WO2019216201A1 - Injector - Google Patents
Injector Download PDFInfo
- Publication number
- WO2019216201A1 WO2019216201A1 PCT/JP2019/017229 JP2019017229W WO2019216201A1 WO 2019216201 A1 WO2019216201 A1 WO 2019216201A1 JP 2019017229 W JP2019017229 W JP 2019017229W WO 2019216201 A1 WO2019216201 A1 WO 2019216201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- movable core
- injector
- core
- needle
- fixed core
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/04—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Definitions
- This disclosure relates to an injector.
- Patent Document 1 discloses a fuel injection valve that includes a needle valve that opens and closes a nozzle hole and a movable core that is provided separately from the needle valve.
- the needle valve moves in the valve opening direction together with the movable core that receives the magnetic attractive force from the fixed core.
- the needle valve moves away from the movable core due to inertia and further moves in the valve opening direction.
- the needle valve is pushed back by the spring, moves in the valve closing direction, and again contacts the movable core.
- an injector has an injection hole for injecting fuel, a cylindrical housing having a first flow path communicating with the injection hole, a first housing fixed in the housing and communicating with the first flow path.
- a cylindrical fixed core having two flow paths, and a reciprocating movement in the first flow path on the nozzle hole side of the fixed core along the axial direction of the housing.
- a movable core having an outer diameter larger than the inner diameter and having a through-hole smaller than the inner diameter of the fixed core; a coil that generates a magnetic field that moves the movable core toward the fixed core by energization;
- a needle having a shaft passing through a through-hole in a reciprocating manner in the axial direction, and a valve formed at an end of the shaft on the nozzle hole side and capable of opening and closing the nozzle, and the needle A spray that biases toward the nozzle hole side Provided grayed and, the.
- the shaft portion has a first protrusion on the valve portion side and a second protrusion on the fixed core across the movable core, and the first protrusion is formed in the radial direction of the movable core.
- the second protrusion protrudes outward from the edge of the through hole, and protrudes outward from the edge of the through hole of the movable core and inward of the inner periphery of the fixed core in the radial direction.
- the surface of the movable core on the nozzle hole side has a first recess capable of accommodating the first protrusion around the through hole, and the surface of the first protrusion on the fixed core side, The distance along the axial direction between the bottom surface of the first recess and the surface on the fixed core side of the movable core than the distance along the axial direction with the valve-side surface of the second protrusion. Is smaller.
- the injector is configured such that the fuel can be sealed in a space surrounded by the shaft portion, the first protrusion, and the first recess.
- the injector of this embodiment when the nozzle hole is opened and closed by the needle, the fuel filled in the space surrounded by the shaft portion of the needle, the first protrusion, and the first recess of the movable core is pressurized, By decelerating the needle, the impact force when the first projecting portion collides with the movable core is reduced. Along with this, the impact force when the second protrusion and the movable core collide is also reduced. Therefore, wear at the contact portion between the first protrusion and the movable core and the contact portion between the second protrusion and the movable core can be suppressed.
- an injector is provided.
- the injector has an injection hole for injecting fuel, a cylindrical housing having a first flow path communicating with the injection hole, a first housing fixed in the housing and communicating with the first flow path.
- a cylindrical fixed core having two flow paths, and a reciprocating movement in the first flow path on the nozzle hole side of the fixed core along the axial direction of the housing.
- a movable core having an outer diameter larger than the inner diameter and having a through-hole smaller than the inner diameter of the fixed core; a coil that generates a magnetic field that moves the movable core toward the fixed core by energization;
- a needle having a shaft passing through a through-hole in a reciprocating manner in the axial direction, and a valve formed at an end of the shaft on the nozzle hole side and capable of opening and closing the nozzle, and the needle A spray that biases toward the nozzle hole side Provided grayed and, the.
- the shaft portion has a first protrusion on the valve portion side and a second protrusion on the fixed core across the movable core, and the first protrusion is formed in the radial direction of the movable core.
- the second protrusion protrudes outward from the edge of the through hole, and protrudes outward from the edge of the through hole of the movable core and inward of the inner periphery of the fixed core in the radial direction.
- the surface of the movable core on the fixed core side has a recess capable of accommodating the second protrusion around the through hole, and the surface of the first protrusion on the fixed core side and the second
- the distance along the axial direction between the surface on the nozzle hole side of the movable core and the bottom surface of the recess is smaller than the distance along the axial direction with the surface on the valve part side of the protrusion.
- the injector is characterized in that the fuel can be sealed in a space surrounded by the shaft portion, the second projecting portion, and the concave portion.
- the injector of this aspect when the nozzle hole is opened by the needle, the fuel filled in the space surrounded by the shaft portion of the needle, the second projecting portion, and the concave portion of the movable core is made negative pressure.
- the impact force when the first projecting portion collides with the movable core is reduced.
- the impact force when the second protrusion and the movable core collide is also reduced. Therefore, wear at the contact portion between the first protrusion and the movable core and the contact portion between the second protrusion and the movable core can be suppressed.
- an injector has an injection hole for injecting fuel, a cylindrical housing having a first flow path communicating with the injection hole, a first housing fixed in the housing and communicating with the first flow path.
- a cylindrical fixed core having two flow paths, and a reciprocating movement in the first flow path on the nozzle hole side of the fixed core along the axial direction of the housing.
- a movable core having a through-hole smaller than the inner diameter, a coil that generates a magnetic field that moves the movable core toward the fixed core when energized, and a shaft that passes through the through-hole in a reciprocating manner in the axial direction.
- the shaft portion has a first protrusion on the valve portion side and a second protrusion on the fixed core across the movable core, and the first protrusion is formed in the radial direction of the movable core.
- the second protrusion protrudes outward from the edge of the through hole, and protrudes outward from the edge of the through hole of the movable core and inward of the inner periphery of the fixed core in the radial direction.
- the movable core includes a large-diameter portion having a large outer diameter, and a small-diameter portion that is provided closer to the nozzle hole than the large-diameter portion and has a smaller outer diameter than the large-diameter portion. And a first sliding portion facing the first sliding portion provided in the housing, wherein the large diameter portion is a second sliding facing the second sliding portion provided in the housing.
- the injector is configured such that the fuel can be sealed in a space surrounded by the movable core and the housing between the first sliding portion and the second sliding portion in the axial direction. It is characterized by that.
- the injector of this embodiment when the nozzle hole is opened by the needle, the fuel filled in the space surrounded by the movable core and the housing is made negative pressure, and the movable core and the needle are decelerated.
- the impact force when the movable core and the fixed core collide and the impact force when the first protrusion and the movable core collide are reduced.
- the impact force when the second protrusion and the movable core collide is also reduced.
- the fuel filled in the space surrounded by the movable core and the housing is pressurized, and the movable core and the needle are decelerated, so that the valve portion and the nozzle hole periphery
- the impact force when the housing collides and the impact force when the movable core collides with the first projecting portion are reduced.
- the impact force at the time of a collision between a movable core and a 2nd protrusion part is also reduced.
- the contact portion between the movable core and the fixed core, the contact portion between the first protrusion and the movable core, the contact portion between the second protrusion and the movable core, and the contact between the valve portion and the housing around the injection hole can be suppressed.
- the present disclosure can be realized in various forms other than the injector.
- it is realizable with forms, such as a fuel injection device and a fuel injection method.
- FIG. 1 is an explanatory diagram showing a schematic configuration of an injector in the first embodiment.
- FIG. 2 is a first explanatory view showing the valve opening operation of the injector in the first embodiment
- FIG. 3 is a second explanatory view showing the valve opening operation of the injector in the first embodiment
- FIG. 4 is a third explanatory view showing the valve opening operation of the injector in the first embodiment
- FIG. 5 is a first explanatory view showing the valve closing operation of the injector in the first embodiment
- FIG. 6 is a second explanatory view showing the valve closing operation of the injector in the first embodiment
- FIG. 1 is an explanatory diagram showing a schematic configuration of an injector in the first embodiment.
- FIG. 2 is a first explanatory view showing the valve opening operation of the injector in the first embodiment
- FIG. 3 is a second explanatory view showing the valve opening operation of the injector in the first embodiment
- FIG. 4 is a third explanatory view showing the valve opening operation of the injector in the
- FIG. 7 is a third explanatory diagram showing the valve closing operation of the injector in the first embodiment
- FIG. 8 is an explanatory diagram showing a schematic configuration of an injector in the second embodiment
- FIG. 9 is an explanatory diagram showing a schematic configuration of an injector in the third embodiment
- FIG. 10 is an explanatory diagram showing a schematic configuration of the injector in the fourth embodiment.
- FIG. 11 is an explanatory view showing the valve opening operation of the injector in the fourth embodiment
- FIG. 12 is an explanatory diagram showing a schematic configuration of the injector in the fifth embodiment.
- FIG. 13 is an explanatory diagram showing a schematic configuration of an injector in the sixth embodiment.
- FIG. 14 is an explanatory diagram showing a schematic configuration of an injector in the seventh embodiment.
- FIG. 14 is an explanatory diagram showing a schematic configuration of an injector in the seventh embodiment.
- FIG. 15 is a first explanatory view showing the valve opening operation of the injector in the seventh embodiment
- FIG. 16 is a second explanatory view showing the valve opening operation of the injector in the seventh embodiment
- FIG. 17 is a third explanatory view showing the valve opening operation of the injector in the seventh embodiment
- FIG. 18 is a first explanatory view showing the valve closing operation of the injector in the seventh embodiment
- FIG. 19 is a second explanatory diagram showing the valve closing operation of the injector in the seventh embodiment
- FIG. 20 is a third explanatory diagram showing the valve closing operation of the injector in the seventh embodiment
- FIG. 21 is an explanatory diagram showing a schematic configuration of an injector in the eighth embodiment.
- FIG. 22 is a partially enlarged view of the elastic member and the low friction member in the eighth embodiment
- FIG. 23 is an explanatory diagram showing a schematic configuration of an injector in the ninth embodiment
- FIG. 24 is an explanatory diagram showing a schematic configuration of an injector in the tenth embodiment.
- the injector 20 of the first embodiment includes a housing 30, a fixed core 41, a movable core 42, a coil 44, a needle 50, a first spring 61, and a second spring 62.
- the injector 20 is a device for injecting fuel.
- Injector 20 of this embodiment injects hydrogen gas which is gaseous fuel as fuel.
- the housing 30 is a cylindrical member in which a nozzle hole 32 for injecting fuel and a first flow path 101 communicating with the nozzle hole 32 are formed.
- the housing 30 of the present embodiment includes, in order from the nozzle hole 32 side, the nozzle tip part 31 in which the nozzle holes 32 are formed, the first magnetic part 34, the nonmagnetic part 36, the second magnetic part 35, and the inlet part. 37.
- a valve seat 33 is provided around the nozzle hole 32 on the inner surface of the housing 30 of the nozzle tip portion 31. Between the nozzle tip part 31 and the first magnetic part 34, between the first magnetic part 34 and the nonmagnetic part 36, between the nonmagnetic part 36 and the second magnetic part 35, and between the second magnetic part 35 and the inlet part.
- the nozzle tip portion 31 is made of martensitic stainless steel that is a nonmagnetic material.
- the first magnetic part 34 and the second magnetic part 35 are made of a ferritic stainless steel that is a magnetic material.
- the nonmagnetic portion 36 is formed of austenitic stainless steel that is a nonmagnetic material.
- a supply pipe (not shown) for supplying fuel to the injector 20 is connected to the inlet portion 37.
- the supply pipe is connected so as to contact a backup ring 72 provided at the inlet portion 37.
- a gap between the supply pipe and the inlet portion 37 is sealed by an O-ring 73 provided on the backup ring 72.
- An inlet channel 103 is formed in the inlet portion 37.
- a filter 71 is provided in the inlet channel 103. The filter 71 collects foreign matter contained in the fuel supplied from the supply pipe and suppresses the foreign matter from flowing into the housing 30.
- the fixed core 41 is a cylindrical member fixed in the housing 30.
- a second flow path 102 communicating with the first flow path 101 is formed in the fixed core 41.
- the opposite side of the second channel 102 from the first channel 101 communicates with the inlet channel 103.
- the fixed core 41 is made of a ferritic stainless steel that is a magnetic material.
- the movable core 42 is a cylindrical member provided so as to be capable of reciprocating along the axial direction AX of the housing 30 in the first flow path 101 closer to the injection hole 32 than the fixed core 41.
- the movable core 42 has an outer diameter larger than the inner diameter of the fixed core 41 and has a through hole 43 smaller than the inner diameter of the fixed core 41.
- the surface of the movable core 42 on the nozzle hole 32 side has a first recess 46 around the through hole 43.
- the first recess 46 is a circular depression formed on the surface of the movable core 42 on the nozzle hole 32 side.
- the movable core 42 and the fixed core 41 are configured to be contactable in the axial direction AX.
- the movable core 42 is made of a ferritic stainless steel that is a magnetic material.
- the coil 44 is wound around the outer periphery of the housing 30.
- the outer periphery of the coil 44 is covered with a yoke 45 formed of ferritic stainless steel, which is a magnetic material.
- the coil 44 generates a magnetic field that moves the movable core 42 toward the fixed core 41 when energized.
- the current flowing through the coil 44 is supplied from, for example, a power supply source (not shown) such as a battery.
- the voltage applied from the power supply source is controlled by a control unit (not shown).
- the needle 50 includes a shaft portion 51, a valve portion 52, a stopper portion 53, and a flange portion 54.
- the stopper portion 53 may be referred to as a first projecting portion
- the flange portion 54 may be referred to as a second projecting portion.
- the shaft portion 51 is provided so as to reciprocate along the axial direction AX in the through hole 43 of the movable core 42.
- the central axis of the shaft portion 51 is the same as the central axis of the fixed core 41 and the central axis of the movable core 42.
- a communication channel 104 through which fuel flows from the second channel 102 toward the first channel 101 is formed inside the shaft portion 51.
- the valve part 52 is formed at the end of the shaft part 51 on the nozzle hole 32 side.
- the valve portion 52 is configured to be able to come into contact with a valve seat 33 provided in the nozzle tip portion 31, and is a valve body that opens and closes the injection hole 32 when the shaft portion 51 reciprocates along the axial direction AX. .
- the fuel that has flowed through the housing 30 in the order of the inlet channel 103, the second channel 102, the communication channel 104, and the first channel 101 is injected from the nozzle hole 32 when the nozzle hole 32 is opened. .
- the stopper portion 53 is a disk-shaped member located on the valve portion 52 side with the movable core 42 in the shaft portion 51 interposed therebetween.
- the stopper portion 53 protrudes larger than the diameter of the through hole 43 in the radial direction of the shaft portion 51.
- the stopper portion 53 is formed of austenitic stainless steel, which is a nonmagnetic material, and is press-fitted into the shaft portion 51.
- the stopper portion 53 is configured to be accommodated in the first recess 46 of the movable core 42.
- the airtight chamber 110 is a space in which fuel can be enclosed.
- the size of the gap between the stopper 53 and the side surface of the first recess 46 is such that the fuel can be supplied into the hermetic chamber 110 at least when the valve is closed, and the fuel in the hermetic chamber 110 is boosted to a predetermined pressure or higher. When set, the fuel can be discharged.
- size of the clearance gap between the stopper part 53 and the side surface of the 1st recessed part 46 is set according to the kind of fuel. In the present embodiment, hydrogen gas is used as the fuel, and the gap between the stopper portion 53 and the side surface of the first recess 46 is about 2 to 3 ⁇ m. When liquid fuel is used as the fuel, the gap between the stopper portion 53 and the side surface of the first recess 46 is set larger.
- the flange portion 54 is a disk-shaped member located on the fixed core 41 side with the movable core 42 in the shaft portion 51 interposed therebetween.
- the flange portion 54 protrudes in the radial direction of the shaft portion 51 larger than the diameter of the through hole 43 and smaller than the inner diameter of the fixed core 41.
- the bottom surface of the first recess 46 and the fixed core 41 side of the movable core 42 than the distance along the axial direction AX between the surface of the stopper portion 53 on the fixed core 41 side and the surface of the flange portion 54 on the valve portion 52 side. The distance along the axial direction AX with respect to the surface is smaller.
- the thickness of the movable core 42 in the portion where the first recess 46 is formed is along the axial direction AX between the surface on the fixed core 41 side of the stopper portion 53 and the surface on the valve portion 52 side of the flange portion 54. Smaller than the interval.
- the shaft portion 51, the valve portion 52, and the flange portion 54 are integrally formed.
- the shaft portion 51, the valve portion 52, and the flange portion 54 are made of martensitic stainless steel, which is a nonmagnetic material.
- the first spring 61 is disposed in the second flow path 102.
- the first spring 61 urges the flange portion 54 from the fixed core 41 side toward the injection hole 32 side.
- the first spring 61 is a coil spring.
- An adjusting pipe 63 is provided upstream of the first spring 61 in the second flow path 102.
- the force with which the first spring 61 pushes the flange portion 54 is configured to be adjustable by adjusting the position of the end portion of the adjusting pipe 63 on the injection hole 32 side.
- the second spring 62 is disposed in the first flow path 101 and urges the movable core 42 from the injection hole 32 side toward the fixed core 41 side.
- the second spring 62 of the present embodiment is a coil spring. In the valve closed state, the movable core 42 is pushed by the second spring 62 and the flange portion 54 and the movable core 42 come into contact with each other.
- FIGS. 1-4 The valve opening operation performed in the injector 20 of this embodiment is demonstrated using FIGS. 1-4.
- the valve portion 52 is in contact with the valve seat 33 in the valve closed state.
- the coil 44 is not energized.
- the flange portion 54 is pushed from the fixed core 41 side toward the nozzle hole 32 side by the first spring 61.
- the movable core 42 is pushed by the second spring 62 from the nozzle hole 32 side toward the fixed core 41 side. Therefore, the flange portion 54 and the movable core 42 are in contact with each other.
- a predetermined interval necessary for opening the valve is secured between the movable core 42 and the fixed core 41 in the valve-closed state.
- the fuel in the airtight chamber 110 is filled with the fuel flowing in the first flow path 101 from the gap between the stopper 53 and the side surface of the first recess 46. This state is also called an initial state.
- the needle 50 is detached from the movable core 42 due to inertia and continues to move further toward the upstream side of the second flow path 102.
- the stopper 53 and the bottom surface of the first recess 46 approach each other in the axial direction AX, and the volume of the hermetic chamber 110 is reduced.
- the fuel in the hermetic chamber 110 is pressurized.
- the movement of the needle 50 is decelerated.
- the fuel in the hermetic chamber 110 When the fuel in the hermetic chamber 110 is increased to a predetermined pressure or higher, the fuel in the hermetic chamber 110 is gradually discharged from the gap between the stopper portion 53 and the side surface of the first recess 46, and 1 The bottom surface of the recess 46 collides at a low speed. That is, the hermetic chamber 110 serves as a damper. Therefore, the impact force when the stopper part 53 and the movable core 42 collide is reduced. When the stopper portion 53 and the bottom surface of the first recess 46 collide, a part of the fuel may remain in the airtight chamber 110. That is, the stopper 53 and the bottom surface of the first recess 46 may collide with each other through the fuel remaining in the hermetic chamber 110. Further, the impact force caused by the collision between the movable core 42 and the fixed core 41 is reduced by the needle 50 being detached from the movable core 42.
- the elastic energy stored in the first spring 61 is released as power to push back the needle 50, so that the needle 50 is fixed to the fixed core 41.
- the flange portion 54 collides with the movable core 42.
- the needle 50 is decelerated as the needle 50 is pushed back, the volume of the hermetic chamber 110 is expanded, and the inside of the hermetic chamber 110 is set to a negative pressure.
- FIG. 5 As shown in FIG. 5, when the energization to the coil 44 is stopped, the magnetic attractive force from the fixed core 41 that has worked on the movable core 42 is unloaded, and the needle biased by the first spring 61.
- the valve portion 52 collides with the valve seat 33 by moving 50 from the fixed core 41 side toward the nozzle hole 32 side. Therefore, the valve is closed and the fuel injection from the nozzle hole 32 is stopped.
- the needle 50 moves
- the movable core 42 moves together with the needle 50 by being pushed by the flange portion 54.
- the fuel in the first flow path 101 flows into the airtight chamber 110 through a gap between the stopper portion 53 and the side surface of the first recess 46.
- the movable core 42 continues to move from the fixed core 41 side toward the injection hole 32 side due to inertia, so that the stopper portion 53 and As the bottom surface of the first recess 46 approaches in the axial direction AX, the volume of the hermetic chamber 110 is reduced. As the volume of the hermetic chamber 110 is reduced, the fuel in the hermetic chamber 110 is pressurized. As the fuel in the hermetic chamber 110 is pressurized, the movement of the needle 50 is decelerated.
- the fuel in the hermetic chamber 110 When the fuel in the hermetic chamber 110 is increased to a predetermined pressure or higher, the fuel in the hermetic chamber 110 is gradually discharged from the gap between the stopper portion 53 and the side surface of the first recess 46, and 1 The bottom surface of the recess 46 collides at a low speed. Therefore, the impact force when the stopper part 53 and the movable core 42 collide is reduced. The impact force due to the collision between the valve portion 52 and the valve seat 33 is reduced by the movement of the movable core 42 separately from the needle 50.
- the movable core 42 is moved to the nozzle hole 32 side by an impact force when the stopper portion 53 and the movable core 42 collide and a force by which the second spring 62 pushes the movable core 42 back to the fixed core 41 side. Bounces toward the fixed core 41 side, and the flange portion 54 and the movable core 42 collide with each other. At this time, as the fuel in the hermetic chamber 110 is boosted, the impact force when the stopper portion 53 and the movable core 42 collide with each other is reduced, so that the rebound of the movable core 42 is suppressed.
- the needle 50 is decelerated as the needle 50 is pushed back, the volume of the hermetic chamber 110 is expanded, and the inside of the hermetic chamber 110 is set to a negative pressure. Therefore, the impact force when the flange portion 54 and the movable core 42 collide is reduced. Thereafter, the movable core 42 is supported by the second spring 62 and returns to the initial state.
- the valve closing operation in the injector 20 is completed by the series of operations described above.
- the stopper portion 53 and the bottom surface of the first recess 46 of the movable core 42 approach each other, the fuel in the hermetic chamber 110 is pressurized, and the needle 50 is decelerated.
- the impact force when the stopper portion 53 and the movable core 42 collide with each other is reduced.
- the impact force when the flange portion 54 and the movable core 42 collide with each other is also reduced. Therefore, wear at the contact portion between the stopper portion 53 and the movable core 42 and at the contact portion between the flange portion 54 and the movable core 42 can be suppressed.
- the contact portion between the stopper portion 53 and the movable core 42 and the flange portion 54 are compared to the configuration in which liquid fuel is injected. Since the squeeze force by the fuel when the contact portion with the movable core 42 collides is small, the impact force at each contact portion becomes large. Therefore, the effect of suppressing wear of each contact portion due to the provision of the hermetic chamber 110 is great.
- the diameter of the stopper portion 53 by adjusting the diameter of the stopper portion 53, the magnitude of the flow path resistance in the gap between the stopper portion 53 and the side surface of the first recess 46 of the movable core 42 can be adjusted. Therefore, the speed when the stopper 53 and the bottom surface of the first recess 46 collide with each other with a simple structure can be adjusted.
- the stopper portion 53 has a first orifice 111 that communicates from the surface on the fixed core 41 side to the surface on the valve portion 52 side. And different. In the second embodiment, the gap between the stopper portion 53 and the side surface of the first recess 46 is smaller than in the first embodiment. Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
- the injector 20B of this form when the volume of the hermetic chamber 110 is reduced and the fuel in the hermetic chamber 110 is pressurized, the fuel in the hermetic chamber 110 is provided in the stopper portion 53 of the needle 50. It is discharged through the first orifice 111. Therefore, by adjusting the number and shape of the first orifices 111, the magnitude of the flow path resistance in the first orifices 111 can be adjusted, and the fuel in the hermetic chamber 110 is transferred to the side surfaces of the stopper 53 and the first recess 46. The deceleration degree of the needle 50 can be adjusted more easily than in the form of discharging from the gap.
- the orifice 111 is provided in the stopper portion 53 of the needle 50, the orifice provided from the bottom surface of the first recess 46 of the movable core 42 to the surface on the fixed core 41 side is provided.
- the degree of deceleration of the needle 50 can be adjusted while ensuring the magnetic attractive force that the movable core 42 receives from the fixed core 41.
- the movable core 42 has a second orifice 112 that communicates from the bottom surface of the first recess 46 to the surface on the fixed core 41 side. And different. In 3rd Embodiment, the clearance gap between the stopper part 53 and the side surface of the 1st recessed part 46 is smaller than 1st Embodiment. Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
- the injector 20C of this form when the volume of the hermetic chamber 110 is reduced and the fuel in the hermetic chamber 110 is pressurized, the fuel in the hermetic chamber 110 is supplied to the second orifice provided in the movable core 42. It is discharged through 112. Therefore, by adjusting the number and shape of the second orifices 112, the magnitude of the flow path resistance in the second orifice 112 can be adjusted, and the fuel in the hermetic chamber 110 is transferred to the side surfaces of the stopper 53 and the first recess 46. The deceleration degree of the needle 50 can be adjusted more easily than in the form of discharging from the gap.
- the opening on the fixed core 41 side of the second orifice 112 provided in the movable core 42 is sealed by the flange portion 54 of the needle 50 in the valve closed state. Therefore, in the valve opening operation, when the flange portion 54 of the needle 50 is detached from the movable core 42, the needle 50 can be decelerated even when the second orifice 112 is set to a negative pressure.
- the surface on the injection hole 32 side of the movable core 42 does not have the first recess 46 around the through hole 43, and the fixed core 41 of the movable core 42.
- the side surface is different from the first embodiment in having a second recess 47 that can accommodate the flange portion 54 around the through-hole 43.
- the surface on the injection hole 32 side of the movable core 42 and the second recess 47 are larger than the distance along the axial direction AX between the surface on the fixed core 41 side of the stopper portion 53 and the surface on the valve portion 52 side of the flange portion 54.
- the distance along the axial direction AX with respect to the bottom surface is smaller.
- the thickness of the movable core 42 in the portion where the second recess 47 is formed is along the axial direction AX between the surface on the fixed core 41 side of the stopper portion 53 and the surface on the valve portion 52 side of the flange portion 54. Smaller than the interval.
- the hermetic chamber 110 ⁇ / b> D is surrounded by the shaft portion 51, the flange portion 54, and the second concave portion 47 of the movable core 42 by accommodating the flange portion 54 in the second concave portion 47 of the movable core 42. It is formed as a space.
- the needle 50 is detached from the movable core 42 due to inertia and continues to move further toward the upstream side of the second flow path 102.
- the distance between the flange portion 54 and the bottom surface of the second recess 47 in the axial direction AX is increased, and the volume of the hermetic chamber 110D is increased.
- the fuel in the hermetic chamber 110D is set to a negative pressure, whereby the needle 50 is decelerated.
- the impact force when the stopper portion 53 and the movable core 42 collide is also reduced by the injector 20D of this form. Accordingly, the impact force when the flange portion 54 and the movable core 42 collide with each other is also reduced. Therefore, wear at the contact portion between the stopper portion 53 and the movable core 42 and at the contact portion between the flange portion 54 and the movable core 42 can be suppressed.
- the injector 20E of the fifth embodiment is different from the first embodiment in that liquid fuel is injected as fuel.
- the liquid fuel include gasoline and light oil.
- the nozzle tip portion 31E is different from the first embodiment in that a plurality of nozzle holes 32 are provided.
- the gap between the stopper portion 53 and the side surface of the first recess 46 is larger than that in the first embodiment.
- the injector 20E of the present embodiment not the gaseous fuel but the liquid fuel is sealed in the hermetic chamber 110, so that the hermetic chamber 110 can also be called a liquid-tight chamber.
- the hermetic chamber 110 can also be called a fuel enclosure chamber or a damper chamber.
- Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
- the injector 20E of this form since it is a form which injects liquid fuel, compared with the form which injects gaseous fuel, the contact part of the stopper part 53 and the movable core 42, and the flange part 54 and the movable core 42 The squeeze force by the fuel when the contact portion collides with the fuel increases, and the impact force at each contact portion decreases.
- the movable core 42F has a magnetic attraction portion 141 that contacts the fixed core 41 when the injector 20F is opened, and has a higher hardness than the magnetic attraction portion 141.
- the first embodiment is different from the first embodiment in that the first recess 46 is provided in the high hardness portion 142.
- Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
- the surface of the movable core 42F that comes into contact with the needle 50 is configured by the high hardness portion 142. That is, the inner peripheral portion of the surface of the movable core 42F on the fixed core 41 side, the surface in the through hole 43 of the movable core 42F, and the surface of the first recess 46 of the movable core 42F are configured by the high hardness portion 142. ing. The surface on the injection hole 32 side of the movable core 42 ⁇ / b> F is configured by a high hardness portion 142.
- a region on the side of the fixed core 41 on the side surface of the movable core 42F is configured by the magnetic attraction portion 141, and a region on the side of the injection hole 32 on the side surface of the movable core 42F is configured by the high hardness portion 142.
- the outer diameter of the high hardness portion 142 is larger than the outer diameter of the magnetic attraction portion 141. That is, the gap between the high hardness portion 142 of the movable core 42F and the housing 30 is smaller than the gap between the magnetic attraction portion 141 of the movable core 42F and the housing 30.
- a region in contact with the fixed core 41 in the movable core 42 ⁇ / b> F is configured by the magnetic attraction unit 141. In order to suppress a decrease in magnetic attractive force from the fixed core 41 with respect to the movable core 42F, it is preferable that the high hardness portion 142 is not provided in a region of the movable core 42F that contacts the fixed core 41.
- the magnetic attraction portion 141 is made of a ferritic stainless steel that is a magnetic material
- the high hardness portion 142 is made of a martensitic stainless steel that is a nonmagnetic material.
- the high hardness part 142 and the magnetic attraction part 141 are joined by press fitting or welding, for example.
- the hardness of the magnetic attraction portion 141 and the hardness of the high hardness portion 142 can be examined by a Vickers hardness test (JIS Z 2244).
- the Vickers hardness of the magnetic attraction portion 141 formed of ferritic stainless steel is 200 HV or less
- the Vickers hardness of the high hardness portion 142 formed of martensitic stainless steel is 633 HV to 772 HV.
- the first recess 46 is provided in the high hardness portion 142 having a hardness higher than that of the magnetic attraction portion 141. Therefore, the first recess 46 is formed by grinding or the like. It can be formed with high dimensional accuracy. Therefore, since the gap between the stopper portion 53 and the side surface of the first recess 46 can be made smaller, the movement of the needle 50 can be decelerated more effectively.
- the airtight chamber 110 surrounded by the shaft portion 51, the stopper portion 53, and the first concave portion 46 of the movable core 42 is not provided, and the movable core 42G Unlike the first embodiment, an airtight chamber 110G surrounded by the housing 30G is provided.
- Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
- the housing 30G in the present embodiment includes, in order from the nozzle hole 32 side, the nozzle tip part 31G in which the nozzle holes 32 are formed, the integrally formed part 131, the first magnetic part 34, the nonmagnetic part 36, and the second magnetic part.
- the part 35 and the inlet part 37 are comprised.
- the nozzle tip portion 31G and the integral forming portion 131 are integrally formed without being welded. Between the integrally formed portion 131 and the first magnetic portion 34, between the first magnetic portion 34 and the nonmagnetic portion 36, between the nonmagnetic portion 36 and the second magnetic portion 35, and between the second magnetic portion 35 and the entrance portion. 37 is welded at a welded portion 38.
- the nozzle tip portion 31G may be referred to as a nozzle hole forming portion.
- the integral forming part 131 has an inner diameter reducing part 135 having a smaller inner diameter and an inner diameter expanding part 136 having a larger inner diameter than the inner diameter reducing part 135 and provided on the fixed core 41 side with respect to the inner diameter reducing part 135.
- the inner diameter reduced portion 135 and the inner diameter enlarged portion 136 are connected by a step portion 39.
- the inner diameter reduction part 135 has a first sliding part 137 facing a first sliding part 147 of the movable core 42G described later.
- the inner diameter enlarged portion 136 has a second sliding portion 138 that faces a second sliding portion 148 of the movable core 42G described later. That is, the nozzle hole 32, the first sliding portion 137, and the second sliding portion 138 are formed in one component.
- the sliding that the movable core 42G moves in the axial direction AX in a state where fuel is interposed between the movable core 42G and the housing 30G or in a state where fuel is not interposed between the movable core 42G and the housing 30G.
- the nozzle tip portion 31G and the integrally formed portion 131 are formed of martensitic stainless steel that is a nonmagnetic material.
- the first magnetic part 34 and the second magnetic part 35 are made of ferritic stainless steel, which is a magnetic material.
- the nonmagnetic portion 36 is formed of austenitic stainless steel that is a nonmagnetic material.
- the movable core 42G in the present embodiment has a cylindrical large-diameter portion 146 having a large outer diameter and a cylindrical shape having a smaller outer diameter than the large-diameter portion 146 provided on the injection hole 32 side of the large-diameter portion 146.
- the through hole 43 passes through the large diameter portion 146 and the small diameter portion 145 in the axial direction AX.
- the small diameter portion 145 has a first sliding portion 147 facing the first sliding portion 137 provided in the housing 30G, and the large diameter portion 146 is a second sliding portion provided in the housing 30G.
- a second sliding portion 148 facing the portion 138 is provided.
- the first sliding portion 147 is provided on the side surface of the small diameter portion 145
- the second sliding portion 148 is provided on the side surface of the large diameter portion 146.
- the movable core 42G has a magnetic attracting portion 141 that contacts the fixed core 41 when the injector 20G is opened, and a high hardness portion 142 that is harder than the magnetic attracting portion 141.
- the first sliding portion 147 and the second sliding portion 148 are provided in the high hardness portion 142.
- the small diameter portion 145 is configured only by the high hardness portion 142.
- the large diameter portion 146 includes a high hardness portion 142 and a magnetic attraction portion 141.
- An inner peripheral portion of the surface of the large diameter portion 146 on the fixed core 41 side is configured by a high hardness portion 142.
- the surface on the nozzle hole 32 side of the large diameter portion 146 is constituted by the high hardness portion 142.
- the surface in the through hole 43 of the large diameter portion 146 is configured by the high hardness portion 142.
- the region on the side of the fixed core 41 on the side surface of the large diameter portion 146 is configured by the magnetic attraction portion 141, and the region on the side of the injection hole 32 on the side surface of the large diameter portion 146 is configured by the high hardness portion 142.
- the outer diameter of the high hardness portion 142 is larger than the outer diameter of the magnetic attraction portion 141. That is, the gap between the high hardness portion 142 of the movable core 42G and the housing 30G is smaller than the gap between the magnetic attraction portion 141 of the movable core 42G and the housing 30G.
- a region in contact with the fixed core 41 in the movable core 42 ⁇ / b> G is configured by the magnetic attraction unit 141.
- the stopper portion 53 of the needle 50 is provided between the nozzle hole 32 and the small diameter portion 145 of the movable core 42G provided with the first sliding portion 147 in the axial direction AX.
- the distance between the flange portion 54 and the movable core 42G in the axial direction AX is the first in the valve-closed state.
- an open failure of the injector 20G that does not return from a state that is longer than the length of the two springs 62 and remains closed while the valve is open may occur.
- the stopper portion 53 causes the flange portion 54 and the movable core 42G to move relative to each other so that the distance between the flange portion 54 and the movable core 42G in the axial direction AX is equal to or less than the length of the second spring 62 in the valve-closed state. Movement amount is regulated.
- the magnetic attraction portion 141 is made of a ferritic stainless steel that is a magnetic material
- the high hardness portion 142 is made of a martensitic stainless steel that is a nonmagnetic material.
- the high hardness part 142 and the magnetic attraction part 141 are joined by press fitting or welding, for example.
- the hardness of the magnetic attraction part 141 and the hardness of the high hardness part 142 can be investigated by a Vickers hardness test (JIS Z 2244).
- the surface on the nozzle hole 32 side of the large-diameter portion 146 of the movable core 42G and the movable core 42 A space surrounded by the side surface of the small diameter portion 145, the stepped portion 39 in the integrally formed portion 131 of the housing 30G, and the inner diameter enlarged portion 136 in the integrally formed portion 131 of the housing 30G is formed.
- This space is also called an airtight chamber 110G.
- the airtight chamber 110G is a space in which fuel can be enclosed.
- the size of the gap between the first sliding portion 147 and the first sliding portion 137 and the size of the gap between the second sliding portion 148 and the second sliding portion 138 are at least the movement of the movable core 42G.
- the fuel can be supplied into the hermetic chamber 110G, and the fuel can be discharged from the hermetic chamber 110G when the fuel in the hermetic chamber 110G is boosted to a predetermined pressure or higher.
- a second spring 62 that urges the movable core 42G toward the fixed core 41 is provided.
- the second spring 62 biases the surface on the nozzle hole 32 side in the large diameter portion 146 of the movable core 42G.
- valve opening operation performed in the injector 20G of the present embodiment will be described with reference to FIGS.
- the valve portion 52 is in contact with the valve seat 33 in the valve closing state.
- the coil 44 is not energized.
- the flange portion 54 is pushed from the fixed core 41 side toward the nozzle hole 32 side by the first spring 61.
- the large diameter portion 146 of the movable core 42G is pushed by the second spring 62 from the injection hole 32 side toward the fixed core 41 side. Therefore, the flange portion 54 and the large diameter portion 146 of the movable core 42G are in contact with each other.
- the first flow path 101 is formed from a gap between the first sliding portion 147 and the first sliding portion 137 and a gap between the second sliding portion 148 and the second sliding portion 138.
- the fuel is filled by the inflow of the fuel inside.
- the pressure of the fuel in the hermetic chamber 110G at this time is approximately the same as the pressure of the fuel in the first flow path 101. In this embodiment, this state is also called an initial state.
- the magnetic attractive force from the fixed core 41 acts on the magnetic attractive portion 141 of the movable core 42G, and the movable core 42G is fixed from the injection hole 32 side.
- the large-diameter portion 146 of the movable core 42G collides with the fixed core 41.
- This magnetic attraction force is generated by a magnetic field formed around the fixed core 41 as the coil 44 is energized.
- the flange portion 54 and the large-diameter portion 146 of the movable core 42G are in contact with each other, the flange portion 54 is movable when the movable core 42G moves from the injection hole 32 side toward the fixed core 41 side.
- the needle 50 moves together with the movable core 42G by being pushed by the large diameter portion 146 of the core 42G.
- the surface of the large-diameter portion 146 of the movable core 42G on the injection hole 32 side and the stepped portion 39 of the housing 30G are separated in the axial direction AX, whereby the volume of the hermetic chamber 110G is expanded.
- the fuel sealed in the hermetic chamber 110G is set to a negative pressure, so that the movement of the movable core 42G and the needle 50 is decelerated. Therefore, the impact force when the large-diameter portion 146 of the movable core 42G collides with the fixed core 41 is reduced.
- the hermetic chamber 110G serves as a damper.
- the valve portion 52 moves away from the valve seat 33, and fuel injection from the injection hole 32 is started.
- the first spring 61 is pushed by the flange portion 54 and contracts, so that elastic energy is stored in the first spring 61.
- the needle 50 is detached from the movable core 42G due to inertia and further moves toward the upstream side of the second flow path 102.
- the fuel in the hermetic chamber 110G is made negative pressure, so that the movement of the needle 50 is decelerated, so that the stopper portion 53 and the small diameter portion of the movable core 42G 145 collides at low speed. Therefore, the impact force when the stopper part 53 and the small diameter part 145 of the movable core 42G collide is reduced.
- the impact force caused by the collision between the large-diameter portion 146 of the movable core 42G and the fixed core 41 is also reduced by the needle 50 being detached from the movable core 42G.
- the fuel flows into the hermetic chamber 110G from the first flow path 101, so that the inside of the hermetic chamber 110G.
- the fuel pressure returns to the same level as the fuel pressure in the first flow path 101.
- the elastic energy stored in the first spring 61 is released as power to push back the needle 50, thereby causing the needle 50 moves from the fixed core 41 side toward the injection hole 32 side, and the flange portion 54 collides with the large-diameter portion 146 of the movable core 42G.
- bounce of the needle 50 is suppressed as the impact force when the stopper portion 53 and the small diameter portion 145 of the movable core 42G collide with each other is reduced. Therefore, the impact force when the flange portion 54 and the large-diameter portion 146 of the movable core 42G collide is reduced.
- valve opening operation in the injector 20G is completed by the series of operations described above.
- FIG. 18 A valve closing operation performed in the injector 20G of the present embodiment will be described with reference to FIGS.
- the magnetic attractive force from the fixed core 41 that has been acting on the magnetic attractive portion 141 of the movable core 42 ⁇ / b> G is unloaded, and the first spring 61 is loaded.
- the valve portion 52 collides with the valve seat 33. Therefore, the valve is closed and the fuel injection from the nozzle hole 32 is stopped.
- the large-diameter portion 146 of the movable core 42G is pushed by the flange portion 54, so that the movable core 42G moves together with the needle 50.
- the surface of the large-diameter portion 146 of the movable core 42G closer to the injection hole 32 and the stepped portion 39 of the housing 30G approach each other in the axial direction AX, thereby reducing the volume of the hermetic chamber 110G.
- the fuel sealed in the hermetic chamber 110G is pressurized, so that the movement of the movable core 42G and the needle 50 is decelerated.
- the impact force when the valve part 52 and the valve seat 33 collide is reduced.
- the fuel in the hermetic chamber 110G is increased to a predetermined pressure or higher, the fuel in the hermetic chamber 110G becomes a gap between the first sliding portion 147 and the first sliding portion 137 or the second sliding. It is gradually discharged from the gap between the portion 148 and the second sliding portion 138.
- the movable core 42G continues to move from the fixed core 41 side toward the injection hole 32 side due to inertia, thereby The small diameter portion 145 of the movable core 42G collides.
- the fuel in the hermetic chamber 110G is further pressurized.
- the movement of the movable core 42G is decelerated. Therefore, the impact force when the stopper part 53 and the small diameter part 145 of the movable core 42G collide is reduced.
- the impact force caused by the collision between the valve portion 52 and the valve seat 33 is also reduced by the movement of the movable core 42G separately from the needle 50.
- the movable core 42G is affected by the impact force when the stopper 53 and the small diameter portion 145 of the movable core 42G collide, or by the force by which the second spring 62 pushes the movable core 42G back to the fixed core 41 side. Rebounds from the injection hole 32 side toward the fixed core 41 side, and the flange portion 54 and the large-diameter portion 146 of the movable core 42G collide.
- the impact force when the stopper 53 and the small diameter portion 145 of the movable core 42G collide with each other is reduced, so that the rebound of the movable core 42G is suppressed. Yes.
- the fuel in the hermetic chamber 110G is made negative pressure during the valve opening operation, and the movement of the movable core 42G and the needle 50 is decelerated.
- the impact force when the large-diameter portion 146 of the core 42G collides with the fixed core 41 and the impact force when the stopper portion 53 and the small-diameter portion 145 of the movable core 42G collide are reduced. Accordingly, the impact force when the flange portion 54 and the large-diameter portion 146 of the movable core 42G collide is also reduced.
- the fuel in the hermetic chamber 110G is increased in pressure, and the movement of the movable core 42G and the needle 50 is decelerated, whereby the impact force when the valve portion 52 and the valve seat 33 collide with each other. And the impact force at the time of the small diameter part 145 of the movable core 42G and the stopper part 53 colliding is reduced. Accordingly, the impact force when the large-diameter portion 146 of the movable core 42G collides with the flange portion 54 is also reduced.
- the first sliding portion 147 and the second sliding portion 148 are provided in the high hardness portion 142 having a higher hardness than the magnetic attraction portion 141 of the movable core 42G, and the magnetic attraction portion 141 of the movable core 42G. Since the first sliding portion 137 and the second sliding portion 138 are provided in the integrally formed portion 131 of the housing 30G having higher hardness, the first sliding portion 147 and the second sliding portion are provided by grinding or the like.
- the moving part 148, the first sliding part 137, and the second sliding part 138 can be formed with high dimensional accuracy.
- the gap between the first sliding part 147 and the first sliding part 137 and the gap between the second sliding part 148 and the second sliding part 138 can be made smaller, so that the movable core 42G and the needle 50 can be reduced. Can be decelerated more effectively.
- the integrally formed portion 131 having the first sliding portion 137 and the nozzle tip portion 31G having the injection hole 32 are integrally formed. Therefore, as compared with the injector 20 of the first embodiment, the number of welds 38 provided on the nozzle hole 32 side with respect to the support surface SP can be reduced.
- the first sliding portion 137 can be configured by a member having a relatively high hardness without increasing the number of welded portions 38 in the housing 30G as compared with the injector 20 of the first embodiment.
- the number of welds 38 on the fixed core 41 side of the support surface SP is larger than that of the injector 20 of the first embodiment, but the support surface can be obtained by pressing the injector 20G toward the support surface SP and fixing it. Since the compressive stress can be applied to the welded portion 38 on the fixed core 41 side from the SP in advance, the welded portion 38 is damaged by the tensile stress caused by the valve portion 52 colliding with the valve seat 33. This can be suppressed.
- the shaft is more than the configuration in which the second spring 62 is provided closer to the injection hole 32 than the small diameter portion 145 of the movable core 42G. Miniaturization of the injector 20G in the direction AX can be achieved.
- the stopper portion 53 of the needle 50 is provided between the nozzle hole 32 in the axial direction AX and the small diameter portion 145 of the movable core 42G. Therefore, an open failure of the injector 20G can be suppressed with a simple configuration while ensuring a pressure receiving area on the injection hole 32 side in the large diameter portion 146 of the movable core 42G.
- the movable core 42H includes a first elastic member 201, a second elastic member 202, a first low friction member 211, and a second low friction member 212. Is different from the first embodiment. Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
- the first elastic member 201 and the second elastic member 202 are disposed in the gap between the movable core 42H and the needle 50 in the radial direction of the shaft portion 51 of the needle 50.
- the first elastic member 201 and the second elastic member 202 each have an annular outer shape.
- the diameter of the first elastic member 201 is larger than the diameter of the second elastic member 202.
- the first elastic member 201 is disposed so as to surround the outer periphery of the stopper portion 53 of the needle 50.
- the second elastic member 202 is disposed so as to surround the outer periphery of the shaft portion 51 of the needle 50 between the stopper portion 53 and the flange portion 54.
- a first groove 241 is provided on the inner wall surface of the first recess 46 in the movable core 42H.
- a second groove 242 is provided on the inner wall surface of the through-hole 43 in the movable core 42H.
- the first groove portion 241 and the second groove portion 242 are each an annular groove provided along the circumferential direction of the movable core 42H.
- the first elastic member 201 is fitted in the first groove portion 241.
- the second elastic member 202 is fitted in the second groove portion 242.
- the first elastic member 201 and the second elastic member 202 are made of an elastic material.
- the first elastic member 201 and the second elastic member 202 are each formed of rubber.
- the rubber for example, fluorine rubber, ethylene propylene rubber (EPDM), or silicon rubber (VMQ) can be used.
- the first elastic member 201 and the second elastic member 202 may be formed of a thermoplastic elastomer.
- thermoplastic elastomer for example, thermoplastic polyurethane can be used.
- the first low friction member 211 is disposed between the first elastic member 201 and the stopper portion 53.
- the second low friction member 212 is disposed between the second elastic member 202 and the shaft portion 51 between the stopper portion 53 and the flange portion 54.
- the first low friction member 211 and the second low friction member 212 each have an annular outer shape.
- the diameter of the first low friction member 211 is larger than the diameter of the second low friction member 212.
- the first elastic member 201 is in contact with the stopper portion 53 via the first low friction member 211 and receives a compressive force from the stopper portion 53 via the first low friction member 211.
- the second elastic member 202 is in contact with the shaft portion 51 between the stopper portion 53 and the flange portion 54 via the second low friction member 212, and from the shaft portion 51 via the second low friction member 212. It receives compressive force.
- the friction coefficient of the first low friction member 211 is smaller than the friction coefficient of the first elastic member 201.
- the friction coefficient of the second low friction member 212 is smaller than the friction coefficient of the second elastic member 202.
- the first low friction member 211 and the second low friction member 212 are each formed of Teflon resin (Teflon is a registered trademark).
- the first low friction member 211 and the second low friction member 212 may be formed of polyamide or polyester.
- FIG. 22 shows a part of the first elastic member 201 and the first low friction member 211 in FIG. 21 in an enlarged manner.
- illustration of the movable core 42H etc. is omitted, and only the first elastic member 201 and the first low friction member 211 are shown.
- the first low friction member 211 has a support portion 221 protruding toward the outer periphery.
- the support portion 221 is configured to be able to accommodate a portion on the inner peripheral side of the first elastic member 201. Since the first elastic member 201 is fitted in the first groove portion 241 of the movable core 42H, the movement in the axial direction AX with respect to the movable core 42H is restricted.
- the first elastic member 201 Since the first elastic member 201 is fitted in the support portion 221, the first low friction member 211 is restricted from moving in the axial direction AX with respect to the movable core 42H.
- the configurations of the second elastic member 202 and the second low friction member 212 are the same as the configurations of the first elastic member 201 and the first low friction member 211.
- the first low friction member 211 is pressed against the stopper portion 53 by the pressing force with which the first elastic member 201 pushes back the stopper portion 53 via the first low friction member 211. Therefore, the clearance between the first low friction member 211 and the stopper portion 53 communicating with the hermetic chamber 110 is reduced, and the second elastic member 202 presses the shaft portion 51 through the second low friction member 212, thereby exerting a pressing force. Since the second low friction member 212 is pressed against the shaft portion 51, the gap between the second low friction member 212 communicating with the airtight chamber 110 and the shaft portion 51 is reduced.
- the airtightness of the airtight chamber 110 can be improved, the impact force when the stopper portion 53 and the movable core 42 collide, and the impact force when the flange portion 54 and the movable core 42 collide, It can be further reduced.
- the gap communicating with the airtight chamber 110 can be reduced without processing the movable core 42H and the needle 50 with high dimensional accuracy, the processing of the movable core 42H and the needle 50 can be facilitated. it can.
- the first elastic member 201 slides with the stopper portion 53 via the first low friction member 211
- the second elastic member 202 slides with the shaft portion 51 via the second low friction member 212. Therefore, resistance due to friction when the movable core 42H and the needle 50 move relative to each other can be reduced. Therefore, by providing the first low friction member 211 and the second low friction member 212, it is possible to suppress the wear of the movable core 42H and the needle 50 even if the movable core 42H and the needle 50 are not formed of a material having high hardness. Can do.
- a second elastic member 202 As shown in FIG. 23, in the injector 20I of the ninth embodiment, a second elastic member 202, a third elastic member 203, a second low friction member 212, and a third low friction member 213 are provided. This is different from the fourth embodiment.
- the configuration of the second elastic member 202, the configuration of the second low friction member 212, and the configuration of the second groove portion 242 of the movable core 42I are the same as in the eighth embodiment.
- Other configurations and opening / closing operations are the same as those in the fourth embodiment unless otherwise specified.
- the third elastic member 203 is disposed in the gap between the movable core 42I and the needle 50 in the radial direction of the shaft portion 51 of the needle 50.
- the third elastic member 203 has an annular outer shape.
- the diameter of the third elastic member 203 is larger than the diameter of the second elastic member 202.
- the third elastic member 203 is disposed so as to surround the outer periphery of the flange portion 54 of the needle 50.
- a third groove 243 is provided on the inner wall surface of the second recess 47 in the movable core 42I.
- the third groove portion 243 is an annular groove provided along the circumferential direction of the movable core 42I.
- the third elastic member 203 is fitted in the third groove 243.
- the material of the third elastic member 203 is the same as the material of the second elastic member 202.
- the third low friction member 213 is disposed between the third elastic member 203 and the flange portion 54.
- the third low friction member 213 has an annular outer shape.
- the diameter of the third low friction member 213 is larger than the diameter of the second low friction member 212.
- the third elastic member 203 is in contact with the flange portion 54 via the third low friction member 213 and receives a compressive force from the flange portion 54 via the third low friction member 213.
- the material of the third low friction member 213 is the same as that of the second low friction member 212.
- the third low friction member 213 is pressed against the flange portion 54 by the pressing force of the third elastic member 203. Therefore, the third low friction member that communicates with the hermetic chamber 110D. Since the gap between 213 and the flange portion 54 is reduced and the second low friction member 212 is pressed against the shaft portion 51 by the pressing force of the second elastic member 202, the second low friction member 212 communicating with the hermetic chamber 110D A gap with the shaft portion 51 is reduced. Therefore, the airtightness of the airtight chamber 110D can be improved.
- a fourth elastic member 204 As shown in FIG. 24, in the injector 20J of the tenth embodiment, a fourth elastic member 204, a fifth elastic member 205, a fourth low friction member 214, and a fifth low friction member 215 are provided.
- the seventh embodiment differs from the seventh embodiment in that the high hardness portion 142 is not provided on the movable core 42J and the configuration of the housing 30 is the same as that of the first embodiment. Other configurations and opening / closing operations are the same as those in the seventh embodiment unless otherwise specified.
- the fourth elastic member 204 and the fifth elastic member 205 are arranged in the gap between the movable core 42J and the housing 30 in the radial direction of the movable core 42J.
- the fourth elastic member 204 and the fifth elastic member 205 each have an annular outer shape.
- the diameter of the fifth elastic member 205 is larger than the diameter of the fourth elastic member 204.
- the fourth elastic member 204 is disposed along the outer periphery of the movable core 42J between the first sliding portion 147 of the movable core 42J and the first sliding portion 137 of the housing 30.
- the fifth elastic member 205 is disposed along the outer periphery of the movable core 42J between the second sliding portion 148 of the movable core 42J and the second sliding portion 138 of the housing 30.
- a fourth groove portion 244 is provided in the first sliding portion 147 of the movable core 42J.
- a fifth groove 245 is provided in the second sliding portion 148 of the movable core 42J.
- Each of the fourth groove portion 244 and the fifth groove portion 245 is an annular groove provided along the circumferential direction of the movable core 42J.
- the fourth elastic member 204 is fitted in the fourth groove portion 244.
- the fifth elastic member 205 is fitted in the fifth groove 245.
- the material of the fourth elastic member 204 and the material of the fifth elastic member 205 are the same as the material of the first elastic member 201 and the material of the second elastic member 202.
- the fourth low friction member 214 is disposed between the fourth elastic member 204 and the first sliding portion 137 of the housing 30.
- the fifth low friction member 215 is disposed between the fifth elastic member 205 and the second sliding portion 138 of the housing 30.
- the fourth low friction member 214 and the fifth low friction member 215 each have an annular outer shape.
- the diameter of the fifth low friction member 215 is larger than the diameter of the fourth low friction member 214.
- the fourth elastic member 204 is in contact with the first sliding portion 137 via the fourth low friction member 214 and receives a compressive force from the first sliding portion 137 via the fourth low friction member 214. ing.
- the fifth elastic member 205 is in contact with the second sliding portion 138 via the fifth low friction member 215 and receives a compressive force from the second sliding portion 138 via the fifth low friction member 215. ing.
- the friction coefficient of the fourth low friction member 214 is smaller than the friction coefficient of the fourth elastic member 204.
- the friction coefficient of the fifth low friction member 215 is smaller than the friction coefficient of the fifth elastic member 205.
- the material of the fourth low friction member 214 and the material of the fifth low friction member 215 are the same as the material of the first low friction member 211 and the material of the second low friction member 212.
- the fourth low friction member 214 is pressed against the first sliding portion 137 by the tightening force of the fourth elastic member 204, so that the first communication with the hermetic chamber 110G is performed. 4
- the gap between the low friction member 214 and the first sliding portion 137 is reduced, and the fifth low friction member 215 is pressed against the second sliding portion 138 by the tight force of the fifth elastic member 205.
- the gap between the fifth low friction member 215 communicating with the closed chamber 110G and the second sliding portion 138 is reduced. Therefore, the airtightness of the airtight chamber 110G can be improved.
- the fourth elastic member 204 slides with the first sliding portion 137 via the fourth low friction member 214
- the fifth elastic member 205 slides with the second sliding portion 138 via the fifth low friction member 215. Therefore, it is possible to reduce resistance due to friction when the movable core 42J and the housing 30 move relative to each other.
- the movable cores 42, 42D, and 42F include the first recess 46, the second recess 47, and the like. Either one is provided.
- the movable cores 42, 42 ⁇ / b> D, 42 ⁇ / b> F may include both the first recess 46 and the second recess 47.
- the distance between the bottom surface of the first recess 46 and the bottom surface of the second recess 47 is greater than the distance along the axial direction AX between the surface of the stopper portion 53 on the fixed core 41 side and the surface of the flange portion 54 on the valve portion 52 side.
- the interval along the axial direction AX may be smaller.
- the thickness of the movable cores 42, 42D, and 42F in the portion where the first concave portion 46 and the second concave portion 47 are formed is such that the surface of the stopper portion 53 on the fixed core 41 side and the flange portion 54 on the valve portion 52 side. It may be smaller than the distance between the surface and the axial direction AX.
- the airtight chamber 110 is formed on the movable cores 42, 42D, and 42F on the nozzle hole 32 side, and the airtight chamber 110D is formed on the fixed core 41 side, whereby the stopper portion 53 and the movable cores 42, 42D, The impact force at each contact portion when the contact portion with 42F and the contact portion between the flange portion 54 and the movable cores 42, 42D, and 42F collide with each other is reduced.
- the stopper portion 53 may include the first orifice 111, and the movable core may include the second orifice 112.
- the degree of deceleration of the needle 50 can be adjusted by adjusting the number and shape of the first orifice 111 and the second orifice 112.
- an orifice may be provided in the flange portion 54 and the movable core 42D.
- the degree of deceleration of the needle 50 can be adjusted by adjusting the number and shape of the orifices.
- the stopper portion 53 may include the first orifice 111, and the movable core 42F may include the second orifice 112.
- the stopper portion 53 may include a first orifice 111, and the movable core 42F may include a second orifice 112.
- the degree of deceleration of the needle 50 can be adjusted by adjusting the number and shape of the first orifice 111 and the second orifice 112.
- the high hardness portion 142 may not be provided in the movable core 42G. That is, the movable core 42 ⁇ / b> G may be composed of only the same magnetic material as that of the magnetic attraction part 141, and the first sliding part 147 and the second sliding part 148 may be composed of the same magnetic material as that of the magnetic attraction part 141. Even in this case, the movement of the movable core 42G and the needle 50 can be decelerated by the hermetic chamber 110G.
- the nozzle tip portion 31G and the integral forming portion 131 may not be formed integrally.
- the housing 30G may have the same configuration as the housing 30 in the injector 20 of the first embodiment.
- the second spring 62 may not be provided in the hermetic chamber 110G.
- the second spring 62 may be provided closer to the injection hole 32 than the small diameter portion 145 of the movable core 42G.
- the stopper portion 53 of the needle 50 may not be provided between the injection hole 32 and the small diameter portion 145 in the axial direction AX.
- the needle 50 may not be provided with the stopper portion 53.
- the movable core 42H includes the first elastic member 201, the second elastic member 202, the first low friction member 211, and the second low friction member 212. Is provided.
- the first elastic member 201, the second elastic member 202, the first low friction member 211, and the second low friction member 212 may be provided on the needle 50 instead of the movable core 42H. . That is, the movable core 42H is not provided with the first groove portion 241 and the second groove portion 242, but the needle 50 is provided with two annular grooves, and the first elastic member 201 and the second elastic member 201 are provided in the groove of the needle 50.
- the first elastic member 201 slides on the movable core 42H via the first low friction member 211
- the second elastic member 202 slides on the movable core 42H via the second low friction member 212. You may move.
- the first elastic member 201 and the first low friction member 211 may be provided on the movable core 42H
- the second elastic member 202 and the second low friction member 212 may be provided on the needle 50.
- the needle 50 may be provided with the first elastic member 201 and the first low friction member 211
- the movable core 42H may be provided with the second elastic member 202 and the second low friction member 212. Even in these cases, the airtightness of the airtight chamber 110 can be improved.
- the movable core 42I includes the second elastic member 202, the third elastic member 203, the second low friction member 212, and the third low friction member 213. Is provided.
- the second elastic member 202, the third elastic member 203, the second low friction member 212, and the third low friction member 213 may be provided on the needle 50 instead of the movable core 42I.
- the movable core 42I may be provided with the second elastic member 202 and the second low friction member 212, and the needle 50 may be provided with the third elastic member 203 and the third low friction member 213.
- the needle 50 may be provided with the second elastic member 202 and the second low friction member 212, and the movable core 42I may be provided with the third elastic member 203 and the third low friction member 213.
- the movable core 42J includes the fourth elastic member 204, the fifth elastic member 205, the fourth low friction member 214, and the fifth low friction member 215. Is provided.
- the fourth elastic member 204, the fifth elastic member 205, the fourth low friction member 214, and the fifth low friction member 215 may be provided on the needle 50 instead of the movable core 42J.
- the fourth elastic member 204 and the fourth low friction member 214 may be provided on the movable core 42J
- the fifth elastic member 205 and the fifth low friction member 215 may be provided on the needle 50.
- the needle 50 may be provided with the fourth elastic member 204 and the fourth low friction member 214, and the movable core 42J may be provided with the fifth elastic member 205 and the fifth low friction member 215.
- At least one of the first low friction member 211 and the second low friction member 212 may not be provided. That is, the first elastic member 201 may be in direct contact with the stopper portion 53 of the needle 50, or the second elastic member 202 may be in direct contact with the shaft portion 51 of the needle 50.
- at least one of the second low friction member 212 and the third low friction member 213 may not be provided. That is, the second elastic member 202 may be in direct contact with the shaft portion 51 of the needle 50, or the third elastic member 203 may be in direct contact with the flange portion 54 of the needle 50.
- the fourth low friction member 214 and the fifth low friction member 215 may not be provided. That is, the fourth elastic member 204 may be in direct contact with the first sliding portion 137 of the housing 30, or the fifth elastic member 205 may be in direct contact with the second sliding portion 138 of the housing 30. Even in these cases, the airtightness of the airtight chambers 110, 110D, and 110G can be improved. In these cases, the elastic members 201 to 205 that slide without using the low friction members 211 to 215 have elasticity, such as thermoplastic polyurethane, and have excellent wear resistance. It is preferable to form with a material.
- the stopper portion 53 and the movable core 42H may be provided with an orifice.
- the degree of deceleration of the needle 50 can be adjusted by adjusting the number and shape of the orifices.
- an orifice may be provided in the flange portion 54 and the movable core 42I.
- the degree of deceleration of the needle 50 can be adjusted by adjusting the number and shape of the orifices.
- the movable core 42H is provided with the same high hardness portion 142 as in the sixth embodiment, and the first elastic member 201 and the second elastic member 202 are the high hardness portion. It may be fitted in a groove provided in 142.
- the movable core 42J is provided with the same high hardness portion 142 as in the seventh embodiment, and the fourth elastic member 204 and the fifth elastic member 205 are the high hardness portion. It may be fitted in a groove provided in 142. Further, the injector 20J in the above-described tenth embodiment may include the same housing 30G as in the seventh embodiment.
- the present disclosure is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present disclosure.
- the technical features in the embodiments are appropriately replaced or combined to solve part or all of the above-described problems or to achieve part or all of the above-described effects. Is possible.
- the technical feature is not described as essential in the present specification, it can be deleted as appropriate.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
An injector (20) that comprises a housing (30), a fixed core (41), a mobile core (42), a coil (44), a needle (50), and a spring (61). A shaft part (51) has a first protruding part (53) and a second protruding part (54) that sandwich the mobile core, the first protruding part being on a valve part (52) side, and the second protruding part being on the fixed core side. A surface of the mobile core that is on an injection hole (32) side has a first recessed part (46) that surrounds a through hole (43) and can house the first protruding part. The distance in the axial direction (AX) between a bottom surface of the first recessed part and a surface of the mobile core that is on the fixed core side is shorter than the distance in the axial direction between a surface of the first protruding part that is on the fixed core side and a surface of the second protruding part that is on the valve part side, and fuel can be sealed in a space (110) that is enclosed by the shaft part, the first protruding part, and the first recessed part.
Description
本出願は、2018年5月8日に出願された日本出願番号2018-089807号、2018年11月1日に出願された日本出願番号2018-206208号、および、2019年3月11日に出願された日本出願番号2019-043266号に基づくもので、ここにその記載内容を援用する。
This application is filed on May 8, 2018, Japanese application number 2018-089807, Japanese application number 2018-206208, filed on November 1, 2018, and filed on March 11, 2019. Which is based on Japanese Patent Application No. 2019-043266, which is incorporated herein by reference.
本開示は、インジェクタに関する。
This disclosure relates to an injector.
例えば、特許文献1には、噴孔を開閉するニードル弁と、ニードル弁とは別体として設けられた可動コアとを備える燃料噴射弁が開示されている。この燃料噴射弁では、ニードル弁は、固定コアからの磁気吸引力を受けた可動コアとともに開弁方向へ移動する。可動コアが固定コアに接触した後、ニードル弁は、慣性によって可動コアから離脱してさらに開弁方向へ移動する。その後、ニードル弁は、スプリングに押し戻されて閉弁方向へ移動し、再度、可動コアに接触する。
For example, Patent Document 1 discloses a fuel injection valve that includes a needle valve that opens and closes a nozzle hole and a movable core that is provided separately from the needle valve. In this fuel injection valve, the needle valve moves in the valve opening direction together with the movable core that receives the magnetic attractive force from the fixed core. After the movable core contacts the fixed core, the needle valve moves away from the movable core due to inertia and further moves in the valve opening direction. Thereafter, the needle valve is pushed back by the spring, moves in the valve closing direction, and again contacts the movable core.
上述した燃料噴射弁(インジェクタ)では、ニードルがスプリングによって押し戻されて可動コアに接触する際に、大きな衝撃力が発生して、ニードルと可動コアとの接触部が摩耗する可能性がある。接触部における摩耗を抑制することは、液体燃料を噴射するインジェクタであるか、気体燃料を噴射するインジェクタであるかにかかわらず重要な課題である。特に、気体燃料を噴射するインジェクタでは、液体燃料を噴射するインジェクタに比べて、ニードルと可動コアとが接触する際に接触部が受ける燃料によるスクイズ力が小さくなり、衝撃力が大きくなるため、上述した問題がより顕著となる。
In the fuel injection valve (injector) described above, when the needle is pushed back by the spring and comes into contact with the movable core, a large impact force may be generated and the contact portion between the needle and the movable core may be worn. Suppressing wear at the contact portion is an important issue regardless of whether it is an injector that injects liquid fuel or an injector that injects gaseous fuel. In particular, in an injector that injects gaseous fuel, compared to an injector that injects liquid fuel, the squeeze force caused by the fuel received by the contact portion when the needle and the movable core come into contact with each other is reduced, and the impact force is increased. The problem becomes more prominent.
本開示は、以下の形態として実現することが可能である。
This disclosure can be realized as the following forms.
本開示の第1の形態によれば、インジェクタが提供される。このインジェクタは、燃料を噴射する噴孔を有し、前記噴孔に連通する第1流路が形成された筒状のハウジングと、前記ハウジング内に固定され、前記第1流路に連通する第2流路が形成された筒状の固定コアと、前記固定コアよりも前記噴孔側における前記第1流路内を前記ハウジングの軸方向に沿って往復移動可能に設けられ、前記固定コアの内径よりも大きな外径を有し、前記固定コアの内径よりも小さな貫通孔を有する可動コアと、通電によって、前記可動コアを前記固定コア側に向かって移動させる磁界を発生するコイルと、前記貫通孔を前記軸方向に往復移動可能に通る軸部と、前記軸部の前記噴孔側の端部に形成され、前記噴孔を開閉可能な弁部と、を有するニードルと、前記ニードルを前記噴孔側に向かって付勢するスプリングと、を備える。前記軸部は、前記可動コアを挟んで前記弁部側に第1突出部と前記固定コア側に第2突出部とを有し、前記第1突出部は、径方向に、前記可動コアの前記貫通孔の縁よりも外側に突き出し、前記第2突出部は、前記径方向に、前記可動コアの前記貫通孔の縁よりも外側で、かつ、前記固定コアの内周縁よりも内側に突き出し、前記可動コアの前記噴孔側の面は、前記貫通孔の周りに前記第1突出部を収容可能な第1凹部を有し、前記第1突出部の前記固定コア側の面と、前記第2突出部の前記弁部側の面との前記軸方向に沿った間隔よりも、前記第1凹部の底面と、前記可動コアの前記固定コア側の面との前記軸方向に沿った間隔の方が小さい。このインジェクタは、前記軸部と前記第1突出部と前記第1凹部とによって囲まれる空間に、前記燃料を封入可能に構成されたことを特徴とする。
According to the first aspect of the present disclosure, an injector is provided. The injector has an injection hole for injecting fuel, a cylindrical housing having a first flow path communicating with the injection hole, a first housing fixed in the housing and communicating with the first flow path. A cylindrical fixed core having two flow paths, and a reciprocating movement in the first flow path on the nozzle hole side of the fixed core along the axial direction of the housing. A movable core having an outer diameter larger than the inner diameter and having a through-hole smaller than the inner diameter of the fixed core; a coil that generates a magnetic field that moves the movable core toward the fixed core by energization; A needle having a shaft passing through a through-hole in a reciprocating manner in the axial direction, and a valve formed at an end of the shaft on the nozzle hole side and capable of opening and closing the nozzle, and the needle A spray that biases toward the nozzle hole side Provided grayed and, the. The shaft portion has a first protrusion on the valve portion side and a second protrusion on the fixed core across the movable core, and the first protrusion is formed in the radial direction of the movable core. The second protrusion protrudes outward from the edge of the through hole, and protrudes outward from the edge of the through hole of the movable core and inward of the inner periphery of the fixed core in the radial direction. The surface of the movable core on the nozzle hole side has a first recess capable of accommodating the first protrusion around the through hole, and the surface of the first protrusion on the fixed core side, The distance along the axial direction between the bottom surface of the first recess and the surface on the fixed core side of the movable core than the distance along the axial direction with the valve-side surface of the second protrusion. Is smaller. The injector is configured such that the fuel can be sealed in a space surrounded by the shaft portion, the first protrusion, and the first recess.
この形態のインジェクタによれば、ニードルによる噴孔の開閉動作の際に、ニードルの軸部と第1突出部と可動コアの第1凹部とによって囲まれた空間に充満した燃料が昇圧されて、ニードルが減速されることによって、第1突出部と可動コアとが衝突する際の衝撃力は低減される。これに伴い、第2突出部と可動コアとが衝突する際の衝撃力も低減される。そのため、第1突出部と可動コアとの接触部、および、第2突出部と可動コアとの接触部における摩耗を抑制できる。
According to the injector of this embodiment, when the nozzle hole is opened and closed by the needle, the fuel filled in the space surrounded by the shaft portion of the needle, the first protrusion, and the first recess of the movable core is pressurized, By decelerating the needle, the impact force when the first projecting portion collides with the movable core is reduced. Along with this, the impact force when the second protrusion and the movable core collide is also reduced. Therefore, wear at the contact portion between the first protrusion and the movable core and the contact portion between the second protrusion and the movable core can be suppressed.
本開示の第2の形態によれば、インジェクタが提供される。このインジェクタは、燃料を噴射する噴孔を有し、前記噴孔に連通する第1流路が形成された筒状のハウジングと、前記ハウジング内に固定され、前記第1流路に連通する第2流路が形成された筒状の固定コアと、前記固定コアよりも前記噴孔側における前記第1流路内を前記ハウジングの軸方向に沿って往復移動可能に設けられ、前記固定コアの内径よりも大きな外径を有し、前記固定コアの内径よりも小さな貫通孔を有する可動コアと、通電によって、前記可動コアを前記固定コア側に向かって移動させる磁界を発生するコイルと、前記貫通孔を前記軸方向に往復移動可能に通る軸部と、前記軸部の前記噴孔側の端部に形成され、前記噴孔を開閉可能な弁部と、を有するニードルと、前記ニードルを前記噴孔側に向かって付勢するスプリングと、を備える。前記軸部は、前記可動コアを挟んで前記弁部側に第1突出部と前記固定コア側に第2突出部とを有し、前記第1突出部は、径方向に、前記可動コアの前記貫通孔の縁よりも外側に突き出し、前記第2突出部は、前記径方向に、前記可動コアの前記貫通孔の縁よりも外側で、かつ、前記固定コアの内周縁よりも内側に突き出し、前記可動コアの前記固定コア側の面は、前記貫通孔の周りに前記第2突出部を収容可能な凹部を有し、前記第1突出部の前記固定コア側の面と、前記第2突出部の前記弁部側の面との前記軸方向に沿った間隔よりも、前記可動コアの前記噴孔側の面と、前記凹部の底面との前記軸方向に沿った間隔の方が小さい。このインジェクタは、前記軸部と前記第2突出部と前記凹部とによって囲まれる空間に、前記燃料を封入可能に構成されたことを特徴とする。
According to the second embodiment of the present disclosure, an injector is provided. The injector has an injection hole for injecting fuel, a cylindrical housing having a first flow path communicating with the injection hole, a first housing fixed in the housing and communicating with the first flow path. A cylindrical fixed core having two flow paths, and a reciprocating movement in the first flow path on the nozzle hole side of the fixed core along the axial direction of the housing. A movable core having an outer diameter larger than the inner diameter and having a through-hole smaller than the inner diameter of the fixed core; a coil that generates a magnetic field that moves the movable core toward the fixed core by energization; A needle having a shaft passing through a through-hole in a reciprocating manner in the axial direction, and a valve formed at an end of the shaft on the nozzle hole side and capable of opening and closing the nozzle, and the needle A spray that biases toward the nozzle hole side Provided grayed and, the. The shaft portion has a first protrusion on the valve portion side and a second protrusion on the fixed core across the movable core, and the first protrusion is formed in the radial direction of the movable core. The second protrusion protrudes outward from the edge of the through hole, and protrudes outward from the edge of the through hole of the movable core and inward of the inner periphery of the fixed core in the radial direction. The surface of the movable core on the fixed core side has a recess capable of accommodating the second protrusion around the through hole, and the surface of the first protrusion on the fixed core side and the second The distance along the axial direction between the surface on the nozzle hole side of the movable core and the bottom surface of the recess is smaller than the distance along the axial direction with the surface on the valve part side of the protrusion. . The injector is characterized in that the fuel can be sealed in a space surrounded by the shaft portion, the second projecting portion, and the concave portion.
この形態のインジェクタによれば、ニードルによる噴孔の開弁動作の際に、ニードルの軸部と第2突出部と可動コアの凹部とによって囲まれた空間に充満した燃料が負圧にされて、ニードルが減速されることによって、第1突出部と可動コアとが衝突する際の衝撃力は低減される。これに伴い、第2突出部と可動コアとが衝突する際の衝撃力も低減される。そのため、第1突出部と可動コアとの接触部、および、第2突出部と可動コアとの接触部における摩耗を抑制できる。
According to the injector of this aspect, when the nozzle hole is opened by the needle, the fuel filled in the space surrounded by the shaft portion of the needle, the second projecting portion, and the concave portion of the movable core is made negative pressure. By decelerating the needle, the impact force when the first projecting portion collides with the movable core is reduced. Along with this, the impact force when the second protrusion and the movable core collide is also reduced. Therefore, wear at the contact portion between the first protrusion and the movable core and the contact portion between the second protrusion and the movable core can be suppressed.
本開示の第3の形態によれば、インジェクタが提供される。このインジェクタは、燃料を噴射する噴孔を有し、前記噴孔に連通する第1流路が形成された筒状のハウジングと、前記ハウジング内に固定され、前記第1流路に連通する第2流路が形成された筒状の固定コアと、前記固定コアよりも前記噴孔側における前記第1流路内を前記ハウジングの軸方向に沿って往復移動可能に設けられ、前記固定コアの内径よりも小さな貫通孔を有する可動コアと、通電によって、前記可動コアを前記固定コア側に向かって移動させる磁界を発生するコイルと、前記貫通孔を前記軸方向に往復移動可能に通る軸部と、前記軸部の前記噴孔側の端部に形成され、前記噴孔を開閉可能な弁部と、を有するニードルと、前記ニードルを前記噴孔側に向かって付勢する第1スプリングと、を備える。前記軸部は、前記可動コアを挟んで前記弁部側に第1突出部と前記固定コア側に第2突出部とを有し、前記第1突出部は、径方向に、前記可動コアの前記貫通孔の縁よりも外側に突き出し、前記第2突出部は、前記径方向に、前記可動コアの前記貫通孔の縁よりも外側で、かつ、前記固定コアの内周縁よりも内側に突き出し、前記可動コアは、外径の大きな大径部と、前記大径部よりも前記噴孔側に設けられ、前記大径部よりも外径の小さな小径部とを有し、前記小径部は、前記ハウジングに設けられた第1被摺動部に対向する第1摺動部を有し、前記大径部は、前記ハウジングに設けられた第2被摺動部に対向する第2摺動部を有する。このインジェクタは、前記軸方向における前記第1被摺動部と前記第2摺動部との間にて、前記可動コアと前記ハウジングとによって囲まれる空間に、前記燃料を封入可能に構成されたことを特徴とする。
According to the third aspect of the present disclosure, an injector is provided. The injector has an injection hole for injecting fuel, a cylindrical housing having a first flow path communicating with the injection hole, a first housing fixed in the housing and communicating with the first flow path. A cylindrical fixed core having two flow paths, and a reciprocating movement in the first flow path on the nozzle hole side of the fixed core along the axial direction of the housing. A movable core having a through-hole smaller than the inner diameter, a coil that generates a magnetic field that moves the movable core toward the fixed core when energized, and a shaft that passes through the through-hole in a reciprocating manner in the axial direction. A needle formed at an end of the shaft portion on the nozzle hole side and capable of opening and closing the nozzle hole, and a first spring for biasing the needle toward the nozzle hole side . The shaft portion has a first protrusion on the valve portion side and a second protrusion on the fixed core across the movable core, and the first protrusion is formed in the radial direction of the movable core. The second protrusion protrudes outward from the edge of the through hole, and protrudes outward from the edge of the through hole of the movable core and inward of the inner periphery of the fixed core in the radial direction. The movable core includes a large-diameter portion having a large outer diameter, and a small-diameter portion that is provided closer to the nozzle hole than the large-diameter portion and has a smaller outer diameter than the large-diameter portion. And a first sliding portion facing the first sliding portion provided in the housing, wherein the large diameter portion is a second sliding facing the second sliding portion provided in the housing. Part. The injector is configured such that the fuel can be sealed in a space surrounded by the movable core and the housing between the first sliding portion and the second sliding portion in the axial direction. It is characterized by that.
この形態のインジェクタによれば、ニードルによる噴孔の開弁動作の際に、可動コアとハウジングとによって囲まれた空間に充満した燃料が負圧にされて、可動コアおよびニードルが減速されることによって、可動コアと固定コアとが衝突する際の衝撃力、および、第1突出部と可動コアとが衝突する際の衝撃力が低減される。これに伴い、第2突出部と可動コアとが衝突する際の衝撃力も低減される。また、ニードルによる噴孔の閉弁動作の際に、可動コアとハウジングとによって囲まれた空間に充満した燃料が昇圧されて、可動コアおよびニードルが減速されることによって、弁部と噴孔周囲のハウジングとが衝突する際の衝撃力、および、可動コアと第1突出部とが衝突する際の衝撃力が低減される。これに伴い、可動コアと第2突出部とが衝突する際の衝撃力も低減される。そのため、可動コアと固定コアとの接触部と、第1突出部と可動コアとの接触部と、第2突出部と可動コアとの接触部と、弁部と噴孔周囲のハウジングとの接触部とにおける摩耗を抑制できる。
According to the injector of this embodiment, when the nozzle hole is opened by the needle, the fuel filled in the space surrounded by the movable core and the housing is made negative pressure, and the movable core and the needle are decelerated. Thus, the impact force when the movable core and the fixed core collide and the impact force when the first protrusion and the movable core collide are reduced. Along with this, the impact force when the second protrusion and the movable core collide is also reduced. In addition, during the valve closing operation of the nozzle hole by the needle, the fuel filled in the space surrounded by the movable core and the housing is pressurized, and the movable core and the needle are decelerated, so that the valve portion and the nozzle hole periphery The impact force when the housing collides and the impact force when the movable core collides with the first projecting portion are reduced. In connection with this, the impact force at the time of a collision between a movable core and a 2nd protrusion part is also reduced. Therefore, the contact portion between the movable core and the fixed core, the contact portion between the first protrusion and the movable core, the contact portion between the second protrusion and the movable core, and the contact between the valve portion and the housing around the injection hole. Wear on the part can be suppressed.
本開示は、インジェクタ以外の種々の形態で実現することも可能である。例えば、燃料噴射装置や、燃料噴射方法等の形態で実現することができる。
The present disclosure can be realized in various forms other than the injector. For example, it is realizable with forms, such as a fuel injection device and a fuel injection method.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態におけるインジェクタの概略構成を示す説明図であり、
図2は、第1実施形態におけるインジェクタの開弁動作を示す第1の説明図であり、
図3は、第1実施形態におけるインジェクタの開弁動作を示す第2の説明図であり、
図4は、第1実施形態におけるインジェクタの開弁動作を示す第3の説明図であり、
図5、第1実施形態におけるインジェクタの閉弁動作を示す第1の説明図であり、
図6は、第1実施形態におけるインジェクタの閉弁動作を示す第2の説明図であり、
図7は、第1実施形態におけるインジェクタの閉弁動作を示す第3の説明図であり、
図8は、第2実施形態におけるインジェクタの概略構成を示す説明図であり、
図9は、第3実施形態におけるインジェクタの概略構成を示す説明図であり、
図10は、第4実施形態におけるインジェクタの概略構成を示す説明図であり、
図11は、第4実施形態におけるインジェクタの開弁動作を示す説明図であり、
図12は、第5実施形態におけるインジェクタの概略構成を示す説明図であり、
図13は、第6実施形態におけるインジェクタの概略構成を示す説明図であり、
図14は、第7実施形態におけるインジェクタの概略構成を示す説明図であり、
図15は、第7実施形態におけるインジェクタの開弁動作を示す第1の説明図であり、
図16は、第7実施形態におけるインジェクタの開弁動作を示す第2の説明図であり、
図17は、第7実施形態におけるインジェクタの開弁動作を示す第3の説明図であり、
図18は、第7実施形態におけるインジェクタの閉弁動作を示す第1の説明図であり、
図19は、第7実施形態におけるインジェクタの閉弁動作を示す第2の説明図であり、
図20は、第7実施形態におけるインジェクタの閉弁動作を示す第3の説明図であり、
図21は、第8実施形態におけるインジェクタの概略構成を示す説明図であり、
図22は、第8実施形態における弾性部材および低摩擦部材の部分拡大図であり、
図23は、第9実施形態におけるインジェクタの概略構成を示す説明図であり、
図24は、第10実施形態におけるインジェクタの概略構成を示す説明図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an explanatory diagram showing a schematic configuration of an injector in the first embodiment. FIG. 2 is a first explanatory view showing the valve opening operation of the injector in the first embodiment, FIG. 3 is a second explanatory view showing the valve opening operation of the injector in the first embodiment, FIG. 4 is a third explanatory view showing the valve opening operation of the injector in the first embodiment, FIG. 5 is a first explanatory view showing the valve closing operation of the injector in the first embodiment, FIG. 6 is a second explanatory view showing the valve closing operation of the injector in the first embodiment, FIG. 7 is a third explanatory diagram showing the valve closing operation of the injector in the first embodiment, FIG. 8 is an explanatory diagram showing a schematic configuration of an injector in the second embodiment. FIG. 9 is an explanatory diagram showing a schematic configuration of an injector in the third embodiment. FIG. 10 is an explanatory diagram showing a schematic configuration of the injector in the fourth embodiment. FIG. 11 is an explanatory view showing the valve opening operation of the injector in the fourth embodiment, FIG. 12 is an explanatory diagram showing a schematic configuration of the injector in the fifth embodiment. FIG. 13 is an explanatory diagram showing a schematic configuration of an injector in the sixth embodiment. FIG. 14 is an explanatory diagram showing a schematic configuration of an injector in the seventh embodiment. FIG. 15 is a first explanatory view showing the valve opening operation of the injector in the seventh embodiment, FIG. 16 is a second explanatory view showing the valve opening operation of the injector in the seventh embodiment, FIG. 17 is a third explanatory view showing the valve opening operation of the injector in the seventh embodiment, FIG. 18 is a first explanatory view showing the valve closing operation of the injector in the seventh embodiment, FIG. 19 is a second explanatory diagram showing the valve closing operation of the injector in the seventh embodiment, FIG. 20 is a third explanatory diagram showing the valve closing operation of the injector in the seventh embodiment, FIG. 21 is an explanatory diagram showing a schematic configuration of an injector in the eighth embodiment. FIG. 22 is a partially enlarged view of the elastic member and the low friction member in the eighth embodiment, FIG. 23 is an explanatory diagram showing a schematic configuration of an injector in the ninth embodiment. FIG. 24 is an explanatory diagram showing a schematic configuration of an injector in the tenth embodiment.
A.第1実施形態:
図1に示すように、第1実施形態のインジェクタ20は、ハウジング30と、固定コア41と、可動コア42と、コイル44と、ニードル50と、第1スプリング61と、第2スプリング62とを備えている。インジェクタ20は、燃料を噴射するための装置である。本実施形態のインジェクタ20は、燃料として気体燃料である水素ガスを噴射する。 A. First embodiment:
As shown in FIG. 1, theinjector 20 of the first embodiment includes a housing 30, a fixed core 41, a movable core 42, a coil 44, a needle 50, a first spring 61, and a second spring 62. I have. The injector 20 is a device for injecting fuel. Injector 20 of this embodiment injects hydrogen gas which is gaseous fuel as fuel.
図1に示すように、第1実施形態のインジェクタ20は、ハウジング30と、固定コア41と、可動コア42と、コイル44と、ニードル50と、第1スプリング61と、第2スプリング62とを備えている。インジェクタ20は、燃料を噴射するための装置である。本実施形態のインジェクタ20は、燃料として気体燃料である水素ガスを噴射する。 A. First embodiment:
As shown in FIG. 1, the
ハウジング30は、燃料を噴射する噴孔32、および、噴孔32に連通する第1流路101が形成された筒状部材である。本実施形態のハウジング30は、噴孔32側から順に、噴孔32が形成されたノズルチップ部31と、第1磁性部34と、非磁性部36と、第2磁性部35と、入口部37とによって構成されている。ノズルチップ部31のハウジング30内側の面には、噴孔32の周りに弁座33が設けられている。ノズルチップ部31と第1磁性部34との間、第1磁性部34と非磁性部36との間、非磁性部36と第2磁性部35との間、第2磁性部35と入口部37との間は、それぞれ、溶接部38において溶接されている。本実施形態では、ノズルチップ部31は、非磁性材料であるマルテンサイト系ステンレス鋼によって形成されている。第1磁性部34および第2磁性部35は、磁性材料であるフェライト系ステンレス鋼によって形成されている。非磁性部36は、非磁性材料であるオーステナイト系ステンレス鋼によって形成されている。
The housing 30 is a cylindrical member in which a nozzle hole 32 for injecting fuel and a first flow path 101 communicating with the nozzle hole 32 are formed. The housing 30 of the present embodiment includes, in order from the nozzle hole 32 side, the nozzle tip part 31 in which the nozzle holes 32 are formed, the first magnetic part 34, the nonmagnetic part 36, the second magnetic part 35, and the inlet part. 37. A valve seat 33 is provided around the nozzle hole 32 on the inner surface of the housing 30 of the nozzle tip portion 31. Between the nozzle tip part 31 and the first magnetic part 34, between the first magnetic part 34 and the nonmagnetic part 36, between the nonmagnetic part 36 and the second magnetic part 35, and between the second magnetic part 35 and the inlet part. 37 is welded at a welded portion 38. In the present embodiment, the nozzle tip portion 31 is made of martensitic stainless steel that is a nonmagnetic material. The first magnetic part 34 and the second magnetic part 35 are made of a ferritic stainless steel that is a magnetic material. The nonmagnetic portion 36 is formed of austenitic stainless steel that is a nonmagnetic material.
入口部37には、インジェクタ20に燃料を供給するための供給管(図示省略)が接続される。供給管は、入口部37に設けられたバックアップリング72に接触するように接続される。供給管と入口部37との間は、バックアップリング72上に設けられたOリング73によってシールされる。入口部37内には、入口流路103が形成されている。入口流路103内には、フィルタ71が設けられている。フィルタ71は、供給管から供給される燃料に含まれる異物を捕集し、ハウジング30内に異物が流入することを抑制する。
A supply pipe (not shown) for supplying fuel to the injector 20 is connected to the inlet portion 37. The supply pipe is connected so as to contact a backup ring 72 provided at the inlet portion 37. A gap between the supply pipe and the inlet portion 37 is sealed by an O-ring 73 provided on the backup ring 72. An inlet channel 103 is formed in the inlet portion 37. A filter 71 is provided in the inlet channel 103. The filter 71 collects foreign matter contained in the fuel supplied from the supply pipe and suppresses the foreign matter from flowing into the housing 30.
固定コア41は、ハウジング30内に固定された筒状部材である。固定コア41内には、第1流路101に連通する第2流路102が形成されている。第2流路102における第1流路101とは反対側は、入口流路103に連通している。本実施形態では、固定コア41は、磁性材料であるフェライト系ステンレス鋼によって形成されている。
The fixed core 41 is a cylindrical member fixed in the housing 30. A second flow path 102 communicating with the first flow path 101 is formed in the fixed core 41. The opposite side of the second channel 102 from the first channel 101 communicates with the inlet channel 103. In the present embodiment, the fixed core 41 is made of a ferritic stainless steel that is a magnetic material.
可動コア42は、固定コア41よりも噴孔32側における第1流路101内をハウジング30の軸方向AXに沿って往復移動可能に設けられた筒状部材である。可動コア42は、固定コア41の内径よりも大きな外径を有し、固定コア41の内径よりも小さな貫通孔43を有している。可動コア42の噴孔32側の面は、貫通孔43の周りに第1凹部46を有している。第1凹部46は、可動コア42の噴孔32側の面に形成された円形の窪みである。可動コア42と固定コア41とは、軸方向AXにおいて接触可能に構成されている。本実施形態では、可動コア42は、磁性材料であるフェライト系ステンレス鋼によって形成されている。
The movable core 42 is a cylindrical member provided so as to be capable of reciprocating along the axial direction AX of the housing 30 in the first flow path 101 closer to the injection hole 32 than the fixed core 41. The movable core 42 has an outer diameter larger than the inner diameter of the fixed core 41 and has a through hole 43 smaller than the inner diameter of the fixed core 41. The surface of the movable core 42 on the nozzle hole 32 side has a first recess 46 around the through hole 43. The first recess 46 is a circular depression formed on the surface of the movable core 42 on the nozzle hole 32 side. The movable core 42 and the fixed core 41 are configured to be contactable in the axial direction AX. In the present embodiment, the movable core 42 is made of a ferritic stainless steel that is a magnetic material.
コイル44は、ハウジング30の外周に巻回されている。コイル44の外周は、磁性材料であるフェライト系ステンレス鋼によって形成されたヨーク45によって覆われている。コイル44は、通電によって、可動コア42を固定コア41側に向かって移動させる磁界を発生する。コイル44に流れる電流は、例えば、バッテリ等の電力供給源(図示省略)から供給される。電力供給源から印加される電圧は、制御部(図示省略)によって制御される。
The coil 44 is wound around the outer periphery of the housing 30. The outer periphery of the coil 44 is covered with a yoke 45 formed of ferritic stainless steel, which is a magnetic material. The coil 44 generates a magnetic field that moves the movable core 42 toward the fixed core 41 when energized. The current flowing through the coil 44 is supplied from, for example, a power supply source (not shown) such as a battery. The voltage applied from the power supply source is controlled by a control unit (not shown).
ニードル50は、軸部51と、弁部52と、ストッパ部53と、フランジ部54とを備えている。尚、ストッパ部53のことを、第1突出部と呼ぶこともあり、フランジ部54のことを第2突出部と呼ぶこともある。軸部51は、可動コア42の貫通孔43内を軸方向AXに沿って往復移動可能に設けられている。軸部51の中心軸は、固定コア41の中心軸および可動コア42の中心軸と同じである。軸部51の内部には、第2流路102から第1流路101に向かって燃料が流通する連通流路104が形成されている。
The needle 50 includes a shaft portion 51, a valve portion 52, a stopper portion 53, and a flange portion 54. The stopper portion 53 may be referred to as a first projecting portion, and the flange portion 54 may be referred to as a second projecting portion. The shaft portion 51 is provided so as to reciprocate along the axial direction AX in the through hole 43 of the movable core 42. The central axis of the shaft portion 51 is the same as the central axis of the fixed core 41 and the central axis of the movable core 42. A communication channel 104 through which fuel flows from the second channel 102 toward the first channel 101 is formed inside the shaft portion 51.
弁部52は、軸部51の噴孔32側の端部に形成されている。弁部52は、ノズルチップ部31に設けられた弁座33と接触可能に構成されており、軸部51が軸方向AXに沿って往復移動することによって噴孔32を開閉する弁体である。入口流路103、第2流路102、連通流路104、第1流路101の順にハウジング30内を流れた燃料は、噴孔32が開弁されることによって、噴孔32から噴射される。
The valve part 52 is formed at the end of the shaft part 51 on the nozzle hole 32 side. The valve portion 52 is configured to be able to come into contact with a valve seat 33 provided in the nozzle tip portion 31, and is a valve body that opens and closes the injection hole 32 when the shaft portion 51 reciprocates along the axial direction AX. . The fuel that has flowed through the housing 30 in the order of the inlet channel 103, the second channel 102, the communication channel 104, and the first channel 101 is injected from the nozzle hole 32 when the nozzle hole 32 is opened. .
ストッパ部53は、軸部51における可動コア42を挟んで弁部52側に位置する円盤状の部材である。ストッパ部53は、軸部51の径方向に貫通孔43の径よりも大きく突き出している。本実施形態では、ストッパ部53は、非磁性材料であるオーステナイト系ステンレス鋼によって形成されており、軸部51に圧入されている。また、本実施形態では、ストッパ部53は、可動コア42の第1凹部46に収容可能に構成されている。ストッパ部53が可動コア42の第1凹部46に収容されることによって、軸部51とストッパ部53と可動コア42の第1凹部46とによって囲まれた空間が形成される。この空間のことを気密室110とも呼ぶ。気密室110は、燃料を封入可能な空間である。ストッパ部53と第1凹部46の側面との隙間の大きさは、少なくとも閉弁状態において、気密室110内に燃料を供給可能で、かつ、気密室110内の燃料が所定の圧力以上に昇圧された際に、燃料を排出可能に設定される。尚、ストッパ部53と第1凹部46の側面との隙間の大きさは、燃料の種類に応じて設定される。本実施形態では、燃料として水素ガスを用いており、ストッパ部53と第1凹部46の側面との隙間は、2~3μm程度としている。燃料として液体燃料を用いる場合には、ストッパ部53と第1凹部46の側面との隙間は、より大きく設定される。
The stopper portion 53 is a disk-shaped member located on the valve portion 52 side with the movable core 42 in the shaft portion 51 interposed therebetween. The stopper portion 53 protrudes larger than the diameter of the through hole 43 in the radial direction of the shaft portion 51. In the present embodiment, the stopper portion 53 is formed of austenitic stainless steel, which is a nonmagnetic material, and is press-fitted into the shaft portion 51. In the present embodiment, the stopper portion 53 is configured to be accommodated in the first recess 46 of the movable core 42. By accommodating the stopper 53 in the first recess 46 of the movable core 42, a space surrounded by the shaft 51, the stopper 53, and the first recess 46 of the movable core 42 is formed. This space is also called an airtight chamber 110. The airtight chamber 110 is a space in which fuel can be enclosed. The size of the gap between the stopper 53 and the side surface of the first recess 46 is such that the fuel can be supplied into the hermetic chamber 110 at least when the valve is closed, and the fuel in the hermetic chamber 110 is boosted to a predetermined pressure or higher. When set, the fuel can be discharged. In addition, the magnitude | size of the clearance gap between the stopper part 53 and the side surface of the 1st recessed part 46 is set according to the kind of fuel. In the present embodiment, hydrogen gas is used as the fuel, and the gap between the stopper portion 53 and the side surface of the first recess 46 is about 2 to 3 μm. When liquid fuel is used as the fuel, the gap between the stopper portion 53 and the side surface of the first recess 46 is set larger.
フランジ部54は、軸部51における可動コア42を挟んで固定コア41側に位置する円盤状の部材である。フランジ部54は、軸部51の径方向に貫通孔43の径よりも大きく、かつ、固定コア41の内径よりも小さく突き出している。ストッパ部53の固定コア41側の面と、フランジ部54の弁部52側の面との軸方向AXに沿った間隔よりも、第1凹部46の底面と、可動コア42の固定コア41側の面との軸方向AXに沿った間隔の方が小さい。換言すれば、第1凹部46が形成された部分における可動コア42の厚みは、ストッパ部53の固定コア41側の面と、フランジ部54の弁部52側の面との軸方向AXに沿った間隔よりも小さい。本実施形態では、軸部51と弁部52とフランジ部54とは、一体として形成されている。軸部51と弁部52とフランジ部54とは、非磁性材料であるマルテンサイト系ステンレス鋼によって形成されている。
The flange portion 54 is a disk-shaped member located on the fixed core 41 side with the movable core 42 in the shaft portion 51 interposed therebetween. The flange portion 54 protrudes in the radial direction of the shaft portion 51 larger than the diameter of the through hole 43 and smaller than the inner diameter of the fixed core 41. The bottom surface of the first recess 46 and the fixed core 41 side of the movable core 42 than the distance along the axial direction AX between the surface of the stopper portion 53 on the fixed core 41 side and the surface of the flange portion 54 on the valve portion 52 side. The distance along the axial direction AX with respect to the surface is smaller. In other words, the thickness of the movable core 42 in the portion where the first recess 46 is formed is along the axial direction AX between the surface on the fixed core 41 side of the stopper portion 53 and the surface on the valve portion 52 side of the flange portion 54. Smaller than the interval. In the present embodiment, the shaft portion 51, the valve portion 52, and the flange portion 54 are integrally formed. The shaft portion 51, the valve portion 52, and the flange portion 54 are made of martensitic stainless steel, which is a nonmagnetic material.
第1スプリング61は、第2流路102内に配置されている。第1スプリング61は、フランジ部54を固定コア41側から噴孔32側に向かって付勢する。本実施形態では、第1スプリング61は、コイルばねである。第2流路102における第1スプリング61よりも上流側には、アジャスティングパイプ63が設けられている。第1スプリング61がフランジ部54を押す力は、アジャスティングパイプ63の噴孔32側における端部の位置を調節することによって、調節可能に構成されている。
The first spring 61 is disposed in the second flow path 102. The first spring 61 urges the flange portion 54 from the fixed core 41 side toward the injection hole 32 side. In the present embodiment, the first spring 61 is a coil spring. An adjusting pipe 63 is provided upstream of the first spring 61 in the second flow path 102. The force with which the first spring 61 pushes the flange portion 54 is configured to be adjustable by adjusting the position of the end portion of the adjusting pipe 63 on the injection hole 32 side.
第2スプリング62は、第1流路101内に配置され、可動コア42を噴孔32側から固定コア41側に向かって付勢する。本実施形態の第2スプリング62は、コイルばねである。閉弁状態では、可動コア42が第2スプリング62に押されて、フランジ部54と可動コア42とが接触する。
The second spring 62 is disposed in the first flow path 101 and urges the movable core 42 from the injection hole 32 side toward the fixed core 41 side. The second spring 62 of the present embodiment is a coil spring. In the valve closed state, the movable core 42 is pushed by the second spring 62 and the flange portion 54 and the movable core 42 come into contact with each other.
図1から図4を用いて、本実施形態のインジェクタ20において行われる開弁動作を説明する。図1に示すように、閉弁状態では、弁部52は弁座33に接触している。閉弁状態では、コイル44への通電は行われていない。フランジ部54は、第1スプリング61によって固定コア41側から噴孔32側に向かって押されている。可動コア42は、第2スプリング62によって、噴孔32側から固定コア41側に向かって押されている。そのため、フランジ部54と可動コア42とが接触した状態となっている。閉弁状態における可動コア42と固定コア41との間には、開弁のために必要な所定の間隔が確保されている。気密室110内には、ストッパ部53と第1凹部46の側面との隙間から、第1流路101内の燃料が流入することによって、燃料が充満している。尚、この状態のことを初期状態とも呼ぶ。
The valve opening operation performed in the injector 20 of this embodiment is demonstrated using FIGS. 1-4. As shown in FIG. 1, the valve portion 52 is in contact with the valve seat 33 in the valve closed state. In the closed state, the coil 44 is not energized. The flange portion 54 is pushed from the fixed core 41 side toward the nozzle hole 32 side by the first spring 61. The movable core 42 is pushed by the second spring 62 from the nozzle hole 32 side toward the fixed core 41 side. Therefore, the flange portion 54 and the movable core 42 are in contact with each other. A predetermined interval necessary for opening the valve is secured between the movable core 42 and the fixed core 41 in the valve-closed state. The fuel in the airtight chamber 110 is filled with the fuel flowing in the first flow path 101 from the gap between the stopper 53 and the side surface of the first recess 46. This state is also called an initial state.
図2に示すように、コイル44への通電が開始されると、可動コア42に対して固定コア41からの磁気吸引力が働き、可動コア42が噴孔32側から固定コア41側に向かって移動することによって、可動コア42は、固定コア41に衝突する。この磁気吸引力は、コイル44への通電に伴って固定コア41の周りに形成される磁界によって生じる。初期状態では、フランジ部54と可動コア42とが接触しているため、可動コア42が噴孔32側から固定コア41側に向かって移動する際、フランジ部54が可動コア42に押されて、可動コア42とともにニードル50が移動する。そのため、弁部52が弁座33から離れて、噴孔32からの燃料の噴射が開始される。ニードル50の移動に伴い、第1スプリング61は、フランジ部54に押されて縮むため、第1スプリング61には弾性エネルギが蓄えられる。
As shown in FIG. 2, when energization to the coil 44 is started, a magnetic attractive force from the fixed core 41 acts on the movable core 42, and the movable core 42 moves from the injection hole 32 side toward the fixed core 41 side. The movable core 42 collides with the fixed core 41 by moving. This magnetic attraction force is generated by a magnetic field formed around the fixed core 41 as the coil 44 is energized. In the initial state, since the flange portion 54 and the movable core 42 are in contact with each other, when the movable core 42 moves from the nozzle hole 32 side toward the fixed core 41 side, the flange portion 54 is pushed by the movable core 42. The needle 50 moves together with the movable core 42. Therefore, the valve part 52 moves away from the valve seat 33 and fuel injection from the injection hole 32 is started. As the needle 50 moves, the first spring 61 is pushed by the flange portion 54 and contracts, so that elastic energy is stored in the first spring 61.
図3示すように、可動コア42が固定コア41に衝突した後、ニードル50が慣性によって可動コア42から離脱して、第2流路102の上流側に向かって、さらに移動を続けることによって、ストッパ部53と第1凹部46の底面とが軸方向AXにおいて接近して、気密室110の容積は縮小される。気密室110の容積が縮小されることによって、気密室110内の燃料は昇圧される。気密室110内の燃料が昇圧されることに伴って、ニードル50の移動は減速される。気密室110内の燃料が所定の圧力以上に昇圧されると、気密室110内の燃料は、ストッパ部53と第1凹部46の側面との隙間から徐々に排出されて、ストッパ部53と第1凹部46の底面とが低速で衝突する。つまり、気密室110がダンパの役割を果たす。そのため、ストッパ部53と可動コア42とが衝突する際の衝撃力が低減される。尚、ストッパ部53と第1凹部46の底面とが衝突する際、燃料の一部が気密室110内に残留してもよい。つまり、ストッパ部53と第1凹部46の底面とが、気密室110内に残留した燃料を介して衝突してもよい。また、可動コア42と固定コア41との衝突による衝撃力は、ニードル50が可動コア42から離脱することによって低減される。
As shown in FIG. 3, after the movable core 42 collides with the fixed core 41, the needle 50 is detached from the movable core 42 due to inertia and continues to move further toward the upstream side of the second flow path 102. The stopper 53 and the bottom surface of the first recess 46 approach each other in the axial direction AX, and the volume of the hermetic chamber 110 is reduced. As the volume of the hermetic chamber 110 is reduced, the fuel in the hermetic chamber 110 is pressurized. As the fuel in the hermetic chamber 110 is pressurized, the movement of the needle 50 is decelerated. When the fuel in the hermetic chamber 110 is increased to a predetermined pressure or higher, the fuel in the hermetic chamber 110 is gradually discharged from the gap between the stopper portion 53 and the side surface of the first recess 46, and 1 The bottom surface of the recess 46 collides at a low speed. That is, the hermetic chamber 110 serves as a damper. Therefore, the impact force when the stopper part 53 and the movable core 42 collide is reduced. When the stopper portion 53 and the bottom surface of the first recess 46 collide, a part of the fuel may remain in the airtight chamber 110. That is, the stopper 53 and the bottom surface of the first recess 46 may collide with each other through the fuel remaining in the hermetic chamber 110. Further, the impact force caused by the collision between the movable core 42 and the fixed core 41 is reduced by the needle 50 being detached from the movable core 42.
図4に示すように、ストッパ部53と可動コア42とが衝突した後、第1スプリング61に蓄えられた弾性エネルギが、ニードル50を押し戻す動力として放出されることによって、ニードル50が固定コア41側から噴孔32側に向かって移動して、フランジ部54は、可動コア42に衝突する。この際、気密室110内の燃料が昇圧されたことによって、ストッパ部53と可動コア42とが衝突した際の衝撃力が低減されたことに伴い、ニードル50の跳ね返りが抑制されている。また、ニードル50が押し戻されて、気密室110の容積が拡大され、気密室110内が負圧にされることに伴い、ニードル50は減速される。そのため、フランジ部54と可動コア42とが衝突する際の衝撃力は低減される。その後、フランジ部54が可動コア42に支持されることによって、弁部52と弁座33との間のリフト量が確保される。以上で説明した一連の動作によって、インジェクタ20における開弁動作が完了する。
As shown in FIG. 4, after the stopper portion 53 and the movable core 42 collide, the elastic energy stored in the first spring 61 is released as power to push back the needle 50, so that the needle 50 is fixed to the fixed core 41. Moving from the side toward the injection hole 32 side, the flange portion 54 collides with the movable core 42. At this time, since the fuel in the hermetic chamber 110 is pressurized, the impact force when the stopper portion 53 and the movable core 42 collide with each other is reduced, so that the rebound of the needle 50 is suppressed. Further, the needle 50 is decelerated as the needle 50 is pushed back, the volume of the hermetic chamber 110 is expanded, and the inside of the hermetic chamber 110 is set to a negative pressure. Therefore, the impact force when the flange portion 54 and the movable core 42 collide is reduced. Thereafter, the flange portion 54 is supported by the movable core 42, thereby ensuring a lift amount between the valve portion 52 and the valve seat 33. The valve opening operation in the injector 20 is completed by the series of operations described above.
図5から図7を用いて、本実施形態のインジェクタ20において行われる閉弁動作を説明する。図5に示すように、コイル44への通電が停止されることによって、可動コア42に働いていた固定コア41からの磁気吸引力が除荷されて、第1スプリング61に付勢されたニードル50が固定コア41側から噴孔32側に向かって移動することによって、弁部52が弁座33に衝突する。そのため、閉弁状態となり、噴孔32からの燃料の噴射が停止される。ニードル50が移動する際、可動コア42がフランジ部54に押されることによって、可動コア42は、ニードル50とともに移動する。気密室110内には、ストッパ部53と第1凹部46の側面との隙間から、第1流路101内の燃料が流入する。
The valve closing operation performed in the injector 20 of the present embodiment will be described with reference to FIGS. As shown in FIG. 5, when the energization to the coil 44 is stopped, the magnetic attractive force from the fixed core 41 that has worked on the movable core 42 is unloaded, and the needle biased by the first spring 61. The valve portion 52 collides with the valve seat 33 by moving 50 from the fixed core 41 side toward the nozzle hole 32 side. Therefore, the valve is closed and the fuel injection from the nozzle hole 32 is stopped. When the needle 50 moves, the movable core 42 moves together with the needle 50 by being pushed by the flange portion 54. The fuel in the first flow path 101 flows into the airtight chamber 110 through a gap between the stopper portion 53 and the side surface of the first recess 46.
図6に示すように、弁部52が弁座33に衝突した後、可動コア42が慣性によって、固定コア41側から噴孔32側に向かって、さらに移動を続けることによって、ストッパ部53と第1凹部46の底面とが軸方向AXにおいて接近して、気密室110の容積は縮小される。気密室110の容積が縮小されることによって、気密室110内の燃料は昇圧される。気密室110内の燃料が昇圧されることに伴って、ニードル50の移動は減速される。気密室110内の燃料が所定の圧力以上に昇圧されると、気密室110内の燃料は、ストッパ部53と第1凹部46の側面との隙間から徐々に排出されて、ストッパ部53と第1凹部46の底面とが低速で衝突する。そのため、ストッパ部53と可動コア42とが衝突する際の衝撃力が低減される。尚、弁部52と弁座33との衝突による衝撃力は、可動コア42がニードル50とは別に移動を続けることによって低減される。
As shown in FIG. 6, after the valve portion 52 collides with the valve seat 33, the movable core 42 continues to move from the fixed core 41 side toward the injection hole 32 side due to inertia, so that the stopper portion 53 and As the bottom surface of the first recess 46 approaches in the axial direction AX, the volume of the hermetic chamber 110 is reduced. As the volume of the hermetic chamber 110 is reduced, the fuel in the hermetic chamber 110 is pressurized. As the fuel in the hermetic chamber 110 is pressurized, the movement of the needle 50 is decelerated. When the fuel in the hermetic chamber 110 is increased to a predetermined pressure or higher, the fuel in the hermetic chamber 110 is gradually discharged from the gap between the stopper portion 53 and the side surface of the first recess 46, and 1 The bottom surface of the recess 46 collides at a low speed. Therefore, the impact force when the stopper part 53 and the movable core 42 collide is reduced. The impact force due to the collision between the valve portion 52 and the valve seat 33 is reduced by the movement of the movable core 42 separately from the needle 50.
図7に示すように、ストッパ部53と可動コア42とが衝突した際の衝撃力や、第2スプリング62が可動コア42を固定コア41側に押し戻す力によって、可動コア42が噴孔32側から固定コア41側に向かって跳ね返り、フランジ部54と可動コア42とが衝突する。この際、気密室110内の燃料が昇圧されたことによって、ストッパ部53と可動コア42とが衝突した際の衝撃力が低減されたことに伴い、可動コア42の跳ね返りが抑制されている。また、ニードル50が押し戻されて、気密室110の容積が拡大され、気密室110内が負圧にされることに伴い、ニードル50は減速される。そのため、フランジ部54と可動コア42とが衝突する際の衝撃力は低減される。その後、可動コア42は第2スプリング62に支持されて、初期状態に戻る。以上で説明した一連の動作によって、インジェクタ20における閉弁動作が完了する。
As shown in FIG. 7, the movable core 42 is moved to the nozzle hole 32 side by an impact force when the stopper portion 53 and the movable core 42 collide and a force by which the second spring 62 pushes the movable core 42 back to the fixed core 41 side. Bounces toward the fixed core 41 side, and the flange portion 54 and the movable core 42 collide with each other. At this time, as the fuel in the hermetic chamber 110 is boosted, the impact force when the stopper portion 53 and the movable core 42 collide with each other is reduced, so that the rebound of the movable core 42 is suppressed. Further, the needle 50 is decelerated as the needle 50 is pushed back, the volume of the hermetic chamber 110 is expanded, and the inside of the hermetic chamber 110 is set to a negative pressure. Therefore, the impact force when the flange portion 54 and the movable core 42 collide is reduced. Thereafter, the movable core 42 is supported by the second spring 62 and returns to the initial state. The valve closing operation in the injector 20 is completed by the series of operations described above.
以上で説明した本実施形態のインジェクタ20によれば、ストッパ部53と可動コア42の第1凹部46の底面とが接近して、気密室110内の燃料が昇圧されて、ニードル50が減速されることによって、ストッパ部53と可動コア42とが衝突する際の衝撃力は低減される。これに伴い、フランジ部54と可動コア42とが衝突する際の衝撃力も低減される。そのため、ストッパ部53と可動コア42との接触部、および、フランジ部54と可動コア42との接触部における摩耗を抑制できる。特に、本実施形態のように、インジェクタ20が気体燃料を噴射する形態である場合、液体燃料を噴射する形態に比べて、ストッパ部53と可動コア42との接触部、および、フランジ部54と可動コア42との接触部が衝突する際の燃料によるスクイズ力が小さいため、各接触部における衝撃力が大きくなる。そのため、気密室110が設けられることによる、各接触部の摩耗が抑制される効果が大きい。
According to the injector 20 of the present embodiment described above, the stopper portion 53 and the bottom surface of the first recess 46 of the movable core 42 approach each other, the fuel in the hermetic chamber 110 is pressurized, and the needle 50 is decelerated. Thus, the impact force when the stopper portion 53 and the movable core 42 collide with each other is reduced. Accordingly, the impact force when the flange portion 54 and the movable core 42 collide with each other is also reduced. Therefore, wear at the contact portion between the stopper portion 53 and the movable core 42 and at the contact portion between the flange portion 54 and the movable core 42 can be suppressed. In particular, as in the present embodiment, when the injector 20 is configured to inject gaseous fuel, the contact portion between the stopper portion 53 and the movable core 42 and the flange portion 54 are compared to the configuration in which liquid fuel is injected. Since the squeeze force by the fuel when the contact portion with the movable core 42 collides is small, the impact force at each contact portion becomes large. Therefore, the effect of suppressing wear of each contact portion due to the provision of the hermetic chamber 110 is great.
また、本実施形態では、ストッパ部53の径を調節することによって、ストッパ部53と可動コア42の第1凹部46の側面との隙間における流路抵抗の大きさを調節できる。そのため、簡易な構造でストッパ部53と第1凹部46の底面とが衝突する際の速度を調節できる。
In the present embodiment, by adjusting the diameter of the stopper portion 53, the magnitude of the flow path resistance in the gap between the stopper portion 53 and the side surface of the first recess 46 of the movable core 42 can be adjusted. Therefore, the speed when the stopper 53 and the bottom surface of the first recess 46 collide with each other with a simple structure can be adjusted.
B.第2実施形態:
図8に示すように、第2実施形態のインジェクタ20Bでは、ストッパ部53が、固定コア41側の面から、弁部52側の面に連通する第1オリフィス111を有することが第1実施形態と異なる。第2実施形態では、第1実施形態よりもストッパ部53と第1凹部46の側面との隙間が小さい。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 B. Second embodiment:
As shown in FIG. 8, in theinjector 20B of the second embodiment, the stopper portion 53 has a first orifice 111 that communicates from the surface on the fixed core 41 side to the surface on the valve portion 52 side. And different. In the second embodiment, the gap between the stopper portion 53 and the side surface of the first recess 46 is smaller than in the first embodiment. Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
図8に示すように、第2実施形態のインジェクタ20Bでは、ストッパ部53が、固定コア41側の面から、弁部52側の面に連通する第1オリフィス111を有することが第1実施形態と異なる。第2実施形態では、第1実施形態よりもストッパ部53と第1凹部46の側面との隙間が小さい。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 B. Second embodiment:
As shown in FIG. 8, in the
この形態のインジェクタ20Bによれば、気密室110の容積が縮小されて、気密室110内の燃料が昇圧された際に、気密室110内の燃料は、ニードル50のストッパ部53に設けられた第1オリフィス111を通じて排出される。そのため、第1オリフィス111の個数や形状を調節することによって、第1オリフィス111内における流路抵抗の大きさを調節でき、気密室110内の燃料をストッパ部53と第1凹部46の側面との隙間から排出する形態に比べて、より簡易にニードル50の減速度合いを調節できる。
According to the injector 20B of this form, when the volume of the hermetic chamber 110 is reduced and the fuel in the hermetic chamber 110 is pressurized, the fuel in the hermetic chamber 110 is provided in the stopper portion 53 of the needle 50. It is discharged through the first orifice 111. Therefore, by adjusting the number and shape of the first orifices 111, the magnitude of the flow path resistance in the first orifices 111 can be adjusted, and the fuel in the hermetic chamber 110 is transferred to the side surfaces of the stopper 53 and the first recess 46. The deceleration degree of the needle 50 can be adjusted more easily than in the form of discharging from the gap.
また、本実施形態では、ニードル50のストッパ部53に第1オリフィス111が設けられるため、可動コア42の第1凹部46の底面から固定コア41側の面に連通するオリフィスが設けられた形態とは異なり、可動コア42が固定コア41から受ける磁気吸引力を確保しつつ、ニードル50の減速度合いを調節できる。
Further, in the present embodiment, since the first orifice 111 is provided in the stopper portion 53 of the needle 50, the orifice provided from the bottom surface of the first recess 46 of the movable core 42 to the surface on the fixed core 41 side is provided. In contrast, the degree of deceleration of the needle 50 can be adjusted while ensuring the magnetic attractive force that the movable core 42 receives from the fixed core 41.
C.第3実施形態:
図9に示すように、第3実施形態のインジェクタ20Cでは、可動コア42が、第1凹部46の底面から、固定コア41側の面に連通する第2オリフィス112を有することが第1実施形態と異なる。第3実施形態では、第1実施形態よりもストッパ部53と第1凹部46の側面との隙間が小さい。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 C. Third embodiment:
As shown in FIG. 9, in theinjector 20C of the third embodiment, the movable core 42 has a second orifice 112 that communicates from the bottom surface of the first recess 46 to the surface on the fixed core 41 side. And different. In 3rd Embodiment, the clearance gap between the stopper part 53 and the side surface of the 1st recessed part 46 is smaller than 1st Embodiment. Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
図9に示すように、第3実施形態のインジェクタ20Cでは、可動コア42が、第1凹部46の底面から、固定コア41側の面に連通する第2オリフィス112を有することが第1実施形態と異なる。第3実施形態では、第1実施形態よりもストッパ部53と第1凹部46の側面との隙間が小さい。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 C. Third embodiment:
As shown in FIG. 9, in the
この形態のインジェクタ20Cによれば、気密室110の容積が縮小されて、気密室110内の燃料が昇圧された際に、気密室110内の燃料は、可動コア42に設けられた第2オリフィス112を通じて排出される。そのため、第2オリフィス112の個数や形状を調節することによって、第2オリフィス112内における流路抵抗の大きさを調節でき、気密室110内の燃料をストッパ部53と第1凹部46の側面との隙間から排出する形態に比べて、より簡易にニードル50の減速度合いを調節できる。
According to the injector 20C of this form, when the volume of the hermetic chamber 110 is reduced and the fuel in the hermetic chamber 110 is pressurized, the fuel in the hermetic chamber 110 is supplied to the second orifice provided in the movable core 42. It is discharged through 112. Therefore, by adjusting the number and shape of the second orifices 112, the magnitude of the flow path resistance in the second orifice 112 can be adjusted, and the fuel in the hermetic chamber 110 is transferred to the side surfaces of the stopper 53 and the first recess 46. The deceleration degree of the needle 50 can be adjusted more easily than in the form of discharging from the gap.
また、本実施形態では、閉弁状態において、可動コア42に設けられた第2オリフィス112の固定コア41側の開口部が、ニードル50のフランジ部54によって封止されている。そのため、開弁動作において、ニードル50のフランジ部54が可動コア42から離脱する際に、第2オリフィス112内が負圧にされることによっても、ニードル50を減速させることができる。
Further, in the present embodiment, the opening on the fixed core 41 side of the second orifice 112 provided in the movable core 42 is sealed by the flange portion 54 of the needle 50 in the valve closed state. Therefore, in the valve opening operation, when the flange portion 54 of the needle 50 is detached from the movable core 42, the needle 50 can be decelerated even when the second orifice 112 is set to a negative pressure.
D.第4実施形態:
図10に示すように、第4実施形態のインジェクタ20Dでは、可動コア42の噴孔32側の面は、貫通孔43の周りに第1凹部46を有さず、可動コア42の固定コア41側の面は、貫通孔43の周りにフランジ部54を収容可能な第2凹部47を有することが第1実施形態と異なる。ストッパ部53の固定コア41側の面と、フランジ部54の弁部52側の面との軸方向AXに沿った間隔よりも、可動コア42の噴孔32側の面と、第2凹部47の底面との軸方向AXに沿った間隔の方が小さい。換言すれば、第2凹部47が形成された部分における可動コア42の厚みは、ストッパ部53の固定コア41側の面と、フランジ部54の弁部52側の面との軸方向AXに沿った間隔よりも小さい。本実施形態では、気密室110Dは、フランジ部54が可動コア42の第2凹部47に収容されることによって、軸部51とフランジ部54と可動コア42の第2凹部47とによって囲まれた空間として形成される。尚、閉弁状体において、フランジ部54が第1スプリング61によって固定コア41側から噴孔32側に向かって押される力と、フランジ部54が気密室110D内の燃料によって噴孔32側から固定コア41側に向かって押される力とが釣り合うことによって、フランジ部54と第2凹部47の底面との間には、小さな隙間が空いている。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 D. Fourth embodiment:
As shown in FIG. 10, in theinjector 20 </ b> D of the fourth embodiment, the surface on the injection hole 32 side of the movable core 42 does not have the first recess 46 around the through hole 43, and the fixed core 41 of the movable core 42. The side surface is different from the first embodiment in having a second recess 47 that can accommodate the flange portion 54 around the through-hole 43. The surface on the injection hole 32 side of the movable core 42 and the second recess 47 are larger than the distance along the axial direction AX between the surface on the fixed core 41 side of the stopper portion 53 and the surface on the valve portion 52 side of the flange portion 54. The distance along the axial direction AX with respect to the bottom surface is smaller. In other words, the thickness of the movable core 42 in the portion where the second recess 47 is formed is along the axial direction AX between the surface on the fixed core 41 side of the stopper portion 53 and the surface on the valve portion 52 side of the flange portion 54. Smaller than the interval. In the present embodiment, the hermetic chamber 110 </ b> D is surrounded by the shaft portion 51, the flange portion 54, and the second concave portion 47 of the movable core 42 by accommodating the flange portion 54 in the second concave portion 47 of the movable core 42. It is formed as a space. In the valve-closed body, the force by which the flange portion 54 is pushed from the fixed core 41 side toward the injection hole 32 side by the first spring 61 and the flange portion 54 from the injection hole 32 side by the fuel in the hermetic chamber 110D. A small gap is formed between the flange portion 54 and the bottom surface of the second recess 47 by balancing the force pushed toward the fixed core 41 side. Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
図10に示すように、第4実施形態のインジェクタ20Dでは、可動コア42の噴孔32側の面は、貫通孔43の周りに第1凹部46を有さず、可動コア42の固定コア41側の面は、貫通孔43の周りにフランジ部54を収容可能な第2凹部47を有することが第1実施形態と異なる。ストッパ部53の固定コア41側の面と、フランジ部54の弁部52側の面との軸方向AXに沿った間隔よりも、可動コア42の噴孔32側の面と、第2凹部47の底面との軸方向AXに沿った間隔の方が小さい。換言すれば、第2凹部47が形成された部分における可動コア42の厚みは、ストッパ部53の固定コア41側の面と、フランジ部54の弁部52側の面との軸方向AXに沿った間隔よりも小さい。本実施形態では、気密室110Dは、フランジ部54が可動コア42の第2凹部47に収容されることによって、軸部51とフランジ部54と可動コア42の第2凹部47とによって囲まれた空間として形成される。尚、閉弁状体において、フランジ部54が第1スプリング61によって固定コア41側から噴孔32側に向かって押される力と、フランジ部54が気密室110D内の燃料によって噴孔32側から固定コア41側に向かって押される力とが釣り合うことによって、フランジ部54と第2凹部47の底面との間には、小さな隙間が空いている。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 D. Fourth embodiment:
As shown in FIG. 10, in the
図11に示すように、可動コア42が固定コア41に衝突した後、ニードル50が慣性によって可動コア42から離脱して、第2流路102の上流側に向かって、さらに移動を続けることによって、フランジ部54と第2凹部47の底面との軸方向AXにおける距離が大きくなり、気密室110Dの容積は拡大される。気密室110Dの容積が拡大されることに伴い、気密室110D内の燃料が負圧にされることによって、ニードル50が減速される。その後、ニードル50のストッパ部53と可動コア42の噴孔32側の面とが衝突し、さらに、ニードル50のフランジ部54と可動コア42の第2凹部47の底面とが衝突する。
As shown in FIG. 11, after the movable core 42 collides with the fixed core 41, the needle 50 is detached from the movable core 42 due to inertia and continues to move further toward the upstream side of the second flow path 102. The distance between the flange portion 54 and the bottom surface of the second recess 47 in the axial direction AX is increased, and the volume of the hermetic chamber 110D is increased. As the volume of the hermetic chamber 110D is increased, the fuel in the hermetic chamber 110D is set to a negative pressure, whereby the needle 50 is decelerated. Thereafter, the stopper portion 53 of the needle 50 and the surface of the movable core 42 on the injection hole 32 side collide, and further, the flange portion 54 of the needle 50 and the bottom surface of the second recess 47 of the movable core 42 collide.
この形態のインジェクタ20Dによっても、ストッパ部53と可動コア42とが衝突する際の衝撃力は低減される。これに伴い、フランジ部54と可動コア42とが衝突する際の衝撃力も低減される。そのため、ストッパ部53と可動コア42との接触部、および、フランジ部54と可動コア42との接触部における摩耗を抑制できる。
The impact force when the stopper portion 53 and the movable core 42 collide is also reduced by the injector 20D of this form. Accordingly, the impact force when the flange portion 54 and the movable core 42 collide with each other is also reduced. Therefore, wear at the contact portion between the stopper portion 53 and the movable core 42 and at the contact portion between the flange portion 54 and the movable core 42 can be suppressed.
E.第5実施形態:
図12に示すように、第5実施形態のインジェクタ20Eでは、燃料として液体燃料が噴射されることが第1実施形態と異なる。液体燃料としては、例えば、ガソリンや軽油である。また、ノズルチップ部31Eに複数の噴孔32が設けられていることが第1実施形態と異なる。尚、本実施形態では、燃料として液体燃料が用いられるため、ストッパ部53と第1凹部46の側面との隙間は、第1実施形態よりも大きい。本実施形態のインジェクタ20Eでは、気体燃料ではなく液体燃料が気密室110に封入されるため、気密室110のことを液密室と呼ぶこともできる。気密室110のことを、燃料封入室やダンパ室と呼ぶこともできる。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 E. Fifth embodiment:
As shown in FIG. 12, theinjector 20E of the fifth embodiment is different from the first embodiment in that liquid fuel is injected as fuel. Examples of the liquid fuel include gasoline and light oil. Further, the nozzle tip portion 31E is different from the first embodiment in that a plurality of nozzle holes 32 are provided. In this embodiment, since liquid fuel is used as the fuel, the gap between the stopper portion 53 and the side surface of the first recess 46 is larger than that in the first embodiment. In the injector 20E of the present embodiment, not the gaseous fuel but the liquid fuel is sealed in the hermetic chamber 110, so that the hermetic chamber 110 can also be called a liquid-tight chamber. The hermetic chamber 110 can also be called a fuel enclosure chamber or a damper chamber. Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
図12に示すように、第5実施形態のインジェクタ20Eでは、燃料として液体燃料が噴射されることが第1実施形態と異なる。液体燃料としては、例えば、ガソリンや軽油である。また、ノズルチップ部31Eに複数の噴孔32が設けられていることが第1実施形態と異なる。尚、本実施形態では、燃料として液体燃料が用いられるため、ストッパ部53と第1凹部46の側面との隙間は、第1実施形態よりも大きい。本実施形態のインジェクタ20Eでは、気体燃料ではなく液体燃料が気密室110に封入されるため、気密室110のことを液密室と呼ぶこともできる。気密室110のことを、燃料封入室やダンパ室と呼ぶこともできる。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 E. Fifth embodiment:
As shown in FIG. 12, the
この形態のインジェクタ20Eによれば、液体燃料を噴射する形態であるため、気体燃料を噴射する形態に比べて、ストッパ部53と可動コア42との接触部、および、フランジ部54と可動コア42との接触部が衝突する際の、燃料によるスクイズ力が大きくなり、各接触部における衝撃力が小さくなる。
According to the injector 20E of this form, since it is a form which injects liquid fuel, compared with the form which injects gaseous fuel, the contact part of the stopper part 53 and the movable core 42, and the flange part 54 and the movable core 42 The squeeze force by the fuel when the contact portion collides with the fuel increases, and the impact force at each contact portion decreases.
F.第6実施形態:
図13に示すように、第7実施形態のインジェクタ20Fでは、可動コア42Fが、インジェクタ20Fの開弁時に固定コア41に接触する磁気吸引部141と、磁気吸引部141に比べて硬度の高い高硬度部142とを有しており、第1凹部46が、高硬度部142に設けられていることが第1実施形態と異なる。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 F. Sixth embodiment:
As shown in FIG. 13, in theinjector 20F of the seventh embodiment, the movable core 42F has a magnetic attraction portion 141 that contacts the fixed core 41 when the injector 20F is opened, and has a higher hardness than the magnetic attraction portion 141. The first embodiment is different from the first embodiment in that the first recess 46 is provided in the high hardness portion 142. Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
図13に示すように、第7実施形態のインジェクタ20Fでは、可動コア42Fが、インジェクタ20Fの開弁時に固定コア41に接触する磁気吸引部141と、磁気吸引部141に比べて硬度の高い高硬度部142とを有しており、第1凹部46が、高硬度部142に設けられていることが第1実施形態と異なる。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 F. Sixth embodiment:
As shown in FIG. 13, in the
本実施形態では、ニードル50に接触する可動コア42Fの面は、高硬度部142によって構成されている。つまり、可動コア42Fの固定コア41側の面における内周部分と、可動コア42Fの貫通孔43内の面と、可動コア42Fの第1凹部46の面とは、高硬度部142によって構成されている。可動コア42Fの噴孔32側の面は、高硬度部142によって構成されている。可動コア42Fの側面における固定コア41側の領域は、磁気吸引部141によって構成されており、可動コア42Fの側面における噴孔32側の領域は、高硬度部142によって構成されている。高硬度部142の外径は、磁気吸引部141の外径よりも大きい。つまり、可動コア42Fの高硬度部142とハウジング30との隙間は、可動コア42Fの磁気吸引部141とハウジング30との隙間よりも小さい。可動コア42Fにおける固定コア41に接触する領域は、磁気吸引部141によって構成されている。尚、可動コア42Fに対する固定コア41からの磁気吸引力の低下を抑制するために、可動コア42Fにおける固定コア41に接触する領域には、高硬度部142が設けられていないことが好ましい。
In the present embodiment, the surface of the movable core 42F that comes into contact with the needle 50 is configured by the high hardness portion 142. That is, the inner peripheral portion of the surface of the movable core 42F on the fixed core 41 side, the surface in the through hole 43 of the movable core 42F, and the surface of the first recess 46 of the movable core 42F are configured by the high hardness portion 142. ing. The surface on the injection hole 32 side of the movable core 42 </ b> F is configured by a high hardness portion 142. A region on the side of the fixed core 41 on the side surface of the movable core 42F is configured by the magnetic attraction portion 141, and a region on the side of the injection hole 32 on the side surface of the movable core 42F is configured by the high hardness portion 142. The outer diameter of the high hardness portion 142 is larger than the outer diameter of the magnetic attraction portion 141. That is, the gap between the high hardness portion 142 of the movable core 42F and the housing 30 is smaller than the gap between the magnetic attraction portion 141 of the movable core 42F and the housing 30. A region in contact with the fixed core 41 in the movable core 42 </ b> F is configured by the magnetic attraction unit 141. In order to suppress a decrease in magnetic attractive force from the fixed core 41 with respect to the movable core 42F, it is preferable that the high hardness portion 142 is not provided in a region of the movable core 42F that contacts the fixed core 41.
本実施形態では、磁気吸引部141は、磁性材料であるフェライト系ステンレス鋼によって形成されており、高硬度部142は、非磁性材料であるマルテンサイト系ステンレス鋼によって形成されている。高硬度部142と磁気吸引部141とは、例えば、圧入や溶接によって接合される。
In the present embodiment, the magnetic attraction portion 141 is made of a ferritic stainless steel that is a magnetic material, and the high hardness portion 142 is made of a martensitic stainless steel that is a nonmagnetic material. The high hardness part 142 and the magnetic attraction part 141 are joined by press fitting or welding, for example.
磁気吸引部141の硬度および高硬度部142の硬度は、ビッカース硬さ試験(JIS Z 2244)によって調べることができる。フェライト系ステンレス鋼によって形成された磁気吸引部141のビッカース硬さは、200HV以下であり、マルテンサイト系ステンレス鋼によって形成された高硬度部142のビッカース硬さは、633HV~772HVである。
The hardness of the magnetic attraction portion 141 and the hardness of the high hardness portion 142 can be examined by a Vickers hardness test (JIS Z 2244). The Vickers hardness of the magnetic attraction portion 141 formed of ferritic stainless steel is 200 HV or less, and the Vickers hardness of the high hardness portion 142 formed of martensitic stainless steel is 633 HV to 772 HV.
以上で説明した本実施形態のインジェクタ20Fによれば、磁気吸引部141よりも硬度の高い高硬度部142に、第1凹部46が設けられているので、研削加工等によって、第1凹部46を寸法精度良く形成することができる。そのため、ストッパ部53と第1凹部46の側面との隙間をより小さくできるので、ニードル50の移動をより効果的に減速できる。特に、本実施形態では、可動コア42Fとニードル50との接触部や、可動コア42Fとハウジング30との接触部に、磁気吸引部141よりも硬度の高い高硬度部142を設けることによって、これらの接触部における可動コア42Fの摩耗を抑制できる。
According to the injector 20F of the present embodiment described above, the first recess 46 is provided in the high hardness portion 142 having a hardness higher than that of the magnetic attraction portion 141. Therefore, the first recess 46 is formed by grinding or the like. It can be formed with high dimensional accuracy. Therefore, since the gap between the stopper portion 53 and the side surface of the first recess 46 can be made smaller, the movement of the needle 50 can be decelerated more effectively. In particular, in the present embodiment, by providing the high hardness portion 142 having a hardness higher than that of the magnetic attraction portion 141 at the contact portion between the movable core 42F and the needle 50 and the contact portion between the movable core 42F and the housing 30, these are provided. The wear of the movable core 42F at the contact portion can be suppressed.
G.第7実施形態:
図14に示すように、第7実施形態のインジェクタ20Gでは、軸部51とストッパ部53と可動コア42の第1凹部46とによって囲まれた気密室110が設けられておらず、可動コア42Gとハウジング30Gとによって囲まれた気密室110Gが設けられていることが第1実施形態と異なる。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 G. Seventh embodiment:
As shown in FIG. 14, in theinjector 20G of the seventh embodiment, the airtight chamber 110 surrounded by the shaft portion 51, the stopper portion 53, and the first concave portion 46 of the movable core 42 is not provided, and the movable core 42G Unlike the first embodiment, an airtight chamber 110G surrounded by the housing 30G is provided. Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
図14に示すように、第7実施形態のインジェクタ20Gでは、軸部51とストッパ部53と可動コア42の第1凹部46とによって囲まれた気密室110が設けられておらず、可動コア42Gとハウジング30Gとによって囲まれた気密室110Gが設けられていることが第1実施形態と異なる。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 G. Seventh embodiment:
As shown in FIG. 14, in the
本実施形態におけるハウジング30Gは、噴孔32側から順に、噴孔32が形成されたノズルチップ部31Gと、一体形成部131と、第1磁性部34と、非磁性部36と、第2磁性部35と、入口部37とによって構成されている。本実施形態では、ノズルチップ部31Gと一体形成部131とは、溶接によらずに一体として形成されている。一体形成部131と第1磁性部34との間、第1磁性部34と非磁性部36との間、非磁性部36と第2磁性部35との間、第2磁性部35と入口部37との間は、それぞれ、溶接部38において溶接されている。尚、ノズルチップ部31Gのことを噴孔形成部と呼ぶこともある。
The housing 30G in the present embodiment includes, in order from the nozzle hole 32 side, the nozzle tip part 31G in which the nozzle holes 32 are formed, the integrally formed part 131, the first magnetic part 34, the nonmagnetic part 36, and the second magnetic part. The part 35 and the inlet part 37 are comprised. In the present embodiment, the nozzle tip portion 31G and the integral forming portion 131 are integrally formed without being welded. Between the integrally formed portion 131 and the first magnetic portion 34, between the first magnetic portion 34 and the nonmagnetic portion 36, between the nonmagnetic portion 36 and the second magnetic portion 35, and between the second magnetic portion 35 and the entrance portion. 37 is welded at a welded portion 38. The nozzle tip portion 31G may be referred to as a nozzle hole forming portion.
一体形成部131は、内径の小さな内径縮小部135と、内径縮小部135よりも固定コア41側に設けられ、内径縮小部135よりも内径の大きな内径拡大部136とを有している。内径縮小部135と内径拡大部136とは、段差部39によって接続されている。内径縮小部135は、後述する可動コア42Gの第1摺動部147に対向する第1被摺動部137を有している。内径拡大部136は、後述する可動コア42Gの第2摺動部148に対向する第2被摺動部138を有している。つまり、噴孔32と第1被摺動部137と第2被摺動部138とが、一部品内に形成されている。尚、摺動とは、可動コア42Gとハウジング30Gとの間に燃料を介在した状態、または、可動コア42Gとハウジング30Gとの間に燃料を介在しない状態で、可動コア42Gが、軸方向AXに沿って、ハウジング30Gの内面上を滑るように動くことを意味する。
The integral forming part 131 has an inner diameter reducing part 135 having a smaller inner diameter and an inner diameter expanding part 136 having a larger inner diameter than the inner diameter reducing part 135 and provided on the fixed core 41 side with respect to the inner diameter reducing part 135. The inner diameter reduced portion 135 and the inner diameter enlarged portion 136 are connected by a step portion 39. The inner diameter reduction part 135 has a first sliding part 137 facing a first sliding part 147 of the movable core 42G described later. The inner diameter enlarged portion 136 has a second sliding portion 138 that faces a second sliding portion 148 of the movable core 42G described later. That is, the nozzle hole 32, the first sliding portion 137, and the second sliding portion 138 are formed in one component. The sliding means that the movable core 42G moves in the axial direction AX in a state where fuel is interposed between the movable core 42G and the housing 30G or in a state where fuel is not interposed between the movable core 42G and the housing 30G. Along the inner surface of the housing 30G.
本実施形態では、ノズルチップ部31Gおよび一体形成部131は、非磁性材料であるマルテンサイト系ステンレス鋼によって形成されている。第1磁性部34および第2磁性部35は、磁性材料であるフェライト系ステンレス鋼によって形成されている。非磁性部36は、非磁性材料であるオーステナイト系ステンレス鋼によって形成されている。
In the present embodiment, the nozzle tip portion 31G and the integrally formed portion 131 are formed of martensitic stainless steel that is a nonmagnetic material. The first magnetic part 34 and the second magnetic part 35 are made of ferritic stainless steel, which is a magnetic material. The nonmagnetic portion 36 is formed of austenitic stainless steel that is a nonmagnetic material.
本実施形態における可動コア42Gは、外径の大きな円筒状の大径部146と、大径部146よりも噴孔32側に設けられた、大径部146よりも外径の小さな円筒状の小径部145とを有している。貫通孔43は、大径部146と小径部145とを軸方向AXに貫通している。小径部145は、ハウジング30Gに設けられた第1被摺動部137に対向する第1摺動部147を有しており、大径部146は、ハウジング30Gに設けられた第2被摺動部138に対向する第2摺動部148を有している。第1摺動部147は、小径部145の側面に設けられており、第2摺動部148は、大径部146の側面に設けられている。
The movable core 42G in the present embodiment has a cylindrical large-diameter portion 146 having a large outer diameter and a cylindrical shape having a smaller outer diameter than the large-diameter portion 146 provided on the injection hole 32 side of the large-diameter portion 146. A small diameter portion 145. The through hole 43 passes through the large diameter portion 146 and the small diameter portion 145 in the axial direction AX. The small diameter portion 145 has a first sliding portion 147 facing the first sliding portion 137 provided in the housing 30G, and the large diameter portion 146 is a second sliding portion provided in the housing 30G. A second sliding portion 148 facing the portion 138 is provided. The first sliding portion 147 is provided on the side surface of the small diameter portion 145, and the second sliding portion 148 is provided on the side surface of the large diameter portion 146.
本実施形態では、可動コア42Gは、インジェクタ20Gの開弁時に固定コア41に接触する磁気吸引部141と、磁気吸引部141に比べて硬度の高い高硬度部142とを有している。第1摺動部147と第2摺動部148とは、高硬度部142に設けられている。本実施形態では、小径部145は、高硬度部142のみによって構成されている。大径部146は、高硬度部142と磁気吸引部141とによって構成されている。大径部146の固定コア41側の面における内周部分は、高硬度部142によって構成されている。大径部146の噴孔32側の面は、高硬度部142によって構成されている。大径部146の貫通孔43内の面は、高硬度部142によって構成されている。大径部146の側面における固定コア41側の領域は、磁気吸引部141によって構成されており、大径部146の側面における噴孔32側の領域は、高硬度部142によって構成されている。高硬度部142の外径は、磁気吸引部141の外径よりも大きい。つまり、可動コア42Gの高硬度部142とハウジング30Gとの隙間は、可動コア42Gの磁気吸引部141とハウジング30Gとの隙間よりも小さい。可動コア42Gにおける固定コア41に接触する領域は、磁気吸引部141によって構成されている。
In the present embodiment, the movable core 42G has a magnetic attracting portion 141 that contacts the fixed core 41 when the injector 20G is opened, and a high hardness portion 142 that is harder than the magnetic attracting portion 141. The first sliding portion 147 and the second sliding portion 148 are provided in the high hardness portion 142. In the present embodiment, the small diameter portion 145 is configured only by the high hardness portion 142. The large diameter portion 146 includes a high hardness portion 142 and a magnetic attraction portion 141. An inner peripheral portion of the surface of the large diameter portion 146 on the fixed core 41 side is configured by a high hardness portion 142. The surface on the nozzle hole 32 side of the large diameter portion 146 is constituted by the high hardness portion 142. The surface in the through hole 43 of the large diameter portion 146 is configured by the high hardness portion 142. The region on the side of the fixed core 41 on the side surface of the large diameter portion 146 is configured by the magnetic attraction portion 141, and the region on the side of the injection hole 32 on the side surface of the large diameter portion 146 is configured by the high hardness portion 142. The outer diameter of the high hardness portion 142 is larger than the outer diameter of the magnetic attraction portion 141. That is, the gap between the high hardness portion 142 of the movable core 42G and the housing 30G is smaller than the gap between the magnetic attraction portion 141 of the movable core 42G and the housing 30G. A region in contact with the fixed core 41 in the movable core 42 </ b> G is configured by the magnetic attraction unit 141.
本実施形態では、ニードル50のストッパ部53が、軸方向AXにおける、噴孔32と、第1摺動部147が設けられた可動コア42Gの小径部145との間に設けられている。例えば、ニードル50の軸部51と可動コア42Gとの間に、金属粉等の異物が噛み込まれた場合、軸方向AXにおけるフランジ部54と可動コア42Gとの間隔が、閉弁状態における第2スプリング62の長さよりも大きい状態から戻らなくなり、開弁したまま閉弁されなくなるインジェクタ20Gの開故障が生じる可能性がある。そのため、軸方向AXにおけるフランジ部54と可動コア42Gとの間隔が、閉弁状態における第2スプリング62の長さ以下となるように、ストッパ部53によって、フランジ部54と可動コア42Gとの相対的な移動量が規制されている。
In the present embodiment, the stopper portion 53 of the needle 50 is provided between the nozzle hole 32 and the small diameter portion 145 of the movable core 42G provided with the first sliding portion 147 in the axial direction AX. For example, when a foreign matter such as metal powder is caught between the shaft portion 51 of the needle 50 and the movable core 42G, the distance between the flange portion 54 and the movable core 42G in the axial direction AX is the first in the valve-closed state. There is a possibility that an open failure of the injector 20G that does not return from a state that is longer than the length of the two springs 62 and remains closed while the valve is open may occur. Therefore, the stopper portion 53 causes the flange portion 54 and the movable core 42G to move relative to each other so that the distance between the flange portion 54 and the movable core 42G in the axial direction AX is equal to or less than the length of the second spring 62 in the valve-closed state. Movement amount is regulated.
本実施形態では、磁気吸引部141は、磁性材料であるフェライト系ステンレス鋼によって形成されており、高硬度部142は、非磁性材料であるマルテンサイト系ステンレス鋼によって形成されている。高硬度部142と磁気吸引部141とは、例えば、圧入や溶接によって接合される。尚、磁気吸引部141の硬度および高硬度部142の硬度は、ビッカース硬さ試験(JIS Z 2244)によって調べることができる。
In the present embodiment, the magnetic attraction portion 141 is made of a ferritic stainless steel that is a magnetic material, and the high hardness portion 142 is made of a martensitic stainless steel that is a nonmagnetic material. The high hardness part 142 and the magnetic attraction part 141 are joined by press fitting or welding, for example. In addition, the hardness of the magnetic attraction part 141 and the hardness of the high hardness part 142 can be investigated by a Vickers hardness test (JIS Z 2244).
本実施形態では、軸方向AXにおける第1被摺動部137と第2摺動部148との間には、可動コア42Gの大径部146における噴孔32側の面と、可動コア42の小径部145における側面と、ハウジング30Gの一体形成部131における段差部39と、ハウジング30Gの一体形成部131における内径拡大部136とによって囲まれた空間が形成されている。この空間のことを気密室110Gとも呼ぶ。気密室110Gは、燃料を封入可能な空間である。第1摺動部147と第1被摺動部137との隙間の大きさと、第2摺動部148と第2被摺動部138との隙間の大きさとは、少なくとも可動コア42Gの移動が停止した状態において気密室110G内に燃料を供給可能で、かつ、気密室110G内の燃料が所定の圧力以上に昇圧された際に気密室110G内から燃料を排出可能に設定される。
In the present embodiment, between the first sliding portion 137 and the second sliding portion 148 in the axial direction AX, the surface on the nozzle hole 32 side of the large-diameter portion 146 of the movable core 42G and the movable core 42 A space surrounded by the side surface of the small diameter portion 145, the stepped portion 39 in the integrally formed portion 131 of the housing 30G, and the inner diameter enlarged portion 136 in the integrally formed portion 131 of the housing 30G is formed. This space is also called an airtight chamber 110G. The airtight chamber 110G is a space in which fuel can be enclosed. The size of the gap between the first sliding portion 147 and the first sliding portion 137 and the size of the gap between the second sliding portion 148 and the second sliding portion 138 are at least the movement of the movable core 42G. In the stopped state, the fuel can be supplied into the hermetic chamber 110G, and the fuel can be discharged from the hermetic chamber 110G when the fuel in the hermetic chamber 110G is boosted to a predetermined pressure or higher.
気密室110G内には、可動コア42Gを固定コア41側に向かって付勢する第2スプリング62が設けられている。第2スプリング62は、可動コア42Gの大径部146における噴孔32側の面を付勢する。
In the hermetic chamber 110G, a second spring 62 that urges the movable core 42G toward the fixed core 41 is provided. The second spring 62 biases the surface on the nozzle hole 32 side in the large diameter portion 146 of the movable core 42G.
図14から図17を用いて、本実施形態のインジェクタ20Gにおいて行われる開弁動作を説明する。図14に示すように、閉弁状態では、弁部52は弁座33に接触している。閉弁状態では、コイル44への通電は行われていない。フランジ部54は、第1スプリング61によって固定コア41側から噴孔32側に向かって押されている。可動コア42Gの大径部146は、第2スプリング62によって、噴孔32側から固定コア41側に向かって押されている。そのため、フランジ部54と、可動コア42Gの大径部146とが接触した状態となっている。閉弁状態における可動コア42Gの大径部146と固定コア41との間には、開弁のために必要な所定の間隔が確保されている。気密室110G内には、第1摺動部147と第1被摺動部137との隙間や、第2摺動部148と第2被摺動部138との隙間から、第1流路101内の燃料が流入することによって、燃料が充満している。このときの気密室110G内の燃料の圧力は、第1流路101内の燃料の圧力と同等程度である。尚、本実施形態では、この状態を初期状態とも呼ぶ。
The valve opening operation performed in the injector 20G of the present embodiment will be described with reference to FIGS. As shown in FIG. 14, the valve portion 52 is in contact with the valve seat 33 in the valve closing state. In the closed state, the coil 44 is not energized. The flange portion 54 is pushed from the fixed core 41 side toward the nozzle hole 32 side by the first spring 61. The large diameter portion 146 of the movable core 42G is pushed by the second spring 62 from the injection hole 32 side toward the fixed core 41 side. Therefore, the flange portion 54 and the large diameter portion 146 of the movable core 42G are in contact with each other. A predetermined interval necessary for opening the valve is secured between the large-diameter portion 146 of the movable core 42G and the fixed core 41 in the valve-closed state. In the airtight chamber 110 </ b> G, the first flow path 101 is formed from a gap between the first sliding portion 147 and the first sliding portion 137 and a gap between the second sliding portion 148 and the second sliding portion 138. The fuel is filled by the inflow of the fuel inside. The pressure of the fuel in the hermetic chamber 110G at this time is approximately the same as the pressure of the fuel in the first flow path 101. In this embodiment, this state is also called an initial state.
図15に示すように、コイル44への通電が開始されると、可動コア42Gの磁気吸引部141に対して固定コア41からの磁気吸引力が働き、可動コア42Gが噴孔32側から固定コア41側に向かって移動することによって、可動コア42Gの大径部146は、固定コア41に衝突する。この磁気吸引力は、コイル44への通電に伴って固定コア41の周りに形成される磁界によって生じる。初期状態では、フランジ部54と、可動コア42Gの大径部146とが接触しているため、可動コア42Gが噴孔32側から固定コア41側に向かって移動する際、フランジ部54が可動コア42Gの大径部146に押されて、可動コア42Gとともにニードル50が移動する。可動コア42Gの移動に伴い、可動コア42Gの大径部146における噴孔32側の面と、ハウジング30Gの段差部39とが軸方向AXにおいて離間することによって、気密室110Gの容積が拡大される。気密室110Gの容積が拡大されることによって、気密室110G内に封入された燃料が負圧にされるため、可動コア42Gおよびニードル50の移動は減速される。そのため、可動コア42Gの大径部146と固定コア41とが衝突する際の衝撃力が低減される。つまり、気密室110Gがダンパの役割を果たす。可動コア42Gとともにニードル50が移動することによって、弁部52が弁座33から離れて、噴孔32からの燃料の噴射が開始される。ニードル50の移動に伴い、第1スプリング61は、フランジ部54に押されて縮むため、第1スプリング61には弾性エネルギが蓄えられる。
As shown in FIG. 15, when energization to the coil 44 is started, the magnetic attractive force from the fixed core 41 acts on the magnetic attractive portion 141 of the movable core 42G, and the movable core 42G is fixed from the injection hole 32 side. By moving toward the core 41 side, the large-diameter portion 146 of the movable core 42G collides with the fixed core 41. This magnetic attraction force is generated by a magnetic field formed around the fixed core 41 as the coil 44 is energized. In the initial state, since the flange portion 54 and the large-diameter portion 146 of the movable core 42G are in contact with each other, the flange portion 54 is movable when the movable core 42G moves from the injection hole 32 side toward the fixed core 41 side. The needle 50 moves together with the movable core 42G by being pushed by the large diameter portion 146 of the core 42G. As the movable core 42G moves, the surface of the large-diameter portion 146 of the movable core 42G on the injection hole 32 side and the stepped portion 39 of the housing 30G are separated in the axial direction AX, whereby the volume of the hermetic chamber 110G is expanded. The By expanding the volume of the hermetic chamber 110G, the fuel sealed in the hermetic chamber 110G is set to a negative pressure, so that the movement of the movable core 42G and the needle 50 is decelerated. Therefore, the impact force when the large-diameter portion 146 of the movable core 42G collides with the fixed core 41 is reduced. That is, the hermetic chamber 110G serves as a damper. When the needle 50 moves together with the movable core 42G, the valve portion 52 moves away from the valve seat 33, and fuel injection from the injection hole 32 is started. As the needle 50 moves, the first spring 61 is pushed by the flange portion 54 and contracts, so that elastic energy is stored in the first spring 61.
図16示すように、可動コア42Gの大径部146が固定コア41に衝突した後、ニードル50が慣性によって可動コア42Gから離脱して、第2流路102の上流側に向かって、さらに移動を続ける。可動コア42Gとともにニードル50が移動する間に、気密室110G内の燃料が負圧にされたことによって、ニードル50の移動が減速されたことに伴い、ストッパ部53と、可動コア42Gの小径部145とが低速で衝突する。そのため、ストッパ部53と、可動コア42Gの小径部145とが衝突する際の衝撃力が低減される。尚、可動コア42Gの大径部146と固定コア41との衝突による衝撃力は、ニードル50が可動コア42Gから離脱することによっても低減される。可動コア42Gの大径部146が固定コア41に衝突して、可動コア42Gの移動が停止した後、第1流路101内から気密室110G内に燃料が流入することによって、気密室110G内の燃料の圧力は、第1流路101内の燃料の圧力と同等程度に戻る。
As shown in FIG. 16, after the large-diameter portion 146 of the movable core 42G collides with the fixed core 41, the needle 50 is detached from the movable core 42G due to inertia and further moves toward the upstream side of the second flow path 102. Continue. While the needle 50 moves together with the movable core 42G, the fuel in the hermetic chamber 110G is made negative pressure, so that the movement of the needle 50 is decelerated, so that the stopper portion 53 and the small diameter portion of the movable core 42G 145 collides at low speed. Therefore, the impact force when the stopper part 53 and the small diameter part 145 of the movable core 42G collide is reduced. The impact force caused by the collision between the large-diameter portion 146 of the movable core 42G and the fixed core 41 is also reduced by the needle 50 being detached from the movable core 42G. After the large-diameter portion 146 of the movable core 42G collides with the fixed core 41 and the movement of the movable core 42G stops, the fuel flows into the hermetic chamber 110G from the first flow path 101, so that the inside of the hermetic chamber 110G. The fuel pressure returns to the same level as the fuel pressure in the first flow path 101.
図17に示すように、ストッパ部53と、可動コア42Gの小径部145とが衝突した後、第1スプリング61に蓄えられた弾性エネルギが、ニードル50を押し戻す動力として放出されることによって、ニードル50が固定コア41側から噴孔32側に向かって移動して、フランジ部54は、可動コア42Gの大径部146に衝突する。この際、ストッパ部53と、可動コア42Gの小径部145とが衝突した際の衝撃力が低減されたことに伴い、ニードル50の跳ね返りが抑制されている。そのため、フランジ部54と、可動コア42Gの大径部146とが衝突する際の衝撃力は低減される。その後、フランジ部54が可動コア42Gの大径部146に支持されることによって、弁部52と弁座33との間のリフト量が確保される。以上で説明した一連の動作によって、インジェクタ20Gにおける開弁動作が完了する。
As shown in FIG. 17, after the stopper portion 53 and the small diameter portion 145 of the movable core 42G collide, the elastic energy stored in the first spring 61 is released as power to push back the needle 50, thereby causing the needle 50 moves from the fixed core 41 side toward the injection hole 32 side, and the flange portion 54 collides with the large-diameter portion 146 of the movable core 42G. At this time, bounce of the needle 50 is suppressed as the impact force when the stopper portion 53 and the small diameter portion 145 of the movable core 42G collide with each other is reduced. Therefore, the impact force when the flange portion 54 and the large-diameter portion 146 of the movable core 42G collide is reduced. Thereafter, the flange portion 54 is supported by the large-diameter portion 146 of the movable core 42G, so that a lift amount between the valve portion 52 and the valve seat 33 is ensured. The valve opening operation in the injector 20G is completed by the series of operations described above.
図18から図20を用いて、本実施形態のインジェクタ20Gにおいて行われる閉弁動作を説明する。図18に示すように、コイル44への通電が停止されることによって、可動コア42Gの磁気吸引部141に働いていた固定コア41からの磁気吸引力が除荷されて、第1スプリング61に付勢されたニードル50が固定コア41側から噴孔32側に向かって移動することによって、弁部52が弁座33に衝突する。そのため、閉弁状態となり、噴孔32からの燃料の噴射が停止される。ニードル50が移動する際、可動コア42Gの大径部146がフランジ部54に押されることによって、可動コア42Gは、ニードル50とともに移動する。可動コア42Gの移動に伴い、可動コア42Gの大径部146における噴孔32側の面と、ハウジング30Gの段差部39とが軸方向AXにおいて接近することによって、気密室110Gの容積が縮小される。気密室110Gの容積が縮小されることによって、気密室110G内に封入された燃料が昇圧されるため、可動コア42Gおよびニードル50の移動は減速される。そのため、弁部52と弁座33とが衝突する際の衝撃力が低減される。尚、気密室110G内の燃料が所定の圧力以上に昇圧されると、気密室110G内の燃料は、第1摺動部147と第1被摺動部137との隙間や、第2摺動部148と第2被摺動部138との隙間から徐々に排出される。
A valve closing operation performed in the injector 20G of the present embodiment will be described with reference to FIGS. As shown in FIG. 18, when the energization of the coil 44 is stopped, the magnetic attractive force from the fixed core 41 that has been acting on the magnetic attractive portion 141 of the movable core 42 </ b> G is unloaded, and the first spring 61 is loaded. When the urged needle 50 moves from the fixed core 41 side toward the nozzle hole 32 side, the valve portion 52 collides with the valve seat 33. Therefore, the valve is closed and the fuel injection from the nozzle hole 32 is stopped. When the needle 50 moves, the large-diameter portion 146 of the movable core 42G is pushed by the flange portion 54, so that the movable core 42G moves together with the needle 50. As the movable core 42G moves, the surface of the large-diameter portion 146 of the movable core 42G closer to the injection hole 32 and the stepped portion 39 of the housing 30G approach each other in the axial direction AX, thereby reducing the volume of the hermetic chamber 110G. The By reducing the volume of the hermetic chamber 110G, the fuel sealed in the hermetic chamber 110G is pressurized, so that the movement of the movable core 42G and the needle 50 is decelerated. Therefore, the impact force when the valve part 52 and the valve seat 33 collide is reduced. Note that when the fuel in the hermetic chamber 110G is increased to a predetermined pressure or higher, the fuel in the hermetic chamber 110G becomes a gap between the first sliding portion 147 and the first sliding portion 137 or the second sliding. It is gradually discharged from the gap between the portion 148 and the second sliding portion 138.
図19に示すように、弁部52が弁座33に衝突した後、可動コア42Gが慣性によって、固定コア41側から噴孔32側に向かって、さらに移動を続けることによって、ストッパ部53と、可動コア42Gの小径部145とが衝突する。気密室110Gの容積がさらに縮小されることによって、気密室110G内の燃料はさらに昇圧される。気密室110G内の燃料がさらに昇圧されることに伴って、可動コア42Gの移動は減速される。そのため、ストッパ部53と、可動コア42Gの小径部145とが衝突する際の衝撃力が低減される。尚、弁部52と弁座33との衝突による衝撃力は、可動コア42Gがニードル50とは別に移動を続けることによっても低減される。
As shown in FIG. 19, after the valve portion 52 collides with the valve seat 33, the movable core 42G continues to move from the fixed core 41 side toward the injection hole 32 side due to inertia, thereby The small diameter portion 145 of the movable core 42G collides. By further reducing the volume of the hermetic chamber 110G, the fuel in the hermetic chamber 110G is further pressurized. As the fuel in the hermetic chamber 110G is further pressurized, the movement of the movable core 42G is decelerated. Therefore, the impact force when the stopper part 53 and the small diameter part 145 of the movable core 42G collide is reduced. The impact force caused by the collision between the valve portion 52 and the valve seat 33 is also reduced by the movement of the movable core 42G separately from the needle 50.
図20に示すように、ストッパ部53と、可動コア42Gの小径部145とが衝突した際の衝撃力や、第2スプリング62が可動コア42Gを固定コア41側に押し戻す力によって、可動コア42Gが噴孔32側から固定コア41側に向かって跳ね返り、フランジ部54と、可動コア42Gの大径部146とが衝突する。気密室110G内の燃料が昇圧されたことによって、ストッパ部53と、可動コア42Gの小径部145とが衝突した際の衝撃力が低減されたことに伴い、可動コア42Gの跳ね返りが抑制されている。そのため、可動コア42Gの大径部146とフランジ部54とが衝突する際の衝撃力は低減される。その後、可動コア42Gは第2スプリング62に支持されて、初期状態に戻る。以上で説明した一連の動作によって、インジェクタ20Gにおける閉弁動作が完了する。
As shown in FIG. 20, the movable core 42G is affected by the impact force when the stopper 53 and the small diameter portion 145 of the movable core 42G collide, or by the force by which the second spring 62 pushes the movable core 42G back to the fixed core 41 side. Rebounds from the injection hole 32 side toward the fixed core 41 side, and the flange portion 54 and the large-diameter portion 146 of the movable core 42G collide. By boosting the fuel in the hermetic chamber 110G, the impact force when the stopper 53 and the small diameter portion 145 of the movable core 42G collide with each other is reduced, so that the rebound of the movable core 42G is suppressed. Yes. Therefore, the impact force when the large-diameter portion 146 of the movable core 42G collides with the flange portion 54 is reduced. Thereafter, the movable core 42G is supported by the second spring 62 and returns to the initial state. The valve closing operation in the injector 20G is completed by the series of operations described above.
以上で説明した本実施形態のインジェクタ20Gによれば、開弁動作の際に、気密室110G内の燃料が負圧にされて、可動コア42Gおよびニードル50の移動が減速されることによって、可動コア42Gの大径部146と固定コア41とが衝突する際の衝撃力、および、ストッパ部53と可動コア42Gの小径部145とが衝突する際の衝撃力が低減される。これに伴い、フランジ部54と可動コア42Gの大径部146とが衝突する際の衝撃力も低減される。また、閉弁動作の際に、気密室110G内の燃料が昇圧されて、可動コア42Gおよびニードル50の移動が減速されることによって、弁部52と弁座33とが衝突する際の衝撃力、および、可動コア42Gの小径部145とストッパ部53とが衝突する際の衝撃力が低減される。これに伴い、可動コア42Gの大径部146とフランジ部54とが衝突する際の衝撃力も低減される。そのため、可動コア42Gの大径部146と固定コア41との接触部と、ストッパ部53と可動コア42Gの小径部145との接触部と、フランジ部54と可動コア42Gの大径部146との接触部と、弁部52と弁座33との接触部とにおける摩耗を抑制できる。
According to the injector 20G of the present embodiment described above, the fuel in the hermetic chamber 110G is made negative pressure during the valve opening operation, and the movement of the movable core 42G and the needle 50 is decelerated. The impact force when the large-diameter portion 146 of the core 42G collides with the fixed core 41 and the impact force when the stopper portion 53 and the small-diameter portion 145 of the movable core 42G collide are reduced. Accordingly, the impact force when the flange portion 54 and the large-diameter portion 146 of the movable core 42G collide is also reduced. Further, during the valve closing operation, the fuel in the hermetic chamber 110G is increased in pressure, and the movement of the movable core 42G and the needle 50 is decelerated, whereby the impact force when the valve portion 52 and the valve seat 33 collide with each other. And the impact force at the time of the small diameter part 145 of the movable core 42G and the stopper part 53 colliding is reduced. Accordingly, the impact force when the large-diameter portion 146 of the movable core 42G collides with the flange portion 54 is also reduced. Therefore, the contact portion between the large diameter portion 146 of the movable core 42G and the fixed core 41, the contact portion between the stopper portion 53 and the small diameter portion 145 of the movable core 42G, the flange portion 54, and the large diameter portion 146 of the movable core 42G And the wear at the contact portion between the valve portion 52 and the valve seat 33 can be suppressed.
また、本実施形態では、可動コア42Gの磁気吸引部141よりも硬度の高い高硬度部142に第1摺動部147および第2摺動部148が設けられ、可動コア42Gの磁気吸引部141よりも硬度の高いハウジング30Gの一体形成部131に第1被摺動部137および第2被摺動部138が設けられているので、研削加工等によって、第1摺動部147と第2摺動部148と第1被摺動部137と第2被摺動部138とを寸法精度良く形成することができる。そのため、第1摺動部147と第1被摺動部137との隙間や、第2摺動部148と第2被摺動部138との隙間をより小さくできるので、可動コア42Gおよびニードル50の移動をより効果的に減速できる。
In the present embodiment, the first sliding portion 147 and the second sliding portion 148 are provided in the high hardness portion 142 having a higher hardness than the magnetic attraction portion 141 of the movable core 42G, and the magnetic attraction portion 141 of the movable core 42G. Since the first sliding portion 137 and the second sliding portion 138 are provided in the integrally formed portion 131 of the housing 30G having higher hardness, the first sliding portion 147 and the second sliding portion are provided by grinding or the like. The moving part 148, the first sliding part 137, and the second sliding part 138 can be formed with high dimensional accuracy. Therefore, the gap between the first sliding part 147 and the first sliding part 137 and the gap between the second sliding part 148 and the second sliding part 138 can be made smaller, so that the movable core 42G and the needle 50 can be reduced. Can be decelerated more effectively.
また、本実施形態では、第1被摺動部137を有する一体形成部131と、噴孔32を有するノズルチップ部31Gとが、一体として形成されている。そのため、第1実施形態のインジェクタ20に比べて、支持面SPよりも噴孔32側に設けられた溶接部38の個数を減らすことができる。特に、本実施形態では、第1実施形態のインジェクタ20に比べて、ハウジング30Gにおける溶接部38の個数を増やすことなく、硬度の比較的高い部材によって第1被摺動部137を構成できる。尚、第1実施形態のインジェクタ20に比べて、支持面SPよりも固定コア41側における溶接部38の個数が増えるが、インジェクタ20Gを支持面SPに向かって押し付けて固定することによって、支持面SPよりも固定コア41側における溶接部38に、予め圧縮応力を作用させておくことができるため、弁部52が弁座33に衝突することによる引張応力に対して、溶接部38が破損することを抑制できる。
In the present embodiment, the integrally formed portion 131 having the first sliding portion 137 and the nozzle tip portion 31G having the injection hole 32 are integrally formed. Therefore, as compared with the injector 20 of the first embodiment, the number of welds 38 provided on the nozzle hole 32 side with respect to the support surface SP can be reduced. In particular, in the present embodiment, the first sliding portion 137 can be configured by a member having a relatively high hardness without increasing the number of welded portions 38 in the housing 30G as compared with the injector 20 of the first embodiment. Note that the number of welds 38 on the fixed core 41 side of the support surface SP is larger than that of the injector 20 of the first embodiment, but the support surface can be obtained by pressing the injector 20G toward the support surface SP and fixing it. Since the compressive stress can be applied to the welded portion 38 on the fixed core 41 side from the SP in advance, the welded portion 38 is damaged by the tensile stress caused by the valve portion 52 colliding with the valve seat 33. This can be suppressed.
また、本実施形態では、気密室110G内に第2スプリング62が設けられているため、可動コア42Gの小径部145よりも噴孔32側に第2スプリング62が設けられた形態よりも、軸方向AXにおけるインジェクタ20Gの小型化を図ることができる。
Further, in the present embodiment, since the second spring 62 is provided in the hermetic chamber 110G, the shaft is more than the configuration in which the second spring 62 is provided closer to the injection hole 32 than the small diameter portion 145 of the movable core 42G. Miniaturization of the injector 20G in the direction AX can be achieved.
また、本実施形態では、ニードル50のストッパ部53は、軸方向AXにおける噴孔32と可動コア42Gの小径部145との間に設けられている。そのため、簡易な構成によって、可動コア42Gの大径部146における噴孔32側の受圧面積を確保しつつ、インジェクタ20Gの開故障を抑制できる。
In the present embodiment, the stopper portion 53 of the needle 50 is provided between the nozzle hole 32 in the axial direction AX and the small diameter portion 145 of the movable core 42G. Therefore, an open failure of the injector 20G can be suppressed with a simple configuration while ensuring a pressure receiving area on the injection hole 32 side in the large diameter portion 146 of the movable core 42G.
H.第8実施形態:
図21に示すように、第8実施形態のインジェクタ20Hでは、可動コア42Hに、第1弾性部材201と、第2弾性部材202と、第1低摩擦部材211と、第2低摩擦部材212とが設けられていることが第1実施形態と異なる。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 H. Eighth embodiment:
As shown in FIG. 21, in theinjector 20H of the eighth embodiment, the movable core 42H includes a first elastic member 201, a second elastic member 202, a first low friction member 211, and a second low friction member 212. Is different from the first embodiment. Other configurations and opening / closing operations are the same as those in the first embodiment unless otherwise specified.
図21に示すように、第8実施形態のインジェクタ20Hでは、可動コア42Hに、第1弾性部材201と、第2弾性部材202と、第1低摩擦部材211と、第2低摩擦部材212とが設けられていることが第1実施形態と異なる。その他の構成や開閉動作は、特に説明しない限り、第1実施形態と同じである。 H. Eighth embodiment:
As shown in FIG. 21, in the
第1弾性部材201および第2弾性部材202は、ニードル50の軸部51の径方向における、可動コア42Hとニードル50との隙間に配置されている。第1弾性部材201および第2弾性部材202は、それぞれ、環状の外形を有している。第1弾性部材201の直径は、第2弾性部材202の直径よりも大きい。第1弾性部材201は、ニードル50のストッパ部53の外周を囲むように配置されている。第2弾性部材202は、ストッパ部53とフランジ部54との間におけるニードル50の軸部51の外周を囲むように配置されている。可動コア42Hにおける第1凹部46の内壁面には、第1溝部241が設けられている。可動コア42Hにおける貫通孔43の内壁面には、第2溝部242が設けられている。第1溝部241および第2溝部242は、それぞれ、可動コア42Hの円周方向に沿って設けられた環状の溝である。第1弾性部材201は、第1溝部241に嵌め込まれている。第2弾性部材202は、第2溝部242に嵌め込まれている。
The first elastic member 201 and the second elastic member 202 are disposed in the gap between the movable core 42H and the needle 50 in the radial direction of the shaft portion 51 of the needle 50. The first elastic member 201 and the second elastic member 202 each have an annular outer shape. The diameter of the first elastic member 201 is larger than the diameter of the second elastic member 202. The first elastic member 201 is disposed so as to surround the outer periphery of the stopper portion 53 of the needle 50. The second elastic member 202 is disposed so as to surround the outer periphery of the shaft portion 51 of the needle 50 between the stopper portion 53 and the flange portion 54. A first groove 241 is provided on the inner wall surface of the first recess 46 in the movable core 42H. A second groove 242 is provided on the inner wall surface of the through-hole 43 in the movable core 42H. The first groove portion 241 and the second groove portion 242 are each an annular groove provided along the circumferential direction of the movable core 42H. The first elastic member 201 is fitted in the first groove portion 241. The second elastic member 202 is fitted in the second groove portion 242.
第1弾性部材201および第2弾性部材202は、弾性を有する材質によって形成されている。本実施形態では、第1弾性部材201および第2弾性部材202は、それぞれ、ゴムによって形成されている。ゴムには、例えば、フッ素ゴムや、エチレンプロピレンゴム(EPDM)や、シリコンゴム(VMQ)を用いることができる。第1弾性部材201および第2弾性部材202は、熱可塑性エラストマによって形成されてもよい。熱可塑性エラストマには、例えば、熱可塑性ポリウレタンを用いることができる。
The first elastic member 201 and the second elastic member 202 are made of an elastic material. In the present embodiment, the first elastic member 201 and the second elastic member 202 are each formed of rubber. As the rubber, for example, fluorine rubber, ethylene propylene rubber (EPDM), or silicon rubber (VMQ) can be used. The first elastic member 201 and the second elastic member 202 may be formed of a thermoplastic elastomer. For the thermoplastic elastomer, for example, thermoplastic polyurethane can be used.
第1低摩擦部材211は、第1弾性部材201とストッパ部53との間に配置されている。第2低摩擦部材212は、第2弾性部材202と、ストッパ部53とフランジ部54との間における軸部51との間に配置されている。第1低摩擦部材211および第2低摩擦部材212は、それぞれ、環状の外形を有している。第1低摩擦部材211の直径は、第2低摩擦部材212の直径よりも大きい。第1弾性部材201は、第1低摩擦部材211を介してストッパ部53に接触しており、第1低摩擦部材211を介してストッパ部53から圧縮力を受けている。第2弾性部材202は、第2低摩擦部材212を介して、ストッパ部53とフランジ部54との間における軸部51に接触しており、第2低摩擦部材212を介して軸部51から圧縮力を受けている。
The first low friction member 211 is disposed between the first elastic member 201 and the stopper portion 53. The second low friction member 212 is disposed between the second elastic member 202 and the shaft portion 51 between the stopper portion 53 and the flange portion 54. The first low friction member 211 and the second low friction member 212 each have an annular outer shape. The diameter of the first low friction member 211 is larger than the diameter of the second low friction member 212. The first elastic member 201 is in contact with the stopper portion 53 via the first low friction member 211 and receives a compressive force from the stopper portion 53 via the first low friction member 211. The second elastic member 202 is in contact with the shaft portion 51 between the stopper portion 53 and the flange portion 54 via the second low friction member 212, and from the shaft portion 51 via the second low friction member 212. It receives compressive force.
第1低摩擦部材211の摩擦係数は、第1弾性部材201の摩擦係数よりも小さい。第2低摩擦部材212の摩擦係数は、第2弾性部材202の摩擦係数よりも小さい。本実施形態では、第1低摩擦部材211および第2低摩擦部材212は、それぞれ、テフロン樹脂(テフロンは登録商標)によって形成されている。第1低摩擦部材211および第2低摩擦部材212は、ポリアミドや、ポリエステルによって形成されてもよい。
The friction coefficient of the first low friction member 211 is smaller than the friction coefficient of the first elastic member 201. The friction coefficient of the second low friction member 212 is smaller than the friction coefficient of the second elastic member 202. In the present embodiment, the first low friction member 211 and the second low friction member 212 are each formed of Teflon resin (Teflon is a registered trademark). The first low friction member 211 and the second low friction member 212 may be formed of polyamide or polyester.
図22には、図21における第1弾性部材201および第1低摩擦部材211の一部を拡大して表している。図22には、可動コア42H等の図示を省略して、第1弾性部材201および第1低摩擦部材211のみを表している。第1低摩擦部材211は、外周に向かって突き出した支持部221を有している。支持部221は、第1弾性部材201の内周側の部分を収容可能に構成されている。第1弾性部材201は、可動コア42Hの第1溝部241に嵌め込まれているため、可動コア42Hに対する軸方向AXへの移動が規制されている。第1低摩擦部材211は、第1弾性部材201が支持部221に嵌め込まれているため、可動コア42Hに対する軸方向AXへの移動が規制されている。尚、第2弾性部材202および第2低摩擦部材212の構成についても、第1弾性部材201および第1低摩擦部材211の構成と同じである。
FIG. 22 shows a part of the first elastic member 201 and the first low friction member 211 in FIG. 21 in an enlarged manner. In FIG. 22, illustration of the movable core 42H etc. is omitted, and only the first elastic member 201 and the first low friction member 211 are shown. The first low friction member 211 has a support portion 221 protruding toward the outer periphery. The support portion 221 is configured to be able to accommodate a portion on the inner peripheral side of the first elastic member 201. Since the first elastic member 201 is fitted in the first groove portion 241 of the movable core 42H, the movement in the axial direction AX with respect to the movable core 42H is restricted. Since the first elastic member 201 is fitted in the support portion 221, the first low friction member 211 is restricted from moving in the axial direction AX with respect to the movable core 42H. The configurations of the second elastic member 202 and the second low friction member 212 are the same as the configurations of the first elastic member 201 and the first low friction member 211.
以上で説明した本実施形態のインジェクタ20Hによれば、第1弾性部材201が第1低摩擦部材211を介してストッパ部53を押し返す緊迫力によって、第1低摩擦部材211がストッパ部53に押し付けられるので、気密室110に連通する第1低摩擦部材211とストッパ部53との隙間が小さくなり、第2弾性部材202が第2低摩擦部材212を介して軸部51を押し返す緊迫力によって、第2低摩擦部材212が軸部51に押し付けられるので、気密室110に連通する第2低摩擦部材212と軸部51との隙間が小さくなる。そのため、気密室110の気密性を向上させることができるので、ストッパ部53と可動コア42とが衝突する際の衝撃力や、フランジ部54と可動コア42とが衝突する際の衝撃力を、より低減することができる。特に、本実施形態では、可動コア42Hとニードル50とを寸法精度良く加工しなくても、気密室110に連通する隙間を小さくできるため、可動コア42Hやニードル50の加工を容易化することができる。
According to the injector 20 </ b> H of the present embodiment described above, the first low friction member 211 is pressed against the stopper portion 53 by the pressing force with which the first elastic member 201 pushes back the stopper portion 53 via the first low friction member 211. Therefore, the clearance between the first low friction member 211 and the stopper portion 53 communicating with the hermetic chamber 110 is reduced, and the second elastic member 202 presses the shaft portion 51 through the second low friction member 212, thereby exerting a pressing force. Since the second low friction member 212 is pressed against the shaft portion 51, the gap between the second low friction member 212 communicating with the airtight chamber 110 and the shaft portion 51 is reduced. Therefore, since the airtightness of the airtight chamber 110 can be improved, the impact force when the stopper portion 53 and the movable core 42 collide, and the impact force when the flange portion 54 and the movable core 42 collide, It can be further reduced. In particular, in the present embodiment, since the gap communicating with the airtight chamber 110 can be reduced without processing the movable core 42H and the needle 50 with high dimensional accuracy, the processing of the movable core 42H and the needle 50 can be facilitated. it can.
また、本実施形態では、可動コア42Hとニードル50とが相対的に移動する際に、第1弾性部材201が第1低摩擦部材211を介してストッパ部53と摺動し、第2弾性部材202が第2低摩擦部材212を介して軸部51と摺動する。そのため、可動コア42Hとニードル50とが相対的に移動する際の摩擦による抵抗を小さくすることができる。したがって、第1低摩擦部材211や第2低摩擦部材212を設けることによって、可動コア42Hやニードル50を硬度の高い材質で形成しなくても、可動コア42Hやニードル50の摩耗を抑制することができる。
Further, in the present embodiment, when the movable core 42H and the needle 50 move relative to each other, the first elastic member 201 slides with the stopper portion 53 via the first low friction member 211, and the second elastic member 202 slides with the shaft portion 51 via the second low friction member 212. Therefore, resistance due to friction when the movable core 42H and the needle 50 move relative to each other can be reduced. Therefore, by providing the first low friction member 211 and the second low friction member 212, it is possible to suppress the wear of the movable core 42H and the needle 50 even if the movable core 42H and the needle 50 are not formed of a material having high hardness. Can do.
I.第9実施形態:
図23に示すように、第9実施形態のインジェクタ20Iでは、第2弾性部材202と、第3弾性部材203と、第2低摩擦部材212と、第3低摩擦部材213とが設けられていることが第4実施形態と異なる。第2弾性部材202の構成と、第2低摩擦部材212の構成と、可動コア42Iの第2溝部242の構成とは、第8実施形態と同じである。その他の構成や開閉動作は、特に説明しない限り、第4実施形態と同じである。 I. Ninth embodiment:
As shown in FIG. 23, in the injector 20I of the ninth embodiment, a secondelastic member 202, a third elastic member 203, a second low friction member 212, and a third low friction member 213 are provided. This is different from the fourth embodiment. The configuration of the second elastic member 202, the configuration of the second low friction member 212, and the configuration of the second groove portion 242 of the movable core 42I are the same as in the eighth embodiment. Other configurations and opening / closing operations are the same as those in the fourth embodiment unless otherwise specified.
図23に示すように、第9実施形態のインジェクタ20Iでは、第2弾性部材202と、第3弾性部材203と、第2低摩擦部材212と、第3低摩擦部材213とが設けられていることが第4実施形態と異なる。第2弾性部材202の構成と、第2低摩擦部材212の構成と、可動コア42Iの第2溝部242の構成とは、第8実施形態と同じである。その他の構成や開閉動作は、特に説明しない限り、第4実施形態と同じである。 I. Ninth embodiment:
As shown in FIG. 23, in the injector 20I of the ninth embodiment, a second
第3弾性部材203は、ニードル50の軸部51の径方向における、可動コア42Iとニードル50との隙間に配置されている。第3弾性部材203は、環状の外形を有している。第3弾性部材203の直径は、第2弾性部材202の直径よりも大きい。第3弾性部材203は、ニードル50のフランジ部54の外周を囲むように配置されている。可動コア42Iにおける第2凹部47の内壁面には、第3溝部243が設けられている。第3溝部243は、可動コア42Iの円周方向に沿って設けられた環状の溝である。第3弾性部材203は、第3溝部243に嵌め込まれている。第3弾性部材203の材質は、第2弾性部材202の材質と同じである。
The third elastic member 203 is disposed in the gap between the movable core 42I and the needle 50 in the radial direction of the shaft portion 51 of the needle 50. The third elastic member 203 has an annular outer shape. The diameter of the third elastic member 203 is larger than the diameter of the second elastic member 202. The third elastic member 203 is disposed so as to surround the outer periphery of the flange portion 54 of the needle 50. A third groove 243 is provided on the inner wall surface of the second recess 47 in the movable core 42I. The third groove portion 243 is an annular groove provided along the circumferential direction of the movable core 42I. The third elastic member 203 is fitted in the third groove 243. The material of the third elastic member 203 is the same as the material of the second elastic member 202.
第3低摩擦部材213は、第3弾性部材203とフランジ部54との間に配置されている。第3低摩擦部材213は、環状の外形を有している。第3低摩擦部材213の直径は、第2低摩擦部材212の直径よりも大きい。第3弾性部材203は、第3低摩擦部材213を介してフランジ部54に接触しており、第3低摩擦部材213を介してフランジ部54から圧縮力を受けている。第3低摩擦部材213の材質は、第2低摩擦部材212と同じである。
The third low friction member 213 is disposed between the third elastic member 203 and the flange portion 54. The third low friction member 213 has an annular outer shape. The diameter of the third low friction member 213 is larger than the diameter of the second low friction member 212. The third elastic member 203 is in contact with the flange portion 54 via the third low friction member 213 and receives a compressive force from the flange portion 54 via the third low friction member 213. The material of the third low friction member 213 is the same as that of the second low friction member 212.
以上で説明した本実施形態のインジェクタ20Iによれば、第3弾性部材203の緊迫力によって、第3低摩擦部材213がフランジ部54に押し付けられるので、気密室110Dに連通する第3低摩擦部材213とフランジ部54との隙間が小さくなり、第2弾性部材202の緊迫力によって、第2低摩擦部材212が軸部51に押し付けられるので、気密室110Dに連通する第2低摩擦部材212と軸部51との隙間が小さくなる。そのため、気密室110Dの気密性を向上させることができる。
According to the injector 20I of the present embodiment described above, the third low friction member 213 is pressed against the flange portion 54 by the pressing force of the third elastic member 203. Therefore, the third low friction member that communicates with the hermetic chamber 110D. Since the gap between 213 and the flange portion 54 is reduced and the second low friction member 212 is pressed against the shaft portion 51 by the pressing force of the second elastic member 202, the second low friction member 212 communicating with the hermetic chamber 110D A gap with the shaft portion 51 is reduced. Therefore, the airtightness of the airtight chamber 110D can be improved.
また、本実施形態では、可動コア42Iとニードル50とが相対的に移動する際に、第2弾性部材202が第2低摩擦部材212を介して軸部51と摺動し、第3弾性部材203が第3低摩擦部材213を介してフランジ部54と摺動する。そのため、可動コア42Iとニードル50とが相対的に移動する際の摩擦による抵抗を小さくすることができる。
In this embodiment, when the movable core 42I and the needle 50 move relatively, the second elastic member 202 slides with the shaft portion 51 via the second low friction member 212, and the third elastic member 203 slides on the flange portion 54 via the third low friction member 213. Therefore, resistance due to friction when the movable core 42I and the needle 50 move relative to each other can be reduced.
J.第10実施形態:
図24に示すように、第10実施形態のインジェクタ20Jでは、第4弾性部材204と、第5弾性部材205と、第4低摩擦部材214と、第5低摩擦部材215とが設けられていること、可動コア42Jに高硬度部142が設けられていないこと、ハウジング30の構成が第1実施形態と同じであることが第7実施形態と異なる。その他の構成や開閉動作は、特に説明しない限り、第7実施形態と同じである。 J. et al. Tenth embodiment:
As shown in FIG. 24, in theinjector 20J of the tenth embodiment, a fourth elastic member 204, a fifth elastic member 205, a fourth low friction member 214, and a fifth low friction member 215 are provided. The seventh embodiment differs from the seventh embodiment in that the high hardness portion 142 is not provided on the movable core 42J and the configuration of the housing 30 is the same as that of the first embodiment. Other configurations and opening / closing operations are the same as those in the seventh embodiment unless otherwise specified.
図24に示すように、第10実施形態のインジェクタ20Jでは、第4弾性部材204と、第5弾性部材205と、第4低摩擦部材214と、第5低摩擦部材215とが設けられていること、可動コア42Jに高硬度部142が設けられていないこと、ハウジング30の構成が第1実施形態と同じであることが第7実施形態と異なる。その他の構成や開閉動作は、特に説明しない限り、第7実施形態と同じである。 J. et al. Tenth embodiment:
As shown in FIG. 24, in the
第4弾性部材204および第5弾性部材205は、可動コア42Jの径方向における、可動コア42Jとハウジング30との隙間に配置されている。第4弾性部材204および第5弾性部材205は、それぞれ、環状の外形を有している。第5弾性部材205の直径は、第4弾性部材204の直径よりも大きい。第4弾性部材204は、可動コア42Jの第1摺動部147と、ハウジング30の第1被摺動部137との間に、可動コア42Jの外周に沿って配置されている。第5弾性部材205は、可動コア42Jの第2摺動部148と、ハウジング30の第2被摺動部138との間に、可動コア42Jの外周に沿って配置されている。可動コア42Jの第1摺動部147には、第4溝部244が設けられている。可動コア42Jの第2摺動部148には、第5溝部245が設けられている。第4溝部244および第5溝部245は、それぞれ、可動コア42Jの円周方向に沿って設けられた環状の溝である。第4弾性部材204は、第4溝部244に嵌め込まれている。第5弾性部材205は、第5溝部245に嵌め込まれている。第4弾性部材204の材質、および、第5弾性部材205の材質は、第1弾性部材201の材質や、第2弾性部材202の材質と同じである。
The fourth elastic member 204 and the fifth elastic member 205 are arranged in the gap between the movable core 42J and the housing 30 in the radial direction of the movable core 42J. The fourth elastic member 204 and the fifth elastic member 205 each have an annular outer shape. The diameter of the fifth elastic member 205 is larger than the diameter of the fourth elastic member 204. The fourth elastic member 204 is disposed along the outer periphery of the movable core 42J between the first sliding portion 147 of the movable core 42J and the first sliding portion 137 of the housing 30. The fifth elastic member 205 is disposed along the outer periphery of the movable core 42J between the second sliding portion 148 of the movable core 42J and the second sliding portion 138 of the housing 30. A fourth groove portion 244 is provided in the first sliding portion 147 of the movable core 42J. A fifth groove 245 is provided in the second sliding portion 148 of the movable core 42J. Each of the fourth groove portion 244 and the fifth groove portion 245 is an annular groove provided along the circumferential direction of the movable core 42J. The fourth elastic member 204 is fitted in the fourth groove portion 244. The fifth elastic member 205 is fitted in the fifth groove 245. The material of the fourth elastic member 204 and the material of the fifth elastic member 205 are the same as the material of the first elastic member 201 and the material of the second elastic member 202.
第4低摩擦部材214は、第4弾性部材204と、ハウジング30の第1被摺動部137との間に配置されている。第5低摩擦部材215は、第5弾性部材205と、ハウジング30の第2被摺動部138との間に配置されている。第4低摩擦部材214および第5低摩擦部材215は、それぞれ、環状の外形を有している。第5低摩擦部材215の直径は、第4低摩擦部材214の直径よりも大きい。第4弾性部材204は、第4低摩擦部材214を介して第1被摺動部137に接触しており、第4低摩擦部材214を介して第1被摺動部137から圧縮力を受けている。第5弾性部材205は、第5低摩擦部材215を介して第2被摺動部138に接触しており、第5低摩擦部材215を介して第2被摺動部138から圧縮力を受けている。第4低摩擦部材214の摩擦係数は、第4弾性部材204の摩擦係数よりも小さい。第5低摩擦部材215の摩擦係数は、第5弾性部材205の摩擦係数よりも小さい。第4低摩擦部材214の材質、および、第5低摩擦部材215の材質は、第1低摩擦部材211の材質や、第2低摩擦部材212の材質と同じである。
The fourth low friction member 214 is disposed between the fourth elastic member 204 and the first sliding portion 137 of the housing 30. The fifth low friction member 215 is disposed between the fifth elastic member 205 and the second sliding portion 138 of the housing 30. The fourth low friction member 214 and the fifth low friction member 215 each have an annular outer shape. The diameter of the fifth low friction member 215 is larger than the diameter of the fourth low friction member 214. The fourth elastic member 204 is in contact with the first sliding portion 137 via the fourth low friction member 214 and receives a compressive force from the first sliding portion 137 via the fourth low friction member 214. ing. The fifth elastic member 205 is in contact with the second sliding portion 138 via the fifth low friction member 215 and receives a compressive force from the second sliding portion 138 via the fifth low friction member 215. ing. The friction coefficient of the fourth low friction member 214 is smaller than the friction coefficient of the fourth elastic member 204. The friction coefficient of the fifth low friction member 215 is smaller than the friction coefficient of the fifth elastic member 205. The material of the fourth low friction member 214 and the material of the fifth low friction member 215 are the same as the material of the first low friction member 211 and the material of the second low friction member 212.
以上で説明した本実施形態のインジェクタ20Jによれば、第4弾性部材204の緊迫力によって、第4低摩擦部材214が第1被摺動部137に押し付けられるので、気密室110Gに連通する第4低摩擦部材214と第1被摺動部137との隙間が小さくなり、第5弾性部材205の緊迫力によって、第5低摩擦部材215が第2被摺動部138に押し付けられるので、気密室110Gに連通する第5低摩擦部材215と第2被摺動部138との隙間が小さくなる。そのため、気密室110Gの気密性を向上させることができる。
According to the injector 20J of the present embodiment described above, the fourth low friction member 214 is pressed against the first sliding portion 137 by the tightening force of the fourth elastic member 204, so that the first communication with the hermetic chamber 110G is performed. 4 The gap between the low friction member 214 and the first sliding portion 137 is reduced, and the fifth low friction member 215 is pressed against the second sliding portion 138 by the tight force of the fifth elastic member 205. The gap between the fifth low friction member 215 communicating with the closed chamber 110G and the second sliding portion 138 is reduced. Therefore, the airtightness of the airtight chamber 110G can be improved.
また、本実施形態では、可動コア42Jとハウジング30とが相対的に移動する際に、第4弾性部材204が第4低摩擦部材214を介して第1被摺動部137と摺動し、第5弾性部材205が第5低摩擦部材215を介して第2被摺動部138と摺動する。そのため、可動コア42Jとハウジング30とが相対的に移動する際の摩擦による抵抗を小さくすることができる。
In the present embodiment, when the movable core 42J and the housing 30 move relative to each other, the fourth elastic member 204 slides with the first sliding portion 137 via the fourth low friction member 214, The fifth elastic member 205 slides with the second sliding portion 138 via the fifth low friction member 215. Therefore, it is possible to reduce resistance due to friction when the movable core 42J and the housing 30 move relative to each other.
K.他の実施形態:
(K-1)上述した第1実施形態から第6実施形態におけるインジェクタ20,20B,20C,20D,20E,20Fでは、可動コア42,42D,42Fは、第1凹部46と第2凹部47とのいずれか一方を備えている。これに対して、可動コア42,42D,42Fは、第1凹部46と第2凹部47との両方を備えてもよい。ストッパ部53の固定コア41側の面と、フランジ部54の弁部52側の面との軸方向AXに沿った間隔よりも、第1凹部46の底面と、第2凹部47の底面との軸方向AXに沿った間隔の方が小さくてもよい。換言すれば、第1凹部46および第2凹部47が形成された部分における可動コア42,42D,42Fの厚みは、ストッパ部53の固定コア41側の面とフランジ部54の弁部52側の面との軸方向AXに沿った間隔よりも小さくてもよい。この場合、可動コア42,42D,42Fの噴孔32側に気密室110が形成されるとともに、固定コア41側に気密室110Dが形成されることによって、ストッパ部53と可動コア42,42D,42Fとの接触部、および、フランジ部54と可動コア42,42D,42Fとの接触部が衝突する際の、各接触部における衝撃力が小さくなる。 K. Other embodiments:
(K-1) In the injectors 20, 20B, 20C, 20D, 20E, and 20F in the first to sixth embodiments described above, the movable cores 42, 42D, and 42F include the first recess 46, the second recess 47, and the like. Either one is provided. On the other hand, the movable cores 42, 42 </ b> D, 42 </ b> F may include both the first recess 46 and the second recess 47. The distance between the bottom surface of the first recess 46 and the bottom surface of the second recess 47 is greater than the distance along the axial direction AX between the surface of the stopper portion 53 on the fixed core 41 side and the surface of the flange portion 54 on the valve portion 52 side. The interval along the axial direction AX may be smaller. In other words, the thickness of the movable cores 42, 42D, and 42F in the portion where the first concave portion 46 and the second concave portion 47 are formed is such that the surface of the stopper portion 53 on the fixed core 41 side and the flange portion 54 on the valve portion 52 side. It may be smaller than the distance between the surface and the axial direction AX. In this case, the airtight chamber 110 is formed on the movable cores 42, 42D, and 42F on the nozzle hole 32 side, and the airtight chamber 110D is formed on the fixed core 41 side, whereby the stopper portion 53 and the movable cores 42, 42D, The impact force at each contact portion when the contact portion with 42F and the contact portion between the flange portion 54 and the movable cores 42, 42D, and 42F collide with each other is reduced.
(K-1)上述した第1実施形態から第6実施形態におけるインジェクタ20,20B,20C,20D,20E,20Fでは、可動コア42,42D,42Fは、第1凹部46と第2凹部47とのいずれか一方を備えている。これに対して、可動コア42,42D,42Fは、第1凹部46と第2凹部47との両方を備えてもよい。ストッパ部53の固定コア41側の面と、フランジ部54の弁部52側の面との軸方向AXに沿った間隔よりも、第1凹部46の底面と、第2凹部47の底面との軸方向AXに沿った間隔の方が小さくてもよい。換言すれば、第1凹部46および第2凹部47が形成された部分における可動コア42,42D,42Fの厚みは、ストッパ部53の固定コア41側の面とフランジ部54の弁部52側の面との軸方向AXに沿った間隔よりも小さくてもよい。この場合、可動コア42,42D,42Fの噴孔32側に気密室110が形成されるとともに、固定コア41側に気密室110Dが形成されることによって、ストッパ部53と可動コア42,42D,42Fとの接触部、および、フランジ部54と可動コア42,42D,42Fとの接触部が衝突する際の、各接触部における衝撃力が小さくなる。 K. Other embodiments:
(K-1) In the
(K-2)上述した第2実施形態から第3実施形態におけるインジェクタ20B,20Cにおいて、ストッパ部53は第1オリフィス111を備え、かつ、可動コアは第2オリフィス112を備えてもよい。この場合、第1オリフィス111および第2オリフィス112の個数や形状を調節することによって、ニードル50の減速度合いを調節できる。
(K-2) In the injectors 20B and 20C in the second to third embodiments described above, the stopper portion 53 may include the first orifice 111, and the movable core may include the second orifice 112. In this case, the degree of deceleration of the needle 50 can be adjusted by adjusting the number and shape of the first orifice 111 and the second orifice 112.
(K-3)上述した第4実施形態におけるインジェクタ20Dにおいて、フランジ部54や可動コア42Dにオリフィスが設けられてもよい。この場合、オリフィスの個数や形状を調節することによって、ニードル50の減速度合いを調節できる。
(K-3) In the injector 20D in the fourth embodiment described above, an orifice may be provided in the flange portion 54 and the movable core 42D. In this case, the degree of deceleration of the needle 50 can be adjusted by adjusting the number and shape of the orifices.
(K-4)上述した第6実施形態におけるインジェクタ20Fにおいて、ストッパ部53は第1オリフィス111を備えてもよいし、可動コア42Fは第2オリフィス112を備えてもよい。ストッパ部53は第1オリフィス111を備え、かつ、可動コア42Fは第2オリフィス112を備えてもよい。この場合、第1オリフィス111や第2オリフィス112の個数や形状を調節することによって、ニードル50の減速度合いを調節できる。
(K-4) In the injector 20F in the sixth embodiment described above, the stopper portion 53 may include the first orifice 111, and the movable core 42F may include the second orifice 112. The stopper portion 53 may include a first orifice 111, and the movable core 42F may include a second orifice 112. In this case, the degree of deceleration of the needle 50 can be adjusted by adjusting the number and shape of the first orifice 111 and the second orifice 112.
(K-5)上述した第7実施形態におけるインジェクタ20Gにおいて、可動コア42Gには、高硬度部142が設けられていなくてもよい。つまり、可動コア42Gは、磁気吸引部141と同じ磁性材料のみによって構成され、第1摺動部147および第2摺動部148は、磁気吸引部141と同じ磁性材料によって構成されてもよい。この場合であっても、気密室110Gによって、可動コア42Gおよびニードル50の移動を減速できる。
(K-5) In the injector 20G in the seventh embodiment described above, the high hardness portion 142 may not be provided in the movable core 42G. That is, the movable core 42 </ b> G may be composed of only the same magnetic material as that of the magnetic attraction part 141, and the first sliding part 147 and the second sliding part 148 may be composed of the same magnetic material as that of the magnetic attraction part 141. Even in this case, the movement of the movable core 42G and the needle 50 can be decelerated by the hermetic chamber 110G.
(K-6)上述した第7実施形態におけるインジェクタ20Gにおいて、第1摺動部147と第2摺動部148と第1被摺動部137と第2被摺動部138とのうちの少なくともいずれか1つの硬度は、可動コア42Gの磁気吸引部141の硬度以下であってもよい。
(K-6) In the injector 20G in the seventh embodiment described above, at least one of the first sliding portion 147, the second sliding portion 148, the first sliding portion 137, and the second sliding portion 138. Any one hardness may be below the hardness of the magnetic attraction part 141 of the movable core 42G.
(K-7)上述した第7実施形態におけるインジェクタ20Gにおいて、ノズルチップ部31Gと一体形成部131とは、一体として形成されていなくてもよい。例えば、ハウジング30Gは、第1実施形態のインジェクタ20におけるハウジング30と同じ構成であってもよい。
(K-7) In the injector 20G in the seventh embodiment described above, the nozzle tip portion 31G and the integral forming portion 131 may not be formed integrally. For example, the housing 30G may have the same configuration as the housing 30 in the injector 20 of the first embodiment.
(K-8)上述した第7実施形態におけるインジェクタ20Gにおいて、気密室110G内に、第2スプリング62が設けられていなくてもよい。第2スプリング62は、例えば、可動コア42Gの小径部145よりも噴孔32側に設けられてもよい。
(K-8) In the injector 20G in the seventh embodiment described above, the second spring 62 may not be provided in the hermetic chamber 110G. For example, the second spring 62 may be provided closer to the injection hole 32 than the small diameter portion 145 of the movable core 42G.
(K-9)上述した第7実施形態におけるインジェクタ20Gにおいて、ニードル50のストッパ部53は、軸方向AXにおける噴孔32と小径部145との間に設けられていなくてもよい。ニードル50には、ストッパ部53が設けられていなくてもよい。
(K-9) In the injector 20G in the seventh embodiment described above, the stopper portion 53 of the needle 50 may not be provided between the injection hole 32 and the small diameter portion 145 in the axial direction AX. The needle 50 may not be provided with the stopper portion 53.
(K-10)上述した第8実施形態におけるインジェクタ20Hでは、可動コア42Hに第1弾性部材201と、第2弾性部材202と、第1低摩擦部材211と、第2低摩擦部材212とが設けられている。これに対して、第1弾性部材201と、第2弾性部材202と、第1低摩擦部材211と、第2低摩擦部材212とが、可動コア42Hではなく、ニードル50に設けられてもよい。つまり、可動コア42Hには、第1溝部241と第2溝部242が設けられておらず、ニードル50に2つの環状の溝が設けられ、ニードル50の溝に第1弾性部材201と第2弾性部材202とが嵌め込まれ、第1弾性部材201が第1低摩擦部材211を介して可動コア42Hと摺動し、第2弾性部材202が第2低摩擦部材212を介して可動コア42Hと摺動してもよい。また、可動コア42Hに第1弾性部材201と第1低摩擦部材211とが設けられ、かつ、ニードル50に第2弾性部材202と第2低摩擦部材212とが設けられてもよい。ニードル50に第1弾性部材201と第1低摩擦部材211とが設けられ、かつ、可動コア42Hに第2弾性部材202と第2低摩擦部材212とが設けられてもよい。これらの場合であっても、気密室110の気密性を向上させることができる。
(K-10) In the injector 20H in the above-described eighth embodiment, the movable core 42H includes the first elastic member 201, the second elastic member 202, the first low friction member 211, and the second low friction member 212. Is provided. In contrast, the first elastic member 201, the second elastic member 202, the first low friction member 211, and the second low friction member 212 may be provided on the needle 50 instead of the movable core 42H. . That is, the movable core 42H is not provided with the first groove portion 241 and the second groove portion 242, but the needle 50 is provided with two annular grooves, and the first elastic member 201 and the second elastic member 201 are provided in the groove of the needle 50. The first elastic member 201 slides on the movable core 42H via the first low friction member 211, and the second elastic member 202 slides on the movable core 42H via the second low friction member 212. You may move. Further, the first elastic member 201 and the first low friction member 211 may be provided on the movable core 42H, and the second elastic member 202 and the second low friction member 212 may be provided on the needle 50. The needle 50 may be provided with the first elastic member 201 and the first low friction member 211, and the movable core 42H may be provided with the second elastic member 202 and the second low friction member 212. Even in these cases, the airtightness of the airtight chamber 110 can be improved.
(K-11)上述した第9実施形態におけるインジェクタ20Iでは、可動コア42Iに第2弾性部材202と、第3弾性部材203と、第2低摩擦部材212と、第3低摩擦部材213とが設けられている。これに対して、第2弾性部材202と、第3弾性部材203と、第2低摩擦部材212と、第3低摩擦部材213とが、可動コア42Iではなく、ニードル50に設けられてもよい。また、可動コア42Iに第2弾性部材202と第2低摩擦部材212とが設けられ、かつ、ニードル50に第3弾性部材203と第3低摩擦部材213とが設けられてもよい。ニードル50に第2弾性部材202と第2低摩擦部材212とが設けられ、かつ、可動コア42Iに第3弾性部材203と第3低摩擦部材213とが設けられてもよい。
(K-11) In the injector 20I in the ninth embodiment described above, the movable core 42I includes the second elastic member 202, the third elastic member 203, the second low friction member 212, and the third low friction member 213. Is provided. In contrast, the second elastic member 202, the third elastic member 203, the second low friction member 212, and the third low friction member 213 may be provided on the needle 50 instead of the movable core 42I. . Further, the movable core 42I may be provided with the second elastic member 202 and the second low friction member 212, and the needle 50 may be provided with the third elastic member 203 and the third low friction member 213. The needle 50 may be provided with the second elastic member 202 and the second low friction member 212, and the movable core 42I may be provided with the third elastic member 203 and the third low friction member 213.
(K-12)上述した第10実施形態におけるインジェクタ20Jでは、可動コア42Jに第4弾性部材204と、第5弾性部材205と、第4低摩擦部材214と、第5低摩擦部材215とが設けられている。これに対して、第4弾性部材204と、第5弾性部材205と、第4低摩擦部材214と、第5低摩擦部材215とが、可動コア42Jではなく、ニードル50に設けられてもよい。また、可動コア42Jに第4弾性部材204と第4低摩擦部材214とが設けられ、かつ、ニードル50に第5弾性部材205と第5低摩擦部材215とが設けられてもよい。ニードル50に第4弾性部材204と第4低摩擦部材214とが設けられ、かつ、可動コア42Jに第5弾性部材205と第5低摩擦部材215とが設けられてもよい。
(K-12) In the injector 20J according to the tenth embodiment described above, the movable core 42J includes the fourth elastic member 204, the fifth elastic member 205, the fourth low friction member 214, and the fifth low friction member 215. Is provided. In contrast, the fourth elastic member 204, the fifth elastic member 205, the fourth low friction member 214, and the fifth low friction member 215 may be provided on the needle 50 instead of the movable core 42J. . Further, the fourth elastic member 204 and the fourth low friction member 214 may be provided on the movable core 42J, and the fifth elastic member 205 and the fifth low friction member 215 may be provided on the needle 50. The needle 50 may be provided with the fourth elastic member 204 and the fourth low friction member 214, and the movable core 42J may be provided with the fifth elastic member 205 and the fifth low friction member 215.
(K-13)上述した第8実施形態におけるインジェクタ20Hにおいて、第1低摩擦部材211と第2低摩擦部材212とのうち少なくともいずれか一方が設けられていなくてもよい。つまり、第1弾性部材201がニードル50のストッパ部53に直接接触してもよいし、第2弾性部材202がニードル50の軸部51に直接接触してもよい。上述した第9実施形態におけるインジェクタ20Iにおいて、第2低摩擦部材212と第3低摩擦部材213とのうち少なくともいずれか一方が設けられていなくてもよい。つまり、第2弾性部材202がニードル50の軸部51に直接接触してもよいし、第3弾性部材203がニードル50のフランジ部54に直接接触してもよい。上述した第10実施形態におけるインジェクタ20Jにおいて、第4低摩擦部材214と第5低摩擦部材215とのうち少なくともいずれか一方が設けられていなくてもよい。つまり、第4弾性部材204がハウジング30の第1被摺動部137直接接触してもよいし、第5弾性部材205がハウジング30の第2被摺動部138に直接接触してもよい。これらの場合であっても、気密室110,110D,110Gの気密性を向上させることができる。尚、これらの場合、各低摩擦部材211~215を介さずに摺動する各弾性部材201~205が、例えば、熱可塑性ポリウレタンのように、弾性を有し、かつ、耐摩耗性に優れた材質で形成されることが好ましい。
(K-13) In the injector 20H in the eighth embodiment described above, at least one of the first low friction member 211 and the second low friction member 212 may not be provided. That is, the first elastic member 201 may be in direct contact with the stopper portion 53 of the needle 50, or the second elastic member 202 may be in direct contact with the shaft portion 51 of the needle 50. In the injector 20I according to the ninth embodiment described above, at least one of the second low friction member 212 and the third low friction member 213 may not be provided. That is, the second elastic member 202 may be in direct contact with the shaft portion 51 of the needle 50, or the third elastic member 203 may be in direct contact with the flange portion 54 of the needle 50. In the injector 20J in the tenth embodiment described above, at least one of the fourth low friction member 214 and the fifth low friction member 215 may not be provided. That is, the fourth elastic member 204 may be in direct contact with the first sliding portion 137 of the housing 30, or the fifth elastic member 205 may be in direct contact with the second sliding portion 138 of the housing 30. Even in these cases, the airtightness of the airtight chambers 110, 110D, and 110G can be improved. In these cases, the elastic members 201 to 205 that slide without using the low friction members 211 to 215 have elasticity, such as thermoplastic polyurethane, and have excellent wear resistance. It is preferable to form with a material.
(K-14)上述した第8実施形態におけるインジェクタ20Hにおいて、ストッパ部53や可動コア42Hにオリフィスが設けられてもよい。この場合、オリフィスの個数や形状を調節することによって、ニードル50の減速度合いを調節できる。
(K-14) In the injector 20H in the above-described eighth embodiment, the stopper portion 53 and the movable core 42H may be provided with an orifice. In this case, the degree of deceleration of the needle 50 can be adjusted by adjusting the number and shape of the orifices.
(K-15)上述した第9実施形態におけるインジェクタ20Iにおいて、フランジ部54や可動コア42Iにオリフィスが設けられてもよい。この場合、オリフィスの個数や形状を調節することによって、ニードル50の減速度合いを調節できる。
(K-15) In the injector 20I in the ninth embodiment described above, an orifice may be provided in the flange portion 54 and the movable core 42I. In this case, the degree of deceleration of the needle 50 can be adjusted by adjusting the number and shape of the orifices.
(K-16)上述した第8実施形態におけるインジェクタ20Hにおいて、可動コア42Hに、第6実施形態と同じ高硬度部142が設けられ、第1弾性部材201および第2弾性部材202が高硬度部142に設けられた溝に嵌め込まれていてもよい。
(K-16) In the injector 20H in the above-described eighth embodiment, the movable core 42H is provided with the same high hardness portion 142 as in the sixth embodiment, and the first elastic member 201 and the second elastic member 202 are the high hardness portion. It may be fitted in a groove provided in 142.
(K-17)上述した第10実施形態におけるインジェクタ20Jにおいて、可動コア42Jに、第7実施形態と同じ高硬度部142が設けられ、第4弾性部材204および第5弾性部材205が高硬度部142に設けられた溝に嵌め込まれていてもよい。また、上述した第10実施形態におけるインジェクタ20Jは、第7実施形態と同じハウジング30Gを備えてもよい。
(K-17) In the injector 20J in the tenth embodiment described above, the movable core 42J is provided with the same high hardness portion 142 as in the seventh embodiment, and the fourth elastic member 204 and the fifth elastic member 205 are the high hardness portion. It may be fitted in a groove provided in 142. Further, the injector 20J in the above-described tenth embodiment may include the same housing 30G as in the seventh embodiment.
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
The present disclosure is not limited to the above-described embodiment, and can be realized with various configurations without departing from the spirit of the present disclosure. For example, the technical features in the embodiments are appropriately replaced or combined to solve part or all of the above-described problems or to achieve part or all of the above-described effects. Is possible. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.
Claims (19)
- インジェクタ(20,20B,20C,20E,20F,20H)であって、
燃料を噴射する噴孔(32)を有し、前記噴孔に連通する第1流路(101)が形成された筒状のハウジング(30)と、
前記ハウジング内に固定され、前記第1流路に連通する第2流路(102)が形成された筒状の固定コア(41)と、
前記固定コアよりも前記噴孔側における前記第1流路内を前記ハウジングの軸方向(AX)に沿って往復移動可能に設けられ、前記固定コアの内径よりも大きな外径を有し、前記固定コアの内径よりも小さな貫通孔(43)を有する可動コア(42,42F,42H)と、
通電によって、前記可動コアを前記固定コア側に向かって移動させる磁界を発生するコイル(44)と、
前記貫通孔を前記軸方向に往復移動可能に通る軸部(51)と、前記軸部の前記噴孔側の端部に形成され、前記噴孔を開閉可能な弁部(52)と、を有するニードル(50)と、
前記ニードルを前記噴孔側に向かって付勢するスプリング(61)と、
を備え、
前記軸部は、前記可動コアを挟んで前記弁部側に第1突出部(53)と前記固定コア側に第2突出部(54)とを有し、
前記第1突出部は、径方向に、前記可動コアにおける前記貫通孔の縁よりも外側に突き出し、
前記第2突出部は、前記径方向に、前記可動コアにおける前記貫通孔の縁よりも外側で、かつ、前記固定コアの内周縁よりも内側に突き出し、
前記可動コアの前記噴孔側の面は、前記貫通孔の周りに前記第1突出部を収容可能な第1凹部(46)を有し、
前記第1突出部の前記固定コア側の面と、前記第2突出部の前記弁部側の面との前記軸方向に沿った間隔よりも、前記第1凹部の底面と、前記可動コアの前記固定コア側の面との前記軸方向に沿った間隔の方が小さく、
前記軸部と前記第1突出部と前記第1凹部とによって囲まれる空間(110)に、前記燃料を封入可能に構成される、インジェクタ。 An injector (20, 20B, 20C, 20E, 20F, 20H),
A cylindrical housing (30) having a nozzle hole (32) for injecting fuel and having a first flow path (101) communicating with the nozzle hole;
A cylindrical fixed core (41) fixed in the housing and formed with a second channel (102) communicating with the first channel;
The inside of the first flow path on the nozzle hole side of the fixed core is provided so as to be able to reciprocate along the axial direction (AX) of the housing, and has an outer diameter larger than the inner diameter of the fixed core, A movable core (42, 42F, 42H) having a through hole (43) smaller than the inner diameter of the fixed core;
A coil (44) for generating a magnetic field for moving the movable core toward the fixed core by energization;
A shaft portion (51) passing through the through hole so as to be reciprocally movable in the axial direction, and a valve portion (52) formed at an end portion of the shaft portion on the nozzle hole side and capable of opening and closing the nozzle hole. A needle (50) having;
A spring (61) for urging the needle toward the nozzle hole;
With
The shaft portion has a first protrusion (53) on the valve portion side and a second protrusion (54) on the fixed core side with the movable core interposed therebetween,
The first protrusion protrudes outward from the edge of the through hole in the movable core in the radial direction,
The second projecting portion protrudes outward in the radial direction from an edge of the through-hole in the movable core and inward from an inner peripheral edge of the fixed core,
The surface on the nozzle hole side of the movable core has a first recess (46) capable of accommodating the first protrusion around the through hole,
The bottom surface of the first recess and the movable core are spaced apart from each other along the axial direction between the surface of the first protrusion on the fixed core side and the surface of the second protrusion on the valve part side. The distance along the axial direction with the surface on the fixed core side is smaller,
An injector configured to be able to enclose the fuel in a space (110) surrounded by the shaft portion, the first protrusion, and the first recess. - 請求項1に記載のインジェクタ(20F)であって、
前記可動コアは、前記固定コアに接触する磁気吸引部(141)に比べて硬度の高い高硬度部(142)を有し、
前記第1凹部は、前記高硬度部に設けられる、インジェクタ。 An injector (20F) according to claim 1,
The movable core has a high hardness portion (142) having a higher hardness than the magnetic attraction portion (141) in contact with the fixed core,
The first recess is an injector provided in the high hardness portion. - 請求項1に記載のインジェクタ(20H)であって、
前記可動コアと前記ニードルとのうちいずれか一方には、弾性部材(201,202)が設けられており、
前記弾性部材は、前記径方向における前記可動コアと前記ニードルとの隙間に配置されている、インジェクタ。 An injector (20H) according to claim 1,
Either one of the movable core and the needle is provided with an elastic member (201, 202),
The said elastic member is an injector arrange | positioned in the clearance gap between the said movable core and the said needle in the said radial direction. - 請求項3に記載のインジェクタであって、
前記弾性部材は、前記弾性部材よりも摩擦係数の小さい低摩擦部材(211,212)を介して、前記可動コアと前記ニードルとのうちの他方と接する、インジェクタ。 The injector according to claim 3, wherein
The said elastic member is an injector which contact | connects the other of the said movable core and the said needle through the low friction members (211 and 212) whose friction coefficient is smaller than the said elastic member. - 請求項1から請求項4のいずれか一項に記載のインジェクタであって、
前記第1突出部は、前記固定コア側の面から前記弁部側の面に連通する第1オリフィス(111)を有する、インジェクタ。 The injector according to any one of claims 1 to 4, wherein
The first projecting portion has an injector having a first orifice (111) communicating from the surface on the fixed core side to the surface on the valve portion side. - 請求項1から請求項5のいずれか一項に記載のインジェクタであって、
前記可動コアは、前記第1凹部の底面から前記固定コア側の面に連通する第2オリフィス(112)を有する、インジェクタ。 An injector according to any one of claims 1 to 5,
The movable core includes an injector having a second orifice (112) communicating from the bottom surface of the first recess to the surface on the fixed core side. - 請求項1から請求項6のいずれか一項に記載のインジェクタであって、
前記可動コアの前記固定コア側の面は、前記貫通孔の周りに前記第2突出部を収容可能な第2凹部(47)を有する、インジェクタ。 The injector according to any one of claims 1 to 6, wherein
The surface of the movable core on the fixed core side is an injector having a second recess (47) that can accommodate the second protrusion around the through hole. - インジェクタ(20D,20I)であって、
燃料を噴射する噴孔(32)を有し、前記噴孔に連通する第1流路(101)が形成された筒状のハウジング(30)と、
前記ハウジング内に固定され、前記第1流路に連通する第2流路(102)が形成された筒状の固定コア(41)と、
前記固定コアよりも前記噴孔側における前記第1流路内を前記ハウジングの軸方向(AX)に沿って往復移動可能に設けられ、前記固定コアの内径よりも大きな外径を有し、前記固定コアの内径よりも小さな貫通孔(43)を有する可動コア(42D,42I)と、
通電によって、前記可動コアを前記固定コア側に向かって移動させる磁界を発生するコイル(44)と、
前記貫通孔を前記軸方向に往復移動可能に通る軸部(51)と、前記軸部の前記噴孔側の端部に形成され、前記噴孔を開閉可能な弁部(52)と、を有するニードル(50)と、
前記ニードルを前記噴孔側に向かって付勢するスプリング(61)と、
を備え、
前記軸部は、前記可動コアを挟んで前記弁部側に第1突出部(53)と前記固定コア側に第2突出部(54)とを有し、
前記第1突出部は、径方向に、前記可動コアにおける前記貫通孔の縁よりも外側に突き出し、
前記第2突出部は、前記径方向に、前記可動コアにおける前記貫通孔の縁よりも外側で、かつ、前記固定コアの内周縁よりも内側に突き出し、
前記可動コアの前記固定コア側の面は、前記貫通孔の周りに前記第2突出部を収容可能な凹部(47)を有し、
前記第1突出部の前記固定コア側の面と、前記第2突出部の前記弁部側の面との前記軸方向に沿った間隔よりも、前記可動コアの前記噴孔側の面と、前記凹部の底面との前記軸方向に沿った間隔の方が小さく、
前記軸部と前記第2突出部と前記凹部とによって囲まれる空間(110D)に、前記燃料を封入可能に構成される、インジェクタ。 An injector (20D, 20I),
A cylindrical housing (30) having a nozzle hole (32) for injecting fuel and having a first flow path (101) communicating with the nozzle hole;
A cylindrical fixed core (41) fixed in the housing and formed with a second channel (102) communicating with the first channel;
The inside of the first flow path on the nozzle hole side of the fixed core is provided so as to be able to reciprocate along the axial direction (AX) of the housing, and has an outer diameter larger than the inner diameter of the fixed core, A movable core (42D, 42I) having a through hole (43) smaller than the inner diameter of the fixed core;
A coil (44) for generating a magnetic field for moving the movable core toward the fixed core by energization;
A shaft portion (51) passing through the through hole so as to be reciprocally movable in the axial direction, and a valve portion (52) formed at an end portion of the shaft portion on the nozzle hole side and capable of opening and closing the nozzle hole. A needle (50) having;
A spring (61) for urging the needle toward the nozzle hole;
With
The shaft portion has a first protrusion (53) on the valve portion side and a second protrusion (54) on the fixed core side with the movable core interposed therebetween,
The first protrusion protrudes outward from the edge of the through hole in the movable core in the radial direction,
The second projecting portion protrudes outward in the radial direction from an edge of the through-hole in the movable core and inward from an inner peripheral edge of the fixed core,
The surface on the fixed core side of the movable core has a recess (47) that can accommodate the second protrusion around the through hole,
More than the space along the axial direction between the surface on the fixed core side of the first protrusion and the surface on the valve part side of the second protrusion, the surface on the nozzle hole side of the movable core, The distance along the axial direction with the bottom surface of the recess is smaller,
An injector configured to be able to enclose the fuel in a space (110D) surrounded by the shaft portion, the second projecting portion, and the concave portion. - 請求項8に記載のインジェクタ(20I)であって、
前記可動コアと前記ニードルとのうちいずれか一方には、弾性部材(202,203)が設けられており、
前記弾性部材は、前記径方向における前記可動コアと前記ニードルとの隙間に配置されている、インジェクタ。 An injector (20I) according to claim 8,
Either one of the movable core and the needle is provided with an elastic member (202, 203),
The said elastic member is an injector arrange | positioned in the clearance gap between the said movable core and the said needle in the said radial direction. - 請求項9に記載のインジェクタであって、
前記弾性部材は、前記弾性部材よりも摩擦係数の小さい低摩擦部材(212,213)を介して、前記可動コアと前記ニードルとのうちの他方と接する、インジェクタ。 The injector according to claim 9, wherein
The injector, wherein the elastic member is in contact with the other of the movable core and the needle through low friction members (212, 213) having a smaller friction coefficient than the elastic member. - インジェクタ(20G,20J)であって、
燃料を噴射する噴孔(32)を有し、前記噴孔に連通する第1流路(101)が形成された筒状のハウジング(30G)と、
前記ハウジング内に固定され、前記第1流路に連通する第2流路(102)が形成された筒状の固定コア(41)と、
前記固定コアよりも前記噴孔側における前記第1流路内を前記ハウジングの軸方向(AX)に沿って往復移動可能に設けられ、前記固定コアの内径よりも小さな貫通孔(43)を有する可動コア(42G,42J)と、
通電によって、前記可動コアを前記固定コア側に向かって移動させる磁界を発生するコイル(44)と、
前記貫通孔を前記軸方向に往復移動可能に通る軸部(51)と、前記軸部の前記噴孔側の端部に形成され、前記噴孔を開閉可能な弁部(52)と、を有するニードル(50)と、
前記ニードルを前記噴孔側に向かって付勢する第1スプリング(61)と、
を備え、
前記軸部は、前記可動コアを挟んで前記弁部側に第1突出部(53)と前記固定コア側に第2突出部(54)とを有し、
前記第1突出部は、径方向に、前記可動コアにおける前記貫通孔の縁よりも外側に突き出し、
前記第2突出部は、前記径方向に、前記可動コアにおける前記貫通孔の縁よりも外側で、かつ、前記固定コアの内周縁よりも内側に突き出し、
前記可動コアは、外径の大きな大径部(146)と、前記大径部よりも前記噴孔側に設けられ、前記大径部よりも外径の小さな小径部(145)とを有し、
前記小径部は、前記ハウジングに設けられた第1被摺動部(137)に対向する第1摺動部(147)を有し、
前記大径部は、前記ハウジングに設けられた第2被摺動部(138)に対向する第2摺動部(148)を有し、
前記軸方向における前記第1被摺動部と前記第2摺動部との間にて、前記可動コアと前記ハウジングとによって囲まれる空間(110G)に、前記燃料を封入可能に構成される、インジェクタ。 An injector (20G, 20J),
A cylindrical housing (30G) having a nozzle hole (32) for injecting fuel and having a first flow path (101) communicating with the nozzle hole;
A cylindrical fixed core (41) fixed in the housing and formed with a second channel (102) communicating with the first channel;
It has a through hole (43) that is reciprocally movable along the axial direction (AX) of the housing in the first flow path on the nozzle hole side of the fixed core and is smaller than the inner diameter of the fixed core. A movable core (42G, 42J);
A coil (44) for generating a magnetic field for moving the movable core toward the fixed core by energization;
A shaft portion (51) passing through the through hole so as to be reciprocally movable in the axial direction, and a valve portion (52) formed at an end portion of the shaft portion on the nozzle hole side and capable of opening and closing the nozzle hole. A needle (50) having;
A first spring (61) for urging the needle toward the nozzle hole;
With
The shaft portion has a first protrusion (53) on the valve portion side and a second protrusion (54) on the fixed core side with the movable core interposed therebetween,
The first protrusion protrudes outward from the edge of the through hole in the movable core in the radial direction,
The second projecting portion protrudes outward in the radial direction from an edge of the through-hole in the movable core and inward from an inner peripheral edge of the fixed core,
The movable core includes a large-diameter portion (146) having a large outer diameter, and a small-diameter portion (145) that is provided closer to the nozzle hole than the large-diameter portion and has a smaller outer diameter than the large-diameter portion. ,
The small diameter portion has a first sliding portion (147) facing a first sliding portion (137) provided in the housing,
The large diameter portion has a second sliding portion (148) facing a second sliding portion (138) provided in the housing,
The fuel can be enclosed in a space (110G) surrounded by the movable core and the housing between the first sliding portion and the second sliding portion in the axial direction. Injector. - 請求項11に記載のインジェクタであって、
前記可動コアは、前記固定コアに接触する磁気吸引部(141)に比べて硬度の高い高硬度部(142)を有し、
前記第1摺動部と前記第2摺動部とは、前記高硬度部に設けられる、インジェクタ。 An injector according to claim 11, comprising:
The movable core has a high hardness portion (142) having a higher hardness than the magnetic attraction portion (141) in contact with the fixed core,
The first sliding part and the second sliding part are injectors provided in the high hardness part. - 請求項11または請求項12に記載のインジェクタであって、
前記第1被摺動部は、前記噴孔を有する前記ハウジングの噴孔形成部(31G)と一体として形成される、インジェクタ。 An injector according to claim 11 or claim 12,
The first sliding part is an injector formed integrally with an injection hole forming part (31G) of the housing having the injection hole. - 請求項11に記載のインジェクタ(20J)であって、
前記可動コアと前記ニードルとのうちいずれか一方には、弾性部材(204,204)が設けられており、
前記弾性部材は、前記径方向における前記可動コアと前記ニードルとの隙間に配置されている、インジェクタ。 An injector (20J) according to claim 11,
Either one of the movable core and the needle is provided with an elastic member (204, 204),
The said elastic member is an injector arrange | positioned in the clearance gap between the said movable core and the said needle in the said radial direction. - 請求項14に記載のインジェクタであって、
前記弾性部材は、前記弾性部材よりも摩擦係数の小さい低摩擦部材(214,215)を介して、前記可動コアと前記ハウジングとのうちの他方と接する、インジェクタ。 An injector according to claim 14,
The said elastic member is an injector which contact | connects the other of the said movable core and the said housing via the low friction member (214,215) whose friction coefficient is smaller than the said elastic member. - 請求項11から請求項15のいずれか一項に記載のインジェクタであって、
前記空間には、前記可動コアを前記固定コア側に向かって付勢する第2スプリング(62)が設けられる、インジェクタ。 An injector according to any one of claims 11 to 15,
The injector, wherein a second spring (62) for urging the movable core toward the fixed core is provided in the space. - 請求項11から請求項16のいずれか一項に記載のインジェクタであって、
前記第1突出部は、前記軸方向における前記噴孔と前記小径部との間に設けられる、インジェクタ。 The injector according to any one of claims 11 to 16, wherein
The first protrusion is an injector provided between the nozzle hole and the small diameter portion in the axial direction. - 請求項1から請求項17のいずれか一項に記載のインジェクタであって、
前記燃料としてガスを噴射する、インジェクタ。 An injector according to any one of claims 1 to 17,
An injector for injecting gas as the fuel. - インジェクタ(20,20B,20C,20D,20E,20F,20G,20H,20I,20J)であって、
燃料を噴射する噴孔(32)を有し、前記噴孔に連通する第1流路(101)が形成された筒状のハウジング(30,30G)と、
前記ハウジング内に固定され、前記第1流路に連通する第2流路(102)が形成された筒状の固定コア(41)と、
前記固定コアよりも前記噴孔側における前記第1流路内を前記ハウジングの軸方向(AX)に沿って往復移動可能に設けられ、前記固定コアの内径よりも大きな外径を有し、前記固定コアの内径よりも小さな貫通孔(43)を有する可動コア(42,42D,42F,42G,42H,42I,42J)と、
通電によって、前記可動コアを前記固定コア側に向かって移動させる磁界を発生するコイル(44)と、
前記貫通孔を前記軸方向に往復移動可能に通る軸部(51)と、前記軸部の前記噴孔側の端部に形成され、前記噴孔を開閉可能な弁部(52)と、を有するニードル(50)と、
前記ニードルを前記噴孔側に向かって付勢するスプリング(61)と、
を備え、
前記軸部は、前記可動コアを挟んで前記弁部側に第1突出部(53)と前記固定コア側に第2突出部(54)とを有し、
前記第1突出部は、径方向に、前記可動コアの前記貫通孔の縁よりも外側に突き出し、
前記第2突出部は、前記径方向に、前記可動コアの前記貫通孔の縁よりも外側で、かつ、前記固定コアの内周縁よりも内側に突き出し、
前記可動コアによって少なくとも一部が画定される空間(110,110D,110G)に、前記燃料を封入可能に構成される、インジェクタ。 Injectors (20, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20I, 20J),
A cylindrical housing (30, 30G) having a nozzle hole (32) for injecting fuel and having a first flow path (101) communicating with the nozzle hole;
A cylindrical fixed core (41) fixed in the housing and formed with a second channel (102) communicating with the first channel;
The inside of the first flow path on the nozzle hole side of the fixed core is provided so as to be able to reciprocate along the axial direction (AX) of the housing, and has an outer diameter larger than the inner diameter of the fixed core, A movable core (42, 42D, 42F, 42G, 42H, 42I, 42J) having a through hole (43) smaller than the inner diameter of the fixed core;
A coil (44) for generating a magnetic field for moving the movable core toward the fixed core by energization;
A shaft portion (51) passing through the through hole so as to be reciprocally movable in the axial direction, and a valve portion (52) formed at an end portion of the shaft portion on the nozzle hole side and capable of opening and closing the nozzle hole. A needle (50) having;
A spring (61) for urging the needle toward the nozzle hole;
With
The shaft portion has a first protrusion (53) on the valve portion side and a second protrusion (54) on the fixed core side with the movable core interposed therebetween,
The first protrusion protrudes outward in the radial direction from the edge of the through hole of the movable core,
The second projecting portion protrudes in the radial direction outside the edge of the through hole of the movable core and inside the inner peripheral edge of the fixed core,
An injector configured to be able to enclose the fuel in a space (110, 110D, 110G) at least partially defined by the movable core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019002344.6T DE112019002344T5 (en) | 2018-05-08 | 2019-04-23 | Injector |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018089807 | 2018-05-08 | ||
JP2018-089807 | 2018-05-08 | ||
JP2018-206208 | 2018-11-01 | ||
JP2018206208 | 2018-11-01 | ||
JP2019043266A JP6760422B2 (en) | 2018-05-08 | 2019-03-11 | Injector |
JP2019-043266 | 2019-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019216201A1 true WO2019216201A1 (en) | 2019-11-14 |
Family
ID=68466975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017229 WO2019216201A1 (en) | 2018-05-08 | 2019-04-23 | Injector |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019216201A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021080881A (en) * | 2019-11-19 | 2021-05-27 | 株式会社ケーヒン | Electromagnetic fuel injection valve |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017089425A (en) * | 2015-11-05 | 2017-05-25 | 株式会社デンソー | Fuel injection device |
WO2018037748A1 (en) * | 2016-08-26 | 2018-03-01 | 日立オートモティブシステムズ株式会社 | Fuel injection valve |
JP2018059514A (en) * | 2017-12-06 | 2018-04-12 | 株式会社デンソー | Fuel injection valve |
-
2019
- 2019-04-23 WO PCT/JP2019/017229 patent/WO2019216201A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017089425A (en) * | 2015-11-05 | 2017-05-25 | 株式会社デンソー | Fuel injection device |
WO2018037748A1 (en) * | 2016-08-26 | 2018-03-01 | 日立オートモティブシステムズ株式会社 | Fuel injection valve |
JP2018059514A (en) * | 2017-12-06 | 2018-04-12 | 株式会社デンソー | Fuel injection valve |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021080881A (en) * | 2019-11-19 | 2021-05-27 | 株式会社ケーヒン | Electromagnetic fuel injection valve |
JP7269155B2 (en) | 2019-11-19 | 2023-05-08 | 日立Astemo株式会社 | electromagnetic fuel injection valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7252245B2 (en) | Fuel injection valve | |
US8973894B2 (en) | Solenoid and solenoid valve | |
US10941739B2 (en) | Fuel injection device | |
US9133954B2 (en) | Electromagnetic linear valve | |
US20210108603A1 (en) | Fuel injection valve | |
CN109891081B (en) | Fuel injection valve | |
WO2019216202A1 (en) | Fuel injection device | |
WO2019216201A1 (en) | Injector | |
JP7152274B2 (en) | fuel injector | |
JP7323445B2 (en) | fuel injector | |
JP6760422B2 (en) | Injector | |
WO2019216207A1 (en) | Injector | |
US9394869B2 (en) | Fuel injector | |
US12110852B2 (en) | Fuel injection valve | |
JP2017025925A (en) | Fuel injection valve | |
US11591994B2 (en) | Fuel injection device | |
JP7273386B2 (en) | injector | |
JP7323444B2 (en) | fuel injector | |
JP2019019709A (en) | Fuel pump | |
JP7284063B2 (en) | fuel injector | |
JP2012225185A (en) | Fuel injection valve | |
JP7311315B2 (en) | fuel injector | |
JP2022139378A (en) | electromagnetic fuel injection valve | |
JP2022146786A (en) | electromagnetic fuel injection valve | |
WO2016116749A1 (en) | Solenoid-based fuel injector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19800769 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19800769 Country of ref document: EP Kind code of ref document: A1 |