WO2019216295A1 - 監視装置、学習装置、監視方法、学習方法及び記憶媒体 - Google Patents
監視装置、学習装置、監視方法、学習方法及び記憶媒体 Download PDFInfo
- Publication number
- WO2019216295A1 WO2019216295A1 PCT/JP2019/018202 JP2019018202W WO2019216295A1 WO 2019216295 A1 WO2019216295 A1 WO 2019216295A1 JP 2019018202 W JP2019018202 W JP 2019018202W WO 2019216295 A1 WO2019216295 A1 WO 2019216295A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parameter
- change
- value
- allowable range
- state
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
- G06N5/022—Knowledge engineering; Knowledge acquisition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
Definitions
- the present invention relates to monitoring technology, and more particularly to technology for monitoring abnormal data.
- a network that connects ECUs mounted on automobiles is also called an in-vehicle network.
- various types of data are transmitted to the in-vehicle network by the ECU as data frames in a format determined according to a communication protocol.
- a protocol such as CAN (Controller Area Network) is used as a communication protocol for the in-vehicle network.
- the ECU transmits data representing the state of the automobile, for example, data acquired by a sensor mounted on the automobile to the in-vehicle network.
- Data indicating the state of the vehicle such as data acquired by a sensor mounted on the vehicle, may be used to control the vehicle. Therefore, there is a demand for detecting an unauthorized data frame from a data frame transmitted to the in-vehicle network, for example, a data frame intended for an attack, an abnormal data frame due to a failure of an ECU, a sensor, or the like.
- Patent Document 1 discloses an example of a fraud detection method for detecting that a fraud state has occurred in an in-vehicle network system including a plurality of ECUs.
- Patent Document 2 discloses a security device that transmits a determination request to an external device when a condition for determining whether or not a frame transmitted to a bus of an in-vehicle network is an attack frame is satisfied. Yes.
- the security device disclosed in Patent Document 2 transmits the frame illegally when the absolute value of the change amount of the value indicated by the data in the data field of the frame exceeds the threshold set as the upper limit of the absolute value. It is determined that the frame has been suspected.
- the absolute value of the amount of change should be smaller than a preset upper limit value. If that happens, the frame cannot be detected.
- One of the objects of the present invention is to provide a monitoring device that can improve the accuracy of detecting an illegal frame from a frame including data representing the state of the device flowing through the network.
- the monitoring device includes a calculation unit that calculates a change in the state of the device based on a parameter value that is included in the received data frame and represents the state of the device, and the device before the change Determining means for determining whether or not the change is included in an allowable range determined in accordance with the state.
- a learning device includes: a calculation unit that calculates a change in a state of the device based on a parameter value that is included in the received data frame and represents the state of the device; and the device before the change Generating means for generating the distribution of the change according to the state, and determining means for determining an allowable range of the change based on the generated distribution.
- a change in the state of the device is calculated based on a value of a parameter included in the received data frame and indicating the state of the device, and the state of the device before the change is calculated. It is determined whether or not the change is included in an allowable range determined accordingly.
- the learning method calculates a change in the state of the device based on a parameter value included in the received data frame and indicating the state of the device, and sets the state of the device before the change. A distribution of the corresponding change is generated, and an allowable range of the change is determined based on the generated distribution.
- a storage medium includes a calculation process for calculating a change in the state of the device based on a parameter value representing a state of the device included in the received data frame in the computer, and before the change. And a determination process for determining whether or not the change is included in an allowable range determined according to the state of the apparatus.
- a storage medium includes a calculation process for calculating a change in the state of the device based on a parameter value representing a state of the device included in the received data frame in the computer, and before the change.
- a program for executing a generation process for generating the distribution of the change according to the state of the apparatus and a determination process for determining an allowable range of the change based on the generated distribution is stored.
- the present invention has an effect of improving the accuracy of detecting an illegal frame from a frame including data representing the state of a device flowing through a network.
- FIG. 1 is a block diagram illustrating an example of a configuration of a monitoring device according to the first and fourth embodiments of the present invention.
- FIG. 2 is a block diagram illustrating an example of a configuration of an in-vehicle network including a monitoring device according to the first and fourth embodiments of the present invention.
- FIG. 3 is a flowchart showing the operation in the learning phase of the monitoring apparatus according to the first and fourth embodiments of the present invention.
- FIG. 4 is a first flowchart showing an example of the operation in the detection phase of the monitoring apparatus according to the first and fourth embodiments of the present invention.
- FIG. 5 is a second flowchart showing an example of the operation in the detection phase of the monitoring apparatus according to the first embodiment of the present invention.
- FIG. 1 is a block diagram illustrating an example of a configuration of a monitoring device according to the first and fourth embodiments of the present invention.
- FIG. 2 is a block diagram illustrating an example of a configuration of an in-vehicle network including
- FIG. 6 is a block diagram illustrating an example of the configuration of the monitoring system according to the first modification of the first and fourth embodiments of the present invention.
- FIG. 7 is a block diagram illustrating an example of a configuration of a monitoring system according to the second modification of the first and fourth embodiments of the present invention.
- FIG. 8 is a block diagram illustrating an example of a configuration of a monitoring apparatus according to the second embodiment of the present invention.
- FIG. 9 is a flowchart showing an example of the operation of the monitoring apparatus according to the second embodiment of the present invention.
- FIG. 10 is a block diagram illustrating an example of a configuration of a learning device according to the third embodiment of the present invention.
- FIG. 11 is a flowchart showing an example of the operation of the learning apparatus 203 according to the third embodiment of the present invention.
- FIG. 12 is a diagram illustrating an example of a hardware configuration of a computer that can realize each of the monitoring device and the learning device according to the embodiment of the present invention.
- FIG. 13 is a second flowchart showing an example of the operation in the detection phase of the monitoring apparatus according to the fourth embodiment of the present invention.
- FIG. 14 is a diagram schematically illustrating an example of an allowable range of the change amount of the continuous value based on the points in the discrete space and the points in the continuous value space.
- FIG. 15 is a diagram schematically illustrating an example of an allowable range of the change amount of the discrete value based on the points in the discrete space and the points in the continuous value space.
- FIG. 1 is a block diagram illustrating an example of a configuration of a monitoring device according to the first embodiment of this invention.
- the monitoring apparatus 100 of this embodiment is connected to the vehicle-mounted network mounted in the motor vehicle, for example.
- the monitoring device 100 may be connected to a call center terminal device or the like via a wireless communication line, for example.
- the automobile is also referred to as a vehicle.
- FIG. 2 is a block diagram showing an example of the configuration of the in-vehicle network including the monitoring device 100.
- the in-vehicle network 1 includes a monitoring device 100 and a plurality of ECUs 500 that are communicably connected to each other via a bus 600.
- the protocol used in the in-vehicle network 1 may be CAN, for example.
- the protocol used in the in-vehicle network 1 may be another protocol.
- the monitoring device 100 can communicate with the call center terminal 700 via a wireless communication line such as a mobile phone communication line, for example.
- the ECU 500 sends a data frame representing a message including, for example, a data value measured by a sensor connected to the ECU 500 as a parameter value to the bus 600.
- a data frame that is, specifically, a parameter value included in the data frame
- ECU 500 assigns an ID (Identification) to the data frame to be transmitted.
- ECU 500 obtains a data frame assigned with a specific ID, which is predetermined for each ECU 500, for example, among data frames sent to bus 600 and flowing through bus 600.
- ECU 500 connected to the engine sends a data frame including the engine speed as a parameter value to bus 600.
- the ECU 500 connected to the steering wheel may send out a data frame including the steering angle of the steering wheel as a parameter value.
- the ECU 500 connected to the air conditioner may send out a data frame including, for example, the room temperature and the set temperature of the air conditioner as parameter values.
- the ECU 500 connected to the transmission may send out a data frame including the drive mode or the gear position as a parameter value.
- the data frame sent out by ECU 500 connected to the transmission may further include, as parameter values, the number of rotations of the shaft, the number of rotations of the wheels, the speed of the vehicle, and the like.
- the parameter values include, for example, throttle opening, engine intake pressure, intake air amount, fuel temperature, intake air temperature, exhaust gas temperature, concentration of CO 2 , CO, NO X, etc. contained in the exhaust gas, atmospheric pressure Etc.
- the parameter value may be, for example, brake opening, yaw rate, engine cooling water temperature, fuel level remaining by the fuel gauge, door open / close state, light on state, turn signal on state, etc. Good.
- the value of the parameter may be another value that can be measured by a sensor attached to the automobile.
- the value of the parameter may be another value that can be acquired from the automobile.
- the parameter may be a parameter obtained by combining a plurality of parameters (hereinafter referred to as a combined parameter).
- the value of the synthesis parameter may be a value calculated from a plurality of parameter values used for synthesis, for example, according to a predetermined method. The parameter value is not limited to the above example.
- the data frame does not have to include all kinds of parameter values.
- a data frame includes one or more parameter values.
- the data frame may not include a parameter value.
- the monitoring apparatus 100 may determine whether the acquired data frame includes a parameter value. When the acquired data frame does not include the parameter value, the monitoring apparatus 100 does not need to perform further processing on the data frame.
- the state of the vehicle is represented by a combination of parameter values.
- the ECU 500 sends out a data frame including, for example, a value measured by a sensor as a parameter value.
- the state of the vehicle is considered to have changed from the state before the change to the state indicated by the acquired data frame.
- the state indicated by the data frame is a state represented by the value of the parameter included in the data frame. Parameter values whose values are not included in the acquired data frame are considered unchanged.
- the state before the change is, for example, the state of the vehicle represented by the data frame acquired immediately before the data frame acquired last.
- an unauthorized ECU 501 is further connected to the bus 600.
- the unauthorized ECU 501 is an ECU that transmits an unauthorized data frame to the bus 600.
- the data frame is also simply referred to as “frame”.
- the fraud ECU 501 can be, for example, an ECU that is hijacked by an external attacker and controlled by the attacker.
- the unauthorized ECU 501 can be, for example, a malfunctioning ECU.
- the unauthorized data frame sent to the bus 600 by the unauthorized ECU 501 is a data frame that does not represent the state of the vehicle on which the unauthorized ECU 501 is mounted but represents a state different from the state of the vehicle.
- An illegal data frame is, for example, a data frame intended to attack a vehicle.
- the data frame intended to attack the vehicle is, for example, a data frame intended to cause a malfunction of an automobile on which the malfunctioning ECU 500 is mounted due to malfunction of the ECU 500 that acquired the unauthorized data frame.
- the illegal data frame may be, for example, a data frame in which the parameter value is set to an illegal value due to a sensor or ECU failure. If a frame in which an invalid value that does not represent the state of the vehicle is set as the parameter value is acquired, the ECU 500 may malfunction, which may cause the vehicle to malfunction.
- the monitoring device 100 acquires the data frame sent to the bus 600.
- the monitoring device 100 may acquire all the data frames sent to the bus 600 regardless of the ID assigned to the data frame.
- the monitoring apparatus 100 performs two types of operations using the acquired data frame. In the following description, aspects of those operations performed by the monitoring device 100 are referred to as a learning phase and a detection phase.
- the learning phase the monitoring apparatus 100 uses the acquired data frame to learn a criterion for determining whether the data frame is an illegal data frame.
- the detection phase the monitoring apparatus 100 determines whether the acquired data frame is an illegal data frame.
- the monitoring apparatus 100 transmits information on the data frame determined to be an unauthorized data frame to the call center terminal 700, for example.
- the monitoring device 100 may send information on the data frame determined to be an unauthorized data frame to another device (for example, any ECU 500).
- the monitoring apparatus 100 may send information on the data frame determined to be an unauthorized data frame to the ECU 500 configured to acquire the data frame determined to be an unauthorized data frame.
- the monitoring device 100 will be described in detail below.
- the monitoring device 100 includes an acquisition unit 110, a calculation unit 120, a generation unit 130, a distribution storage unit 140, a determination unit 150, a rule storage unit 160, and a determination unit. 170 and an output unit 180.
- the acquisition unit 110 acquires (in other words, receives) a data frame from the in-vehicle network 1. Specifically, the acquisition unit 110 acquires a data frame sent to the bus 600. The acquisition unit 110 sends the acquired data frame to the calculation unit 120. Similarly, the acquisition unit 110 may acquire a data frame in both the learning phase and the detection phase.
- the calculation unit 120 receives a data frame from the acquisition unit 110 and extracts a parameter value from the received data frame. For example, when the structure of the data frame is determined according to the ID assigned to the data frame, the calculation unit 120 first identifies the ID assigned to the data frame. The calculation unit 120 reads the parameter value from the portion representing the parameter value of the data frame based on the structure of the data frame to which the identified ID is assigned. When the data frame includes a plurality of types of parameter values, the calculation unit 120 may read all the parameter values included in the data frame. The calculation unit 120 may read only a predetermined parameter value among the parameter values included in the data frame. The calculation unit 120 may similarly read the parameter value from the data frame in both the learning phase and the detection phase.
- the calculation unit 120 holds the state of the vehicle before the data frame is acquired.
- the state of the vehicle is represented by, for example, a combination of parameter values.
- the calculation unit 120 may similarly hold the state of the vehicle in both the learning phase and the detection phase.
- the calculation unit 120 uses the parameter value read from the acquired data frame as the vehicle state. Set to the value of the parameter representing the state. Specifically, the calculation unit 120 determines whether a parameter whose value is read from the acquired data frame includes a parameter whose value is not held as the vehicle state. When the parameter whose value is read from the acquired data frame includes a parameter whose value is not held as the state of the vehicle, the calculation unit 120 uses the parameter value read from the acquired data frame. Update the state of the vehicle. That is, the calculation unit 120 sets the parameter value read from the acquired data frame to the parameter value representing the state of the vehicle.
- updating the vehicle state represents setting a parameter value read from the acquired data frame to a parameter value representing the vehicle state.
- the calculation unit 120 is similar to the case where a parameter whose value is read from the acquired data frame includes a parameter whose value is not held as a vehicle state in both the learning phase and the detection phase.
- the vehicle state may be updated.
- the calculation unit 120 calculates changes in the vehicle state. Specifically, the calculation unit 120 calculates a change in the value of the parameter read from the acquired data frame from the value held as the vehicle state as a change in the vehicle state.
- the state of the vehicle may be represented by a vector including, as elements, values representing changes in the values of individual parameters.
- the calculation unit 120 may similarly calculate a change in the state of the vehicle in both the learning phase and the detection phase.
- the calculation unit 120 informs the generation unit 130 of the vehicle state before the vehicle state indicated by the data frame (specifically, information indicating the previous state) and the calculated vehicle state.
- a change in state (specifically, information indicating the calculated amount of change in the state of the vehicle) is sent out.
- the change amount of the vehicle state may be a change amount of the change amount of the vehicle state.
- the calculation unit 120 updates the previous state with the value of the parameter included in the acquired data frame. Specifically, the calculation unit 120 replaces the parameter value that includes the value in the acquired data frame with the parameter value included in the acquired data frame among the parameter values that represent the previous state.
- the calculation unit 120 sends to the determination unit 170 the previous state and the calculated change in the vehicle state (specifically, information indicating the calculated change in the vehicle state). Then, the calculation unit 120 updates the previous state with the value of the parameter included in the acquired data frame.
- the distribution storage unit 140 is a vehicle state change distribution (hereinafter also referred to as a change amount distribution) according to a vehicle state before the vehicle state indicated by the data frame (hereinafter also referred to as a previous state).
- the distribution storage unit 140 is, for example, information that represents the distribution of changes in the state of the vehicle when the previous state is included in the range for each state of the vehicle before the vehicle state indicated by the data frame (that is, the previous state). May be stored.
- the distribution storage unit 140 may store, for each predetermined range of the previous state, information representing a distribution of changes in the state of the vehicle when the previous state is included in the range.
- the distribution storage unit 140 may store, for example, information indicating the distribution of the change amount of the vehicle state associated with the information indicating the range of the vehicle state before the change.
- the information indicating the range of the vehicle state before the change is determined so that, for example, different ranges of the vehicle state can be distinguished, and it can be determined whether the vehicle state represented by the parameter value is included in the vehicle state range.
- Information in a predetermined format is a predetermined format.
- the vehicle state range (for example, the vehicle state range before the vehicle state indicated by the acquired data frame) may be represented by a value range determined for each parameter, for example.
- the range of the state of the vehicle is, for example, a section of the length a in which the range of the parameter A is divided and the range of the parameter B is divided. It may also be represented by a section of length b. For example, if the number specifying the section in which the range of parameter A is divided is i and the number specifying the section in which the range of parameter B is divided is j, the range of the vehicle state is a combination of i and j.
- the information indicating the state range of the vehicle may be a combination of i and j.
- the range of the state of the vehicle is represented by a rectangle.
- the distribution storage unit 140 includes a previous state in which the value of parameter A is included in the section represented by i and the value of parameter B is included in the section represented by j.
- the distribution of changes in the state of the vehicle from may be stored.
- the distribution storage unit 140 stores different distributions of vehicle state changes for different combinations of i and j.
- the range of the vehicle state may be represented by a rectangular parallelepiped.
- the range of the vehicle state may be represented by a super rectangular parallelepiped.
- the length of the section into which the parameter value range is divided may not be constant.
- An interval may be set to a value obtained by performing conversion to at least some parameter values.
- the conversion may be a logarithmic conversion, an exponential conversion, or other processing.
- the range of the vehicle state is equivalent to one state of the vehicle.
- the distribution storage unit 140 stores the calculated change in the vehicle state (for example, the amount of change in the value of each parameter representing the vehicle state) as the distribution of the change in the vehicle state, for example, in the form of a vector. You may do it.
- the distribution storage unit 140 may store a frequency value for each range (hereinafter, also referred to as a change unit) obtained by dividing the range of the change amount of the vehicle state as the distribution of the change of the vehicle state.
- the range that is, the change unit
- the size of the change unit may be different from the size of the range in the previous state described above.
- the change unit may be a super rectangular parallelepiped, for example.
- the distribution storage unit 140 may store the distribution of changes in the state of the vehicle in other formats.
- the distribution storage unit 140 may store a distribution of changes in the vehicle state for all combinations of parameters representing the vehicle state. Specifically, the distribution storage unit 140 may store a distribution of changes in the vehicle state in a feature space obtained from a combination of all parameters representing the vehicle state.
- the feature space in this case is, for example, a two-dimensional space in which the vertical axis is the speed and the horizontal axis is the steering angle when the parameters are two of the speed and the steering angle. Setting the number of dimensions and axes is not limited to the above example.
- the distribution storage unit 140 may store a distribution of changes in the vehicle state for a predetermined combination of parameters selected from parameters representing the vehicle state.
- the distribution storage unit 140 may store a distribution of changes in the vehicle state in a feature space obtained from a combination of parameters selected from all parameters representing the vehicle state.
- the distribution storage unit 140 may store a distribution of changes in the vehicle state in each of the plurality of feature spaces obtained by a plurality of combinations of parameters selected from parameters representing the vehicle state.
- the plurality of feature spaces may be a space obtained by the speed and the steering angle and a space obtained by the speed and the acceleration.
- the distribution storage unit 140 may store distributions of changes in the vehicle state in all feature spaces obtained from parameter combinations that can be selected from parameters representing the vehicle state.
- the distribution storage unit 140 is associated with information representing the previous state in the feature space obtained from one or more combinations of parameters that can be selected from all parameters representing the state of the vehicle.
- the previous state associated with the distribution of changes in the vehicle state may not be the previous state represented by all parameters.
- the previous state in which information is associated with the distribution of changes in the state of the vehicle may be a previous state of a parameter selected as a parameter representing the distribution of changes in the state of the vehicle.
- the information representing the previous state of the parameter selected as the parameter representing the distribution of the change in the state of the vehicle represents the distribution of the change in the state of the vehicle in the state of the vehicle before the state of the vehicle represented by the latest data frame. This is information for specifying the state of the parameter selected as the parameter.
- the parameter state is, for example, a parameter value or a parameter value range.
- the generation unit 130 first identifies the distribution of the amount of change according to the state of the vehicle before the vehicle state indicated by the data frame (that is, the above-described previous state). Specifically, the generation unit 130 is a parameter whose value is included in the acquired data frame from the previous state of the vehicle state represented by the acquired data frame from the distribution of the change amount stored in the distribution storage unit 140. The distribution of the change amount in the feature space obtained from the combination of parameters including
- generation part 130 updates distribution of the specified variation
- the generation unit 130 indicates the vehicle state represented by the acquired data frame in the set of change amounts representing the distribution of change amounts.
- the amount of change from the previous state may be added.
- the generation unit 130 specifies the change unit including the change amount from the previous state of the vehicle state represented by the acquired data frame. 1 may be added to the frequency of the specified change unit.
- the generation unit 130 updates all the specified distributions.
- the generation unit 130 may not operate.
- the determination unit 150 determines an allowable range of the change amount for each of the change amount distributions stored in the distribution storage unit 140.
- Various methods can be applied as a method for determining the allowable range of variation.
- the determination unit 150 may determine a range included between the maximum value and the minimum value of the change amount of each parameter in each distribution as an allowable range.
- the determining unit 150 assumes that the distribution of the amount of change of each parameter is a normal distribution, and the difference from the average value of the amount of change is included in the constant multiple of the standard deviation for each parameter of each distribution.
- the range may be determined as an allowable range.
- the allowable range in a distribution is represented by a combination of the minimum value and the maximum value of each parameter value in the distribution. It's okay.
- the determination unit 150 applies a Gaussian mixture model to each distribution, specifies a range in which the size satisfies a predetermined condition in the distribution approximated by the mixed Gaussian distribution, and determines the specified range as an allowable range. Also good.
- the determination unit 150 may approximate the allowable range by, for example, a combination of super rectangular parallelepipeds.
- the determination unit 150 may use information that can specify all the hypercubes included in the combination of supercubes that approximate the permissible range as information that identifies the permissible range. If the number of parameters is 2, the determination unit 150 may use a rectangle instead of a super rectangular parallelepiped. If the number of parameters is 3, the determination unit 150 may use a rectangular parallelepiped instead of a super rectangular parallelepiped.
- the information indicating the allowable range is not limited to the above example.
- the determining unit 150 stores in the rule storage unit 160 information representing the determined allowable range for each variation distribution. As described above, the distribution of the change amount is generated for each feature space obtained from the combination of parameters. Further, the distribution of the change amount stored in the distribution storage unit 140 is associated with information representing the previous state.
- the determination unit 150 may store, in the rule storage unit 160, information indicating an allowable range associated with information specifying a feature space obtained from a combination of parameters and information indicating a previous state.
- the information for specifying the feature space may be information for specifying a combination of parameters for obtaining the feature space.
- the information indicating the previous state associated with the distribution of the change amount may be information indicating the previous state of the combination of parameters for which the distribution of the change amount is generated.
- the value or range of values of the selected parameter can be specified by the information indicating the previous state. Therefore, the selected parameter can be specified by the information indicating the previous state.
- the parameter whose value range is indicated by the allowable range is the selected parameter. Therefore, the parameter selected by the allowable range can be specified.
- the selected parameter the feature space obtained from the selected parameter can be specified. Therefore, information specifying the feature space (for example, information specifying the selected parameter) may not be associated with the determined allowable range as information different from the determined allowable range.
- the determination unit 150 may store, in the rule storage unit 160, information indicating the determined allowable range associated with the information indicating the previous state.
- the determination unit 150 may not operate.
- the rule storage unit 160 stores information representing the determined allowable range for each variation distribution. Specifically, the rule storage unit 160 stores information representing an allowable range for each distribution of change amounts associated with information representing the previous state. When the parameter selected by the information indicating the previous state cannot be specified, the rule storage unit 160 is associated with information specifying the feature space (for example, information specifying the combination of parameters) and information indicating the previous state. In addition, information indicating an allowable range may be stored.
- the determination unit 170 does not have to operate in the learning phase.
- the determination unit 170 represents a previous state (specifically, information indicating the previous state) and a change in the calculated vehicle state (specifically, an amount of change in the calculated vehicle state). Information) is received from the calculation unit 120.
- the determination unit 170 specifies an allowable range defined in a feature space obtained from a combination of parameters, including a parameter including a change amount of the value in the received information indicating the change amount of the state of the vehicle.
- the determination unit 170 may specify all of the plurality of tolerance ranges.
- the determination unit 170 determines whether the specified allowable range includes the received change amount represented by the information indicating the change amount of the vehicle state. When a plurality of allowable ranges are specified, the determination unit 170 determines whether each of the specified allowable ranges includes a change amount represented by the received information indicating the change amount of the vehicle state. In the present embodiment, the determination unit 170 may consider that the change amount of the parameter value that does not include the change amount of the value in the information indicating the change amount of the vehicle state is zero.
- the determination unit 170 determines that the data frame acquired by the acquisition unit 110 is invalid. It may be determined that the data frame is a correct data frame. The determination unit 170 sends the determination result to the output unit 180.
- the result of the determination may be predetermined information indicating that the data frame is determined to be illegal or information indicating that the data frame is determined not to be illegal.
- the information indicating that the data frame has been determined to be invalid indicates that at least one of the allowable ranges does not include the change amount represented by the information indicating the change amount of the vehicle state.
- the information indicating that the data frame is determined not to be invalid indicates that the change amount represented by the information indicating the change amount of the state of the vehicle is included in all the specified allowable ranges.
- the output unit 180 may not operate in the learning phase.
- the output unit 180 receives the result of the determination performed by the determination unit 170. That is, the output unit 180 does not include the change amount represented by the information indicating the change amount of the state of the vehicle in at least one specified allowable range, or in all the specified allowable ranges, Information indicating whether the change amount is included is received. In other words, the output unit 180 receives information indicating whether or not the data frame acquired by the acquisition unit 110 is determined to be an illegal data frame from the determination unit 170.
- the output unit 180 When the data frame acquired by the acquisition unit 110 is determined to be an illegal data frame by the determination unit 170, the output unit 180 notifies the notification destination (for example, the call center terminal 700) of the frame information. In this case, the output unit 180 may transmit information specifying the data frame determined to be an unauthorized data frame as a notification to the notification destination. The output unit 180 may transmit information specifying a parameter included in the data frame determined to be an unauthorized data frame as a notification to the notification destination. The output unit 180 may transmit the information specifying the parameter included in the data frame determined to be an unauthorized data frame and the value of the parameter to the notification destination as a notification.
- the notification destination for example, the call center terminal 700
- the output unit 180 may not notify the notification destination such as the call center terminal 700, for example.
- FIG. 3 is a flowchart showing the operation in the learning phase of the monitoring apparatus 100 of the present embodiment.
- the monitoring apparatus 100 starts the operation in the learning phase, for example, according to an operator instruction.
- the acquisition unit 110 acquires a data frame flowing through the bus 600 (step S101).
- the calculation unit 120 extracts a parameter value from the acquired data frame (step S102).
- the calculation unit 120 determines whether the conditions for update execution are satisfied. If the determination result indicates that the conditions for update execution are not satisfied (NO in step S103), the operation of the monitoring device 100 is as follows. Return to S101.
- the condition for execution of update may be, for example, that the extracted data frame includes a parameter that holds a value as the vehicle state. For example, when the extracted data frame includes a parameter whose value is held as the vehicle state, the calculation unit 120 may determine that the condition for executing the update is satisfied. For example, when the extracted data frame does not include a parameter whose value is held as the vehicle state, the calculation unit 120 may determine that the conditions for executing the update are satisfied.
- the conditions for update execution are not limited to the above examples.
- the calculation unit 120 calculates the change in the vehicle state from the previous state (step S104). As described above, the calculation unit 120 may consider that the parameter value that does not include a value in the acquired data frame among the parameters representing the state of the vehicle has not changed. The calculation unit 120 may calculate a change in value of the parameter whose value is included in the acquired data frame from the previous state. In the learning phase, the calculation unit 120 sends information representing the previous state and the calculated change in the vehicle state to the generation unit 130.
- the generation unit 130 updates the distribution of changes from the previous state of the vehicle state according to the previous state (step S105).
- the generation unit 130 generates a value corresponding to a previous state in a feature space represented by a combination including a parameter whose value is included in a data frame among distributions of a change in a value for a plurality of combinations of parameters representing a vehicle state. Update the distribution of changes with the calculated changes.
- step S106 the calculation unit 120 updates the previous state with the parameter value extracted from the acquired data frame. Note that the operation of step S106 may be performed before the operation of step S105.
- the monitoring apparatus 100 repeats the operation from step S101.
- the generation unit 130 generates a distribution of changes in the state of the vehicle by repeatedly updating the distribution of changes in the state of the vehicle.
- the termination condition may be determined in advance.
- the termination condition may be, for example, that the number of acquired data frames has reached a predetermined number.
- the termination condition may be, for example, that the number of times the change distribution is updated reaches a predetermined number for all distributions.
- the termination condition may be, for example, that an termination instruction has been given by the operator.
- the termination condition is not limited to the above example.
- the determination unit 150 allows the change range according to the previous state in each of the plurality of feature spaces obtained from the plurality of parameter combinations described above. To decide.
- the determination unit 150 stores the determined allowable range of change according to the previous state in the rule storage unit 160.
- FIG. 4 is a first flowchart showing an example of the operation in the detection phase of the monitoring apparatus 100 of the present embodiment.
- the monitoring device 100 may be set to start the operation in the detection phase when the operator does not give an instruction to start the operation in the learning phase.
- the monitoring device 100 may start the operation in the detection phase according to an instruction from the operator. In the following description, it is assumed that an illegal data frame may flow through the bus 600 during the detection phase operation.
- the acquisition unit 110 acquires a data frame flowing through the bus 600 (step S111).
- the operation in step S111 may be the same as the operation in step S101 in the learning phase.
- the calculation unit 120 extracts parameter values from the acquired data frame (step S112).
- the operation in step S112 may be the same as the operation in step S102 in the learning phase.
- the calculation unit 120 determines whether the conditions for detection execution are satisfied. If the determination result indicates that the conditions for detection execution are not satisfied (NO in step S113), the operation of the monitoring device 100 is as follows. Return to S111.
- the conditions for detection execution may be the same as the conditions for update execution in the learning phase.
- step S113 If the conditions for detection execution are satisfied (YES in step S113), the monitoring apparatus 100 executes detection processing (step S114).
- the detection process in step S114 will be described in detail later.
- the monitoring apparatus 100 repeats the operations after step S111. If the end condition is satisfied (YES in step S115), monitoring device 100 ends the operation shown in FIG.
- the end condition may be, for example, that the vehicle on which the in-vehicle network 1 is mounted ends the operation.
- the termination condition is not limited to the above example.
- FIG. 5 is a second flowchart showing an example of the operation in the detection phase of the monitoring apparatus 100 of the present embodiment. Specifically, FIG. 5 shows an example of the operation of the detection process in the detection phase of the monitoring apparatus 100 of the present embodiment.
- the calculation unit 120 calculates a change from the previous state of the vehicle state (step S121).
- the operation in step S121 may be the same as the operation in step S104 in the learning phase.
- the calculation unit 120 sends the information indicating the previous state and the calculated change in the vehicle state to the determination unit 170 instead of the generation unit 130.
- the determination unit 170 specifies the allowable range of change in the vehicle state according to the previous state (that is, the state of the vehicle before the change) from the allowable range stored in the rule storage unit 160 (step) S122).
- the determination unit 170 specifies an allowable range corresponding to the previous state in the feature space represented by a combination including a parameter whose change in value is included in the change in the received vehicle state among a plurality of combinations of parameters. Also good.
- the determination unit 170 may further read information representing the specified allowable range from the rule storage unit 160.
- the determination unit 170 identifies all the allowable ranges in those feature spaces and specifies All the information indicating the allowable range may be read out.
- the determination unit 170 determines whether the change in the vehicle state is included in the specified allowable range (step S123). When the change in the state of the vehicle is included in the allowable range (YES in step S124), calculation unit 120 updates the previous state (step S126), and monitoring device 100 ends the operation shown in FIG. When a plurality of allowable ranges are specified, the determination unit 170 determines that the change in the vehicle state is included in the allowable range if the change in the vehicle state is included in all the specified allowable ranges. To do.
- the output unit 180 notifies the data frame information acquired in step S111 (step S125).
- the determination unit 170 includes a change in the vehicle state within the allowable range unless the change in the vehicle state is included in at least one of the specified allowable ranges. Judge that there is no. Then, the calculation unit 120 updates the previous state (step S126), and the monitoring apparatus 100 ends the operation illustrated in FIG.
- the calculation unit 120 may perform the operation of step S126 at any timing after step S121.
- the embodiment described above has an effect of improving the accuracy of detecting an illegal frame from a frame including data representing a vehicle state flowing through the network.
- the determination unit 170 determines whether the change in the state of the vehicle is included in the allowable range according to the previous state (that is, the state of the vehicle before the change). For example, a change in the state of the vehicle may be normal as a change from a certain state, but may be abnormal as a change from another state. In such a case, when determining whether the change in the state of the vehicle is normal or abnormal based on the same allowable range regardless of the state of the vehicle before the change, the accuracy of the determination is reduced. By determining whether the change in the state of the vehicle is normal or abnormal based on the allowable range according to the state of the vehicle before the change, the accuracy of the determination is improved. Accordingly, the accuracy of detecting an illegal frame indicating an abnormal vehicle state is improved.
- FIG. 6 is a block diagram illustrating an example of the configuration of the monitoring system according to the first modification of the first embodiment.
- the monitoring system 11 shown in FIG. 6 includes a learning device 201 and a monitoring device 101.
- the monitoring system 11 can be replaced with the monitoring device 100 shown in FIG.
- Learning device 201 includes an acquisition unit 110, a calculation unit 120, a generation unit 130, a distribution storage unit 140, a determination unit 150, and a rule output unit 280.
- the monitoring apparatus 101 includes an acquisition unit 110, a calculation unit 120, a rule storage unit 160, a determination unit 170, an output unit 180, and a rule acquisition unit 190.
- Elements that are included in the learning device 201 and have the same names and symbols as those included in the monitoring device 100 of the first embodiment are given the same names and symbols included in the monitoring device 100 of the first embodiment. It has the same function as the function in the learning phase of the given element.
- those elements included in the learning device 201 perform the same operations as the operations in the learning phase of the elements to which the same names and symbols are included in the monitoring device 100 of the first embodiment. Below, a difference is demonstrated.
- the determination unit 150 sends the determined allowable range to the rule output unit 280.
- the rule output unit 280 receives the allowable range from the determining unit 150, and sends the received allowable range to the monitoring apparatus 101.
- Elements that are included in the monitoring apparatus 101 and have the same names and symbols as the elements included in the monitoring apparatus 100 of the first embodiment are given the same names and codes included in the monitoring apparatus 100 of the first embodiment. It has the same function as the function in the detection phase of the given element.
- those elements included in the monitoring apparatus 101 perform the same operation as the operation in the detection phase of the elements to which the same name and reference numerals included in the monitoring apparatus 100 of the first embodiment are assigned. Below, a difference is demonstrated.
- the rule acquisition unit 190 receives an allowable range from the rule output unit 280 of the learning device 201.
- the rule acquisition unit 190 stores the received allowable range in the rule storage unit 160.
- FIG. 7 is a block diagram illustrating an example of a configuration of a monitoring system according to a second modification of the first embodiment.
- the monitoring system 12 shown in FIG. 7 includes a learning device 202, a rule storage device 302, and a monitoring device 102.
- the monitoring system 12 can be replaced with the monitoring device 100 shown in FIG.
- Learning device 202 includes an acquisition unit 110, a calculation unit 120, a generation unit 130, a distribution storage unit 140, a determination unit 150, and a rule output unit 280.
- the rule storage device 302 includes a rule storage unit 160.
- the monitoring device 102 includes an acquisition unit 110, a calculation unit 120, a determination unit 170, an output unit 180, and a rule acquisition unit 190.
- Elements that are included in the learning device 202 and have the same names and symbols as those included in the monitoring device 100 of the first embodiment are given the same names and symbols included in the monitoring device 100 of the first embodiment. It has the same function as the function in the learning phase of the given element. Further, those elements included in the learning device 202 perform the same operation as the operation in the learning phase of the elements to which the same name and code included in the monitoring device 100 of the first embodiment are assigned. Below, a difference is demonstrated.
- the determination unit 150 sends the determined allowable range to the rule output unit 280.
- the rule output unit 280 receives the allowable range from the determination unit 150, and stores the received allowable range in the rule storage unit 160 of the rule storage device 302.
- Elements that are included in the monitoring apparatus 102 and have the same names and reference numerals as those included in the monitoring apparatus 100 of the first embodiment are given the same names and reference numerals included in the monitoring apparatus 100 of the first embodiment. It has the same function as the function in the detection phase of the given element.
- those elements included in the monitoring device 102 perform the same operation as the operation in the detection phase of the elements to which the same name and reference numeral included in the monitoring device 100 of the first embodiment are assigned. Below, a difference is demonstrated.
- the rule acquisition unit 190 accesses the rule storage unit 160 of the rule storage device 302 and acquires the allowable range from the rule storage unit 160.
- the rule storage unit 160 has the same function as the rule storage unit 160 of the monitoring device 100 of the first embodiment.
- any configuration of the first embodiment, the first modification, and the second modification may be employed. Differences between the third modification example, the first embodiment, the first modification example, and the second modification example are as follows.
- the calculation unit 120 does not hold the value as the vehicle state when the parameter whose value is read from the acquired data frame includes a parameter that holds the value as the vehicle state. Even if the parameter exists, the change in the state of the vehicle is calculated. Specifically, the calculation unit 120 of the third modification example, as a change in the state of the vehicle, compares the value of each parameter read from the acquired data frame from the value held as the state of the vehicle. May be calculated as a change in the state of the vehicle. In other words, when a parameter whose value is read from the acquired data frame includes a parameter whose value is not held as the state of the vehicle, the calculation unit 120 considers that the value of the parameter has not changed.
- the calculation unit 120 updates the vehicle state for each parameter whose value is read from the acquired data frame. In other words, the calculation unit 120 sets the parameter value read from the acquired data frame as the parameter value held as the vehicle state.
- Other components may operate in the same manner as the components of the first embodiment. Other components may operate in the same manner as the components of the first modification. Other components may operate in the same manner as the components of the second modified example.
- the condition for executing the update in step S103 may be, for example, that a predetermined time elapses after the distribution of parameter value changes is updated.
- the calculation unit 120 in step S104, the calculation unit 120 generates the latest state based on the parameter values included in the data frame acquired during a predetermined time after updating the distribution of changes in the parameter values. Also good. For example, the calculation unit 120 obtains the value of each parameter included in at least one data frame acquired during a predetermined time, and the most recently acquired data among the data frames including the value. It may be set to a value included in the frame.
- the network in which the monitoring device 100 determines whether the acquired data frame is an abnormal data frame is not limited to the in-vehicle network. That is, the monitoring apparatus 100 may determine whether or not a data frame transmitted to a network that is not an in-vehicle network mounted on the vehicle is an abnormal data frame.
- the monitoring apparatus 100 may be connected to a network through which a data frame including a parameter value representing the state of the apparatus other than the state of the vehicle flows, and may determine whether the data frame is abnormal.
- the monitoring device 100 according to the fifth modified example is connected to a network through which a data frame including a parameter value indicating the state of the device (including the vehicle) flows, and determines whether the data frame is abnormal. May be.
- FIG. 8 is a block diagram illustrating an example of the configuration of the monitoring apparatus 103 according to the present embodiment.
- the 8 includes a calculation unit 120 and a determination unit 170.
- the calculation unit 120 calculates a change in the state of the device based on a parameter value included in the received data frame and representing the state of the device.
- the determination unit 170 determines whether or not the change is included in an allowable range determined according to the state of the device before the change.
- FIG. 9 is a flowchart showing an example of the operation of the monitoring apparatus 103 of this embodiment.
- the calculation unit 120 calculates a change in the state of the device based on the state of the device represented by the received data frame (step S202).
- the apparatus is, for example, a vehicle.
- the data frame is a data frame that flows through an in-vehicle network on which the vehicle is mounted.
- the calculation unit 120 may hold in advance the state of the device before the calculated change.
- the calculation unit 120 may send information representing the state of the device represented by the acquired data frame and information representing the state before the change to the determination unit 170.
- the determination unit 170 determines whether the calculated change in the state of the apparatus is included in an allowable range corresponding to the state of the apparatus before the change (step S204).
- This embodiment has the same effect as the first embodiment.
- the reason is that the determination unit 170 determines whether the change in the state of the device calculated by the calculation unit 120 is included in the allowable range according to the state of the device before the change.
- FIG. 10 is a block diagram illustrating an example of the configuration of the learning device 203 of the present embodiment.
- the learning device 203 includes a calculation unit 120, a generation unit 130, and a determination unit 150.
- the calculation unit 120 calculates a change in the state of the device based on a parameter value included in the received data frame and representing the state of the device.
- the generation unit 130 generates the distribution of the change according to the state of the device before the change.
- the determination unit 150 determines the allowable range of the change based on the generated distribution.
- FIG. 11 is a flowchart showing an example of the operation of the learning apparatus 203 according to the present embodiment.
- the calculation unit 120 calculates a change in the state of the device based on the state of the device represented by the received data frame (step S302).
- the generation unit 130 updates the distribution of changes according to the state of the device before the calculated change (step S303).
- the learning device 203 repeats the operations in step S302 and step S303.
- the termination condition may be the same as the termination condition in the first embodiment shown in step S107 of FIG.
- the generation unit 130 By repeating the operation in step S303, the generation unit 130 generates a distribution of changes in the state of the apparatus according to the previous state.
- determination unit 150 determines the allowable range of change according to the previous state based on the generated distribution for each previous state (step S306).
- the determined allowable range of change may be output to, for example, a monitoring device that detects an illegal data frame using the allowable range.
- the reason is that the determination unit 150 determines an allowable range corresponding to the state of the device before the change in the state of the device. For example, there may be a case where a change in the state of the apparatus is normal as a change from a certain state but is abnormal as a change from another state. In such a case, if it is determined whether the change in the state of the apparatus is normal or abnormal based on the same allowable range regardless of the state of the apparatus before the change, the accuracy of the determination is reduced. By determining whether the change in the state of the apparatus is normal or abnormal based on the allowable range according to the state of the apparatus before the change, the accuracy of the determination is improved. Therefore, the accuracy of detecting an illegal frame indicating an abnormal apparatus state is improved.
- FIG. 1 is a block diagram illustrating an example of the configuration of the monitoring apparatus 100 according to the present embodiment.
- the monitoring apparatus 100 according to the present embodiment includes an acquisition unit 110, a calculation unit 120, a generation unit 130, a distribution storage unit 140, a determination unit 150, a rule storage unit 160, a determination unit 170, and an output unit 180. including.
- the configuration of the monitoring apparatus 100 according to the present embodiment is the same as the configuration of the monitoring apparatus 100 according to the first embodiment.
- the acquisition unit 110, the calculation unit 120, the generation unit 130, the distribution storage unit 140, and the output unit 180 of the present embodiment have the same functions as the units to which the same name and code of the first embodiment are given. And operate similarly.
- the parameters are classified into two types.
- the first type of parameter is a “continuous” parameter.
- the second type of parameter is a “discrete” parameter.
- the continuous parameter is, for example, a parameter in which the number of values that the parameter can take is larger than a predetermined number.
- continuous parameters are referred to as “continuous parameters”.
- the continuous parameter may be a parameter that can take a real value.
- the range of parameters that can be taken by the continuous parameters may not be limited.
- the continuous parameter may be a parameter that can take any of the real values included in the predetermined range.
- the continuous parameter may be a parameter that can take any of real numbers greater than a predetermined number.
- the value of the continuous parameter may not be a real number.
- the continuous parameter may be, for example, a parameter that can take any integer value greater than a predetermined number.
- the continuous parameter may be, for example, a parameter that can take any number of numerical values (including integer values and real values) greater than a predetermined number.
- the continuous parameter may be a parameter that can take any of a larger number of state values than a predetermined number. In this case, for example, an integer or real number included in a predetermined range may be assigned to the state value.
- the state value may be handled as an integer or a real number assigned to the state value.
- the number of values that the continuous parameter can take may not be limited.
- the range of values that can be taken by the continuous parameter may not be limited.
- the continuous parameters are, for example, vehicle speed, accelerator opening, brake pedal, steering angle, yaw rate, and the like.
- the “brake pedal” is a value representing the degree of depression of the brake pedal.
- the brake pedal may represent the magnitude of the force applied to the brake pedal, for example.
- the brake pedal may represent a pressure such as a hydraulic pressure depending on the magnitude of the force applied to the brake pedal in any part of the brake system, for example.
- the brake pedal may be a measurement value obtained by measurement with a pressure sensor attached to the brake system, for example.
- the brake pedal may be represented, for example, by the magnitude of movement of the brake pedal from a state where the brake pedal is not depressed.
- the magnitude of the movement of the brake pedal may be derived, for example, from the output of a sensor that measures the position of the brake pedal.
- the continuous parameter is not limited to the above example.
- a discrete parameter is, for example, a parameter in which the number of values that the parameter can take is less than a predetermined number.
- the predetermined number may be determined in advance, for example.
- discrete parameters are referred to as “discrete parameters”.
- a value that can be taken by the discrete parameter may be a real value, an integer value, a state value, or the like.
- the discrete parameter may be, for example, a shift position, a side lever state, a door opening / closing state, a light lighting state, a blinker lighting state, or the like.
- the discrete parameter is not limited to the above example.
- a space with discrete parameters is referred to as a discrete space
- a space with continuous parameters is referred to as a continuous value space.
- the discrete space is an n-dimensional space.
- the continuous value space is an m-dimensional space.
- a combination of these n discrete parameter values is represented by a point (specifically, the coordinates of the point) in the discrete space. Changes in the values of these n discrete parameters can be represented by an n-dimensional vector in a discrete space.
- a combination of the values of these m continuous parameters is represented by a point (specifically, the coordinates of the point) in the continuous value space.
- a change in the value combination of these m continuous parameter values can be represented by an m-dimensional vector in the continuous value space.
- n discrete parameter values are also expressed as a combination of discrete parameter values.
- the values of these n discrete parameters may be simply expressed as discrete parameter values.
- a change in the values of these n discrete parameters may be simply expressed as a change in the combination of the values of the discrete parameters. Changes in the values of these n discrete parameters may be simply referred to as changes in the values of the discrete parameters.
- the values of these m continuous parameters are also expressed as combinations of continuous parameter values.
- the values of these m continuous parameters may be simply expressed as continuous parameter values.
- a change in the values of these m continuous parameters may be simply expressed as a change in the combination of the values of the continuous parameters. Changes in the values of these m continuous parameters may be simply referred to as changes in the values of the continuous parameters.
- the generation unit 130 first corresponds to the state of the vehicle before the vehicle state indicated by the data frame (that is, the above-described previous state). Identify the distribution of changes. Specifically, the generation unit 130 is a parameter whose value is included in the acquired data frame from the previous state of the vehicle state represented by the acquired data frame from the distribution of the change amount stored in the distribution storage unit 140. The distribution of the change amount in the feature space obtained from the combination of parameters including The data frame used by the generation unit 130 is a data frame acquired from a vehicle that has been confirmed to be operating normally.
- the generation unit 130 of the present embodiment specifies the distribution of the change amount from each combination of the continuous parameter values for each combination of the discrete parameter values. In other words, the generation unit 130 of the present embodiment specifies the distribution of change amounts at each point in the continuous value space for each point in the discrete space. Furthermore, for each combination of discrete parameter values, the generation unit 130 of the present embodiment identifies a distribution of combinations of continuous parameter values for each change from the combination of discrete parameter values. In other words, the generation unit 130 of the present embodiment identifies the distribution of points in the continuous value space for each change in each point in the discrete space.
- the determination unit 150 determines an allowable range of the change amount for each of the change amount distributions stored in the distribution storage unit 140.
- the determination unit 150 of the present embodiment determines an allowable range of change in the combination of the continuous parameter values based on the combination of the discrete parameter values and the combination of the continuous parameter values. In other words, the determination unit 150 of the present embodiment determines an allowable range of change from each point in the continuous value space for each point in the discrete space.
- the determining unit 150 according to the present embodiment further includes, for each combination of discrete parameter values, an allowable range of the variation amount of the discrete parameter value combination based on the combination of the discrete parameter value and the combination of the continuous parameter value. To decide. In other words, the determination unit 150 according to the present embodiment further sets, for each point in the discrete space, an allowable range of change from the point in the discrete space based on the point in the discrete space and the point in the continuous value space. decide.
- the generation unit 130 of the present embodiment generates a distribution of continuous parameter values (in other words, a normal distribution) for each combination of discrete parameter values.
- the generation unit 130 generates a distribution of continuous parameter values (that is, a normal distribution) in the continuous value space for each point representing a combination of discrete parameter values in the discrete space.
- a set of vehicle states having the same combination of discrete parameter values is represented as a point in the discrete space. Even if the combinations of the values of the discrete parameters of the vehicle state are the same, the values of the continuous parameters of the vehicle state are not necessarily the same.
- the generation unit 130 specifies, for each combination of discrete parameter values, a distribution of change amounts of continuous parameter values in a normal state (hereinafter also referred to as a change distribution) from each point in the generated normal distribution. To do. In other words, the generation unit 130 specifies, for each point in the discrete space, the distribution of the change amount of the continuous parameter value at each point included in the normal distribution in the continuous value space. Furthermore, in other words, the generation unit 130 calculates, for each combination of values, the distribution of change amounts from the same combination of continuous parameter values in the set of vehicle states having the same discrete parameter value. Identify.
- the generation unit 130 may specify the distribution of the change amount of the continuous parameter value for each of a plurality of partial regions obtained by dividing the continuous value space according to a predetermined rule. In other words, the generation unit 130 distributes the change amount of the continuous parameter value from the combination of the continuous parameter values represented as the points included in the partial region for each of the plurality of partial regions set in the continuous value space. May be specified. Furthermore, in other words, the generation unit 130 calculates a distribution of change amounts from combinations of values included in the same partial region of combinations of values of continuous parameters in a set of vehicle states having the same values of discrete parameters. You may specify for every partial area.
- the determining unit 150 determines, for each combination of discrete parameter values, an allowable range of change of the continuous parameter value based on the value of the continuous parameter from the distribution of the specified change amount. In other words, the determination unit 150 determines, for each point in the discrete space, an allowable range of change in the continuous parameter value from each point included in the continuous parameter distribution in the continuous value space. Furthermore, in other words, the determination unit 150 determines an allowable range of a change amount from a combination of continuous parameter values in a set of vehicle states having the same combination of discrete parameter values. The determination unit 150 may determine an allowable range of the change amount of the continuous parameter value for each partial region described above.
- the determination unit 150 may determine the allowable range of the change amount from the combination of values included in the same partial area of the continuous parameter for each partial area.
- the method for determining the allowable range by the determination unit 150 may be the same as the method for determining the allowable range in the first embodiment.
- the distribution of continuous parameter values (that is, normal distribution) is determined by the combination of discrete parameter values. Further, in a distribution of continuous parameter values determined by a combination of discrete parameters, when a point (that is, a combination of continuous parameter values) is determined, an allowable range of change of the continuous parameter values is determined. In other words, it can be said that the allowable range of the change amount of the continuous parameter value is determined by the combination of the discrete parameter value and the continuous parameter value.
- the generation unit 130 may generate, for each of the combinations of the discrete parameter values, a distribution of the combination of the continuous parameter values before the change for each change from the combination of the discrete parameter values.
- the determining unit 150 further determines one or more regions and an allowable range of change in the discrete parameter value for each region in a range in which the continuous parameter values are distributed, which is determined for each combination of discrete parameter values. It's okay.
- the change in the value of the discrete parameter is represented by, for example, movement from point to point in the discrete space.
- the allowable range of change in the value of the discrete parameter is represented by a set of point-to-point movements in discrete space. Therefore, the allowable range of change in the value of the discrete parameter can be represented by a set of points in the discrete space.
- the point A is one of points indicating a combination of discrete parameter values in the discrete space.
- point B point C, point D, and the like.
- a change from a combination of values represented by point A in discrete space is represented by a movement from point A to another point or point A. Therefore, the allowable range of change in value from point A can be represented by a set of points that can move from point A.
- the determining unit 150 determines an allowable range of a change in value from a certain point (for example, the point A) in the discrete space as follows, for example.
- the determining unit 150 may specify the distribution of the continuous parameter values in the continuous value space before the change from the point A of the discrete parameter value combination to another point (for example, the point B). Then, the determining unit 150 determines, based on the identified distribution, an area in which the continuous parameter value can be distributed in the continuous value space before the change of the combination of the discrete parameter values from the point A to the point B. Good. For example, the determination unit 150 may assume that the identified distribution is an m-dimensional normal distribution. Then, the determination unit 150 calculates a standard deviation in the distribution of each of the m coordinate axes in the identified distribution, and sets a range in which the difference from the average in each coordinate axis direction is a constant multiple of the standard deviation.
- the determination unit 150 may specify a range of a predetermined shape including all distributions of continuous parameter values before the change of the combination of discrete parameter values from the point A to the point B.
- the predetermined shape may be an m-dimensional rectangular parallelepiped.
- the predetermined shape may be an m-dimensional ellipsoid.
- the predetermined shape is not limited to the above example.
- the region in which the value of the continuous parameter can be distributed in the continuous value space before the change from the point A to the point B determined by the determining unit 150 is expressed as a transitionable region from the point A to the point B. To do.
- the determination unit 150 similarly determines an area in which the values of the continuous parameters before the change are distributed in the continuous value space. decide.
- a point that can change from the point A in the discrete space is referred to as a point at which the point A can transition.
- the determination unit 150 determines the transition possible region from the point A to the transition possible point for each of the transition possible points of the point A.
- the transitionable point from point A is expressed as a transitionable point related to the transitionable region.
- the transition possible area is denoted as a transition possible area of point A.
- the determination unit 150 may determine a region where the continuous parameter values are distributed in the continuous value space when the discrete parameter values do not change.
- the determining unit 150 may identify a region that does not overlap with another transitionable region of the point A and a region where a plurality of transitionable regions of the point A overlap among the transitional regions of the point A. Good.
- a point representing a combination of continuous parameter values is included in an area where a plurality of transition possible areas of the point A overlap
- the combination of discrete parameter values is related to the plurality of transition possible areas from the point A. It can change to any of the possible transition points.
- the determination unit 150 may determine a region where a plurality of transitionable regions overlap as a transitionable region from a point A to a combination of transitionable points related to the plurality of transitionable regions.
- a transition possible area that does not overlap with another transition possible area is a transition possible area from a point A to a transition possible point related to the transition possible area (that is, a combination of transition possible points including only the transition possible point). is there.
- the determination unit 150 identifies a region in which the same transitionable region overlaps in the continuous value space and a region in the transitionable region in which the transitionable region does not overlap, and identifies the identified region as A new transitionable region to a combination of transitionable points related to the overlapping transitionable region is determined. Then, the determination unit 150 identifies a combination of transition possible points related to the determined new transition possible region. In this case, the amount of change from point A to each point included in the combination of transitionable points regarding the transitionable region including the point represented by the combination of continuous parameter values is the combination of the continuous parameter values of point A. Based on the tolerance.
- the determination unit 150 determines the change amount from the point A to each of the transitionable points included in the specified combination, and the change in the discrete space when the determined transitionable region includes a combination of continuous parameter values. Decide on an acceptable amount. In addition, when the transition possible point is the point A, it represents that the point indicated by the combination of the values of the discrete parameters does not have to change from the point A.
- the determining unit 150 determines, for each point in the discrete space, a combination of a transitionable region in the continuous value space and an allowable range in the discrete space. Then, the determination unit 150 associates the transition possible area in the continuous value space and the allowable range in the discrete space included in the identified combination.
- the determination unit 150 stores information indicating the determined allowable range in the rule storage unit 160.
- the information indicating the allowable range includes information indicating the allowable range in the continuous value space and information indicating the allowable range in the discrete space.
- the information indicating the allowable range in the continuous value space is information indicating the allowable range of each point indicated by a combination of values that can be taken by the continuous parameter in the continuous value space at each point that can be taken by the discrete parameter in the discrete space.
- the information indicating the allowable range in the continuous value space is information indicating the allowable range of the change amount from each possible combination of the continuous parameter values for each possible combination of the discrete parameter values.
- the information indicating the allowable range in the discrete space is information indicating the transitionable region in the continuous value space and the allowable range of the change amount in the discrete space for each point that the discrete parameter can take in the discrete space.
- FIG. 14 is a diagram schematically illustrating an example of an allowable range of the change amount of the continuous value based on the points in the discrete space and the points in the continuous value space.
- the intersections surrounded by circles represent the distribution of the discrete parameter values.
- an intersection point surrounded by a circle represents a place where a point can exist when a combination of values of discrete parameters is represented by a point in a discrete space.
- FIG. 14 further shows the distribution of continuous parameter values in the rectangle representing the continuous value space when the discrete parameter values are represented by the coordinates of the point P2.
- a closed curve in a rectangle representing a continuous value space represents a distribution of continuous parameter values when a combination of discrete parameter values is represented by a point P2.
- a distribution in the continuous value space of the points represented by the combination of continuous parameter values is obtained.
- FIG. 14 further shows an allowable range of the change amount of the continuous parameter value when the rectangle shown in the continuous value space includes a point representing a combination of the continuous parameter values.
- a region surrounded by an ellipse included in a rectangle of “allowable range of change” depicted in FIG. 14 represents an allowable range of change in the value of the continuous parameter.
- a vector from the origin of the coordinate system in which the coordinate axes are drawn is drawn in a rectangle of “allowable range of change”. These vectors represent combinations of changes in continuous parameter values.
- the change amount of the continuous parameter value is included in the allowable range.
- the amount of change in the value of the continuous parameter represented by such a vector is considered normal.
- the change amount of the continuous parameter value is not included in the allowable range.
- the amount of change in the value of the continuous parameter represented by such a vector is considered abnormal.
- FIG. 15 is a diagram schematically illustrating an example of an allowable range of the change amount of the discrete value based on the points in the discrete space and the points in the continuous value space.
- the discrete space in FIG. 15 is the same as the discrete space depicted in FIG.
- a circle drawn in a rectangle in the discrete space in FIG. 15 represents a combination of values of discrete parameters, like the circle in FIG.
- the combination of discrete parameter values represents one of the discrete parameter states.
- the arrows connecting the two circles drawn in the rectangle of the discrete space in FIG. 15 represent the two combinations of discrete parameter values (ie, the two combinations) represented by the two intersections contained in the two circles. This indicates that a change in the direction of the arrow may occur between the (status).
- a double arrow indicates that a change in the two directions represented by the arrow can occur.
- the state is represented by the point P0
- the change to the state represented by the point P1 the change of the state appearing by the point P2
- the change to the state represented by the point P3. Indicates that can occur.
- the closed curve included in the rectangle representing the continuous value space in FIG. 15 is a distribution of points representing combinations of continuous parameter values in the continuous value space (also referred to as a distribution of combinations of continuous parameter values), similar to the closed curve in FIG. Represents.
- a closed curve drawn in a rectangle indicating a continuous value space represents a distribution of continuous parameter values when a combination of discrete parameter values is represented by a point P0.
- a rectangle drawn so as to overlap with the region surrounded by the closed curve represents the above-described transition possible range.
- FIG. 15 shows a range A1 as “a range in which transition to P1 or P2 is possible”.
- the range A2 is shown as “range in which the transition to P3 is possible”.
- a range A0 is shown as “range where transition is impossible”.
- the range A0 is a range other than the range A1 and the range A2 in the entire continuous value space.
- the coordinates of the point P0 in the discrete space represent the values of the discrete parameters
- the coordinates of the points included in the range A1 of the continuous value space represent the values of the continuous parameters, It changes to the value represented by the coordinates of P1 or the value represented by the coordinates of the point P2.
- the allowable range of the change amount of the discrete parameter value is a value represented by a change in coordinates from the point P0 to the point P1, and a value represented by a change in coordinates from the point P0 to the point P2.
- the values of the discrete parameters are the values represented by the coordinates of the point P3.
- Change the allowable range of the change amount of the discrete parameter value is a value represented by a change in coordinates from the point P0 to the point P2.
- the values of the discrete parameters are discrete. It does not change from the value represented by the coordinates of the point P0 in space.
- the allowable range of the change amount of the discrete parameter value is a point represented by a zero vector.
- the determination unit 170 similarly determines the previous state (specifically, information indicating the previous state) and the change in the calculated vehicle state (specifically, the change in the calculated vehicle state). Information representing the amount) is received from the calculation unit 120.
- the determination unit 170 specifies an allowable range defined in a feature space obtained from a combination of parameters, including a parameter including a change amount of the value in the received information indicating the change amount of the state of the vehicle.
- the determination unit 170 may specify all of the plurality of tolerance ranges.
- the determination unit 170 changes the value of the continuous parameter among the changes in the vehicle state based on the information indicating the allowable range in the continuous value space among the information indicating the allowable range. It may be determined whether it falls within the allowable range in the continuous value space.
- the determination unit 170 further includes a change in the value of the discrete parameter among the changes in the state of the vehicle based on the information indicating the allowable range in the discrete space among the information indicating the allowable range. You may decide whether The order of determination may be reversed.
- the determination unit 170 first specifies a point indicated in the discrete space by a combination of discrete parameter values among the parameters representing the vehicle state.
- the determination unit 170 may determine that the data frame acquired by the acquisition unit 110 is an invalid data frame.
- the determination unit 170 determines whether the combination of the values of the continuous parameters is included in the allowable range. That is, the determination unit 170 includes a combination of continuous parameter values among parameters representing a vehicle state within an allowable range of a change amount from the combination of continuous parameter values for a point specified in a discrete space. It may be determined. When the combination of continuous parameter values is not included in the allowable range, the determination unit 170 may determine that the data frame acquired by the acquisition unit 110 is an illegal data frame.
- the determination unit 170 When the combination of the values of the continuous parameters is included in the allowable range, the determination unit 170 next specifies a transition possible region in the continuous value space. That is, the determination unit 170 identifies a transition possible region that includes a combination of continuous parameter values among parameters representing a vehicle state, among the transition possible regions in the continuous value space for the points identified in the discrete space. . When there is no transitionable region including a combination of continuous parameter values among parameters representing the vehicle state, the determination unit 170 determines that the data frame acquired by the acquisition unit 110 is an invalid data frame. Good.
- the determination unit 170 determines whether the combination of discrete parameter values is included in the allowable range. That is, the determination unit 170 determines whether or not the change amount of the discrete parameter is included in the allowable range in the discrete space associated with the specified transition possible region. When the change amount of the discrete parameter is not included in the allowable range in the discrete space that is associated with the identified transitionable region, the determination unit 170 determines that the data frame acquired by the acquisition unit 110 is an invalid data frame. You may judge.
- the determination unit 170 determines that the data frame acquired by the acquisition unit 110 is not an illegal data frame. You can do it.
- the determination unit 170 may determine that the data frame is not an illegal data frame when the end point of the vector representing the amount of change in the value of the continuous parameter is included in the range of the ellipse.
- the determination unit 170 may determine that the data frame is an illegal data frame when the end point of the vector representing the change amount of the continuous parameter value is not included in the range of the ellipse.
- the determination unit 170 determines whether the amount of change in the value of the discrete parameter is one of a value represented by a change in coordinates from P0 to P1 and a value represented by a change in coordinates from P0 to P2. If there is, it may be determined that the data frame is not an illegal data frame. In other cases, the determination unit 170 may determine that the data frame is an illegal data frame.
- the operation of the monitoring apparatus 100 of the present embodiment is the same as that of the monitoring apparatus 100 of the first embodiment shown in FIGS. 3 to 4 except for the points described below.
- step S105 illustrated in FIG. 3 the distribution of changes updated by the generation unit 130 is different from the distribution of changes in the first embodiment.
- the distribution of changes in this embodiment is as follows. For each point in the discrete space, the distribution of the change in each point in the continuous value space and the change from the point in the discrete space before the change in the continuous value space. Distribution of points.
- step S108 shown in FIG. 3 the determination unit of the present embodiment determines the above-described allowable range in the continuous value space and the allowable range in the discrete space as the allowable range of change.
- FIG. 13 is a second flowchart showing an example of the operation in the detection phase of the monitoring apparatus according to the fourth embodiment of the present invention.
- the monitoring apparatus 100 of the present embodiment performs the operation shown in FIG.
- the monitoring apparatus 100 performs the operations from step S122A to step S124A and the operations from step S122B to step S124B instead of the operations from step S122 to step S124.
- the operation of the other steps of the monitoring device 100 of the present embodiment is the same as the operation of the steps assigned with the same numbers in the monitoring device 100 of the first embodiment.
- step S122A the determination unit 170 specifies an allowable range in the continuous value space according to the state of the vehicle before the change.
- the state of the vehicle before the change is represented by a combination of discrete parameter values and a combination of continuous parameter values before the change.
- step S122A the determination unit 170 determines whether the change in the state of the vehicle is included in the allowable range in the continuous value space. In other words, the determination unit 170 determines whether the change in the value of the continuous parameter is included in the allowable range in the continuous value space.
- step S124A If the state of the vehicle is not included in the allowable range in the continuous value space (NO in step S124A), the monitoring apparatus 100 next performs the operation of step S125.
- step S124A When the state of the vehicle is included in the allowable range in the continuous value space (YES in step S124A), monitoring device 100 next performs the operation of step S122B.
- step S122B the determination unit 170 specifies an allowable range in the discrete space according to the state of the vehicle before the change.
- the determination unit 170 identifies a transitionable space including the continuous parameter value before the change among the transitionable spaces corresponding to the combination of the discrete parameter values before the change.
- the determination part 170 specifies the tolerance
- step S123B the determination unit 170 determines whether the change in the state of the vehicle is included in the allowable range in the discrete space. In other words, the determination unit 170 determines whether the change in the combination of the discrete parameter values among the parameters representing the vehicle state is included in the allowable range in the discrete space.
- step S124B If the change in the state of the vehicle is included in the allowable range in the discrete space (YES in step S124B), the monitoring apparatus 100 next performs the operation of step S126. If the change in the state of the vehicle is not included in the allowable range in the discrete space (NO in step S124B), the monitoring apparatus 100 next performs the operation of step S125.
- the monitoring apparatus 100 may perform the operation from step S122A to step S124A after the operation from step S122B to step S124B. In that case, if the change in the state of the vehicle is included in the allowable range in the discrete space (YES in step S124B), monitoring device 100 next performs the operation of step S122A. If the change in the state of the vehicle is not included in the allowable range in the discrete space (NO in step S124B), the monitoring apparatus 100 next performs the operation of step S125. If the vehicle state is not included in the allowable range in the continuous value space (NO in step S124A), monitoring device 100 next performs the operation of step S125. When the state of the vehicle is within the allowable range in the continuous value space (YES in step S124A), monitoring device 100 next performs the operation of step S126.
- the determination unit 150 may determine only the allowable range in the continuous value space.
- the allowable range information may include only the allowable range in the continuous value space.
- the determination unit 170 does not determine whether the change in the value of the discrete parameter is included in the allowable range in the discrete space among the change in the vehicle state.
- the determination unit 170 may determine whether the change in the value of the continuous parameter among the change in the vehicle state is included in the allowable range in the continuous value space. If the change in the value of the continuous parameter among the changes in the vehicle state is included in the allowable range in the continuous value space, the determination unit 170 determines that the data frame acquired by the acquisition unit 110 is not an illegal data frame. May be determined.
- the determination unit 150 may determine only the allowable range in the discrete space.
- the allowable range information may include only the allowable range in the discrete space.
- the determination unit 170 does not determine whether the change in the value of the continuous parameter among the change in the vehicle state is included in the allowable range in the continuous value space.
- the determination unit 170 may determine whether the change in the value of the discrete parameter among the change in the vehicle state is included in the allowable range in the discrete space. If the change in the value of the discrete parameter is included in the allowable range in the discrete space among the changes in the vehicle state, the determination unit 170 determines that the data frame acquired by the acquisition unit 110 is not an illegal data frame. You may judge.
- the continuous parameter may be referred to as the first parameter.
- the discrete parameter may also be expressed as a second parameter.
- the discrete parameter may be expressed as the first parameter.
- the continuous parameter may also be expressed as a second parameter.
- Each of the monitoring device and the learning device according to the above-described embodiments can be realized by a computer including a memory loaded with a program read from a storage medium and a processor that executes the program.
- Each of the monitoring device and the learning device according to the above-described embodiment can also be realized by dedicated hardware.
- Each of the monitoring device and the learning device according to the above-described embodiments can be realized by a combination of the above-described computer and dedicated hardware.
- each of the monitoring device and the learning device according to the above-described embodiments can be realized by hardware such as a circuit configuration.
- the circuit configuration may be, for example, a processor and a memory included in the computer. In that case, the program only needs to be loaded into the memory.
- the program can be executed by a processor, and the computer may be operated as one of the monitoring device and the learning device of the above-described embodiment.
- the circuit configuration may be, for example, a plurality of computers that are communicably connected.
- the circuit configuration may be, for example, a circuit.
- the circuit configuration may be, for example, a plurality of circuits that are communicably connected.
- the circuit configuration may be a combination of one or more computers and one or more circuits that are communicably connected.
- FIG. 12 is a diagram illustrating an example of a hardware configuration of a computer 1000 that can realize each of the monitoring device and the learning device according to the above-described embodiment.
- a computer 1000 includes a processor 1001, a memory 1002, a storage device 1003, and an I / O (Input / Output) interface 1004.
- the computer 1000 can access the storage medium 1005.
- the memory 1002 and the storage device 1003 are storage devices such as a RAM (Random Access Memory) and a hard disk, for example.
- the storage medium 1005 is, for example, a storage device such as a RAM or a hard disk, a ROM (Read Only Memory), or a portable storage medium.
- the storage device 1003 may be the storage medium 1005.
- the processor 1001 can read and write data and programs from and to the memory 1002 and the storage device 1003.
- the processor 1001 can access, for example, the bus 600 and the call center terminal 700 via the I / O interface 1004.
- the processor 1001 can access the storage medium
- the storage medium 1005 stores a program that causes the computer 1000 to operate as the monitoring device according to any of the above-described embodiments.
- the processor 1001 loads a program stored in the storage medium 1005 into the memory 1002. Then, when the processor 1001 executes the program loaded in the memory 1002, the computer 1000 operates as the above-described monitoring device.
- the storage medium 1005 stores a program that causes the computer 1000 to operate as a learning device according to any of the above-described embodiments.
- the processor 1001 loads a program stored in the storage medium 1005 into the memory 1002. Then, when the processor 1001 executes the program loaded in the memory 1002, the computer 1000 operates as the above-described learning device.
- the acquisition unit 110, the calculation unit 120, the generation unit 130, the determination unit 150, the rule output unit 280, the rule acquisition unit 190, the determination unit 170, and the output unit 180 execute, for example, a dedicated program loaded in the memory 1002. It can be realized by the processor 1001. Further, the distribution storage unit 140 and the rule storage unit 160 can be realized by the memory 1002 included in the computer 1000 or a storage device 1003 such as a hard disk device. Acquisition unit 110, calculation unit 120, generation unit 130, determination unit 150, rule output unit 280, rule acquisition unit 190, determination unit 170, output unit 180, distribution storage unit 140, and part or all of rule storage unit 160 Can also be realized by a dedicated circuit for realizing the function of each unit.
- a monitoring device comprising:
- the tolerance is defined in a feature space represented by the combination of parameters,
- the determination unit determines whether or not the calculated change is included in the allowable range determined in the feature space represented by the combination including the parameter including the value in the data frame. Monitoring device.
- the determination unit is configured to determine the parameters included in the combination in each of the allowable ranges determined in the feature space represented by the plurality of combinations each including at least one of the parameters including the value in the data frame.
- the allowable range is defined as a first allowable range that is the allowable range of the first parameter of the parameters.
- the determination means determines whether or not a change in the state of the device represented by a change in the value of the first parameter is included in the first allowable range determined according to the value of the parameter.
- the monitoring apparatus according to any one of 1 to 3.
- the first allowable range is determined according to the value of the first parameter for each combination of values of the second parameter of the parameters, The determination unit determines whether or not the first parameter change is included in the first allowable range determined by the combination of the second parameter values and the first parameter value. 4. The monitoring device according to 4.
- the allowable range is defined as the first allowable range and a second allowable range that is the allowable range of the second parameter;
- the second permissible range is determined for each region defined in the value range of the first parameter,
- the range of the value of the first parameter is determined for each combination of the values of the second parameter,
- the determination means is determined by the range in which the change of the first parameter is included in the first allowable range determined by the combination of the values of the second parameter and the value of the first parameter is included.
- the monitoring apparatus according to claim 5, wherein it is determined whether or not the second allowable range includes a change in the second parameter.
- the first permissible range is determined for each region defined in the value range of the second parameter among the parameters, The range of the value of the second parameter is determined for each combination of the values of the first parameter, The determination means determines whether or not the first parameter change is included in the first allowable range determined by a combination of the first parameter values and the range in which the second parameter value is included.
- the monitoring apparatus according to appendix 4.
- Appendix 8 Generating means for generating a distribution of the change according to the state of the device before the change based on the change; Determining means for determining the allowable range based on the generated distribution;
- the monitoring apparatus according to any one of appendices 1 to 7, further comprising:
- the device is a vehicle;
- the monitoring device according to any one of appendices 1 to 8, wherein the data frame is output by an information processing device that is mounted on a vehicle and outputs information on a state of the vehicle, and indicates the information on the vehicle.
- a learning apparatus comprising:
- the determining means determines a first allowable range that is the allowable range of the first parameter of the parameters;
- the learning apparatus according to attachment 10.
- the determining means sets the first allowable range according to the value of the first parameter of the change in the value of the first parameter. decide, The learning device according to attachment 11.
- the determining means further determines a range of the value of the first parameter for each combination of values of the second parameter of the parameters, a plurality of regions in the determined range, and the first parameter Determining a second allowable range that is the allowable range of the change in the value of the second parameter when the value of one parameter is included in each of the plurality of regions;
- the learning apparatus according to attachment 12.
- the determining unit determines a range of a value of a second parameter of the parameters for each combination of values of the first parameter, a plurality of regions in the determined range, and the second parameter
- the learning device according to claim 11, wherein the first allowable range is determined when a parameter value is included in each of the plurality of regions.
- the device is a vehicle;
- the learning device according to any one of appendices 10 to 14, wherein the data frame is output by an information processing device that is mounted on a vehicle and outputs information on a state of the vehicle, and indicates the information on the vehicle.
- the received data frame includes a calculation of a change in the state of the device based on a parameter value representing the state of the device, It is determined whether or not the change is included in an allowable range determined according to the state of the device before the change. Monitoring method.
- the data frame is represented by a change in the value of the parameter included in the combination in each of the allowable ranges determined in the feature space respectively represented by the plurality of combinations each including at least one of the parameters including the value.
- the allowable range is defined as a first allowable range that is the allowable range of the first parameter of the parameters, It is determined whether or not the change in the state of the device represented by the change in the value of the first parameter is included in the first allowable range determined according to the value of the parameter.
- the first allowable range is determined according to the value of the first parameter for each combination of values of the second parameter of the parameters, The monitoring according to claim 19, wherein it is determined whether or not a change in the first parameter is included in the first allowable range determined by a combination of the second parameter value and the first parameter value.
- the allowable range is defined as the first allowable range and a second allowable range that is the allowable range of the second parameter;
- the second permissible range is determined for each region defined in the value range of the first parameter,
- the range of the value of the first parameter is determined for each combination of the values of the second parameter,
- the first allowable range determined by the combination of the second parameter values includes the change of the first parameter, and the second allowable range determined by the range including the value of the first parameter.
- the first permissible range is determined for each region defined in the value range of the second parameter among the parameters, The range of the value of the second parameter is determined for each combination of the values of the first parameter, It is determined whether or not a change in the first parameter is included in the first allowable range determined by a combination of the first parameter values and the range in which the second parameter value is included. 19. The monitoring method according to 19.
- the device is a vehicle;
- the monitoring method according to any one of appendices 16 to 23, wherein the data frame is output by an information processing device that is mounted on a vehicle and outputs information on the state of the vehicle, and indicates the information on the vehicle.
- the received data frame includes a calculation of a change in the state of the device based on a parameter value representing the state of the device, Based on the change, generate a distribution of the change according to the state of the device prior to the change; Determining an allowable range of the change based on the generated distribution; Learning method.
- a range of the first parameter value is determined for each combination of values of the second parameter among the parameters, and in the determined range, a plurality of regions and the value of the first parameter are determined. Determining a second allowable range that is the allowable range of the change in the value of the second parameter in the case where each is included in each of the plurality of regions, The learning method according to attachment 27.
- the device is a vehicle; 30.
- the tolerance is defined in a feature space represented by the combination of parameters, The determination process determines whether or not the calculated change is included in the allowable range defined in the feature space represented by the combination including the parameter including the value in the data frame. Storage media.
- the allowable range is defined as a first allowable range that is the allowable range of the first parameter of the parameters.
- the determination process determines whether or not a change in the state of the device represented by a change in the value of the first parameter is included in the first allowable range determined according to the value of the parameter.
- 34 The storage medium according to any one of 31 to 33.
- the first allowable range is determined according to the value of the first parameter for each combination of values of the second parameter of the parameters, The determination processing determines whether or not the change in the first parameter is included in the first allowable range determined by the combination of the second parameter value and the value of the first parameter.
- the storage medium according to 34.
- the allowable range is defined as the first allowable range and a second allowable range that is the allowable range of the second parameter;
- the second permissible range is determined for each region defined in the value range of the first parameter,
- the range of the value of the first parameter is determined for each combination of the values of the second parameter,
- the determination process is determined by the range in which the change in the first parameter is included in the first allowable range determined by the combination of the values of the second parameter and the value of the first parameter is included.
- the storage medium according to attachment 35 wherein it is determined whether or not the change in the second parameter is included in the second allowable range.
- the first permissible range is determined for each region defined in the value range of the second parameter among the parameters, The range of the value of the second parameter is determined for each combination of the values of the first parameter, In the determination process, whether or not a change in the first parameter is included in the first allowable range determined by a combination of the values of the first parameter and the range in which the value of the second parameter is included.
- Appendix 38 The program is Based on the change, a generation process for generating a distribution of the change according to the state of the device before the change; A determination process for determining the allowable range based on the generated distribution; 38.
- the storage medium according to any one of appendices 31 to 37, which causes a computer to execute.
- the device is a vehicle;
- the storage medium according to any one of appendices 31 to 38, wherein the data frame is output by an information processing device that is mounted on a vehicle and outputs information on the state of the vehicle, and indicates the information on the vehicle.
- Appendix 40 A calculation process for calculating a change in the state of the device based on a value of a parameter included in the received data frame and representing the state of the device; Based on the change, a generation process for generating a distribution of the change according to the state of the device before the change; A determination process for determining an allowable range of the change based on the generated distribution; A storage medium for storing a program for causing a computer to execute.
- the determination process determines a first allowable range that is the allowable range of the first parameter of the parameters.
- the determination process further determines a range of values of the first parameter for each combination of values of the second parameter of the parameters, and includes a plurality of regions in the determined range, Determining a second allowable range that is the allowable range of the change in the value of the second parameter when the value of one parameter is included in each of the plurality of regions;
- the storage medium according to appendix 42.
- the determination process determines, for each combination of values of the first parameter, a range of values of the second parameter of the parameters, a plurality of regions in the determined range, and the second parameter 42.
- the device is a vehicle; 45.
- the storage medium according to any one of appendices 40 to 44, wherein the data frame is output by an information processing device that is mounted on a vehicle and outputs information on the state of the vehicle, and indicates the information on the vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computational Linguistics (AREA)
- Mechanical Engineering (AREA)
- Small-Scale Networks (AREA)
- Debugging And Monitoring (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
ネットワークを流れる、装置の状態を表すデータを含むフレームから、不 正なフレームを検出する精度を向上できる監視装置等を提供する。 本発明の一態様に係る監視装置(103)は、受信したデータフレームが 含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化 を算出する算出部(120)と、前記変化の前の前記装置の状態に応じて定 まる許容範囲に、前記変化が含まれるか否かを判定する判定部(170)と、 を備える。
Description
本発明は、監視技術に関し、特に、異常なデータを監視する技術に関する。
近年、自動車には、ネットワークによって接続された、複数の電子制御ユニット(Electronic Control Unit;ECU)が搭載されている。自動車に搭載されているECUを接続するネットワークは、車載ネットワークとも呼ばれる。車載ネットワークには、例えば、様々な種類のデータが、通信プロトコルに応じて定められたフォーマットのデータフレームとして、ECUによって送信される。車載ネットワークの通信プロトコルとして、例えば、CAN(Controller Area Network)等のプロトコルが使用される。ECUは、自動車の状態を表すデータ、例えば、自動車に搭載されたセンサ等によって取得されたデータを、車載ネットワークに送信する。自動車に搭載されたセンサによって取得されるデータなどの、自動車の状態を示すデータは、自動車の制御に使用されることがある。従って、車載ネットワークに送信されるデータフレームから不正なデータフレーム、例えば、攻撃を目的としたデータフレーム、及び、ECUやセンサ等の故障等による異常なデータフレーム等を、検出する需要がある。
特許文献1には、複数のECUを備える車載ネットワークシステムにおいて、不正状態が発生したことを検知する不正検知方法の例が開示されている。
特許文献2には、車載ネットワークのバスに送信されたフレームが攻撃フレームである可能性の有無を判断する条件が満たされた場合に、外部装置に判定の要求を伝達するセキュリティ装置が開示されている。
特許文献1の不正検知方法では、フレームに含まれる複数の種類のデータの間の整合性が取れていない場合に、不正が検知される。複数の種類のデータの間の整合性は、データが示す値の変化量等のデータが示す値から算出された値に対する、固定された閾値を使用して判定される。特許文献1の技術では、不正なフレームのデータの値が、実際には検出され得ない値であっても、不正なフレームに含まれる複数の種類のデータの間の整合性さえ取れていれば、その不正なフレームを検出できない。
特許文献2のセキュリティ装置は、フレームのデータフィールド内のデータが示す値の変化量の絶対値が、その絶対値の上限として設定された閾値を超えている場合に、そのフレームが、不正に送信されたフレームの疑いのあるフレームであると認定する。特許文献2の技術では、不正に送信されたフレームに含まれるデータの値の変化量が、車両の状態によっては異常であっても、変化量の絶対値が予め設定されている上限値より小さければ、そのフレームを検出できない。
本発明の目的の1つは、ネットワークを流れる、装置の状態を表すデータを含むフレームから、不正なフレームを検出する精度を向上できる監視装置等を提供することにある。
本発明の一態様に係る監視装置は、受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出手段と、前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する判定手段と、を備える。
本発明の一態様に係る学習装置は、受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出手段と、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成手段と、生成された前記分布に基づいて、前記変化の許容範囲を決定する決定手段と、を備える。
本発明の一態様に係る監視方法は、受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出し、前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する。
本発明の一態様に係る学習方法は、受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出し、前記変化の前の前記装置の状態に応じた前記変化の分布を生成し、生成された前記分布に基づいて、前記変化の許容範囲を決定する。
本発明の一態様に係る記憶媒体は、コンピュータに、受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出処理と、前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する判定処理と、を実行させるプログラムを記憶する。
本発明の一態様に係る記憶媒体は、コンピュータに、受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出処理と、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成処理と、生成された前記分布に基づいて、前記変化の許容範囲を決定する決定処理と、を実行させるプログラムを記憶する。
本発明には、ネットワークを流れる、装置の状態を表すデータを含むフレームから、不正なフレームを検出する精度を向上できるという効果がある。
以下では、本発明の実施形態について、図面を参照して詳細に説明する。
<第1の実施形態>
<<構成>>
図1は、本発明の第1の実施形態の監視装置の構成の例を表すブロック図である。本実施形態の監視装置100は、例えば、自動車に搭載されている車載ネットワークに接続される。また、監視装置100は、例えば、無線通信回線を介して、コールセンターの端末装置等に通信可能に接続されていてもよい。以下、自動車を車両とも表記する。
<<構成>>
図1は、本発明の第1の実施形態の監視装置の構成の例を表すブロック図である。本実施形態の監視装置100は、例えば、自動車に搭載されている車載ネットワークに接続される。また、監視装置100は、例えば、無線通信回線を介して、コールセンターの端末装置等に通信可能に接続されていてもよい。以下、自動車を車両とも表記する。
図2は、監視装置100を含む、車載ネットワークの構成の例を表すブロック図である。図2に示す例では、車載ネットワーク1は、バス600を介して互いに通信可能に接続されている、監視装置100と、複数のECU500とを含む。車載ネットワーク1において使用されるプロトコルは、例えば、CANであってよい。車載ネットワーク1において使用されるプロトコルは、他のプロトコルであってもよい。監視装置100は、例えば、携帯電話用の通信回線などの無線通信回線を介して、コールセンター端末700と通信することができる。
ECU500は、バス600に、例えば、ECU500に接続されているセンサ等によって測定されたデータ値等をパラメータの値として含むメッセージを表すデータフレームを送出する。言い換えると、ECU500がバス600に送出するデータフレーム(すなわち、具体的には、データフレームに含まれるパラメータの値)は、車両の少なくとも一部の状態を表す。ECU500は、送出するデータフレームに、ID(Identification)を付与する。また、ECU500は、バス600に送出され、バス600を流れるデータフレームのうち、例えばECU500ごとに予め定められている、特定のIDが付与されているデータフレームを取得する。
例えば、エンジンに接続されているECU500は、エンジンの回転数をパラメータの値として含むデータフレームを、バス600に送出する。ステアリングホイールに接続されているECU500は、ステアリングホイールの操舵角をパラメータの値として含むデータフレームを送出してもよい。エアコンディショナーに接続されているECU500は、例えば、室温及びエアコンディショナーの設定温度を、パラメータの値として含むデータフレームを送出してもよい。変速機に接続されているECU500は、ドライブモード又はギアの位置をパラメータの値として含むデータフレームを送出してもよい。変速機に接続されているECU500が送出するデータフレームは、さらに、シャフトの回転数、車輪の回転数、及び、車両の速度などをパラメータの値として含んでいてもよい。パラメータの値は、例えば、スロットル開度、エンジンの吸気圧、吸気量、燃料の温度、吸気の温度、排気ガスの温度、排気ガスに含まれるCO2、CO、NOX等の濃度、大気圧等であってもよい。パラメータの値は、例えば、ブレーキ開度、ヨーレート、エンジンの冷却水の温度、燃料計による燃料の残量、ドアの開閉の状態、ライトの点灯の状態、ウインカーの点灯の状態等であってもよい。パラメータの値は、自動車に取り付けられているセンサによって計測できる他の値であってもよい。パラメータの値は、自動車から取得できる他の値であってもよい。パラメータは、複数のパラメータが合成されたパラメータ(以下、合成パラメータと表記)であってもよい。合成パラメータの値は、合成に使用される複数のパラメータの値から、例えば予め定められた方法に従って算出される値であってもよい。パラメータの値は、以上の例に限られない。
データフレームは、全ての種類のパラメータの値を含んでいる必要はない。以下の説明では、データフレームは、1種類以上のパラメータの値を含んでいる。なお、データフレームは、パラメータの値を含んでいなくてもよい。監視装置100は、取得したデータフレームがパラメータの値を含んでいるか判定してもよい。監視装置100は、取得したデータフレームがパラメータの値を含んでいない場合、そのデータフレームに対するそれ以上の処理を行わなくてよい。
本実施形態では、車両の状態は、パラメータの値の組み合わせによって表される。上述のようにECU500は、例えばセンサによって計測された値をパラメータの値として含むデータフレームを送出する。本実施形態では、パラメータの値を含むデータフレームが監視装置100によって取得された場合、車両の状態は、変化の前の状態から、取得されたデータフレームが示す状態に変化したとみなされる。データフレームが示す状態とは、そのデータフレームが含むパラメータの値によって表される状態である。取得されたデータフレームに値が含まれないパラメータの値は、変化していないとみなされる。変化の前の状態は、例えば、最後に取得されたデータフレームの1つ前に取得されたデータフレームによって表される車両の状態である。
図2に示す例では、バス600には、さらに、不正ECU501が接続されている。不正ECU501は、不正なデータフレームをバス600に送信するECUである。以下、データフレームを、単に「フレーム」とも表記する。不正ECU501は、例えば、外部の攻撃者によって乗っ取られ、攻撃者によって制御されるECUでありうる。不正ECU501は、例えば、故障したECUでありうる。不正ECU501によってバス600に送出される不正なデータフレームは、不正ECU501が搭載されている車両の状態を表さず、その車両の状態とは異なる状態を表すデータフレームである。不正なデータフレームは、例えば、車両に対する攻撃を意図したデータフレームである。車両に対する攻撃を意図したデータフレームは、例えば、不正なデータフレームを取得したECU500が誤動作することによって、誤動作するECU500が搭載されている自動車が誤動作することを意図したデータフレームである。不正なデータフレームは、例えば、センサやECUの故障によってパラメータの値が不正な値に設定されているデータフレームであってもよい。パラメータの値に、車両の状態を表さない不正な値が設定されているフレームを取得した場合、ECU500が誤動作し、そのために車両が誤動作する可能性がある。
監視装置100は、バス600に送出されたデータフレームを取得する。監視装置100は、データフレームに付与されているIDによらず、バス600に送出された全てのデータフレームを取得してよい。監視装置100は、取得したデータフレームを用いた2種類の動作を行う。以下の説明では、監視装置100が行うそれらの動作の局面を、学習フェーズ及び検知フェーズと表記する。学習フェーズにおいて、監視装置100は、取得したデータフレームを使用して、データフレームが不正なデータフレームであるか否かを判定する基準を学習する。検知フェーズにおいて、監視装置100は、取得したデータフレームが不正なデータフレームであるか否かを判定する。本実施形態の説明では、監視装置100は、取得したデータフレームが不正なデータフレームである場合、例えばコールセンター端末700に、不正なデータフレームであると判定されたデータフレームの情報を送出する。監視装置100は、他の装置(例えば、いずれかのECU500)に、不正なデータフレームであると判定されたデータフレームの情報を送出してもよい。監視装置100は、不正なデータフレームであると判定されたデータフレームを取得するよう構成されているECU500に、不正なデータフレームであると判定されたデータフレームの情報を送出してもよい。監視装置100については、以下で詳細に説明する。
図1に示す構成では、本実施形態の監視装置100は、取得部110と、算出部120と、生成部130と、分布記憶部140と、決定部150と、ルール記憶部160と、判定部170と、出力部180とを含む。
取得部110は、車載ネットワーク1から、データフレームを取得する(言い換えると、受信する)。具体的には、取得部110は、バス600に送出されたデータフレームを取得する。取得部110は、取得したデータフレームを、算出部120に送出する。取得部110は、学習フェーズ及び検知フェーズの双方において、同様に、データフレームを取得してよい。
算出部120は、取得部110からデータフレームを受け取り、受け取ったデータフレームから、パラメータの値を抽出する。例えば、データフレームに付与されているIDに応じて、データフレームの構造が定められている場合、算出部120は、まず、データフレームに付与されているIDを特定する。算出部120は、特定したIDが付与されているデータフレームの構造に基づいて、データフレームの、パラメータの値を表す部分から、パラメータの値を読み取る。データフレームが複数の種類のパラメータの値を含んでいる場合、算出部120は、データフレームが含む全てのパラメータの値を読み取ってもよい。算出部120は、データフレームが含むパラメータの値のうち、予め定められているパラメータの値だけを読み取ってもよい。算出部120は、学習フェーズ及び検知フェーズの双方において、同様に、データフレームからパラメータの値を読み取ってよい。
算出部120は、データフレームが取得される前の車両の状態を保持する。車両の状態は、例えば、パラメータの値の組み合わせによって表される。算出部120は、学習フェーズ及び検知フェーズの双方において、同様に、車両の状態を保持してよい。
取得されたデータフレームから値が読み取られたパラメータと同じパラメータの値を車両の状態として保持していない場合、算出部120は、取得されたデータフレームから読み取られたそのパラメータの値を、車両の状態を表すパラメータの値に設定する。具体的には、算出部120は、取得されたデータフレームから値が読み取られたパラメータに、車両の状態として値が保持されていないパラメータが含まれているか判定する。取得されたデータフレームから値が読み取られたパラメータに、車両の状態として値が保持されていないパラメータが含まれている場合、算出部120は、取得されたデータフレームから読み取られたパラメータの値によって、車両の状態を更新する。すなわち、算出部120は、取得されたデータフレームから読み取られたパラメータの値を、車両の状態を表すパラメータの値に設定する。以下の説明において、車両の状態を更新することは、取得されたデータフレームから読み取られたパラメータの値を、車両の状態を表すパラメータの値に設定することを表す。算出部120は、学習フェーズ及び検知フェーズの双方において、取得されたデータフレームから値が読み取られたパラメータに、車両の状態として値が保持されていないパラメータが含まれている場合に、同様に、車両の状態を更新してよい。
取得されたデータフレームから値が読み取られた全てのパラメータについて、車両の状態として値が保持されている場合、算出部120は、車両の状態の変化を算出する。具体的には、算出部120は、取得されたデータフレームから読み取ったパラメータの値の、車両の状態として保持されている値からの変化を、車両の状態の変化として算出する。この場合、車両の状態は、個々のパラメータの値の変化を表す値を要素として含む、ベクトルによって表されていてよい。算出部120は、学習フェーズ及び検知フェーズの双方において、同様に、車両の状態の変化を算出してよい。
学習フェーズにおいて、算出部120は、生成部130に、データフレームが示す車両の状態になる前の車両の状態である前状態(具体的には、前状態を表す情報)と、算出した車両の状態の変化(具体的には、算出した車両の状態の変化量を表す情報)とを送出する。車両の状態の変化量は、車両の状態の変化量の変化量であってもよい。そして、算出部120は、前状態を、取得されたデータフレームに含まれるパラメータの値によって更新する。具体的には、算出部120は、前状態を表すパラメータの値のうち、取得されたデータフレームに値が含まれるパラメータの値を、取得されたデータフレームに含まれるパラメータの値によって置き換える。
検知フェーズにおいて、算出部120は、判定部170に、前状態と、算出した車両の状態の変化(具体的には、算出した車両の状態の変化量を表す情報)とを送出する。そして、算出部120は、前状態を、取得されたデータフレームに含まれるパラメータの値によって更新する。
分布記憶部140は、データフレームが示す車両の状態になる前の車両の状態(以下、前状態とも表記する)に応じた、車両の状態の変化の分布(以下では、変化量の分布とも表記する)を記憶する。分布記憶部140は、例えば、データフレームが示す車両の状態になる前の車両の状態(すなわち、前状態)ごとに、前状態が範囲に含まれる場合の車両の状態の変化の分布を表す情報を記憶していてもよい。分布記憶部140は、例えば、予め定められた、前状態の範囲ごとに、前状態が範囲に含まれる場合の車両の状態の変化の分布を表す情報を記憶していてもよい。なお、「車両の状態の変化の分布を記憶する」とは、車両の状態の変化量の分布を表す情報を記憶することを表す。分布記憶部140は、例えば、変化前の車両の状態の範囲を表す情報に関連付けられた、車両の状態の変化量の分布を表す情報を記憶していてよい。変化前の車両の状態の範囲を表す情報は、例えば、車両の状態の異なる範囲を区別でき、パラメータの値によって表される車両の状態が車両の状態の範囲に含まれるか判定できるように決定された、予め定められたフォーマットの情報である。
車両の状態の範囲(例えば、取得されたデータフレームが示す車両の状態になる前の車両の状態の範囲)は、例えば、パラメータ毎に定められた値の範囲によって表されていてもよい。例えば、車両の状態がパラメータA及びパラメータBによって表されている場合、車両の状態の範囲は、例えば、パラメータAの値域が分割された、長さaの区間と、パラメータBの値域が分割された、長さbの区間とによって表されていてもよい。例えば、パラメータAの値域が分割された区間を特定する番号をiとし、パラメータBの値域が分割された区間を特定する番号をjとすると、車両の状態の範囲は、iとjとの組み合わせによって表すことができる。この場合、車両の状態の範囲を表す情報は、iとjとの組み合わせであってよい。また、この場合、車両の状態の範囲は、長方形によって表される。この場合、分布記憶部140は、iとjとの組み合わせの各々について、パラメータAの値がiによって表される区間に含まれ、パラメータBの値がjによって表される区間に含まれる前状態からの、車両の状態の変化の分布を記憶していてよい。分布記憶部140は、iとjとの、互いに異なる組み合わせについて、互いに異なる、車両の状態の変化の分布を記憶する。なお、パラメータ数が3である場合、車両の状態の範囲は、直方体によって表されていてよい。パラメータ数が3より大きい場合、車両の状態の範囲は、超直方体によって表されていてもよい。パラメータの値域が分割された区間の長さは、一定でなくてもよい。少なくとも一部のパラメータの値に変換を行うことによって得られた値に、区間を設定してもよい。変換は、対数への変換、指数への変換、又は、他の処理であってもよい。なお、全てのパラメータについて、上述の区間が、パラメータの値をデータとして表した場合の値の最小の差異と等しい場合、車両の状態の範囲は、車両の1つの状態と等価である。
分布記憶部140は、車両の状態の変化の分布として、算出された、車両の状態の変化(例えば、車両の状態を表す各パラメータの値の変化量)を、例えばベクトルの形で、そのまま記憶していてもよい。分布記憶部140は、車両の状態の変化の分布として、車両の状態の変化量の値域を分割した範囲(以下、変化単位とも表記する)毎の、頻度の値を記憶していてもよい。この場合の範囲(すなわち、変化単位)は、予め定められていてよい。変化単位の大きさは、上述の、前状態における範囲の大きさと異なっていてもよい。変化単位は、例えば、超直方体であってよい。分布記憶部140は、他の形式で、車両の状態の変化の分布を記憶していてもよい。
また、分布記憶部140は、車両の状態を表す全てのパラメータの組み合わせについて、車両の状態の変化の分布を記憶していてもよい。具体的には、分布記憶部140は、車両の状態を表す全てのパラメータの組み合わせから得られる特徴空間における、車両の状態の変化の分布を記憶していてもよい。この場合の特徴空間は、例えば、パラメータが速度とステアリング角度の2つである場合、縦軸が速度であり横軸がステアリング角度である二次元の空間である。次元の数及び軸を設定は、以上の例に限られない。分布記憶部140は、車両の状態を表すパラメータから選択された所定のパラメータの組み合わせについて、車両の状態の変化の分布を記憶していてもよい。具体的には、分布記憶部140は、車両の状態を表す全てのパラメータから選択されたパラメータの組み合わせから得られる特徴空間における、車両の状態の変化の分布を記憶していてもよい。分布記憶部140は、車両の状態を表すパラメータから選択されたパラメータの異なる複数の組み合わせによって得られる、複数の特徴空間の各々における、車両の状態の変化の分布を記憶していてもよい。複数の特徴空間は、例えば、パラメータが速度、加速度及びステアリング角度である場合、速度とステアリング角度によって得られる空間と、速度と加速度によって得られる空間とであってもよい。分布記憶部140は、車両の状態を表すパラメータから選択できる、パラメータの組み合わせから得られる全ての特徴空間における、それぞれ、車両の状態の変化の分布を記憶していてもよい。
以上を言い換えると、分布記憶部140は、車両の状態を表す全てのパラメータから選択可能なパラメータの、1つ以上の組み合わせから得られる特徴空間における、前状態を表す情報と関連付けられた、車両の状態の変化の分布を記憶する。車両の状態の変化の分布に関連付けられる前状態は、全てのパラメータによって表される前状態でなくてよい。車両の状態の変化の分布に情報が関連付けられる前状態は、車両の状態の変化の分布を表すパラメータとして選択されたパラメータの前状態であってよい。車両の状態の変化の分布を表すパラメータとして選択されたパラメータの前状態を表す情報とは、最新のデータフレームが表す車両の状態の前の車両の状態における、車両の状態の変化の分布を表すパラメータとして選択されたパラメータの状態を特定する情報である。このパラメータの状態は、例えば、パラメータの値又はパラメータの値の範囲である。
学習フェーズでは、生成部130は、まず、データフレームが示す車両の状態になる前の車両の状態(すなわち、上述の前状態)に応じた、変化量の分布を特定する。具体的には、生成部130は、分布記憶部140に格納されている変化量の分布から、取得したデータフレームが表す車両の状態の前状態からの、取得したデータフレームに値が含まれるパラメータを含むパラメータの組み合わせから得られる特徴空間における、変化量の分布を特定する。
そして、生成部130は、特定した変化量の分布を、取得したデータフレームが表す車両の状態の、前状態からの変化量によって更新する。具体的には、例えば、変化量の分布が、変化量の集合によって表されている場合、生成部130は、変化量の分布を表す変化量の集合に、取得したデータフレームが表す車両の状態の、前状態からの変化量を追加してよい。変化量の分布が、上述の変化単位毎の頻度によって表されている場合、生成部130は、取得したデータフレームが表す車両の状態の、前状態からの変化量が含まれる変化単位を特定し、特定した変化単位の頻度に1を加えてよい。複数の分布が特定されている場合、生成部130は、特定した全ての分布を更新する。
検知フェーズでは、生成部130は、動作しなくてよい。
学習フェーズにおいて、決定部150は、分布記憶部140に格納されている、変化量の分布の各々について、変化量の許容範囲を決定する。変化量の許容範囲を決定する方法として、様々な方法が適用できる。例えば、決定部150は、それぞれの分布における、それぞれのパラメータの変化量の最大値と最小値の間に含まれる範囲を、許容範囲に決定してもよい。決定部150は、例えば、それぞれのパラメータの変化量の分布は正規分布であると仮定し、それぞれの分布のそれぞれのパラメータについて、変化量の平均値からの差が標準偏差の定数倍に含まれる範囲を、許容範囲に決定してもよい。これらの場合、例えばそれぞれの分布が一様分布であるとの仮定のもとで、ある分布における許容範囲は、その分布におけるそれぞれのパラメータの値の最小値と最大値との組み合わせによって表されていてよい。決定部150は、それぞれの分布に、ガウシアン混合モデルを適用し、混合ガウス分布によって近似された分布において、大きさが所定の条件を満たす範囲を特定し、特定した範囲を許容範囲に決定してもよい。許容範囲が、パラメータ毎の最小値と最大値との組み合わせによって表すことができない場合、決定部150は、許容範囲を、その許容範囲を例えば超直方体の組み合わせによって近似してもよい。この場合、決定部150は、許容範囲を近似する例えば超直方体の組み合わせに含まれる全ての超直方体を特定できる情報を、許容範囲を特定する情報としてもよい。なお、パラメータの数が2であれば、決定部150は、長方形を超直方体の代わりに使用してよい。パラメータの数が3であれば、決定部150は、直方体を超直方体の代わりに使用してよい。許容範囲を表す情報は、以上の例に限られない。
決定部150は、変化量の分布毎の、決定された許容範囲を表す情報を、ルール記憶部160に格納する。上述のように、変化量の分布は、パラメータの組み合わせから得られる特徴空間毎に生成される。また、分布記憶部140に格納されている変化量の分布は、前状態を表す情報に関連付けられている。決定部150は、パラメータの組み合わせから得られる特徴空間を特定する情報と、前状態を表す情報とに関連付けられた、許容範囲を表す情報を、ルール記憶部160に格納してもよい。特徴空間を特定する情報は、その特徴空間が得られるパラメータの組み合わせを特定する情報であってもよい。
また、上述のように、変化量の分布に関連付けられている前状態を表す情報は、その変化量の分布が生成されたパラメータの組み合わせの前状態を表す情報であってもよい。この場合、前状態を表す情報によって、選択されたパラメータの値又は値の範囲を特定できる。従って、前状態を表す情報によって、選択されたパラメータを特定することもできる。また、許容範囲によって値の範囲が示されるパラメータが、選択されたパラメータである。従って、許容範囲によって選択されたパラメータを特定することもできる。選択されたパラメータを特定することによって、選択されたパラメータから得られる特徴空間を特定できる。従って、特徴空間を特定する情報(例えば、選択されたパラメータを特定する情報)は、決定された許容範囲とは別の情報として、決定された許容範囲に関連付けられていなくてもよい。この場合は、決定部150は、前状態を表す情報に関連付けられた、決定された許容範囲を表す情報を、ルール記憶部160に格納してもよい。
検知フェーズでは、決定部150は、動作しなくてよい。
ルール記憶部160は、変化量の分布毎の、決定された許容範囲を表す情報を記憶する。具体的には、ルール記憶部160は、前状態を表す情報に関連付けられた、変化量の分布毎の許容範囲を表す情報を記憶する。前状態を表す情報によって選択されたパラメータを特定できない場合は、ルール記憶部160は、特徴空間を特定する情報(例えば、パラメータの組み合わせを特定する情報)と、前状態を表す情報とに関連付けられた、許容範囲を表す情報を記憶していてよい。
判定部170は、学習フェーズでは動作しなくてよい。
検知フェーズでは、判定部170は、前状態(具体的には、前状態を表す情報)と、算出された車両の状態の変化(具体的には、算出された車両の状態の変化量を表す情報)とを、算出部120から受け取る。判定部170は、受け取った、車両の状態の変化量を表す情報に値の変化量が含まれるパラメータを含む、パラメータの組み合わせから得られる特徴空間において定められている許容範囲を特定する。複数の特徴空間が得られ、ルール記憶部160に格納されている許容範囲において、複数の許容範囲を特定できる場合、判定部170は、それらの複数の許容範囲を全て特定してよい。
判定部170は、特定した許容範囲に、受け取った、車両の状態の変化量を表す情報によって表される変化量が含まれているか判定する。複数の許容範囲が特定されている場合、判定部170は、特定した許容範囲の各々に、受け取った、車両の状態の変化量を表す情報によって表される変化量が含まれているか判定する。なお、本実施形態では、判定部170は、車両の状態の変化量を表す情報に、値の変化量が含まれていないパラメータの値の変化量は、0であるとみなしてよい。
少なくともいずれか1つの許容範囲に、受け取った、車両の状態の変化量を表す情報によって表される変化量が含まれていない場合、判定部170は、取得部110が取得したデータフレームが、不正なデータフレームであると判定してよい。判定部170は、判定の結果を出力部180に送出する。判定の結果は、予め定められた、データフレームが不正であると判定されたことを示す情報、又は、データフレームが不正ではないと判定されたことを示す情報であってよい。データフレームが不正であると判定されたことを示す情報は、少なくともいずれか1つの許容範囲に、車両の状態の変化量を表す情報によって表される変化量が含まれていないことを示す。データフレームが不正ではないと判定されたことを示す情報は、特定された全ての許容範囲に、車両の状態の変化量を表す情報によって表される変化量が含まれていることを表す。
出力部180は、学習フェーズでは動作しなくてよい。
検知フェーズでは、出力部180は、判定部170によって行われた判定の結果を受け取る。すなわち、出力部180は、少なくともいずれか1つの特定された許容範囲に、車両の状態の変化量を表す情報によって表される変化量が含まれていないか、特定された全ての許容範囲に、その変化量が含まれているかを表す情報を受け取る。言い換えると、出力部180は、取得部110によって取得されたデータフレームが、不正なデータフレームであると判定されたか否かを表す情報を、判定部170から受け取る。
取得部110によって取得されたデータフレームが、判定部170によって不正なデータフレームであると判定された場合、出力部180は、通知先(例えばコールセンター端末700)に、フレームの情報の通知を行う。この場合、出力部180は、不正なデータフレームであると判定されたデータフレームを特定する情報を、通知として通知先に送信してもよい。出力部180は、不正なデータフレームであると判定されたデータフレームが含むパラメータを特定する情報を、通知として通知先に送信してもよい。出力部180は、不正なデータフレームであると判定されたデータフレームが含むパラメータを特定する情報とパラメータの値とを、通知として通知先に送信してもよい。
取得部110によって取得されたデータフレームが、判定部170によって不正なデータフレームではないと判定された場合、出力部180は、例えばコールセンター端末700等の通知先に通知を行わなくてよい。
<<動作>>
次に、本実施形態の監視装置100の動作について、図面を参照して詳細に説明する。
次に、本実施形態の監視装置100の動作について、図面を参照して詳細に説明する。
図3は、本実施形態の監視装置100の、学習フェーズにおける動作を表すフローチャートである。学習フェーズでは、不正なデータフレームは存在しないことが確認されているものとする。監視装置100は、例えばオペレータの指示によって、学習フェーズにおける動作を開始する。
図3を参照すると、まず、取得部110が、バス600を流れるデータフレームを取得する(ステップS101)。
次に、算出部120が、取得されたデータフレームからパラメータの値を抽出する(ステップS102)。算出部120は、更新実行のための条件が満たされているか判定し、判定の結果、更新実行のための条件が満たされていない場合(ステップS103においてNO)、監視装置100の動作は、ステップS101に戻る。
更新実行のための条件は、例えば、抽出されたデータフレームに、車両の状態として値が保持されているパラメータが含まれていることであってよい。算出部120は、例えば、抽出されたデータフレームに、車両の状態として値が保持されているパラメータが含まれていた場合に、更新実行のための条件が満たされていると判定してよい。算出部120は、例えば、抽出されたデータフレームに、車両の状態として値が保持されているパラメータが含まれていない場合に、更新実行のための条件が満たされていると判定してよい。更新実行のための条件は、以上の例に限られない。
更新実行のための条件が満たされている場合(ステップS103においてYES)、算出部120は、車両の状態の、前状態からの変化を算出する(ステップS104)。上述のように、算出部120は、車両の状態を表すパラメータのうち、取得されたデータフレームに値が含まれないパラメータの値は、変化していないとみなしてよい。算出部120は、取得されたデータフレームに値が含まれるパラメータの、前状態からの値の変化を算出してよい。学習フェーズでは、算出部120は、前状態を表す情報と算出した車両の状態の変化とを、生成部130に送出する。
次に、生成部130は、前状態に応じた、車両の状態の、前状態からの変化の分布を更新する(ステップS105)。生成部130は、車両状態を表すパラメータの複数の組み合わせについての値の変化の分布のうち、データフレームに値が含まれるパラメータを含む組み合わせによって表される特徴空間における、前状態に応じた値の変化の分布を、算出された変化によって更新する。
次に、算出部120は、取得されたデータフレームから抽出されたパラメータの値によって、前状態を更新する(ステップS106)。なお、ステップS106の動作は、ステップS105の動作の前に行われてもよい。
終了の条件が満たされていない場合(ステップS107においてNO)、監視装置100は、ステップS101からの動作を繰り返す。生成部130は、車両の状態の変化の分布を繰り返し更新することによって、車両の状態の変化の分布を生成する。
終了の条件は、予め定められていてよい。終了の条件は、例えば、取得されたデータフレームの数が所定数に達したことであってもよい。終了の条件は、例えば、変化の分布が更新された回数が、全ての分布について、所定数に達したことであってもよい。終了の条件は、例えば、オペレータによって終了の指示が行われたことであってもよい。終了の条件は、以上の例に限られない。
終了の条件が満たされている場合(ステップS107においてYES)、決定部150は、前述の、パラメータの複数の組み合わせから得られる複数の特徴空間の各々における、前状態に応じた、変化の許容範囲を決定する。決定部150は、決定した、前状態に応じた変化の許容範囲を、ルール記憶部160に格納する。
次に、本実施形態の監視装置100の、検知フェーズにおける動作について説明する。
図4は、本実施形態の監視装置100の、検知フェーズにおける動作の例を表す第1のフローチャートである。監視装置100は、オペレータによって学習フェーズにおける動作を開始する指示が行われなかった場合、検知フェーズにおける動作を開始するよう設定されていてもよい。監視装置100は、オペレータによる指示に従って、検知フェーズにおける動作を開始してもよい。以下の説明では、検知フェーズの動作を行っている間に、バス600に不正なデータフレームが流れる可能性があるとする。
まず、取得部110が、バス600を流れるデータフレームを取得する(ステップS111)。ステップS111の動作は、学習フェーズにおけるステップS101の動作と同じでよい。
次に、算出部120が、取得されたデータフレームからパラメータの値を抽出する(ステップS112)。ステップS112の動作は、学習フェーズにおけるステップS102の動作と同じでよい。算出部120は、検出実行のための条件が満たされているか判定し、判定の結果、検出実行のための条件が満たされていない場合(ステップS113においてNO)、監視装置100の動作は、ステップS111に戻る。検出実行のための条件は、学習フェーズにおける、更新実行のための条件と同じでよい。
検出実行のための条件が満たされている場合(ステップS113においてYES)、監視装置100は、検出処理を実行する(ステップS114)。ステップS114における検出処理については、あとで詳細に説明する。
終了条件が満たされていない場合(ステップS115においてNO)、監視装置100は、ステップS111以降の動作を繰り返す。終了条件が満たされている場合(ステップS115においてYES)、監視装置100は、図4に示す動作を終了する。終了条件は、例えば、車載ネットワーク1が搭載されている車両が動作を終了することであってもよい。終了の条件は、以上の例に限られない。
次に、本実施形態の監視装置100の、検知フェーズにおける検出処理の動作について説明する。
図5は、本実施形態の監視装置100の、検知フェーズにおける動作の例を表す第2のフローチャートである。具体的には、図5は、本実施形態の監視装置100の、検知フェーズにおける検出処理の動作の例を表す。
まず、算出部120が、車両の状態の前状態からの変化を算出する(ステップS121)。ステップS121の動作は、学習フェーズにおけるステップS104の動作と同じでよい。ただし、検出フェーズでは、算出部120は、前状態を表す情報と算出した車両の状態の変化とを、生成部130ではなく、判定部170に送出する。
次に、判定部170が、ルール記憶部160に格納されている許容範囲から、前状態(すなわち、変化前の車両の状態)に応じた、車両の状態の変化の許容範囲を特定する(ステップS122)。判定部170は、パラメータの複数の組み合わせのうち、受け取った車両の状態の変化に値の変化が含まれるパラメータを含む組み合わせによって表される特徴空間における、前状態に応じた許容範囲を特定してもよい。判定部170は、さらに、特定した許容範囲を表す情報を、ルール記憶部160から読み出してよい。受け取った車両の状態の変化に値の変化が含まれるパラメータを含む組み合わせから得られる特徴空間の数が2以上である場合、判定部170は、それらの特徴空間における許容範囲を全て特定し、特定した許容範囲を表す情報を全て読み出してよい。
判定部170は、車両の状態の変化が、特定した許容範囲に含まれるか判定する(ステップS123)。車両の状態の変化が、許容範囲に含まれる場合(ステップS124においてYES)、算出部120は前状態を更新し(ステップS126)、監視装置100は図5に示す動作を終了する。複数の許容範囲が特定された場合、判定部170は、車両の状態の変化が特定された全ての許容範囲に含まれていれば、車両の状態の変化が許容範囲に含まれていると判定する。
車両の状態の変化が許容範囲に含まれない場合(ステップS124においてNO)、出力部180は、ステップS111において取得されたデータフレームの情報の通知を行う(ステップS125)。複数の許容範囲が特定された場合、判定部170は、車両の状態の変化が特定された少なくともいずれか1の許容範囲に含まれていなければ、車両の状態の変化が許容範囲に含まれていないと判定する。そして、算出部120は前状態を更新し(ステップS126)、監視装置100は図5に示す動作を終了する。算出部120は、ステップS126の動作を、ステップS121の後のいずれのタイミングで行ってもよい。
<<効果>>
以上で説明した本実施形態には、ネットワークを流れる、車両の状態を表すデータを含むフレームから、不正なフレームを検出する精度を向上できるという効果がある。
以上で説明した本実施形態には、ネットワークを流れる、車両の状態を表すデータを含むフレームから、不正なフレームを検出する精度を向上できるという効果がある。
その理由は、判定部170が、車両の状態の変化が、前状態(すなわち、変化の前の車両の状態)に応じた許容範囲に含まれるか判定するからである。例えば、車両の状態の変化が、ある状態からの変化としては正常であっても、他の状態からの変化としては異常である場合が存在する。そのような場合に、車両の状態の変化が正常であるか異常であるかを、変化の前の車両の状態によらず、同じ許容範囲によって判定した場合、判定の精度が低下する。変化の前の車両の状態に応じた許容範囲によって、車両の状態の変化が正常であるか異常であるかを判定することにより、判定の精度が向上する。従って、異常な車両の状態を示す不正なフレームを検出する精度が向上する。
<<第1の変形例>>
以下では、第1の実施形態の変形例について説明する。
以下では、第1の実施形態の変形例について説明する。
図6は、第1の実施形態の第1の変形例に係る監視システムの構成の例を表すブロック図である。
図6に示す監視システム11は、学習装置201と、監視装置101とを含む。監視システム11は、図2に示す監視装置100と置き換えることができる。
学習装置201は、取得部110と、算出部120と、生成部130と、分布記憶部140と、決定部150と、ルール出力部280とを含む。監視装置101は、取得部110と、算出部120と、ルール記憶部160と、判定部170と、出力部180と、ルール取得部190とを含む。
学習装置201に含まれ、第1の実施形態の監視装置100に含まれる要素と同じ名称及び符号が付与されている要素は、第1の実施形態の監視装置100に含まれる同じ名称及び符号が付与されている要素の学習フェーズにおける機能と同様の機能を備える。また、学習装置201に含まれるそれらの要素は、第1の実施形態の監視装置100に含まれる同じ名称及び符号が付与されている要素の学習フェーズにおける動作と同様の動作を行う。以下では、相違について説明する。
決定部150は、決定した許容範囲を、ルール出力部280に送出する。
ルール出力部280は、決定部150から許容範囲を受け取り、受け取った許容範囲を、監視装置101に送出する。
監視装置101に含まれ、第1の実施形態の監視装置100に含まれる要素と同じ名称及び符号が付与されている要素は、第1の実施形態の監視装置100に含まれる同じ名称及び符号が付与されている要素の検知フェーズにおける機能と同様の機能を備える。また、監視装置101に含まれるそれらの要素は、第1の実施形態の監視装置100に含まれる同じ名称及び符号が付与されている要素の検知フェーズにおける動作と同様の動作を行う。以下では、相違について説明する。
学習フェーズにおいて、ルール取得部190は、学習装置201のルール出力部280から、許容範囲を受け取る。ルール取得部190は、受け取った許容範囲を、ルール記憶部160に格納する。
<<第2の変形例>>
図7は、第1の実施形態の第2の変形例に係る監視システムの構成の例を表すブロック図である。
図7は、第1の実施形態の第2の変形例に係る監視システムの構成の例を表すブロック図である。
図7に示す監視システム12は、学習装置202と、ルール記憶装置302と、監視装置102とを含む。監視システム12は、図2に示す監視装置100と置き換えることができる。
学習装置202は、取得部110と、算出部120と、生成部130と、分布記憶部140と、決定部150と、ルール出力部280とを含む。ルール記憶装置302は、ルール記憶部160を含む。監視装置102は、取得部110と、算出部120と、判定部170と、出力部180と、ルール取得部190とを含む。
学習装置202に含まれ、第1の実施形態の監視装置100に含まれる要素と同じ名称及び符号が付与されている要素は、第1の実施形態の監視装置100に含まれる同じ名称及び符号が付与されている要素の学習フェーズにおける機能と同様の機能を備える。また、学習装置202に含まれるそれらの要素は、第1の実施形態の監視装置100に含まれる同じ名称及び符号が付与されている要素の学習フェーズにおける動作と同様の動作を行う。以下では、相違について説明する。
決定部150は、決定した許容範囲を、ルール出力部280に送出する。
ルール出力部280は、決定部150から許容範囲を受け取り、受け取った許容範囲を、ルール記憶装置302のルール記憶部160に格納する。
監視装置102に含まれ、第1の実施形態の監視装置100に含まれる要素と同じ名称及び符号が付与されている要素は、第1の実施形態の監視装置100に含まれる同じ名称及び符号が付与されている要素の検知フェーズにおける機能と同様の機能を備える。また、監視装置102に含まれるそれらの要素は、第1の実施形態の監視装置100に含まれる同じ名称及び符号が付与されている要素の検知フェーズにおける動作と同様の動作を行う。以下では、相違について説明する。
ルール取得部190は、ルール記憶装置302のルール記憶部160にアクセスし、ルール記憶部160から許容範囲を取得する。
ルール記憶部160は、第1の実施形態の監視装置100のルール記憶部160と同様の機能を備える。
<<第3の変形例>>
第3の変形例では、第1の実施形態、第1の変形例、及び、第2の変形例のいずれの構成が採用されていてもよい。第3の変形例と、第1の実施形態、第1の変形例、及び、第2の変形例との相違は、以下の通りである。
第3の変形例では、第1の実施形態、第1の変形例、及び、第2の変形例のいずれの構成が採用されていてもよい。第3の変形例と、第1の実施形態、第1の変形例、及び、第2の変形例との相違は、以下の通りである。
変形例3では、算出部120は、取得されたデータフレームから値が読み取られたパラメータに、車両の状態として値が保持されているパラメータが存在する場合、車両の状態として値が保持されていないパラメータが存在していても、車両の状態の変化を算出する。具体的には、第3の変形例の算出部120は、車両の状態の変化として、取得されたデータフレームから読み取ったそれぞれのパラメータの値の、車両の状態として保持されている値からの差を、車両の状態の変化として算出してよい。言い換えると、取得されたデータフレームから値が読み取られたパラメータに、車両の状態として値が保持されていないパラメータが存在する場合、算出部120は、そのパラメータの値は変化していないとみなす。
また、算出部120は、取得されたデータフレームから値が読み取られたそれぞれのパラメータについて、車両の状態の更新を行う。言い換えると、算出部120は、取得されたデータフレームから読み取ったパラメータの値を、車両の状態にとして保持されるパラメータの値に設定する。
他の構成要素は、第1の実施形態の構成要素と同様に動作してもよい。他の構成要素は、第1の変形例の構成要素と同様に動作してもよい。他の構成要素は、第2の変形例の構成要素と同様に動作してもよい。
<<第4の変形例>>
第1の実施形態の第4の変形例の構成要素は、以下に示す相違を除いて、第1の実施形態の同じ符号が付与されている同じ名称の構成要素と同様に動作する。
第1の実施形態の第4の変形例の構成要素は、以下に示す相違を除いて、第1の実施形態の同じ符号が付与されている同じ名称の構成要素と同様に動作する。
ステップS103における更新実行のための条件は、例えば、パラメータの値の変化の分布を更新してから所定時間が経過することであってもよい。その場合、算出部120は、ステップS104において、パラメータの値の変化の分布を更新してから所定時間の間に取得されたデータフレームに含まれているパラメータの値によって、最新状態を生成してもよい。算出部120は、例えば、所定時間の間に取得された、少なくともいずれか1つのデータフレームに含まれているパラメータの各々の値を、その値を含むデータフレームのうち、最も新しく取得されたデータフレームに含まれている値に設定してよい。
<<第5の変形例>>
第1の実施形態の第5の変形例の構成要素は、以下に示す相違を除いて、第1の実施形態の同じ符号が付与されている同じ名称の構成要素と同様に動作する。
第1の実施形態の第5の変形例の構成要素は、以下に示す相違を除いて、第1の実施形態の同じ符号が付与されている同じ名称の構成要素と同様に動作する。
監視装置100が、取得したデータフレームが異常なデータフレームであるか否かを判定するネットワークは、車載ネットワークに限られない。すなわち、監視装置100は、車両に搭載されている車載ネットワークではないネットワークに送出されるデータフレームが、異常なデータフレームであるか否かを判定してもよい。監視装置100は、車両の状態以外の例えば装置の状態を表すパラメータの値を含むデータフレームが流れるネットワークに接続され、そのデータフレームが異常であるか否かを判定してもよい。言い換えると、第5の変形例の監視装置100は、装置(車両を含む)の状態を表すパラメータの値を含むデータフレームが流れるネットワークに接続され、そのデータフレームが異常であるか否かを判定してもよい。
<第2の実施形態>
次に、本発明の第2の実施形態について、図面を参照して詳細に説明する。
次に、本発明の第2の実施形態について、図面を参照して詳細に説明する。
<<構成>>
まず、本実施形態の監視装置103の構成について説明する。
まず、本実施形態の監視装置103の構成について説明する。
図8は、本実施形態の監視装置103の構成の例を表すブロック図である。
図8に示す監視装置103は、算出部120と、判定部170と、を備える。算出部120は、受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する。判定部170は、前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する。
<<動作>>
次に、本実施形態の監視装置103の動作について説明ずる。
次に、本実施形態の監視装置103の動作について説明ずる。
図9は、本実施形態の監視装置103の動作の例を表すフローチャートである。
図9に示す動作では、まず、算出部120は、受信したデータフレームが表す装置の状態に基づいて、装置の状態の変化を算出する(ステップS202)。上述のように、装置は、たとえば車両である。また、データフレームは、その車両の位搭載された車載ネットワークを流れるデータフレームである。算出部120は、算出される変化の前の装置の状態を、予め保持していてよい。算出部120は、取得されたデータフレームによって表される装置の状態を表す情報と、変化の前の状態を表す情報とを、判定部170に送出してよい。
判定部170は、算出された、装置の状態の変化が、変化の前の装置の状態に応じた許容範囲に含まれるか判定する(ステップS204)。
そして、監視装置103は、図9に示す動作を終了する。
<<効果>>
本実施形態には、第1の実施形態と同じ効果がある。その理由は、判定部170が、算出部120によって算出された装置の状態の変化が、変化の前の装置の状態に応じた許容範囲に含まれるか判定するからである。
本実施形態には、第1の実施形態と同じ効果がある。その理由は、判定部170が、算出部120によって算出された装置の状態の変化が、変化の前の装置の状態に応じた許容範囲に含まれるか判定するからである。
<第3の実施形態>
次に、本発明の第3の実施形態について、図面を参照して詳細に説明する。
次に、本発明の第3の実施形態について、図面を参照して詳細に説明する。
<<構成>>
まず、本実施形態に係る学習装置の構成について説明する。
まず、本実施形態に係る学習装置の構成について説明する。
図10は、本実施形態の学習装置203の構成の例を表すブロック図である。
図10に示す例では、学習装置203は、算出部120と、生成部130と、決定部150と、を備える。算出部120は、受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する。生成部130は、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する。決定部150は、生成された前記分布に基づいて、前記変化の許容範囲を決定する。
<<動作>>
次に、本実施形態に係る学習装置の動作について説明する。
次に、本実施形態に係る学習装置の動作について説明する。
図11は、本実施形態に係る学習装置203の動作の例を表すフローチャートである。
図11に示す例では、まず、算出部120が、受信したデータフレームが表す装置の状態に基づいて、装置の状態の変化を算出する(ステップS302)。
次に、生成部130が、算出された変化の前の装置の状態に応じた、変化の分布を更新する(ステップS303)。
終了の条件が満たされていない場合(ステップS305においてNO)、学習装置203は、ステップS302及びステップS303の動作を繰り返す。終了の条件は、図3のステップS107に示す、第1の実施形態における終了の条件と同じでよい。ステップS303の動作の繰り返しによって、生成部130は、前状態に応じた、装置の状態の変化の分布を生成する。
終了の条件が満たされている場合(ステップS305においてYES)、決定部150は、生成された、前状態毎の分布に基づいて、前状態に応じた、変化の許容範囲を決定する(ステップS306)。決定された変化の許容範囲は、例えば、その許容範囲を用いて不正なデータフレームを検出する監視装置等に出力されてもよい。
<<効果>>
本実施形態には、ネットワークを流れる、車両の状態を表すデータを含むフレームから、不正なフレームを検出する精度の向上に寄与できるという効果がある。
本実施形態には、ネットワークを流れる、車両の状態を表すデータを含むフレームから、不正なフレームを検出する精度の向上に寄与できるという効果がある。
その理由は、決定部150が、装置の状態の変化が、変化の前の装置の状態に応じた許容範囲を決定するからである。例えば、装置の状態の変化が、ある状態からの変化としては正常であっても、他の状態からの変化としては異常である場合が存在する。そのような場合に、装置の状態の変化が正常であるか異常であるかを、変化の前の装置の状態によらず、同じ許容範囲によって判定した場合、判定の精度が低下する。変化の前の装置の状態に応じた許容範囲によって、装置の状態の変化が正常であるか異常であるかを判定することにより、判定の精度が向上する。従って、異常な装置の状態を示す不正なフレームを検出する精度が向上する。
<第4の実施形態>
<<構成>>
次に、本発明の第4の実施形態について、図面を参照して詳細に説明する。
<<構成>>
次に、本発明の第4の実施形態について、図面を参照して詳細に説明する。
図1は、本実施形態の監視装置100の構成の例を表すブロック図である。本実施形態の監視装置100は、取得部110と、算出部120と、生成部130と、分布記憶部140と、決定部150と、ルール記憶部160と、判定部170と、出力部180とを含む。本実施形態の監視装置100の構成は、第1の実施形態の監視装置100の構成と同じである。本実施形態の取得部110と、算出部120と、生成部130と、分布記憶部140と、出力部180とは、第1の実施形態の同じ名称及び符号が付与されている部と同じ機能を備え、同様に動作する。
以下では、本実施形態の監視装置100と、第1の実施形態の監視装置100との間の相違点を主に説明する。
本実施形態では、パラメータは、2つの種類に分類されている。1番目の種類のパラメータは、「連続的な」パラメータである。2つ目の種類のパラメータは、「離散的な」パラメータである。
連続的なパラメータは、例えば、パラメータがとりうる値の個数が所定個数よりも多いパラメータである。以下では、連続的なパラメータを、「連続パラメータ」と表記する。連続パラメータは、実数値を取りうるパラメータであってもよい。連続パラメータが取りうるパラメータの範囲は、限られていなくてもよい。連続パラメータは、所定範囲に含まれる実数値のいずれかを取りうるパラメータであってもよい。連続パラメータは、所定個数よりも多い個数の実数値のいずれかを取りうるパラメータであってもよい。連続パラメータの値は、実数でなくてもよい。連続パラメータは、例えば、所定個数よりも多い個数の整数値のいずれかを取りうるパラメータであってもよい。連続パラメータは、例えば、所定個数よりも多い個数の数値(整数値と実数値とを含む)のいずれかを取りうるパラメータであってもよい。連続パラメータは、所定個数よりも多い個数の状態値のいずれかを取りうるパラメータであってもよい。この場合、状態値には、例えば、所定範囲に含まれる整数又は実数が割り当てられていてよい。そして、状態値は、その状態値に割り当てられている整数又は実数として扱われてもよい。連続パラメータが取りうる値の個数は限定されていなくてもよい。連続パラメータが取りうる値の範囲は限定されていなくてもよい。連続パラメータは、例えば、車速、アクセル開度、ブレーキ踏、ハンドル舵角、ヨーレートなどである。なお、「ブレーキ踏」は、ブレーキペダルの踏み方の程度を表す値である。ブレーキ踏は、例えば、ブレーキペダルに加えられている力の大きさを表していてもよい。ブレーキ踏は、例えば、ブレーキ系統のいずれかの部分における、ブレーキペダルに加えられている力の大きさに依存する油圧等の圧力を表していてもよい。これらの場合、ブレーキ踏は、例えば、ブレーキ系統に取り付けられている圧力センサによる測定によって得られる測定値であってもよい。ブレーキ踏は、例えば、ブレーキペダルを踏んでいない状態からの、ブレーキペダルの移動の大きさによって表されていてもよい。この場合、ブレーキペダルの移動の大きさは、例えば、ブレーキペダルの位置を測定するセンサの出力から導出されてもよい。連続パラメータは、以上の例に限られない。
離散的なパラメータとは、例えば、パラメータがとりうる値の個数が所定個数よりも少ないパラメータである。所定個数は、例えば、予め定められていてよい。以下、離散的なパラメータを、「離散パラメータ」と表記する。離散パラメータがとりうる値は、実数値、整数値、状態値などのいずれかであってもよい。離散パラメータは、例えば、シフトポジション、サイドレバー状態、ドアの開閉の状態、ライトの点灯の状態、ウインカーの点灯の状態等であってよい。離散パラメータは、以上の例に限られない。
以下では、離散パラメータによる空間を離散空間と表記し、連続パラメータによる空間を連続値空間と表記する。離散パラメータの個数がn(nは1以上の整数)である場合、離散空間はn次元の空間である。連続パラメータの個数がm(mは1以上の整数)である場合、連続値空間はm次元の空間である。これらのn個の離散パラメータの値の組み合わせは、離散空間における点(具体的には、点の座標)によって表される。これらのn個の離散パラメータの値の変化は、離散空間における、n次元のベクトルによって表すことができる。これらのm個の連続パラメータの値の組み合わせは、連続値空間における点(具体的には、点の座標)によって表される。これらのm個の連続パラメータの値の組み合わせの値の変化は、連続値空間における、m次元のベクトルによって表すことができる。
これらのn個の離散パラメータの値を、離散パラメータの値の組み合わせとも表記する。これらのn個の離散パラメータの値を、単に、離散パラメータの値と表記することもある。これらのn個の離散パラメータの値の変化を、単に、離散パラメータの値の組み合わせの変化と表記することもある。これらのn個の離散パラメータの値の変化を、単に、離散パラメータの値の変化と表記することもある。これらのm個の連続パラメータの値を、連続パラメータの値の組み合わせとも表記する。これらのm個の連続パラメータの値を、単に、連続パラメータの値と表記することもある。これらのm個の連続パラメータの値の変化を、単に、連続パラメータの値の組み合わせの変化と表記することもある。これらのm個の連続パラメータの値の変化を、単に、連続パラメータの値の変化と表記することもある。
学習フェーズでは、生成部130は、第1の実施形態の生成部130と同様に、まず、データフレームが示す車両の状態になる前の車両の状態(すなわち、上述の前状態)に応じた、変化量の分布を特定する。具体的には、生成部130は、分布記憶部140に格納されている変化量の分布から、取得したデータフレームが表す車両の状態の前状態からの、取得したデータフレームに値が含まれるパラメータを含むパラメータの組み合わせから得られる特徴空間における、変化量の分布を特定する。なお、生成部130が使用するデータフレームは、正常に動作していることが確認されている車両から取得されたデータフレームである。
ただし、本実施形態の生成部130は、離散パラメータの値の組み合わせ毎に、連続パラメータの値の組み合わせの各々から変化量の分布を特定する。言い換えると、本実施形態の生成部130は、離散空間の点毎に、連続値空間の各点における変化量の分布を特定する。さらに、本実施形態の生成部130は、離散パラメータの値の組み合わせの各々について、離散パラメータの値の組み合わせからの変化毎の、連続パラメータの値の組み合わせの分布を特定する。言い換えると、本実施形態の生成部130は、離散空間の各点における変化毎に、連続値空間における点の分布を特定する。
学習フェーズにおいて、決定部150は、分布記憶部140に格納されている、変化量の分布の各々について、変化量の許容範囲を決定する。
ただし、本実施形態の決定部150は、離散パラメータの値の組み合わせと、連続パラメータの値の組み合わせとに基づく、連続パラメータの値の組み合わせの変化の許容範囲を決定する。言い換えると、本実施形態の決定部150は、離散空間における点毎に、連続値空間における各点からの変化の許容範囲を決定する。本実施形態の決定部150は、さらに、離散パラメータの値の組み合わせ毎に、離散パラメータの値の組み合わせと、連続パラメータの値の組み合わせとに基づく、離散パラメータの値の組み合わせの変化量の許容範囲を決定する。言い換えると、本実施形態の決定部150は、さらに、離散空間の点の各々について、離散空間の点と、連続値空間の点とに基づく、離散空間のその点からの変化量の許容範囲を決定する。
以下では、生成部130と、決定部150とについて、さらに詳しく説明する。
本実施形態の生成部130は、離散パラメータの値の組み合わせ毎の、連続パラメータの値の分布(言い換えると、正常な分布)を生成する。言い換えると、生成部130は、離散空間における、離散パラメータの値の組み合わせを表す点毎の、連続値空間における、連続パラメータの値の分布(すなわち正常な分布)を生成する。離散パラメータの値の組み合わせが同一である車両の状態の集合が、離散空間における点として表される。なお、車両の状態の離散パラメータの値の組み合わせが同一であっても、それらの車両の状態の連続パラメータの値は同一であるとは限らない。
生成部130は、離散パラメータの値の組み合わせ毎に、生成した正常な分布における各点からの、正常な状態における連続パラメータの値の変化量の分布(以下、変化の分布とも表記する)を特定する。言い換えると、生成部130は、離散空間における点ごとに、連続値空間における正常な分布に含まれる各点における、連続パラメータの値の変化量の分布を特定する。さらに言い換えると、生成部130は、離散パラメータの値が同一である車両の状態の集合において、連続パラメータの値の組み合わせの、同一の値の組み合わせからの変化量の分布を、値の組み合わせ毎に特定する。生成部130は、連続値空間が所定規則に従って分割された複数の部分領域毎に、連続パラメータの値の変化量の分布を特定してよい。言い換えると、生成部130は、連続値空間に設定された複数の部分領域毎に、部分領域に含まれる点として表される連続パラメータの値の組み合わせからの、連続パラメータの値の変化量の分布を特定してもよい。さらに言い換えると、生成部130は、離散パラメータの値が同一である車両の状態の集合において、連続パラメータの値の組み合わせの、同一の部分領域に含まれる値の組み合わせからの変化量の分布を、部分領域毎に特定してもよい。
決定部150は、離散パラメータの値の組み合わせ毎に、特定した変化量の分布から、連続パラメータの値に基づく、連続パラメータの値の変化の許容範囲を決定する。言い換えると、決定部150は、離散空間における点毎に、連続値空間において、連続パラメータの分布に含まれる各点からの、連続パラメータの値の変化の許容範囲を決定する。さらに言い換えると、決定部150は、離散パラメータの値の組み合わせが同一である車両の状態の集合において、連続パラメータの値の組み合わせの、同一の値の組み合わせからの変化量の許容範囲を決定する。決定部150は、上述の部分領域毎に、連続パラメータの値の変化量の許容範囲を決定してよい。言い換えると、決定部150は、部分領域毎に、連続パラメータの、同一の部分領域に含まれる値の組み合わせからの、変化量の許容範囲を決定してもよい。決定部150による許容範囲を決定する方法は、第1の実施形態における、許容範囲を決定する方法と同じでよい。
以上のように許容範囲が決定された場合、離散パラメータの値の組み合わせによって、連続パラメータの値の分布(すなわち、正常な分布)が定まる。さらに、離散パラメータの組み合わせによって定まる、連続パラメータの値の分布において、点(すなわち、連続パラメータの値の組み合わせ)が定まると、連続パラメータの値の変化の許容範囲が定まる。言い換えると、離散パラメータの値の組み合わせと、連続パラメータの値の組み合わせとによって、連続パラメータの値の変化量の許容範囲が定まると言える。
生成部130は、さらに、離散パラメータの値の組み合わせの各々について、離散パラメータの値の組み合わせからの変化毎に、連続パラメータの値の組み合わせの、変化の前における分布を生成してもよい。
決定部150は、さらに、離散パラメータの値の組み合わせ毎に定まる、連続パラメータの値が分布する範囲において、1つ以上の領域と、領域毎の離散パラメータの値の変化の許容範囲とを決定してよい。離散パラメータの値の変化は、例えば、離散空間における点から点への移動によって表される。離散パラメータの値の変化の許容範囲は、離散空間における点から点への移動の集合によって表される。従って、離散パラメータの値の変化の許容範囲は、離散空間における点の集合によって表すことができる。以下の説明において、点Aは、離散空間において、離散パラメータの値の組み合わせを示す点の1つである。点B、点C、点D等も同様である。例えば、離散空間における点Aによって表される値の組み合わせからの変化は、点Aから、他の点又は点Aへの移動によって表される。従って、点Aからの値の変化の許容範囲は、点Aから移動しうる点の集合によって表すことができる。
決定部150は、離散空間における、ある点(例えば点A)からの値の変化の許容範囲を、例えば以下のように決定する。
決定部150は、離散パラメータの値の組み合わせの点Aから他の点(例えば点B)への変化の前における、連続パラメータの値の連続値空間における分布を特定してよい。そして、決定部150は、特定した分布に基づいて、離散パラメータの値の組み合わせの点Aから点Bへの変化の前における、連続パラメータの値が連続値空間において分布しうる領域を決定してよい。決定部150は、例えば、特定した分布がm次元の正規分布であると仮定してよい。そして、決定部150は、特定した分布の、m本の座標軸の各々の方向の分布における標準偏差を算出し、各座標軸方向の平均からの差が標準偏差の定数倍である範囲を、連続パラメータの値が分布しうる領域として特定してもよい。決定部150は、離散パラメータの値の組み合わせの点Aから点Bへの変化の前における、連続パラメータの値の分布を全て含む、所定の形状の範囲を特定してもよい。所定の形状は、m次元の直方体であってもよい。所定の形状は、m次元の楕円体であってもよい。所定の形状は、以上の例に限られない。このように決定部150によって決定された、点Aから点Bへの変化の前における、連続パラメータの値が連続値空間において分布しうる領域を、点Aから点Bへの遷移可能領域と表記する。
決定部150は、同様に、離散空間において離散パラメータの値の組み合わせが示す点Aから変化しうる各点について、同様に、変化の前における、連続パラメータの値が連続値空間において分布する領域を決定する。離散空間において、点Aから変化しうる点を、点Aの遷移可能点と表記する。言い換えると、決定部150は、点Aから遷移可能点への遷移可能領域を、点Aの遷移可能点の各々について決定する。連続パラメータの値の組み合わせ(すなわち、連続パラメータの値の組み合わせが表す点)が、遷移可能領域に含まれている場合における、点Aからの遷移可能点を、遷移可能領域に関する遷移可能点と表記し、その遷移可能領域を、点Aの遷移可能領域と表記する。決定部150は、離散パラメータの値が変化しない場合の、連続パラメータの値が連続値空間において分布する領域を決定してもよい。
決定部150は、点Aの遷移可能領域のうち、点Aの他の遷移可能領域と重複していない領域と、点Aの複数の遷移可能領域が重複している領域とを特定してもよい。点Aの複数の遷移可能領域が重複している領域に、連続パラメータの値の組み合わせを表す点が含まれている場合、離散パラメータの値の組み合わせは、点Aから、複数の遷移可能領域に関する遷移可能点のいずれにも変化しうる。決定部150は、複数の遷移可能領域が重複している領域を、点Aから、それらの複数の遷移可能領域に関する遷移可能点の組み合わせへの、遷移可能領域に決定してもよい。他の遷移可能領域と重複していない遷移可能領域は、点Aから、その遷移可能領域に関する遷移可能点(すなわち、その遷移可能点のみを含む、遷移可能点の組み合わせ)への遷移可能領域である。
決定部150は、このように、連続値空間において、同じ遷移可能領域が重複している領域と、遷移可能領域が重複していない遷移可能領域内の領域とを特定し、特定した領域を、重複している遷移可能領域に関する遷移可能点の組み合わせへの新たな遷移可能領域に決定する。そして、決定部150は、決定された新たな遷移可能領域に関する遷移可能点の組み合わせを特定する。この場合、点Aからの、連続パラメータの値の組み合わせが表す点が含まれる遷移可能領域に関する遷移可能点の組み合わせに含まれる各点への変化量が、点Aの、連続パラメータの値の組み合わせに基づく、許容範囲である。決定部150は、点Aから、特定された組み合わせに含まれる遷移可能点の各々への変化量を、決定された遷移可能領域に連続パラメータの値の組み合わせが含まれる場合における、離散空間における変化量の許容範囲に決定する。なお、遷移可能点が点Aである場合は、離散パラメータの値の組み合わせが示す点が、点Aから変化しなくてもよいことを表す。
決定部150は、離散空間における各点について、連続値空間における遷移可能領域と、離散空間における許容範囲と、の組み合わせを決定する。そして、決定部150は、特定した組み合わせに含まれる、連続値空間における遷移可能領域と、離散空間における許容範囲と、を関連付ける。
決定部150は、決定した許容範囲を表す情報を、ルール記憶部160に格納する。本実施形態では、許容範囲を表す情報は、連続値空間における許容範囲を表す情報と、離散空間における許容範囲を表す情報とを含む。連続値空間における許容範囲を表す情報は、離散空間において離散パラメータが取りうる点の各々における、連続値空間において連続パラメータが取りうる値の組み合わせが示す各点の許容範囲を表す情報である。言い換えると、連続値空間における許容範囲を表す情報は、離散パラメータの値の可能な組み合わせの各々についての、連続パラメータの値の可能な組み合わせの各々からの、変化量の許容範囲を表す情報である。離散空間における許容範囲を表す情報は、離散空間において離散パラメータが取りうる点の各々についての、連続値空間における遷移可能領域と、離散空間における変化量の許容範囲とを表す情報である。
図14は、離散空間の点と、連続値空間における点とに基づく、連続値の変化量の許容範囲の例を模式的に表す図である。図14の離散空間を表す矩形内において、破線の交点のうち、円によって囲まれている交点(例えば、点P0から点P4)は、離散パラメータの値の分布を表す。言い換えると、円によって囲まれている交点は、離散パラメータの値の組み合わせを離散空間における点によって表した場合に、点が存在しうる場所を表す。
図14には、さらに、離散パラメータの値が点P2の座標によって表される場合における、連続パラメータの値の分布が、連続値空間を表す矩形内に示されている。連続値空間を表す矩形内における閉曲線が、離散パラメータの値の組み合わせが点P2によって表される場合における連続パラメータの値の分布を表す。離散パラメータの値のそれぞれの組み合わせ(すなわち、離散空間において離散パラメータの値の組み合わせを表す点の各々)についても同様に、連続パラメータの値の組み合わせが表す点の連続値空間における分布が得られる。
図14は、さらに、連続値空間に示される矩形に、連続パラメータの値の組み合わせを表す点が含まれる場合の、連続パラメータの値の変化量の許容範囲を表す。図14に描かれている、「変化量の許容範囲」の矩形に含まれる楕円によって囲まれる領域が、連続パラメータの値の変化量の許容範囲を表す。図14の例では、「変化量の許容範囲」の矩形の中に座標軸が描かれている座標系の原点からのベクトルが描かれている。これらのベクトルは、連続パラメータの値の変化の組み合わせを表す。図14の例では、描かれているベクトルの終点が、「変化量の許容範囲」の矩形の中に描かれている楕円に含まれる場合、連続パラメータの値の変化量は、許容範囲に含まれる。このようなベクトルによって表される、連続パラメータの値の変化量は、正常であるとみなされる。描かれているベクトルの終点が、「変化量の許容範囲」の矩形の中に描かれている楕円に含まれない場合、連続パラメータの値の変化量は、許容範囲に含まれない。このようなベクトルによって表される、連続パラメータの値の変化量は、異常であるとみなされる。
図15は、離散空間の点と、連続値空間における点とに基づく、離散値の変化量の許容範囲の例を模式的に表す図である。図15の離散空間は、図14に描かれている離散空間と同じである。図15の離散空間の矩形内に描かれている円は、図14の円と同様に、離散パラメータの値の組み合わせを表す。離散パラメータの値の組み合わせは、離散パラメータの状態の1つを表す。図15の離散空間の矩形内に描かれている、2つの円をつなぐ矢印は、それらの2つの円に含まれる2つの交点によって表される、離散パラメータの値の2つの組み合わせ(すなわち2つの状態)の間で、矢印の向きの変化が起こりうることを表す。両方向の矢印は、その矢印によって表される2つの方向の変化が起こりうることを表す。図15に示す例では、例えば、状態が点P0によって表される場合、点P1によって表される状態への変化、点P2によって現れる状態の変化、及び、点P3によって表される状態への変化が起こりうることを表す。
図15の連続値空間を表す矩形に含まれる閉曲線は、図14の閉曲線と同様に、連続値空間における連続パラメータの値の組み合わせを表す点の分布(連続パラメータの値の組み合わせの分布とも表記)を表す。図15に示す例では、連続値空間を示す矩形の中に描かれている閉曲線が、離散パラメータの値の組み合わせが点P0によって表される場合における、連続パラメータの値の分布を表す。この閉曲線によって囲まれる領域と重複するように描かれている矩形が、上述の遷移可能範囲を表す。
図15には、「P1又はP2への遷移が可能な範囲」として、範囲A1が示されている。「P3への遷移が可能な範囲」として、範囲A2が示されている。さらに、「遷移が不可な範囲」として、範囲A0が示されている。範囲A0は、連続値空間全体のうち、範囲A1及び範囲A2以外の範囲である。図15に示す例では、離散空間における点P0の座標が離散パラメータの値を表し、連続値空間の範囲A1に含まれる点の座標が連続パラメータの値を表す場合、離散パラメータの値は、点P1の座標が表す値、又は、点P2の座標が表す値に変化する。この場合、離散パラメータの値の変化量の許容範囲は、点P0から点P1への座標の変化によって表される値、及び、点P0から点P2への座標の変化によって表される値である。離散空間における点P0の座標が離散パラメータの値を表し、連続値空間の範囲A2に含まれる点の座標が連続パラメータの値を表す場合、離散パラメータの値は、点P3の座標が表す値に変化する。この場合、離散パラメータの値の変化量の許容範囲は、点P0から点P2への座標の変化によって表される値である。離散空間における点P0の座標が離散パラメータの値を表し、連続値空間の範囲A1及び範囲A2のどちらにも含まれない点の座標が連続パラメータの値を表す場合、離散パラメータの値は、離散空間における点P0の座標が表す値から変化しない。この場合、離散パラメータの値の変化量の許容範囲は、ゼロベクトルによって表される点である。
検知フェーズでは、判定部170は、同様に、前状態(具体的には、前状態を表す情報)と、算出された車両の状態の変化(具体的には、算出された車両の状態の変化量を表す情報)とを、算出部120から受け取る。判定部170は、受け取った、車両の状態の変化量を表す情報に値の変化量が含まれるパラメータを含む、パラメータの組み合わせから得られる特徴空間において定められている許容範囲を特定する。複数の特徴空間が得られ、ルール記憶部160に格納されている許容範囲において、複数の許容範囲を特定できる場合、判定部170は、それらの複数の許容範囲を全て特定してよい。
本実施形態の判定部170は、具体的には、許容範囲を表す情報のうち、連続値空間における許容範囲を表す情報に基づいて、車両の状態の変化のうち、連続パラメータの値の変化が、連続値空間における許容範囲に含まれるか判定してよい。判定部170は、さらに、許容範囲を表す情報のうち、離散空間における許容範囲を表す情報に基づいて、車両の状態の変化のうち、離散パラメータの値の変化が、離散空間における許容範囲に含まれるか判定してよい。判定の順番は逆でもよい。
さらに詳しく説明すると、判定部170は、まず、車両の状態を表すパラメータのうち離散パラメータの値の組み合わせが、離散空間において示す点を特定する。特定した点が、離散パラメータの値の組み合わせが取りうる点の1つではない場合、判定部170は、取得部110が取得したデータフレームが、不正なデータフレームであると判定してよい。
特定した点が、離散パラメータの値の組み合わせが取りうる点の1つである場合、判定部170は、次に、連続パラメータの値の組み合わせが許容範囲に含まれるか判定する。すなわち、判定部170は、車両の状態を表すパラメータのうち連続パラメータの値の組み合わせが、離散空間において特定された点についての、その連続パラメータの値の組み合わせからの変化量の許容範囲に含まれるか判定してよい。連続パラメータの値の組み合わせが許容範囲に含まれない場合、判定部170は、取得部110が取得したデータフレームが、不正なデータフレームであると判定してよい。
連続パラメータの値の組み合わせが許容範囲に含まれる場合、判定部170は、次に、連続値空間における遷移可能領域を特定する。すなわち、判定部170は、離散空間において特定された点についての、連続値空間における遷移可能領域のうち、車両の状態を表すパラメータのうち連続パラメータの値の組み合わせが含まれる遷移可能領域を特定する。車両の状態を表すパラメータのうち連続パラメータの値の組み合わせが含まれる遷移可能領域が存在しない場合、判定部170は、取得部110が取得したデータフレームが、不正なデータフレームであると判定してよい。
車両の状態を表すパラメータのうち連続パラメータの値の組み合わせが含まれる遷移可能領域が特定された場合、判定部170は、次に、離散パラメータの値の組み合わせが許容範囲に含まれるか判定する。すなわち、判定部170は、特定した遷移可能領域に関連付けられた、離散空間における許容範囲に、離散パラメータの変化量が含まれるか判定する。特定した遷移可能領域に関連付けられた、離散空間における許容範囲に、離散パラメータの変化量が含まれない場合、判定部170は、取得部110が取得したデータフレームが、不正なデータフレームであると判定してよい。
特定した遷移可能領域に関連付けられた、離散空間における許容範囲に、離散パラメータの変化量が含まれる場合、判定部170は、取得部110が取得したデータフレームが、不正なデータフレームではないと判定してよい。
例えば図14の点P2の座標が離散パラメータの値を表し、図14の連続値空間に描かれている矩形に含まれる点が連続パラメータの値を表す場合、連続パラメータの値の変化量の許容範囲は、図14に示す楕円の内部である。この場合、判定部170は、連続パラメータの値の変化量を表すベクトルの終点が楕円の範囲に含まれている場合、データフレームが不正なデータフレームではないと判定してよい。判定部170は、連続パラメータの値の変化量を表すベクトルの終点が楕円の範囲に含まれていない場合、データフレームが不正なデータフレームであると判定してよい。
例えば、図15の点P0の座標が離散パラメータの値を表し、図15の連続値空間に描かれている範囲A1に含まれる点が連続パラメータの値を表す場合、離散パラメータの値の変化量の許容範囲は、P0からP1への座標の変化、及び、P0からP2への座標の変化によって表される。この場合、判定部170は、離散パラメータの値の変化量が、P0からP1への座標の変化によって表される値、及び、P0からP2への座標の変化によって表される値のいずれかであれば、データフレームが不正なデータフレームではないと判定してよい。判定部170は、それ以外の場合、データフレームが不正なデータフレームであると判定してよい。
<<動作>>
本実施形態の監視装置100の動作は、図3から図4に示す、第1の実施形態の監視装置100の動作と、以下で説明する点を除いて、同じである。
本実施形態の監視装置100の動作は、図3から図4に示す、第1の実施形態の監視装置100の動作と、以下で説明する点を除いて、同じである。
図3に示すステップS105において、生成部130が更新する変化の分布が、第1の実施形態の変化の分布と異なる。本実施形態の変化の分布は、上述のように、離散空間における点の各々について、連続値空間における各点の変化の分布と、離散空間における点からの変化毎の、連続値空間における変化前の点の分布と、を含む。
図3に示すステップS108において、本実施形態の決定部は、変化の許容範囲として、上述の、連続値空間における許容範囲と、離散空間における許容範囲とを決定する。
図13は、本発明の第4の実施形態に係る監視装置の、検知フェーズにおける動作の例を表す第2のフローチャートである。
図4のステップS114における検出処理において、本実施形態の監視装置100は、図13に示す動作を行う。
図5と図13とを比較すると、本実施形態の監視装置100は、ステップS122からステップS124の動作の代わりに、ステップS122AからステップS124Aの動作と、ステップS122BからステップS124Bの動作とを行う。本実施形態の監視装置100の他のステップの動作は、第1の実施形態の監視装置100の、同じ番号が付与されているステップの動作と同じである。
ステップS122Aにおいて、判定部170は、変化前の車両の状態に応じた、連続値空間における許容範囲を特定する。本実施形態では、変化前の車両の状態は、変化前の、離散パラメータの値の組み合わせと、連続パラメータの値の組み合わせとによって表される。
ステップS122Aにおいて、判定部170は、連続値空間において、車両の状態の変化が許容範囲に含まれるか判定する。言い換えると、判定部170は、連続パラメータの値の変化が、連続値空間における許容範囲に含まれるか判定する。
連続値空間において、車両の状態が許容範囲に含まれない場合(ステップS124AにおいてNO)、監視装置100は、次に、ステップS125の動作を行う。連続値空間において、車両の状態が許容範囲に含まれる場合(ステップS124AにおいてYES)、監視装置100は、次に、ステップS122Bの動作を行う。
ステップS122Bにおいて、判定部170は、変化前の車両の状態に応じた、離散空間における許容範囲を特定する。言い換えると、判定部170は、変化前の離散パラメータの値の組み合わせに応じた遷移可能空間のうち、変化前の連続パラメータの値が含まれる遷移可能空間を特定する。そして、判定部170は、特定された遷移可能空間に関連付けられている、離散空間における許容範囲を特定する。
ステップS123Bにおいて、判定部170は、離散空間において、車両の状態の変化が許容範囲に含まれるか判定する。言い換えると、判定部170は、車両の状態を表すパラメータのうち離散パラメータの値の組み合わせの変化が、離散空間における許容範囲に含まれるか判定する。
離散空間において、車両の状態の変化が許容範囲に含まれる場合(ステップS124BにおいてYES)、監視装置100は、次に、ステップS126の動作を行う。離散空間において、車両の状態の変化が許容範囲に含まれない場合(ステップS124BにおいてNO)、監視装置100は、次に、ステップS125の動作を行う。
監視装置100は、ステップS122BからステップS124Bの動作の後に、ステップS122AからステップS124Aの動作を行ってもよい。その場合、離散空間において、車両の状態の変化が許容範囲に含まれる場合(ステップS124BにおいてYES)、監視装置100は、次に、ステップS122Aの動作を行う。離散空間において、車両の状態の変化が許容範囲に含まれない場合(ステップS124BにおいてNO)、監視装置100は、次に、ステップS125の動作を行う。また、連続値空間において、車両の状態が許容範囲に含まれない場合(ステップS124AにおいてNO)、監視装置100は、次に、ステップS125の動作を行う。連続値空間において、車両の状態が許容範囲に含まれる場合(ステップS124AにおいてYES)、監視装置100は、次に、ステップS126の動作を行う。
<<効果>>
本実施形態には、第1の実施形態と同じ効果がある。その理由は、第1の実施形態の効果が生じる理由と同じである。
本実施形態には、第1の実施形態と同じ効果がある。その理由は、第1の実施形態の効果が生じる理由と同じである。
<<第1から第5の変形例>>
本実施形態は、第1の実施形態の第1から第5の変形例のそれぞれと同様の変形が可能である。
本実施形態は、第1の実施形態の第1から第5の変形例のそれぞれと同様の変形が可能である。
<<第6の変形例>>
本変形例では、決定部150は、連続値空間における許容範囲のみを決定してよい。本変形例では、許容範囲の情報は、連続値空間における許容範囲のみを含んでいてよい。本変形例では、判定部170は、車両の状態の変化のうち、離散パラメータの値の変化が、離散空間における許容範囲に含まれているか否かを判定しない。判定部170は、車両の状態の変化のうち、連続パラメータの値の変化が、連続値空間における許容範囲に含まれているか否かを判定してよい。車両の状態の変化のうち、連続パラメータの値の変化が、連続値空間における許容範囲に含まれていれば、判定部170は、取得部110が取得したデータフレームが、不正なデータフレームではないと判定してよい。
本変形例では、決定部150は、連続値空間における許容範囲のみを決定してよい。本変形例では、許容範囲の情報は、連続値空間における許容範囲のみを含んでいてよい。本変形例では、判定部170は、車両の状態の変化のうち、離散パラメータの値の変化が、離散空間における許容範囲に含まれているか否かを判定しない。判定部170は、車両の状態の変化のうち、連続パラメータの値の変化が、連続値空間における許容範囲に含まれているか否かを判定してよい。車両の状態の変化のうち、連続パラメータの値の変化が、連続値空間における許容範囲に含まれていれば、判定部170は、取得部110が取得したデータフレームが、不正なデータフレームではないと判定してよい。
<<第7の変形例>>
本変形例では、決定部150は、離散空間における許容範囲のみを決定してよい。本変形例では、許容範囲の情報は、離散空間における許容範囲のみを含んでいてよい。本変形例では、判定部170は、車両の状態の変化のうち、連続パラメータの値の変化が、連続値空間における許容範囲に含まれているか否かを判定しない。判定部170は、車両の状態の変化のうち、離散パラメータの値の変化が、離散空間における許容範囲に含まれているか否かを判定してよい。車両の状態の変化のうち、離散パラメータの値の変化が、離散空間における許容範囲に含まれていれば、判定部170は、取得部110が取得したデータフレームが、不正なデータフレームではないと判定してよい。
本変形例では、決定部150は、離散空間における許容範囲のみを決定してよい。本変形例では、許容範囲の情報は、離散空間における許容範囲のみを含んでいてよい。本変形例では、判定部170は、車両の状態の変化のうち、連続パラメータの値の変化が、連続値空間における許容範囲に含まれているか否かを判定しない。判定部170は、車両の状態の変化のうち、離散パラメータの値の変化が、離散空間における許容範囲に含まれているか否かを判定してよい。車両の状態の変化のうち、離散パラメータの値の変化が、離散空間における許容範囲に含まれていれば、判定部170は、取得部110が取得したデータフレームが、不正なデータフレームではないと判定してよい。
第4の実施形態と、第4の実施形態の第1から第6までの変形例において、連続パラメータは、第1のパラメータとも表記されてよい。また、離散パラメータは、第2のパラメータとも表記されてよい。
本変形例では、離散パラメータは、第1のパラメータとも表記されてよい。また、連続パラメータは、第2のパラメータとも表記されてよい。
<他の実施形態>
上述の実施形態に係る監視装置及び学習装置の各々は、記憶媒体から読み出されたプログラムがロードされたメモリと、そのプログラムを実行するプロセッサとを含むコンピュータによって実現することができる。上述の実施形態に係る監視装置及び学習装置の各々は、専用のハードウェアによって実現することもできる。上述の実施形態に係る監視装置及び学習装置の各々は、前述のコンピュータと専用のハードウェアとの組み合わせによって実現することもできる。
上述の実施形態に係る監視装置及び学習装置の各々は、記憶媒体から読み出されたプログラムがロードされたメモリと、そのプログラムを実行するプロセッサとを含むコンピュータによって実現することができる。上述の実施形態に係る監視装置及び学習装置の各々は、専用のハードウェアによって実現することもできる。上述の実施形態に係る監視装置及び学習装置の各々は、前述のコンピュータと専用のハードウェアとの組み合わせによって実現することもできる。
言い換えると、上述の実施形態に係る監視装置及び学習装置の各々は、回路構成(circuitry)などのハードウェアによって実現することができる。回路構成は、例えば、コンピュータに含まれるプロセッサとメモリであってもよい。その場合、プログラムが、メモリにロードされていればよい。そのプログラムは、プロセッサが実行することが可能であり、コンピュータを上述の実施形態の監視装置及び学習装置のいずれか1つとして動作させればよい。回路構成は、例えば、通信可能に接続された複数のコンピュータであってもよい。回路構成は、例えば、回路(circuit)であってもよい。回路構成は、例えば、通信可能に接続された複数の回路であってもよい。回路構成は、通信可能に接続された、1台以上のコンピュータと、1個以上の回路との組み合わせであってもよい。
図12は、上述の実施形態に係る監視装置及び学習装置の各々を実現することができる、コンピュータ1000のハードウェア構成の一例を表す図である。図12を参照すると、コンピュータ1000は、プロセッサ1001と、メモリ1002と、記憶装置1003と、I/O(Input/Output)インタフェース1004とを含む。また、コンピュータ1000は、記憶媒体1005にアクセスすることができる。メモリ1002と記憶装置1003は、例えば、RAM(Random Access Memory)、ハードディスクなどの記憶装置である。記憶媒体1005は、例えば、RAM、ハードディスクなどの記憶装置、ROM(Read Only Memory)、可搬記憶媒体である。記憶装置1003が記憶媒体1005であってもよい。プロセッサ1001は、メモリ1002と、記憶装置1003に対して、データやプログラムの読み出しと書き込みを行うことができる。プロセッサ1001は、I/Oインタフェース1004を介して、例えば、バス600及びコールセンター端末700にアクセスすることができる。プロセッサ1001は、記憶媒体1005にアクセスすることができる。
記憶媒体1005には、コンピュータ1000を、上述のいずれかの実施形態に係る監視装置として動作させるプログラムが格納されている。プロセッサ1001は、記憶媒体1005に格納されているプログラムを、メモリ1002にロードする。そして、プロセッサ1001が、メモリ1002にロードされたプログラムを実行することにより、コンピュータ1000は、上述の監視装置として動作する。
記憶媒体1005には、コンピュータ1000を、上述のいずれかの実施形態に係る学習装置として動作させるプログラムが格納されている。プロセッサ1001は、記憶媒体1005に格納されているプログラムを、メモリ1002にロードする。そして、プロセッサ1001が、メモリ1002にロードされたプログラムを実行することにより、コンピュータ1000は、上述の学習装置として動作する。
取得部110、算出部120、生成部130、決定部150、ルール出力部280、ルール取得部190、判定部170、及び、出力部180は、例えば、メモリ1002にロードされた専用のプログラムを実行するプロセッサ1001により実現することができる。また、分布記憶部140、及び、ルール記憶部160は、コンピュータ1000が含むメモリ1002やハードディスク装置等の記憶装置1003により実現することができる。取得部110、算出部120、生成部130、決定部150、ルール出力部280、ルール取得部190、判定部170、出力部180、分布記憶部140、及び、ルール記憶部160の一部又は全部を、各部の機能を実現する専用の回路によって実現することもできる。
<付記>
また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出手段と、
前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する判定手段と、
を備える監視装置。
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出手段と、
前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する判定手段と、
を備える監視装置。
(付記2)
前記許容範囲は、前記パラメータの組み合わせによって表される特徴空間において定められ、
前記判定手段は、前記データフレームが値を含む前記パラメータを含む前記組み合わせによって表される前記特徴空間において定まる前記許容範囲に、算出された前記変化が含まれるか否かを判定する
付記1に記載の監視装置。
前記許容範囲は、前記パラメータの組み合わせによって表される特徴空間において定められ、
前記判定手段は、前記データフレームが値を含む前記パラメータを含む前記組み合わせによって表される前記特徴空間において定まる前記許容範囲に、算出された前記変化が含まれるか否かを判定する
付記1に記載の監視装置。
(付記3)
前記判定手段は、前記データフレームが値を含む前記パラメータの少なくともいずれかをそれぞれ含む複数の前記組み合わせによってそれぞれ表される前記特徴空間において定まる、前記許容範囲の各々において、当該組み合わせが含む前記パラメータの値の変化によって表される前記装置の状態の、前記変化が含まれるか否かを判定する
付記2に記載の監視装置。
前記判定手段は、前記データフレームが値を含む前記パラメータの少なくともいずれかをそれぞれ含む複数の前記組み合わせによってそれぞれ表される前記特徴空間において定まる、前記許容範囲の各々において、当該組み合わせが含む前記パラメータの値の変化によって表される前記装置の状態の、前記変化が含まれるか否かを判定する
付記2に記載の監視装置。
(付記4)
前記許容範囲は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲として定められ、
前記判定手段は、前記第1のパラメータの値の変化によって表される前記装置の状態の変化が、前記パラメータの値に応じて定まる前記第1の許容範囲に含まれるか否かを判定する
付記1乃至3のいずれか1項に記載の監視装置。
前記許容範囲は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲として定められ、
前記判定手段は、前記第1のパラメータの値の変化によって表される前記装置の状態の変化が、前記パラメータの値に応じて定まる前記第1の許容範囲に含まれるか否かを判定する
付記1乃至3のいずれか1項に記載の監視装置。
(付記5)
前記第1の許容範囲は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値に応じて定められ、
前記判定手段は、前記第2のパラメータの値の組み合わせと前記第1のパラメータの値とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記4に記載の監視装置。
前記第1の許容範囲は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値に応じて定められ、
前記判定手段は、前記第2のパラメータの値の組み合わせと前記第1のパラメータの値とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記4に記載の監視装置。
(付記6)
前記許容範囲は、前記第1の許容範囲と、前記第2のパラメータの前記許容範囲である第2の許容範囲として定められ、
前記第2の許容範囲は、前記第1のパラメータの値の範囲に定められた領域毎に定められ、
前記第1のパラメータの値の範囲は、前記第2のパラメータの値の組み合わせに毎に定められ、
前記判定手段は、前記第2のパラメータの値の組み合わせによって定まる前記第1の許容範囲に前記第1のパラメータの変化が含まれ、かつ、前記第1のパラメータの値が含まれる前記範囲によって定まる前記第2の許容範囲に前記第2のパラメータの変化が含まれるか否かを判定する
付記5に記載の監視装置。
前記許容範囲は、前記第1の許容範囲と、前記第2のパラメータの前記許容範囲である第2の許容範囲として定められ、
前記第2の許容範囲は、前記第1のパラメータの値の範囲に定められた領域毎に定められ、
前記第1のパラメータの値の範囲は、前記第2のパラメータの値の組み合わせに毎に定められ、
前記判定手段は、前記第2のパラメータの値の組み合わせによって定まる前記第1の許容範囲に前記第1のパラメータの変化が含まれ、かつ、前記第1のパラメータの値が含まれる前記範囲によって定まる前記第2の許容範囲に前記第2のパラメータの変化が含まれるか否かを判定する
付記5に記載の監視装置。
(付記7)
前記第1の許容範囲は、前記パラメータのうち第2のパラメータの値の範囲に定められた領域毎に定められ、
前記第2のパラメータの値の範囲は、前記第1のパラメータの値の組み合わせ毎に定められ、
前記判定手段は、前記第1のパラメータの値の組み合わせと前記第2のパラメータの値が含まれる前記範囲とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記4に記載の監視装置。
前記第1の許容範囲は、前記パラメータのうち第2のパラメータの値の範囲に定められた領域毎に定められ、
前記第2のパラメータの値の範囲は、前記第1のパラメータの値の組み合わせ毎に定められ、
前記判定手段は、前記第1のパラメータの値の組み合わせと前記第2のパラメータの値が含まれる前記範囲とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記4に記載の監視装置。
(付記8)
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成手段と、
生成された前記分布に基づいて、前記許容範囲を決定する決定手段と、
を備える付記1乃至7のいずれか1項に記載の監視装置。
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成手段と、
生成された前記分布に基づいて、前記許容範囲を決定する決定手段と、
を備える付記1乃至7のいずれか1項に記載の監視装置。
(付記9)
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記1乃至8のいずれか1項に記載の監視装置。
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記1乃至8のいずれか1項に記載の監視装置。
(付記10)
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出手段と、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成手段と、
生成された前記分布に基づいて、前記変化の許容範囲を決定する決定手段と、
を備える学習装置。
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出手段と、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成手段と、
生成された前記分布に基づいて、前記変化の許容範囲を決定する決定手段と、
を備える学習装置。
(付記11)
前記決定手段は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲を決定する、
付記10に記載の学習装置。
前記決定手段は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲を決定する、
付記10に記載の学習装置。
(付記12)
前記決定手段は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の前記変化の、前記第1のパラメータの値に応じた前記第1の許容範囲を決定する、
付記11に記載の学習装置。
前記決定手段は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の前記変化の、前記第1のパラメータの値に応じた前記第1の許容範囲を決定する、
付記11に記載の学習装置。
(付記13)
前記決定手段は、さらに、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第1のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第2のパラメータの値の前記変化の前記許容範囲である第2の許容範囲と、を決定する、
付記12に記載の学習装置。
前記決定手段は、さらに、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第1のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第2のパラメータの値の前記変化の前記許容範囲である第2の許容範囲と、を決定する、
付記12に記載の学習装置。
(付記14)
前記決定手段は、前記第1のパラメータの値の組み合わせ毎に、前記パラメータのうちの第2のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第2のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第1の許容範囲とを決定する
付記11に記載の学習装置。
前記決定手段は、前記第1のパラメータの値の組み合わせ毎に、前記パラメータのうちの第2のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第2のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第1の許容範囲とを決定する
付記11に記載の学習装置。
(付記15)
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記10乃至14のいずれか1項に記載の学習装置。
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記10乃至14のいずれか1項に記載の学習装置。
(付記16)
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出し、
前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する、
監視方法。
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出し、
前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する、
監視方法。
(付記17)
前記許容範囲は、前記パラメータの組み合わせによって表される特徴空間において定められ、
前記データフレームが値を含む前記パラメータを含む前記組み合わせによって表される前記特徴空間において定まる前記許容範囲に、算出された前記変化が含まれるか否かを判定する
付記16に記載の監視方法。
前記許容範囲は、前記パラメータの組み合わせによって表される特徴空間において定められ、
前記データフレームが値を含む前記パラメータを含む前記組み合わせによって表される前記特徴空間において定まる前記許容範囲に、算出された前記変化が含まれるか否かを判定する
付記16に記載の監視方法。
(付記18)
前記データフレームが値を含む前記パラメータの少なくともいずれかをそれぞれ含む複数の前記組み合わせによってそれぞれ表される前記特徴空間において定まる、前記許容範囲の各々において、当該組み合わせが含む前記パラメータの値の変化によって表される前記装置の状態の、前記変化が含まれるか否かを判定する
付記17に記載の監視方法。
前記データフレームが値を含む前記パラメータの少なくともいずれかをそれぞれ含む複数の前記組み合わせによってそれぞれ表される前記特徴空間において定まる、前記許容範囲の各々において、当該組み合わせが含む前記パラメータの値の変化によって表される前記装置の状態の、前記変化が含まれるか否かを判定する
付記17に記載の監視方法。
(付記19)
前記許容範囲は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲として定められ、
前記第1のパラメータの値の変化によって表される前記装置の状態の変化が、前記パラメータの値に応じて定まる前記第1の許容範囲に含まれるか否かを判定する
付記16乃至18のいずれか1項に記載の監視方法。
前記許容範囲は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲として定められ、
前記第1のパラメータの値の変化によって表される前記装置の状態の変化が、前記パラメータの値に応じて定まる前記第1の許容範囲に含まれるか否かを判定する
付記16乃至18のいずれか1項に記載の監視方法。
(付記20)
前記第1の許容範囲は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値に応じて定められ、
前記第2のパラメータの値の組み合わせと前記第1のパラメータの値とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記19に記載の監視方法。
前記第1の許容範囲は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値に応じて定められ、
前記第2のパラメータの値の組み合わせと前記第1のパラメータの値とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記19に記載の監視方法。
(付記21)
前記許容範囲は、前記第1の許容範囲と、前記第2のパラメータの前記許容範囲である第2の許容範囲として定められ、
前記第2の許容範囲は、前記第1のパラメータの値の範囲に定められた領域毎に定められ、
前記第1のパラメータの値の範囲は、前記第2のパラメータの値の組み合わせに毎に定められ、
前記第2のパラメータの値の組み合わせによって定まる前記第1の許容範囲に前記第1のパラメータの変化が含まれ、かつ、前記第1のパラメータの値が含まれる前記範囲によって定まる前記第2の許容範囲に前記第2のパラメータの変化が含まれるか否かを判定する
付記20に記載の監視方法。
前記許容範囲は、前記第1の許容範囲と、前記第2のパラメータの前記許容範囲である第2の許容範囲として定められ、
前記第2の許容範囲は、前記第1のパラメータの値の範囲に定められた領域毎に定められ、
前記第1のパラメータの値の範囲は、前記第2のパラメータの値の組み合わせに毎に定められ、
前記第2のパラメータの値の組み合わせによって定まる前記第1の許容範囲に前記第1のパラメータの変化が含まれ、かつ、前記第1のパラメータの値が含まれる前記範囲によって定まる前記第2の許容範囲に前記第2のパラメータの変化が含まれるか否かを判定する
付記20に記載の監視方法。
(付記22)
前記第1の許容範囲は、前記パラメータのうち第2のパラメータの値の範囲に定められた領域毎に定められ、
前記第2のパラメータの値の範囲は、前記第1のパラメータの値の組み合わせ毎に定められ、
前記第1のパラメータの値の組み合わせと前記第2のパラメータの値が含まれる前記範囲とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記19に記載の監視方法。
前記第1の許容範囲は、前記パラメータのうち第2のパラメータの値の範囲に定められた領域毎に定められ、
前記第2のパラメータの値の範囲は、前記第1のパラメータの値の組み合わせ毎に定められ、
前記第1のパラメータの値の組み合わせと前記第2のパラメータの値が含まれる前記範囲とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記19に記載の監視方法。
(付記23)
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成し、
生成された前記分布に基づいて、前記許容範囲を決定する、
付記16乃至22のいずれか1項に記載の監視方法。
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成し、
生成された前記分布に基づいて、前記許容範囲を決定する、
付記16乃至22のいずれか1項に記載の監視方法。
(付記24)
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記16乃至23のいずれか1項に記載の監視方法。
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記16乃至23のいずれか1項に記載の監視方法。
(付記25)
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出し、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成し、
生成された前記分布に基づいて、前記変化の許容範囲を決定する、
学習方法。
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出し、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成し、
生成された前記分布に基づいて、前記変化の許容範囲を決定する、
学習方法。
(付記26)
前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲を決定する、
付記25に記載の学習方法。
前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲を決定する、
付記25に記載の学習方法。
(付記27)
前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の前記変化の、前記第1のパラメータの値に応じた前記第1の許容範囲を決定する、
付記26に記載の学習方法。
前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の前記変化の、前記第1のパラメータの値に応じた前記第1の許容範囲を決定する、
付記26に記載の学習方法。
(付記28)
さらに、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第1のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第2のパラメータの値の前記変化の前記許容範囲である第2の許容範囲と、を決定する、
付記27に記載の学習方法。
さらに、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第1のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第2のパラメータの値の前記変化の前記許容範囲である第2の許容範囲と、を決定する、
付記27に記載の学習方法。
(付記29)
前記第1のパラメータの値の組み合わせ毎に、前記パラメータのうちの第2のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第2のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第1の許容範囲とを決定する
付記26に記載の学習方法。
前記第1のパラメータの値の組み合わせ毎に、前記パラメータのうちの第2のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第2のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第1の許容範囲とを決定する
付記26に記載の学習方法。
(付記30)
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記25乃至29のいずれか1項に記載の学習方法。
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記25乃至29のいずれか1項に記載の学習方法。
(付記31)
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出処理と、
前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する判定処理と、
をコンピュータに実行させるプログラムを記憶する記憶媒体。
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出処理と、
前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する判定処理と、
をコンピュータに実行させるプログラムを記憶する記憶媒体。
(付記32)
前記許容範囲は、前記パラメータの組み合わせによって表される特徴空間において定められ、
前記判定処理は、前記データフレームが値を含む前記パラメータを含む前記組み合わせによって表される前記特徴空間において定まる前記許容範囲に、算出された前記変化が含まれるか否かを判定する
付記31に記載の記憶媒体。
前記許容範囲は、前記パラメータの組み合わせによって表される特徴空間において定められ、
前記判定処理は、前記データフレームが値を含む前記パラメータを含む前記組み合わせによって表される前記特徴空間において定まる前記許容範囲に、算出された前記変化が含まれるか否かを判定する
付記31に記載の記憶媒体。
(付記33)
前記判定処理は、前記データフレームが値を含む前記パラメータの少なくともいずれかをそれぞれ含む複数の前記組み合わせによってそれぞれ表される前記特徴空間において定まる、前記許容範囲の各々において、当該組み合わせが含む前記パラメータの値の変化によって表される前記装置の状態の、前記変化が含まれるか否かを判定する
付記32に記載の記憶媒体。
前記判定処理は、前記データフレームが値を含む前記パラメータの少なくともいずれかをそれぞれ含む複数の前記組み合わせによってそれぞれ表される前記特徴空間において定まる、前記許容範囲の各々において、当該組み合わせが含む前記パラメータの値の変化によって表される前記装置の状態の、前記変化が含まれるか否かを判定する
付記32に記載の記憶媒体。
(付記34)
前記許容範囲は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲として定められ、
前記判定処理は、前記第1のパラメータの値の変化によって表される前記装置の状態の変化が、前記パラメータの値に応じて定まる前記第1の許容範囲に含まれるか否かを判定する
付記31乃至33のいずれか1項に記載の記憶媒体。
前記許容範囲は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲として定められ、
前記判定処理は、前記第1のパラメータの値の変化によって表される前記装置の状態の変化が、前記パラメータの値に応じて定まる前記第1の許容範囲に含まれるか否かを判定する
付記31乃至33のいずれか1項に記載の記憶媒体。
(付記35)
前記第1の許容範囲は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値に応じて定められ、
前記判定処理は、前記第2のパラメータの値の組み合わせと前記第1のパラメータの値とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記34に記載の記憶媒体。
前記第1の許容範囲は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値に応じて定められ、
前記判定処理は、前記第2のパラメータの値の組み合わせと前記第1のパラメータの値とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記34に記載の記憶媒体。
(付記36)
前記許容範囲は、前記第1の許容範囲と、前記第2のパラメータの前記許容範囲である第2の許容範囲として定められ、
前記第2の許容範囲は、前記第1のパラメータの値の範囲に定められた領域毎に定められ、
前記第1のパラメータの値の範囲は、前記第2のパラメータの値の組み合わせに毎に定められ、
前記判定処理は、前記第2のパラメータの値の組み合わせによって定まる前記第1の許容範囲に前記第1のパラメータの変化が含まれ、かつ、前記第1のパラメータの値が含まれる前記範囲によって定まる前記第2の許容範囲に前記第2のパラメータの変化が含まれるか否かを判定する
付記35に記載の記憶媒体。
前記許容範囲は、前記第1の許容範囲と、前記第2のパラメータの前記許容範囲である第2の許容範囲として定められ、
前記第2の許容範囲は、前記第1のパラメータの値の範囲に定められた領域毎に定められ、
前記第1のパラメータの値の範囲は、前記第2のパラメータの値の組み合わせに毎に定められ、
前記判定処理は、前記第2のパラメータの値の組み合わせによって定まる前記第1の許容範囲に前記第1のパラメータの変化が含まれ、かつ、前記第1のパラメータの値が含まれる前記範囲によって定まる前記第2の許容範囲に前記第2のパラメータの変化が含まれるか否かを判定する
付記35に記載の記憶媒体。
(付記37)
前記第1の許容範囲は、前記パラメータのうち第2のパラメータの値の範囲に定められた領域毎に定められ、
前記第2のパラメータの値の範囲は、前記第1のパラメータの値の組み合わせ毎に定められ、
前記判定処理は、前記第1のパラメータの値の組み合わせと前記第2のパラメータの値が含まれる前記範囲とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記34に記載の記憶媒体。
前記第1の許容範囲は、前記パラメータのうち第2のパラメータの値の範囲に定められた領域毎に定められ、
前記第2のパラメータの値の範囲は、前記第1のパラメータの値の組み合わせ毎に定められ、
前記判定処理は、前記第1のパラメータの値の組み合わせと前記第2のパラメータの値が含まれる前記範囲とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
付記34に記載の記憶媒体。
(付記38)
前記プログラムは、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成処理と、
生成された前記分布に基づいて、前記許容範囲を決定する決定処理と、
をコンピュータに実行させる付記31乃至37のいずれか1項に記載の記憶媒体。
前記プログラムは、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成処理と、
生成された前記分布に基づいて、前記許容範囲を決定する決定処理と、
をコンピュータに実行させる付記31乃至37のいずれか1項に記載の記憶媒体。
(付記39)
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記31乃至38のいずれか1項に記載の記憶媒体。
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記31乃至38のいずれか1項に記載の記憶媒体。
(付記40)
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出処理と、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成処理と、
生成された前記分布に基づいて、前記変化の許容範囲を決定する決定処理と、
をコンピュータに実行させるプログラムを記憶する記憶媒体。
受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出処理と、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成処理と、
生成された前記分布に基づいて、前記変化の許容範囲を決定する決定処理と、
をコンピュータに実行させるプログラムを記憶する記憶媒体。
(付記41)
前記決定処理は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲を決定する、
付記40に記載の記憶媒体。
前記決定処理は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲を決定する、
付記40に記載の記憶媒体。
(付記42)
前記決定処理は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の前記変化の、前記第1のパラメータの値に応じた前記第1の許容範囲を決定する、
付記41に記載の記憶媒体。
前記決定処理は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の前記変化の、前記第1のパラメータの値に応じた前記第1の許容範囲を決定する、
付記41に記載の記憶媒体。
(付記43)
前記決定処理は、さらに、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第1のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第2のパラメータの値の前記変化の前記許容範囲である第2の許容範囲と、を決定する、
付記42に記載の記憶媒体。
前記決定処理は、さらに、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第1のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第2のパラメータの値の前記変化の前記許容範囲である第2の許容範囲と、を決定する、
付記42に記載の記憶媒体。
(付記44)
前記決定処理は、前記第1のパラメータの値の組み合わせ毎に、前記パラメータのうちの第2のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第2のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第1の許容範囲とを決定する
付記41に記載の記憶媒体。
前記決定処理は、前記第1のパラメータの値の組み合わせ毎に、前記パラメータのうちの第2のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第2のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第1の許容範囲とを決定する
付記41に記載の記憶媒体。
(付記45)
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記40乃至44のいずれか1項に記載の記憶媒体。
前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
付記40乃至44のいずれか1項に記載の記憶媒体。
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2018年5月8日に出願された国際出願PCT/JP2018/017735を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 車載ネットワーク
11 監視システム
12 監視システム
100 監視装置
101 監視装置
102 監視装置
103 監視装置
110 取得部
120 算出部
130 生成部
140 分布記憶部
150 決定部
160 ルール記憶部
170 判定部
180 出力部
190 ルール取得部
201 学習装置
202 学習装置
203 学習装置
280 ルール出力部
302 ルール記憶装置
500 ECU
501 不正ECU
600 バス
700 コールセンター端末
1000 コンピュータ
1001 プロセッサ
1002 メモリ
1003 記憶装置
1004 I/Oインタフェース
1005 記憶媒体
11 監視システム
12 監視システム
100 監視装置
101 監視装置
102 監視装置
103 監視装置
110 取得部
120 算出部
130 生成部
140 分布記憶部
150 決定部
160 ルール記憶部
170 判定部
180 出力部
190 ルール取得部
201 学習装置
202 学習装置
203 学習装置
280 ルール出力部
302 ルール記憶装置
500 ECU
501 不正ECU
600 バス
700 コールセンター端末
1000 コンピュータ
1001 プロセッサ
1002 メモリ
1003 記憶装置
1004 I/Oインタフェース
1005 記憶媒体
Claims (45)
- 受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出手段と、
前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する判定手段と、
を備える監視装置。 - 前記許容範囲は、前記パラメータの組み合わせによって表される特徴空間において定められ、
前記判定手段は、前記データフレームが値を含む前記パラメータを含む前記組み合わせによって表される前記特徴空間において定まる前記許容範囲に、算出された前記変化が含まれるか否かを判定する
請求項1に記載の監視装置。 - 前記判定手段は、前記データフレームが値を含む前記パラメータの少なくともいずれかをそれぞれ含む複数の前記組み合わせによってそれぞれ表される前記特徴空間において定まる、前記許容範囲の各々において、当該組み合わせが含む前記パラメータの値の変化によって表される前記装置の状態の、前記変化が含まれるか否かを判定する
請求項2に記載の監視装置。 - 前記許容範囲は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲として定められ、
前記判定手段は、前記第1のパラメータの値の変化によって表される前記装置の状態の変化が、前記パラメータの値に応じて定まる前記第1の許容範囲に含まれるか否かを判定する
請求項1乃至3のいずれか1項に記載の監視装置。 - 前記第1の許容範囲は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値に応じて定められ、
前記判定手段は、前記第2のパラメータの値の組み合わせと前記第1のパラメータの値とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
請求項4に記載の監視装置。 - 前記許容範囲は、前記第1の許容範囲と、前記第2のパラメータの前記許容範囲である第2の許容範囲として定められ、
前記第2の許容範囲は、前記第1のパラメータの値の範囲に定められた領域毎に定められ、
前記第1のパラメータの値の範囲は、前記第2のパラメータの値の組み合わせに毎に定められ、
前記判定手段は、前記第2のパラメータの値の組み合わせによって定まる前記第1の許容範囲に前記第1のパラメータの変化が含まれ、かつ、前記第1のパラメータの値が含まれる前記範囲によって定まる前記第2の許容範囲に前記第2のパラメータの変化が含まれるか否かを判定する
請求項5に記載の監視装置。 - 前記第1の許容範囲は、前記パラメータのうち第2のパラメータの値の範囲に定められた領域毎に定められ、
前記第2のパラメータの値の範囲は、前記第1のパラメータの値の組み合わせ毎に定められ、
前記判定手段は、前記第1のパラメータの値の組み合わせと前記第2のパラメータの値が含まれる前記範囲とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
請求項4に記載の監視装置。 - 前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成手段と、
生成された前記分布に基づいて、前記許容範囲を決定する決定手段と、
を備える請求項1乃至7のいずれか1項に記載の監視装置。 - 前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
請求項1乃至8のいずれか1項に記載の監視装置。 - 受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出手段と、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成手段と、
生成された前記分布に基づいて、前記変化の許容範囲を決定する決定手段と、
を備える学習装置。 - 前記決定手段は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲を決定する、
請求項10に記載の学習装置。 - 前記決定手段は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の前記変化の、前記第1のパラメータの値に応じた前記第1の許容範囲を決定する、
請求項11に記載の学習装置。 - 前記決定手段は、さらに、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第1のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第2のパラメータの値の前記変化の前記許容範囲である第2の許容範囲と、を決定する、
請求項12に記載の学習装置。 - 前記決定手段は、前記第1のパラメータの値の組み合わせ毎に、前記パラメータのうちの第2のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第2のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第1の許容範囲とを決定する
請求項11に記載の学習装置。 - 前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
請求項10乃至14のいずれか1項に記載の学習装置。 - 受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出し、
前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する、
監視方法。 - 前記許容範囲は、前記パラメータの組み合わせによって表される特徴空間において定められ、
前記データフレームが値を含む前記パラメータを含む前記組み合わせによって表される前記特徴空間において定まる前記許容範囲に、算出された前記変化が含まれるか否かを判定する
請求項16に記載の監視方法。 - 前記データフレームが値を含む前記パラメータの少なくともいずれかをそれぞれ含む複数の前記組み合わせによってそれぞれ表される前記特徴空間において定まる、前記許容範囲の各々において、当該組み合わせが含む前記パラメータの値の変化によって表される前記装置の状態の、前記変化が含まれるか否かを判定する
請求項17に記載の監視方法。 - 前記許容範囲は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲として定められ、
前記第1のパラメータの値の変化によって表される前記装置の状態の変化が、前記パラメータの値に応じて定まる前記第1の許容範囲に含まれるか否かを判定する
請求項16乃至18のいずれか1項に記載の監視方法。 - 前記第1の許容範囲は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値に応じて定められ、
前記第2のパラメータの値の組み合わせと前記第1のパラメータの値とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
請求項19に記載の監視方法。 - 前記許容範囲は、前記第1の許容範囲と、前記第2のパラメータの前記許容範囲である第2の許容範囲として定められ、
前記第2の許容範囲は、前記第1のパラメータの値の範囲に定められた領域毎に定められ、
前記第1のパラメータの値の範囲は、前記第2のパラメータの値の組み合わせに毎に定められ、
前記第2のパラメータの値の組み合わせによって定まる前記第1の許容範囲に前記第1のパラメータの変化が含まれ、かつ、前記第1のパラメータの値が含まれる前記範囲によって定まる前記第2の許容範囲に前記第2のパラメータの変化が含まれるか否かを判定する
請求項20に記載の監視方法。 - 前記第1の許容範囲は、前記パラメータのうち第2のパラメータの値の範囲に定められた領域毎に定められ、
前記第2のパラメータの値の範囲は、前記第1のパラメータの値の組み合わせ毎に定められ、
前記第1のパラメータの値の組み合わせと前記第2のパラメータの値が含まれる前記範囲とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
請求項19に記載の監視方法。 - 前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成し、
生成された前記分布に基づいて、前記許容範囲を決定する、
請求項16乃至22のいずれか1項に記載の監視方法。 - 前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
請求項16乃至23のいずれか1項に記載の監視方法。 - 受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出し、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成し、
生成された前記分布に基づいて、前記変化の許容範囲を決定する、
学習方法。 - 前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲を決定する、
請求項25に記載の学習方法。 - 前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の前記変化の、前記第1のパラメータの値に応じた前記第1の許容範囲を決定する、
請求項26に記載の学習方法。 - さらに、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第1のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第2のパラメータの値の前記変化の前記許容範囲である第2の許容範囲と、を決定する、
請求項27に記載の学習方法。 - 前記第1のパラメータの値の組み合わせ毎に、前記パラメータのうちの第2のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第2のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第1の許容範囲とを決定する
請求項26に記載の学習方法。 - 前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
請求項25乃至29のいずれか1項に記載の学習方法。 - 受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出処理と、
前記変化の前の前記装置の状態に応じて定まる許容範囲に、前記変化が含まれるか否かを判定する判定処理と、
をコンピュータに実行させるプログラムを記憶する記憶媒体。 - 前記許容範囲は、前記パラメータの組み合わせによって表される特徴空間において定められ、
前記判定処理は、前記データフレームが値を含む前記パラメータを含む前記組み合わせによって表される前記特徴空間において定まる前記許容範囲に、算出された前記変化が含まれるか否かを判定する
請求項31に記載の記憶媒体。 - 前記判定処理は、前記データフレームが値を含む前記パラメータの少なくともいずれかをそれぞれ含む複数の前記組み合わせによってそれぞれ表される前記特徴空間において定まる、前記許容範囲の各々において、当該組み合わせが含む前記パラメータの値の変化によって表される前記装置の状態の、前記変化が含まれるか否かを判定する
請求項32に記載の記憶媒体。 - 前記許容範囲は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲として定められ、
前記判定処理は、前記第1のパラメータの値の変化によって表される前記装置の状態の変化が、前記パラメータの値に応じて定まる前記第1の許容範囲に含まれるか否かを判定する
請求項31乃至33のいずれか1項に記載の記憶媒体。 - 前記第1の許容範囲は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値に応じて定められ、
前記判定処理は、前記第2のパラメータの値の組み合わせと前記第1のパラメータの値とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
請求項34に記載の記憶媒体。 - 前記許容範囲は、前記第1の許容範囲と、前記第2のパラメータの前記許容範囲である第2の許容範囲として定められ、
前記第2の許容範囲は、前記第1のパラメータの値の範囲に定められた領域毎に定められ、
前記第1のパラメータの値の範囲は、前記第2のパラメータの値の組み合わせに毎に定められ、
前記判定処理は、前記第2のパラメータの値の組み合わせによって定まる前記第1の許容範囲に前記第1のパラメータの変化が含まれ、かつ、前記第1のパラメータの値が含まれる前記範囲によって定まる前記第2の許容範囲に前記第2のパラメータの変化が含まれるか否かを判定する
請求項35に記載の記憶媒体。 - 前記第1の許容範囲は、前記パラメータのうち第2のパラメータの値の範囲に定められた領域毎に定められ、
前記第2のパラメータの値の範囲は、前記第1のパラメータの値の組み合わせ毎に定められ、
前記判定処理は、前記第1のパラメータの値の組み合わせと前記第2のパラメータの値が含まれる前記範囲とによって定まる前記第1の許容範囲に、前記第1のパラメータの変化が含まれるか否かを判定する
請求項34に記載の記憶媒体。 - 前記プログラムは、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成処理と、
生成された前記分布に基づいて、前記許容範囲を決定する決定処理と、
をコンピュータに実行させる請求項31乃至37のいずれか1項に記載の記憶媒体。 - 前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
請求項31乃至38のいずれか1項に記載の記憶媒体。 - 受信したデータフレームが含み、装置の状態を表すパラメータの値に基づいて、前記装置の状態の変化を算出する算出処理と、
前記変化に基づいて、前記変化の前の前記装置の状態に応じた前記変化の分布を生成する生成処理と、
生成された前記分布に基づいて、前記変化の許容範囲を決定する決定処理と、
をコンピュータに実行させるプログラムを記憶する記憶媒体。 - 前記決定処理は、前記パラメータのうちの第1のパラメータの前記許容範囲である第1の許容範囲を決定する、
請求項40に記載の記憶媒体。 - 前記決定処理は、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の前記変化の、前記第1のパラメータの値に応じた前記第1の許容範囲を決定する、
請求項41に記載の記憶媒体。 - 前記決定処理は、さらに、前記パラメータのうちの第2のパラメータの値の組み合わせ毎に、前記第1のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第1のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第2のパラメータの値の前記変化の前記許容範囲である第2の許容範囲と、を決定する、
請求項42に記載の記憶媒体。 - 前記決定処理は、前記第1のパラメータの値の組み合わせ毎に、前記パラメータのうちの第2のパラメータの値の範囲を決定し、決定された当該範囲において、複数の領域と、前記第2のパラメータの値が当該複数の領域の各々に含まれる場合の、前記第1の許容範囲とを決定する
請求項41に記載の記憶媒体。 - 前記装置は車両であり、
前記データフレームは、車両に搭載され前記車両の状態の情報を出力する情報処理装置によって出力され、前記車両の情報を示す
請求項40乃至44のいずれか1項に記載の記憶媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/052,957 US11682217B2 (en) | 2018-05-08 | 2019-05-07 | Surveillance device, learning device, surveillance method and storage medium |
JP2020518290A JP7156372B2 (ja) | 2018-05-08 | 2019-05-07 | 監視装置、学習装置、監視方法、学習方法及びプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2018/017735 | 2018-05-08 | ||
PCT/JP2018/017735 WO2019215807A1 (ja) | 2018-05-08 | 2018-05-08 | 監視装置、学習装置、監視方法、学習方法及び記憶媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019216295A1 true WO2019216295A1 (ja) | 2019-11-14 |
Family
ID=68466718
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/017735 WO2019215807A1 (ja) | 2018-05-08 | 2018-05-08 | 監視装置、学習装置、監視方法、学習方法及び記憶媒体 |
PCT/JP2019/018202 WO2019216295A1 (ja) | 2018-05-08 | 2019-05-07 | 監視装置、学習装置、監視方法、学習方法及び記憶媒体 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/017735 WO2019215807A1 (ja) | 2018-05-08 | 2018-05-08 | 監視装置、学習装置、監視方法、学習方法及び記憶媒体 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11682217B2 (ja) |
JP (1) | JP7156372B2 (ja) |
WO (2) | WO2019215807A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111832496B (zh) * | 2020-07-17 | 2023-11-03 | 南京康尼机电股份有限公司 | 一种轨道车门开关状态判断方法、装置及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004502932A (ja) * | 2000-07-05 | 2004-01-29 | ロールス・ロイス・ピーエルシー | 動力装置の状態監視 |
JP2011075523A (ja) * | 2009-10-02 | 2011-04-14 | Toyota Central R&D Labs Inc | 正常空間構築支援装置、正常空間構築支援方法、プログラム、および異常監視システム |
WO2016143072A1 (ja) * | 2015-03-10 | 2016-09-15 | 三菱電機株式会社 | プログラマブルロジックコントローラ |
WO2017119027A1 (ja) * | 2016-01-08 | 2017-07-13 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 不正検知方法、監視電子制御ユニット及び車載ネットワークシステム |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4847594A (en) * | 1988-03-28 | 1989-07-11 | Transducer Research, Inc. | Sensor for detecting the exhaustion of an adsorbent bed |
JP2002189556A (ja) | 2000-12-22 | 2002-07-05 | Alps Electric Co Ltd | 手動入力装置及びこれを用いた車載機器制御装置 |
US20030233366A1 (en) * | 2002-06-17 | 2003-12-18 | Aspetuck Systems Inc. | Database monitoring system with formatted report information delivery |
EP1716715A1 (en) * | 2004-02-11 | 2006-11-02 | Nokia Corporation | Scheduling with hidden rate request |
JP4483720B2 (ja) * | 2005-06-23 | 2010-06-16 | 株式会社デンソー | 電子制御装置 |
US7766840B2 (en) * | 2005-12-01 | 2010-08-03 | Cardiac Pacemakers, Inc. | Method and system for heart failure status evaluation based on a disordered breathing index |
WO2009105719A2 (en) * | 2008-02-20 | 2009-08-27 | Icontrol, Inc. | Methods for remote device status determination |
US10002034B2 (en) * | 2008-02-25 | 2018-06-19 | Georgetown University | System and method for detecting, collecting, analyzing, and communicating event-related information |
JP5623227B2 (ja) * | 2010-09-30 | 2014-11-12 | 株式会社トプコン | 測定方法及び測定装置 |
US9113590B2 (en) * | 2012-08-06 | 2015-08-25 | Superior Edge, Inc. | Methods, apparatus, and systems for determining in-season crop status in an agricultural crop and alerting users |
US9767668B2 (en) * | 2013-03-14 | 2017-09-19 | International Business Machines Corporation | Automatic adjustment of metric alert trigger thresholds |
US9594163B2 (en) * | 2013-04-15 | 2017-03-14 | Electronics And Telecommunications Research Institute | Security and surveillance system and method |
US10799149B2 (en) * | 2013-06-19 | 2020-10-13 | Zoll Medical Corporation | Analysis of skin coloration |
US20150084784A1 (en) * | 2013-09-25 | 2015-03-26 | Solutionbee, LLC | Apiary monitoring system |
JP6320200B2 (ja) * | 2014-07-01 | 2018-05-09 | アズビル株式会社 | Pidコントローラおよびデータ収集方法 |
JP6649215B2 (ja) | 2015-12-14 | 2020-02-19 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | セキュリティ装置、ネットワークシステム及び攻撃検知方法 |
JP6378217B2 (ja) * | 2016-01-06 | 2018-08-22 | ファナック株式会社 | 制御盤の密閉監視機能を有する工作機械 |
US10275955B2 (en) * | 2016-03-25 | 2019-04-30 | Qualcomm Incorporated | Methods and systems for utilizing information collected from multiple sensors to protect a vehicle from malware and attacks |
US10695907B2 (en) * | 2017-09-29 | 2020-06-30 | Intel Corporation | Methods and apparatus for monitoring robot health in manufacturing environments |
WO2020157807A1 (ja) * | 2019-01-28 | 2020-08-06 | 三菱電機株式会社 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備 |
US11200435B1 (en) * | 2019-03-11 | 2021-12-14 | Objectvideo Labs, Llc | Property video surveillance from a vehicle |
US11023896B2 (en) * | 2019-06-20 | 2021-06-01 | Coupang, Corp. | Systems and methods for real-time processing of data streams |
KR20210006707A (ko) * | 2019-07-09 | 2021-01-19 | 현대자동차주식회사 | 텔레매틱스 서비스 시스템 및 방법 |
US10717411B1 (en) * | 2019-07-25 | 2020-07-21 | Pony Ai Inc. | Systems and methods of using piezoelectric sensors for theft detection of enclosures |
KR20210096748A (ko) * | 2020-01-29 | 2021-08-06 | 세메스 주식회사 | 공정 제어 장치 및 방법 |
US20220172295A1 (en) * | 2020-12-01 | 2022-06-02 | Metropolitan Property And Casualty Insurance Company | Systems, methods, and devices for aggregating and quantifying telematics data |
US20220318921A1 (en) * | 2021-04-05 | 2022-10-06 | State Farm Mutual Automobile Insurance Company | Systems and methods for modeling telematics data |
-
2018
- 2018-05-08 WO PCT/JP2018/017735 patent/WO2019215807A1/ja active Application Filing
-
2019
- 2019-05-07 US US17/052,957 patent/US11682217B2/en active Active
- 2019-05-07 WO PCT/JP2019/018202 patent/WO2019216295A1/ja active Application Filing
- 2019-05-07 JP JP2020518290A patent/JP7156372B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004502932A (ja) * | 2000-07-05 | 2004-01-29 | ロールス・ロイス・ピーエルシー | 動力装置の状態監視 |
JP2011075523A (ja) * | 2009-10-02 | 2011-04-14 | Toyota Central R&D Labs Inc | 正常空間構築支援装置、正常空間構築支援方法、プログラム、および異常監視システム |
WO2016143072A1 (ja) * | 2015-03-10 | 2016-09-15 | 三菱電機株式会社 | プログラマブルロジックコントローラ |
WO2017119027A1 (ja) * | 2016-01-08 | 2017-07-13 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 不正検知方法、監視電子制御ユニット及び車載ネットワークシステム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019216295A1 (ja) | 2021-05-27 |
US20210248385A1 (en) | 2021-08-12 |
WO2019215807A1 (ja) | 2019-11-14 |
JP7156372B2 (ja) | 2022-10-19 |
US11682217B2 (en) | 2023-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11380197B2 (en) | Data analysis apparatus | |
US11178164B2 (en) | Data analysis apparatus | |
US9457740B2 (en) | Vehicle control system | |
US11595431B2 (en) | Information processing apparatus, moving apparatus, and method | |
JP2020529667A (ja) | モータ車両運転者支援システムに関する方法 | |
WO2020075826A1 (ja) | 機器、データ送信方法及びプログラム | |
GB2548455A (en) | Diagnostic test performance control system and method | |
EP3798840A1 (en) | Information processing device, data analysis method, and program | |
CN112537318A (zh) | 用于远程控制机动车的方法 | |
CN112693407A (zh) | 车辆安全性增强 | |
US11831718B2 (en) | In-vehicle equipment controller and vehicle control system | |
CN110325410B (zh) | 数据分析装置及存储介质 | |
WO2019216295A1 (ja) | 監視装置、学習装置、監視方法、学習方法及び記憶媒体 | |
CN112650977B (zh) | 保护神经网络模型的方法 | |
US11636002B2 (en) | Information processing device and information processing method | |
CN114358241A (zh) | 确定安全关键输出值的方法及相应的系统和程序产品 | |
US20210086790A1 (en) | Method for driving a motor vehicle in at least partially automated fashion | |
CN109291935A (zh) | 用于分析车辆的电子控制系统中的信号链的安全性的方法 | |
KR20180053073A (ko) | 차량의 센서 데이터 모니터링 장치 및 방법 | |
EP3806428B1 (en) | Transformation device, transformation method and storage medium | |
JP6293618B2 (ja) | 車両用制御装置 | |
CN115496109A (zh) | 基于智能汽车传感器的入侵行为分析方法及装置 | |
CN109960627B (zh) | 电子控制设备及其操作方法与计算机可读记录介质 | |
JP2021061516A (ja) | 車両遠隔操作装置 | |
WO2022254520A1 (ja) | インテグリティ検証装置およびインテグリティ検証方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19800172 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020518290 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19800172 Country of ref document: EP Kind code of ref document: A1 |