[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019221231A1 - シールリング - Google Patents

シールリング Download PDF

Info

Publication number
WO2019221231A1
WO2019221231A1 PCT/JP2019/019505 JP2019019505W WO2019221231A1 WO 2019221231 A1 WO2019221231 A1 WO 2019221231A1 JP 2019019505 W JP2019019505 W JP 2019019505W WO 2019221231 A1 WO2019221231 A1 WO 2019221231A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
dynamic pressure
circumferential direction
seal ring
grooves
Prior art date
Application number
PCT/JP2019/019505
Other languages
English (en)
French (fr)
Inventor
航 木村
雄一郎 徳永
宜昭 瀧ヶ平
河野 徹
英俊 笠原
純 弘松
崇史 大田
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to CN201980027742.4A priority Critical patent/CN112105850A/zh
Priority to US17/048,085 priority patent/US20210164571A1/en
Priority to JP2020519918A priority patent/JP7210566B2/ja
Priority to EP19804382.0A priority patent/EP3795868B1/en
Publication of WO2019221231A1 publication Critical patent/WO2019221231A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • F16J15/182Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings with lubricating, cooling or draining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3268Mounting of sealing rings
    • F16J15/3272Mounting of sealing rings the rings having a break or opening, e.g. to enable mounting on a shaft otherwise than from a shaft end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/324Arrangements for lubrication or cooling of the sealing itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring

Definitions

  • the present invention relates to a seal ring that is used to seal a gap between a rotating shaft and a housing, and more particularly to a seal ring that is used by being attached to an annular groove so-called stuffing box.
  • the seal ring is mounted on the outer periphery of the rotating shaft, and the sliding surface of the seal ring is closely slid against the sliding surface formed on the rotating shaft, so that a gap between the rotating shaft and the housing is formed.
  • the shaft is sealed to prevent leakage of the sealed fluid (liquid).
  • a seal ring as described in Patent Document 1 As a seal ring in which dynamic pressure is generated between sliding surfaces by rotation of a rotary shaft, for example, a seal ring as described in Patent Document 1 is known.
  • the seal ring of Patent Document 1 is attached to an annular groove provided on the outer periphery of the rotary shaft, and is pressed against the housing side and one side wall surface side of the annular groove by the pressure of a high-pressure sealed fluid, The sliding surface of one side surface of the seal ring is slid closely against the sliding surface of the wall surface.
  • the sliding surface on one side of the seal ring is provided with a plurality of dynamic pressure grooves that open to the inner diameter side in the circumferential direction.
  • the dynamic pressure grooves include a deep groove at the center in the circumferential direction and both sides of the deep groove in the circumferential direction. And a shallow groove that extends in the circumferential direction and inclines so that the bottom surface gradually becomes shallower toward the end.
  • the sliding surface of the rotating shaft moves in the circumferential direction with respect to the dynamic pressure groove, and the positive pressure increases as the number of rotations of the rotating shaft increases.
  • the dynamic pressure groove has both a deep groove and both shallow grooves located on the same circumference. Cavitation occurs in the area where large negative pressure is generated, and the dispersion of buoyancy that occurs along the circumferential direction of the sliding surface increases, causing adverse effects on the fluid film, such as nonuniform fluid film, and unstable lubrication. There was a risk of becoming.
  • the present invention has been made paying attention to such problems, and an object of the present invention is to provide a seal ring that can exhibit stable lubrication performance in a wide rotation range.
  • the seal ring of the present invention is A seal ring that seals a gap between the rotary shaft and the housing,
  • the sliding surface includes a plurality of deep grooves that are arranged in the circumferential direction and open to the sealed fluid side, and a shallow groove that generates a dynamic pressure that is continuous with the deep groove and extends at least on one side in the circumferential direction.
  • At least the deep grooves of the dynamic pressure grooves adjacent to each other in the circumferential direction are formed as a dynamic pressure groove unit communicated by a communication groove extending in the circumferential direction on the opposite side of the opening in the radial direction.
  • the deep groove of the dynamic pressure groove on one circumferential side introduces a high-pressure sealed fluid from the opening, and the dynamic pressure groove on the other circumferential side through the communication groove from the radially opposite side of the opening
  • the sealed fluid is more easily held in the deep groove of the dynamic pressure groove on one circumferential side than in the deep groove of the dynamic pressure groove on the other circumferential side. Since the sealed fluid is sufficiently supplied from the deep groove to the shallow groove of the dynamic pressure groove on one side in the circumferential direction, a relatively large dynamic pressure is generated in the shallow groove of the dynamic pressure groove on the one side in the circumferential direction.
  • the shallow groove may be provided continuously on both sides in the circumferential direction of the deep groove. According to this, the seal ring can be used by rotating in both directions.
  • the dynamic pressure groove unit may be formed by two dynamic pressure grooves and one communication groove. According to this, since the two dynamic pressure grooves and the one communication groove form a dynamic pressure groove unit, it becomes easy to adjust the supply balance of the sealed fluid between the dynamic pressure grooves communicated by the communication groove.
  • the fluid film can be formed in a balanced manner in the circumferential direction.
  • FIG. 4 is a cross-sectional view taken along the line AA in the seal ring of FIG. 3. It is sectional drawing which shows the modification of the deep groove
  • the seal ring according to the embodiment will be described with reference to FIGS.
  • the right side of FIG. 2 will be described as the sealed fluid side L and the left side of FIG.
  • the fluid pressure of the sealed fluid on the sealed fluid side L is assumed to be higher than the atmospheric pressure.
  • the sliding surface is constituted by a flat surface and a groove recessed from the flat surface.
  • the flat surface constituting the sliding surface is indicated in white, and the sliding surface is constituted.
  • the grooves are illustrated by dot notation.
  • the seal ring 1 seals the space between the rotating shaft 2 of the rotating machine and the housing 3 that rotate relatively, thereby sealing the inside of the housing 3 with the sealed fluid side L and the atmosphere side A (see FIG. 2), and the leakage of the sealed fluid from the sealed fluid side L to the atmosphere side A is prevented.
  • the rotating shaft 2 and the housing 3 are made of a metal material such as stainless steel.
  • the sealed fluid is, for example, oil used for cooling and lubrication of gears and bearings (not shown) provided in the machine room of the rotating machine.
  • the seal ring 1 is a resin molded product such as PTFE, and is formed in a C shape by providing an abutment portion 1 a at one place in the circumferential direction. It is used by being mounted on an annular groove 20 having a rectangular cross section provided along the outer periphery. Further, the seal ring 1 has a rectangular cross section, and is pressed against the atmosphere side A by the fluid pressure of the sealed fluid acting on the side surface of the sealed fluid side L.
  • the sliding surface S1 formed on the side of the annular groove 20 may be referred to as the side surface 10.
  • the sliding surface S2 on the side wall surface 21 on the atmosphere side A of the annular groove 20 (hereinafter also referred to simply as the side wall surface 21).
  • the seal ring 1 receives stress in the expanding direction due to the fluid pressure of the sealed fluid acting on the inner peripheral surface, and is pressed in the outer diameter direction, thereby causing the outer peripheral surface 11 to move toward the inner periphery of the shaft hole 30 of the housing 3. It is in close contact with the surface 31.
  • the sliding surfaces S1 and S2 form substantial sliding regions between the side surface 10 of the seal ring 1 and the side wall surface 21 of the annular groove 20 of the rotating shaft 2, respectively. Further, on the side surface 10 side, a non-sliding surface S1 ′ is connected to the outer diameter side of the sliding surface S1, and on the side wall surface 21 side, a non-sliding surface S2 ′ is provided on the inner diameter side of the sliding surface S2. They are connected (see FIG. 2).
  • the sliding surface S1 formed on the side surface 10 side of the seal ring 1 is mainly composed of a flat surface 16 and a plurality of dynamic pressure grooves 12 provided in the circumferential direction. ing.
  • the dynamic pressure grooves 12 are equally arranged in the circumferential direction of the sliding surface S1 excluding the vicinity of the joint portion 1a.
  • the flat surface 16 is sandwiched in the circumferential direction between the seal portion 16a that is located on the outer diameter side and continues in a substantially annular manner with the joint portion 1a interposed therebetween, and the seal portion 16a that is sandwiched in the circumferential direction between the adjacent dynamic pressure grooves 12 located on the inner diameter side. (See FIG. 3).
  • the dynamic pressure groove 12 has a function of generating dynamic pressure according to the rotation of the rotating shaft 2, and has an inner diameter side (sealed fluid side) of the seal ring 1. And a pair of shallow grooves 121 and 122 extending from the deep groove 120 to both sides in the circumferential direction and extending in the circumferential direction. 3 and 4, the right side of the drawing with the deep groove 120 interposed therebetween will be described as the shallow groove 121, and the left side of the drawing will be described as the shallow groove 122.
  • the deep groove 120 is formed with a flat bottom surface, and the shallow grooves 121 and 122 are formed as inclined surfaces in which the bottom surface gradually shallows from the deep groove 120 side toward the respective circumferential ends.
  • the bottom surface of the deep groove 120 is formed so as to be deeper than the deepest part of the shallow grooves 121 and 122, and the depth of the deep groove 120 is several tens ⁇ m to several hundreds ⁇ m, preferably 100 to 200 ⁇ m.
  • the deep groove 120 is longer in the radial direction than the shallow grooves 121 and 122.
  • two dynamic pressure grooves 12 and 12 ′ adjacent in the circumferential direction are on the outer diameter side that is opposite to the radial direction of the opening of the deep grooves 120 and 120 ′. And is formed as a dynamic pressure groove unit 100 communicated by one arc-shaped communication groove 14 extending in the circumferential direction. Further, the communication groove 14 is formed on the outer diameter side of the flat surface 16 and on the inner diameter side of the seal portion 16a continuously connected in a substantially annular shape with the joint portion 1a (see FIG. 1) interposed therebetween. In the sliding surface S1, all the dynamic pressure grooves 12 are formed as the dynamic pressure groove unit 100.
  • the deep groove 120 and the communication groove 14 of the dynamic pressure groove 12 are formed to have substantially the same depth.
  • the seal ring 1 in FIG. 2 shows a cross section taken along the line BB in FIG.
  • the sealed fluid is introduced into the deep grooves 120 and 120 ′ of the dynamic pressure grooves 12 and 12 ′ provided on the sliding surface S1 from the inner diameter side, and the outer diameter side (opening) of the deep grooves 120 and 120 ′.
  • the fluid to be sealed follows the rotation of the rotary shaft 2 and is supplied in the circumferential direction (rotational direction) in the communication groove 14 extending in the circumferential direction on the opposite side of the radial direction.
  • a negative pressure is generated in the shallow grooves 122 and 122 ′ (hereinafter simply referred to as the shallow grooves 122 and 122 ′) of the seal ring 1 on the side opposite to the rotation direction of the rotary shaft 2 (left side in FIG. 3).
  • the shallow grooves 121 and 121 ′ (hereinafter simply referred to as the shallow grooves 121 and 121 ′) of the seal ring 1 on the same direction side as the rotational direction (right side of FIG. 3) are respectively introduced into the deep grooves 120 and 120 ′.
  • the sealed fluid is supplied and positive pressure is generated by the wedge action of the inclined surface.
  • a positive pressure is generated as a whole in the dynamic pressure grooves 12 and 12 ′, so that a force for slightly separating the sliding surfaces S 1 and S 2, a so-called buoyancy is obtained.
  • the deep groove 120 of the dynamic pressure groove 12 (hereinafter also simply referred to as the dynamic pressure groove 12) has a side opposite to the rotational direction of the rotary shaft 2 from the outer diameter side via the communication groove 14 (the other side in the circumferential direction).
  • the fluid to be sealed introduced into the deep groove 120 ′ of the dynamic pressure groove 12 ′ (hereinafter sometimes simply referred to as the dynamic pressure groove 12 ′) in FIG.
  • the sealed fluid is more easily held in the deep groove 120 of the dynamic pressure groove 12 than in the deep groove 120 ′ of the dynamic pressure groove 12 ′. Since the sealed fluid is sufficiently supplied from the deep groove 120 to the shallow groove 121 serving as the pressure generating portion, a relatively large dynamic pressure can be generated in the shallow groove 121 of the dynamic pressure groove 12 and the communication groove 14. In the shallow groove 121 ′ of the dynamic pressure groove 12 ′ arranged on the outer diameter side, a relatively small dynamic pressure can be generated, a fluid film can be formed in a balanced manner in the circumferential direction, and stable lubrication in a wide rotation range. Performance can be demonstrated.
  • a communication groove 14 is provided on the outer diameter side of the dynamic pressure grooves 12 and 12 ′, and the dynamic pressure groove unit 100 defined on the sliding surface S 1 by the dynamic pressure grooves 12 and 12 ′ and the communication groove 14.
  • the fluid to be sealed is supplied by static pressure to the flat surface 16 (lubricating portion 16b) between the communication pressure groove 14 and the dynamic pressure grooves 12, 12 ′. Since the thickness of the fluid film is relatively uniform in the circumferential direction, the fluid film is easily formed in a balanced manner in the circumferential direction.
  • the shallow grooves 122 and 122 ′ of the dynamic pressure grooves 12 and 12 ′ open to the inner diameter side (sealed fluid side), and the sealed fluid is introduced from the inner diameter side of the sliding surface S 1.
  • the fluid to be sealed is easily held in the.
  • the sealed fluid is supplied to the deep groove 120 of the dynamic pressure groove 12 from the deep groove 120 ′ of the dynamic pressure groove 12 ′ via the communication groove 14, and the deep groove 120 of the dynamic pressure groove 12. Since the sealed fluid is sufficiently held inside, the negative pressure generated in the shallow groove 122 of the dynamic pressure groove 12 is reduced, so that the shallow groove 122 of the dynamic pressure groove 12 adjacent in the circumferential direction and the dynamic pressure The pressure difference between the groove 12 ′ and the shallow groove 121 ′ can be reduced. Therefore, dynamic pressure can be generated between the sliding surfaces S1 and S2 while suppressing variations in pressure (positive pressure and negative pressure) in the circumferential direction in the region of the dynamic pressure groove unit 100, which causes cavitation and the like. The lubricity of the seal ring 1 can be improved while preventing the vibration described above.
  • the dynamic pressure groove unit 100 in which two dynamic pressure grooves 12 and 12 ′ adjacent in the circumferential direction are communicated by one communication groove 14, the dynamic pressure grooves 12 and 12 communicated by the communication groove 14. Since it becomes easy to adjust the supply balance of the fluid to be sealed between the two, a fluid film can be formed in a balanced manner in the circumferential direction. Furthermore, by forming all the dynamic pressure grooves 12 as the dynamic pressure groove unit 100 on the sliding surface S1, it is possible to form a fluid film in a more balanced manner in the circumferential direction.
  • the dynamic pressure groove 12 is inclined so that the deep groove 120 at the center in the circumferential direction opened to the inner diameter side and the bottom surface of the deep groove 120 continues in the circumferential direction and extends in the circumferential direction and gradually becomes shallower toward the circumferential end. Since the seal ring is composed of the shallow grooves 121 and 122, the seal ring 1 can be used by rotating in both directions, and the sealed fluid can be supplied to both the shallow grooves 121 and 122 through the deep groove 120 even during high-speed rotation. Can be reliably supplied.
  • the sealed fluid can flow out to a wide range on the outer diameter side between the sliding surfaces S1 and S2, and the lubricity of the seal ring 1 can be improved.
  • the seal ring 1 is C-shaped, the sealing performance can be stably maintained even if the circumference of the seal ring 1 changes due to thermal expansion and contraction.
  • the deep groove 220 of the dynamic pressure groove 212 of the seal ring 201 is formed such that the depth on the inner diameter side is deeper than the depth on the outer diameter side.
  • the communication groove 214 may be formed substantially the same as the depth on the inner diameter side of the deep groove 220. According to this, since the sealed fluid easily flows from the inner diameter side to the outer diameter side of the deep groove 220, the sealed fluid is easily introduced into the communication groove 214, and the lubricity of the seal ring 201 can be further improved. it can.
  • the communication groove may be formed so as to extend in the circumferential direction from a plurality of locations in the radial direction (for example, two strips). Further, the communication groove is not limited to an arc shape, and may be formed in a straight line or a wave shape, for example.
  • the dynamic pressure grooves 12 formed on the sliding surface S1 may form the dynamic pressure groove unit 100.
  • the dynamic pressure groove unit 100 and the single dynamic pressure groove 12 are circumferential. It is preferable that they are equally distributed.
  • the plurality of dynamic pressure groove units 100 formed on the sliding surface S1 are preferably equally distributed in the circumferential direction, and according to this, the dynamic pressure can be generated evenly in the circumferential direction. Further, if the plurality of dynamic pressure groove units are equally arranged in the circumferential direction on the sliding surface S1, the dynamic pressure grooves 12 themselves do not necessarily have to be equally arranged in the circumferential direction.
  • the dynamic pressure groove unit is not limited to one formed by two dynamic pressure grooves, and may be formed by connecting three or more dynamic pressure grooves by one communication groove.
  • FIG. 6 shows a modification of the dynamic pressure groove unit formed from three dynamic pressure grooves.
  • the number and shape of the dynamic pressure grooves provided on the sliding surface S1 of the seal ring may be appropriately changed so as to obtain a desired dynamic pressure effect.
  • the shallow grooves are continuous with the deep grooves and extend at least on one side in the circumferential direction.
  • a T-shape or a Rayleigh step may be used.
  • the seal ring may be configured in an annular shape in which the joint portion 1a is not provided, and the outer shape of the seal ring is not limited to a circular shape when viewed from the side, and may be formed as a polygonal shape.
  • the seal ring is not limited to a rectangular cross section, and may be, for example, a trapezoidal cross section or a polygonal cross section, and the side surface on which the sliding surface S1 is formed may be inclined.
  • groove shown in the above embodiment may be formed on the sliding surface S2 of the annular groove 20 of the rotating shaft 2.
  • fluid to be sealed has been described by taking oil as an example, it may be a liquid such as water or coolant, or may be a gas such as air or nitrogen.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)
  • Sealing Devices (AREA)

Abstract

広い回転域で安定した潤滑性能を発揮できるシールリングを提供する。 回転軸2とハウジング3との間の隙間を軸封するシールリング1であって、摺動面S1には、周方向に複数配置され被密封流体側に開口する深溝120と、深溝120に連続し少なくとも周方向一方側に延びる動圧を発生させるための浅溝121と、を備える動圧溝12が設けられ、少なくとも周方向に隣り合う動圧溝12,12'の深溝120,120'同士は、開口の径方向反対側で周方向に延びる連通溝14により連通された動圧溝ユニット100として形成されている。

Description

シールリング
 本発明は、回転軸とハウジングとの間の隙間を軸封するために用いられるシールリング、特に環状溝いわゆるスタフィングボックスに装着して用いられるシールリングに関する。
 従来、シールリングは、回転軸の外周に装着され、回転軸に形成される摺動面に対してシールリングの摺動面を密接摺動させることにより、回転軸とハウジングとの間の隙間を軸封し、被密封流体(液体)の漏れを防止している。
 シールリングにおいて、密封性を長期間維持させるためには、「密封」と「潤滑」という相反する条件を両立させなければならない。特に近年においては、環境対策等のために、被密封流体の漏れ防止を図りつつ、機械的損失を低減させるべく、低摩擦化の要求が高まっている。低摩擦化は、回転軸の回転により摺動面間に動圧を発生させ、被密封流体による流体膜を介在させた状態で摺動させる手法により達成できる。
 回転軸の回転により摺動面間に動圧を発生させるようにしたシールリングとして、例えば特許文献1に記載されるようなシールリングが知られている。特許文献1のシールリングは、回転軸の外周に設けられる環状溝に装着され、高圧の被密封流体の圧力によってハウジング側かつ環状溝の一方の側壁面側に押し付けられ、環状溝の一方の側壁面の摺動面に対してシールリングの一方の側面の摺動面を密接摺動させている。また、シールリングの一方の側面の摺動面には、内径側に開口する動圧溝が周方向に複数設けられており、動圧溝は、周方向中央の深溝と、深溝の周方向両側に連続し周方向に延び底面が末端へ向けて徐々に浅くなるように傾斜する浅溝と、から構成されている。回転軸とシールリングとが相対回転すると、摺動面の内径側から深溝内に被密封流体が導入されるとともに、回転軸の反回転方向側のシールリングの浅溝では負圧が生じる一方、同回転方向側の浅溝では深溝内に導入された被密封流体が供給されることで正圧が生じ、回転方向側の浅溝の傾斜する底面によるくさび作用によって正圧が大きくなり、動圧溝全体として正圧が発生することにより、摺動面間を僅かに離間させる力、すなわち浮力が得られる。摺動面間が僅かに離間することにより、摺動面の内径側から摺動面間に高圧の被密封流体が流入するととともに、正圧が発生する回転方向側の浅溝からは摺動面間に被密封流体が流出していくため、摺動面間に流体膜が形成され摺動面間の潤滑性が維持されている。
特開平9-210211号公報(第3頁、第3図)
 特許文献1のシールリングにおいては、動圧溝に対して回転軸の摺動面が周方向に移動しており、回転軸の回転数が上がるにつれて正圧が大きくなり、摺動面間に流体膜が形成されて摺動面の潤滑性が高まるが、動圧溝は深溝を挟んで両浅溝が同一円周上に位置しているため、特に高速回転時には、周方向に大きな正圧とともに大きな負圧が生じる領域ではキャビテーションが発生し、摺動面の周方向にわたって生じる浮力のばらつきが大きくなることにより流体膜が不均一になる等の流体膜への悪影響が生じ、潤滑性が不安定になる虞があった。
 本発明は、このような問題点に着目してなされたもので、広い回転域で安定した潤滑性能を発揮できるシールリングを提供することを目的とする。
 前記課題を解決するために、本発明のシールリングは、
 回転軸とハウジングとの間の隙間を軸封するシールリングであって、
 摺動面には、周方向に複数配置され被密封流体側に開口する深溝と、前記深溝に連続し少なくとも周方向一方側に延びる動圧を発生させるための浅溝と、を備える動圧溝が設けられ、
 少なくとも周方向に隣り合う前記動圧溝の前記深溝同士は、前記開口の径方向反対側で周方向に延びる連通溝により連通された動圧溝ユニットとして形成されている。
 これによれば、周方向一方側の動圧溝の深溝は、開口から高圧の被密封流体が導入されるとともに、開口の径方向反対側から連通溝を介して周方向他方側の動圧溝の深溝に導入された被密封流体が供給されることにより、周方向一方側の動圧溝の深溝内には周方向他方側の動圧溝の深溝内に比べて被密封流体が保持されやすく、周方向一方側の動圧溝の浅溝に対して同深溝から被密封流体が十分に供給されるため、周方向一方側の動圧溝の浅溝では比較的大きな動圧を発生させることができるとともに、連通溝が外径側に配置される周方向他方側の動圧溝の浅溝では比較的小さな動圧を発生させることができ、周方向にバランスよく流体膜を形成可能として、広い回転域で安定した潤滑性能を発揮できる。さらに、複数の動圧溝および連通溝により摺動面に画成される動圧溝ユニットの領域においては、流体膜の厚さが周方向にわたって比較的均等となるため、周方向にバランスよく流体膜が形成されやすい。
 前記浅溝は、前記深溝の周方向両側に連続して設けられていてもよい。
 これによれば、シールリングを両方向に回転させて使用することができる。
 前記動圧溝ユニットは、2つの前記動圧溝と、1つの前記連通溝により形成されていてもよい。
 これによれば、2つの動圧溝と、1つの連通溝が動圧溝ユニットを形成することにより、連通溝により連通される動圧溝間における被密封流体の供給バランスを調整しやすくなるため、周方向にバランスよく流体膜を形成することができる。
 前記摺動面において、全ての前記動圧溝が前記動圧溝ユニットとして形成されていてもよい。
 これによれば、摺動面に設けられる全ての動圧溝が動圧溝ユニットを形成することにより、周方向にさらにバランスよく流体膜を形成することができる。
本発明の実施例におけるシールリングを一部簡略表記にて示す斜視図である。 実施例におけるシールリングによる回転軸とハウジングの間の隙間の軸封構造を示す断面図である。 実施例におけるシールリングの部分側面図である。 図3のシールリングにおけるA-A断面図である。 動圧溝の深溝の変形例を示す断面図である。 動圧溝ユニットの変形例を示す部分側面図である。
 本発明に係るシールリングを実施するための形態を実施例に基づいて以下に説明する。
 実施例に係るシールリングにつき、図1から図4を参照して説明する。以下、図2の紙面右側を被密封流体側L、紙面左側を大気側Aとして説明する。尚、被密封流体側Lにおける被密封流体の流体圧力は、大気圧よりも高いものとして説明する。また、摺動面は、平坦面と該平坦面よりも凹む溝とにより構成されるものとし、説明の便宜上、図面において、摺動面を構成する平坦面を白色表記、摺動面を構成する溝をドット表記により図示している。
 本実施例に係るシールリング1は、相対的に回転する回転機械の回転軸2とハウジング3との間を軸封することにより、ハウジング3の内部を被密封流体側Lと大気側A(図2参照)とに仕切り、被密封流体側Lから大気側Aへの被密封流体の漏れを防止している。尚、回転軸2およびハウジング3は、ステンレス鋼等の金属製の素材から形成されている。また、被密封流体は、回転機械の機械室に設けられる図示しない歯車やベアリング等の冷却および潤滑を目的に使用されるもの、例えば油である。
 図1および図2に示されるように、シールリング1は、PTFE等の樹脂成形品であって、周方向の1箇所に合口部1aが設けられることでC字状を成し、回転軸2の外周に沿って設けられた断面矩形状の環状溝20に対して装着されて使用される。また、シールリング1は、断面矩形状を成し、被密封流体側Lの側面に作用する被密封流体の流体圧力によって大気側Aへ押し付けられることにより、大気側Aの側面10(以下、単に側面10と言うこともある。)側に形成される摺動面S1を環状溝20の大気側Aの側壁面21(以下、単に側壁面21と言うこともある。)側の摺動面S2に対して摺動自在に密接させている。また、シールリング1は、内周面に作用する被密封流体の流体圧力によって拡開方向の応力を受け、外径方向に押し付けられることにより、外周面11をハウジング3の軸孔30の内周面31に対して密接させている。
 尚、摺動面S1,S2とは、それぞれシールリング1の側面10と回転軸2の環状溝20の側壁面21との実質的な摺動領域を成すものである。また、側面10側には、摺動面S1の外径側に非摺動面S1’が連なっており、側壁面21側には、摺動面S2の内径側に非摺動面S2’が連なっている(図2参照)。
 図1~図4に示されるように、シールリング1の側面10側に形成される摺動面S1は、平坦面16と、周方向に複数設けられる動圧溝12と、により主に構成されている。尚、動圧溝12は、合口部1a付近を除いた摺動面S1の周方向に等配されている。
 平坦面16は、外径側に位置し合口部1aを挟んで略環状に連続して連なるシール部16aと、内径側に位置し隣り合う動圧溝12間に周方向に挟まれシール部16aに連なる潤滑部16bとからなっている(図3参照)。
 図3および図4に示されるように、動圧溝12は、回転軸2の回転に応じて動圧を発生させる機能を有するものであって、シールリング1の内径側(被密封流体側)に開口しており、周方向中央に設けられる深溝120と、深溝120から周方向両側に連続し周方向に延びる1対の浅溝121,122と、から構成されている。尚、図3および図4において、深溝120を挟んで紙面右側を浅溝121、紙面左側を浅溝122として説明する。
 特に図4に示されるように、深溝120は、底面が平坦に形成され、浅溝121,122は、底面が深溝120側からそれぞれの周方向の末端へ向けて徐々に浅くなる傾斜面として形成されている。また、深溝120の底面は、浅溝121,122の最深部よりもさらに深くなるように形成されており、深溝120の深さは、数十μm~数百μm、好ましくは100~200μmに形成されている。また、深溝120は、浅溝121,122よりも径方向に長く形成されている。
 また、特に図3に示されるように、摺動面S1において、周方向に隣り合う2つの動圧溝12,12’は、深溝120,120’の開口の径方向反対側である外径側で周方向に延びる1つの円弧型の連通溝14により連通される動圧溝ユニット100として形成されている。また、連通溝14は、平坦面16の外径側、かつ合口部1a(図1参照)を挟んで略環状に連続して連なるシール部16aの内径側に形成されている。尚、摺動面S1において、全ての動圧溝12は、動圧溝ユニット100として形成されている。
 また、図2に示されるように、動圧溝12の深溝120と連通溝14とは、深さが略同一に形成されている。尚、図2のシールリング1は、図3のB-B断面を示したものである。
 次いで、回転軸2が回転したときの摺動面S1,S2間における流体膜形成について説明する。尚、ここでは、回転軸2が図3における白矢印で示す時計回りに回転する場合、言い換えるとシールリング1が回転軸2の環状溝20に対して図3における反時計回りに相対回転する場合を例に説明する。また、図3における実線矢印は、動圧溝ユニット100を構成する動圧溝12,12’間の被密封流体の流れを示している。回転軸2とハウジング3との相対的な回転時には、側壁面21側の摺動面S2に対して、側面10側の摺動面S1が摺動する。このとき、摺動面S1に設けられた動圧溝12,12’の深溝120,120’には内径側から被密封流体がそれぞれ導入されるとともに、深溝120,120’の外径側(開口の径方向反対側)で周方向に延びる連通溝14内では、被密封流体が回転軸2の回転に追従して周方向(回転方向)に供給される。また、回転軸2の回転方向とは反対方向側(図3紙面左側)のシールリング1の浅溝122,122’(以下、単に浅溝122,122’と言う。)では負圧が生じる一方、同回転方向と同方向側(図3紙面右側)のシールリング1の浅溝121,121’(以下、単に浅溝121,121’と言う。)では深溝120,120’内にそれぞれ導入された被密封流体が供給され傾斜面によるくさび作用によって正圧が生じる。そして、動圧溝12,12’全体として正圧が発生することにより、摺動面S1,S2間を僅かに離間させる力、いわゆる浮力が得られる。摺動面S1,S2間が僅かに離間することにより、それらの内径側から摺動面S1,S2間に高圧の被密封流体が流入するととともに、正圧が発生する浅溝121,121’からは摺動面S1,S2間に被密封流体が流出していく。さらに、周方向に隣り合う2つの動圧溝12,12’が動圧溝ユニット100を形成することにより、回転軸2の回転方向と同方向側(周方向一方側,図3紙面右側)の動圧溝12(以下、単に動圧溝12と言うこともある。)の深溝120には、外径側から連通溝14を介して回転軸2の回転方向と反対方向側(周方向他方側,図3紙面左側)の動圧溝12’(以下、単に動圧溝12’と言うこともある。)の深溝120’に導入された被密封流体が供給される。
 これによれば、動圧溝ユニット100において、動圧溝12の深溝120内には、動圧溝12’の深溝120’内に比べて被密封流体が保持されやすく、動圧溝12における正圧発生部としての浅溝121に対して深溝120から被密封流体が十分に供給されるため、動圧溝12の浅溝121では比較的大きな動圧を発生させることができるとともに、連通溝14が外径側に配置される動圧溝12’の浅溝121’では比較的小さな動圧を発生させることができ、周方向にバランスよく流体膜を形成可能として、広い回転域で安定した潤滑性能を発揮できる。
 さらに、動圧溝12,12’の外径側には連通溝14が設けられており、動圧溝12,12’および連通溝14により摺動面S1に画成される動圧溝ユニット100の領域においては、連通溝14から動圧溝12,12’間の平坦面16(潤滑部16b)に静止圧によって被密封流体が供給されることから、動圧溝ユニット100の領域においては、流体膜の厚さが周方向にわたって比較的均等となるため、周方向にバランスよく流体膜が形成されやすい。
 また、動圧溝12,12’の浅溝122,122’が内径側(被密封流体側)に開口し、摺動面S1の内径側から被密封流体が導入されることにより、浅溝122に被密封流体が保持されやすくなっている。
 さらに、動圧溝ユニット100においては、動圧溝12の深溝120に対して動圧溝12’の深溝120’から連通溝14を介して被密封流体が供給され、動圧溝12の深溝120内に被密封流体が十分に保持されることにより、動圧溝12の浅溝122で発生する負圧が低減されるため、周方向に隣り合う動圧溝12の浅溝122と、動圧溝12’の浅溝121’との間における圧力差を小さくすることができる。そのため、摺動面S1,S2間において、動圧溝ユニット100の領域における周方向に圧力(正圧と負圧)のばらつきを抑えた状態で動圧を発生させることができ、キャビテーション等を原因とする振動を防止しながらシールリング1の潤滑性を高めることができる。
 また、周方向に隣り合う2つの動圧溝12,12’が1つの連通溝14により連通された動圧溝ユニット100を形成することにより、連通溝14により連通される動圧溝12,12’間における被密封流体の供給バランスを調整しやすくなるため、周方向にバランスよく流体膜を形成することができる。さらに、摺動面S1において、全ての動圧溝12が動圧溝ユニット100として形成されることにより、周方向にさらにバランスよく流体膜を形成することができる。
 また、動圧溝12は、内径側に開口する周方向中央の深溝120と、深溝120の周方向両側に連続し周方向に延び底面が周方向末端へ向けて徐々に浅くなるように傾斜する浅溝121,122と、から構成されているため、シールリング1を両方向に回転させて使用することができ、高速回転時においても深溝120を通して浅溝121,122のいずれにも被密封流体を確実に供給することができる。
 また、連通溝14を設けることで、摺動面S1,S2間の外径側における広い範囲に被密封流体を流出させることができ、シールリング1の潤滑性を高めることができる。
 また、シールリング1は、C字状であるため、熱膨張収縮によりシールリング1の周長が変化してもシール性能を安定して維持できるようになっている。
 尚、シールリング1の変形例として、図5に示されるように、シールリング201の動圧溝212の深溝220は、内径側の深さが外径側の深さに比べて深く形成され、連通溝214は、深溝220の内径側の深さと略同一に形成されていてもよい。これによれば、深溝220の内径側から外径側に被密封流体が流れやすくなるため、被密封流体が連通溝214内にまで導入されやすくなり、シールリング201の潤滑性をより高めることができる。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、連通溝は、径方向に複数の箇所から周方向に延びるように(例えば2条)形成されていてもよい。また、連通溝は、円弧型のものに限らず、例えば直線や波型に形成されていてもよい。
 また、摺動面S1に形成される全ての動圧溝12が動圧溝ユニット100を形成していなくてもよく、この場合、動圧溝ユニット100と単独の動圧溝12とが周方向に等配されていることが好ましい。また、摺動面S1に形成される複数の動圧溝ユニット100は、周方向に等配されていることが好ましく、これによれば、動圧を周方向に均等に生じさせることができる。また、摺動面S1において複数の動圧溝ユニットが周方向に等配されていれば、必ずしも動圧溝12自体が周方向に等配されている必要はない。
 また、動圧溝ユニットは、2つの動圧溝から形成されるものに限らず、3つ以上の動圧溝が1つの連通溝により連通されて形成されていてもよい。尚、図6に3つの動圧溝から形成される動圧溝ユニットの変形例を示す。
 また、シールリングの摺動面S1に設けられる動圧溝の数や形状は、所望の動圧効果を得られるように適宜変更されてよく、深溝に連続し少なくとも周方向一方側に延びる浅溝が形成されていれば、例えばT字状やレイリーステップ等であってもよい。尚、被密封流体を導入する動圧溝の深溝の設置位置や形状については、摺動面の想定される摩耗の程度に応じて適宜変更されてよい。
 また、シールリングは、合口部1aが設けられない環状に構成されていてもよく、その外形は、側面側から見た形状が円形のものに限らず、多角形状として形成されていてもよい。
 また、シールリングは、断面矩形状のものに限らず、例えば断面台形状、断面多角形状であってもよく、摺動面S1が形成される側面が傾斜するものであってもよい。
 また、回転軸2の環状溝20の摺動面S2に対して前記実施例に示した溝が形成されていてもよい。
 また、被密封流体は油を例に説明したが、水、クーラント等の液体であっても、空気、窒素等の気体であってもよい。
1         シールリング
2         回転軸
3         ハウジング
10        側面
12,12’    動圧溝
14        連通溝
16        平坦面
16a       シール部
16b       潤滑部
20        環状溝
21        側壁面
100       動圧溝ユニット
120,120’  深溝
121,121’  浅溝(正圧発生部)
122,122’  浅溝(負圧発生部)
S1,S2     摺動面
S1’,S2’   非摺動面

Claims (4)

  1.  回転軸とハウジングとの間の隙間を軸封するシールリングであって、
     摺動面には、周方向に複数配置され被密封流体側に開口する深溝と、前記深溝に連続し少なくとも周方向一方側に延びる動圧を発生させるための浅溝と、を備える動圧溝が設けられ、
     少なくとも周方向に隣り合う前記動圧溝の前記深溝同士は、前記開口の径方向反対側で周方向に延びる連通溝により連通された動圧溝ユニットとして形成されているシールリング。
  2.  前記浅溝は、前記深溝の周方向両側に連続して設けられている請求項1に記載のシールリング。
  3.  前記動圧溝ユニットは、2つの前記動圧溝と、1つの前記連通溝により形成されている請求項1または2に記載のシールリング。
  4.  前記摺動面において、全ての前記動圧溝が前記動圧溝ユニットとして形成されている請求項1ないし3のいずれかに記載のシールリング。
PCT/JP2019/019505 2018-05-17 2019-05-16 シールリング WO2019221231A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980027742.4A CN112105850A (zh) 2018-05-17 2019-05-16 密封环
US17/048,085 US20210164571A1 (en) 2018-05-17 2019-05-16 Seal ring
JP2020519918A JP7210566B2 (ja) 2018-05-17 2019-05-16 シールリング
EP19804382.0A EP3795868B1 (en) 2018-05-17 2019-05-16 Seal ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-095700 2018-05-17
JP2018095700 2018-05-17

Publications (1)

Publication Number Publication Date
WO2019221231A1 true WO2019221231A1 (ja) 2019-11-21

Family

ID=68540338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019505 WO2019221231A1 (ja) 2018-05-17 2019-05-16 シールリング

Country Status (5)

Country Link
US (1) US20210164571A1 (ja)
EP (1) EP3795868B1 (ja)
JP (1) JP7210566B2 (ja)
CN (1) CN112105850A (ja)
WO (1) WO2019221231A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021117335A1 (ja) * 2019-12-09 2021-06-17
CN115298462A (zh) * 2020-03-31 2022-11-04 伊格尔工业股份有限公司 滑动部件

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11530749B2 (en) * 2018-05-17 2022-12-20 Eagle Industry Co., Ltd. Seal ring
JP7242659B2 (ja) 2018-05-17 2023-03-20 イーグル工業株式会社 シールリング
EP3842673A4 (en) 2018-08-24 2022-05-04 Eagle Industry Co., Ltd. SLIDING ELEMENT
WO2020110922A1 (ja) 2018-11-30 2020-06-04 イーグル工業株式会社 摺動部品
KR102541901B1 (ko) 2018-12-21 2023-06-13 이구루코교 가부시기가이샤 슬라이딩 부품
KR102610647B1 (ko) 2019-02-04 2023-12-07 이구루코교 가부시기가이샤 슬라이딩 부품
WO2020166590A1 (ja) 2019-02-14 2020-08-20 イーグル工業株式会社 摺動部品
EP3929454B1 (en) 2019-02-21 2024-07-17 Eagle Industry Co., Ltd. Sliding components
US11892081B2 (en) * 2019-07-26 2024-02-06 Eagle Industry Co., Ltd. Sliding component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388062U (ja) * 1989-12-26 1991-09-09
JPH09210211A (ja) 1996-02-01 1997-08-12 Riken Corp シールリング
US5702110A (en) * 1993-09-01 1997-12-30 Durametallic Corporation Face seal with angled grooves and shallow annular groove
JP2000310336A (ja) * 1999-04-08 2000-11-07 Caterpillar Inc シールリング
WO2015045974A1 (ja) * 2013-09-27 2015-04-02 株式会社リケン シールリング
WO2015111707A1 (ja) * 2014-01-24 2015-07-30 Nok株式会社 シールリング

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174584A (en) * 1991-07-15 1992-12-29 General Electric Company Fluid bearing face seal for gas turbine engines
US5498007A (en) * 1994-02-01 1996-03-12 Durametallic Corporation Double gas barrier seal
JP4532142B2 (ja) * 2003-12-22 2010-08-25 株式会社荏原製作所 流体機械のシール機構又は遠心ポンプ
US7377518B2 (en) * 2004-05-28 2008-05-27 John Crane Inc. Mechanical seal ring assembly with hydrodynamic pumping mechanism
KR101119546B1 (ko) * 2004-11-09 2012-02-28 이글 고오교 가부시키가이샤 메카니컬 실링장치
US20120018957A1 (en) * 2010-02-26 2012-01-26 Nok Corporation Seal ring
CN101776152B (zh) * 2010-03-05 2013-08-21 北京化工大学 外加压式动静压气体润滑密封装置
CN102918307B (zh) * 2010-06-23 2016-06-22 株式会社理研 密封环
CN203098871U (zh) * 2013-01-30 2013-07-31 浙江工业大学 似蘑菇型槽双向旋转流体动压型机械密封结构
JP6386814B2 (ja) * 2013-07-03 2018-09-05 Ntn株式会社 シールリング
US9695940B2 (en) * 2013-12-18 2017-07-04 Kaydon Ring & Seal, Inc. Bidirectional lift-off circumferential shaft seal segment and a shaft seal including a plurality of the segments
CN107429844A (zh) * 2015-03-16 2017-12-01 Nok株式会社 密封圈
CN107407418B (zh) * 2015-03-16 2019-09-06 Nok株式会社 密封圈
JP6186413B2 (ja) * 2015-10-15 2017-08-23 株式会社リケン シールリング
WO2018070265A1 (ja) * 2016-10-14 2018-04-19 イーグル工業株式会社 摺動部品
EP3540275B1 (en) * 2016-11-14 2023-07-05 Eagle Industry Co., Ltd. Sliding component
US11053974B2 (en) * 2016-12-07 2021-07-06 Eagle Industry Co., Ltd. Sliding component
JP7164533B2 (ja) * 2017-09-21 2022-11-01 Nok株式会社 シールリング
DE112019000742T5 (de) * 2018-02-08 2020-10-15 Nok Corporation Dichtring
JP7242659B2 (ja) * 2018-05-17 2023-03-20 イーグル工業株式会社 シールリング

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388062U (ja) * 1989-12-26 1991-09-09
US5702110A (en) * 1993-09-01 1997-12-30 Durametallic Corporation Face seal with angled grooves and shallow annular groove
JPH09210211A (ja) 1996-02-01 1997-08-12 Riken Corp シールリング
JP2000310336A (ja) * 1999-04-08 2000-11-07 Caterpillar Inc シールリング
WO2015045974A1 (ja) * 2013-09-27 2015-04-02 株式会社リケン シールリング
WO2015111707A1 (ja) * 2014-01-24 2015-07-30 Nok株式会社 シールリング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3795868A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021117335A1 (ja) * 2019-12-09 2021-06-17
WO2021117335A1 (ja) * 2019-12-09 2021-06-17 Nok株式会社 密封装置
KR20220092619A (ko) * 2019-12-09 2022-07-01 엔오케이 가부시키가이샤 밀봉장치
JP7377891B2 (ja) 2019-12-09 2023-11-10 Nok株式会社 密封装置
EP4075031A4 (en) * 2019-12-09 2024-01-03 NOK Corporation SEALING DEVICE
US12025229B2 (en) 2019-12-09 2024-07-02 Nok Corporation Sealing device
KR102685516B1 (ko) 2019-12-09 2024-07-17 엔오케이 가부시키가이샤 밀봉장치
CN115298462A (zh) * 2020-03-31 2022-11-04 伊格尔工业股份有限公司 滑动部件
US20230175587A1 (en) * 2020-03-31 2023-06-08 Eagle Industry Co., Ltd. Sliding component
EP4130523A4 (en) * 2020-03-31 2024-04-17 Eagle Industry Co., Ltd. SLIDING COMPONENT

Also Published As

Publication number Publication date
JP7210566B2 (ja) 2023-01-23
EP3795868C0 (en) 2024-08-21
JPWO2019221231A1 (ja) 2021-05-27
EP3795868A4 (en) 2022-02-23
EP3795868B1 (en) 2024-08-21
EP3795868A1 (en) 2021-03-24
CN112105850A (zh) 2020-12-18
US20210164571A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2019221231A1 (ja) シールリング
JP7242658B2 (ja) シールリング
WO2019221228A1 (ja) シールリング
WO2019221229A1 (ja) シールリング
JP6861730B2 (ja) しゅう動部品
WO2019221227A1 (ja) シールリング
US11603934B2 (en) Sliding component
JP6428916B2 (ja) シールリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019804382

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019804382

Country of ref document: EP

Effective date: 20201217