to the PDCP header.
  • the terminal that forms the PDCP Data PDU transmits data to the terminals 2g-02 or the base station 2g-03 using the transmission resource pool selected based on the PPPP / PPPR (2g-45).
  • FIG. 2H illustrates a PDCP PDU format applied to broadcast / multicast / groupcast / unicast in the NR V2X system proposed in the present disclosure.
  • it is proposed to introduce a 1 bit indication in the PDCP header to indicate whether the MAC-I exists in the PDCP PDU format.
  • the R field 2h-05 may be used as a 1 bit indicator indicating whether MAC-I is present in the R field because the bit is reserved for an additional function which may be used later.
  • the current SDU types (2h-10, 2h-15) are reserved for additional functions that can be used later from 100 to 111. One of these values indicates whether MAC-I exists. Suggest to indicate.
  • 2i is a block diagram of a terminal according to the present disclosure.
  • the terminal includes a transceiver 2i-05, a controller 2i-10, a multiplexing and demultiplexing unit 2i-15, and various higher layer processing units. 2i-20 and 2i-25, and a control message processing unit 2i-30.
  • the transceiver 2i-05 receives data and a predetermined control signal through a forward channel of a serving cell and transmits data and a predetermined control signal through a reverse channel. When a plurality of serving cells are set, the transceiver 2i-05 performs data transmission and reception and control signal transmission and reception through the plurality of serving cells.
  • the multiplexing and demultiplexing unit 2i-15 multiplexes data generated by the upper layer processing units 2i-20 and 2i-25 or the control message processing unit 2i-30, or multiplexes the data received by the transceiver unit 2i-05. It demultiplexes and delivers to the appropriate upper layer processing units 2i-20 and 2i-25 or control message processing units 2i-30.
  • the control message processing unit 2i-30 transmits and receives a control message from the base station and performs a necessary operation. It includes the ability to process RRC messages and control messages such as MAC CE, and includes reporting of CBR measurements and receiving RRC messages for resource pools and terminal operations.
  • the upper layer processing units 2i-20 and 2i-25 mean DRB devices and may be configured for each service. Data generated from user services such as FTP (File Transfer Protocol) or Voice over Internet Protocol (VoIP) can be processed and transferred to the multiplexing and demultiplexing unit 2i-15, or from the multiplexing and demultiplexing unit 2i-15. Process the delivered data and deliver it to the higher level service application.
  • FTP File Transfer Protocol
  • VoIP Voice over Internet Protocol
  • the controller 2i-10 multiplexes the transceiver 2i-05 with the transceiver 2i-05 so as to check scheduling commands received through the transceiver 2i-05, for example, reverse grants, and perform reverse transmission on the appropriate transmission resource at an appropriate time.
  • the demultiplexer 2i-15 the terminal is composed of a plurality of blocks and each block performs a different function. However, this is only an example and is not necessarily limited thereto.
  • the controller 2i-10 may perform a function performed by the demultiplexer 2i-15.
  • 2J is a block diagram of a base station according to the present disclosure.
  • the base station apparatus of FIG. 2J includes a transceiver 2j-05, a controller 2j-10, a multiplexing and demultiplexing unit 2j-20, a control message processing unit 2j-35, and various upper layer processing units 2j-25. , 2j-30), and a scheduler 2j-15.
  • the transceiver 2j-05 transmits data and a predetermined control signal through a forward carrier and receives data and a predetermined control signal through a reverse carrier. When a plurality of carriers are set, the transceiver 2j-05 performs data transmission and control signal transmission and reception to the plurality of carriers.
  • the multiplexing and demultiplexing unit 2j-20 multiplexes data generated by the upper layer processing units 2j-25 and 2j-30 or the control message processing unit 2j-35, or multiplexes the data received by the transceiver unit 2j-05. It demultiplexes and delivers to the appropriate upper layer processing units 2j-25 and 2j-30, control message processing units 2j-35, and control unit 2j-10.
  • the control message processing unit 2j-35 generates a message to be delivered to the terminal under the instruction of the control unit, and delivers the message to the lower layer.
  • the upper layer processing units 2j-25 and 2j-30 may be configured for each terminal service, and may process data generated from user services such as FTP or VoIP, and transmit the data to the multiplexing and demultiplexing unit 2j-20. And process the data transmitted from the demultiplexer 2j-20 to the service application of the upper layer.
  • the scheduler 2j-15 allocates transmission resources to the terminal at an appropriate time in consideration of the buffer state, channel state, and active time of the terminal, processes the signal transmitted by the terminal to the transceiver, or transmits the signal to the terminal. Do it.
  • the mapping of Destination Layer-2 ID (s) and the V2X services e.g. PSID, ITS-AIDs, ES, platooning ...
  • mapping of services to range (high, medium, low)
  • mapping of services to transmission type (broadcast, groupcast, unicast)
  • RX pools for serving cell and inter-frequency neighbor cell per PPPP / PPPR
  • UE determines PPPP, PPPR and PPPI to be applicable for the V2X packet based on which service the packet is for
  • UE selects SLRB based on SRC / DST / PPPR / PPPI / PPPP
  • UE transmits V2X packet using the Tx Pool selected based on PPPP / PPPR

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a communication method and a system thereof which merge IoT technology with a 5G communication system for supporting a higher data transmission rate than 4G systems. The present disclosure can be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, retail businesses, and security and safety-related services, etc.) on the basis of 5G communication technology and IoT-related technology. The present disclosure relates to a method and device for collecting and reporting cell measurement information in a next generation communication system, and relates to an integrity protection method and device for supporting vehicle communication.

Description

차세대 이동통신 시스템에서 셀 측정 정보를 수집 및 보고하는 방법 및 장치Method and apparatus for collecting and reporting cell measurement information in next generation mobile communication system
본 개시는 차세대 이동통신 시스템에서 관한 것으로, 단말과 기지국이 셀 측정 정보를 수집하고 보고하는 방법 및 장치에 대한 것이다. The present disclosure relates to a next generation mobile communication system, and relates to a method and apparatus for collecting and reporting cell measurement information by a terminal and a base station.
또한, 본 개시는 차세대 이동 통신 시스템에서 다양한 차량 통신(Vehicle-to-everything, 이하 V2X) 서비스를 지원하기 위해 V2X를 지원하는 단말이 사이드링크 무선 베어러(Sidelink Radio Bearer carrying V2X sidelink communication data, SLRB)를 선택하는 방법 및 PDCP layer에서 V2X 패킷의 무결성 보호 방법 및 장치에 관한 것이다.In addition, the present disclosure provides a sidelink radio bearer carrying V2X sidelink communication data (SLRB) terminal to support the V2X to support a variety of vehicle-to-everything (V2X) services in the next-generation mobile communication system And a method and apparatus for protecting integrity of a V2X packet in a PDCP layer.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 시스템이라 불리어지고 있다.In order to meet the increasing demand for wireless data traffic since the commercialization of 4G communication systems, efforts are being made to develop improved 5G communication systems or pre-5G communication systems. For this reason, a 5G communication system or a pre-5G communication system is called a Beyond 4G network communication system or a post LTE system.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.In order to achieve high data rates, 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band). In 5G communication systems, beamforming, massive array multiple input / output (Full-Dimensional MIMO), and full dimensional multiple input / output (FD-MIMO) are used in 5G communication systems to increase path loss mitigation and propagation distance of radio waves in the ultra-high frequency band. Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.In addition, in order to improve the network of the system, 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation The development of such technology is being done.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.In addition, in 5G systems, Hybrid FSK and QAM Modulation (FQAM) and sliding window superposition coding (SWSC), Advanced Coding Modulation (ACM), and FBMC (Filter Bank Multi Carrier) and NOMA are advanced access technologies. (non orthogonal multiple access), and sparse code multiple access (SCMA), and the like are being developed.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.Meanwhile, the Internet is evolving from a human-centered connection network in which humans create and consume information, and an Internet of Things (IoT) network that exchanges and processes information between distributed components such as things. The Internet of Everything (IoE) technology, which combines big data processing technology through connection with cloud servers and the like, is emerging. In order to implement the IoT, technical elements such as sensing technology, wired / wireless communication and network infrastructure, service interface technology, and security technology are required, and recently, a sensor network for connection between things, a machine to machine , M2M), Machine Type Communication (MTC), etc. are being studied. In an IoT environment, intelligent Internet technology (IT) services can be provided that collect and analyze data generated from connected objects to create new value in human life. IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.Accordingly, various attempts have been made to apply the 5G communication system to the IoT network. For example, technologies such as sensor network, machine to machine (M2M), machine type communication (MTC), and the like, are implemented by techniques such as beamforming, MIMO, and array antennas. It is. Application of cloud radio access network (cloud RAN) as the big data processing technology described above may be an example of convergence of 5G technology and IoT technology.
한편, 상술한 바와 같이 통신 시스템이 발전함에 따라 셀 측정 결과에 대한 정보를 수집하고 보고하는 과정에 대한 개선이 필요한 상황이다. 또한, 차량간 통신 서비스를 위한 요구사항과 사용사례를 지원하기 위한 효율적인 방안 또한 필요한 상황이다.On the other hand, as described above, as the communication system develops, it is necessary to improve the process of collecting and reporting information on cell measurement results. In addition, there is a need for an efficient plan to support requirements and use cases for inter-vehicle communication services.
본 개시의 목적은 차세대 이동 통신 시스템에서 셀 측정 결과의 수집 및 보고 과정을 개선함으로써 효율적인 셀 측정이 수행될 수 있도록 하는 것이다.An object of the present disclosure is to enable efficient cell measurement by improving the collection and reporting process of cell measurement results in a next generation mobile communication system.
또한, 본 개시는 차세대 이동 통신 시스템에서 새로운 V2X의 요구사항과 사용 사례(use case)를 만족하기 위해서 무결성 보호된 V2X 데이터를 지원하기 위하여, PPPI (ProSe Per Packet Integrity)를 정의하고 이에 따른 단말의 동작을 설계함으로써 다양한 V2X 서비스를 효율적으로 지원하고자 한다.In addition, the present disclosure defines PPSe (ProSe Per Packet Integrity) to support integrity-protected V2X data in order to satisfy the requirements and use cases of the new V2X in the next-generation mobile communication system and accordingly By designing the behavior, we want to support various V2X services efficiently.
상기와 같은 문제점을 해결하기 위한 일 실시 예에 따른 단말의 방법은, 기지국으로 RRC(radio resource control) 재개(resume)를 요청하는 제1메시지를 전송하는 단계, 기지국으로부터 RRC 재개를 지시하는 제2메시지를 수신하는 단계, 및 기지국으로 RRC 재개를 완료하는 제3메시지를 전송하는 단계를 포함하고, 제3 메시지는 단말이 RRC 비활성화 상태(RRC inactive state)에서 수행한 측정 결과를 저장하고 있음을 알리는 정보를 포함한다.According to an embodiment of the present disclosure, a method of a terminal according to an embodiment of the present disclosure may include transmitting a first message for requesting a radio resource control (RRC) resume to a base station; Receiving a message, and transmitting a third message to complete the RRC resumption to the base station, the third message indicating that the terminal stores the measurement results performed in the RRC inactive state (RRC inactive state) Contains information.
상기와 같은 문제점을 해결하기 위한 또 다른 실시 예에 따른 단말은, 신호를 송신 및 수신하도록 설정된 송수신부, 및 기지국으로 RRC(radio resource control) 재개(resume)를 요청하는 제1메시지를 전송하고, 기지국으로부터 RRC 재개를 지시하는 제2메시지를 수신하고, 기지국으로 RRC 재개를 완료하는 제3메시지를 전송하도록 설정된 제어부를 포함하고, 제3 메시지는 단말이 RRC 비활성화 상태(RRC inactive state)에서 수행한 측정 결과를 저장하고 있음을 알리는 정보를 포함한다.The terminal according to another embodiment for solving the above problems, the transmission and reception unit configured to transmit and receive a signal, and transmits a first message requesting the radio resource control (RRC) resume (resume) to the base station, And a control unit configured to receive a second message indicating the resumption of RRC from the base station, and transmit a third message for completing the resumption of the RRC to the base station, wherein the third message is performed by the terminal in an RRC inactive state. Contains information indicating that the measurement results are being stored.
상기와 같은 문제점을 해결하기 위한 또 다른 실시 예에 따른 기지국의 방법은, 단말로부터 RRC(radio resource control) 재개(resume)를 요청하는 제1메시지를 수신하는 단계, 단말로 RRC 재개를 지시하는 제2메시지를 전송하는 단계, 및 단말로부터 RRC 재개를 완료하는 제3메시지를 수신하는 단계를 포함하고, 제3 메시지는 단말이 RRC 비활성화 상태(RRC inactive state)에서 수행한 측정 결과를 저장하고 있음을 알리는 정보를 포함한다.According to another aspect of the present invention, there is provided a method of a base station, the method comprising: receiving a first message requesting a radio resource control (RRC) resume from a terminal; And transmitting a third message, and receiving a third message for completing RRC resumption from the terminal, wherein the third message stores a measurement result performed by the terminal in an RRC inactive state. Includes informed information.
상기와 같은 문제점을 해결하기 위한 또 다른 실시 예에 따른 기지국은, 신호를 송신 및 수신하도록 설정된 송수신부, 및 단말로부터 RRC(radio resource control) 재개(resume)를 요청하는 제1메시지를 수신하고, 단말로 RRC 재개를 지시하는 제2메시지를 전송하고, 단말로부터 RRC 재개를 완료하는 제3메시지를 수신하도록 설정된 제어부를 포함하고, 제3 메시지는 단말이 RRC 비활성화 상태(RRC inactive state)에서 수행한 측정 결과를 저장하고 있음을 알리는 정보를 포함한다.The base station according to another embodiment for solving the above problems, the transceiver unit configured to transmit and receive a signal, and receives a first message requesting the radio resource control (RRC) resume (resume) from the terminal, And a control unit configured to transmit a second message instructing the RRC resumption to the terminal and to receive a third message for completing the RRC resumption from the terminal, wherein the third message is performed by the terminal in an RRC inactive state. Contains information indicating that the measurement results are being stored.
상기와 같은 문제점을 해결하기 위한 또 다른 실시 예에 따른 단말의 방법은, 네트워크 엔티티로부터 V2X 관련 파라미터를 수신하는 단계, V2X 데이터 패킷을 생성하는 단계, V2X 관련 파라미터에 기초하여 V2X 데이터 패킷을 위한 무선 베어러를 결정하는 단계, V2X 데이터 패킷을 위한 무결성 보호(integrity protection)를 수행하는 단계 및 무결성 보호가 수행된 V2X 데이터 패킷을 수신 디바이스로 전송하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method of a terminal, comprising: receiving a V2X related parameter from a network entity, generating a V2X data packet, and wirelessly for a V2X data packet based on the V2X related parameter Determining a bearer, performing integrity protection for the V2X data packet, and transmitting the V2X data packet with integrity protection to the receiving device.
와 같은 문제점을 해결하기 위한 또 다른 실시 예에 따른 단말은, 신호를 송신 및 수신하도록 설정된 송수신부, 및 네트워크 엔티티로부터 V2X 관련 파라미터를 수신하고, V2X 데이터 패킷을 생성하고, V2X 관련 파라미터에 기초하여 V2X 데이터 패킷을 위한 무선 베어러를 결정하고, V2X 데이터 패킷을 위한 무결성 보호(integrity protection)를 수행하고, 무결성 보호가 수행된 V2X 데이터 패킷을 수신 디바이스로 전송하도록 설정된 제어부를 포함한다.The terminal according to another embodiment to solve the problem, such as receiving and receiving the V2X-related parameters from the transceiver configured to transmit and receive a signal, and the network entity, generates a V2X data packet, based on the V2X-related parameters And a control unit configured to determine a radio bearer for the V2X data packet, to perform integrity protection for the V2X data packet, and to transmit the V2X data packet with the integrity protection to the receiving device.
본 개시의 일 실시 예에 따르면, 차세대 이동 통신 시스템에서 셀 측정 정보의 수집 및 보고 절차가 개선되어 효율적인 셀 측정이 수행될 수 있다.According to an embodiment of the present disclosure, in the next generation mobile communication system, the collection and reporting procedure of cell measurement information may be improved, and thus efficient cell measurement may be performed.
본 개시의 또 다른 실시 예에 따르면, 차세대 이동 통신 시스템에서 다양한 V2X 서비스를 지원하기 위해 PPPI 를 정의할 수 있다. 이에 따라, PPPI 기반으로 V2X를 지원하는 단말이 V2X 서비스와 전송 방식에 따라 SLRB (Sidelink Radio Bearer carrying V2X sidelink communication data)를 선택하는 방법 및 PDCP PDU 포맷 결정 방법을 제안함으로써, 효율적으로 메시지를 송수신할 수 있다.According to another embodiment of the present disclosure, a PPPI may be defined to support various V2X services in a next generation mobile communication system. Accordingly, the terminal supporting the V2X based on PPPI selects the SLRB (Sidelink Radio Bearer carrying V2X sidelink communication data) and the PDCP PDU format determination method according to the V2X service and transmission method, thereby efficiently transmitting and receiving messages. Can be.
도 1a은 차세대 이동통신 시스템의 구조를 도시하는 도면이다.1A is a diagram illustrating the structure of a next generation mobile communication system.
도 1b는 차세대 이동통신 시스템에서 무선 접속 상태 천이를 설명하기 위한 도면이다.FIG. 1B is a diagram for explaining a state of wireless access state transition in a next generation mobile communication system.
도 1c는 본 실시예에서 셀 측정 정보를 수집 및 보고하는 기술을 설명하는 도면이다.1C is a diagram illustrating a technique of collecting and reporting cell measurement information in the present embodiment.
도 1d는 본 실시예에서 셀 측정 정보를 수집 및 보고하는 방법을 도시하는 도면이다.1D is a diagram illustrating a method of collecting and reporting cell measurement information in this embodiment.
도 1e는 본 실시예에서 셀 측정 정보를 수집 및 보고하는 동작의 흐름도이다.1E is a flowchart of an operation of collecting and reporting cell measurement information in this embodiment.
도 1f는 제 1-1 실시 예에서 셀 측정 정보를 수집 및 보고하는 단말 동작의 순서도이다.1F is a flowchart of an operation of collecting and reporting cell measurement information according to the embodiment 1-1.
도 1g는 제 1-1 실시 예에서 셀 측정 정보를 수집 및 보고하는 기지국 동작의 순서도이다.1G is a flowchart of an operation of a base station for collecting and reporting cell measurement information in the embodiment 1-1.
도 1h는 제 1-2 실시 예에서 셀 측정 정보를 수집 및 보고하는 단말 동작의 순서도이다.1H is a flowchart illustrating an operation of a terminal for collecting and reporting cell measurement information according to an embodiment 1-2.
도 1i는 제 1-2 실시 예에서 셀 측정 정보를 수집 및 보고하는 기지국 동작의 순서도이다.1I is a flowchart of an operation of a base station for collecting and reporting cell measurement information according to embodiments 1-2.
도 1j는 제 1-3 실시 예에서 셀 측정 정보를 수집 및 보고하는 동작의 흐름도이다.1J is a flowchart of an operation of collecting and reporting cell measurement information in embodiments 1-3;
도 1k는 본 실시예를 적용한 단말의 내부 구조를 도시하는 블록도이다.1K is a block diagram showing the internal structure of a terminal to which the embodiment is applied.
도 1l은 본 실시예에 따른 기지국의 구성을 나타낸 블록도이다.1L is a block diagram showing the configuration of a base station according to the present embodiment.
도 2a는 본 실시예가 적용될 수 있는 LTE 시스템의 구조를 도시하는 도면이다.2A is a diagram illustrating a structure of an LTE system to which an embodiment of the present invention can be applied.
도 2b는 본 실시예가 적용될 수 있는 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.2b is a diagram illustrating a radio protocol structure in an LTE system to which the present embodiment can be applied.
도 2c는 본 실시예가 적용될 수 있는 차세대 이동통신 시스템의 구조를 도시하는 도면이다.2C is a diagram illustrating the structure of a next generation mobile communication system to which the present embodiment can be applied.
도 2d는 본 실시예가 적용될 수 있는 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다.2d is a diagram illustrating a radio protocol structure of a next generation mobile communication system to which the present embodiment can be applied.
도 2e는 본 실시예가 적용되는 차세대 이동 통신 시스템에서 V2X 통신을 설명하는 도면이다.2E is a diagram illustrating V2X communication in the next generation mobile communication system to which the present embodiment is applied.
도 2f는 차세대 이동통신 시스템에서 서비스 별 자원 풀과 서비스 종류에 무관한 자원 풀이 공존할 때 mode 3로 동작하는 V2X 단말의 모니터링 및 데이터 전송 절차를 도시한 도면이다.FIG. 2F is a diagram illustrating a monitoring and data transmission procedure of a V2X terminal operating in mode 3 when a resource pool for each service and a resource pool irrespective of service type coexist in a next generation mobile communication system.
도 2g는 차세대 이동통신 시스템에서 서비스 별 자원 풀과 서비스 종류에 무관한 자원 풀이 공존할 때 mode 4로 동작하는 V2X 단말의 데이터 전송 절차를 도시한 도면이다.FIG. 2G illustrates a data transmission procedure of a V2X terminal operating in mode 4 when a resource pool for each service and a resource pool irrespective of service type coexist in a next generation mobile communication system.
도 2i는 본 실시예에 따른 단말의 블록 구성을 나타낸 도면이다.2i is a block diagram of a terminal according to the present embodiment.
도 2j는 본 실시예에 따른 기지국의 구성을 나타낸 블록도이다.2J is a block diagram showing the configuration of a base station according to the present embodiment.
이하, 첨부된 도면을 참조하여 본 개시의 바람직한 실시 예들을 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 또한 본 개시의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다.Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. At this time, it should be noted that the same components in the accompanying drawings are represented by the same reference numerals as possible. In addition, detailed descriptions of well-known functions and configurations that may blur the gist of the present disclosure will be omitted.
본 명세서에서 실시 예를 설명함에 있어서 본 개시이 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments herein, descriptions of technical contents that are well known in the technical field to which the present disclosure belongs and are not directly related to the present disclosure will be omitted. This is to more clearly communicate without obscure the subject matter of the present disclosure by omitting unnecessary description.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.For the same reason, in the accompanying drawings, some components are exaggerated, omitted or schematically illustrated. In addition, the size of each component does not fully reflect the actual size. The same or corresponding components in each drawing are given the same reference numerals.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 개시의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present disclosure, and methods of accomplishing the same will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present disclosure is not limited to the embodiments disclosed below, but may be implemented in various forms, and the present embodiments are merely provided to make the disclosure of the present disclosure complete and to provide general knowledge in the art to which the present disclosure belongs. It is provided to fully convey the scope of the disclosure to the person skilled in the art, and the present disclosure is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.At this point, it will be understood that each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s). Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.In addition, each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s). It should also be noted that in some alternative implementations, the functions noted in the blocks may occur out of order. For example, the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.In this case, the term '~ part' used in the present embodiment refers to software or a hardware component such as an FPGA or an ASIC, and '~ part' performs certain roles. However, '~' is not meant to be limited to software or hardware. May be configured to reside in an addressable storage medium or may be configured to play one or more processors. Thus, as an example, '~' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables. The functionality provided within the components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'. In addition, the components and '~' may be implemented to play one or more CPUs in the device or secure multimedia card.
<제1실시예>First Embodiment
도 1a은 차세대 이동통신 시스템의 구조를 도시하는 도면이다.1A is a diagram illustrating the structure of a next generation mobile communication system.
도 1a을 참조하면, 도시한 바와 같이 차세대 이동통신 시스템 (New Radio, NR)의 무선 액세스 네트워크는 차세대 기지국 (New Radio Node B, 이하 gNB)(1a-10) 과 AMF (1a-05, New Radio Core Network)로 구성된다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말)(1a-15)은 gNB (1a-10) 및 AMF (1a-05)를 통해 외부 네트워크에 접속한다.Referring to FIG. 1A, as shown, a radio access network of a next generation mobile communication system (New Radio, NR) includes a next generation base station (New Radio Node B, gNB) 1a-10 and an AMF 1a-05, New Radio. Core Network). The user terminal (New Radio User Equipment, NR UE or terminal) 1a-15 connects to the external network via gNB 1a-10 and AMF 1a-05.
도 1a에서 gNB는 기존 LTE 시스템의 eNB (Evolved Node B)에 대응된다. gNB는 NR UE와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다 (1a-20). 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 gNB (1a-10)가 담당한다. 하나의 gNB는 통상 다수의 셀들을 제어한다. 기존 LTE 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 칭한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. AMF (1a-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행한다. AMF는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, AMF이 MME (1a-25)와 네트워크 인터페이스를 통해 연결된다. MME는 기존 기지국인 eNB (1a-30)과 연결된다. LTE-NR Dual Connectivity을 지원하는 단말은 gNB뿐 아니라, eNB에도 연결을 유지하면서, 데이터를 송수신할 수 있다 (1a-35).In FIG. 1A, a gNB corresponds to an eNB (Evolved Node B) of an existing LTE system. The gNB is connected to the NR UE through a radio channel and can provide superior service than the existing Node B (1a-20). In the next generation mobile communication system, since all user traffic is serviced through a shared channel, an apparatus for scheduling by collecting state information such as buffer states, available transmit power states, and channel states of UEs is required. 1a-10). One gNB typically controls multiple cells. In order to implement ultra-high speed data transmission compared to the existing LTE, it may have more than the existing maximum bandwidth, and additionally beamforming technology may be combined by using orthogonal frequency division multiplexing (hereinafter, referred to as OFDM) as a wireless access technology. . In addition, an adaptive modulation & coding (AMC) scheme that determines a modulation scheme and a channel coding rate according to the channel state of the terminal is applied. The AMF 1a-05 performs functions such as mobility support, bearer setup, and QoS setup. The AMF is a device that is in charge of various control functions as well as mobility management function for the terminal and is connected to a plurality of base stations. In addition, the next-generation mobile communication system can be linked to the existing LTE system, the AMF is connected to the MME (1a-25) through a network interface. The MME is connected to the eNB 1a-30 which is an existing base station. The terminal supporting the LTE-NR Dual Connectivity may transmit and receive data while maintaining the connection to the eNB as well as the gNB (1a-35).
도 1b는 차세대 이동통신 시스템에서 무선 접속 상태 천이를 설명하기 위한 도면이다.FIG. 1B is a diagram for explaining a state of wireless access state transition in a next generation mobile communication system.
차세대 이동통신 시스템에서는 3 가지의 무선 접속 상태 (RRC state)를 가진다. 연결 모드 (RRC_CONNECTED, 1b-05)는 단말이 데이터를 송수신할 수 있는 무선 접속 상태이다. 대기 모드 (RRC_IDLE, 1b-30)는 단말이 자신에게 페이징이 전송되는지를 모니터링하는 무선 접속 상태이다. 상기 두 모드는 기존 LTE 시스템에도 적용되는 무선 접속 상태로, 상세 기술은 기존 LTE 시스템의 것과 동일하다. 차세대 이동통신 시스템에서는 신규로 비활성 (RRC_INACTIVE) 무선 접속 상태 (1b-15)가 정의되었다. 상기 무선 접속 상태에서는 UE context가 기지국과 단말에 유지되며, RAN 기반 페이징이 지원된다. 상기 신규 무선 접속 상태의 특징을 나열하면 하기와 같다.The next generation mobile communication system has three RRC states. The connected mode (RRC_CONNECTED, 1b-05) is a wireless connection state in which a terminal can transmit and receive data. The standby mode (RRC_IDLE, 1b-30) is a wireless access state in which the terminal monitors whether paging is transmitted to itself. The two modes are in a wireless access state applied to the existing LTE system, and the detailed technology is the same as that of the existing LTE system. In the next generation mobile communication system, a newly inactive (RRC_INACTIVE) radio access state (1b-15) is defined. In the radio access state, the UE context is maintained in the base station and the terminal, RAN-based paging is supported. The characteristics of the new wireless connection state are listed as follows.
- Cell re-selection mobility;Cell re-selection mobility;
- CN - NR RAN connection (both C/U-planes) has been established for UE;CN-NR RAN connection (both C / U-planes) has been established for UE;
- The UE AS context is stored in at least one gNB and the UE;The UE AS context is stored in at least one gNB and the UE;
- Paging is initiated by NR RAN;Paging is initiated by NR RAN;
- RAN-based notification area is managed by NR RAN;RAN-based notification area is managed by NR RAN;
- NR RAN knows the RAN-based notification area which the UE belongs to;NR RAN knows the RAN-based notification area which the UE belongs to;
신규 INACTIVE 무선 접속 상태는 특정 절차를 이용하여, 연결 모드 혹은 대기 모드로 천이할 수 있다. Connection activation에 따라 INACTIVE 모드에서 연결 모드로 전환되며, Connection inactivation 절차를 이용하여 연결 모드에서 INACTIVE 모드로 전환된다 (1b-10). 상기 Connection activation/inactivation 절차는 하나 이상의 RRC 메시지를 단말과 기지국 간 송수신되며, 하나 이상의 단계로 구성되는 것을 특징으로 한다. 역시 특정 절차에 따라 INACTIVE 모드에서 대기 모드로 전환 가능하다 (1b-20). 상기 언급된 특정 절차로는 특정 메시지 교환 혹은 타이머 기반 혹은 이벤트 기반 등 다양한 방법이 고려될 수 있다. 연결 모드과 대기 모드 간 전환은 기존의 LTE 기술을 따른다. 즉, connection establishment 혹은 release 절차를 통해, 상기 모드간 전환이 이루어진다 (1b-25).The new INACTIVE wireless connection state may transition to connected mode or standby mode using a specific procedure. The connection is switched from INACTIVE mode to connection mode according to the connection activation, and from the connection mode to the INACTIVE mode using the connection inactivation procedure (1b-10). The connection activation / inactivation procedure is one or more RRC messages transmitted and received between the terminal and the base station, characterized in that composed of one or more steps. It is also possible to switch from INACTIVE mode to standby mode according to a specific procedure (1b-20). As the specific procedure mentioned above, various methods such as specific message exchange or timer-based or event-based may be considered. The transition between connected and standby mode follows existing LTE technology. That is, switching between the modes is performed through a connection establishment or release procedure (1b-25).
도 1c는 본 개시에서 셀 측정 정보를 수집 및 보고하는 기술을 설명하는 도면이다.1C is a diagram illustrating a technique of collecting and reporting cell measurement information in the present disclosure.
망 구축 혹은 최적화 시, 이동통신 사업자는 통상 예상 서비스 영역에서의 신호 세기를 측정하고, 이를 근거로 서비스 영역 내의 기지국들을 배치 혹은 재조정하는 과정을 거친다. 사업자는 차량에 신호 측정 장비를 싣고, 상기 서비스 영역에서 셀 측정 정보를 수집하는데, 이는 많은 시간과 비용이 요구된다. 상기 프로세스는 일반적으로 차량을 활용하여, Drive Test라고 통용된다. 단말은 셀 간 이동시 셀 재선택 혹은 핸드오버, 서빙(serving) 셀 추가 등의 동작을 지원하기 위해, 기지국으로 신호를 측정할 수 있는 기능을 탑재하고 있다. 따라서, 상기 Drive Test 대신, 서비스 영역 내의 단말을 활용할 수 있는데, 이를 MDT (Minimization of Drive Test)라고 칭한다. 사업자는 네트워크의 여러 구성 장치들을 통해, 특정 단말들에게 MDT 동작을 설정할 수 있으며, 상기 단말들은 연결 모드 (RRC_Connected), 대기 모드 (RRC_Idle) 혹은 비활성 모드 (RRC_Inactive)에서 서빙 셀 및 주변 셀들로부터의 신호 세기 정보를 수집하여 저장한다. 이 외, 위치 정보, 시간 정보 및 신호 품질 정보 등 다양한 정보도 함께 저장한다. 이렇게 저장된 정보는 상기 단말들이 연결 모드에 있을 때, 네트워크로 보고될 수 있으며, 상기 정보는 특정 서버로 전달된다.When constructing or optimizing a network, a mobile communication provider usually measures signal strength in an expected service area, and then arranges or readjusts base stations in the service area based on this. The operator loads signal measuring equipment in a vehicle and collects cell measurement information in the service area, which requires a lot of time and money. The process is commonly referred to as Drive Test, utilizing a vehicle. In order to support operations such as cell reselection, handover, and adding a serving cell when moving between cells, the terminal is equipped with a function of measuring a signal to a base station. Accordingly, the terminal in the service area may be used instead of the drive test, which is called a minimization of drive test (MDT). The operator may set MDT operation to specific terminals through various components of the network, and the terminals may receive signals from serving cells and neighbor cells in a connected mode (RRC_Connected), a standby mode (RRC_Idle), or an inactive mode (RRC_Inactive). Collect and store intensity information. In addition, various information such as location information, time information, and signal quality information is also stored. The stored information may be reported to the network when the terminals are in the connected mode, and the information is transmitted to a specific server.
상기 MDT 동작은 크게 Immediate MDT와 Logged MDT로 분류된다.The MDT operation is classified into Immediate MDT and Logged MDT.
Immediate MDT는 수집한 정보를 바로 네트워크에 보고하는 특징으로 한다. 바로 보고해야 하므로, 연결 모드 단말만이 이를 수행할 수 있다. 통상, 핸드오버 및 서빙 셀 추가 등의 동작을 지원하기 위한 RRM measurement 과정을 재활용하며, 위치 정보, 시간 정보 등이 추가적으로 보고된다.Immediate MDT is characterized by directly reporting the collected information to the network. Since it should be reported immediately, only the connected mode terminal can perform this. Typically, the RRM measurement process is recycled to support operations such as handover and adding a serving cell, and location information and time information are additionally reported.
Logged MDT는 수집한 정보를 바로 네트워크로 보고하지 않고 저장하며, 이 후 단말이 연결 모드로 전환한 후, 상기 저장한 정보를 보고하는 것을 특징으로 한다. 통상 바로 네트워크로 보고할 수 없는 대기 모드의 단말이 이를 수행한다. 본 개시에서는 차세대 이동통신 시스템에서 도입된 비활성 모드의 단말은 Logged MDT을 수행하는 것을 특징으로 한다. 네트워크는 특정 단말이 연결 모드에 있을 때, Logged MDT 동작 수행을 위한 설정 정보를 상기 단말에게 제공하고, 상기 단말은 대기 모드 혹은 비활성 모드로 전환한 후, 설정된 정보를 수집 및 저장한다.Logged MDT stores the collected information without immediately reporting it to the network. After that, the terminal switches to the connected mode and reports the stored information. Usually, the terminal in the standby mode that cannot report directly to the network performs this. In the present disclosure, the terminal in the inactive mode introduced in the next generation mobile communication system is characterized by performing Logged MDT. When the specific terminal is in the connected mode, the network provides the terminal with configuration information for performing a Logged MDT operation, and the terminal collects and stores the configured information after switching to the standby mode or the inactive mode.
이를 정리하면, 아래의 표 1과 같다.In summary, it is shown in Table 1 below.
RRC stateRRC state
Immediate MDTImmediate MDT RRC_ConnectedRRC_Connected
Logged MDTLogged MDT RRC_Idle, RRC_InactiveRRC_Idle, RRC_Inactive
도 1d는 본 개시에서 셀 측정 정보를 수집 및 보고하는 방법을 도시하는 도면이다.1D is a diagram illustrating a method of collecting and reporting cell measurement information in this disclosure.
단말 (1d-05)은 대기 모드 혹은 비활성 모드 (1d-10)에서 연결모드 (1d-15)로 전환한다. 연결모드에서는 Immediate MDT 동작을 통해, MDT data을 수집하여 기지국에 보고한다. 연결 모드로 전환한 단말은 기지국으로부터 대기 모드 혹은 비활성 모드에서 수행하는 Logged MDT 설정 정보를 제공받는다 (1d-20). 상기 설정 정보는 소정의 RRC 메시지를 수납되어 단말에게 전송되며, 상기 메시지를 수신한 상기 단말은 제 1 타이머를 구동시킨다 (1d-55). 상기 단말은 상기 제 1 타이머가 만료될 때까지 대기 모드 혹은 비활성 모드 구간에서 Logged MDT 동작을 수행한다. 상기 제 1 타이머의 값은 상기 Logged MDT 설정 정보에 포함된다. 상기 단말이 대기 모드 혹은 비활성 모드로 전환하면, 상기 수신한 설정 정보에 따라, Logged MDT을 수행한다 (1d-25). 상기 단말은 설정된 주기, logging interval (1d-35)마다 수집한 소정의 정보들을 저장한다 (1d-30, 1d-45). 또한, 유효한 위치 정보 (1d-40)를 수집하였다면, 상기 정보도 저장해야 한다. 상기 위치 정보의 유효성 여부는 상기 정보를 수집한 후, 소정의 시간 (1d-50)이 지나지 않으면 유효하다고 판단한다. 상기 소정의 시간은 상기 logged interval 보다 짧거나 동일하다. 상기 제 1 타이머가 아직 만료되기 전이라도, 상기 단말은 연결 모드로 전환 시 수행 중이던 Logged MDT 동작을 일시 중지한다 (1d-60). 그러나, 상기 제 1 타이머는 연결 모드 구간에서도 중지하지 않고, 계속 구동된다. 즉, 상기 제 1 타이머는 RRC state가 변경되는 것과는 무관하게 계속 구동된다. 다만, MDT data을 저장하는 단말 메모리가 부족하여, 더 이상 저장하지 못할 때, 혹은 상기 Logged MDT 설정 정보가 해제될 때, 상기 제 1 타이머는 중지된다. 상기 Logged MDT 설정 정보가 해제되는 경우는 서빙 RAT 혹은 다른 RAT에서 다른 Logged MDT 설정 정보가 제공되거나, 상기 단말이 detach 혹은 전원이 끊어질 때이다. 상기 단말은 연결 성립 과정 (RRC Connection Establishment) 혹은 연결 재시작 과정 (RRC Connection Resume) 중에, 소정의 RRC 메시지를 이용하여 자신이 저장하고 있는 수집 정보 (MDT data)를 가지고 있음을 기지국에 보고한다 (1d-65). 상기 연결 재시작 과정이란 단말이 비활성 모드에서 연결 모드로 전환하는 과정이다. 하기와 같이, 통상 3단계의 과정으로 구성되며, 3 종류의 RRC 메시지가 이용된다.The terminal 1d-05 switches from the standby mode or the inactive mode 1d-10 to the connected mode 1d-15. In the connected mode, MDT data is collected and reported to the base station through Immediate MDT operation. The UE that has switched to the connected mode is provided with the Logged MDT configuration information performed in the standby mode or the inactive mode from the base station (1d-20). The configuration information is stored in a predetermined RRC message is transmitted to the terminal, the terminal receiving the message drives the first timer (1d-55). The terminal performs a Logged MDT operation in a standby mode or an inactive mode interval until the first timer expires. The value of the first timer is included in the Logged MDT configuration information. When the terminal switches to the standby mode or the inactive mode, Logged MDT is performed according to the received configuration information (1d-25). The terminal stores predetermined information collected every set period and logging interval (1d-35) (1d-30, 1d-45). In addition, if valid location information (1d-40) has been collected, the information must also be stored. Whether the location information is valid is determined to be valid after a predetermined time 1d-50 after collecting the information. The predetermined time is shorter or equal to the logged interval. Even before the first timer expires, the terminal temporarily suspends the Logged MDT operation that was being performed when switching to the connected mode (1d-60). However, the first timer does not stop even in the connected mode period and continues to be driven. That is, the first timer continues to run regardless of the change in the RRC state. However, when the terminal memory for storing the MDT data is insufficient and cannot be stored anymore, or when the Logged MDT configuration information is released, the first timer is stopped. When the Logged MDT configuration information is released, other Logged MDT configuration information is provided from a serving RAT or another RAT, or the terminal is detached or powered off. The UE reports to the base station that it has collected information (MDT data) that it stores using a predetermined RRC message during an RRC Connection Establishment or RRC Connection Resume (1d). -65). The connection restart process is a process in which the terminal switches from the inactive mode to the connected mode. As follows, it is generally composed of three steps, and three types of RRC messages are used.
- 1 단계: 단말이 기지국에게 RRC Resume Request 메시지 전송Step 1: UE sends an RRC Resume Request message to the base station
- 2 단계: 기지국이 단말에게 RRC Resume 메시지 전송Step 2: the base station transmits an RRC Resume message to the terminal
- 3 단계: 단말이 기지국에게 RRC Resume Complete 메시지 전송Step 3: UE sends an RRC Resume Complete message to the base station
Resume의 목적에 따라 2 단계로 구성될 수도 있다. 일례로 RNA update을 위한 Resume 과정은,Depending on the purpose of the resume may be composed of two steps. For example, the Resume process for RNA update,
- 1 단계: 단말이 기지국에게 RRC Resume Request 메시지 전송Step 1: UE sends an RRC Resume Request message to the base station
- 2 단계: 기지국이 단말에게 RRC Resume 메시지 전송Step 2: the base station transmits an RRC Resume message to the terminal
위와 같이 구성될 수 있다. 상세한 설명은 후술한다. 단말은 상기 수집 정보를 가지고 있음을 지시하는 정보는 상기 연결 성립 과정 혹은 연결 재시작 과정 외, 연결 재성립 과정 (RRC Connection Reestablishment)와 핸드오버 과정 중에도 타겟 기지국에 보고한다. 상기 Logged MDT가 설정은 되었으나, 아직 수집하여 저장한 정보가 없다면, 상기 보고를 생략한다. 상기 보고를 수신한 상기 기지국은 필요 시 상기 단말이 저장하고 있는 MDT data의 보고를 요청할 수 있다. 보고되지 않은 MDT data는 상기 단말이 소정의 시간 동안 계속 저장하고 있어야 한다. 상기 단말이 다시 대기 모드 혹은 비활성 모드로 전환되고, 아직 상기 제 1 타이머가 만료되지 않았다면, 다시 Logged MDT 동작을 재시작한다 (1d-70). 만약 상기 제 1 타이머가 만료되면, Logged MDT 동작을 중지한다 (1d-75). 상기 동작을 중지한 상기 단말은 제 2 타이머를 구동시키며 (1d-80), 상기 타이머가 만료되기 전까지 저장한 MDT data을 유지한다. 상기 타이머가 만료된 후, 저장 중인 MDT data을 삭제할지 여부는 단말 구현으로 결정된다. 상기 제 2 타이머의 값은 상기 Logged MDT 설정 정보에 포함되거나, 설정되지 않고 미리 정의된 값이 적용된다. 상기 단말이 다시 연결 모드로 전환되면, 자신이 저장하고 있는 수집 정보 (MDT data)를 가지고 있음을 기지국에 보고한다 (1d-85). 이번에는 기지국이 소정의 RRC 메시지를 이용하여, 상기 단말이 저장하고 있는 MDT data의 보고를 요청한다 (1d-90). 이에 상기 단말은 소정의 RRC 메시지에 저장 중인 MDT data을 수납하고, 상기 메시지를 상기 기지국에 보고한다 (1d-95).It can be configured as above. Detailed description will be described later. Information indicating that the terminal has the collection information is reported to the target base station during the RRC connection reestablishment and handover process, in addition to the connection establishment process or the connection restart process. If the Logged MDT is set but there is no information collected and stored yet, the report is omitted. The base station receiving the report may request a report of the MDT data stored in the terminal, if necessary. The unreported MDT data should be continuously stored by the terminal for a predetermined time. If the terminal is switched to the standby mode or inactive mode again, and the first timer has not yet expired, the Logged MDT operation is restarted again (1d-70). If the first timer expires, the Logged MDT operation stops (1d-75). The terminal that has stopped the operation drives the second timer (1d-80) and maintains the stored MDT data until the timer expires. After the timer expires, it is determined by the terminal implementation whether to delete the stored MDT data. The value of the second timer is included in the Logged MDT configuration information or is not set and a predefined value is applied. When the terminal is switched to the connected mode again, it reports to the base station that it has the collected information (MDT data) that it stores (1d-85). This time, the base station requests a report of the MDT data stored by the terminal using a predetermined RRC message (1d-90). Accordingly, the terminal stores MDT data stored in a predetermined RRC message and reports the message to the base station (1d-95).
도 1e는 본 개시에서 셀 측정 정보를 수집 및 보고하는 동작의 흐름도이다.1E is a flowchart of an operation of collecting and reporting cell measurement information in this disclosure.
단말 (1e-05)은 기지국 (1e-10)과 연결을 성립한다 (1e-15). 상기 단말은 상기 기지국에게 단말 능력 정보를 제공하며 (1e-20), 자신이 MDT 동작을 지원하는지 여부 및 어떤 주파수 측정할 수 있는지 여부를 지시할 수 있다. 상기 기지국은 Logged MDT 동작을 수행하기 위해 필요한 설정 정보를 소정의 RRC 메시지에 수납하여 상기 단말에게 전송한다 (1e-25). 일례로, 상기 설정 정보는 하기의 정보 중 적어도 하나를 포함한다.The terminal 1e-05 establishes a connection with the base station 1e-10 (1e-15). The terminal provides the terminal capability information to the base station (1e-20) and may indicate whether it supports the MDT operation and what frequency can be measured. The base station stores the configuration information necessary to perform the Logged MDT operation in a predetermined RRC message and transmits it to the terminal (1e-25). In one example, the setting information includes at least one of the following information.
- Trace Reference 정보-Trace Reference Information
- Trace Recording Session Reference 정보-Trace Recording Session Reference information
- TCE (Trace Collection Entity) ID 정보: 기지국이 단말로부터 보고받은 MDT data 정보를 상기 TCE ID로 지정되는 데이터 서버로 전송한다.TCE (Trace Collection Entity) ID information: The base station transmits the MDT data information reported from the terminal to the data server designated by the TCE ID.
- 절대 시간 정보 (Absolute Time): Logged MDT 설정 정보를 제공하는 현재 셀에서의 절대 시간Absolute Time: Absolute time in the current cell providing Logged MDT configuration information.
- Area Configuration: Logged MDT 동작을 통해, 측정 정보를 수집하고 저장할 수 있는 영역 정보로 셀 단위로 지시된다. 또한 측정 정보를 수집해야 하는 RAT 정보를 포함할 수도 있다. 상기 RAT 정보에 수록된 리스트는 Black list거나 혹은 White List이다. Black list라면, 상기 리스트에 포함되지 않은 RAT에 대해서는 셀 측정 정보를 수집한다. White List라면, 상기 리스트에 포함되지 않은 RAT에 대해서는 셀 측정 정보를 수집하지 않는다.Area Configuration: Through Logged MDT operation, area information that can collect and store measurement information is indicated by cell unit. It may also include RAT information for which measurement information should be collected. The list included in the RAT information is a black list or a white list. In the black list, cell measurement information is collected for RATs not included in the list. If it is a white list, cell measurement information is not collected for RATs not included in the list.
- Logging Duration: 상기 제 1 타이머의 값으로, 상기 타이머가 구동 중일 때, 대기 모드 혹은 비활성 모드에서 Logged MDT 동작을 수행한다.Logging Duration: A value of the first timer, when the timer is running, performs a Logged MDT operation in a standby mode or an inactive mode.
- Logging Interval: 수집한 정보를 저장하는 주기이다.-Logging Interval: It is a cycle to save collected information.
- plmn-IdentityList: PLMN 리스트 정보로, 상기 Logged MDT 동작 수행 뿐 아니라, MDT data의 저장 여부 보고 및 MDT data 보고를 할 수 있는 PLMN 정보를 수납한다.plmn-IdentityList: PLMN list information, which stores PLMN information for reporting whether to store the MDT data and reporting MDT data as well as performing the logged MDT operation.
- 대기 모드 혹은 비활성 모드 혹은 둘 다에서 Logged MDT 동작을 수행하는지 여부를 지시하는 지시자. 상기 지시자로 Logged MDT 동작을 수행하는 RRC state을 지시할 수도 있으며, 혹은 상기 지시자 없이, 항상 대기 모드와 비활성 모드에서 Logged MDT 동작을 수행한다고 정의할 수 있다. 단말은 상기 지시자가 지시하는 RRC state에서만 Logged MDT 동작을 수행한다.Indicator indicating whether to perform Logged MDT operation in standby mode or inactive mode, or both. The indicator may indicate an RRC state for performing a Logged MDT operation or may be defined to always perform a Logged MDT operation in a standby mode and an inactive mode without the indicator. The UE performs the Logged MDT operation only in the RRC state indicated by the indicator.
- 빔 레벨 측정 정보를 수집 및 저장할지 여부를 지시하는 지시자. 차세대 이동통신 시스템에서는 빔 안테나를 적용할 수 있다. 상기 지시자 없이, 빔 기반 동작을 수행하는 주파수에 대해서는 항상 빔 레벨 측정 측정을 수집하고 저장한다고 정의할 수 있다.An indicator indicating whether to collect and store beam level measurement information. In the next generation mobile communication system, a beam antenna may be applied. Without the indicator, it can be defined to always collect and store beam level measurement measurements for frequencies that perform beam based operations.
- 수집 혹은 저장하는 최대 빔 수 정보, 및 저장하는 빔의 최소 신호 세기 정보. 단말은 상기 최소 신호 세기보다 약한 빔의 정보의 저장은 생략한다. 단말은 모든 빔들이 상기 설정된 최소 신호 값보다 약하다면, 그 중 가장 센 신호 세기를 가진 빔 정보 하나를 저장하거나, 혹은 모든 빔들이 상기 설정된 최소 신호 값보다 약하다는 지시자를 포함시킬 수 있다.Information on the maximum number of beams to be collected or stored, and information on the minimum signal strength of beams to be stored. The terminal omits the storage of beam information weaker than the minimum signal strength. If all beams are weaker than the set minimum signal value, the terminal may store one beam information having the strongest signal strength among them, or may include an indicator that all beams are weaker than the set minimum signal value.
- 2 단계 재시작 과정 (RRC Resume)에서 MDT retrieval 동작을 트리거할 수 있는지 여부를 지시하는 지시자Indicator indicating whether the MDT retrieval action can be triggered during a two-step restart process (RRC Resume)
상기 Logged MDT 설정 정보를 수신한 상기 단말은 제 1 타이머를 구동시킨다 (1e-30). 상기 제 1 타이머의 값은 상기 Logging Duration의 값과 동일하게 설정된다. 상기 기지국은 RRC Release 메시지를 이용하여, 상기 단말을 대기 모드 혹은 비활성 모드로 전환시킨다 (1e-35). 어떤 RRC state로 전환시키냐에 따라, 상기 RRC Release 메시지에는 상기 RRC state에서의 동작을 위한 설정 정보가 수납된다. 상기 단말은 상기 제 1 타이머가 구동 중이라면, 대기 모드 혹은 비활성 모드에서 Logged MDT을 수행한다 (1e-40). 서빙 셀 및 주변 셀들의 신호 세기를 측정하고, 위치 정보를 획득한다. 빔 레벨 측정이 설정되면, 서빙셀 및 인접 셀에서 상기 설정된 최소값보다 큰 빔에 대한 신호 세기 값을 수집하여 저장한다. 저장할 수 있는 최대 빔의 수도 설정되거나 혹은 미리 정의되어 있다. 상기 신호 세기란 RSRP 혹은 RSRQ 혹은 SINR을 의미한다. 상기 수집된 정보를 상기 Logged Interval 주기마다 저장한다. 상기 주기마다 저장되는 각 log 정보에는 상기 저장된 정보가 대기 모드에서 수집된 것인지 혹은 비활성 모드에서 수집된 것인지를 지시하는 지시자가 포함된다. 혹은 모드가 전환되는 최초 log마다 상기 지시자가 포함될 수도 있다. 이는 상기 지시자로 인한 시그널링 오버헤드를 최소화할 수 있다. 상기 제 1 타이머가 만료되면 (1e-45), 상기 Logged MDT 동작을 중지한다 (1e-50).The terminal receiving the Logged MDT configuration information drives the first timer (1e-30). The value of the first timer is set equal to the value of the logging duration. The base station switches the terminal to a standby mode or an inactive mode using an RRC Release message (1e-35). According to which RRC state to switch to, the RRC Release message contains configuration information for operation in the RRC state. If the first timer is running, the terminal performs Logged MDT in a standby mode or an inactive mode (1e-40). The signal strength of the serving cell and neighboring cells is measured, and location information is obtained. When the beam level measurement is set, the signal strength value for the beam larger than the set minimum value is collected and stored in the serving cell and the adjacent cell. The maximum number of beams that can be stored is also set or predefined. The signal strength means RSRP or RSRQ or SINR. The collected information is stored every Logged Interval period. Each log information stored in each cycle includes an indicator indicating whether the stored information is collected in a standby mode or in an inactive mode. Alternatively, the indicator may be included for each initial log of mode switching. This can minimize signaling overhead due to the indicator. When the first timer expires (1e-45), the Logged MDT operation is stopped (1e-50).
만약 상기 단말이 상기 RRC Release 메시지에 의해 비활성 모드에 있고, 기지국으로부터 RAN 혹은 CN 페이징을 수신하거나 혹은 MO 데이터 전송이 활성화된 경우에는, 상기 단말은 비활성 모드에서 연결 모드로의 전환을 위한 Resume 과정을 초기화한다. 본 개시에서는 단말은 RRC Resume Request 혹은 RRC Resume Complete 메시지에 자신이 저장하고 있는 MDT data가 있는지 여부를 지시하는 제 1 지시자를 수납하는 것을 특징으로 한다. 일례로, 상기 Resume 과정이 RNA update 목적으로 트리거되어 2 단계일 때, 상기 제 1 지시자는 RRC Resume Request 메시지에 수납된다. 그렇지 않고, 상기 Resume 과정이 데이터 전송을 위한 연결 모드 전환이 목적이라면, 상기 과정은 3 단계로 구성되며, 상기 제 1 지시자는 RRC Resume Complete 메시지에 수납된다. 상기 RRC Resume Request 메시지에 응답하여, 상기 기지국은 RRC Resume 메시지를 상기 단말에게 전송한다. 만약 상기 RRC Resume Request 메시지가 상기 제 1 지시자를 수납하고 (1e-55), 상기 기지국이 상기 MDT data에 대해 보고받기를 원한다면, 상기 기지국은 상기 RRC Resume 메시지 (1e-60)에 상기 MDT data에 대한 보고를 요청하는 지시자를 포함시키거나, 혹은 만약 2 단계 Resume 이라면, 상기 단말에게 연결 모드로 전환하라는 지시자를 포함시킨다. 또한, 연결 모드로의 전환을 위해 필요한 설정 정보를 상기 RRC Resume 메시지에 수납한다. 상기 지시자를 수신한 상기 단말은 연결 모드 전환을 위해, 설령 2 단계의 Resume 과정으로 RRC Resume Request 메시지를 트리거하였더라도, 3 단계의 Resume 과정으로 전환한다. 3 단계 Resume 과정이라면, 상기 제 1 지시자는 RRC Resume Complete 메시지에 수납된다 (1e-65). 상기 기지국은 상기 RRC Resume Complete 메시지를 수신한 이 후, 소정의 RRC 메시지를 이용하여, MDT data의 보고를 상기 단말에게 요청한다 (1e-70). 이에 상기 단말은 소정의 RRC 메시지를 이용하여, 저장하고 있는 MDT data을 상기 기지국에게 보고한다 (1e-75).If the UE is in an inactive mode by the RRC Release message, and receives RAN or CN paging from the base station or if MO data transmission is activated, the UE performs a resume process for switching from the inactive mode to the connected mode. Initialize According to the present disclosure, the terminal may store a first indicator indicating whether there is MDT data stored in the RRC Resume Request or RRC Resume Complete message. For example, when the Resume process is triggered for the purpose of RNA update and is in the second step, the first indicator is stored in an RRC Resume Request message. Otherwise, if the resume process is to change the connection mode for data transmission, the process consists of three steps, and the first indicator is stored in the RRC Resume Complete message. In response to the RRC Resume Request message, the base station transmits an RRC Resume message to the terminal. If the RRC Resume Request message accommodates the first indicator (1e-55), and the base station wants to receive a report on the MDT data, the base station transmits the MDT data to the RRC Resume message (1e-60). It includes an indicator requesting a report for, or if the second stage Resume, the terminal includes an indicator to switch to the connected mode. Also, setting information necessary for switching to the connected mode is stored in the RRC Resume message. The terminal, having received the indicator, switches to the three-stage Resume process even if the RRC Resume Request message is triggered by the two-stage Resume process. If it is a three-step resume process, the first indicator is stored in the RRC Resume Complete message (1e-65). After receiving the RRC Resume Complete message, the base station requests a report of MDT data to the terminal using a predetermined RRC message (1e-70). Accordingly, the terminal reports the stored MDT data to the base station using a predetermined RRC message (1e-75).
만약 상기 단말이 상기 RRC Release 메시지에 의해 대기 모드에 있고, 기지국으로부터 CN 페이징을 수신하거나 혹은 MO 데이터 전송이 활성화된 경우에는, 상기 단말은 대기 모드에서 연결 모드로의 전환을 위한 establishment 과정을 초기화한다. 상기 establishment 과정은,If the terminal is in the standby mode by the RRC Release message and receives CN paging from the base station or if the MO data transmission is activated, the terminal initiates the establishment process for switching from the standby mode to the connected mode. . The establishment process,
- 1 단계: 단말이 기지국에게 RRC Connection Request 메시지 전송Step 1: UE sends an RRC Connection Request message to the base station
- 2 단계: 기지국이 단말에게 RRC Setup 메시지 전송Step 2: the base station transmits an RRC setup message to the terminal
- 3 단계: 단말이 기지국에게 RRC Setup Complete 메시지 전송Step 3: UE sends an RRC Setup Complete message to the base station
위와 같이 구성된다. 상기 단말은 상기 RRC Setup Complete 메시지에 자신이 저장하고 있는 MDT data가 있음을 지시하는 지시자를 포함시킨다. 상기 RRC Setup Complete 메시지를 수신한 상기 기지국은 필요 시, 소정의 RRC 메시지를 이용하여, 상기 MDT data의 보고를 요청한다. 상기 요청을 수신한 상기 단말은 소정의 RRC 메시지를 이용하여, 상기 MDT data을 보고한다.It is configured as above. The terminal includes an indicator indicating that there is MDT data stored in the RRC Setup Complete message. Upon receipt of the RRC Setup Complete message, the base station requests a report of the MDT data using a predetermined RRC message when necessary. The terminal receiving the request reports the MDT data using a predetermined RRC message.
본 개시에서의 제 1-1 실시 예에서는 2 혹은 3 단계 Resume 과정에서 제 1 지시자를 포함시킬 수 있다. 2 단계 Resume 과정에서 Resume Request 메시지에 제 1 지시자가 수납된다면, 기지국 판단에 따라, MDT retrieval을 위해, 3 단계 Resume 과정으로 전환된다. 제 1-2 실시 예에서는 3 단계 Resume 과정에서만 제 1 지시자를 포함시키는 것을 특징으로 한다. 즉, 제 1-2 실시 예에서는 2 단계 Resume 과정에서의 RRC Resume Request 메시지에 제 1 지시자를 포함시키지 않고, RRC Resume Complete 메시지에만 제 1 지시자를 포함시킬 수 있다. 따라서, RNA update을 위해, 2 단계 Resume 과정이 트리거되었다면, 상기 단말은 MDT retrieval을 수행할 수 없다. 제 1-3 실시 예에서는 Resume 과정이 실패할 경우 이를 차후에 보고하는 방법을 제안한다.In the first embodiment of the present disclosure, the first indicator may be included in a two or three step resume process. If the first indicator is stored in the Resume Request message in the two-stage resume process, it is switched to the three-stage resume process for MDT retrieval according to the determination of the base station. In the first and second embodiments, the first indicator is included only in the three-step resume process. That is, in the first and second embodiments, the first indicator may be included only in the RRC Resume Complete message without including the first indicator in the RRC Resume Request message during the two-step resume process. Therefore, for the RNA update, if the two-step Resume process is triggered, the terminal cannot perform the MDT retrieval. In the first to third embodiments, a method of subsequently reporting a failure of the resume process is proposed.
도 1f는 제 1-1 실시 예에서 셀 측정 정보를 수집 및 보고하는 단말 동작의 순서도이다.1F is a flowchart of an operation of collecting and reporting cell measurement information according to the embodiment 1-1.
1f-01 단계에서 단말은 기지국으로부터 Logged MDT 설정 정보를 수신한다. 상기 설정 정보에는 대기 모드 혹은 비활성 모드에서 Logged MDT 동작을 수행하기 위해 필요한 정보를 포함한다.In step 1f-01, the terminal receives Logged MDT configuration information from the base station. The configuration information includes information necessary for performing a logged MDT operation in a standby mode or an inactive mode.
1f-03 단계에서 상기 단말은 상기 기지국으로부터 RRC Release 메시지를 수신하고, 비활성 모드로 전환한다.In step 1f-03, the UE receives an RRC Release message from the base station and switches to an inactive mode.
1f-05 단계에서 상기 단말은 상기 Logged MDT 설정 정보에 따라, 셀 측정 정보와 기타 부가 정보들을 수집하여, 저장한다.In step 1f-05, the terminal collects and stores cell measurement information and other additional information according to the Logged MDT configuration information.
1f-10 단계에서 상기 단말은 2 단계 혹은 3 단계 Resume 과정을 트리거한다. 2 단계 Resume 과정은 RNA update 일 때 주로 트리거된다. 이 때, 상기 단말은 통상 기지국으로부터 Resume 메시지를 수신한 후, 다시 비활성 모드로 전환된다. 3 단계 Resume 과정은 주로 데이터 전송을 위해, 연결 모드로 전환될 때 트리거된다.In step 1f-10, the UE triggers a step 2 or step 3 resume process. The two stage Resume process is triggered mainly during RNA updates. In this case, the terminal normally receives a Resume message from the base station, and then switches back to inactive mode. The three-step resume process is triggered when the device switches to connected mode, primarily for data transfer.
1f-15 단계에서 만약 2 단계 Resume 과정이라면, 상기 단말은 RRC Resume Request 메시지에 자신이 MDT data을 가지고 있음을 지시하는 지시자를 수납한다. 그리고, 상기 메시지를 상기 기지국에 전송한다.In step 1f-15, if the step 2 is a resume process, the UE stores an indicator indicating that it has MDT data in the RRC Resume Request message. Then, the message is transmitted to the base station.
1f-20 단계에서 상기 단말은 상기 기지국으로부터 MDT data의 보고를 요청하는 지시자 혹은 연결 모드로 전환하라는 지시자를 포함한 RRC Resume 메시지를 수신한다. 본 개시에서는 RNA update을 위해, 2 단계 Resume 과정이 트리거되어도, 기지국이 요청할 경우, 3 단계 Resume 과정으로 전환되는 것을 특징으로 한다. 만약 상기 메시지에 상기 지시자가 포함되어 있지 않다면, 상기 2 단계 Resume 과정을 종료한다.In step 1f-20, the UE receives an RRC Resume message including an indicator requesting report of MDT data or an indicator to switch to a connected mode from the base station. In the present disclosure, even if the two-step Resume process is triggered for the RNA update, when the base station requests, it is characterized in that the conversion to the three-step Resume process. If the indicator is not included in the message, the two-step resume process ends.
1f-23 단계에서 상기 단말은 상기 기지국으로부터 MDT data의 보고를 요청하는 소정의 RRC 메시지를 수신한다.In step 1f-23, the terminal receives a predetermined RRC message requesting the report of MDT data from the base station.
1f-25 단계에서 상기 단말은 MDT data를 포함한 소정의 RRC 메시지를 상기 기지국에게 보고한다.In step 1f-25, the terminal reports a predetermined RRC message including MDT data to the base station.
1f-30 단계에서 만약 3 단계 Resume 과정이라면, 상기 단말은 RRC Resume Complete 메시지에 자신이 MDT data을 가지고 있음을 지시하는 지시자를 수납한다. 그리고, 상기 메시지를 상기 기지국에 전송한다.In step 1f-30, if the step 3 is a resume process, the UE stores an indicator indicating that it has MDT data in the RRC Resume Complete message. Then, the message is transmitted to the base station.
1f-35 단계에서 상기 단말은 상기 기지국으로부터 MDT data의 보고를 요청하는 소정의 RRC 메시지를 수신한다면, 이에 응답하여, MDT data를 포함한 소정의 RRC 메시지를 상기 기지국에게 보고한다.In step 1f-35, if the terminal receives a predetermined RRC message requesting the report of the MDT data from the base station, in response, the terminal reports the predetermined RRC message including the MDT data to the base station.
하나의 대안으로, 1f-20 단계에서 상기 단말이 상기 기지국으로부터 MDT data의 보고를 요청하는 지시자를 포함한 RRC Resume 메시지를 수신한다면, 상기 단말은 RRC Resume Complete 메시지에 저장하고 있는 MDT data을 수납하여, 상기 기지국에게 보고한다.Alternatively, if the terminal receives an RRC Resume message including an indicator requesting the report of the MDT data from the base station in step 1f-20, the terminal stores the MDT data stored in the RRC Resume Complete message, Report to the base station.
도 1g는 제 1-1 실시 예에서 셀 측정 정보를 수집 및 보고하는 기지국 동작의 순서도이다.1G is a flowchart of an operation of a base station for collecting and reporting cell measurement information in the embodiment 1-1.
1g-05 단계에서 기지국은 특정 단말로부터 수신한 제 1 지시자를 포함한 RRC 메시지가 어떤 것인지 판단한다.In step 1g-05, the base station determines which RRC message including the first indicator received from the specific terminal.
1g-10 단계에서 만약 상기 제 1 지시자를 포함한 RRC 메시지가 RRC Resume Request 메시지라면, 상기 기지국은 상기 단말로부터 MDT data을 요청할지 여부를 판단한다.In step 1g-10, if the RRC message including the first indicator is an RRC Resume Request message, the base station determines whether to request MDT data from the terminal.
1g-15 단계에서 상기 기지국은 RRC Resume 메시지에 MDT 보고를 요청하는 지시자 혹은 연결 모드로 전환을 지시하는 지시자를 수납시킨 후, 상기 메시지를 상기 단말에게 전송한다.In step 1g-15, the base station stores an indicator for requesting the MDT report or an indicator for switching to the connected mode in the RRC Resume message, and then transmits the message to the terminal.
1g-20 단계에서 상기 기지국은 상기 단말로부터 RRC Resume Request 메시지를 수신한다.In step 1g-20, the base station receives an RRC Resume Request message from the terminal.
1g-25 단계에서 상기 기지국은 MDT data의 보고를 요청하는 소정의 RRC 메시지를 상기 단말에게 전송한다.In step 1g-25, the base station transmits a predetermined RRC message requesting the report of MDT data to the terminal.
1g-30 단계에서 상기 기지국은 상기 단말로부터 MDT data을 포함한 소정의 RRC 메시지를 수신한다.In step 1g-30, the base station receives a predetermined RRC message including MDT data from the terminal.
1g-35 단계에서 만약 상기 제 1 지시자를 포함한 RRC 메시지가 RRC Resume Request 메시지라면, 상기 기지국은 상기 단말로부터 MDT data을 요청할지 여부를 판단한다.In step 1g-35, if the RRC message including the first indicator is an RRC Resume Request message, the base station determines whether to request MDT data from the terminal.
1g-40 단계에서 상기 기지국은 MDT data의 보고를 요청하는 소정의 RRC 메시지를 상기 단말에게 전송한다.In step 1g-40, the base station transmits a predetermined RRC message requesting the report of MDT data to the terminal.
1g-45 단계에서 상기 기지국은 상기 단말로부터 MDT data을 포함한 소정의 RRC 메시지를 수신한다.In step 1g-45, the base station receives a predetermined RRC message including MDT data from the terminal.
도 1h는 제 1-2 실시 예에서 셀 측정 정보를 수집 및 보고하는 단말 동작의 순서도이다.1H is a flowchart illustrating an operation of a terminal for collecting and reporting cell measurement information according to an embodiment 1-2.
1h-01 단계에서 단말은 기지국으로부터 Logged MDT 설정 정보를 수신한다. 상기 설정 정보에는 대기 모드 혹은 비활성 모드에서 Logged MDT 동작을 수행하기 위해 필요한 정보를 포함한다.In step 1h-01, the terminal receives Logged MDT configuration information from the base station. The configuration information includes information necessary for performing a logged MDT operation in a standby mode or an inactive mode.
1h-03 단계에서 상기 단말은 상기 기지국으로부터 RRC Release 메시지를 수신하고, 비활성 모드로 전환한다.In step 1h-03, the terminal receives the RRC Release message from the base station, and switches to the inactive mode.
1h-05 단계에서 상기 단말은 상기 Logged MDT 설정 정보에 따라, 셀 측정 정보와 기타 부가 정보들을 수집하여, 저장한다.In step 1h-05, the terminal collects and stores cell measurement information and other additional information according to the Logged MDT configuration information.
1h-10 단계에서 상기 단말은 2 단계 혹은 3 단계 Resume 과정을 트리거한다.In step 1h-10, the UE triggers a step 2 or step 3 resume process.
1h-15 단계에서 만약 2 단계 Resume 과정이 트리거되었다면, 상기 단말은 상기 제 1 지시자 없이 RRC Resume Request 메시지를 생성하고, 이를 서빙 기지국에게 전송한다. 즉, 2 단계 Resume 과정에서는 MDT retrieval 이 배제된다.If the 2-step Resume process is triggered in step 1h-15, the UE generates an RRC Resume Request message without the first indicator, and transmits it to the serving base station. That is, MDT retrieval is excluded in the two-step resume process.
1h-20 단계에서 만약 3 단계 Resume 과정이 트리거되었다면, 상기 단말은 RRC Resume Complete 메시지에 자신이 MDT data을 가지고 있음을 지시하는 지시자를 수납한다. 그리고, 상기 메시지를 상기 기지국에 전송한다.If the step 3 Resume process is triggered in steps 1h-20, the UE stores an indicator indicating that it has MDT data in the RRC Resume Complete message. Then, the message is transmitted to the base station.
1h-25 단계에서 상기 단말은 상기 기지국으로부터 MDT data의 보고를 요청하는 소정의 RRC 메시지를 수신한다면, 이에 응답하여, MDT data를 포함한 소정의 RRC 메시지를 상기 기지국에게 보고한다.If the terminal receives a predetermined RRC message requesting the report of the MDT data from the base station in steps 1h-25, in response, the terminal reports the predetermined RRC message including the MDT data to the base station.
도 1i는 제 1-2 실시 예에서 셀 측정 정보를 수집 및 보고하는 기지국 동작의 순서도이다.1I is a flowchart of an operation of a base station for collecting and reporting cell measurement information according to embodiments 1-2.
1i-05 단계에서 기지국은 특정 단말로부터 제 1 지시자를 포함한 RRC Resume Complete 메시지를 수신한다.In step 1i-05, the base station receives an RRC Resume Complete message including a first indicator from a specific terminal.
1i-10 단계에서 상기 기지국은 상기 단말로부터 MDT data을 요청할지 여부를 판단한다.In step 1i-10, the base station determines whether to request MDT data from the terminal.
1i-15 단계에서 상기 기지국은 MDT data의 보고를 요청하는 소정의 RRC 메시지를 상기 단말에게 전송한다.In step 1i-15, the base station transmits a predetermined RRC message requesting reporting of MDT data to the terminal.
1i-20 단계에서 상기 기지국은 상기 단말로부터 MDT data을 포함한 소정의 RRC 메시지를 수신한다.In step 1i-20, the base station receives a predetermined RRC message including MDT data from the terminal.
도 1j는 제 1-3 실시 예에서 셀 측정 정보를 수집 및 보고하는 동작의 흐름도이다. 1J is a flowchart of an operation of collecting and reporting cell measurement information in embodiments 1-3;
단말은 자신이 resume failure logging 및 reporting을 지원하는지 여부의 능력 정보를 소정의 RRC 메시지를 이용하여 기지국에게 보고한다.The terminal reports the capability information of whether the terminal supports resume failure logging and reporting to the base station using a predetermined RRC message.
기지국은 소정의 RRC 메시지를 이용하여, 상기 연결 모드 단말에게 Resume failure logging을 지시한다. 상기 설정 정보는 suspend configuration을 수납한 RRCRelease 메시지에 포함될 수 있다. 혹은 RRConfiguration 등 소정의 RRC 메시지에 포함될 수도 있다. 상기 Resume failure logging이 설정된 상기 단말은 이 후 Resume 과정이 성공적으로 완료되지 않을 경우, 당시의 셀 측정 정보 등 coverage optimization에 유용한 정보를 저장한다. The base station instructs the connected mode terminal to resume failure logging by using a predetermined RRC message. The configuration information may be included in an RRCRelease message containing a suspend configuration. Or it may be included in a predetermined RRC message such as RRConfiguration. If the Resume failure logging is configured, the terminal stores information useful for coverage optimization, such as cell measurement information at that time, when the resume process is not successfully completed.
다른 옵션으로, 상기 동작을 지원하는 단말은 Resume 과정이 실패할 시 항상 상기 동작을 수행할 수도 있다.As another option, the terminal supporting the operation may always perform the operation when the resume process fails.
비활성 모드에 있는 단말 (1j-05)은 연결 모드로 전환하거나, RNA update을 수행하기 위해, Resume 과정을 트리거할 수 있다. 상기 단말은 RRC Resume Request 메시지를 기지국 (1j-10)에 전송하면서 Resume 과정이 시작된다. 상기 RRC Resume Request 메시지를 전송하면서 (1j-15), 상기 단말은 제 2 타이머를 구동시킨다 (1j-20). 상기 제 2 타이머는 상기 기지국으로부터 RRC Resume 메시지를 수신하거나 셀 재선택이 수행되면 중지한다. 만약 상기 제 2 타이머가 만료될 때까지 (1j-25) 상기 기지국으로부터 RRC Resume 메시지를 수신하지 못한다면, 상기 단말은 상기 트리거했던 Resume 과정이 실패한 것으로 간주한다. 이 때, 상기 단말은 수집한 셀 측정 정보와 기타 부가 정보를 저장한다 (1j-30). 하기 나열된 정보 중, 적어도 하나를 포함한다.The terminal 1j-05 in the inactive mode may switch to the connected mode or trigger a resume process to perform an RNA update. The terminal starts the Resume process while transmitting an RRC Resume Request message to the base station 1j-10. While transmitting the RRC Resume Request message (1j-15), the terminal drives the second timer (1j-20). The second timer stops when receiving an RRC Resume message from the base station or when cell reselection is performed. If the RRC Resume message is not received from the BS until the second timer expires (1j-25), the UE considers that the triggered Resume process has failed. At this time, the terminal stores the collected cell measurement information and other additional information (1j-30). At least one of the information listed below is included.
- 상기 만료된 제 2 타이머가 Establishment 과정에 의해 구동되기 시작하였는지 혹은 Resume 과정에 구동되기 시작하였는지 여부를 지시하는 지시자An indicator indicating whether the expired second timer has begun to be driven by the establishment process or has started to run during the resume process;
- 상기 Resume failure가 감지된 Resume 과정의 cause value 값. 일례로, RNA update, MO-signalling, MO-data, mt-Access, emergency, highPriorityAccess, delayTolerantAcess, mo-VoiceCall 등A cause value value of the resume process in which the resume failure is detected. For example, RNA update, MO-signalling, MO-data, mt-Access, emergency, highPriorityAccess, delayTolerantAcess, mo-VoiceCall, etc.
- 상기 Resume failure가 감지된 셀의 CGI 정보 (global cell ID) 혹은 PCI 정보 (Physical cell ID)CGI information (global cell ID) or PCI information (Physical cell ID) of the cell where the failure failure is detected
- 상기 Resume failure가 감지된 셀과 그 인접 셀의 신호 세기, RSRP 및 RSRQ 및 SINR 정보Signal strength, RSRP, RSRQ and SINR information of the cell where the failure is detected and its neighbors;
- 상기 셀들이 빔 동작을 지원한다면, 상기 Resume failure가 감지된 셀과 그 인접 셀의 빔 레벨 신호 세기, RSRP 및 RSRQ 및 SINR 정보If the cells support beam operation, beam level signal strength, RSRP and RSRQ and SINR information of the cell where the failure has been detected and its neighbors;
- 유효한 단말의 위치 정보-Location information of a valid terminal;
- 유효한 단말의 속도 정보-Valid terminal speed information
- 상기 Resume 과정을 위해 트리거된 랜덤 엑세스에서 MAC 계층에 의해 전송된 프리엠블의 횟수 정보-Information on the number of preambles transmitted by the MAC layer in a random access triggered for the resume process
- 상기 Resume 과정을 위해 트리거된 랜덤 엑세스에서 적어도 한번 전송된 프리엠블에 대해, 성공적이지 못한 contention resolution이 발생하였는지 여부를 지시하는 지시자An indicator indicating whether an unsuccessful contention resolution has occurred for a preamble transmitted at least once in a random access triggered for the resume process
- 상기 Resume 과정을 위해 트리거된 랜덤 엑세스에서 마지막 전송 프리엠블에서 사용된 단말 송신 전력이 최대 단말 전력에 도달하였는지 여부를 지시하는 지시자An indicator indicating whether the terminal transmit power used in the last transmission preamble reaches the maximum terminal power in the random access triggered for the resume process
- 상기 Resume 과정을 위해 트리거된 랜덤 엑세스가 일반적인 상향링크 (Normal Uplink, NUL) 또는 추가적인 상향링크 (Supplementary Uplink, SUL)에서 수행되었는지 여부를 지시하는 지시자 (해당 지시자는 establishment failure report에도 포함된다)An indicator indicating whether the random access triggered for the resume process is performed in a normal uplink (NUL) or an additional uplink (SUL) (the indicator is also included in the establishment failure report)
소정의 시간이 지난 후, 상기 단말은 비활성 모드에서 연결 모드로의 전환을 위한 Resume 과정을 다시 시도한다. 단말은 RRC Resume Request 혹은 RRC Resume Complete 메시지에 자신이 저장하고 있는 Establishment/Resume failure 정보가 있는지 여부를 지시하는 제 3 지시자를 수납한다. 상기 제 3 지시자는 상기 제 1 지시자와는 별도로 지시된다. Establishment failure와 Resume failure 정보가 있는 여부를 지시하기 위해, 별도의 지시자를 정의할 수도 있다. 상기 Resume 과정이 RNA update 목적으로 트리거되어 2 단계일 때, 상기 제 3 지시자는 RRC Resume Request 메시지에 수납된다. 그렇지 않고, 상기 Resume 과정이 데이터 전송을 위한 연결 모드 전환이 목적이라면, 상기 과정은 3 단계로 구성되며, 상기 제 3 지시자는 RRC Resume Complete 메시지에 수납된다. 상기 RRC Resume Request 메시지에 응답하여, 상기 기지국은 RRC Resume 메시지를 상기 단말에게 전송한다. 만약 상기 RRC Resume Request 메시지가 상기 제 3 지시자를 수납하고 (1j-35), 상기 기지국이 상기 Establishment failure와 Resume failure 정보에 대해 보고받기를 원한다면, 상기 기지국은 상기 RRC Resume 메시지 (1j-40)에 상기 Establishment failure와 Resume failure 정보에 대한 보고를 요청하는 지시자를 포함시키거나, 혹은 만약 2 단계 Resume 이라면, 상기 단말에게 연결 모드로 전환하라는 지시자를 포함시킨다. 또한, 연결 모드로의 전환을 위해 필요한 설정 정보를 상기 RRC Resume 메시지에 수납한다. 상기 지시자를 수신한 상기 단말은 연결 모드 전환을 위해, 설령 2 단계의 Resume 과정으로 RRC Resume Request 메시지를 트리거하였더라도, 3 단계의 Resume 과정으로 전환한다. 3 단계 Resume 과정이라면, 상기 제 3 지시자는 RRC Resume Complete 메시지에 수납된다 (1j-45). 상기 기지국은 상기 RRC Resume Complete 메시지를 수신한 이 후, 소정의 RRC 메시지를 이용하여, Establishment failure와 Resume failure 정보의 보고를 상기 단말에게 요청한다 (1j-50). 이에 상기 단말은 소정의 RRC 메시지를 이용하여, 저장하고 있는 Establishment failure와 Resume failure 정보를 상기 기지국에게 보고한다 (1j-55).After a predetermined time has elapsed, the terminal retries the resume process for switching from the inactive mode to the connected mode. The UE stores a third indicator indicating whether there is Establishment / Resume failure information stored in the RRC Resume Request or RRC Resume Complete message. The third indicator is indicated separately from the first indicator. In order to indicate whether there is establishment failure and resume failure information, a separate indicator may be defined. When the resume process is triggered for the purpose of RNA update and is in the second step, the third indicator is stored in an RRC Resume Request message. Otherwise, if the resume process is to switch the connection mode for data transmission, the process consists of three steps, and the third indicator is stored in the RRC Resume Complete message. In response to the RRC Resume Request message, the base station transmits an RRC Resume message to the terminal. If the RRC Resume Request message accommodates the third indicator (1j-35), and the base station wants to be reported about the establishment failure and Resume failure information, the base station in the RRC Resume message (1j-40) Include the indicator requesting the report on the establishment failure and Resume failure information, or if the second stage Resume, includes an indicator to switch to the connected mode. Also, setting information necessary for switching to the connected mode is stored in the RRC Resume message. The terminal, having received the indicator, switches to the three-stage Resume process even if the RRC Resume Request message is triggered by the two-stage Resume process. If the three-step resume process, the third indicator is stored in the RRC Resume Complete message (1j-45). After receiving the RRC Resume Complete message, the base station requests the terminal to report establishment failure and resume failure information using a predetermined RRC message (1j-50). Accordingly, the terminal reports the establishment failure and resume failure information to the base station using a predetermined RRC message (1j-55).
다른 대안으로, 제 1-2 실시예에서와 같이, Establishment failure와 Resume failure 정보에 대한 retrieval은 2 단계 Resume 과정에서 허용되지 않을 수도 있다.Alternatively, as in the first and second embodiments, retrieval for establishment failure and resume failure information may not be allowed in the two-step resume process.
Establishment failure와 Resume failure 정보의 retrieval은 establishment 과정에서도 가능하다. 상기 단말은 상기 RRC Setup Complete 메시지에 자신이 저장하고 있는 Establishment failure와 Resume failure 정보가 있음을 지시하는 지시자를 포함시킨다. 상기 RRC Setup Complete 메시지를 수신한 상기 기지국은 필요 시, 소정의 RRC 메시지를 이용하여, 상기 Establishment failure와 Resume failure 정보의 보고를 요청한다. 상기 요청을 수신한 상기 단말은 소정의 RRC 메시지를 이용하여, 상기 Establishment failure와 Resume failure 정보를 보고한다.Retrieval of establishment failure and resume failure information is also possible during the establishment process. The terminal includes an indicator indicating that there is Establishment failure and Resume failure information stored in the RRC Setup Complete message. Upon receipt of the RRC Setup Complete message, the base station requests a report of the establishment failure and resume failure information using a predetermined RRC message when necessary. The terminal receiving the request reports the establishment failure and resume failure information by using a predetermined RRC message.
<제1-a실시예><Example 1-a>
연결 모드 단말은 상기 제 1실시예에서 기술된 RRC resume failure reporting 을 지원하는 여부를 지시하는 능력 정보를 기지국에 보고한다.The connected mode terminal reports capability information indicating whether to support the RRC resume failure reporting described in the first embodiment to the base station.
RRC Inactive 상태는 optional 이다. 따라서, 상기 RRC Inactive 상태를 지원하는 단말은 항상 상기 능력 정보를 보고해야 한다. 혹은 상기 RRC Inactive 상태를 지원하는 단말은 항상 상기 RRC resume failure reporting 을 지원한다.The RRC Inactive state is optional. Therefore, the terminal supporting the RRC Inactive state should always report the capability information. Or, the terminal supporting the RRC Inactive state always supports the RRC resume failure reporting.
기지국은 상기 능력 정보를 기반으로 RRC resume failure reporting을 상기 연결 모드 단말에게 설정한다.The base station sets the RRC resume failure reporting to the connected mode terminal based on the capability information.
기지국은 suspend configuration을 포함한 RRCRelease 메시지를 상기 단말에게 전송하고, 상기 단말은 비활성 모드 (RRC_Inactive)로 전환한다.The base station transmits an RRCRelease message including a suspend configuration to the terminal, and the terminal switches to an inactive mode (RRC_Inactive).
상기 단말은 대기 연결모드로 전환하기 위한 목적의 resume 과정을 트리거한다. 상기 단말 RRC가 물리 계층으로 RRCResumeRequest 메시지 전송을 트리거하면, 상기 RRC는 소정의 타이머를 구동시킨다.The terminal triggers a resume process for the purpose of switching to the standby connection mode. When the terminal RRC triggers the transmission of the RRCResumeRequest message to the physical layer, the RRC starts a predetermined timer.
상기 타이머는 기지국으로부터 RRCResume, RRCSetup, RRCRelease, RRCReject 메시지 중 하나의 메시지를 수신하거나, 셀 재선택 동작이 트리거되거나, 혹은 상위 계층에서 connection establishment 포기하면 중지된다. The timer is stopped when the RRCResume, RRCSetup, RRCRelease, or RRCReject message is received from the base station, a cell reselection operation is triggered, or the connection establishment is abandoned by a higher layer.
상기 타이머가 만료되면 상기 단말은 resume failure로 간주하고 당시 수집한 유효한 측정 정보를 기록한다.When the timer expires, the terminal considers resume failure and records valid measurement information collected at that time.
이 후, 상기 단말은 resume 과정을 다시 수행하고, 다시 실패하는 경우에는 이전에 기록한 측정 정보를 삭제하고, 최근의 resume failure 시 수집한 유효한 측정 정보를 기록한다.Thereafter, the terminal performs the resume process again, and if it fails again, deletes the previously recorded measurement information and records valid measurement information collected at the latest resume failure.
이 후, 상기 단말은 resume 과정을 다시 수행한다. RRCResumeRequest 메시지를 전송한 후, 기지국으로부터 RRCResume 혹은 RRCSetup 메시지를 성공적으로 수신한다면, 상기 메시지에 대응하는 RRCResumeComplete 혹은 RRCSetupComplete 메시지에서 최근의 resume failure 시 수집한 유효한 측정 정보를 기록하고 있음을 지시하는 지시자를 수납한다.Thereafter, the terminal performs the resume process again. If the RRCResume or RRCSetup message is successfully received from the base station after transmitting the RRCResumeRequest message, the indicator indicating that the RRCResumeComplete or RRCSetupComplete message corresponding to the message records valid measurement information collected at the latest resume failure is stored. .
상기 단말은 상기 RRCResumeComplete 혹은 RRCSetupComplete 메시지를 기지국에 전송한다. The terminal transmits the RRCResumeComplete or RRCSetupComplete message to the base station.
상기 단말은 establishment failure reporting과 resume failure reporting을 동시에 수행할 수도 있다. 이 때, establishment failure 시에 기록한 측정 정보와 resume failure 시에 기록한 측정 정보는 서로 독립적으로 관리된다.The terminal may simultaneously perform establishment failure reporting and resume failure reporting. At this time, the measurement information recorded at the establishment failure and the measurement information recorded at the resume failure are managed independently of each other.
<제1-b실시예><Example 1-b>
본 실시 예에서는 establishment failure 혹은 resume failure 시의 reporting을 통합하는 것을 특징으로 한다.This embodiment is characterized by integrating reporting at establishment failure or resume failure.
단말의 메모리 사용을 절약하기 위해, 가장 최근의 establishment failure 혹은 resume failure 시에 기록한 측정 정보만 유지할 수도 있다. 일례로, 이전의 resume failure 시에 기록한 측정 정보를 가지고 있는 단말이 establishment failure가 발생하면 상기 측정 정보를 삭제하고, 최근의 establishment failure 시에 수집한 측정 정보를 기록한다. RRCSetupComplete 혹은 RRCResumeComplete에 포함되는 availability indicator은 establishment failure 혹은 resume failure 구분없이 상기 실패들로 인해 기록한 측정 정보가 있음을 지시한다. 상기 indicator 을 수신한 기지국은 상기 기록된 측정 정보를 요청할 수 있다. 상기 요청에 대해, 상기 단말은 상기 기록된 측정 정보를 상기 기지국에 보고한다. 상기 측정 정보에는 상기 측정 정보가 establishment failure 혹은 resume failure 때에 수집된 것인지를 지시하는 지시자를 포함한다. In order to save the memory usage of the terminal, only the measurement information recorded at the most recent establishment failure or resume failure may be maintained. For example, when a establishment failure occurs when a terminal having measurement information recorded at a previous resume failure occurs, the measurement information is deleted and the measurement information collected at a recent establishment failure is recorded. The availability indicator included in the RRCSetupComplete or the RRCResumeComplete indicates that there is measurement information recorded due to the failures without discriminating establishment failure or resume failure. The base station receiving the indicator may request the recorded measurement information. In response to the request, the terminal reports the recorded measurement information to the base station. The measurement information includes an indicator indicating whether the measurement information was collected at establishment failure or resume failure.
<제1-c 실시예><Example 1-c>
본 실시 예에서는 단말이 상기 logged MDT을 수행할 시, RRC state (대기 모드 혹은 비활성화 모드)에 따라 소정의 정보를 추가적으로 수집하는 것을 특징으로 한다. In the present embodiment, when the terminal performs the logged MDT, predetermined information is additionally collected according to an RRC state (standby mode or inactive mode).
연결 모드 단말은 대기 모드 혹은 비활성화 모드 혹은 상기 두 모드에서 logged MDT을 수행할 때 요구되는 설정 정보를 기지국으로부터 제공받는다. 상기 설정 정보에는 특정 RRC state에서만 수집 가능한 정보를 수집할지 여부를 지시하는 지시자를 포함한다. 상기 설정 정보를 포함한 RRC 메시지를 수신한 상기 단말은 상기 설정 정보에 포함된 타이머 값 (logging duration)을 적용하여 하나의 타이머를 구동시킨다. The connected mode terminal receives configuration information required when performing logged MDT in the standby mode, the inactive mode, or both modes from the base station. The configuration information includes an indicator indicating whether to collect information that can be collected only in a specific RRC state. The terminal receiving the RRC message including the configuration information drives one timer by applying a timer duration (logging duration) included in the configuration information.
상기 연결 모드 단말은 상기 기지국으로부터 RRCRelease 메시지를 수신한다. 상기 RRCRelease 메시지에 suspend 설정 정보를 포함하면, 상기 단말은 비활성화 모드 (RRC_Inactive)로 전환하고, 그렇지 않으면, 대기 모드 (RRC_Idle)로 전환한다. 상기 suspend 설정 정보에는 I-RNTI, paging cycle, RAN Notification Area 정보, T380 타이머 정보, security 정보를 적어도 포함한다. 대기 모드 혹은 비활성화 모드 혹은 상기 두 모드에서 logged MDT을 수행하는 상기 단말은 설정된 logging interval (logging 시점)마다 유효한 수집 정보를 저장한다. 각 logging 시점마다 저장되는 정보에는 다른 entry에 수납되며, 상대적인 시간 정보도 포함되어 서로 구별된다.The connected mode terminal receives an RRCRelease message from the base station. If the suspend configuration information is included in the RRCRelease message, the terminal switches to inactive mode (RRC_Inactive), otherwise, switches to standby mode (RRC_Idle). The suspend configuration information includes at least I-RNTI, paging cycle, RAN Notification Area information, T380 timer information, and security information. The terminal that performs the logged MDT in the standby mode, the inactive mode, or the two modes stores the valid collection information at a set logging interval (logging time). The information stored at each logging point is stored in different entries and is distinguished from each other by including relative time information.
만약 상기 단말이 비활성화 모드에서 logged MDT을 수행하도록 설정 받았다면, 비활성화 모드에서만 수집 가능한 정보를 추가적으로 수집한다. 일례로 상기 수집 정보는 상기 단말이 방문한 RAN Notification Area의 리스트, RNA 변경이 일어난 횟수이다. 상기 정보는 사업자가 적합한 RNA을 결정하는데, 도움을 준다. 또 다른 수집 정보로는 T319 타이머가 만료되어 RRC 연결 실패하였는지 여부를 지시자가 있다. 통상 logged MDT는 비활성 모드, 대기 모드 모두에서 수행될 수도 있다. 만약 비활성 모드에 있던 단말이 연결 모드 전환을 위한 resume 동작을 수행하였으나, T319 타이머 만료로 상기 resume 과정이 실패한 것으로 간주되면, 비활성 모드에서 대기 모드로 전환된다. 상기 resume 과정이 실패로 비활성 모드에서 대기 모드로 전환했을 때의 정보를 logged MDT의 수집 정보로 저장한다. 상기 resume 과정의 실패 시점 이후 가장 빠른 logging 시점에 상기 resume 과정이 실패로 비활성 모드에서 대기 모드로 전환했음을 지시하는 지시자를 수납한다. 또한, resume 과정에서 전송된 프리엠블 전송 횟수, contention 발생 여부, 최대 단말 전송 전력에 도달했는지에 대한 지시자 정보 등이 추가될 수 있다. If the terminal is configured to perform logged MDT in the deactivation mode, additionally collects information that can be collected only in the deactivation mode. For example, the collection information is a list of RAN Notification Areas visited by the terminal and the number of times of RNA change. This information helps the operator determine the appropriate RNA. Another gathering information is an indicator of whether the RRC connection failed due to the expiration of the T319 timer. Normally logged MDT can be run in both inactive and standby mode. If the UE in the inactive mode performs a resume operation for switching the connected mode, but the resume process is considered to have failed due to the expiration of the T319 timer, the terminal is switched from the inactive mode to the standby mode. The resume process may be configured to store collected information of the logged MDT when the transition from the inactive mode to the standby mode fails. At the earliest logging time after the failure time of the resume process, an indicator indicating that the resume process has changed from an inactive mode to a standby mode due to a failure is stored. In addition, the number of preamble transmissions transmitted during the resume process, whether contention occurs, and indicator information on whether the maximum terminal transmission power has been reached may be added.
반면, 만약 상기 단말이 대기 모드에서 logged MDT을 수행하도록 설정 받았다면, 대기 모드에서만 수집 가능한 정보를 추가적으로 수집한다. 일례로 상기 수집 정보는 상기 단말이 방문한 Tracking Area의 리스트, Tracking Area Update (TAU) 변경이 일어난 횟수이다. 상기 정보는 사업자가 적합한 TAU을 결정하는데, 도움을 준다.On the other hand, if the terminal is configured to perform logged MDT in the standby mode, additionally collects information that can be collected only in the standby mode. For example, the collection information is a list of the tracking areas visited by the terminal, the number of changes of the Tracking Area Update (TAU). This information assists the operator in determining the appropriate TAU.
상기 logged MDT 동작은 상기 logging duration 타이머가 만료될 때까지 대기 모드 혹은 비활성화 모드 혹은 상기 두 모드에서 수행된다.The logged MDT operation is performed in standby mode or inactive mode or in both modes until the logging duration timer expires.
상기 단말은 연결 모드로 전환될 때, RRCSetupComplete 혹은 RRCResumeComplete에 상기 저장된 MDT 정보가 있음을 지시하는 지시자를 포함시킨다. When the terminal is switched to the connected mode, the RRCSetupComplete or RRCResumeComplete includes an indicator indicating that the stored MDT information.
이 때, 기지국은 소정의 RRC 메시지를 통해, 상기 MDT 정보의 보고를 상기 단말에게 요청할 수 있다. 상기 요청에 대해, 상기 단말은 소정의 RRC 메시지를 이용하여, 상기 수집하여 저장하고 있는 MDT 정보를 보고한다. At this time, the base station may request the terminal to report the MDT information through a predetermined RRC message. In response to the request, the terminal reports the MDT information collected and stored using a predetermined RRC message.
도 1k에 단말의 구조를 도시하였다.The structure of the terminal is shown in Figure 1k.
상기 도면을 참고하면, 상기 단말은 RF(Radio Frequency)처리부(1k-10), 기저대역(baseband) 처리부(1k-20), 저장부(1k-30), 제어부(1k-40)를 포함한다.Referring to the drawings, the terminal includes a radio frequency (RF) processor 1k-10, a baseband processor 1k-20, a storage unit 1k-30, and a controller 1k-40. .
상기 RF처리부(1k-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(1k-10)는 상기 기저대역 처리부(1k-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF처리부(1k-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 단말은 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(1k-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(1k-10)는 빔포밍(beamforming)을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(1k-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다.The RF processor 1k-10 performs a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the RF processor 1k-10 up-converts the baseband signal provided from the baseband processor 1k-20 into an RF band signal and transmits the same through an antenna, and receives the RF band signal received through the antenna. Downconverts to a baseband signal. For example, the RF processor 1k-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. Can be. In the figure, only one antenna is shown, but the terminal may include a plurality of antennas. In addition, the RF processor 1k-10 may include a plurality of RF chains. In addition, the RF processor 1k-10 may perform beamforming. For the beamforming, the RF processor 1k-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements. In addition, the RF processor may perform MIMO, and may receive multiple layers when performing the MIMO operation.
상기 기저대역 처리부(1k-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역 처리부(1k-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(1k-20)은 상기 RF처리부(1k-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역 처리부(1k-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(1k-20)은 상기 RF처리부(1k-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다.The baseband processor 1k-20 performs a conversion function between the baseband signal and the bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processor 1k-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 1k-20 restores the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1k-10. For example, in accordance with an orthogonal frequency division multiplexing (OFDM) scheme, during data transmission, the baseband processor 1k-20 generates complex symbols by encoding and modulating a transmission bit stream, and the complex symbols are subcarriers. After mapping to, OFDM symbols are configured through inverse fast Fourier transform (IFFT) operation and cyclic prefix (CP) insertion. In addition, when receiving the data, the baseband processor 1k-20 divides the baseband signal provided from the RF processor 1k-10 into OFDM symbol units and subcarriers through fast Fourier transform (FFT) operations. After recovering the mapped signals, the received bit stream is recovered through demodulation and decoding.
상기 기저대역 처리부(1k-20) 및 상기 RF처리부(1k-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역 처리부(1k-20) 및 상기 RF처리부(1k-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 상기 기저대역 처리부(1k-20) 및 상기 RF처리부(1k-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 상기 기저대역 처리부(1k-20) 및 상기 RF처리부(1k-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 상기 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.NRHz, NRhz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.The baseband processor 1k-20 and the RF processor 1k-10 transmit and receive signals as described above. Accordingly, the baseband processor 1k-20 and the RF processor 1k-10 may be referred to as a transmitter, a receiver, a transceiver, or a communicator. Furthermore, at least one of the baseband processor 1k-20 and the RF processor 1k-10 may include a plurality of communication modules to support a plurality of different radio access technologies. In addition, at least one of the baseband processor 1k-20 and the RF processor 1k-10 may include different communication modules to process signals of different frequency bands. For example, the different wireless access technologies may include a wireless LAN (eg, IEEE 802.11), a cellular network (eg, LTE), and the like. In addition, the different frequency bands may include a super high frequency (SHF) (eg 2.NRHz, NRhz) band and a millimeter wave (eg 60 GHz) band.
상기 저장부(1k-30)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(1k-30)는 제2무선 접속 기술을 이용하여 무선 통신을 수행하는 제2접속 노드에 관련된 정보를 저장할 수 있다. 그리고, 상기 저장부(1k-30)는 상기 제어부(1k-40)의 요청에 따라 저장된 데이터를 제공한다.The storage unit 1k-30 stores data such as a basic program, an application program, and setting information for the operation of the terminal. In particular, the storage unit 1k-30 may store information related to a second access node that performs wireless communication using a second wireless access technology. The storage unit 1k-30 provides stored data at the request of the controller 1k-40.
상기 제어부(1k-40)는 상기 단말의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(1k-40)는 상기 기저대역처리부(1k-20) 및 상기 RF처리부(1k-10)을 통해 신호를 송수신한다. 또한, 상기 제어부(1k-40)는 상기 저장부(1k-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(1k-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부(1k-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다.The controller 1k-40 controls overall operations of the terminal. For example, the controller 1k-40 transmits and receives a signal through the baseband processor 1k-20 and the RF processor 1k-10. Also, the controller 1k-40 records and reads data in the storage unit 1k-40. To this end, the controller 1k-40 may include at least one processor. For example, the controller 1k-40 may include a communication processor (CP) for performing control for communication and an application processor (AP) for controlling a higher layer such as an application program.
도 1h는 본 개시의 제 1 실시 예에 따른 무선 통신 시스템에서 기지국의 블록 구성을 도시한다.1H is a block diagram of a base station in a wireless communication system according to a first embodiment of the present disclosure.
상기 도면에 도시된 바와 같이, 상기 기지국은 RF처리부(1l-10), 기저대역 처리부(1l-20), 백홀통신부(1l-30), 저장부(1l-40), 제어부(1l-50)를 포함하여 구성된다.As shown in the figure, the base station includes an RF processor 1l-10, a baseband processor 1l-20, a backhaul communication unit 1l-30, a storage unit 1l-40, and a controller 1l-50. It is configured to include.
상기 RF처리부(1l-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(1l-10)는 상기 기저대역 처리부(1l-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 예를 들어, 상기 RF처리부(1l-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 제1접속 노드는 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(1l-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(1l-10)는 빔포밍을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(1l-10)는 다수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 상기 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.The RF processor 1l-10 performs a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 1l-10 up-converts the baseband signal provided from the baseband processor 1l-20 into an RF band signal and transmits the same through an antenna, and receives the RF band signal received through the antenna. Downconverts to a baseband signal. For example, the RF processor 1l-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In the figure, only one antenna is shown, but the first access node may have a plurality of antennas. In addition, the RF processor 1l-10 may include a plurality of RF chains. In addition, the RF processor 11-10 may perform beamforming. For the beamforming, the RF processor 1l-10 may adjust the phase and magnitude of each of the signals transmitted and received through a plurality of antennas or antenna elements. The RF processor may perform a downlink MIMO operation by transmitting one or more layers.
상기 기저대역 처리부(1l-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역 처리부(1l-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(1l-20)은 상기 RF처리부(1l-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역 처리부(1l-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역 처리부(1l-20)은 상기 RF처리부(1l-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 기저대역 처리부(1l-20) 및 상기 RF처리부(1l-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역 처리부(1l-20) 및 상기 RF처리부(1l-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.The baseband processor 1-20 performs a conversion function between the baseband signal and the bit string according to the physical layer standard of the first wireless access technology. For example, during data transmission, the baseband processor 1-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 1l-20 restores the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1l-10. For example, according to the OFDM scheme, during data transmission, the baseband processor 1-20 generates complex symbols by encoding and modulating a transmission bit stream, maps the complex symbols to subcarriers, and then IFFT. OFDM symbols are constructed by operation and CP insertion. In addition, when receiving data, the baseband processor 1l-20 divides the baseband signal provided from the RF processor 1l-10 into OFDM symbol units and restores signals mapped to subcarriers through an FFT operation. After that, the received bit stream is recovered by demodulation and decoding. The baseband processor 1l-20 and the RF processor 1l-10 transmit and receive signals as described above. Accordingly, the baseband processor 1l-20 and the RF processor 1l-10 may be referred to as a transmitter, a receiver, a transceiver, a communication unit, or a wireless communication unit.
상기 백홀통신부(1l-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 상기 백홀통신부(1l-30)는 상기 주기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상기 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.The backhaul communication unit 1l-30 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 1l-30 converts a bit string transmitted from the main base station to another node, for example, an auxiliary base station, a core network, etc. into a physical signal, and converts the physical signal received from the other node Convert to heat
상기 저장부(1l-40)는 상기 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(1l-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부(1l-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부(1l-40)는 상기 제어부(1l-50)의 요청에 따라 저장된 데이터를 제공한다.The storage unit 1-40 stores data such as a basic program, an application program, and setting information for the operation of the main station. In particular, the storage unit 1-40 may store information on a bearer allocated to the connected terminal, a measurement result reported from the connected terminal, and the like. In addition, the storage unit 1-40 may store information that is a criterion for determining whether to provide or terminate multiple connections to the terminal. The storage unit 1-40 provides the stored data at the request of the control unit 1l-50.
상기 제어부(1l-50)는 상기 주기지국의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(1l-50)는 상기 기저대역 처리부(1l-20) 및 상기 RF처리부(1l-10)을 통해 또는 상기 백홀통신부(1l-30)을 통해 신호를 송수신한다. 또한, 상기 제어부(1l-50)는 상기 저장부(1l-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(1l-50)는 적어도 하나의 프로세서를 포함할 수 있다.The controllers 1l-50 control the overall operations of the main station. For example, the controller 1l-50 transmits and receives a signal through the baseband processor 1l-20 and the RF processor 1l-10 or through the backhaul communication unit 1l-30. In addition, the control unit 1l-50 records and reads data in the storage unit 1l-40. To this end, the controller 1-50 may include at least one processor.
<제2실시예>Second Embodiment
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.Terms used to identify connection nodes, terms referring to network objects, terms referring to messages, terms referring to interfaces between network objects, terms referring to various identification information, used in the following description. Etc. are illustrated for convenience of description. Thus, the present disclosure is not limited to the terms described below, and other terms may be used to refer to objects having equivalent technical meanings.
이하 설명의 편의를 위하여, 본 개시는 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다. 본 개시에서 eNB는 설명의 편의를 위하여 gNB와 혼용되어 사용될 수 있다. 즉 eNB로 설명한 기지국은 gNB를 나타낼 수 있다.For convenience of description below, the present disclosure uses terms and names defined in the 3GPP LTE (3rd Generation Partnership Project Long Term Evolution) standard. However, the present disclosure is not limited to the above terms and names, and may be equally applied to systems conforming to other standards. In the present disclosure, the eNB may be used interchangeably with gNB for convenience of description. That is, the base station described as an eNB may represent a gNB.
도 2a는 본 개시가 적용될 수 있는 LTE 시스템의 구조를 도시하는 도면이다.2A is a diagram illustrating a structure of an LTE system to which the present disclosure may be applied.
도 2a을 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 ENB, Node B 또는 기지국)(2a-05, 2a-10, 2a-15, 2a-20)과 MME (2a-25, Mobility Management Entity) 및 S-GW(2a-30, Serving-Gateway)로 구성된다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(2a-35)은 ENB(2a-05 ~ 2a-20) 및 S-GW(2a-30)를 통해 외부 네트워크에 접속한다.Referring to FIG. 2A, a radio access network of an LTE system is shown in FIG. 2A with a next-generation base station (Evolved Node B, ENB, Node B or base station) 2a-05, 2a-10, 2a-15, and 2a-20. It consists of MME (2a-25, Mobility Management Entity) and S-GW (2a-30, Serving-Gateway). The user equipment (UE or UE) 2a-35 connects to the external network through the ENBs 2a-05 to 2a-20 and the S-GW 2a-30.
도 2a에서 ENB(2a-05 ~ 2a-20)는 UMTS 시스템의 기존 노드 B에 대응된다. ENB는 UE(2a-35)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행한다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 ENB(2a-05 ~ 2a-20)가 담당한다. 하나의 ENB는 통상 다수의 셀들을 제어한다. 예컨대, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 예컨대, 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. S-GW(2a-30)는 데이터 베어러를 제공하는 장치이며, MME(2a-25)의 제어에 따라서 데이터 베어러를 생성하거나 제거한다. MME는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다.In FIG. 2A, the ENBs 2a-05 to 2a-20 correspond to existing Node Bs of the UMTS system. The ENB is connected to the UEs 2a-35 by radio channel and performs a more complicated role than the existing Node B. In LTE system, all user traffic, including real-time services such as Voice over IP (VoIP) over the Internet protocol, is serviced through a shared channel, so information on the status of buffers, available transmit power, and channel status of UEs is available. It is necessary to have a device that collects the scheduling, and ENB (2a-05 ~ 2a-20) is in charge. One ENB typically controls multiple cells. For example, in order to realize a transmission rate of 100 Mbps, the LTE system uses orthogonal frequency division multiplexing (hereinafter, referred to as OFDM) in a 20 MHz bandwidth as a radio access technology. In addition, an adaptive modulation & coding (AMC) scheme that determines a modulation scheme and a channel coding rate according to the channel state of the terminal is applied. The S-GW 2a-30 is a device for providing a data bearer, and generates or removes a data bearer under the control of the MME 2a-25. The MME is a device that is in charge of various control functions as well as mobility management function for the terminal and is connected to a plurality of base stations.
도 2b는 본 개시가 적용될 수 있는 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.2B is a diagram illustrating a radio protocol architecture in an LTE system to which the present disclosure may be applied.
도 2b를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 PDCP (Packet Data Convergence Protocol 2b-05, 2b-40), RLC (Radio Link Control 2b-10, 2b-35), MAC (Medium Access Control 2b-15, 2b-30)으로 이루어진다. PDCP (Packet Data Convergence Protocol)(2b-05, 2b-40)는 IP 헤더 압축/복원 등의 동작을 담당한다. PDCP의 주요 기능은 하기와 같이 요약된다.Referring to FIG. 2B, the wireless protocol of the LTE system is PDCP (Packet Data Convergence Protocol 2b-05, 2b-40), RLC (Radio Link Control 2b-10, 2b-35), MAC (Medium Access) at the UE and ENB, respectively. Control 2b-15, 2b-30). PDCP (Packet Data Convergence Protocol) (2b-05, 2b-40) is responsible for operations such as IP header compression / restoration. The main functions of PDCP are summarized as follows.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)Header compression and decompression (ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)Transfer of user data
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM)In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM
- 순서 재정렬 기능(For split bearers in DC (only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception)For split bearers in DC (only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception
- 중복 탐지 기능(Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM)Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM
- 재전송 기능(Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM)Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM
- 암호화 및 복호화 기능(Ciphering and deciphering)Ciphering and deciphering
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)Timer-based SDU discard in uplink
무선 링크 제어(Radio Link Control, 이하 RLC라고 한다)(2b-10, 2b-35)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성해서 ARQ 동작 등을 수행한다. RLC의 주요 기능은 하기와 같이 요약된다.Radio link control (hereinafter referred to as RLC) 2b-10 and 2b-35 may reconfigure PDCP PDUs (Packet Data Units) to appropriate sizes to perform ARQ operations. The main functions of RLC are summarized as follows.
- 데이터 전송 기능(Transfer of upper layer PDUs)Transfer of upper layer PDUs
- ARQ 기능(Error Correction through ARQ (only for AM data transfer))Error Correction through ARQ (only for AM data transfer)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs (only for UM and AM data transfer))Concatenation, segmentation and reassembly of RLC SDUs (only for UM and AM data transfer)
- 재분할 기능(Re-segmentation of RLC data PDUs (only for AM data transfer))Re-segmentation of RLC data PDUs (only for AM data transfer)
- 순서 재정렬 기능(Reordering of RLC data PDUs (only for UM and AM data transfer)Reordering of RLC data PDUs (only for UM and AM data transfer)
- 중복 탐지 기능(Duplicate detection (only for UM and AM data transfer))Duplicate detection (only for UM and AM data transfer)
- 오류 탐지 기능(Protocol error detection (only for AM data transfer))Protocol error detection (only for AM data transfer)
- RLC SDU 삭제 기능(RLC SDU discard (only for UM and AM data transfer))RLC SDU discard (only for UM and AM data transfer)
- RLC 재수립 기능(RLC re-establishment)RLC re-establishment
MAC(2b-15, 2b-30)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. MAC의 주요 기능은 하기와 같이 요약된다.The MACs 2b-15 and 2b-30 are connected to several RLC layer devices configured in one terminal, and multiplex RLC PDUs to MAC PDUs and demultiplex RLC PDUs from MAC PDUs. The main functions of the MAC are summarized as follows.
- 맵핑 기능(Mapping between logical channels and transport channels)Mapping between logical channels and transport channels
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels)Multiplexing / demultiplexing of MAC SDUs belonging to one or different logical channels into / from transport blocks (TB) delivered to / from the physical layer on transport channels
- 스케쥴링 정보 보고 기능(Scheduling information reporting)Scheduling information reporting
- HARQ 기능(Error correction through HARQ)HARQ function (Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)Priority handling between logical channels of one UE
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)Priority handling between UEs by means of dynamic scheduling
- MBMS 서비스 확인 기능(MBMS service identification)-MBMS service identification
- 전송 포맷 선택 기능(Transport format selection)Transport format selection
- 패딩 기능(Padding)Padding function
물리 계층(2b-20, 2b-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다.The physical layer (2b-20, 2b-25) channel-coded and modulated the upper layer data, and made into OFDM symbols transmitted to the radio channel, or demodulated, channel decoded and transmitted to the upper layer by OFDM symbols received through the wireless channel Do the operation.
도 2c는 본 개시가 적용될 수 있는 차세대 이동통신 시스템의 구조를 도시하는 도면이다.2C is a diagram illustrating a structure of a next generation mobile communication system to which the present disclosure may be applied.
도 2c을 참조하면, 도시한 바와 같이 차세대 이동통신 시스템(이하 NR 혹은 5G)의 무선 액세스 네트워크는 차세대 기지국(New Radio Node B, 이하 NR gNB 혹은 NR 기지국)(2c-10) 과 NR CN (2c-05, New Radio Core Network)로 구성된다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말)(2c-15)은 NR gNB(2c-10) 및 NR CN (2c-05)를 통해 외부 네트워크에 접속한다.Referring to FIG. 2C, the radio access network of the next generation mobile communication system (hereinafter referred to as NR or 5G) is shown as a next generation base station (New Radio Node B, NR gNB or NR base station) 2c-10 and NR CN (2c). -05, New Radio Core Network). The user terminal (New Radio User Equipment, NR UE or terminal) 2c-15 connects to the external network via NR gNB 2c-10 and NR CN 2c-05.
도 2c에서 NR gNB(2c-10)는 기존 LTE 시스템의 eNB (Evolved Node B)에 대응된다. NR gNB는 NR UE(2c-15)와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다. 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 NR NB(2c-10)가 담당한다. 하나의 NR gNB는 통상 다수의 셀들을 제어한다. 현재 LTE 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. NR CN (2c-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행한다. NR CN는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN이 MME (2c-25)와 네트워크 인터페이스를 통해 연결된다. MME는 기존 기지국인 eNB (2c-30)와 연결된다.In FIG. 2C, the NR gNB 2c-10 corresponds to an eNB (Evolved Node B) of the existing LTE system. The NR gNB is connected to the NR UE 2c-15 in a wireless channel and may provide superior service than the existing Node B. In the next generation mobile communication system, since all user traffic is serviced through a shared channel, a device that collects and schedules state information such as buffer states, available transmit power states, and channel states of UEs is required. (2c-10) is in charge. One NR gNB typically controls multiple cells. In order to implement ultra-fast data transmission compared to the current LTE, it may have more than the existing maximum bandwidth, and additionally beamforming technology may be combined using an orthogonal frequency division multiplexing (OFDM) as a wireless access technology. . In addition, an adaptive modulation & coding (AMC) scheme that determines a modulation scheme and a channel coding rate according to the channel state of the terminal is applied. The NR CN 2c-05 performs mobility support, bearer setup, QoS setup, and the like. The NR CN is a device that is in charge of various control functions as well as mobility management function for a terminal and is connected to a plurality of base stations. In addition, the next generation mobile communication system can be interworked with the existing LTE system, and the NR CN is connected to the MME (2c-25) through a network interface. MME is connected to the eNB (2c-30) which is an existing base station.
도 2d는 본 개시가 적용될 수 있는 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다.2d is a diagram illustrating a radio protocol structure of a next generation mobile communication system to which the present disclosure can be applied.
도 2d를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR PDCP(2d-05, 2d-40), NR RLC(2d-10, 2d-35), NR MAC(2d-15, 2d-30)으로 이루어진다. NR PDCP (2d-05, 2d-40)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.Referring to FIG. 2D, the radio protocol of the next generation mobile communication system is NR PDCP (2d-05, 2d-40), NR RLC (2d-10, 2d-35), and NR MAC (2d-15) at the terminal and the NR base station, respectively. , 2d-30). The main functions of the NR PDCP (2d-05, 2d-40) may include some of the following functions.
헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)Header compression and decompression (ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)Transfer of user data
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)In-sequence delivery of upper layer PDUs
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)Out-of-sequence delivery of upper layer PDUs
- 순서 재정렬 기능(PDCP PDU reordering for reception)PDCP PDU reordering for reception
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)Duplicate detection of lower layer SDUs
- 재전송 기능(Retransmission of PDCP SDUs)Retransmission of PDCP SDUs
- 암호화 및 복호화 기능(Ciphering and deciphering)Ciphering and deciphering
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)Timer-based SDU discard in uplink
상기에서 NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 말하며, 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 순서를 고려하지 않고, 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.The order reordering function of the NR PDCP device refers to a function of reordering PDCP PDUs received from a lower layer based on a PDCP sequence number, and delivering data to an upper layer in a reordered order. It may include, or may include the ability to deliver immediately without considering the order, and may include the ability to rearrange the order to record the missing PDCP PDUs, status reporting for the missing PDCP PDUs May include a function for transmitting to the transmitting side, and may include a function for requesting retransmission for lost PDCP PDUs.
NR RLC(2d-10, 2d-35)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.The main functions of the NR RLCs 2d-10 and 2d-35 may include some of the following functions.
- 데이터 전송 기능(Transfer of upper layer PDUs)Transfer of upper layer PDUs
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)In-sequence delivery of upper layer PDUs
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)Out-of-sequence delivery of upper layer PDUs
- ARQ 기능(Error Correction through ARQ)Error Correction through ARQ
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)Concatenation, segmentation and reassembly of RLC SDUs
- 재분할 기능(Re-segmentation of RLC data PDUs)Re-segmentation of RLC data PDUs
- 순서 재정렬 기능(Reordering of RLC data PDUs)Reordering of RLC data PDUs
- 중복 탐지 기능(Duplicate detection)Duplicate detection
- 오류 탐지 기능(Protocol error detection)Protocol error detection
- RLC SDU 삭제 기능(RLC SDU discard)-RLC SDU discard function
- RLC 재수립 기능(RLC re-establishment)RLC re-establishment
상기에서 NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들을 RLC SN(sequence number) 혹은 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있으며, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한 상기에서 RLC PDU들을 수신하는 순서대로 (일련번호, Sequence number의 순서와 상관없이, 도착하는 순으로) 처리하여 PDCP 장치로 순서와 상관없이(Out-of sequence delivery) 전달할 수도 있으며, segment 인 경우에는 버퍼에 저장되어 있거나 추후에 수신될 segment들을 수신하여 온전한 하나의 RLC PDU로 재구성한 후, 처리하여 PDCP 장치로 전달할 수 있다. 상기 NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고 상기 기능을 NR MAC 계층에서 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.In-sequence delivery of the NR RLC device refers to a function of sequentially delivering the RLC SDUs received from the lower layer to the upper layer, and the original RLC SDU is divided into several RLC SDUs and received. If so, it may include a function of reassembling and delivering the same, and may include a function of rearranging the received RLC PDUs based on the RLC sequence number (PD) SN or PDCP sequence number (SN), May include a function of recording lost RLC PDUs, may include a function of reporting status of lost RLC PDUs to the sender, and may include a function of requesting retransmission of lost RLC PDUs. If there is a lost RLC SDU, it may include a function to deliver only the RLC SDUs up to the upper layer in order before the lost RLC SDU, or even if there is a missing RLC SDU If the timer has expired, it may include a function to deliver all the RLC SDUs received in order to the upper layer in order before the timer starts, or if the timer expires even if there is a missing RLC SDU, all the RLC SDUs received so far It may include a function to deliver them to the upper layer in order. In addition, the RLC PDUs may be processed in the order of receiving the RLC PDUs (regardless of the sequence number and sequence number), and delivered to the PDCP device in an out-of sequence delivery. Received segments stored in the buffer or to be received later may be reconfigured into an intact RLC PDU, and then processed and delivered to the PDCP device. The NR RLC layer may not include a concatenation function and may perform the function in the NR MAC layer or replace it with a multiplexing function of the NR MAC layer.
상기에서 NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들의 RLC SN 혹은 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.Out-of-sequence delivery of the NR RLC device refers to a function of directly delivering the RLC SDUs received from the lower layer to the upper layer regardless of the order, and the original one RLC SDU has several RLCs. When received divided into SDUs, it may include a function of reassembling and forwarding, and storing the lost RLC PDUs by storing and ordering the RLC SN or PDCP SN of the received RLC PDUs Can be.
NR MAC(2d-15, 2d-30)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.The NR MACs 2d-15 and 2d-30 may be connected to several NR RLC layer devices configured in one terminal, and a main function of the NR MAC may include some of the following functions.
- 맵핑 기능(Mapping between logical channels and transport channels)Mapping between logical channels and transport channels
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)Multiplexing / demultiplexing of MAC SDUs
- 스케쥴링 정보 보고 기능(Scheduling information reporting)Scheduling information reporting
- HARQ 기능(Error correction through HARQ)HARQ function (Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)Priority handling between logical channels of one UE
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)Priority handling between UEs by means of dynamic scheduling
- MBMS 서비스 확인 기능(MBMS service identification)-MBMS service identification
- 전송 포맷 선택 기능(Transport format selection)Transport format selection
- 패딩 기능(Padding)Padding function
NR PHY 계층(2d-20, 2d-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.The NR PHY layer (2d-20, 2d-25) channel-codes and modulates the higher layer data, transforms it into OFDM symbols and transmits it to the wireless channel, or demodulates and channel decodes the OFDM symbols received through the wireless channel to the higher layer. The transfer operation can be performed.
본 개시에서는 차세대 이동 통신 시스템에서 다양한 V2X 서비스를 지원하기 위해 PPPI (ProSe Per Packet Integrity)를 정의한다. 그리고 상기에서 정의한 PPPI 기반으로 V2X를 지원하는 단말이 V2X 패킷에 따라 혹은 전송 방식에 따라 SLRB (Sidelink Radio Bearer carrying V2X sidelink communication data)를 선택하는 방법을 제안한다. 또한 PPPI 값에 따라 PDCP PDU 포맷을 결정하는 방법을 제안한다. 따라서 상기 단말은 V2X 메시지를 효율적으로 송수신 할 수 있다.In the present disclosure, ProSe Per Packet Integrity (PPPI) is defined to support various V2X services in a next generation mobile communication system. In addition, the present invention proposes a method for selecting a SLRB (Sidelink Radio Bearer carrying V2X sidelink communication data) according to a V2X packet or a transmission method based on the PPPI-based UE. We also propose a method for determining the PDCP PDU format according to the PPPI value. Accordingly, the terminal can efficiently transmit and receive V2X messages.
표 2는 본 개시가 적용되는 차세대 이동통신 시스템에서 V2X 서비스 별 종류(Type), 범위(Range), 데이터 레이트(Data Rate)를 구분한 것을 나타낸다.Table 2 shows the types, ranges, and data rates for each V2X service in the next generation mobile communication system to which the present disclosure is applied.
표 2를 참조하면, 기존 LTE 시스템에서는(Releases 14/15 V2X) Basic Safety Message (BSM), Cooperative Awareness Message (CAM), Decentralized Environmental Notification Message (DENM), 단방향 P2X 서비스 등 낮은 data rate, 넓은 통신 및 전송 영역 (Communication or transmission range), public 한 서비스 등 획일화된 V2X 서비스만 지원하는 것과 달리 차세대 이동통신 시스템에서는 Advanced Driving, Extended Sensor, Platooning 등 새로운 서비스들의 도입으로 인해 다양한 Data rate, 통신 및 전송 영역, public 또는 private 서비스를 지원할 것으로 예상된다. 따라서, 본 개시에서는 각 서비스 별 요구 사항 및 사용 사례(use case)를 기반으로 하여 하기 표 2처럼 V2X 서비스를 구분하는 방법을 제안한다. 하기와 같이 제안한 표는 3GPP 규격 TR 22.886 “Study on enhancement of 3GPP Support for 5G V2X services”를 참조하였다.Referring to Table 2, in the existing LTE system (Releases 14/15 V2X), low data rate, wide communication, such as Basic Safety Message (BSM), Cooperative Awareness Message (CAM), Decentralized Environmental Notification Message (DENM), and unidirectional P2X service, etc. In contrast to the support of uniform V2X services such as communication or transmission range and public service, next-generation mobile communication systems have introduced various services such as Advanced Driving, Extended Sensor, Platooning, etc. It is expected to support public, private or private services. Accordingly, the present disclosure proposes a method of classifying V2X services based on requirements and use cases for each service, as shown in Table 2 below. Refer to the 3GPP specification TR 22.886 “Study on enhancement of 3GPP Support for 5G V2X services” for the proposed table as follows.
TypeType RangeRange Data RateData rate UsageUsage
Rel-14/-15 V2XRel-14 / -15 V2X PublicPublic HighHigh LowLow BSM, CAM, DENM, P2XBSM, CAM, DENM, P2X
Advanced DrivingAdvanced driving PublicPublic MediumMedium MediumMedium Information sharing for automated driving,Intersection safety information,Cooperative lane change, etcInformation sharing for automated driving, Intersection safety information, Cooperative lane change, etc
Extended SensorExtended sensor PublicPublic Low (adjacent cars)Low (adjacent cars) HighHigh
PlatooningPlaooning Private/PublicPrivate / Public Medium: Leader -> follower, follower -> leaderLow: follower <-> followerMedium: Leader-> follower, follower-> leaderLow: follower <-> follower MediumMedium
도 2e는 본 개시가 적용되는 차세대 이동 통신 시스템에서 V2X 통신을 설명하는 도면이다.2E is a diagram illustrating V2X communication in a next generation mobile communication system to which the present disclosure is applied.
V2X는 차량과 모든 인터페이스를 통한 통신 기술을 통칭하고, 그 형태 및 통신을 이루는 구성 요소에 따라서 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2P(vehicle-to-pedestrian), V2N(vehicle-to-network) 등이 있다. V2P 및 V2V는 기본적으로 Rel-13 기기간 통신(device-to-device, 이하 D2D)의 구조 및 동작원리를 따른다. 예를 들면, 사이드링크(sidelink, PC5) 동작을 기본으로 하며, 기지국과 단말이 상하향링크가 아니라 단말들 사이의 전송 채널인 사이드링크를 통해서 실제 데이터 패킷이 송수신된다. 이런 기본 컨셉은 LTE에서 정의된 V2X 뿐만 아니라, NR에서 새로 정의될 수 있는 V2X에도 적용이 가능하며, 새롭게 도입되는 시나리오에 대해서도 적용이 가능하다.V2X collectively refers to the communication technology through the vehicle and all interfaces, and depending on the form and the components that make up the communication, V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure), and V2P (vehicle-to-pedestrian) And vehicle-to-network (V2N). V2P and V2V basically follow the structure and operation principle of Rel-13 device-to-device (D2D). For example, based on sidelink (PC5) operation, an actual data packet is transmitted / received through a sidelink, which is a transmission channel between terminals, not a base station and a terminal. This basic concept can be applied not only to the V2X defined in LTE, but also to the newly defined V2X in NR, and to the newly introduced scenario.
기지국(2e-01)은 V2X를 지원하는 셀(2e-02) 안에 위치한 적어도 하나의 차량 단말(2e-05, 2e-10)과 보행자 휴대단말(2e-15)을 포함하고 있다. 예를 들면, 차량 단말(2e-05)은 기지국(2e-01)과 차량 단말-기지국 간 링크(Uu, 2e-30, 2e-35)을 이용하여 셀룰러 통신을 수행하며, 다른 차량 단말(2e-10) 혹은 보행자 휴대단말(2e-15)과는 사이드링크(PC5, 2e-20, 2e-25)을 이용하여 기기간 통신을 수행하게 된다. 상기에서 기지국은 gNB 혹은 NR을 지원하는 업그레이드 된 eNB일 수도 있다. 차량 단말(2e-05)과 다른 차량(2e-10)이 혹은 차량 단말(2e-05, 2e-10)과 보행자 휴대단말(5c-15)이 사이드링크(2e-20, 2e-25)를 이용하여 직접적으로 정보를 주고 받기 위해서는 기지국이 사이드링크 통신에 사용할 수 있는 자원 풀을 할당해야 한다. 아래에는 LTE 시스템의 V2X에서 기지국이 단말에게 자원을 할당하는 방법을 상세히 정리하였으며, NR 시스템에서 도입하는 V2X에서도 LTE에서와 비슷한 접근 방법을 적용할 수 있다. 다만, NR에서는 다양한 numerology를 사용하기 때문에 이에 따라 사이드링크 자원 풀이 어느정도 다르게 설계 될 수도 있다.The base station 2e-01 includes at least one vehicle terminal 2e-05, 2e-10 and a pedestrian portable terminal 2e-15 located in the cell 2e-02 that supports V2X. For example, the vehicle terminal 2e-05 performs cellular communication using the link between the base station 2e-01 and the vehicle terminal-base station (Uu, 2e-30, 2e-35), and the other vehicle terminal 2e. -10) or communication with the pedestrian portable terminal (2e-15) by using side links (PC5, 2e-20, 2e-25). The base station may be an upgraded eNB supporting gNB or NR. The vehicle terminal 2e-05 and another vehicle 2e-10 or the vehicle terminals 2e-05 and 2e-10 and the pedestrian portable terminal 5c-15 may use the side links 2e-20 and 2e-25. In order to send and receive information directly, the base station should allocate a resource pool that can be used for sidelink communication. The following is a detailed description of how the base station allocates resources to UEs in V2X of the LTE system, and a similar approach to LTE can be applied to V2X introduced in the NR system. However, since NR uses various numerologies, the sidelink resource pool may be designed somewhat differently accordingly.
기지국이 단말에게 자원을 할당하는 방법에 따라 scheduled 자원할당(mode 3)과 UE autonomous 자원 할당(mode 4)의 두 가지로 나눌 수 있다. 상기의 scheduled 자원 할당의 경우 기지국이 RRC 연결된 단말들에게 dedicated 스케쥴링 방식으로 사이드링크 전송에 사용되는 자원을 할당하는 방법이다. 상기의 방법은 기지국이 사이드링크의 자원을 관리할 수 있기 때문에 간섭 관리와 자원 풀의 관리(동적 할당, semi-persistence transmission)에 효과적이다. 또한, 기지국이 V2X를 위한 자원을 할당하고 관리하는 scheduled 자원 할당(mode 3)의 경우에는, RRC 연결이 된 단말이 다른 단말들에게 전송할 데이터가 있을 경우, 기지국에게 RRC 메시지 혹은 MAC 제어 요소(Control Element, 이하 CE)를 이용하여 전송될 수 있다. 여기서 RRC 메시지로는 SidelinkUEInformation, UEAssistanceInformation 메시지가 사용될 수 있다. 한편, MAC CE는 일 예로 새로운 포맷 (적어도 V2P 통신을 위한 버퍼상태보고임을 알리는 지시자와 D2D 통신을 위해 버퍼되어 있는 데이터의 사이즈에 대한 정보 포함)의 버퍼상태보고 MAC CE 등일 수 있다. 3GPP에서 사용하고 있는 버퍼상태보고에 대한 상세한 포맷과 내용은 3GPP 규격 TS36.321 “E-UTRA MAC Protocol Specification”을 참조한다. 반면에 UE 자율적인(autonomous) 자원 할당은 기지국이 V2X를 위한 사이드링크 송수신 자원 풀을 시스템 정보로 제공하고, 단말이 정해진 룰에 따라 자원 풀을 선택하게 된다. 상기 자원 선택 방법으로는 서비스 별 혹은 서비스 종류에 무관한 존 매핑(zone mapping), 센싱(sensing) 기반의 자원 선택, 랜덤 선택 등이 있을 수 있다. V2X를 위한 자원 풀의 구조는 SA(scheduling allocation)를 위한 자원(2e-40, 2e-50, 2e-60)과 데이터 전송을 위한 자원(2e-45, 2e-55, 2e-65)이 인접해서 하나의 서브 채널을 구성할 수도 있고, SA(2e-70, 2e-75, 2e-80)와 데이터(2e-85, 2e-90, 2e-95)를 위한 자원이 인접하지 않은 방식으로 사용될 수도 있다. 상기의 두 구조 중 어떤 것이 사용되더라도 SA는 2개의 연속된 PRB들로 구성되고 데이터를 위한 자원의 위치를 지시하는 내용을 포함한다. 한 셀에서 V2X 서비스를 받는 단말의 수는 다수일 수 있으며, 상기에 설명한 기지국(2e-01)과 단말들(2e-05,2e-10,2e-15)의 관계를 확장해서 적용할 수 있다.Depending on how the base station allocates resources to the terminal, it may be divided into two types: scheduled resource allocation (mode 3) and UE autonomous resource allocation (mode 4). In the case of the scheduled resource allocation, the base station allocates resources used for sidelink transmission to the RRC-connected terminals in a dedicated scheduling manner. The above method is effective for interference management and resource pool management (dynamic allocation, semi-persistence transmission) because the base station can manage the resources of the sidelink. In addition, in the case of a scheduled resource allocation (mode 3) in which the base station allocates and manages resources for V2X, when the terminal connected to the RRC has data to transmit to other terminals, the base station allocates an RRC message or MAC control element (Control). Element, hereinafter, CE). In this case, SidelinkUEInformation and UEAssistanceInformation messages may be used as the RRC message. Meanwhile, the MAC CE may be, for example, a buffer status report MAC CE in a new format (including at least an indicator indicating that the buffer status is reported for V2P communication and information on the size of data buffered for D2D communication). Refer to 3GPP Specification TS36.321 “E-UTRA MAC Protocol Specification” for the detailed format and contents of the buffer status report used by 3GPP. On the other hand, UE autonomous resource allocation allows a base station to provide a sidelink transmit / receive resource pool for V2X as system information, and the terminal selects a resource pool according to a predetermined rule. The resource selection method may include zone mapping, sensing-based resource selection, random selection, and the like, regardless of service or service type. The structure of the resource pool for V2X is adjacent to resources (2e-40, 2e-50, 2e-60) for scheduling allocation (SA) and resources (2e-45, 2e-55, 2e-65) for data transmission. One subchannel, and resources for SA (2e-70, 2e-75, 2e-80) and data (2e-85, 2e-90, 2e-95) may be used in a non-contiguous manner. It may be. Whichever of the above two structures is used, the SA consists of two consecutive PRBs and contains the content indicating the location of the resource for the data. The number of terminals receiving V2X service in one cell may be large, and the relationship between the base station 2e-01 and the terminals 2e-05, 2e-10, and 2e-15 described above may be extended. .
도 2f는 차세대 이동통신 시스템에서 mode 3로 동작하는 V2X 단말의 데이터 전송 절차를 도시한 도면이다.2F is a diagram illustrating a data transmission procedure of a V2X terminal operating in mode 3 in a next generation mobile communication system.
도 2f을 참조하면, V2X Application Server(2f-05)은 단말(2f-01, 2f-02)이 V2X 통신이 가능하도록 초기에 파라미터 정보를 제공(parameter provisioning)한다(2f-10). 또한 V2X Control Function(2f-04)이 V2X Application Server(2f-05)로부터 파라미터 정보를 제공받아 단말이(2f-01, 2f-02) V2X 통신이 가능하도록 초기에 파라미터 정보를 제공할 수도 있다(2f-10). 상기 프로비저닝된 파라미터에는 V2X 서비스들과 Destination Layer-2 ID(s)의 매핑 정보가 포함되어 있다. 일 예로, 차세대 이동통신 시스템에서는 platooning, advanced driving, extended sensor 등과 같은 신규 V2X 서비스를 지원해야 하므로 기존 V2X 서비스처럼 신규 V2X 서비스가 V2X application의 PSID (Provider Service Identifier) 혹은 ITS-AIDs (Intelligent Transport System-Application Identifiers) 혹은 새로운 Identifiers 등의 식별자를 통해 Destination Layer-2 ID(s)와 매핑된다. 또한 상기 프로비저닝된 파라미터에는 V2X frequencies와 V2X 서비스 혹은 V2X frequencies와 V2X 서비스 타입 (예를 들어, 상기에서 명시한 PSID 혹은 ITS-AIDs 혹은 새로운 Identifiers 등) 혹은 V2X frequencies와 무선접속기술(Radio Access Technology, RAT)의 매핑 정보가 포함된다. 여기서 V2X frequencies는 V2X LTE 주파수 혹은 V2X NR 주파수 혹은 두 주파수 모두를 나타낼 수 있으며, 이에 따라 무선접속기술 역시 E-UTRA 혹은 NR 혹은 두 기술 모두를 나타낼 수 있다. 그리고 상기에서 명시한 매핑 정보에는 추가적으로 지리적 영역(geographical area(s))에 대한 정보도 함께 포함될 수 있다. 일 예로, 특정 지리적 영역에서는 지역 규제(local regulations)에 의해 상기 V2X frequencies 가 사용이 불가하거나 보안(privacy)이 민감한 지리적 영역에서는 사용 가능한 V2X 서비스 들의 리스트 혹은 V2X 서비스 타입이 상이할 수 있으므로 지리적 영역에 대한 정보도 함께 포함될 수 있다. 또한 상기 프로비저닝된 파라미터에는 V2X 서비스와 통신 영역(communication range) 혹은 전송 영역(transmission range)의 매핑 정보가 포함된다. 또한 상기 프로비저닝된 파라미터에는 V2X 통신을 위해 PPPP (ProSe Per-Packet Priority)와 패킷 딜레이 버짓(packet delay budget)에 대한 매핑 정보 혹은 V2X 서비스와 PPPP의 매핑 정보 혹은 V2X 서비스와 PPPR (ProSe Per-Packet Reliability)의 매핑 정보 혹은 V2X 서비스와 PPPI (ProSe Per-Packet Integrity)도 포함된다. 또한 상기 프로비저닝된 파라미터에는 V2X 서비스와 데이터 전송 방식(transmission type)의 매핑 정보도 포함된다. 여기서 데이터 전송 방식은 broadcast, multicast, groupcast, unicast 를 의미한다. 또한 상기 프로비저닝된 파라미터에는 PPPP 혹은 PPPR 혹은 PPPP와 PPPR의 조합으로 구성된 송신 자원 풀 및 수신 자원 풀이 포함되어 있다. 상기 단말(2f-01, 2f-02)은 상기 V2X Application Server(2f-05) 혹은 V2X Control Function(2f-04)로부터 초기에 제공받은 파라미터들을 미리 설정(pre-configured)한다.Referring to FIG. 2F, the V2X Application Server 2f-05 initially provides parameter provisioning so that the terminals 2f-01 and 2f-02 can perform V2X communication (2f-10). In addition, the V2X Control Function (2f-04) may receive the parameter information from the V2X Application Server (2f-05) and initially provide the parameter information so that the terminal (2f-01, 2f-02) can perform V2X communication ( 2f-10). The provisioned parameter includes mapping information of V2X services and Destination Layer-2 ID (s). For example, the next-generation mobile communication system needs to support new V2X services such as platooning, advanced driving, and extended sensors. Therefore, like the existing V2X service, the new V2X service is a PSID (Provider Service Identifier) or ITS-AIDs (Intelligent Transport System-) of the V2X application. Application Identifiers) or new Identifiers are used to map to Destination Layer-2 ID (s). The provisioned parameters may also include V2X frequencies and V2X services or V2X frequencies and V2X service types (e.g., PSID or ITS-AIDs or new Identifiers, etc.) or V2X frequencies and Radio Access Technology (RAT) as specified above. Contains mapping information. Here, V2X frequencies may represent the V2X LTE frequency or the V2X NR frequency, or both frequencies. Accordingly, the radio access technology may also represent E-UTRA or NR or both technologies. The mapping information specified above may additionally include information about a geographical area (s). For example, the V2X frequencies may not be available due to local regulations in certain geographic areas or the list of available V2X services or V2X service types may be different in a geographical area where privacy is sensitive. Information may also be included. In addition, the provisioned parameter includes mapping information of a V2X service and a communication range or a transmission range. In addition, the provisioned parameter includes mapping information on ProSe Per-Packet Priority (PPPP) and packet delay budget or V2X service and PPPP mapping information or V2X service and PPPR (ProSe Per-Packet Reliability) for V2X communication. ) Or mapping information of V2X services and ProSe Per-Packet Integrity (PPPI). The provisioned parameter also includes mapping information of a V2X service and a data transmission type. Here, the data transmission method means broadcast, multicast, groupcast, and unicast. The provisioned parameter also includes a transmission resource pool and a reception resource pool composed of PPPP or PPPR or a combination of PPPP and PPPR. The terminals 2f-01 and 2f-02 pre-configur the parameters initially provided from the V2X Application Server 2f-05 or the V2X Control Function 2f-04.
상기에서 파라미터들을 미리 설정한 단말 1(2f-01)은 특정 V2X 서비스 x에 관심이 있으면 셀설렉션 혹은 셀리설렉션 절차를 수행하여 적합한 셀(suitable cell)을 찾아 캠프-온 할 셀을 찾는다(2f-15). 이 때 상기 단말은 특정 V2X 서비스 x와 매핑된 HPLMN (Home Public Land Mobile Network)에서 지원하는 V2X frequency에 캠프-온 할 셀을 찾는 걸 의미한다. 캠프-온 하고 있는 단말 1(2f-01)은 기지국(2f-03)으로부터 SIB21을 수신(2f-20)한다.If the terminal 1 (2f-01) preset parameters are interested in a specific V2X service x, it performs a cell selection or cell selection procedure to find a suitable cell and find a cell to camp on (2f). -15). In this case, the terminal means finding a cell to camp on at a V2X frequency supported by a Home Public Land Mobile Network (HPLMN) mapped to a specific V2X service x. Camping-on terminal 1 (2f-01) receives the SIB21 from the base station (2f-03) (2f-20).
상기 시스템 정보(2f-20)에는 PPPP 혹은 PPPR 혹은 PPPP와 PPPR의 조합으로 구성된 송신 자원 풀 및 수신 자원 풀이 포함되어 있다. 구체적으로, 서빙 셀(serving cell)의 송신 자원 풀 및 수신 자원 풀의 정보와 inter-frequency의 주변 셀(neighbor cell)의 수신 자원 풀의 정보가 포함될 수 있다. 또한, 상기 시스템 정보에는 inter-RAT의 자원 풀 정보와 동기를 설정하기 위한 정보, 단말이 자율적으로 자원을 선택하고 데이터를 전송하기 위한 zone 설정 정보, 사이드링크(PC5)와 LTE/NR 상하향 링크(Uu)의 우선순위 설정 정보, 자원 풀 설정 정보 (예를 들면, 비트맵 형식의 시간 영역 자원, 주파수 영역 자원, NR이 지원가능할 경우 subcarrier spacing 정보 혹은 cyclic prefix length), 최대 허용 가능한 전송 파워(maximum allowed transmission power)가 담긴 전송 파워 설정 정보, 센싱 동작을 위한 설정 정보가 포함된다.The system information 2f-20 includes a transmission resource pool and a reception resource pool composed of PPPP or PPPR or a combination of PPPP and PPPR. Specifically, the information may include information of a transmission resource pool and a reception resource pool of a serving cell and information of a reception resource pool of a neighbor cell of inter-frequency. In addition, the system information includes information for establishing synchronization with the resource pool information of the inter-RAT, zone setting information for the terminal to autonomously select resources and transmit data, sidelink (PC5) and LTE / NR uplink ( Uu) priority setting information, resource pool setting information (e.g., time domain resources in the bitmap format, frequency domain resources, subcarrier spacing information or cyclic prefix length if NR is supported), maximum allowable transmission power (maximum) transmission power configuration information including allowed transmission power) and configuration information for sensing operation are included.
상기 시스템 정보를 읽어드린 단말 1(2f-01)은 송신을 위한 V2X 패킷(packet)이 생성(2f-25)되면, 상기 단말은 상기 패킷이 제공하는 V2X 서비스 기반으로 상기 패킷에 적용 가능한 PPPP, PPPR 그리고 PPPI 값을 결정한다. 그리고 상기 단말은 상기 패킷에 해당하는 PPPP와 PPPR의 조합으로 송신 자원 풀을 결정한 후 기지국과 RRC 연결을 수행한다(2f-30). 상기의 RRC 연결 과정에서 단말은 기지국에게 특정 V2X 서비스 x에 대한 정보 (예를 들면 PPPP 혹은 PPPR 혹은 PPPI)를 추가하거나 혹은 결정한 송신 자원 풀에 대한 정보를 RRC 메시지로 보낼 수 있다. 상기의 송신 자원 풀 결정은 RRC 연결 후에 수행 될 수 있다. 상기의 RRC 연결 과정은 특정 V2X 서비스 x를 위한 데이터 트래픽이 생성(2f-30) 이전에 수행될 수 있다.When the terminal 1 (2f-01) read the system information is generated V2X packet (2f-25) for transmission, the terminal is PPPP applicable to the packet based on the V2X service provided by the packet, PPPR and PPPI values are determined. The terminal determines the transmission resource pool by a combination of PPPP and PPPR corresponding to the packet and then performs RRC connection with the base station (2f-30). In the RRC connection process, the UE may add information on a specific V2X service x (for example, PPPP, PPPR, or PPPI) to the base station or transmit information on the determined transmission resource pool as an RRC message. The transmission resource pool determination may be performed after the RRC connection. The RRC connection process may be performed before generating data traffic for a specific V2X service x (2f-30).
단말 1(2f-01)은 기지국(2f-03)에게 다른 단말들(2f-02) 혹은 기지국(2f-03)과 V2X 통신을 할 수 있는 전송 자원을 요청한다(2f-35). 이 때, 상기 V2X 패킷에 해당하는 PPPP와 PPPR의 조합으로 결정한 송신 자원 풀에서 전송 자원을 요청 할 수도 있다. 단말 1(2f-01)은 RRC 메시지 혹은 MAC CE(Control Element)를 이용하여 기지국에게 요청 할 수 있다. 여기서 RRC 메시지로는 SidelinkUEInformation, UEAssistanceInformation 메시지가 사용될 수 있다. 한편, MAC CE는 일 예로 새로운 포맷 (적어도 V2X 통신을 위한 버퍼상태보고임을 알리는 지시자와 D2D 통신을 위해 버퍼되어 있는 데이터의 사이즈에 대한 정보 포함)의 버퍼상태보고 MAC CE 등일 수 있다. 기지국(2f-03)은 단말 1(2f-01)에게 dedicated RRC 메시지를 통해 V2X 전송 자원을 할당한다(2f-40). 이 메시지는 RRCConnectionReconfiguration 메시지에 포함 할 수 있다. 상기 자원 할당은 단말이 요청하는 송신 자원 혹은 트래픽의 종류 혹은 해당 링크의 혼잡 여부 혹은 V2X 서비스에 따라 Uu를 통한 V2X 자원이거나 PC5를 위한 자원일 수 있다. 상기 결정을 위해 단말은 UEAssistanceInformation 혹은 MAC CE를 통해 V2X 트래픽의 PPPP 혹은 PPPR 혹은 PPPI 혹은 LCID 정보를 추가해서 보낸다. 기지국은 다른 단말들이 사용하는 자원에 대한 정보 또한 알고 있기 때문에 상기 단말이 요청하는 자원을 남아있는 자원들 중에서 스케쥴링한다. 또한, 상기 RRC 메시지에 Uu를 통한 SPS configuration 정보가 포함되어 있을 경우 PDCCH를 통한 DCI 전송으로 SPS를 activation 할 수 있다(2f-45). 단말 1(5d-01)은 기지국(5d-03)으로부터 할당받은 자원 및 전송방법에 따라 전송 링크 및 송신 자원을 선택한다(2f-50).The terminal 1 2f-01 requests the base station 2f-03 to transmit resources capable of V2X communication with other terminals 2f-02 or the base station 2f-03 (2f-35). At this time, a transmission resource may be requested from a transmission resource pool determined by a combination of PPPP and PPPR corresponding to the V2X packet. The terminal 1 2f-01 may request the base station using an RRC message or a MAC CE (Control Element). In this case, SidelinkUEInformation and UEAssistanceInformation messages may be used as the RRC message. Meanwhile, the MAC CE may be, for example, a buffer status report MAC CE in a new format (including at least an indicator indicating that the buffer status report is for V2X communication and information on the size of data buffered for D2D communication). The base station 2f-03 allocates a V2X transmission resource to the terminal 1 2f-01 through a dedicated RRC message (2f-40). This message may be included in the RRCConnectionReconfiguration message. The resource allocation may be a V2X resource through Uu or a resource for PC5 depending on the type of transmission resource or traffic requested by the terminal, whether a corresponding link is congested, or a V2X service. For the determination, the UE adds PPPP or PPPR or PPPI or LCID information of V2X traffic through UEAssistance Information or MAC CE. Since the base station also knows information on resources used by other terminals, the base station schedules the resources requested by the terminal among the remaining resources. In addition, when the RRC message includes the SPS configuration information through Uu, the SPS may be activated by DCI transmission through the PDCCH (2f-45). Terminal 1 (5d-01) selects the transmission link and the transmission resource in accordance with the resources and transmission method allocated from the base station (5d-03) (2f-50).
전송 링크 및 송신 자원을 선택한 단말 1(2f-01)은 사이드링크 무선 베어러(SLRB)를 결정한다(2f-55). SLRB는 PDCP entity와 RLC entity로 구성된다. 본 개시에서는 하나의 SLRB는 SRC/DST pair와 PPPP/PPPR/PPPI/LCID의 조합으로 구분되는 것을 제안한다. 예를 들면, SLRB는 SRC/DST/PPPI로 구분될 수도 있으며, SRC/DST/PPPI/PPPR로도 구분될 수도 있다. 단말 1(2f-01)은 송신을 위해 생성된 V2X 패킷이 SRC/DST/PPPI로 구분되는 SLRB가 있는 경우, 해당 SLRB를 선택한다. 만약 SRC/DST/PPPI로 구분되는 SLRB가 없는 경우에는 새로운 SLRB를 생성(establish/create)한다. 상기에서 설명한 SLRB 선택 혹은 생성 방법은 SRC/DST/PPPI/PPPR/PPPP/LCID의 어떤 조합으로도 관계를 확장 혹은 축소하여 적용할 수 있다(2f-55).The terminal 1 (2f-01) that has selected the transmission link and the transmission resource determines the sidelink radio bearer (SLRB) (2f-55). SLRB consists of a PDCP entity and an RLC entity. In the present disclosure, it is proposed that one SLRB is classified into a combination of an SRC / DST pair and a PPPP / PPPR / PPPI / LCID. For example, the SLRB may be classified as SRC / DST / PPPI or may also be classified as SRC / DST / PPPI / PPPR. UE 1 (2f-01) selects the SLRB when the V2X packet generated for transmission has an SLRB classified into SRC / DST / PPPI. If there is no SLRB divided into SRC / DST / PPPI, a new SLRB is created / created. The above-described SLRB selection or generation method can be applied by extending or contracting the relationship with any combination of SRC / DST / PPPI / PPPR / PPPP / LCID (2f-55).
SLRB를 선택/생성한 단말 1(2f-01)은 PDCP 계층에서 V2X 패킷을 무결성 보호를 처리한다(2f-60). 만약 PPPI가 1인 경우, MAC-I를 계산한 후 V2X 패킷 가장 끝에 MAC-I를 추가하여 PDCP Data PDU를 형성한다. 또한 PPPP와 PPPR의 값에 따라 MAC-I를 계산한 후 V2X 패킷 가장 끝에 MAC-I를 추가하여 PDCP Data PDU를 형성할 수도 있다. 본 개시에서는 PDCP 헤더에 1 bit indicator를 추가하여 MAC-I의 계산 값이 존재하는 지시값을 도입하는 것을 제안한다. 일 예로, 1 bit indicator 값이 1인 경우 MAC-I의 계산 값이 존재함을 지시할 수 있다. 한편, 0인 경우는 MAC-I의 계산 값이 존재하지 않음을 지시할 수 있다. PDCP Data PDU를 형성한 상기 단말은 단말들(2f-02)에게 혹은 기지국(2f-03)에게 PPPP/PPPR을 기반으로 선택한 송신 자원 풀을 사용하여 데이터를 전송한다(2f-65).The terminal 1 (2f-01) that selects / generates the SLRB processes the integrity protection of the V2X packet in the PDCP layer (2f-60). If PPPI is 1, the MAC-I is calculated and the PDCP Data PDU is formed by adding the MAC-I to the end of the V2X packet. In addition, after calculating the MAC-I according to the values of PPPP and PPPR, the PDCP Data PDU may be formed by adding MAC-I at the end of the V2X packet. In the present disclosure, it is proposed to introduce an indication value in which a calculated value of MAC-I exists by adding a 1 bit indicator to the PDCP header. For example, when the value of 1 bit indicator is 1, it may indicate that a calculated value of MAC-I exists. On the other hand, 0 may indicate that the calculated value of MAC-I does not exist. The terminal, which forms the PDCP Data PDU, transmits data to the terminals 2f-02 or the base station 2f-03 using the transmission resource pool selected based on the PPPP / PPPR (2f-65).
도 2g는 차세대 이동통신 시스템에서 mode 4로 동작하는 V2X 단말의 데이터 전송 절차를 도시한 도면이다.2g is a diagram illustrating a data transmission procedure of a V2X terminal operating in mode 4 in a next generation mobile communication system.
도 2g을 참조하면, V2X Application Server(2g-05)은 단말(2g-01, 2g-02)이 V2X 통신이 가능하도록 초기에 파라미터 정보를 제공(parameter provisioning)한다(2g-10). 또한 V2X Control Function(2g-04)이 V2X Application Server(2g-05)로부터 파라미터 정보를 제공받아 단말이(2g-01, 2g-02) V2X 통신이 가능하도록 초기에 파라미터 정보를 제공할 수도 있다(2g-10). 상기 프로비저닝된 파라미터에는 V2X 서비스들과 Destination Layer-2 ID(s)의 매핑 정보가 포함되어 있다. 일 예로, 차세대 이동통신 시스템에서는 platooning, advanced driving, extended sensor 등과 같은 신규 V2X 서비스를 지원해야 하므로 기존 V2X 서비스처럼 신규 V2X 서비스가 V2X application의 PSID (Provider Service Identifier) 혹은 ITS-AIDs (Intelligent Transport System-Application Identifiers) 혹은 새로운 Identifiers 등의 식별자를 통해 Destination Layer-2 ID(s)와 매핑된다. 또한 상기 프로비저닝된 파라미터에는 V2X frequencies와 V2X 서비스 혹은 V2X frequencies와 V2X 서비스 타입 (예를 들어, 상기에서 명시한 PSID 혹은 ITS-AIDs 혹은 새로운 Identifiers 등) 혹은 V2X frequencies와 무선접속기술(Radio Access Technology, RAT)의 매핑 정보가 포함된다. 여기서 V2X frequencies는 V2X LTE 주파수 혹은 V2X NR 주파수 혹은 두 주파수 모두를 나타낼 수 있으며, 이에 따라 무선접속기술 역시 E-UTRA 혹은 NR 혹은 두 기술 모두를 나타낼 수 있다. 그리고 상기에서 명시한 매핑 정보에는 추가적으로 지리적 영역(geographical area(s))에 대한 정보도 함께 포함될 수 있다. 일 예로, 특정 지리적 영역에서는 지역 규제(local regulations)에 의해 상기 V2X frequencies 가 사용이 불가하거나 보안(privacy)이 민감한 지리적 영역에서는 사용 가능한 V2X 서비스 들의 리스트 혹은 V2X 서비스 타입이 상이할 수 있으므로 지리적 영역에 대한 정보도 함께 포함될 수 있다. 또한 상기 프로비저닝된 파라미터에는 V2X 서비스와 통신 영역(communication range) 혹은 전송 영역(transmission range)의 매핑 정보가 포함된다. 또한 상기 프로비저닝된 파라미터에는 V2X 통신을 위해 PPPP (Prose Per-Packet Priority)와 패킷 딜레이 버짓(packet delay budget)에 대한 매핑 정보 혹은 V2X 서비스와 PPPP의 매핑 정보 혹은 V2X 서비스와 PPPR (Prose Per-Packet Reliability)의 매핑 정보 혹은 V2X 서비스와 PPPI (ProSe Per-Packet Integrity)도 포함된다. 또한 상기 프로비저닝된 파라미터에는 V2X 서비스와 데이터 전송 방식(transmission type)의 매핑 정보도 포함된다. 여기서 데이터 전송 방식은 broadcast, multicast, groupcast, unicast 를 의미한다. PPPP 혹은 PPPR 혹은 PPPP와 PPPR의 조합으로 구성된 송신 자원 풀 및 수신 자원 풀이 포함되어 있다. 상기 단말(2g-01, 2g-02)은 상기 V2X Application Server(2g-05) 혹은 V2X Control Function(2f-04)로부터 초기에 제공받은 파라미터들을 미리 설정(pre-configured)한다.Referring to FIG. 2G, the V2X Application Server 2g-05 initially provides parameter information so that the terminals 2g-01 and 2g-02 can perform V2X communication (2g-10). In addition, the V2X Control Function (2g-04) may receive the parameter information from the V2X Application Server (2g-05) and initially provide the parameter information so that the terminal (2g-01, 2g-02) can perform V2X communication ( 2g-10). The provisioned parameter includes mapping information of V2X services and Destination Layer-2 ID (s). For example, the next-generation mobile communication system needs to support new V2X services such as platooning, advanced driving, and extended sensors. Therefore, like the existing V2X service, the new V2X service is a PSID (Provider Service Identifier) or ITS-AIDs (Intelligent Transport System-) of the V2X application. Application Identifiers) or new Identifiers are used to map to Destination Layer-2 ID (s). The provisioned parameters may also include V2X frequencies and V2X services or V2X frequencies and V2X service types (e.g., PSID or ITS-AIDs or new Identifiers, etc.) or V2X frequencies and Radio Access Technology (RAT) as specified above. Contains mapping information. Here, V2X frequencies may represent the V2X LTE frequency or the V2X NR frequency, or both frequencies. Accordingly, the radio access technology may also represent E-UTRA or NR or both technologies. The mapping information specified above may additionally include information about a geographical area (s). For example, the V2X frequencies may not be available due to local regulations in certain geographic areas or the list of available V2X services or V2X service types may be different in a geographical area where privacy is sensitive. Information may also be included. In addition, the provisioned parameter includes mapping information of a V2X service and a communication range or a transmission range. In addition, the provisioned parameters include mapping information on PPPP (Prose Per-Packet Priority) and packet delay budget or V2X service and PPPP mapping information or V2X service and PPPR (Prose Per-Packet Reliability) for V2X communication. ) Or mapping information of V2X services and ProSe Per-Packet Integrity (PPPI). The provisioned parameter also includes mapping information of a V2X service and a data transmission type. Here, the data transmission method means broadcast, multicast, groupcast, and unicast. It includes a transmission resource pool and a reception resource pool composed of PPPP or PPPR or a combination of PPPP and PPPR. The terminals 2g-01 and 2g-02 pre-configur the parameters initially provided from the V2X Application Server 2g-05 or the V2X Control Function 2f-04.
기지국(2g-03)이 직접 자원 할당에 관여하는 mode 3와 달리 mode 4 동작은 단말 1(2g-01)이 시스템 정보를 통해 미리 수신한 자원 풀을 기반으로 자율적으로 자원을 선택하고 데이터를 전송하는 점에서 차이점이 있다. 본 개시에서는 V2X 통신에서 기지국(2g-03)은 단말 1(2g-01)을 위해 PPPP와 PPPR의 조합을 기반으로 사이드링크 자원 풀(V2V 자원 풀, V2P 자원 풀)을 할당 하는 것을 제안한다. 상기 자원 풀은 단말이 주변 다른 단말들이 사용하는 자원을 센싱한 후 사용 가능한 자원 풀을 자율적으로 선택할 수 있는 자원 풀과 미리 설정된 자원 풀에서 단말이 랜덤하게 자원을 선택하는 자원 풀 등으로 구성된다.Unlike mode 3 in which the base station 2g-03 is directly involved in resource allocation, mode 4 operation autonomously selects a resource and transmits data based on a resource pool previously received by the terminal 1 (2g-01) through system information. There is a difference in that. In the present disclosure, in the V2X communication, the base station 2g-03 proposes to allocate a sidelink resource pool (V2V resource pool, V2P resource pool) for the terminal 1 (2g-01) based on a combination of PPPP and PPPR. The resource pool is composed of a resource pool that allows the terminal to autonomously select an available resource pool after sensing a resource used by other terminals, and a resource pool in which the terminal randomly selects a resource from a preset resource pool.
상기에서 파라미터들을 미리 설정한 단말(2g-01)은 특정 V2X 서비스 x에 관심이 있으면 셀설렉션 혹은 셀리설렉션 절차를 수행하여 적합한 셀(suitable cell)을 찾아 캠프-온 할 셀을 찾는다(2g-15). 이 때 상기 단말은 특정 V2X 서비스 x와 매핑된 HPLMN (Home Public Land Mobile Network)에서 지원하는 V2X frequency에 캠프-온 할 셀을 찾는 걸 의미한다. 캠프-온 하고 있는 단말(2g-01)은 기지국(2g-03)으로부터 SIB21을 수신(2g-20)한다.If the terminal 2g-01 preset parameters are interested in a specific V2X service x, the terminal 2g-01 performs a cell selection or a cell selection procedure to find a suitable cell and find a cell to camp on (2g-). 15). In this case, the terminal means finding a cell to camp on at a V2X frequency supported by a Home Public Land Mobile Network (HPLMN) mapped to a specific V2X service x. The camping-on terminal 2g-01 receives SIB21 from the base station 2g-03 (2g-20).
상기 시스템 정보(2f-20)에는 PPPP 혹은 PPPR 혹은 PPPP와 PPPR의 조합으로 구성된 송신 자원 풀 및 수신 자원 풀이 포함되어 있다. 구체적으로, 서빙 셀(serving cell)의 송신 자원 풀 및 수신 자원 풀의 정보와 inter-frequency의 주변 셀(neighbor cell)의 수신 자원 풀의 정보가 포함될 수 있다. 또한, 상기 시스템 정보에는 inter-RAT의 서비스 별 자원 풀 정보와 동기를 설정하기 위한 정보, 단말이 자율적으로 자원을 선택하고 데이터를 전송하기 위한 zone 설정 정보, 사이드링크(PC5)와 LTE/NR 상하향 링크(Uu)의 우선순위 설정 정보, 자원 풀 설정 정보 (예를 들면, 비트맵 형식의 시간 영역 자원, 주파수 영역 자원, NR이 지원가능할 경우 subcarrier spacing 정보 혹은 cyclic prefix length), 최대 허용 가능한 전송 파워(maximum allowed transmission power)가 담긴 전송 파워 설정 정보, 센싱 동작을 위한 설정 정보가 포함된다.The system information 2f-20 includes a transmission resource pool and a reception resource pool composed of PPPP or PPPR or a combination of PPPP and PPPR. Specifically, the information may include information of a transmission resource pool and a reception resource pool of a serving cell and information of a reception resource pool of a neighbor cell of inter-frequency. In addition, the system information includes resource pool information for each service of the inter-RAT, information for setting synchronization, zone setting information for the terminal to autonomously select resources, and transmit data, and sidelink (PC5) and up / down LTE / NR Priority setting information of link (Uu), resource pool setting information (e.g., time domain resources, frequency domain resources in bitmap format, subcarrier spacing information or cyclic prefix length when NR is supported), and maximum allowable transmission power transmission power setting information including (maximum allowed transmission power) and setting information for sensing operation are included.
단말 1(2g-01)에 V2X를 위한 데이터 트래픽이 생성(2g-15)되면, 단말 1(2g-01)은 기지국(2g-03)으로부터 시스템 정보를 통해 전달받은 자원 풀 중에서 설정된 전송 동작(동적 할당 1회 전송, 동적 할당 다중 전송, 센싱 기반 1회 전송, 센싱 기반 다중 전송, 랜덤 전송) 혹은 PPPP/PPPR에 따라, 시간/주파수 영역의 송신 자원을 선택(2g-30)한다. 송신 자원을 선택한 단말 1(2g-01)은 사이드링크 무선 베어러(SLRB)를 결정한다(2g-35). SLRB는 PDCP entity와 RLC entity로 구성된다. 본 개시에서는 하나의 SLRB는 SRC/DST pair와 PPPP/PPPR/PPPI/LCID의 조합으로 구분되는 것을 제안한다. 예를 들면, SLRB는 SRC/DST/PPPI로 구분될 수도 있으며, SRC/DST/PPPI/PPPR로도 구분될 수도 있다. 단말 1(2g-01)은 송신을 위해 생성된 V2X 패킷이 SRC/DST/PPPI로 구분되는 SLRB가 있는 경우, 해당 SLRB를 선택한다. 만약 SRC/DST/PPPI로 구분되는 SLRB가 없는 경우에는 새로운 SLRB를 생성(establish/create)한다. 상기에서 설명한 SLRB 선택 혹은 생성 방법은 SRC/DST/PPPI/PPPR/PPPP/LCID의 어떤 조합으로도 관계를 확장 혹은 축소하여 적용할 수 있다(2g-35).When data traffic for V2X is generated (2g-15) in the terminal 1 (2g-01), the terminal 1 (2g-01) is a transmission operation (set from the resource pool received through the system information from the base station 2g-03) Transmission resources in the time / frequency domain are selected (2g-30) according to dynamic allocation once transmission, dynamic allocation multiple transmission, sensing based one transmission, sensing based multiple transmission, random transmission) or PPPP / PPPR. Terminal 1 (2g-01) that selects a transmission resource determines the sidelink radio bearer (SLRB) (2g-35). SLRB consists of a PDCP entity and an RLC entity. In the present disclosure, it is proposed that one SLRB is classified into a combination of an SRC / DST pair and a PPPP / PPPR / PPPI / LCID. For example, the SLRB may be classified as SRC / DST / PPPI or may also be classified as SRC / DST / PPPI / PPPR. UE 1 (2g-01) selects the SLRB when the V2X packet generated for transmission has an SLRB classified into SRC / DST / PPPI. If there is no SLRB divided into SRC / DST / PPPI, a new SLRB is created / created. The above-described SLRB selection or generation method can be applied by extending or contracting the relationship with any combination of SRC / DST / PPPI / PPPR / PPPP / LCID (2g-35).
SLRB를 선택/생성한 단말 1(2g-01)은 PDCP 계층에서 V2X 패킷을 무결성 보호를 처리한다(2g-40). 만약 PPPI가 1인 경우, MAC-I를 계산한 후 V2X 패킷 가장 끝에 MAC-I를 추가하여 PDCP Data PDU를 형성한다. 또한 PPPP와 PPPR의 값에 따라 MAC-I를 계산한 후 V2X 패킷 가장 끝에 MAC-I를 추가하여 PDCP Data PDU를 형성할 수도 있다. 본 개시에서는 PDCP 헤더에 1 bit indicator를 추가하여 MAC-I의 계산 값이 존재하는 지시값을 도입하는 것을 제안한다. 일 예로, 1 bit indicator 값이 1인 경우 MAC-I의 계산 값이 존재함을 지시할 수 있다. 한편, 0인 경우는 MAC-I의 계산 값이 존재하지 않음을 지시할 수 있다. PDCP Data PDU를 형성한 상기 단말은 단말들(2g-02)에게 혹은 기지국(2g-03)에게 PPPP/PPPR을 기반으로 선택한 송신 자원 풀을 사용하여 데이터를 전송한다(2g-45).The terminal 1 (2g-01) that selects / generates the SLRB processes the integrity protection of the V2X packet in the PDCP layer (2g-40). If PPPI is 1, the MAC-I is calculated and the PDCP Data PDU is formed by adding the MAC-I to the end of the V2X packet. In addition, after calculating the MAC-I according to the values of PPPP and PPPR, the PDCP Data PDU may be formed by adding MAC-I at the end of the V2X packet. In the present disclosure, it is proposed to introduce an indication value in which a calculated value of MAC-I exists by adding a 1 bit indicator to the PDCP header. For example, when the value of 1 bit indicator is 1, it may indicate that a calculated value of MAC-I exists. On the other hand, 0 may indicate that the calculated value of MAC-I does not exist. The terminal that forms the PDCP Data PDU transmits data to the terminals 2g-02 or the base station 2g-03 using the transmission resource pool selected based on the PPPP / PPPR (2g-45).
도 2h는 본 개시에서 제안하는 NR V2X 시스템에서 broadcast/multicast/groupcast/unicast에 적용되는 PDCP PDU 포맷을 설명하는 도면이다. 본 개시에서는 PDCP PDU 포맷에 MAC-I가 존재하는 지에 대한 여부를 나타내기 위해 PDCP 헤더에 1 bit indication을 도입하는 것을 제안한다. 일 예로, R 필드(2h-05)는 추후에 사용될 수 있는 추가 기능을 위해 남겨놓은 비트이기 때문에 R 필드에 MAC-I가 존재하는 지에 대한 여부를 나타내는 1 bit indicator로 사용할 수도 있다. 또한 본 개시에서는 현재 SDU type(2h-10, 2h-15)에는 100 ~ 111까지 추후에 사용될 수 있는 추가 기능을 위해 남겨두었는데, 이 중 하나의 값으로 MAC-I가 존재하는 지에 대한 여부를 나타내는 것을 제안한다.FIG. 2H illustrates a PDCP PDU format applied to broadcast / multicast / groupcast / unicast in the NR V2X system proposed in the present disclosure. In the present disclosure, it is proposed to introduce a 1 bit indication in the PDCP header to indicate whether the MAC-I exists in the PDCP PDU format. For example, the R field 2h-05 may be used as a 1 bit indicator indicating whether MAC-I is present in the R field because the bit is reserved for an additional function which may be used later. In addition, in the present disclosure, the current SDU types (2h-10, 2h-15) are reserved for additional functions that can be used later from 100 to 111. One of these values indicates whether MAC-I exists. Suggest to indicate.
도 2i는 본 개시에 따른 단말의 블록 구성을 나타낸 도면이다.2i is a block diagram of a terminal according to the present disclosure.
도 2i에서 도시되는 바와 같이, 본 개시의 제 2 실시 예에 따른 단말은 송수신부(2i-05), 제어부(2i-10), 다중화 및 역다중화부(2i-15), 각 종 상위 계층 처리부(2i-20, 2i-25), 제어 메시지 처리부(2i-30)를 포함한다.As shown in FIG. 2i, the terminal according to the second embodiment of the present disclosure includes a transceiver 2i-05, a controller 2i-10, a multiplexing and demultiplexing unit 2i-15, and various higher layer processing units. 2i-20 and 2i-25, and a control message processing unit 2i-30.
상기 송수신부(2i-05)는 서빙 셀의 순방향 채널로 데이터 및 소정의 제어 신호를 수신하고 역방향 채널로 데이터 및 소정의 제어 신호를 전송한다. 다수의 서빙 셀이 설정된 경우, 송수신부(2i-05)는 상기 다수의 서빙 셀을 통한 데이터 송수신 및 제어 신호 송수신을 수행한다. 다중화 및 역다중화부(2i-15)는 상위 계층 처리부(2i-20, 2i-25)나 제어 메시지 처리부(2i-30)에서 발생한 데이터를 다중화하거나 송수신부(2i-05)에서 수신된 데이터를 역다중화해서 적절한 상위 계층 처리부(2i-20, 2i-25)나 제어 메시지 처리부(2i-30)로 전달하는 역할을 한다. 제어 메시지 처리부(2i-30)는 기지국으로부터의 제어메시지를 송수신하여 필요한 동작을 취한다. 여기에는 RRC 메시지 및 MAC CE와 같은 제어 메시지를 처리하는 기능을 포함하고 CBR 측정값의 보고 및 자원 풀과 단말 동작에 대한 RRC 메시지 수신을 포함한다. 상위 계층 처리부(2i-20, 2i-25)는 DRB 장치를 의미하며 서비스 별로 구성될 수 있다. FTP(File Transfer Protocol)나 VoIP(Voice over Internet Protocol) 등과 같은 사용자 서비스에서 발생하는 데이터를 처리해서 다중화 및 역다중화부(2i-15)로 전달하거나 상기 다중화 및 역다중화부(2i-15)로부터 전달된 데이터를 처리해서 상위 계층의 서비스 어플리케이션으로 전달한다. 제어부(2i-10)는 송수신부(2i-05)를 통해 수신된 스케줄링 명령, 예를 들어 역방향 그랜트들을 확인하여 적절한 시점에 적절한 전송 자원으로 역방향 전송이 수행되도록 송수신부(2i-05)와 다중화 및 역다중화부(2i-15)를 제어한다. 한편, 상기에서는 단말이 복수 개의 블록들로 구성되고 각 블록이 서로 다른 기능을 수행하는 것으로 기술되었지만, 이는 일 실시 예에 불과할 뿐 반드시 이에 한정되는 것은 아니다. 예를 들어, 역다중화부(2i-15)가 수행하는 기능을 제어부(2i-10) 자체가 수행할 수도 있다.The transceiver 2i-05 receives data and a predetermined control signal through a forward channel of a serving cell and transmits data and a predetermined control signal through a reverse channel. When a plurality of serving cells are set, the transceiver 2i-05 performs data transmission and reception and control signal transmission and reception through the plurality of serving cells. The multiplexing and demultiplexing unit 2i-15 multiplexes data generated by the upper layer processing units 2i-20 and 2i-25 or the control message processing unit 2i-30, or multiplexes the data received by the transceiver unit 2i-05. It demultiplexes and delivers to the appropriate upper layer processing units 2i-20 and 2i-25 or control message processing units 2i-30. The control message processing unit 2i-30 transmits and receives a control message from the base station and performs a necessary operation. It includes the ability to process RRC messages and control messages such as MAC CE, and includes reporting of CBR measurements and receiving RRC messages for resource pools and terminal operations. The upper layer processing units 2i-20 and 2i-25 mean DRB devices and may be configured for each service. Data generated from user services such as FTP (File Transfer Protocol) or Voice over Internet Protocol (VoIP) can be processed and transferred to the multiplexing and demultiplexing unit 2i-15, or from the multiplexing and demultiplexing unit 2i-15. Process the delivered data and deliver it to the higher level service application. The controller 2i-10 multiplexes the transceiver 2i-05 with the transceiver 2i-05 so as to check scheduling commands received through the transceiver 2i-05, for example, reverse grants, and perform reverse transmission on the appropriate transmission resource at an appropriate time. And the demultiplexer 2i-15. Meanwhile, in the above description, the terminal is composed of a plurality of blocks and each block performs a different function. However, this is only an example and is not necessarily limited thereto. For example, the controller 2i-10 may perform a function performed by the demultiplexer 2i-15.
도 2j는 본 개시에 따른 기지국의 블록 구성을 나타낸 도면이다.2J is a block diagram of a base station according to the present disclosure.
도 2j의 기지국 장치는 송수신부 (2j-05), 제어부(2j-10), 다중화 및 역다중화부 (2j-20), 제어 메시지 처리부 (2j-35), 각 종 상위 계층 처리부 (2j-25, 2j-30), 스케줄러(2j-15)를 포함한다.The base station apparatus of FIG. 2J includes a transceiver 2j-05, a controller 2j-10, a multiplexing and demultiplexing unit 2j-20, a control message processing unit 2j-35, and various upper layer processing units 2j-25. , 2j-30), and a scheduler 2j-15.
송수신부(2j-05)는 순방향 캐리어로 데이터 및 소정의 제어 신호를 전송하고 역방향 캐리어로 데이터 및 소정의 제어 신호를 수신한다. 다수의 캐리어가 설정된 경우, 송수신부(2j-05)는 상기 다수의 캐리어로 데이터 송수신 및 제어 신호 송수신을 수행한다. 다중화 및 역다중화부(2j-20)는 상위 계층 처리부(2j-25, 2j-30)나 제어 메시지 처리부(2j-35)에서 발생한 데이터를 다중화하거나 송수신부(2j-05)에서 수신된 데이터를 역다중화해서 적절한 상위 계층 처리부(2j-25, 2j-30)나 제어 메시지 처리부(2j-35), 혹은 제어부 (2j-10)로 전달하는 역할을 한다. 제어 메시지 처리부(2j-35)는 제어부의 지시를 받아, 단말에게 전달할 메시지를 생성해서 하위 계층으로 전달한다. 상위 계층 처리부(2j-25, 2j-30)는 단말 별 서비스 별로 구성될 수 있으며, FTP나 VoIP 등과 같은 사용자 서비스에서 발생하는 데이터를 처리해서 다중화 및 역다중화부(2j-20)로 전달하거나 다중화 및 역다중화부(2j-20)로부터 전달한 데이터를 처리해서 상위 계층의 서비스 어플리케이션으로 전달한다. 스케줄러(2j-15)는 단말의 버퍼 상태, 채널 상태 및 단말의 Active Time 등을 고려해서 단말에게 적절한 시점에 전송 자원을 할당하고, 송수신부에게 단말이 전송한 신호를 처리하거나 단말에게 신호를 전송하도록 처리한다.The transceiver 2j-05 transmits data and a predetermined control signal through a forward carrier and receives data and a predetermined control signal through a reverse carrier. When a plurality of carriers are set, the transceiver 2j-05 performs data transmission and control signal transmission and reception to the plurality of carriers. The multiplexing and demultiplexing unit 2j-20 multiplexes data generated by the upper layer processing units 2j-25 and 2j-30 or the control message processing unit 2j-35, or multiplexes the data received by the transceiver unit 2j-05. It demultiplexes and delivers to the appropriate upper layer processing units 2j-25 and 2j-30, control message processing units 2j-35, and control unit 2j-10. The control message processing unit 2j-35 generates a message to be delivered to the terminal under the instruction of the control unit, and delivers the message to the lower layer. The upper layer processing units 2j-25 and 2j-30 may be configured for each terminal service, and may process data generated from user services such as FTP or VoIP, and transmit the data to the multiplexing and demultiplexing unit 2j-20. And process the data transmitted from the demultiplexer 2j-20 to the service application of the upper layer. The scheduler 2j-15 allocates transmission resources to the terminal at an appropriate time in consideration of the buffer state, channel state, and active time of the terminal, processes the signal transmitted by the terminal to the transceiver, or transmits the signal to the terminal. Do it.
상술한 제2 실시 예의 내용은 다음과 같은 포인트로 정리될 수 있다.The above-described second embodiment may be summarized as the following points.
Main pointMain point
1. Support Integrity Protection for V2X traffic1.Support Integrity Protection for V2X traffic
2. PPPI (Per Packet Integrity) to indicate whether certain packet shall be integrity protected.2.PPPI (Per Packet Integrity) to indicate whether certain packet shall be integrity protected.
3. 1 bit indication in PDCP header to indicate MAC-I presence3.1 bit indication in PDCP header to indicate MAC-I presence
4. PPPP/PPPR for Resource pool selection & PPPI for SLRB selection4.PPPP / PPPR for Resource pool selection & PPPI for SLRB selection
Overall flowOverall flow
1: UE <- V2X server: Parameter provisioning1: UE <-V2X server: Parameter provisioning
- The mapping of Destination Layer-2 ID(s) and the V2X services, e.g. PSID, ITS-AIDs , ES, platooning ...The mapping of Destination Layer-2 ID (s) and the V2X services, e.g. PSID, ITS-AIDs, ES, platooning ...
- The mapping of services to V2X frequencies/RATs (LTE or NR or both)-The mapping of services to V2X frequencies / RATs (LTE or NR or both)
- The mapping of services to range (high, medium, low)The mapping of services to range (high, medium, low)
- The mapping of services to PPPP, PPPR, PPPI(0=no IP, 1 = IP)The mapping of services to PPPP, PPPR, PPPI (0 = no IP, 1 = IP)
- The mapping of services to transmission type (broadcast, groupcast, unicast)The mapping of services to transmission type (broadcast, groupcast, unicast)
2: UE interested in V2X service x: Camping on a V2X frequency of HPLMN mapped to service x2: UE interested in V2X service x: Camping on a V2X frequency of HPLMN mapped to service x
3: UE: Receiving V2X system information3: UE: Receiving V2X system information
- RX pools for serving cell and inter-frequency neighbor cell per PPPP/PPPRRX pools for serving cell and inter-frequency neighbor cell per PPPP / PPPR
- TX pool for serving cell per PPPP/PPPRTX pool for serving cell per PPPP / PPPR
4: V2X packet occurs for transmission4: V2X packet occurs for transmission
5: UE determines PPPP, PPPR and PPPI to be applicable for the V2X packet based on which service the packet is for5: UE determines PPPP, PPPR and PPPI to be applicable for the V2X packet based on which service the packet is for
6: UE selects Tx Pool based on PPPP/PPPR of the packet6: UE selects Tx Pool based on PPPP / PPPR of the packet
7: UE selects SLRB based on SRC/DST/PPPR/PPPI/PPPP7: UE selects SLRB based on SRC / DST / PPPR / PPPI / PPPP
- SLRB is mapped with combination of SRC/DST/PPPI-SLRB is mapped with combination of SRC / DST / PPPI
- If no SLRB matches with SRC/DST/PPPI of the V2X packet, create new SLRB.-If no SLRB matches with SRC / DST / PPPI of the V2X packet, create new SLRB.
8: UE process V2X packet in the PDCP layer8: UE process V2X packet in the PDCP layer
- If PPPI is 1, calculate MAC-I, append it at the end of V2X packet. 1 bit indicator in PDCP header is set to 1 to indicate the presence of MAC-I-If PPPI is 1, calculate MAC-I, append it at the end of V2X packet. 1 bit indicator in PDCP header is set to 1 to indicate the presence of MAC-I
9: UE transmits V2X packet using the Tx Pool selected based on PPPP/PPPR9: UE transmits V2X packet using the Tx Pool selected based on PPPP / PPPR
상술한 본 개시의 구체적인 실시 예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In specific embodiments of the present disclosure described above, the components included in the disclosure are expressed in the singular or plural number according to the specific embodiments presented. However, the singular or plural expressions are selected to suit the circumstances presented for convenience of description, and the present disclosure is not limited to the singular or plural elements, and the singular or plural elements may be used in the singular or the singular. Even expressed components may be composed of a plurality.
한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, in the detailed description of the present disclosure, specific embodiments have been described. However, various modifications may be possible without departing from the scope of the present disclosure. Therefore, the scope of the present disclosure should not be limited to the described embodiments, but should be determined not only by the scope of the following claims, but also by the equivalents of the claims.

Claims (15)

  1. 무선 통신 시스템에서 단말이 신호를 전송하는 방법에 있어서,In a method of transmitting a signal from a terminal in a wireless communication system,
    기지국으로 RRC(radio resource control) 재개(resume)를 요청하는 제1메시지를 전송하는 단계;Transmitting a first message requesting resume of radio resource control (RRC) to the base station;
    상기 기지국으로부터 RRC 재개를 지시하는 제2메시지를 수신하는 단계; 및Receiving a second message from the base station instructing to resume RRC; And
    상기 기지국으로 RRC 재개를 완료하는 제3메시지를 전송하는 단계를 포함하고,Sending a third message to complete the RRC resumption to the base station,
    상기 제3메시지는 상기 단말이 RRC 비활성화 상태(RRC inactive state)에서 수행한 측정 결과를 저장하고 있음을 알리는 정보를 포함하는 것인, 방법.The third message includes the information indicating that the UE stores the measurement result performed in the RRC inactive state.
  2. 제1항에 있어서,The method of claim 1,
    상기 방법은, The method,
    상기 기지국으로부터 상기 측정 결과를 보고할 것을 요청하는 제4메시지를 수신하는 단계; 및Receiving a fourth message requesting to report the measurement result from the base station; And
    상기 기지국으로 상기 측정 결과를 보고하는 제5메시지를 전송하는 단계를 더 포함하는, 방법.Sending a fifth message reporting the measurement result to the base station.
  3. 제1항에 있어서,The method of claim 1,
    상기 측정 결과는 logged MDT(minimization of drive test)를 수행함으로써 수집된 데이터를 포함하는 것인, 방법.The measurement results include data collected by performing a logged minimization of drive test (MDT).
  4. 제1항에 있어서,The method of claim 1,
    상기 기지국과의 RRC 재개 절차가 실패한 경우, 상기 제1메시지 또는 상기 제3메시지는 상기 RRC 재개 절차의 실패를 알리는 정보를 더 포함하는 것인, 방법.If the RRC resume procedure with the base station fails, the first message or the third message further comprises information indicating the failure of the RRC resume procedure.
  5. 무선 통신 시스템에서 신호를 전송하는 단말에 있어서,In the terminal for transmitting a signal in a wireless communication system,
    신호를 송신 및 수신하도록 설정된 송수신부; 및A transceiver configured to transmit and receive a signal; And
    기지국으로 RRC(radio resource control) 재개(resume)를 요청하는 제1메시지를 전송하고, 상기 기지국으로부터 RRC 재개를 지시하는 제2메시지를 수신하고, 상기 기지국으로 RRC 재개를 완료하는 제3메시지를 전송하도록 설정된 제어부를 포함하고,Sends a first message requesting a radio resource control (RRC) resume to the base station, receives a second message indicating the RRC resume from the base station, and transmits a third message to complete the RRC resume to the base station And a control unit configured to be
    상기 제3메시지는 상기 단말이 RRC 비활성화 상태(RRC inactive state)에서 수행한 측정 결과를 저장하고 있음을 알리는 정보를 포함하는 것인, 단말.The third message is a terminal that includes information indicating that the terminal stores the measurement results performed in the RRC inactive state (RRC inactive state).
  6. 제5항에 있어서,The method of claim 5,
    상기 제어부는, The control unit,
    상기 기지국으로부터 상기 측정 결과를 보고할 것을 요청하는 제4메시지를 수신하고, 상기 기지국으로 상기 측정 결과를 보고하는 제5메시지를 전송하도록 더 설정된 것인, 단말.Receiving a fourth message requesting to report the measurement result from the base station, and transmitting the fifth message reporting the measurement result to the base station.
  7. 제5항에 있어서,The method of claim 5,
    상기 측정 결과는 logged MDT(minimization of drive test)를 수행함으로써 수집된 데이터를 포함하는 것인, 단말.The measurement results include the data collected by performing a logged minimization of drive test (MDT).
  8. 제5항에 있어서,The method of claim 5,
    상기 기지국과의 RRC 재개 절차가 실패한 경우, 상기 제1메시지 또는 상기 제3메시지는 상기 RRC 재개 절차의 실패를 알리는 정보를 더 포함하는 것인, 단말.If the RRC resumption procedure with the base station fails, the first message or the third message further comprises information indicating the failure of the RRC resumption procedure.
  9. 무선 통신 시스템에서 기지국이 신호를 수신하는 방법에 있어서,A method for receiving a signal by a base station in a wireless communication system,
    단말로부터 RRC(radio resource control) 재개(resume)를 요청하는 제1메시지를 수신하는 단계;Receiving a first message for requesting to resume radio resource control (RRC) from the terminal;
    상기 단말로 RRC 재개를 지시하는 제2메시지를 전송하는 단계; 및Transmitting a second message instructing to resume RRC to the terminal; And
    상기 단말로부터 RRC 재개를 완료하는 제3메시지를 수신하는 단계를 포함하고,Receiving a third message to complete the RRC resume from the terminal,
    상기 제3메시지는 상기 단말이 RRC 비활성화 상태(RRC inactive state)에서 수행한 측정 결과를 저장하고 있음을 알리는 정보를 포함하는 것인, 방법.The third message includes the information indicating that the UE stores the measurement result performed in the RRC inactive state.
  10. 제9항에 있어서,The method of claim 9,
    상기 방법은, The method,
    상기 단말로 상기 측정 결과를 보고할 것을 요청하는 제4메시지를 전송하는 단계; 및Transmitting a fourth message requesting to report the measurement result to the terminal; And
    상기 단말로부터 상기 측정 결과를 보고하는 제5메시지를 수신하는 단계를 더 포함하는, 방법.And receiving a fifth message reporting the measurement result from the terminal.
  11. 제9항에 있어서,The method of claim 9,
    상기 측정 결과는 logged MDT(minimization of drive test)를 수행함으로써 수집된 데이터를 포함하며,The measurement results include data collected by performing a logged minimization of drive test (MDT),
    상기 기지국과의 RRC 재개 절차가 실패한 경우, 상기 제1메시지 또는 상기 제3메시지는 상기 RRC 재개 절차의 실패를 알리는 정보를 더 포함하는 것인, 방법.If the RRC resume procedure with the base station fails, the first message or the third message further comprises information indicating the failure of the RRC resume procedure.
  12. 무선 통신 시스템에서 신호를 수신하는 기지국에 있어서,A base station for receiving a signal in a wireless communication system,
    신호를 송신 및 수신하도록 설정된 송수신부; 및A transceiver configured to transmit and receive a signal; And
    단말로부터 RRC(radio resource control) 재개(resume)를 요청하는 제1메시지를 수신하고, 상기 단말로 RRC 재개를 지시하는 제2메시지를 전송하고, 상기 단말로부터 RRC 재개를 완료하는 제3메시지를 수신하도록 설정된 제어부를 포함하고, Receives a first message requesting a radio resource control (RRC) resume from the terminal, transmits a second message instructing the resumption of RRC to the terminal, and receives a third message to complete the RRC resume from the terminal And a control unit configured to be
    상기 제3메시지는 상기 단말이 RRC 비활성화 상태(RRC inactive state)에서 수행한 측정 결과를 저장하고 있음을 알리는 정보를 포함하는 것인, 기지국.The third message is a base station, which includes information indicating that the terminal stores the measurement result performed in the RRC inactive state (RRC inactive state).
  13. 제12항에 있어서,The method of claim 12,
    상기 제어부는,The control unit,
    상기 단말로 상기 측정 결과를 보고할 것을 요청하는 제4메시지를 전송하고, 상기 단말로부터 상기 측정 결과를 보고하는 제5메시지를 수신하도록 더 설정되는 것인, 기지국.And a fourth message requesting to report the measurement result to the terminal, and further configured to receive a fifth message reporting the measurement result from the terminal.
  14. 제12항에 있어서,The method of claim 12,
    상기 측정 결과는 logged MDT(minimization of drive test)를 수행함으로써 수집된 데이터를 포함하는 것인, 기지국.And the measurement result includes data collected by performing a logged minimization of drive test (MDT).
  15. 제12항에 있어서,The method of claim 12,
    상기 기지국과의 RRC 재개 절차가 실패한 경우, 상기 제1메시지 또는 상기 제3메시지는 상기 RRC 재개 절차의 실패를 알리는 정보를 더 포함하는 것인, 기지국.If the RRC resume procedure with the base station fails, the first message or the third message further comprises information indicating the failure of the RRC resume procedure.
PCT/KR2019/005426 2018-05-16 2019-05-07 Method and device for collecting and reporting cell measurement information in next generation mobile communication system WO2019221436A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19802767.4A EP3742791A4 (en) 2018-05-16 2019-05-07 Method and device for collecting and reporting cell measurement information in next generation mobile communication system
US16/979,376 US11477681B2 (en) 2018-05-16 2019-05-07 Method and device for collecting and reporting cell measurement information in next generation mobile communication system
CN201980032995.0A CN112119657B (en) 2018-05-16 2019-05-07 Method and apparatus for collecting and reporting cell measurement information in next generation mobile communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180056202 2018-05-16
KR10-2018-0056202 2018-05-16
KR10-2019-0016367 2019-02-12
KR1020190016367A KR20190131411A (en) 2018-05-16 2019-02-12 Method and apparatus for collecting and reporting cell measurement information in wireless communication system

Publications (1)

Publication Number Publication Date
WO2019221436A1 true WO2019221436A1 (en) 2019-11-21

Family

ID=68540412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005426 WO2019221436A1 (en) 2018-05-16 2019-05-07 Method and device for collecting and reporting cell measurement information in next generation mobile communication system

Country Status (1)

Country Link
WO (1) WO2019221436A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032592A1 (en) * 2022-08-09 2024-02-15 华为技术有限公司 Communication method and communication apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120135135A (en) * 2011-06-03 2012-12-12 삼성전자주식회사 Method and apparatus for efficiently controlling minimization of drive test with multiple plmns

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120135135A (en) * 2011-06-03 2012-12-12 삼성전자주식회사 Method and apparatus for efficiently controlling minimization of drive test with multiple plmns

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Study on enhancement of 3GPP Support for 5G V2X services", 3GPP STANDARD TR 22.886
CATT: "RRC connection re-establishment and resume procedures in NR", R2-1801827. 3GPP TSG-RAN WG2#101, vol. RAN WG2, 14 February 2018 (2018-02-14), Athens, Greece, pages 1 - 7, XP051399006 *
ERICSSON: "NR RRC connection release and re-direct", R2-1802684. 3GPP TSG-RAN WG2 #101, vol. RAN WG2, 15 February 2018 (2018-02-15), Athens, Greece, pages 1 - 4, XP051399557 *
See also references of EP3742791A4 *
VIVO: "Remaining FFS Issues on MSG3/4/5 Content for NR RRC Connection Control", R2-1802087. 3GPP TSG-RAN WG2 MEETING #101, vol. RAN WG2 4, 14 February 2018 (2018-02-14), Athens, Greece, pages 1 - 5, XP051399092 *
VIVO: "RRC Connection Release Issues for UE in RRC_ INACTIVE", R2-1802098. 3GPP TSG-RAN WG2 MEETING #101, vol. RAN WG2, 14 February 2018 (2018-02-14), Athens, Greece, XP051399103 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032592A1 (en) * 2022-08-09 2024-02-15 华为技术有限公司 Communication method and communication apparatus

Similar Documents

Publication Publication Date Title
WO2018174489A1 (en) Method and device for effectively performing standby mode operation in next generation mobile communication system
WO2018174483A1 (en) Method and apparatus for supporting discontinuous reception mode of connected mode in mobile communication system
WO2019225888A1 (en) Method and apparatus for classifying and processing sdap control pdu in next generation mobile communication system
WO2018174676A1 (en) Method for reporting measurement result by user equipment transceiving data by first radio access technology and second radio access technology, and device therefor
WO2018026139A1 (en) Method and apparatus for performing paging in mobile communication system
WO2018131956A1 (en) Method and apparatus for communication in wireless mobile communication system
WO2021066466A1 (en) Method and apparatus for performing handover in wireless communication system
WO2020060178A1 (en) Method and apparatus for reporting selected plmn of rrc-inactive mode ue in next-generation communication system
WO2016159731A1 (en) Apparatus and method for providing multi-connection using different wireless connection technologies in wireless communication system
WO2018147582A1 (en) Method and device for performing improved communication in wireless communication system
WO2019160327A1 (en) Method and device for performing cell reselection in mobile communication system
WO2020067791A1 (en) Method for processing node failure in integrated access and backhaul system and method for transmitting redirection information therein
WO2021029686A1 (en) Method and terminal for performing rrm measurement in wireless communication system
WO2020032533A1 (en) Method and apparatus for transmitting or receiving signal in mobile communication system
WO2020166895A1 (en) Method and apparatus for supporting carrier aggregation in wireless communication system
WO2020122509A1 (en) Method for operating failure timer during conditional handover in wireless communication system
WO2020166957A1 (en) Method and apparatus for v2x communication in next generation mobile communication system
WO2020190005A1 (en) Method and apparatus for measuring frequency in wireless communication system
WO2019194518A1 (en) Method for constructing logged measurement entry and device supporting the same
WO2020209541A1 (en) Method and device for reporting terminal capability in wireless communication system
WO2020145682A1 (en) Method and apparatus for performing communication in wireless communication system
WO2020162733A1 (en) Method and apparatus for updating list of cells to be measured in reselection of cell in idle mode in next-generation wireless communication system
WO2020005043A1 (en) Method for reporting radio link failure in wireless communication system, and device therefor
EP3545722A1 (en) Method and apparatus for communication in wireless mobile communication system
WO2020091452A1 (en) Method and apparatus for performing communication in mobile communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019802767

Country of ref document: EP

Effective date: 20200818

NENP Non-entry into the national phase

Ref country code: DE