[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019216008A1 - Optical resin composition and optical lens - Google Patents

Optical resin composition and optical lens Download PDF

Info

Publication number
WO2019216008A1
WO2019216008A1 PCT/JP2019/008203 JP2019008203W WO2019216008A1 WO 2019216008 A1 WO2019216008 A1 WO 2019216008A1 JP 2019008203 W JP2019008203 W JP 2019008203W WO 2019216008 A1 WO2019216008 A1 WO 2019216008A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
carbon atoms
radical polymerizable
optionally substituted
Prior art date
Application number
PCT/JP2019/008203
Other languages
French (fr)
Japanese (ja)
Inventor
悠策 増原
翔平 眞田
山本 勝政
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2020518160A priority Critical patent/JP7382313B2/en
Publication of WO2019216008A1 publication Critical patent/WO2019216008A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to an optical resin composition and an optical lens obtained from the composition.
  • optical materials that constitute an imaging optical system such as a camera are known.
  • organic optical materials such as plastic lenses are lighter and harder to break than inorganic materials, can be processed into various shapes, and have a high degree of freedom in designing materials with desired characteristics. Recently, it is rapidly spreading in various applications.
  • an imaging optical system such as a camera is configured by combining a plurality of types of optical lenses having different optical properties.
  • a technique for correcting chromatic aberration of an optical system by combining optical lenses having different refractive index wavelength dispersion characteristics is employed.
  • the Abbe number ⁇ d is mainly used as an index indicating wavelength dispersion characteristics, and it has been attempted to correct chromatic aberration by combining a material having a high Abbe number and a material having a low Abbe number.
  • Patent Document 1 As a method of correcting chromatic aberration at a higher level with respect to organic optical materials, it has been proposed to use an optical material that exhibits a low Abbe number and a specific partial dispersion ratio ⁇ g, F (Patent Document 1). ).
  • Patent Document 2 describes that an organic-inorganic composite material in which inorganic fine particles are dispersed in a thermoplastic resin having a specific benzotriazole skeleton has a high refractive index and a low Abbe number.
  • Patent Document 3 describes that a high refractive index polymer having a benzotriazole skeleton as an ultraviolet absorbing group is excellent in light resistance and does not cause bleed-out with respect to materials used for paints and the like.
  • an optical material including a compound having a diphenyl sulfide skeleton disclosed in Patent Document 1 has low light resistance and heat resistance, and there is room for improvement in terms of long-term reliability.
  • An object of the present invention is to provide an optical resin composition that can form a resin material for an optical member that exhibits a low Abbe number and a high partial dispersion ratio, and has excellent light resistance, high light transmittance, and high heat resistance. Is to provide.
  • One aspect of the present invention is: (A) a first radical polymerizable component comprising at least one radical polymerizable compound represented by the following formula (a1), (a2) or (a3);
  • the present invention relates to an optical resin composition containing a second radical polymerizable component comprising a radical polymerizable compound different from the first radical polymerizable component.
  • a resin material containing these polymers is formed.
  • the Abbe number ⁇ d and the partial dispersion ratio ⁇ g, F of the resin material are expressed by the following formula: 18 ⁇ ⁇ d ⁇ 25; and ⁇ g, F ⁇ 0.700 Meet.
  • X 1 represents a hydrogen atom, a halogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an optionally substituted alkoxycarbonylalkyl group having 1 to 18 carbon atoms, or ,
  • a group having a (meth) acryloyl group, X 2 and X 3 each independently represent a hydrogen atom, a halogen atom, or an optionally substituted hydrocarbon group having 1 to 18 carbon atoms
  • X 4 represents a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a group having a (meth) acryloyl group
  • X 5 represents a hydrogen atom, a halogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a group having a (meth) acryloyl group
  • At least one of X 1 , X 4 or X 5 is a group having a (meth) acryloy
  • Y 1 and Y 2 each independently represent a hydrogen atom, a hydroxyl group, an optionally substituted alkoxy group having 1 to 8 carbon atoms, or a group having a (meth) acryloyl group
  • Y 3 and Y 4 each independently represent a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a group having a (meth) acryloyl group
  • At least one of Y 1 , Y 2 , Y 3 or Y 4 is a group having a (meth) acryloyl group.
  • Z 1 has an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an optionally substituted alkylcarbonyloxyalkyl group having 1 to 18 carbon atoms, and a substituent.
  • Z 2 , Z 4 , Z 5 , Z 6 , Z 8 and Z 9 are each independently a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a substituent.
  • Z 3 represents a hydrogen atom or a group having a (meth) acryloyl group
  • Z 7 represents a hydrogen atom, a hydroxyl group, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an optionally substituted alkoxy group having 1 to 8 carbon atoms, or (meth) A group having an acryloyl group
  • At least one of Z 3 and Z 7 is a group having a (meth) acryloyl group.
  • the optical resin composition containing the first radical polymerizable component and the second radical polymerizable component exhibits a low Abbe number and a high partial dispersion ratio, and has excellent light resistance, high light transmittance, and A resin material for an optical member having high heat resistance can be formed.
  • Another aspect of the present invention relates to an optical lens made of a resin material including a polymer formed by radical polymerization of a first radical polymerizable component and a second radical polymerizable component in the optical resin composition.
  • the optical lens can exhibit a low Abbe number and a high partial dispersion ratio, and can have excellent light resistance, high light transmittance, and high heat resistance.
  • the optical resin composition according to the present invention can form a resin material for an optical member that exhibits a low Abbe number and a high partial dispersion ratio, and has excellent light resistance, high light transmittance, and high heat resistance.
  • chromatic aberration of the optical system can be efficiently removed.
  • (meth) acryl means “acryl” and “metaacryl”.
  • An optical resin composition includes a first radical polymerizable component composed of at least one radical polymerizable compound represented by formula (a1), (a2), or (a3), and (B) And a second radical polymerizable component made of a radical polymerizable compound different from the first radical polymerizable component.
  • a first radical polymerizable component composed of at least one radical polymerizable compound represented by formula (a1), (a2), or (a3)
  • a second radical polymerizable component made of a radical polymerizable compound different from the first radical polymerizable component.
  • the Abbe number ⁇ d and the partial dispersion ratio ⁇ g, F of the resin material formed from the optical resin composition according to this embodiment satisfy the following expressions. Satisfaction of these equations means that the resin material exhibits a significantly high partial dispersion ratio while exhibiting a relatively low Abbe number. 18 ⁇ ⁇ d ⁇ 25 ⁇ g, F ⁇ 0.700
  • the first radical polymerizable component is a radical polymerizable compound represented by formula (a1), a radical polymerizable compound represented by formula (a2), or a radical polymerizable compound represented by formula (a3). Or a combination of two or more selected from these.
  • Each of the radically polymerizable compounds represented by the formula (a1), (a2) or (a3) constituting the first radically polymerizable component has one or more (meth) acryloyl groups.
  • the radically polymerizable compound represented by the formula (a1), (a2) or (a3) may be a monofunctional radically polymerizable compound having one (meth) acryloyl group.
  • the radically polymerizable compound represented by the formula (a1) has a benzotriazole skeleton, and has a (meth) acryloyl group in at least one of X 1 , X 4 and X 5 .
  • Examples of the halogen atom represented by X 1 in the formula (a1) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X 1 may be a chlorine atom.
  • the substituent may be, for example, a halogeno group, an alkoxy group or a hydroxy group.
  • the optionally substituted hydrocarbon group having 1 to 18 carbon atoms represented by X 1 in the formula (a1) include a methyl group, an ethyl group, a 2-methoxyethyl group, and n-propyl.
  • X 1 may be a hydrocarbon group having 1 to 8 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, isopentyl group, neopentyl group, It may be an n-pentyl group, a tert-pentyl group, an n-hexyl group, or an n-octyl group.
  • Examples of the alkoxycarbonylalkyl group having 1 to 18 carbon atoms which may have a substituent represented by X 1 in the formula (a1) include a methoxycarbonylethyl group, an ethoxycarbonylethyl group, n-octoxy Carbonylethyl group, isooctyloxycarbonylethyl group, n-dodecyloxycarbonylethyl group, methoxycarbonylpropyl group, ethoxycarbonylpropyl group, n-octoxycarbonylpropyl group, isooctyloxycarbonylpropyl group, and n-dodecyloxycarbonyl A propyl group etc.
  • X 1 may be a methoxycarbonylethyl group, an ethoxycarbonylethyl group, an n-octoxycarbonylethyl group, or an isooctyloxycarbonylethyl group.
  • the number of carbon atoms of the alkoxycarbonylalkyl group means the total number of carbon atoms contained in the alkoxy moiety, the carbonyl moiety, and the alkyl moiety contained in the alkoxycarbonylalkyl group.
  • Examples of the group having a (meth) acryloyl group represented by X 1 in the formula (a1) include an acryloyl group, an acryloyloxy group, an acryloyloxyethyl group, a methacryloyl group, a methacryloyloxy group, and a methacryloyloxyethyl group.
  • X 1 may be an acryloyloxyethyl group or a methacryloyloxyethyl group.
  • the hydrocarbon group having 1 to 18 carbon atoms which may have a halogen atom and a substituent represented by X 2 or X 3 in the formula (a1) is a halogen atom and a substituent represented by X 1. It is synonymous with the C1-C18 hydrocarbon group which may have.
  • Examples of the group having a (meth) acryloyl group represented by X 4 in the formula (a1) include an acryloyl group, 2- (acryloyloxy) ethylcarbamoyl group, methacryloyl group, and 2- (methacryloyloxy) ethylcarbamoyl. Groups and the like.
  • the hydrocarbon group having 1 to 18 carbon atoms which may have a halogen atom and a substituent represented by X 5 in the formula (a1) has a halogen atom and a substituent represented by X 1. It is synonymous with a hydrocarbon group having 1 to 18 carbon atoms.
  • Examples of the group having a (meth) acryloyl group represented by X 5 in the formula (a1) include an acryloyl group, an acryloyloxy group, an acryloyloxyethyl group, an acryloyloxyethoxy group, a methacryloyl group, a methacryloyloxy group, and a methacryloyl group. Examples thereof include an oxyethyl group and a methacryloyloxyethoxy group.
  • X 5 may be an acryloyloxyethoxy group or a methacryloyloxyethoxy group.
  • radical polymerizable compound represented by the formula (a1) examples include 2- [2-hydroxy-5- [2- (methacryloyloxy) ethyl] phenyl] -2H-benzotriazole (for example, trade name “RUVA” -93 "(manufactured by Otsuka Chemical Co., Ltd.) or Tokyo Chemical Industry Co., Ltd.), 2- [2-hydroxy-3-tert-butyl-5- [2- (methacryloyloxy) ethyl] phenyl] -2H- Benzotriazole, 2- (2-hydroxy-5-methylphenyl) -5- [2- (methacryloyloxy) ethyl] -2H-benzotriazole, 2- [2- (2-hydroxy-4-octyloxyphenyl)- 2H-1,2,3-benzotriazol-5-yloxy] ethyl methacrylate, 2- [2- (2- (methacryloyloxy) ethylcarbam
  • the radically polymerizable compound represented by the formula (a2) has a benzophenone skeleton, and has a (meth) acryloyl group in at least one of Y 1 , Y 2 , Y 3 or Y 4 .
  • Examples of the optionally substituted alkoxy group represented by Y 1 or Y 2 in the formula (a2) having 1 to 8 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group Group, n-butoxy group, sec-butoxy group, tert-butoxy group, 4-hydroxy-n-butoxy group, n-pentoxy group, isopentoxy group, neopentoxy group, tert-pentoxy group, n-hexyloxy group, isohexyl Examples thereof include an oxy group, a cyclohexyloxy group, an n-heptyloxy group, an n-octyloxy group, an isooctyloxy group, and a 1,1,3,3-tetramethylbutoxy group.
  • Y 1 and Y 2 are each independently methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-hexyloxy group, isohexyloxy group Or a n-octyloxy group.
  • Examples of the group having a (meth) acryloyl group represented by Y 1 or Y 2 in the formula (a2) include acryloyl group, acryloyloxy group, acryloyloxyethyl group, acryloyloxyethoxy group, 2- (acryloyloxy) )
  • Y 1 and Y 2 may each independently be an acryloyloxy group, a 2- (acryloyloxy) ethylcarbamoyloxy group, a methacryloyloxy group, or a 2- (methacryloyloxy) ethylcarbamoyloxy group.
  • Examples of the optionally substituted hydrocarbon group having 1 to 18 carbon atoms represented by Y 3 or Y 4 in the formula (a2) include a methyl group, an ethyl group, a 2-methoxyethyl group, n-propyl, isopropyl, 3-chloro-n-propyl, n-butyl, sec-butyl, tert-butyl, 4-hydroxy-n-butyl, n-pentyl, isopentyl, neopentyl Group, tert-pentyl group, n-hexyl group, isohexyl group, cyclohexyl group, 6-phenyl-n-hexyl group, n-heptyl group, n-octyl group, isooctyl group, 1,1,3,3-tetramethyl Butyl, n-dodecyl, n-octadecyl, phenyl,
  • Y 3 and Y 4 may each independently be a hydrocarbon group having 1 to 8 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group It may be a group, isopentyl group, neopentyl group, n-pentyl group, tert-pentyl group, n-hexyl group, or n-octyl group.
  • Examples of the group having a (meth) acryloyl group represented by Y 3 or Y 4 in the formula (a2) include an acryloyl group, a 2- (acryloyloxy) ethylcarbamoyl group, a methacryloyl group, and 2- (methacryloyloxy). ) Ethylcarbamoyl group and the like.
  • radical polymerizable compound represented by the formula (a2) examples include 2-hydroxy-4-acryloyloxybenzophenone (for example, FINIPHARMA LIMITED), 2-hydroxy-4-methacryloyloxybenzophenone (for example, Alfa Aesar). 2,2 ′, 4,4′-tetramethacrylyloxybenzophenone, 2,2 ′, 4,4′-tetra [2- (methacrylyloxy) ethylcarbamoyloxy] benzophenone, and the like.
  • 2-hydroxy-4-acryloyloxybenzophenone for example, FINIPHARMA LIMITED
  • 2-hydroxy-4-methacryloyloxybenzophenone for example, Alfa Aesar
  • the radically polymerizable compound represented by the formula (a3) has a triazine skeleton, and has a (meth) acryloyl group in at least one of Z 3 and Z 7 .
  • Examples of the optionally substituted hydrocarbon group having 1 to 18 carbon atoms represented by Z 1 in the formula (a3) include a methyl group, an ethyl group, a 2-methoxyethyl group, and n-propyl.
  • Z 1 may be a hydrocarbon group having 1 to 8 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, isopentyl group, neopentyl group N-pentyl group, tert-pentyl group, n-hexyl group, n-octyl group, or phenyl group.
  • Examples of the alkylcarbonyloxyalkyl group having 1 to 18 carbon atoms which may have a substituent represented by Z 1 in the formula (a3) include a methylcarbonyloxyethyl group, an ethylcarbonyloxyethyl group, and And (2-ethylhexyl) carbonyloxyethyl group.
  • Z 1 may be a (2-ethylhexyl) carbonyloxyethyl group.
  • the carbon number of the alkylcarbonyloxyalkyl group means the total number of carbon atoms contained in the two alkyl moieties contained in the alkylcarbonyloxyalkyl group and the carbonyl moiety.
  • Examples of the optionally substituted alkoxycarbonylalkyl group represented by Z 1 in formula (a3) include a methoxycarbonylethyl group, an ethoxycarbonylethyl group, n-octoxy Carbonylethyl group, isooctyloxycarbonylethyl group, n-dodecyloxycarbonylethyl group, methoxycarbonylpropyl group, ethoxycarbonylpropyl group, n-octoxycarbonylpropyl group, isooctyloxycarbonylpropyl group, and n-dodecyloxycarbonyl A propyl group etc. are mentioned.
  • Z 1 may be a methoxycarbonylethyl group, an ethoxycarbonylethyl group, an n-octoxycarbonylethyl group, or an isooctyloxycarbonylethyl group.
  • the number of carbon atoms of the alkoxycarbonylalkyl group means the total number of carbon atoms contained in the alkoxy moiety, carbonyl moiety and alkyl moiety contained in the alkoxycarbonylalkyl group.
  • Examples of the optionally substituted alkoxyalkyl group represented by Z 1 in the formula (a3) include a methoxymethyl group, a methoxyethyl group, a 3-methoxypropyl group, an ethoxy group. Methyl group, ethoxyethyl group, 3-ethoxypropyl group, 3- (n-hexyloxy) propyl group, (2-ethylhexyloxy) -2-hydroxypropyl group, (dodecyloxy) -2-hydroxypropyl group, etc. Can be mentioned.
  • Z 1 may be a (2-ethylhexyloxy) -2-hydroxypropyl group.
  • the carbon number of the alkoxyalkyl group means the total number of carbon atoms contained in the alkoxy moiety and the alkyl moiety contained in the alkoxyalkyl group.
  • the optionally substituted hydrocarbon group having 1 to 18 carbon atoms represented by Z 2 , Z 4 , Z 5 , Z 6 , Z 8 or Z 9 in the formula (a3) is Z 1 It is synonymous with the C1-C18 hydrocarbon group which may have a substituent shown.
  • Examples of the optionally substituted alkoxy group having 1 to 8 carbon atoms represented by Z 2 , Z 4 , Z 5 , Z 6 , Z 8 or Z 9 in the formula (a3) include methoxy Group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, 4-hydroxy-n-butoxy group, n-pentoxy group, isopentoxy group, neopentoxy group, tert -Pentoxy group, n-hexyloxy group, isohexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, isooctyloxy group, 1,1,3,3-tetramethylbutoxy group, etc.
  • Z 2 , Z 4 , Z 5 , Z 6 , Z 8 and Z 9 are each independently methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert It may be a -butoxy group, n-hexyloxy group, isohexyloxy group, or n-octyloxy group.
  • Examples of the group having a (meth) acryloyl group represented by Z 3 in the formula (a3) include an acryloyl group, 2- (acryloyloxy) ethylcarbamoyl group, methacryloyl group, and 2- (methacryloyloxy) ethylcarbamoyl. Groups and the like.
  • the alkoxy group having 1 to 8 carbon atoms which may have a substituent represented by Z 7 in formula (a3) is an optionally substituted carbon group represented by Z 2 or the like. Synonymous with the alkoxy group of ⁇ 8.
  • Examples of the group having a (meth) acryloyl group represented by Z 7 in the formula (a3) include an acryloyl group, an acryloyloxy group, an acryloyloxyethyl group, an acryloyloxyethoxy group, and 2- (acryloyloxy) ethylcarbamoyl.
  • Examples thereof include an oxy group, a methacryloyl group, a methacryloyloxy group, a methacryloyloxyethyl group, a methacryloyloxyethoxy group, and a 2- (methacryloyloxy) ethylcarbamoyloxy group.
  • Z 7 may be an acryloyloxy group, a 2- (acryloyloxy) ethylcarbamoyloxy group, a methacryloyloxy group, or a 2- (methacryloyloxy) ethylcarbamoyloxy group.
  • Z 1 is an isooctyloxycarbonylethyl group
  • Z 2 , Z 4 , Z 5 , Z 7 and Z 8 are hydrogen.
  • Z 3 is a 2- (acryloyloxy) ethylcarbamoyl group and Z 6 and Z 9 are phenyl groups
  • Z 1 is an n-octyl group in formula (a3)
  • Z 1 is an n-octyl group in formula (a3)
  • Z 1 is a 2- (methacryloyloxy) ethylcarbamoyl group
  • Z 1 is n- Compounds such as a butyl group
  • Z 2 , Z 5 and Z 8 are hydrogen atoms
  • Z 4 , Z 6 and Z 9 are n-butoxy groups
  • Z 3 is a methacryloyl group
  • Z 7 is a methacryloyloxy group.
  • the radical polymerizable compound represented by the formula (a1), (a2) or (a3) is, for example, a commercially available benzotriazole compound, benzophenone compound, triazine compound (hereinafter referred to as “raw material compound”) or a (meth) acryloyl group.
  • raw material compound a commercially available benzotriazole compound
  • benzophenone compound a commercially available benzophenone compound
  • triazine compound hereinafter referred to as “raw material compound”
  • (meth) acryloyl group can be synthesized by introducing.
  • the method for introducing the (meth) acryloyl group into the raw material compound is not particularly limited, and a usual method can be adopted.
  • the optical resin composition according to this embodiment further contains (B) a second radical polymerizable component.
  • the second radical polymerizable component is one or more radical polymerizable compounds selected from compounds other than the radical polymerizable compound represented by formula (a1), (a2), or (a2) "Sometimes referred to as” second radical polymerizable compound ").
  • the second radical polymerizable compound has one or more radical polymerizable groups.
  • the second radical polymerizable component may contain one or more polyfunctional radical polymerizable compounds.
  • the second radical polymerizable component contains a polyfunctional radical polymerizable compound, a crosslinked polymer is formed, and a resin material having higher heat resistance is formed. It can also be said that the resin material containing the crosslinked polymer is a cured product of the optical resin composition.
  • the “polyfunctional radically polymerizable compound” means a compound having two or more radically polymerizable groups in the molecule.
  • “Monofunctional radically polymerizable compound” means a compound having one radically polymerizable group in the molecule.
  • the radical polymerizable group of the second radical polymerizable compound can be a (meth) acryl group, a vinyl group (excluding a vinyl group contained in the (meth) acryl group), or a combination thereof.
  • the second radical polymerizable compound include a sulfide compound having a radical polymerizable group and a diphenyl sulfide skeleton, (meth) acrylic acid, (meth) acrylic acid ester, and other vinyl compounds.
  • Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) Acrylate, tert-butyl (meth) acrylate, 2-methylbutyl (meth) acrylate, 2-ethylbutyl (meth) acrylate, 3-methylbutyl (meth) acrylate, 1,3-dimethylbutyl (meth) acrylate, pentyl (meth) acrylate , Hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-methoxyethy
  • vinyl compound examples include styrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, ⁇ -ethylstyrene, ⁇ -butylstyrene, ⁇ -hexylstyrene, 4-chlorostyrene, 3-chlorostyrene, and 4-bromostyrene.
  • Monofunctional vinyl compounds such as 4-nitrostyrene, 4-methoxystyrene, vinyltoluene, and cyclohexene, and divinylbenzene, 4-vinylcyclohexene, 5-vinylbicyclo [2,2,1] hept-2-ene
  • polyfunctional vinyl compounds such as diallyl diphenate and triallyltriazine.
  • Examples of the sulfide compound having a radical polymerizable group and a diphenyl sulfide skeleton include at least one sulfide compound represented by the following formula (b1) or (b2). Resin materials formed from optical resin compositions containing these sulfide compounds can exhibit a low Abbe number and a higher partial dispersion ratio. In addition, the refractive index of the resin material tends to increase.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom or an alkyl group having 1 to 6 carbon atoms, and n is 0 to 10 R 5 represents a hydrogen atom or a methyl group.
  • R 5 in the formula (b2) may be the same or different, and may be the same.
  • N in the formula (b1) may be 0.
  • the halogen atom represented by R 1 , R 2 , R 3 or R 4 in formula (b1) or (b2) may be, for example, a chlorine atom, a bromine atom, or an iodine atom.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 , R 2 , R 3 or R 4 in the formula (b1) or (b2) include methyl group, ethyl group, n-propyl group, isopropyl Group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and the like.
  • R 1 , R 2 , R 3 and R 4 in formula (b1) or (b2) may all be hydrogen atoms.
  • Examples of the sulfide compound represented by the formula (b1) include bis (4-vinylthiophenyl) sulfide, bis (3-methyl-4-vinylthiophenyl) sulfide, and bis (3,5-dimethyl-4-vinyl.
  • Thiophenyl) sulfide bis (2,3,5,6-tetramethyl-4-vinylthiophenyl) sulfide, bis (3-hexyl-4-vinylthiophenyl) sulfide, bis (3,5-dihexyl-4- Vinylthiophenyl) sulfide, bis (3-chloro-4-vinylthiophenyl) sulfide bis (3,5-dichloro-4-vinylthiophenyl) sulfide, bis (2,3,5,6-tetrachloro-4- Vinylthiophenyl) sulfide, bis (3-bromo-4-vinylthiophenyl) sulfide, bis (3,5-dibromo-4-bi) Thiophenyl) sulfide, and bis (2,3,5,6-tetrabromo-4-vinyl-thio-phenyl) sulfide, and the like.
  • the sulfide compound represented by the formula (b1) is bis (4-vinylthiophenyl) sulfide, bis (3-methyl-4-vinylthiophenyl) sulfide, or bis (3,5-dimethyl-4-vinylthiophenyl). ) Sulfide or bis (4-vinylthiophenyl) sulfide.
  • Examples of the sulfide compound represented by the formula (b2) include S, S ′-(thiodi-p-phenylene) bis (thio (meth) acrylate), S, S ′-[4,4′-thiobis (2 -Chlorobenzene)] bis (thio (meth) acrylate), S, S '-[4,4'-thiobis (3-chlorobenzene)] bis (thio (meth) acrylate), S, S'-[4,4 ' -Thiobis (2,6-dichlorobenzene)] bis (thio (meth) acrylate), S, S '-[4,4'-thiobis (3,5-dichlorobenzene)] bis (thio (meth) acrylate), S, S ′-[4,4′-thiobis (2-bromobenzene)] bis (thio (meth) acrylate), S, S ′-[4,4′-thiobis (3-brom
  • the sulfide compound represented by the formula (b2) is S, S ′-(thiodi-p-phenylene) bis (thiomethacrylate), S, S ′-[4,4′-thiobis (3,5-dibromobenzene) ] Bis (thiomethacrylate), S, S ′-[4,4′-thiobis (3,5-dimethylbenzene)] bis (thiomethacrylate), or S, S ′-(thiodi-p-phenylene) bis (thio Acrylate) or S, S ′-(thiodi-p-phenylene) bis (thiomethacrylate).
  • the sulfide compound represented by the formula (b1) is, for example, a bis (4-vinylthiophenyl) sulfide in which R 1 to R 4 are all hydrogen atoms and n is 0 in the formula (b1). It can be obtained by reacting dihaloethane with '-thiodibenzenethiol and then dehydrohalogenating the product in a polar solvent such as dimethyl sulfoxide ( ⁇ ypixiea Op Opafa metri ⁇ ec Méo ⁇ X Economics economically convey Too, litis28, criz ⁇ .9 1905, 1992). it can.
  • a polar solvent such as dimethyl sulfoxide
  • a sulfide compound represented by the formula (b1) may be obtained by a method including reacting with an alkali metal compound aqueous solution in a heterogeneous system in the presence of a phase transfer catalyst in an aliphatic hydrocarbon solvent. it can.
  • the sulfide compound represented by the formula (b2) is, for example, S, S ′-(thiodi-p-phenylene) in which R 1 to R 4 are all hydrogen atoms and R 5 is a methyl group in the formula (b2)
  • R 1 to R 4 are all hydrogen atoms
  • R 5 is a methyl group in the formula (b2)
  • bis (thiomethacrylate) an alkali metal salt of 4,4′-thiodibenzenethiol obtained by reacting 4,4′-thiodibenzenethiol with an alkali metal compound and methacryloyl chloride are converted into nonpolar organic compounds. It can be obtained by a reaction in a solvent.
  • the second radically polymerizable component is a radical compound selected from the sulfide compound represented by formula (b1) or (b2), (meth) acrylic acid, (meth) acrylic acid ester, and other vinyl compounds. And a polymerizable compound. Examples of (meth) acrylic acid, (meth) acrylic acid ester, and other vinyl compounds used in combination with the sulfide compound represented by the formula (b1) or (b2) as the second radical polymerizable component are described above. Is the same as
  • each radical polymerizable compound in the optical resin composition is adjusted so that the Abbe number ⁇ d and the partial dispersion ratio ⁇ g, F of the resin material containing these polymers satisfy the above formula.
  • the Abbe number ⁇ d tends to decrease and the partial dispersion ratio ⁇ g, F tends to increase.
  • the ratio of the second radical polymerizable component is large, the partial dispersion ratio ⁇ g, F tends to decrease.
  • the total content of the first radical polymerizable component is 3 to 80 parts by mass, 5 to 5 parts per 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. It may be 70 parts by mass or 5 to 60 parts by mass.
  • the content of the radical polymerizable compound represented by the formula (a1) is a viewpoint of maintaining a high light transmittance with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. To 60 parts by mass or less, 50 parts by mass or less, or 30 parts by mass or less, or 3 parts by mass or more, or 5 parts by mass or more from the viewpoint of increasing the partial dispersion ratio ⁇ g, F.
  • the content of the radical polymerizable compound represented by the formula (a2) is a viewpoint of maintaining a high light transmittance with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component.
  • the content of the radical polymerizable compound represented by the formula (a3) is a viewpoint of maintaining a high light transmittance with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. From the viewpoint of increasing the partial dispersion ratio ⁇ g, F, it may be 20 parts by mass or more.
  • the total content of the second radical polymerizable component increases the partial dispersion ratio ⁇ g, F with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. From the viewpoint, it may be 97 parts by mass or less, 95 parts by mass or less, or 90 parts by mass or less, and from the viewpoint of maintaining high light transmittance, it is 5 parts by mass or more, 10 parts by mass or more, or 20 parts by mass or more. May be.
  • the total content of the sulfide compound represented by the formula (b1) or (b2) is the light resistance of the resin material with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. 95 parts by mass or less, or 90 parts by mass or less from the viewpoint of improving the properties, and 5 parts by mass for obtaining a resin material having a high refractive index (for example, 1.630 or more, or 1.650 or more). It may be 15 or more parts by mass.
  • the ratio of the sulfide compound represented by the formula (b1) or (b2) in the (B) second radical polymerizable compound is 15 based on the total mass of the (B) second radical polymerizable component.
  • the optical resin composition according to the present embodiment may further contain a radical polymerization initiator for causing the radical polymerization of the first and second radical polymerizable components to proceed.
  • the radical polymerization initiator can be a photo radical polymerization initiator, a thermal radical polymerization initiator, or a combination thereof.
  • photo radical polymerization initiators examples include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 1-hydroxycyclohexyl-phenyl ketone, 2-hydroxy-2-methyl-1 -Phenyl-propan-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 4-phenylbenzophenone, 4-phenoxybenzophenone, 4,4'-diphenylbenzophenone, and 4,4'- Examples include diphenoxybenzophenone.
  • a radical photopolymerization initiator can be used alone or in combination of two or more.
  • the content of the photo radical polymerization initiator can be appropriately selected according to the light irradiation amount, the additional heating temperature, and the like.
  • the content of the radical photopolymerization initiator can be adjusted according to the target average molecular weight of the polymer to be formed.
  • the content of the photo radical polymerization initiator is 0.1 to 10 parts by weight, 0 parts by weight based on 100 parts by weight of the total amount of the first radical polymerizable component and the second radical polymerizable component in the optical resin composition. It may be 2 to 8 parts by mass, or 0.3 to 7 parts by mass. If the content of the photo radical polymerization initiator is less than 0.1 parts by mass, the polymerization reaction may not proceed sufficiently. If the content of the photo radical polymerization initiator exceeds 10 parts by mass, the resin material to be formed may be colored, and the light transmittance may be reduced.
  • thermal radical polymerization initiators examples include azobisoisobutyl nitrile, benzoyl peroxide, tert-butyl peroxypivalate, tert-butyl peroxyneohexanoate, tert-hexylperoxyneohexanoate, tert-butyl Peroxyneodecanoate, tert-hexylperoxyneodecanoate, cumylperoxyneohexanoate, cumylperoxyneodecanoate, and 1,1,3,3-tetramethylbutylperoxy-2- Examples include ethyl hexanoate.
  • the thermal radical polymerization initiator can be used alone or in combination of two or more.
  • the content of the thermal radical polymerization initiator can be appropriately selected according to the heating temperature, the amount of oxygen present during radical polymerization, and the like.
  • the content of the thermal radical polymerization initiator can be adjusted according to the target degree of polymerization of the polymer to be formed.
  • the content of the thermal radical polymerization initiator is 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component in the optical resin composition. It may be 1 to 8 parts by mass, or 0.2 to 6 parts by mass. If the content of the thermal radical polymerization initiator is less than 0.05 parts by mass, the polymerization reaction may not proceed sufficiently. When the content of the thermal radical polymerization initiator exceeds 10 parts by mass, the formed resin material may be colored and the light transmittance may be reduced.
  • a polymerization initiator other than the radical polymerization initiator for example, a photocationic polymerization initiator or a thermal cationic polymerization initiator can be used.
  • the optical resin composition according to the present embodiment contains fine particles such as inorganic fine particles dispersed in a homogeneous phase containing the first and second radical polymerizable components as long as the required optical properties are maintained. May be.
  • the content of the fine particles may be 0 to 15% by mass, 0 to 10% by mass, 0 to 5% by mass, or 0 to 2% by mass. Good.
  • the optical resin composition according to the present embodiment may further contain other components as necessary.
  • examples include polymerization inhibitors, antioxidants, light stabilizers, plasticizers, leveling agents, antifoaming agents, UV absorbers, coupling agents, sensitizers, metal deactivators, chain transfer agents, antiblocking agents.
  • additives such as an agent and a release agent.
  • the content of these additives is 0 to 50 parts by mass, 0 to 30 parts by mass with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component in the optical resin composition. Part, or 0 to 20 parts by mass.
  • the Abbe number ⁇ d of the resin material formed from the optical resin composition in the present embodiment may be 18 ⁇ ⁇ d ⁇ 25, 18 ⁇ ⁇ d ⁇ 24, or 18 ⁇ ⁇ d ⁇ 23.
  • the partial dispersion ratio ⁇ g, F of the resin material is 0.700 or more, and may be 0.710 or more, or 0.720 or more. When the Abbe number ⁇ d and the partial dispersion ratios ⁇ g, F are within these ranges, a sufficient chromatic aberration correction capability can be more easily imparted to the resin material.
  • the upper limit of the partial dispersion ratio ⁇ g, F is not particularly limited, but is usually about 0.900.
  • the Abbe number ⁇ d and the partial dispersion ratio ⁇ g, F mean values calculated by the following equations.
  • Abbe number ⁇ d (nd ⁇ 1) / (nF ⁇ nC)
  • Partial dispersion ratio ⁇ g, F (ng ⁇ nF) / (nF ⁇ nC)
  • ng is a refractive index at a wavelength of 435.8 nm which is a g-line
  • nF is a refractive index at a wavelength of 486.1 nm which is an F-line
  • nd is a refractive index at a wavelength of 587.6 nm which is a d-line
  • nC is a C-line.
  • the refractive index at a certain wavelength of 656.3 nm is shown.
  • the difference ⁇ T in the light transmittance of the resin material at a wavelength of 400 nm before and after the light resistance test is 5%. It may be the following. When ⁇ T exceeds 5%, there is a possibility that the reliability of an optical system configured using the resin material is lowered.
  • the lower limit of ⁇ T is not particularly limited, but ideally 0%.
  • the light resistance test here uses a xenon weather meter (for example, model number: X25 manufactured by Suga Test Instruments Co., Ltd.), integrated illuminance in the wavelength range of 300 to 400 nm is 60 W / m 2 , and black panel temperature is 63 ° C. This is a test in which light is irradiated for 100 hours under the above conditions.
  • the thickness of the sheet-shaped test piece (molded body) of the resin material used for the light resistance test is 190 to 210 ⁇ m.
  • T2 When the light transmittance at a wavelength of 400 nm of the test piece after the light resistance test is T2, and the light transmittance at a wavelength of 400 nm of the test piece before the light resistance test is T1, the difference between T1 and T2 is ⁇ T.
  • T1 and T2 values converted to a thickness of 200 ⁇ m are used.
  • the glass transition temperature (Tg) of the resin material formed from the optical resin composition according to this embodiment may be 100 ° C. or higher, or 110 ° C. or higher.
  • Tg is one of indices indicating heat resistance.
  • the upper limit of Tg is not specifically limited, Usually, it is about 300 degreeC.
  • the resin material may not exhibit a glass transition temperature.
  • Tg indicates the dynamic viscoelasticity of a resin material in a tensile mode using a dynamic viscoelasticity measuring device (for example, model number: RSA-G2 manufactured by TA Instruments Japan). It means the temperature at the peak top of tan ⁇ when measured under conditions of a heating rate of 10 ° C./min and a frequency of 1 Hz.
  • the difference ⁇ nd before and after the boiling test of the refractive index nd at d-line is 0.0007 or less. Or 0.0005 or less.
  • ⁇ nd exceeds 0.0007, there is a possibility that the reliability of the optical system constituted by using the resin material in a high temperature and high humidity environment, that is, the resistance to moist heat is lowered.
  • the lower limit of ⁇ nd is not particularly limited, but ideally 0.
  • the boiling test is a test in which a sheet-shaped test piece (molded body) having a thickness of 1.9 to 2.0 mm is immersed in a hot water bath maintained at 100 ° C. for 24 hours.
  • the refractive index nd of each test piece before and after the boiling test is measured, and the difference between them is ⁇ nd.
  • the refractive index nd of the resin material formed from the optical resin composition according to the present embodiment may be 1.550 or more, 1.600 or more, 1.630 or more, or 1.650 or more.
  • the upper limit of the refractive index nd is not particularly limited, but is usually about 1.800.
  • Internal transmittance T i of the resin material formed from an optical resin composition according to the present embodiment 50% or more, 60% or more, or may be 75% or more.
  • Ti 50% or more, 60% or more, or may be 75% or more.
  • the upper limit of the internal transmittance T i is not particularly limited and is ideally 100%.
  • the internal transmittance Ti here is a value converted into a thickness of 200 ⁇ m of internal transmittance at a wavelength of 400 nm.
  • the external transmittance at a wavelength of 400 nm of a test piece (molded body) having a thickness of 90 to 110 ⁇ m and a test piece having a thickness of 190 to 200 ⁇ m is measured, and the internal transmittance Ti is calculated from the following formula.
  • d 3 is the measured thickness of the test piece having a thickness of 90 to 110 ⁇ m
  • d 4 is the measured thickness of the test piece having a thickness of 190 to 210 ⁇ m
  • T 3 is the external transmittance at a wavelength of 400 nm of the test piece having a thickness of 90 to 110 ⁇ m
  • T 4 is the external transmittance at a wavelength of 400 nm of a test piece having a thickness of 190 to 210 ⁇ m.
  • the external transmittance is a light transmittance including a surface reflection loss.
  • the optical resin composition according to the present embodiment is, for example, a method of mixing the first and second polymerizable components and, if necessary, other components (polymerization initiator, additive, etc.) and stirring the mixture. Can be obtained. Each component may be mixed simultaneously or sequentially.
  • the temperature during stirring is not particularly limited, but is usually 0 to 120 ° C., and may be 10 to 100 ° C.
  • the stirring time may be 0.1 to 24 hours, or 0.1 to 6 hours. Depending on the type of the polymerization initiator, the temperature and the stirring time during stirring are appropriately adjusted.
  • a molded body of a resin material having an arbitrary shape can be manufactured using the optical resin composition according to the present embodiment.
  • the molded body of the resin material is, for example, a resin material containing these polymers by radical polymerization of the first radical polymerizable component and the second radical polymerizable component in the optical resin composition filled in the mold.
  • the first radical polymerizable component is used as a prepolymerization until the desired viscosity is reached. Further, the radical polymerization of the second radical polymerizable component may proceed to some extent.
  • the optical resin composition before filling into the mold may be degassed and degassed. Thereby, radical polymerization can be advanced efficiently, maintaining the state where an optical resin composition does not touch air (oxygen).
  • the method for degassing and defoaming the optical resin composition is not particularly limited. For example, bubbling with an inert gas such as nitrogen and argon, vacuum degassing, ultrasonic degassing, hollow fiber membrane degassing, or these The combination of can be adopted.
  • the radical polymerization of the first radical polymerizable component and the second radical polymerizable component can proceed by thermal polymerization, photopolymerization, or a combination thereof.
  • the polymerization temperature and polymerization time for thermal polymerization vary depending on the type and blending ratio of the radical polymerizable component, the type and amount of the thermal radical polymerization initiator, and the like. Usually, the polymerization temperature may be 0 to 180 ° C., or 20 to 150 ° C., and the polymerization time may be 0.1 to 30 hours, or 0.1 to 12 hours.
  • the optical resin composition filled in the mold is irradiated with light such as ultraviolet rays.
  • light sources used for photopolymerization include low-pressure mercury lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, metal halide lamps, deuterium lamps, argon lamps, xenon lamps, LEDs, halogen lamps, excimer lasers, and helium-cadmium lasers. Is mentioned.
  • the integrated amount of light to be irradiated varies depending on the type and ratio of the radical polymerizable component, the type and amount of the radical photopolymerization initiator, and the shape and the like of the molded body. Usually, the integrated light quantity may be 0.01 to 100 J / cm 2 , or 0.1 to 50 J / cm 2 .
  • the molded body of the resin material obtained from the optical resin composition according to the present embodiment shows a low Abbe number and a high partial dispersion ratio, it is applied as an optical member constituting an imaging optical system such as an optical lens.
  • an imaging optical system such as a camera lens for optical equipment, a camera lens for vehicle mounting, a camera lens for smartphone, a lens for digital camera, and the like. it can.
  • the thickness of the optical lens can be appropriately set as desired, and is not particularly limited, but is usually 1 ⁇ m to 10 mm, and may be 1 ⁇ m to 5 mm.
  • FIG. 1 is a cross-sectional view showing an embodiment of an optical lens.
  • An optical lens 1 shown in FIG. 1 is formed of a molded body of a resin material formed from the optical resin composition according to this embodiment.
  • reaction solution was cooled to 20 ° C., and the precipitated crystals were taken out by filtration.
  • the crystals were washed twice with 400 g of water to obtain 492.5 g of a wet cake containing bis [4- (2-hydroxyethylthio) phenyl] sulfide.
  • the obtained organic layer was washed twice with 140 g of water. To the organic layer after washing, 2.0 g of p-methoxyphenol and 1.5 g of activated carbon were added, and the organic layer was stirred at 55-60 ° C. for 30 minutes. Thereafter, insoluble materials were removed by hot filtration. Crystals were precipitated by crystallization by cooling the remaining organic layer to 0 ° C. The precipitated crystals were separated by filtration.
  • the obtained crystals were washed with a mixed solution consisting of 170 g of n-heptane, 340 g of cyclohexane and 0.13 g of p-methoxyphenol, dried under reduced pressure, and white S, S ′-(thiodi-p-phenylene) bis 325.5 g (0.84 mol) of (thiomethacrylate) (Compound B-2) was obtained.
  • the obtained compound B-1 had an HPLC purity of 99%.
  • the yield based on 4,4'-thiodibenzenethiol was 84%.
  • Optical resin composition and molded article of resin material (Example 1) Compound A-1 and Compound B-4 were mixed at a mass ratio shown in Table 1, and the mixture was stirred at 60 ° C. for 30 minutes. After cooling to 25 ° C., 3 parts by weight of IRGACURE 1173 (manufactured by BASF, 2-hydroxy-2-methyl-1-phenyl-propan-1-one) is dissolved in the mixture as a radical photopolymerization initiator for 100 parts by weight of the mixture. The obtained mixed liquid (optical resin composition) was sufficiently deaerated.
  • the optical resin composition was separated into a glass mold in which two glass plates of 76 ⁇ 52 mm were arranged with a gap of 200 ⁇ m, and a glass mold in which two glass plates of 76 ⁇ 52 mm were arranged with a gap of 100 ⁇ m. Filled. Radical polymerization of compound A-1 and compound B-4 by irradiating the optical resin composition filled in the glass mold with light of 5000 mJ / cm 2 (integrated illuminance with a 365 nm sensor) by a high-pressure mercury lamp. A molded body of a resin material containing the polymer formed by the above was formed. The formed molded body was taken out from the glass mold. As a result, sheet-like molded articles for evaluation having a thickness of about 200 ⁇ m and a thickness of about 100 ⁇ m were obtained.
  • Examples 2 to 16, Comparative Examples 1 to 3 An optical resin composition was prepared in the same manner as in Example 1 except that each raw material was used in the ratio shown in Table 1, and three types of molded articles for evaluation were produced using this.
  • ⁇ Heat resistance> Using a dynamic viscoelasticity measuring device (manufactured by TA Instruments Japan, model number: RSA-G2), the temperature change of the dynamic viscoelasticity of the test specimen (molded body) having a thickness of about 200 ⁇ m is used. Then, measurement was performed under the conditions of a tensile mode, a heating rate of 10 ° C./min, and a frequency of 1 Hz. The temperature at the peak top of tan ⁇ was recorded as the glass transition temperature Tg of the molded product. Based on the value of Tg, the heat resistance of the molded product was determined according to the following criteria. AA: Tg ⁇ 110 ° C. A: 100 ⁇ Tg ⁇ 110 ° C. C: Tg ⁇ 100 ° C.
  • ⁇ Heat and heat resistance> A test piece (molded body) for evaluation having a thickness of about 2 mm was subjected to a boiling test where it was immersed in a hot water bath maintained at 100 ° C. for 24 hours. The refractive index nd of the test pieces before and after the boiling test was measured, and the difference ⁇ nd between them was determined. Based on the value of ⁇ nd, the wet heat resistance of the molded body was determined according to the following criteria. AA: ⁇ nd ⁇ 0.0005 A: 0.0005 ⁇ nd ⁇ 0.0007 C: ⁇ nd> 0.0007
  • ⁇ Internal transmittance> The transmittance at a wavelength of 400 nm of an evaluation test piece (molded body) of about 200 ⁇ m thickness and an evaluation test piece (molded body) of about 100 ⁇ m thickness was measured with a spectrophotometer (manufactured by Hitachi, Ltd., model number: UH- 4150). The measured value obtained here is the external transmittance including the surface reflection loss. The measured values obtained by using the actually measured thickness of each specimen was calculated internal transmittance T i at wavelength 400nm which is converted to a thickness 200 ⁇ m from the following equation.
  • the internal transmittance of the molded body was determined according to the following criteria. AA: T i ⁇ 75% A: 60% ⁇ T i ⁇ 75% B: 50% ⁇ T i ⁇ 60% C: T i ⁇ 50%
  • the transmittance converted to 200 ⁇ m thickness was calculated from the Lambert-Beer formula.
  • a difference ⁇ T before and after the light resistance test of the transmittance at a wavelength of 400 nm was determined, and the light resistance was determined based on the value according to the following criteria.
  • A: ⁇ T 0 to 5%

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is an optical resin composition containing (A) a first radical polymerizable component comprising at least one compound represented by formula (a1), etc., and (B) a second radical polymerizable component comprising a compound different from the first radical polymerizable component. When the first and second radical polymerizable components are radically polymerized, a resin material containing their polymers is formed, wherein the resin material has an Abbe number νd and a relative partial dispersion θg,F that satisfy the formulas 18 ≤ νd ≤ 25 and θg,F ≥ 0.700. [In formula (a1), at least one of X1, X4, or X5 is a group having a (meth)acryloyl group.]

Description

光学樹脂組成物及び光学レンズOptical resin composition and optical lens
 本発明は、光学樹脂組成物及び該組成物から得られる光学レンズに関する。 The present invention relates to an optical resin composition and an optical lens obtained from the composition.
 カメラ等の撮像光学系を構成する光学材料が数多く知られている。なかでもプラスチックレンズをはじめとする有機系の光学材料は、無機材料に比べて軽量で割れにくく、様々な形状に加工できることに加え、所望の特性を有する材料設計に関する選択の自由度が高いことから、近年様々な用途において急速に普及しつつある。 Many optical materials that constitute an imaging optical system such as a camera are known. In particular, organic optical materials such as plastic lenses are lighter and harder to break than inorganic materials, can be processed into various shapes, and have a high degree of freedom in designing materials with desired characteristics. Recently, it is rapidly spreading in various applications.
 一般にカメラ等の撮像光学系は、光学物性の異なる複数種の光学レンズを組み合わせて構成される。特に屈折率の波長分散特性が異なる光学レンズを組み合わせることで光学系の色収差を補正する手法が採用されている。従来、波長分散特性を示す指標として主にアッベ数νdが用いられ、高いアッベ数を示す材料と低いアッベ数を示す材料を組み合わせて色収差を補正することが試みられてきた。 Generally, an imaging optical system such as a camera is configured by combining a plurality of types of optical lenses having different optical properties. In particular, a technique for correcting chromatic aberration of an optical system by combining optical lenses having different refractive index wavelength dispersion characteristics is employed. Conventionally, the Abbe number νd is mainly used as an index indicating wavelength dispersion characteristics, and it has been attempted to correct chromatic aberration by combining a material having a high Abbe number and a material having a low Abbe number.
 更に、有機系の光学材料に関してより高い水準で色収差を補正する方法として、低いアッベ数を示すとともに、特定の部分分散比θg,Fを示す光学材料を用いることが提案されている(特許文献1)。 Furthermore, as a method of correcting chromatic aberration at a higher level with respect to organic optical materials, it has been proposed to use an optical material that exhibits a low Abbe number and a specific partial dispersion ratio θg, F (Patent Document 1). ).
 一方、特許文献2は、特定のベンゾトリアゾール骨格を有する熱可塑性樹脂に無機微粒子を分散させた有機無機複合材料が、高い屈折率かつ低いアッベ数を有することを記載している。また、特許文献3は、塗料等に用いられる材料に関して、ベンゾトリアゾール骨格を紫外線吸収基として有する高屈折率ポリマーが、耐光性に優れるとともにブリードアウトを発生させないことを記載している。 On the other hand, Patent Document 2 describes that an organic-inorganic composite material in which inorganic fine particles are dispersed in a thermoplastic resin having a specific benzotriazole skeleton has a high refractive index and a low Abbe number. Patent Document 3 describes that a high refractive index polymer having a benzotriazole skeleton as an ultraviolet absorbing group is excellent in light resistance and does not cause bleed-out with respect to materials used for paints and the like.
特開2010-097195号公報JP 2010-097195 A 特開2010-189562号公報JP 2010-189562 A 特開2014-201735号公報JP 2014-201735 A
 一般に、アッベ数が低いと部分分散比が比較的高くなる傾向はあるものの、アッベ数の低い材料が、十分に高い部分分散比を示すとは限らない。更に、従来、低いアッベ数及び高い部分分散比を示す材料は、光透過率、耐熱性及び耐光性等の、光学レンズに求められる特性が不足することが多かった。例えば、特許文献1に開示されているジフェニルスルフィド骨格を有する化合物を含む光学材料は、耐光性及び耐熱性が低く、長期信頼性の面で改善の余地があった。 Generally, although the partial dispersion ratio tends to be relatively high when the Abbe number is low, a material having a low Abbe number does not always exhibit a sufficiently high partial dispersion ratio. Furthermore, conventionally, materials exhibiting a low Abbe number and a high partial dispersion ratio often lack characteristics required for optical lenses such as light transmittance, heat resistance, and light resistance. For example, an optical material including a compound having a diphenyl sulfide skeleton disclosed in Patent Document 1 has low light resistance and heat resistance, and there is room for improvement in terms of long-term reliability.
 本発明の目的は、低いアッベ数及び高い部分分散比を示し、しかも優れた耐光性、高い光透過率及び高い耐熱性を有する光学部材用の樹脂材料を形成することのできる、光学樹脂組成物を提供することにある。 An object of the present invention is to provide an optical resin composition that can form a resin material for an optical member that exhibits a low Abbe number and a high partial dispersion ratio, and has excellent light resistance, high light transmittance, and high heat resistance. Is to provide.
 本発明の一側面は、(A)下記式(a1)、(a2)又は(a3)で表される少なくとも1種のラジカル重合性化合物からなる第1のラジカル重合性成分と、(B)前記第1のラジカル重合性成分とは異なるラジカル重合性化合物からなる第2のラジカル重合性成分とを含有する光学樹脂組成物に関する。前記第1のラジカル重合性成分及び前記第2のラジカル重合性成分がラジカル重合したときに、これらの重合体を含む樹脂材料が形成される。前記樹脂材料のアッベ数νd及び部分分散比θg,Fが、以下の式:
 18≦νd≦25;及び
 θg,F≧0.700
を満たす。
One aspect of the present invention is: (A) a first radical polymerizable component comprising at least one radical polymerizable compound represented by the following formula (a1), (a2) or (a3); The present invention relates to an optical resin composition containing a second radical polymerizable component comprising a radical polymerizable compound different from the first radical polymerizable component. When the first radical polymerizable component and the second radical polymerizable component are radically polymerized, a resin material containing these polymers is formed. The Abbe number νd and the partial dispersion ratio θg, F of the resin material are expressed by the following formula:
18 ≦ νd ≦ 25; and θg, F ≧ 0.700
Meet.
Figure JPOXMLDOC01-appb-C000005
 式(a1)中、
 Xは、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~18の炭化水素基、置換基を有していてもよい炭素数1~18のアルコキシカルボニルアルキル基、又は、(メタ)アクリロイル基を有する基を示し、
 X及びXは、それぞれ独立して、水素原子、ハロゲン原子、又は、置換基を有していてもよい炭素数1~18の炭化水素基を示し、
 Xは、水素原子、置換基を有していてもよい炭素数1~18の炭化水素基、又は、(メタ)アクリロイル基を有する基を示し、
 Xは、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~18の炭化水素基、又は、(メタ)アクリロイル基を有する基を示し、
 X、X又はXのうち少なくとも1つが、(メタ)アクリロイル基を有する基である。
Figure JPOXMLDOC01-appb-C000005
In formula (a1),
X 1 represents a hydrogen atom, a halogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an optionally substituted alkoxycarbonylalkyl group having 1 to 18 carbon atoms, or , A group having a (meth) acryloyl group,
X 2 and X 3 each independently represent a hydrogen atom, a halogen atom, or an optionally substituted hydrocarbon group having 1 to 18 carbon atoms,
X 4 represents a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a group having a (meth) acryloyl group,
X 5 represents a hydrogen atom, a halogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a group having a (meth) acryloyl group,
At least one of X 1 , X 4 or X 5 is a group having a (meth) acryloyl group.
Figure JPOXMLDOC01-appb-C000006
 式(a2)中、
 Y及びYは、それぞれ独立して、水素原子、水酸基、置換基を有していてもよい炭素数1~8のアルコキシ基、又は、(メタ)アクリロイル基を有する基を示し、
 Y及びYは、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~18の炭化水素基、又は、(メタ)アクリロイル基を有する基を示し、
 Y、Y、Y又はYのうち少なくとも1つが、(メタ)アクリロイル基を有する基である。
Figure JPOXMLDOC01-appb-C000006
In formula (a2),
Y 1 and Y 2 each independently represent a hydrogen atom, a hydroxyl group, an optionally substituted alkoxy group having 1 to 8 carbon atoms, or a group having a (meth) acryloyl group,
Y 3 and Y 4 each independently represent a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a group having a (meth) acryloyl group,
At least one of Y 1 , Y 2 , Y 3 or Y 4 is a group having a (meth) acryloyl group.
Figure JPOXMLDOC01-appb-C000007
 式(a3)中、
 Zは置換基を有していてもよい炭素数1~18の炭化水素基、置換基を有していてもよい炭素数1~18のアルキルカルボニルオキシアルキル基、置換基を有していてもよい炭素数1~18のアルコキシカルボニルアルキル基、又は置換基を有していてもよい炭素数1~18のアルコキシアルキル基を示し、
 Z、Z、Z、Z、Z及びZは、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~18の炭化水素基、又は置換基を有していてもよい炭素数1~8のアルコキシ基を示し、
 Zは水素原子、又は、(メタ)アクリロイル基を有する基を示し、
 Zは水素原子、水酸基、置換基を有していてもよい炭素数1~18の炭化水素基、置換基を有していてもよい炭素数1~8のアルコキシ基、又は、(メタ)アクリロイル基を有する基を示し、
 Z又はZのうち少なくとも1つは、(メタ)アクリロイル基を有する基である。
Figure JPOXMLDOC01-appb-C000007
In formula (a3),
Z 1 has an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an optionally substituted alkylcarbonyloxyalkyl group having 1 to 18 carbon atoms, and a substituent. An optionally substituted alkoxycarbonylalkyl group having 1 to 18 carbon atoms, or an optionally substituted alkoxyalkyl group having 1 to 18 carbon atoms;
Z 2 , Z 4 , Z 5 , Z 6 , Z 8 and Z 9 are each independently a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a substituent. An alkoxy group having 1 to 8 carbon atoms which may be present;
Z 3 represents a hydrogen atom or a group having a (meth) acryloyl group,
Z 7 represents a hydrogen atom, a hydroxyl group, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an optionally substituted alkoxy group having 1 to 8 carbon atoms, or (meth) A group having an acryloyl group;
At least one of Z 3 and Z 7 is a group having a (meth) acryloyl group.
 上記のように第1のラジカル重合性成分及び第2のラジカル重合性成分を含有する光学樹脂組成物は、低いアッベ数及び高い部分分散比を示し、しかも優れた耐光性、高い光透過率及び高い耐熱性を有する光学部材用の樹脂材料を形成することができる。 As described above, the optical resin composition containing the first radical polymerizable component and the second radical polymerizable component exhibits a low Abbe number and a high partial dispersion ratio, and has excellent light resistance, high light transmittance, and A resin material for an optical member having high heat resistance can be formed.
 本発明の別の一側面は、上記光学樹脂組成物中の第1のラジカル重合性成分及び第2のラジカル重合性成分のラジカル重合により形成された重合体を含む樹脂材料からなる光学レンズに関する。この光学レンズは、低いアッベ数及び高い部分分散比を示し、しかも優れた耐光性、高い光透過率及び高い耐熱性を有することができる。 Another aspect of the present invention relates to an optical lens made of a resin material including a polymer formed by radical polymerization of a first radical polymerizable component and a second radical polymerizable component in the optical resin composition. The optical lens can exhibit a low Abbe number and a high partial dispersion ratio, and can have excellent light resistance, high light transmittance, and high heat resistance.
 本発明に係る光学樹脂組成物は、低いアッベ数及び高い部分分散比を示し、しかも優れた耐光性、高い光透過率及び高い耐熱性を有する光学部材用の樹脂材料を形成することができる。この樹脂材料の成形体を光学レンズとして用いることにより、光学系の色収差を効率的に取り除くことができる。 The optical resin composition according to the present invention can form a resin material for an optical member that exhibits a low Abbe number and a high partial dispersion ratio, and has excellent light resistance, high light transmittance, and high heat resistance. By using this molded body of resin material as an optical lens, chromatic aberration of the optical system can be efficiently removed.
光学レンズの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of an optical lens.
 以下、本発明のいくつかの実施形態について詳細に説明する。 Hereinafter, some embodiments of the present invention will be described in detail.
 本明細書において、「(メタ)アクリ」は、「アクリ」及び「メタアクリ」を意味する。 In this specification, “(meth) acryl” means “acryl” and “metaacryl”.
 一実施形態に係る光学樹脂組成物は、式(a1)、(a2)又は(a3)で表される少なくとも1種のラジカル重合性化合物からなる第1のラジカル重合性成分と、(B)第1のラジカル重合性成分とは異なるラジカル重合性化合物からなる第2のラジカル重合性成分とを含有する。第1のラジカル重合性成分及び第2のラジカル重合性成分がラジカル重合したときに、これらラジカル重合性成分の重合体を含む固形の樹脂材料が形成される。例えば、第1のラジカル重合性成分、又は第2のラジカル重合性成分のうち少なくとも一方が、2以上のラジカル重合性基を有する多官能のラジカル重合性化合物を含んでいる場合、架橋重合体を含む樹脂材料(硬化物)が形成される。 An optical resin composition according to an embodiment includes a first radical polymerizable component composed of at least one radical polymerizable compound represented by formula (a1), (a2), or (a3), and (B) And a second radical polymerizable component made of a radical polymerizable compound different from the first radical polymerizable component. When the first radical polymerizable component and the second radical polymerizable component undergo radical polymerization, a solid resin material containing a polymer of these radical polymerizable components is formed. For example, when at least one of the first radical polymerizable component or the second radical polymerizable component contains a polyfunctional radical polymerizable compound having two or more radical polymerizable groups, a crosslinked polymer is used. A resin material (cured product) is formed.
 本実施形態に係る光学樹脂組成物から形成される樹脂材料のアッベ数νd及び部分分散比θg,Fは、以下の式を満たす。これら式が満たされることは、樹脂材料が、比較的低いアッベ数を示しながら、顕著に高い部分分散比を示すことを意味する。
18≦νd≦25
θg,F≧0.700
The Abbe number νd and the partial dispersion ratio θg, F of the resin material formed from the optical resin composition according to this embodiment satisfy the following expressions. Satisfaction of these equations means that the resin material exhibits a significantly high partial dispersion ratio while exhibiting a relatively low Abbe number.
18 ≦ νd ≦ 25
θg, F ≧ 0.700
 (A)第1のラジカル重合性成分は、式(a1)で表されるラジカル重合性化合物、式(a2)で表されるラジカル重合性化合物、式(a3)で表されるラジカル重合性化合物、又はこれらから選ばれる2種以上の組み合わせからなる。第1のラジカル重合性成分を構成する式(a1)、(a2)又は(a3)で表されるラジカル重合性化合物は、それぞれ1個以上の(メタ)アクリロイル基を有する。式(a1)、(a2)又は(a3)で表されるラジカル重合性化合物は、1個の(メタ)アクリロイル基を有する単官能のラジカル重合性化合物であってもよい。 (A) The first radical polymerizable component is a radical polymerizable compound represented by formula (a1), a radical polymerizable compound represented by formula (a2), or a radical polymerizable compound represented by formula (a3). Or a combination of two or more selected from these. Each of the radically polymerizable compounds represented by the formula (a1), (a2) or (a3) constituting the first radically polymerizable component has one or more (meth) acryloyl groups. The radically polymerizable compound represented by the formula (a1), (a2) or (a3) may be a monofunctional radically polymerizable compound having one (meth) acryloyl group.
 式(a1)で表されるラジカル重合性化合物は、ベンゾトリアゾール骨格を有し、X、X又はXのうち少なくとも1つにおいて(メタ)アクリロイル基を有する。 The radically polymerizable compound represented by the formula (a1) has a benzotriazole skeleton, and has a (meth) acryloyl group in at least one of X 1 , X 4 and X 5 .
 式(a1)中のXで示されるハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。Xが塩素原子であってもよい。 Examples of the halogen atom represented by X 1 in the formula (a1) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. X 1 may be a chlorine atom.
 式(a1)が置換基を有する炭素数1~18の炭化水素基であるとき、置換基は、例えばハロゲノ基、アルコキシ基又はヒドロキシ基であってもよい。以下、説明されるその他の化合物における置換基の具体例も同様である。式(a1)中のXで示される、置換基を有していてもよい炭素数1~18の炭化水素基の例としては、メチル基、エチル基、2-メトキシエチル基、n-プロピル基、イソプロピル基、3-クロロ-n-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、4-ヒドロキシ-n-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、6-フェニル-n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基、1,1,3,3-テトラメチルブチル基、n-ドデシル基、n-オクタデシル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、3-クロロフェニル基、4-ブロモフェニル基、3,4-ジクロロフェニル基、ナフチル基、ベンジル基、フェネチル基、及び1-メチル-1-フェネチル基等が挙げられる。Xは炭素数1~8の炭化水素基であってもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、n-ペンチル基、tert-ペンチル基、n-ヘキシル基、又はn-オクチル基であってもよい。 When the formula (a1) is a hydrocarbon group having 1 to 18 carbon atoms having a substituent, the substituent may be, for example, a halogeno group, an alkoxy group or a hydroxy group. The same applies to specific examples of substituents in other compounds described below. Examples of the optionally substituted hydrocarbon group having 1 to 18 carbon atoms represented by X 1 in the formula (a1) include a methyl group, an ethyl group, a 2-methoxyethyl group, and n-propyl. Group, isopropyl group, 3-chloro-n-propyl group, n-butyl group, sec-butyl group, tert-butyl group, 4-hydroxy-n-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert -Pentyl group, n-hexyl group, isohexyl group, cyclohexyl group, 6-phenyl-n-hexyl group, n-heptyl group, n-octyl group, isooctyl group, 1,1,3,3-tetramethylbutyl group, n-dodecyl group, n-octadecyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 3-chlorophenyl group, 4-bromophenyl Group, 3,4-dichlorophenyl group, naphthyl group, benzyl group, phenethyl group, 1-methyl-1-phenethyl group and the like. X 1 may be a hydrocarbon group having 1 to 8 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, isopentyl group, neopentyl group, It may be an n-pentyl group, a tert-pentyl group, an n-hexyl group, or an n-octyl group.
 式(a1)中のXで示される、置換基を有していてもよい炭素数1~18のアルコキシカルボニルアルキル基の例としては、メトキシカルボニルエチル基、エトキシカルボニルエチル基、n-オクトキシカルボニルエチル基、イソオクチルオキシカルボニルエチル基、n-ドデシルオキシカルボニルエチル基、メトキシカルボニルプロピル基、エトキシカルボニルプロピル基、n-オクトキシカルボニルプロピル基、イソオクチルオキシカルボニルプロピル基、及びn-ドデシルオキシカルボニルプロピル基等が挙げられる。Xがメトキシカルボニルエチル基、エトキシカルボニルエチル基、n-オクトキシカルボニルエチル基、又はイソオクチルオキシカルボニルエチル基であってもよい。アルコキシカルボニルアルキル基の炭素数は、アルコキシカルボニルアルキル基に含まれるアルコキシ部分、カルボニル部分、及びアルキル部分に含まれる炭素原子の総数を意味する。 Examples of the alkoxycarbonylalkyl group having 1 to 18 carbon atoms which may have a substituent represented by X 1 in the formula (a1) include a methoxycarbonylethyl group, an ethoxycarbonylethyl group, n-octoxy Carbonylethyl group, isooctyloxycarbonylethyl group, n-dodecyloxycarbonylethyl group, methoxycarbonylpropyl group, ethoxycarbonylpropyl group, n-octoxycarbonylpropyl group, isooctyloxycarbonylpropyl group, and n-dodecyloxycarbonyl A propyl group etc. are mentioned. X 1 may be a methoxycarbonylethyl group, an ethoxycarbonylethyl group, an n-octoxycarbonylethyl group, or an isooctyloxycarbonylethyl group. The number of carbon atoms of the alkoxycarbonylalkyl group means the total number of carbon atoms contained in the alkoxy moiety, the carbonyl moiety, and the alkyl moiety contained in the alkoxycarbonylalkyl group.
 式(a1)中のXで示される、(メタ)アクリロイル基を有する基の例としては、アクリロイル基、アクリロイルオキシ基、アクリロイルオキシエチル基、メタクリロイル基、メタクリロイルオキシ基、及びメタクリロイルオキシエチル基等が挙げられる。Xがアクリロイルオキシエチル基、又はメタクリロイルオキシエチル基であってもよい。 Examples of the group having a (meth) acryloyl group represented by X 1 in the formula (a1) include an acryloyl group, an acryloyloxy group, an acryloyloxyethyl group, a methacryloyl group, a methacryloyloxy group, and a methacryloyloxyethyl group. Is mentioned. X 1 may be an acryloyloxyethyl group or a methacryloyloxyethyl group.
 式(a1)中のX又はXで示される、ハロゲン原子及び置換基を有していてもよい炭素数1~18の炭化水素基は、Xで示される、ハロゲン原子及び置換基を有していてもよい炭素数1~18の炭化水素基と同義である。 The hydrocarbon group having 1 to 18 carbon atoms which may have a halogen atom and a substituent represented by X 2 or X 3 in the formula (a1) is a halogen atom and a substituent represented by X 1. It is synonymous with the C1-C18 hydrocarbon group which may have.
 式(a1)中のXで示される、置換基を有していてもよい炭素数1~18の炭化水素基は、Xで示される、置換基を有していてもよい炭素数1~18の炭化水素基と同義である。 Represented by X 4 in the formula (a1), a hydrocarbon group which has carbon atoms 1 be ~ 18 have a substituent, represented by X 1, carbon atoms which may have a substituent 1 Synonymous with ˜18 hydrocarbon groups.
 式(a1)中のXで示される、(メタ)アクリロイル基を有する基の例としては、アクリロイル基、2-(アクリロイルオキシ)エチルカルバモイル基、メタクリロイル基、及び2-(メタクリロイルオキシ)エチルカルバモイル基等が挙げられる。 Examples of the group having a (meth) acryloyl group represented by X 4 in the formula (a1) include an acryloyl group, 2- (acryloyloxy) ethylcarbamoyl group, methacryloyl group, and 2- (methacryloyloxy) ethylcarbamoyl. Groups and the like.
 式(a1)中のXで示される、ハロゲン原子及び置換基を有していてもよい炭素数1~18の炭化水素基は、Xで示される、ハロゲン原子及び置換基を有していてもよい炭素数1~18の炭化水素基と同義である。 The hydrocarbon group having 1 to 18 carbon atoms which may have a halogen atom and a substituent represented by X 5 in the formula (a1) has a halogen atom and a substituent represented by X 1. It is synonymous with a hydrocarbon group having 1 to 18 carbon atoms.
 式(a1)中のXで示される、(メタ)アクリロイル基を有する基の例としては、アクリロイル基、アクリロイルオキシ基、アクリロイルオキシエチル基、アクリロイルオキシエトキシ基、メタクリロイル基、メタクリロイルオキシ基、メタクリロイルオキシエチル基、及びメタクリロイルオキシエトキシ基等が挙げられる。Xがアクリロイルオキシエトキシ基、又はメタクリロイルオキシエトキシ基であってもよい。 Examples of the group having a (meth) acryloyl group represented by X 5 in the formula (a1) include an acryloyl group, an acryloyloxy group, an acryloyloxyethyl group, an acryloyloxyethoxy group, a methacryloyl group, a methacryloyloxy group, and a methacryloyl group. Examples thereof include an oxyethyl group and a methacryloyloxyethoxy group. X 5 may be an acryloyloxyethoxy group or a methacryloyloxyethoxy group.
 式(a1)で表されるラジカル重合性化合物の具体例としては、2-[2-ヒドロキシ-5-[2-(メタクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール(例えば、商品名「RUVA-93」(大塚化学(株)製)、又は東京化成(株)製)、2-[2-ヒドロキシ-3-tert-ブチル-5-[2-(メタクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-5-メチルフェニル)-5-[2-(メタクリロイルオキシ)エチル]-2H-ベンゾトリアゾール、2-[2-(2-ヒドロキシ-4-オクチルオキシフェニル)-2H-1,2,3-ベンゾトリアゾール-5-イルオキシ]エチルメタクリレート、2-[2-(2-(メタクリロイルオキシ)エチルカルバモイルオキシ)-5-[2-(メタクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール、及び2-[2-メタクリロイルオキシ-5-[2-(メタクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール等が挙げられる。 Specific examples of the radical polymerizable compound represented by the formula (a1) include 2- [2-hydroxy-5- [2- (methacryloyloxy) ethyl] phenyl] -2H-benzotriazole (for example, trade name “RUVA” -93 "(manufactured by Otsuka Chemical Co., Ltd.) or Tokyo Chemical Industry Co., Ltd.), 2- [2-hydroxy-3-tert-butyl-5- [2- (methacryloyloxy) ethyl] phenyl] -2H- Benzotriazole, 2- (2-hydroxy-5-methylphenyl) -5- [2- (methacryloyloxy) ethyl] -2H-benzotriazole, 2- [2- (2-hydroxy-4-octyloxyphenyl)- 2H-1,2,3-benzotriazol-5-yloxy] ethyl methacrylate, 2- [2- (2- (methacryloyloxy) ethylcarbamo Ruoxy) -5- [2- (methacryloyloxy) ethyl] phenyl] -2H-benzotriazole, 2- [2-methacryloyloxy-5- [2- (methacryloyloxy) ethyl] phenyl] -2H-benzotriazole, etc. Is mentioned.
 式(a2)で表されるラジカル重合性化合物は、ベンゾフェノン骨格を有し、Y、Y、Y又はYのうち少なくとも1つにおいて(メタ)アクリロイル基を有する。 The radically polymerizable compound represented by the formula (a2) has a benzophenone skeleton, and has a (meth) acryloyl group in at least one of Y 1 , Y 2 , Y 3 or Y 4 .
 式(a2)中のY又はYで示される、置換基を有していてもよい炭素数1~8のアルコキシ基の例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、4-ヒドロキシ-n-ブトキシ基、n-ペントキシ基、イソペントキシ基、ネオペントキシ基、tert-ペントキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、イソオクチルオキシ基、及び1,1,3,3-テトラメチルブトキシ基等が挙げられる。Y及びYは、それぞれ独立に、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、又はn-オクチルオキシ基であってもよい。 Examples of the optionally substituted alkoxy group represented by Y 1 or Y 2 in the formula (a2) having 1 to 8 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group Group, n-butoxy group, sec-butoxy group, tert-butoxy group, 4-hydroxy-n-butoxy group, n-pentoxy group, isopentoxy group, neopentoxy group, tert-pentoxy group, n-hexyloxy group, isohexyl Examples thereof include an oxy group, a cyclohexyloxy group, an n-heptyloxy group, an n-octyloxy group, an isooctyloxy group, and a 1,1,3,3-tetramethylbutoxy group. Y 1 and Y 2 are each independently methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-hexyloxy group, isohexyloxy group Or a n-octyloxy group.
 式(a2)中のY又はYで示される、(メタ)アクリロイル基を有する基の例としては、アクリロイル基、アクリロイルオキシ基、アクリロイルオキシエチル基、アクリロイルオキシエトキシ基、2-(アクリロイルオキシ)エチルカルバモイルオキシ基、メタクリロイル基、メタクリロイルオキシ基、メタクリロイルオキシエチル基、メタクリロイルオキシエトキシ基、及び2-(メタクリロイルオキシ)エチルカルバモイルオキシ基等が挙げられる。Y及びYが、それぞれ独立して、アクリロイルオキシ基、2-(アクリロイルオキシ)エチルカルバモイルオキシ基、メタクリロイルオキシ基、又は2-(メタクリロイルオキシ)エチルカルバモイルオキシ基であってもよい。 Examples of the group having a (meth) acryloyl group represented by Y 1 or Y 2 in the formula (a2) include acryloyl group, acryloyloxy group, acryloyloxyethyl group, acryloyloxyethoxy group, 2- (acryloyloxy) ) An ethylcarbamoyloxy group, a methacryloyl group, a methacryloyloxy group, a methacryloyloxyethyl group, a methacryloyloxyethoxy group, and a 2- (methacryloyloxy) ethylcarbamoyloxy group. Y 1 and Y 2 may each independently be an acryloyloxy group, a 2- (acryloyloxy) ethylcarbamoyloxy group, a methacryloyloxy group, or a 2- (methacryloyloxy) ethylcarbamoyloxy group.
 式(a2)中のY又はYで示される、置換基を有していてもよい炭素数1~18の炭化水素基の例としては、メチル基、エチル基、2-メトキシエチル基、n-プロピル基、イソプロピル基、3-クロロ-n-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、4-ヒドロキシ-n-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、6-フェニル-n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基、1,1,3,3-テトラメチルブチル基、n-ドデシル基、n-オクタデシル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、3-クロロフェニル基、4-ブロモフェニル基、3,4-ジクロロフェニル基、ナフチル基、ベンジル基、フェネチル基、及び1-メチル-1-フェネチル基等が挙げられる。Y及びYは、それぞれ独立して炭素数1~8の炭化水素基であってもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、n-ペンチル基、tert-ペンチル基、n-ヘキシル基、又はn-オクチル基であってもよい。 Examples of the optionally substituted hydrocarbon group having 1 to 18 carbon atoms represented by Y 3 or Y 4 in the formula (a2) include a methyl group, an ethyl group, a 2-methoxyethyl group, n-propyl, isopropyl, 3-chloro-n-propyl, n-butyl, sec-butyl, tert-butyl, 4-hydroxy-n-butyl, n-pentyl, isopentyl, neopentyl Group, tert-pentyl group, n-hexyl group, isohexyl group, cyclohexyl group, 6-phenyl-n-hexyl group, n-heptyl group, n-octyl group, isooctyl group, 1,1,3,3-tetramethyl Butyl, n-dodecyl, n-octadecyl, phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 3-chlorophenyl, 4-butyl Mofeniru group, 3,4-dichlorophenyl group, a naphthyl group, a benzyl group, phenethyl group, and 1-methyl-1-phenethyl. Y 3 and Y 4 may each independently be a hydrocarbon group having 1 to 8 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group It may be a group, isopentyl group, neopentyl group, n-pentyl group, tert-pentyl group, n-hexyl group, or n-octyl group.
 式(a2)中のY又はYで示される、(メタ)アクリロイル基を有する基の例としては、アクリロイル基、2-(アクリロイルオキシ)エチルカルバモイル基、メタクリロイル基、及び2-(メタクリロイルオキシ)エチルカルバモイル基等が挙げられる。 Examples of the group having a (meth) acryloyl group represented by Y 3 or Y 4 in the formula (a2) include an acryloyl group, a 2- (acryloyloxy) ethylcarbamoyl group, a methacryloyl group, and 2- (methacryloyloxy). ) Ethylcarbamoyl group and the like.
 式(a2)で表されるラジカル重合性化合物の具体例としては、2-ヒドロキシ-4-アクリロイルオキシベンゾフェノン(例えば、FINIPHARMA LIMITED社製)、2-ヒドロキシ-4-メタクリロイルオキシベンゾフェノン(例えば、Alfa Aesar社製)、2,2’,4,4’-テトラメタクリイルオキシベンゾフェノン、及び2,2’,4,4’-テトラ[2-(メタクリイルオキシ)エチルカルバモイルオキシ]ベンゾフェノン等が挙げられる。 Specific examples of the radical polymerizable compound represented by the formula (a2) include 2-hydroxy-4-acryloyloxybenzophenone (for example, FINIPHARMA LIMITED), 2-hydroxy-4-methacryloyloxybenzophenone (for example, Alfa Aesar). 2,2 ′, 4,4′-tetramethacrylyloxybenzophenone, 2,2 ′, 4,4′-tetra [2- (methacrylyloxy) ethylcarbamoyloxy] benzophenone, and the like.
 式(a3)で表されるラジカル重合性化合物は、トリアジン骨格を有し、Z又はZのうち少なくとも1つにおいて(メタ)アクリロイル基を有する。 The radically polymerizable compound represented by the formula (a3) has a triazine skeleton, and has a (meth) acryloyl group in at least one of Z 3 and Z 7 .
 式(a3)中のZで示される、置換基を有していてもよい炭素数1~18の炭化水素基の例としては、メチル基、エチル基、2-メトキシエチル基、n-プロピル基、イソプロピル基、3-クロロ-n-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、4-ヒドロキシ-n-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、6-フェニル-n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基、1,1,3,3-テトラメチルブチル基、n-ドデシル基、n-オクタデシル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、3-クロロフェニル基、4-ブロモフェニル基、3,4-ジクロロフェニル基、ナフチル基、ベンジル基、フェネチル基、及び1-メチル-1-フェネチル基等が挙げられる。Zは、炭素数1~8の炭化水素基であってもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、n-ペンチル基、tert-ペンチル基、n-ヘキシル基、n-オクチル基、又はフェニル基であってもよい。 Examples of the optionally substituted hydrocarbon group having 1 to 18 carbon atoms represented by Z 1 in the formula (a3) include a methyl group, an ethyl group, a 2-methoxyethyl group, and n-propyl. Group, isopropyl group, 3-chloro-n-propyl group, n-butyl group, sec-butyl group, tert-butyl group, 4-hydroxy-n-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert -Pentyl group, n-hexyl group, isohexyl group, cyclohexyl group, 6-phenyl-n-hexyl group, n-heptyl group, n-octyl group, isooctyl group, 1,1,3,3-tetramethylbutyl group, n-dodecyl group, n-octadecyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 3-chlorophenyl group, 4-bromophenyl Group, 3,4-dichlorophenyl group, naphthyl group, benzyl group, phenethyl group, 1-methyl-1-phenethyl group and the like. Z 1 may be a hydrocarbon group having 1 to 8 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, isopentyl group, neopentyl group N-pentyl group, tert-pentyl group, n-hexyl group, n-octyl group, or phenyl group.
 式(a3)中のZで示される、置換基を有していてもよい炭素数1~18のアルキルカルボニルオキシアルキル基の例としては、メチルカルボニルオキシエチル基、エチルカルボニルオキシエチル基、及び(2-エチルヘキシル)カルボニルオキシエチル基等が挙げられる。Zが(2-エチルヘキシル)カルボニルオキシエチル基であってもよい。アルキルカルボニルオキシアルキル基の炭素数は、アルキルカルボニルオキシアルキル基に含まれる2つのアルキル部分、及びカルボニル部分に含まれる炭素原子の総数を意味する。 Examples of the alkylcarbonyloxyalkyl group having 1 to 18 carbon atoms which may have a substituent represented by Z 1 in the formula (a3) include a methylcarbonyloxyethyl group, an ethylcarbonyloxyethyl group, and And (2-ethylhexyl) carbonyloxyethyl group. Z 1 may be a (2-ethylhexyl) carbonyloxyethyl group. The carbon number of the alkylcarbonyloxyalkyl group means the total number of carbon atoms contained in the two alkyl moieties contained in the alkylcarbonyloxyalkyl group and the carbonyl moiety.
 式(a3)中のZで示される、置換基を有していてもよい炭素数1~18のアルコキシカルボニルアルキル基の例としては、メトキシカルボニルエチル基、エトキシカルボニルエチル基、n-オクトキシカルボニルエチル基、イソオクチルオキシカルボニルエチル基、n-ドデシルオキシカルボニルエチル基、メトキシカルボニルプロピル基、エトキシカルボニルプロピル基、n-オクトキシカルボニルプロピル基、イソオクチルオキシカルボニルプロピル基、及びn-ドデシルオキシカルボニルプロピル基等が挙げられる。Zが、メトキシカルボニルエチル基、エトキシカルボニルエチル基、n-オクトキシカルボニルエチル基、又はイソオクチルオキシカルボニルエチル基であってもよい。アルコキシカルボニルアルキル基の炭素数は、アルコキシカルボニルアルキル基に含まれるアルコキシ部分、カルボニル部分及びアルキル部分に含まれる炭素原子の総数を意味する。 Examples of the optionally substituted alkoxycarbonylalkyl group represented by Z 1 in formula (a3) include a methoxycarbonylethyl group, an ethoxycarbonylethyl group, n-octoxy Carbonylethyl group, isooctyloxycarbonylethyl group, n-dodecyloxycarbonylethyl group, methoxycarbonylpropyl group, ethoxycarbonylpropyl group, n-octoxycarbonylpropyl group, isooctyloxycarbonylpropyl group, and n-dodecyloxycarbonyl A propyl group etc. are mentioned. Z 1 may be a methoxycarbonylethyl group, an ethoxycarbonylethyl group, an n-octoxycarbonylethyl group, or an isooctyloxycarbonylethyl group. The number of carbon atoms of the alkoxycarbonylalkyl group means the total number of carbon atoms contained in the alkoxy moiety, carbonyl moiety and alkyl moiety contained in the alkoxycarbonylalkyl group.
 式(a3)中のZで示される、置換基を有していてもよい炭素数1~18のアルコキシアルキル基の例としては、メトキシメチル基、メトキシエチル基、3-メトキシプロピル基、エトキシメチル基、エトキシエチル基、3-エトキシプロピル基、3-(n-ヘキシルオキシ)プロピル基、(2-エチルヘキシルオキシ)-2-ヒドロキシプロピル基、及び(ドデシルオキシ)-2-ヒドロキシプロピル基等が挙げられる。Zが(2-エチルヘキシルオキシ)-2-ヒドロキシプロピル基であってもよい。アルコキシアルキル基の炭素数は、アルコキシアルキル基に含まれるアルコキシ部分及びアルキル部分に含まれる炭素原子の総数を意味する。 Examples of the optionally substituted alkoxyalkyl group represented by Z 1 in the formula (a3) include a methoxymethyl group, a methoxyethyl group, a 3-methoxypropyl group, an ethoxy group. Methyl group, ethoxyethyl group, 3-ethoxypropyl group, 3- (n-hexyloxy) propyl group, (2-ethylhexyloxy) -2-hydroxypropyl group, (dodecyloxy) -2-hydroxypropyl group, etc. Can be mentioned. Z 1 may be a (2-ethylhexyloxy) -2-hydroxypropyl group. The carbon number of the alkoxyalkyl group means the total number of carbon atoms contained in the alkoxy moiety and the alkyl moiety contained in the alkoxyalkyl group.
 式(a3)中のZ、Z、Z、Z、Z又はZで示される、置換基を有していてもよい炭素数1~18の炭化水素基は、Zで示される、置換基を有していてもよい炭素数1~18の炭化水素基と同義である。 The optionally substituted hydrocarbon group having 1 to 18 carbon atoms represented by Z 2 , Z 4 , Z 5 , Z 6 , Z 8 or Z 9 in the formula (a3) is Z 1 It is synonymous with the C1-C18 hydrocarbon group which may have a substituent shown.
 式(a3)中のZ、Z、Z、Z、Z又はZで示される、置換基を有していてもよい炭素数1~8のアルコキシ基の例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、4-ヒドロキシ-n-ブトキシ基、n-ペントキシ基、イソペントキシ基、ネオペントキシ基、tert-ペントキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、シクロヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、イソオクチルオキシ基、及び1,1,3,3-テトラメチルブトキシ基等が挙げられる。Z、Z、Z、Z、Z及びZが、それぞれ独立して、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、又はn-オクチルオキシ基であってもよい。 Examples of the optionally substituted alkoxy group having 1 to 8 carbon atoms represented by Z 2 , Z 4 , Z 5 , Z 6 , Z 8 or Z 9 in the formula (a3) include methoxy Group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, 4-hydroxy-n-butoxy group, n-pentoxy group, isopentoxy group, neopentoxy group, tert -Pentoxy group, n-hexyloxy group, isohexyloxy group, cyclohexyloxy group, n-heptyloxy group, n-octyloxy group, isooctyloxy group, 1,1,3,3-tetramethylbutoxy group, etc. Is mentioned. Z 2 , Z 4 , Z 5 , Z 6 , Z 8 and Z 9 are each independently methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert It may be a -butoxy group, n-hexyloxy group, isohexyloxy group, or n-octyloxy group.
 式(a3)中のZで示される、(メタ)アクリロイル基を有する基の例としては、アクリロイル基、2-(アクリロイルオキシ)エチルカルバモイル基、メタクリロイル基、及び2-(メタクリロイルオキシ)エチルカルバモイル基等が挙げられる。 Examples of the group having a (meth) acryloyl group represented by Z 3 in the formula (a3) include an acryloyl group, 2- (acryloyloxy) ethylcarbamoyl group, methacryloyl group, and 2- (methacryloyloxy) ethylcarbamoyl. Groups and the like.
 式(a3)中のZで示される、置換基を有していてもよい炭素数1~18の炭化水素基は、Zで示される、置換基を有していてもよい炭素数1~18の炭化水素基と同義である。式(a3)中のZで示される、置換基を有していてもよい炭素数1~8のアルコキシ基は、Z等で示される、置換基を有していてもよい炭素数1~8のアルコキシ基と同義である。 Represented by Z 7 in formula (a3), a hydrocarbon group which has carbon atoms 1 be ~ 18 have a substituent, represented by Z 1, carbon atoms which may have a substituent 1 Synonymous with ˜18 hydrocarbon groups. The alkoxy group having 1 to 8 carbon atoms which may have a substituent represented by Z 7 in formula (a3) is an optionally substituted carbon group represented by Z 2 or the like. Synonymous with the alkoxy group of ˜8.
 式(a3)中のZで示される、(メタ)アクリロイル基を有する基の例としては、アクリロイル基、アクリロイルオキシ基、アクリロイルオキシエチル基、アクリロイルオキシエトキシ基、2-(アクリロイルオキシ)エチルカルバモイルオキシ基、メタクリロイル基、メタクリロイルオキシ基、メタクリロイルオキシエチル基、メタクリロイルオキシエトキシ基、及び2-(メタクリロイルオキシ)エチルカルバモイルオキシ基等が挙げられる。Zがアクリロイルオキシ基、2-(アクリロイルオキシ)エチルカルバモイルオキシ基、メタクリロイルオキシ基、又は2-(メタクリロイルオキシ)エチルカルバモイルオキシ基であってもよい。 Examples of the group having a (meth) acryloyl group represented by Z 7 in the formula (a3) include an acryloyl group, an acryloyloxy group, an acryloyloxyethyl group, an acryloyloxyethoxy group, and 2- (acryloyloxy) ethylcarbamoyl. Examples thereof include an oxy group, a methacryloyl group, a methacryloyloxy group, a methacryloyloxyethyl group, a methacryloyloxyethoxy group, and a 2- (methacryloyloxy) ethylcarbamoyloxy group. Z 7 may be an acryloyloxy group, a 2- (acryloyloxy) ethylcarbamoyloxy group, a methacryloyloxy group, or a 2- (methacryloyloxy) ethylcarbamoyloxy group.
 式(a3)で表されるラジカル重合性化合物の具体例としては、式(a3)においてZがイソオクチルオキシカルボニルエチル基で、Z、Z、Z、Z及びZが水素原子で、Zが2-(アクリロイルオキシ)エチルカルバモイル基で、Z及びZがフェニル基である化合物、式(a3)においてZがn-オクチル基で、Z、Z及びZが水素原子で、Z、Z、Z及びZがメチル基で、Zが2-(メタクリロイルオキシ)エチルカルバモイル基である化合物、及び、式(a3)においてZがn-ブチル基で、Z、Z及びZが水素原子で、Z、Z及びZがn-ブトキシ基で、Zがメタクリロイル基で、Zがメタクリロイルオキシ基である化合物等が挙げられる。 As a specific example of the radically polymerizable compound represented by the formula (a3), in the formula (a3), Z 1 is an isooctyloxycarbonylethyl group, and Z 2 , Z 4 , Z 5 , Z 7 and Z 8 are hydrogen. A compound in which Z 3 is a 2- (acryloyloxy) ethylcarbamoyl group and Z 6 and Z 9 are phenyl groups, Z 1 is an n-octyl group in formula (a3), Z 2 , Z 5 and Z A compound in which 8 is a hydrogen atom, Z 4 , Z 6 , Z 7 and Z 9 are methyl groups and Z 3 is a 2- (methacryloyloxy) ethylcarbamoyl group, and in formula (a3), Z 1 is n- Compounds such as a butyl group, Z 2 , Z 5 and Z 8 are hydrogen atoms, Z 4 , Z 6 and Z 9 are n-butoxy groups, Z 3 is a methacryloyl group and Z 7 is a methacryloyloxy group. Can be mentioned.
 式(a1)、(a2)又は(a3)で表されるラジカル重合性化合物は、例えば、市販のベンゾトリアゾール化合物、ベンゾフェノン化合物、トリアジン化合物(以下「原料化合物」という。)に(メタ)アクリロイル基を導入することにより、合成することができる。原料化合物に(メタ)アクリロイル基を導入する方法は、特に限定されず、通常の方法を採用できる。例えば、水酸基、アミノ基、メルカプト基等の活性水素基を有する原料化合物に、塩基存在下で(メタ)アクリロイルクロリドを反応させる方法、前記原料化合物に塩基存在下でメタクリル酸2-ブロモエチルを反応させる方法(特開2012-072333)、前記原料化合物にスズ系触媒及び/又はアミン系触媒存在下で(メタ)アクリロイル基を有するイソシアネート化合物を反応させる方法(Voprosy Khimii i Khimicheskoi Tekhnologii,1983,70,16-22)により、式(a1)、(a2)又は(a3)で表されるラジカル重合性化合物を合成することができる。なお、式(a1)、(a2)又は(a3)で表されるラジカル重合性化合物は市販されている化合物を用いることもできる。 The radical polymerizable compound represented by the formula (a1), (a2) or (a3) is, for example, a commercially available benzotriazole compound, benzophenone compound, triazine compound (hereinafter referred to as “raw material compound”) or a (meth) acryloyl group. Can be synthesized by introducing. The method for introducing the (meth) acryloyl group into the raw material compound is not particularly limited, and a usual method can be adopted. For example, a method in which (meth) acryloyl chloride is reacted in the presence of a base with a raw material compound having an active hydrogen group such as a hydroxyl group, an amino group, or a mercapto group, and 2-bromoethyl methacrylate is reacted with the raw material compound in the presence of a base. Method (Japanese Patent Laid-Open No. 2012-072333), a method in which an isocyanate compound having a (meth) acryloyl group is reacted with the raw material compound in the presence of a tin-based catalyst and / or an amine-based catalyst (Voprosy Khimiiiii Khmicheskoi Technologii, 1983, 70, 16 According to −22), the radically polymerizable compound represented by the formula (a1), (a2) or (a3) can be synthesized. In addition, the commercially available compound can also be used for the radically polymerizable compound represented by Formula (a1), (a2) or (a3).
 本実施形態に係る光学樹脂組成物は、(B)第2のラジカル重合性成分を更に含有する。第2のラジカル重合性成分は、式(a1)、(a2)、又は(a2)で表されるラジカル重合性化合物以外の化合物から選択される1種又は2種以上のラジカル重合性化合物(以下「第2のラジカル重合性化合物」ということがある。)からなる。 The optical resin composition according to this embodiment further contains (B) a second radical polymerizable component. The second radical polymerizable component is one or more radical polymerizable compounds selected from compounds other than the radical polymerizable compound represented by formula (a1), (a2), or (a2) "Sometimes referred to as" second radical polymerizable compound ").
 第2のラジカル重合性化合物は、1個以上のラジカル重合性基を有する。第2のラジカル重合性成分は、多官能ラジカル重合性化合物を1種以上含んでいてもよい。第2のラジカル重合性成分が多官能ラジカル重合性化合物を含むことで架橋重合体が形成され、より高い耐熱性を有する樹脂材料が形成される。架橋重合体を含む樹脂材料は、光学樹脂組成物の硬化物ということもできる。ここで、「多官能ラジカル重合性化合物」は、分子内に2個以上のラジカル重合性基を有する化合物を意味する。「単官能ラジカル重合性化合物」は、分子内に1個のラジカル重合性基を有する化合物を意味する。 The second radical polymerizable compound has one or more radical polymerizable groups. The second radical polymerizable component may contain one or more polyfunctional radical polymerizable compounds. When the second radical polymerizable component contains a polyfunctional radical polymerizable compound, a crosslinked polymer is formed, and a resin material having higher heat resistance is formed. It can also be said that the resin material containing the crosslinked polymer is a cured product of the optical resin composition. Here, the “polyfunctional radically polymerizable compound” means a compound having two or more radically polymerizable groups in the molecule. “Monofunctional radically polymerizable compound” means a compound having one radically polymerizable group in the molecule.
 第2のラジカル重合性化合物のラジカル重合性基は、(メタ)アクリル基、ビニル基((メタ)アクリル基に含まれるビニル基は除く。)、又はこれらの組み合わせであることができる。第2のラジカル重合性化合物の例としては、ラジカル重合性基及びジフェニルスルフィド骨格を有するスルフィド化合物、(メタ)アクリル酸、(メタ)アクリル酸エステル、及びその他のビニル系化合物等が挙げられる。 The radical polymerizable group of the second radical polymerizable compound can be a (meth) acryl group, a vinyl group (excluding a vinyl group contained in the (meth) acryl group), or a combination thereof. Examples of the second radical polymerizable compound include a sulfide compound having a radical polymerizable group and a diphenyl sulfide skeleton, (meth) acrylic acid, (meth) acrylic acid ester, and other vinyl compounds.
 前記(メタ)アクリル酸エステルとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-メチルブチル(メタ)アクリレート、2-エチルブチル(メタ)アクリレート、3-メチルブチル(メタ)アクリレート、1,3-ジメチルブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート、3-エトキシプロピルアクリレート、2-エトキシブチルアクリレート、3-エトキシブチルアクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、エトキシO-フェニルフェノール(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、トリフロロエチルメタクリレート、及びグリシジル(メタ)アクリレート等の単官能(メタ)アクリル酸エステル;並びに、
エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリル酸エステルが挙げられる。
Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) Acrylate, tert-butyl (meth) acrylate, 2-methylbutyl (meth) acrylate, 2-ethylbutyl (meth) acrylate, 3-methylbutyl (meth) acrylate, 1,3-dimethylbutyl (meth) acrylate, pentyl (meth) acrylate , Hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-methoxyethyl acrylate, 2-ethoxy Ethyl acrylate, 3-ethoxypropyl acrylate, 2-ethoxybutyl acrylate, 3-ethoxybutyl acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, phenyl (meth) acrylate, benzyl ( (Meth) acrylate, phenylethyl (meth) acrylate, phenoxyethyl (meth) acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, isobornyl (meth) acrylate, ethoxy O-phenylphenol (meth) acrylate, cyclic trimethylolpropane formal (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, trifluoroethyl methacrylate Rate, and the monofunctional (meth) acrylic acid esters such as glycidyl (meth) acrylate; and,
Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene Glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1 , 5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, tricyclodecane Methanol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate And other polyfunctional (meth) acrylic acid esters.
 前記ビニル系化合物としては、スチレン、α-メチルスチレン、2,4-ジメチルスチレン、α-エチルスチレン、α-ブチルスチレン、α-ヘキシルスチレン、4-クロロスチレン、3-クロロスチレン、4-ブロモスチレン、4-ニトロスチレン、4-メトキシスチレン、ビニルトルエン、及びシクロヘキセン等の単官能ビニル系化合物、並びに、ジビニルベンゼン、4-ビニルシクロヘキセン、5-ビニルビシクロ[2,2,1]ヘプト-2-エン、ジフェン酸ジアリル、及びトリアリルトリアジン等の多官能ビニル化合物等が挙げられる。 Examples of the vinyl compound include styrene, α-methylstyrene, 2,4-dimethylstyrene, α-ethylstyrene, α-butylstyrene, α-hexylstyrene, 4-chlorostyrene, 3-chlorostyrene, and 4-bromostyrene. Monofunctional vinyl compounds such as 4-nitrostyrene, 4-methoxystyrene, vinyltoluene, and cyclohexene, and divinylbenzene, 4-vinylcyclohexene, 5-vinylbicyclo [2,2,1] hept-2-ene And polyfunctional vinyl compounds such as diallyl diphenate and triallyltriazine.
 前記ラジカル重合性基及びジフェニルスルフィド骨格を有するスルフィド化合物としては、下記式(b1)又は(b2)で表される少なくとも1種のスルフィド化合物が挙げられる。これらスルフィド化合物を含む光学樹脂組成物から形成された樹脂材料は、低いアッベ数、且つより一層高い部分分散比を示すことができる。また、樹脂材料の屈折率が高くなる傾向もある。 Examples of the sulfide compound having a radical polymerizable group and a diphenyl sulfide skeleton include at least one sulfide compound represented by the following formula (b1) or (b2). Resin materials formed from optical resin compositions containing these sulfide compounds can exhibit a low Abbe number and a higher partial dispersion ratio. In addition, the refractive index of the resin material tends to increase.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(b1)及び(b2)中、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子又は炭素数1~6のアルキル基を示し、nは0~10の整数を示し、Rは水素原子又はメチル基を示す。式(b2)中の2つのRは、同一であっても異なっていてもよく、同一であってよい。式(b1)中のnが0であってもよい。 In formulas (b1) and (b2), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom or an alkyl group having 1 to 6 carbon atoms, and n is 0 to 10 R 5 represents a hydrogen atom or a methyl group. Two R 5 in the formula (b2) may be the same or different, and may be the same. N in the formula (b1) may be 0.
 式(b1)又は(b2)中のR、R、R又はRで示されるハロゲン原子は、例えば、塩素原子、臭素原子、又はヨウ素原子であってもよい。式(b1)又は(b2)中のR、R、R又はRで示される、炭素数1~6のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、及びn-ヘキシル基等が挙げられる。式(b1)又は(b2)中のR、R、R及びRが、いずれも水素原子であってもよい。 The halogen atom represented by R 1 , R 2 , R 3 or R 4 in formula (b1) or (b2) may be, for example, a chlorine atom, a bromine atom, or an iodine atom. Examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 , R 2 , R 3 or R 4 in the formula (b1) or (b2) include methyl group, ethyl group, n-propyl group, isopropyl Group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and the like. R 1 , R 2 , R 3 and R 4 in formula (b1) or (b2) may all be hydrogen atoms.
 式(b1)で表されるスルフィド化合物の例としては、ビス(4-ビニルチオフェニル)スルフィド、ビス(3-メチル-4-ビニルチオフェニル)スルフィド、ビス(3,5-ジメチル-4-ビニルチオフェニル)スルフィド、ビス(2,3,5,6-テトラメチル-4-ビニルチオフェニル)スルフィド、ビス(3-ヘキシル-4-ビニルチオフェニル)スルフィド、ビス(3,5-ジヘキシル-4-ビニルチオフェニル)スルフィド、ビス(3-クロロ-4-ビニルチオフェニル)スルフィドビス(3,5-ジクロロ-4-ビニルチオフェニル)スルフィド、ビス(2,3,5,6-テトラクロロ-4-ビニルチオフェニル)スルフィド、ビス(3-ブロモ-4-ビニルチオフェニル)スルフィド、ビス(3,5-ジブロモ-4-ビニルチオフェニル)スルフィド、及びビス(2,3,5,6-テトラブロモ-4-ビニルチオフェニル)スルフィド等が挙げられる。式(b1)で表されるスルフィド化合物が、ビス(4-ビニルチオフェニル)スルフィド、ビス(3-メチル-4-ビニルチオフェニル)スルフィド、又はビス(3,5-ジメチル-4-ビニルチオフェニル)スルフィドであってもよく、ビス(4-ビニルチオフェニル)スルフィドであってもよい。 Examples of the sulfide compound represented by the formula (b1) include bis (4-vinylthiophenyl) sulfide, bis (3-methyl-4-vinylthiophenyl) sulfide, and bis (3,5-dimethyl-4-vinyl. Thiophenyl) sulfide, bis (2,3,5,6-tetramethyl-4-vinylthiophenyl) sulfide, bis (3-hexyl-4-vinylthiophenyl) sulfide, bis (3,5-dihexyl-4- Vinylthiophenyl) sulfide, bis (3-chloro-4-vinylthiophenyl) sulfide bis (3,5-dichloro-4-vinylthiophenyl) sulfide, bis (2,3,5,6-tetrachloro-4- Vinylthiophenyl) sulfide, bis (3-bromo-4-vinylthiophenyl) sulfide, bis (3,5-dibromo-4-bi) Thiophenyl) sulfide, and bis (2,3,5,6-tetrabromo-4-vinyl-thio-phenyl) sulfide, and the like. The sulfide compound represented by the formula (b1) is bis (4-vinylthiophenyl) sulfide, bis (3-methyl-4-vinylthiophenyl) sulfide, or bis (3,5-dimethyl-4-vinylthiophenyl). ) Sulfide or bis (4-vinylthiophenyl) sulfide.
 式(b2)で表されるスルフィド化合物の例としては、S,S’-(チオジ-p-フェニレン)ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(2-クロロベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(3-クロロベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(2,6-ジクロロベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(3,5-ジクロロベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(2-ブロモベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(3-ブロモベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(2,6-ジブロモベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(3,5-ジブロモベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(2-メチルベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(3-メチルベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(2,6-ジメチルベンゼン)]ビス(チオ(メタ)アクリレート)、S,S’-[4,4’-チオビス(3,5-ジメチルベンゼン)]ビス(チオ(メタ)アクリレート)、及びS,S’-[4,4’-チオビス(2-tert-ブチルベンゼン)]ビス(チオ(メタ)アクリレート)等が挙げられる。式(b2)で表されるスルフィド化合物が、S,S’-(チオジ-p-フェニレン)ビス(チオメタクリレート)、S,S’-[4,4’-チオビス(3,5-ジブロモベンゼン)]ビス(チオメタクリレート)、S,S’-[4,4’-チオビス(3,5-ジメチルベンゼン)]ビス(チオメタクリレート)、又はS,S’-(チオジ-p-フェニレン)ビス(チオアクリレート)であってもよく、S,S’-(チオジ-p-フェニレン)ビス(チオメタクリレート)であってもよい。 Examples of the sulfide compound represented by the formula (b2) include S, S ′-(thiodi-p-phenylene) bis (thio (meth) acrylate), S, S ′-[4,4′-thiobis (2 -Chlorobenzene)] bis (thio (meth) acrylate), S, S '-[4,4'-thiobis (3-chlorobenzene)] bis (thio (meth) acrylate), S, S'-[4,4 ' -Thiobis (2,6-dichlorobenzene)] bis (thio (meth) acrylate), S, S '-[4,4'-thiobis (3,5-dichlorobenzene)] bis (thio (meth) acrylate), S, S ′-[4,4′-thiobis (2-bromobenzene)] bis (thio (meth) acrylate), S, S ′-[4,4′-thiobis (3-bromobenzene)] bis (thio (Meth) acrylate), S, '-[4,4'-thiobis (2,6-dibromobenzene)] bis (thio (meth) acrylate), S, S'-[4,4'-thiobis (3,5-dibromobenzene)] bis ( Thio (meth) acrylate), S, S ′-[4,4′-thiobis (2-methylbenzene)] bis (thio (meth) acrylate), S, S ′-[4,4′-thiobis (3- Methylbenzene)] bis (thio (meth) acrylate), S, S ′-[4,4′-thiobis (2,6-dimethylbenzene)] bis (thio (meth) acrylate), S, S ′-[4 , 4′-thiobis (3,5-dimethylbenzene)] bis (thio (meth) acrylate), and S, S ′-[4,4′-thiobis (2-tert-butylbenzene)] bis (thio (meta ) Acrylate) and the like. The sulfide compound represented by the formula (b2) is S, S ′-(thiodi-p-phenylene) bis (thiomethacrylate), S, S ′-[4,4′-thiobis (3,5-dibromobenzene) ] Bis (thiomethacrylate), S, S ′-[4,4′-thiobis (3,5-dimethylbenzene)] bis (thiomethacrylate), or S, S ′-(thiodi-p-phenylene) bis (thio Acrylate) or S, S ′-(thiodi-p-phenylene) bis (thiomethacrylate).
 式(b1)で表されるスルフィド化合物は、例えば、式(b1)においてR~Rがすべて水素原子で、nが0であるビス(4-ビニルチオフェニル)スルフィドの場合、4,4’-チオジベンゼンチオールにジハロエタンを反応させた後、生成物をジメチルスルホキシド等の極性溶媒中で脱ハロゲン化水素させる方法(ЖypнaлOpгaничecкoй Xимии,т.28,вып.9 1905,1992)により得ることができる。この方法において、ジハロエタンの使用量及び仕込方法等の反応条件を変えることにより、式(b1)におけるnの数値が異なったビニルスルフィド化合物を得ることができる。あるいは、メルカプタン化合物とハロゲン化ビニルとを塩基の存在下で反応させる方法(特開平3-287572号公報)、特開2004-51488号公報に開示されているようにメルカプタン化合物と2-ハロゲノエタノールとを、アルカリ金属化合物の存在下で反応させた後、生成物をハロゲン化剤と反応させてジハロゲン化物を生成させることと、得られたジハロゲン化物を、特開2003-183246号公報に開示されているように、脂肪族炭化水素溶媒中において相間移動触媒の存在下でアルカリ金属化合物水溶液と不均一系で反応させることとを含む方法によって、式(b1)で表されるスルフィド化合物を得ることもできる。 The sulfide compound represented by the formula (b1) is, for example, a bis (4-vinylthiophenyl) sulfide in which R 1 to R 4 are all hydrogen atoms and n is 0 in the formula (b1). It can be obtained by reacting dihaloethane with '-thiodibenzenethiol and then dehydrohalogenating the product in a polar solvent such as dimethyl sulfoxide (Жypнa Op Opafa ничecкoй Xимии, т.28, вып.9 1905, 1992). it can. In this method, by changing reaction conditions such as the amount of dihaloethane used and the charging method, vinyl sulfide compounds having different values of n in formula (b1) can be obtained. Alternatively, a method of reacting a mercaptan compound and vinyl halide in the presence of a base (Japanese Patent Laid-Open No. 3-287572), or a mercaptan compound and 2-halogenoethanol as disclosed in Japanese Patent Laid-Open No. 2004-51488, Is reacted in the presence of an alkali metal compound, and then the product is reacted with a halogenating agent to form a dihalide, and the obtained dihalide is disclosed in JP-A No. 2003-183246. As described above, a sulfide compound represented by the formula (b1) may be obtained by a method including reacting with an alkali metal compound aqueous solution in a heterogeneous system in the presence of a phase transfer catalyst in an aliphatic hydrocarbon solvent. it can.
 式(b2)で表されるスルフィド化合物は、例えば、式(b2)において、R~Rがすべて水素原子で、Rがメチル基であるS,S’-(チオジ-p-フェニレン)ビス(チオメタクリレート)の場合、4,4’-チオジベンゼンチオールとアルカリ金属化合物とを反応させて得られる4,4’-チオジベンゼンチオールのアルカリ金属塩とメタクリロイルクロリドとを、非極性有機溶媒中で反応させる方法により、得ることができる。 The sulfide compound represented by the formula (b2) is, for example, S, S ′-(thiodi-p-phenylene) in which R 1 to R 4 are all hydrogen atoms and R 5 is a methyl group in the formula (b2) In the case of bis (thiomethacrylate), an alkali metal salt of 4,4′-thiodibenzenethiol obtained by reacting 4,4′-thiodibenzenethiol with an alkali metal compound and methacryloyl chloride are converted into nonpolar organic compounds. It can be obtained by a reaction in a solvent.
 第2のラジカル重合性成分は、式(b1)又は(b2)で表されるスルフィド化合物と、(メタ)アクリル酸、(メタ)アクリル酸エステル、及びその他のビニル系化合物から選ばれるその他のラジカル重合性化合物とを含んでいてもよい。第2のラジカル重合性成分として式(b1)又は(b2)で表されるスルフィド化合物と併用される(メタ)アクリル酸、(メタ)アクリル酸エステル、及びその他のビニル系化合物の例は、上述のものと同様である。 The second radically polymerizable component is a radical compound selected from the sulfide compound represented by formula (b1) or (b2), (meth) acrylic acid, (meth) acrylic acid ester, and other vinyl compounds. And a polymerizable compound. Examples of (meth) acrylic acid, (meth) acrylic acid ester, and other vinyl compounds used in combination with the sulfide compound represented by the formula (b1) or (b2) as the second radical polymerizable component are described above. Is the same as
 光学樹脂組成物中の各ラジカル重合性化合物の含有量は、それらの重合体を含む樹脂材料のアッベ数νd及び部分分散比θg,Fが上述の式を満たすように調整される。例えば、第1のラジカル重合性成分の比率が大きいと、アッベ数νdが低下し、部分分散比θg,Fが上昇する傾向がある。また、第2のラジカル重合性成分の比率が大きいと、部分分散比θg,Fが低下する傾向がある。より具体的には、例えば以下に例示する数値範囲を参照して各ラジカル重合性化合物の含有量を調整することにより、上述の式を満たすアッベ数νd及び部分分散比θg,Fを示す樹脂材料を与える光学樹脂組成物の配合比率を見出すことができる。 The content of each radical polymerizable compound in the optical resin composition is adjusted so that the Abbe number νd and the partial dispersion ratio θg, F of the resin material containing these polymers satisfy the above formula. For example, when the ratio of the first radical polymerizable component is large, the Abbe number νd tends to decrease and the partial dispersion ratio θg, F tends to increase. Further, when the ratio of the second radical polymerizable component is large, the partial dispersion ratio θg, F tends to decrease. More specifically, for example, a resin material exhibiting an Abbe number νd and a partial dispersion ratio θg, F satisfying the above formula by adjusting the content of each radical polymerizable compound with reference to the numerical ranges exemplified below. Can be found.
 (A)第1のラジカル重合性成分の合計の含有量は、第1のラジカル重合性成分及び第2のラジカル重合性成分の合計量100質量部に対して、3~80質量部、5~70質量部、又は5~60質量部であってもよい。 (A) The total content of the first radical polymerizable component is 3 to 80 parts by mass, 5 to 5 parts per 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. It may be 70 parts by mass or 5 to 60 parts by mass.
 式(a1)で表されるラジカル重合性化合物の含有量は、第1のラジカル重合性成分及び第2のラジカル重合性成分の合計量100質量部に対して、光透過率を高く維持する観点から、60質量部以下、50質量部以下又は30質量部以下であってもよく、部分分散比θg,Fを高める観点から3質量部以上、又は5質量部以上であってもよい。式(a2)で表されるラジカル重合性化合物の含有量は、第1のラジカル重合性成分及び第2のラジカル重合性成分の合計量100質量部に対して、光透過率を高く維持する観点から、80質量部以下であってもよく、部分分散比θg,Fを高める観点から30質量部以上であってもよい。式(a3)で表されるラジカル重合性化合物の含有量は、第1のラジカル重合性成分及び第2のラジカル重合性成分の合計量100質量部に対して、光透過率を高く維持する観点から、70質量部以下であってもよく、部分分散比θg,Fを高める観点から20質量部以上であってもよい。 The content of the radical polymerizable compound represented by the formula (a1) is a viewpoint of maintaining a high light transmittance with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. To 60 parts by mass or less, 50 parts by mass or less, or 30 parts by mass or less, or 3 parts by mass or more, or 5 parts by mass or more from the viewpoint of increasing the partial dispersion ratio θg, F. The content of the radical polymerizable compound represented by the formula (a2) is a viewpoint of maintaining a high light transmittance with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. From the viewpoint of increasing the partial dispersion ratio θg, F, it may be 30 parts by mass or more. The content of the radical polymerizable compound represented by the formula (a3) is a viewpoint of maintaining a high light transmittance with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. From the viewpoint of increasing the partial dispersion ratio θg, F, it may be 20 parts by mass or more.
 (B)第2のラジカル重合性成分の合計の含有量は、第1のラジカル重合性成分及び第2のラジカル重合性成分の合計量100質量部に対して、部分分散比θg,Fを高める観点から、97質量部以下、95質量部以下又は90質量部以下であってもよく、光透過率を高く維持する観点から、5質量部以上、10質量部以上、又は20質量部以上であってもよい。 (B) The total content of the second radical polymerizable component increases the partial dispersion ratio θg, F with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. From the viewpoint, it may be 97 parts by mass or less, 95 parts by mass or less, or 90 parts by mass or less, and from the viewpoint of maintaining high light transmittance, it is 5 parts by mass or more, 10 parts by mass or more, or 20 parts by mass or more. May be.
 式(b1)又は(b2)で表されるスルフィド化合物の合計の含有量は、第1のラジカル重合性成分及び第2のラジカル重合性成分の合計量100質量部に対して、樹脂材料の耐光性向上の観点から、95質量部以下、又は90質量部以下であってもよく、高い屈折率(例えば1.630以上、又は1.650以上)を有する樹脂材料を得る上では、5質量部以上、又は15質量部以上であってもよい。また、(B)第2のラジカル重合性化合物における式(b1)又は(b2)で表されるスルフィド化合物の比率は、(B)第2のラジカル重合性成分の合計の質量を基準として、15~100質量%、20~100質量%、又は25~100質量%であってもよい。式(b1)又は(b2)で表されるスルフィド化合物の比率がこれら範囲内にあると、低いアッベ数νd及び高い光透過率とともに、高い屈折率を有する樹脂材料が得られ易い。 The total content of the sulfide compound represented by the formula (b1) or (b2) is the light resistance of the resin material with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component. 95 parts by mass or less, or 90 parts by mass or less from the viewpoint of improving the properties, and 5 parts by mass for obtaining a resin material having a high refractive index (for example, 1.630 or more, or 1.650 or more). It may be 15 or more parts by mass. The ratio of the sulfide compound represented by the formula (b1) or (b2) in the (B) second radical polymerizable compound is 15 based on the total mass of the (B) second radical polymerizable component. It may be ˜100 mass%, 20˜100 mass%, or 25˜100 mass%. When the ratio of the sulfide compound represented by the formula (b1) or (b2) is within these ranges, a resin material having a high refractive index as well as a low Abbe number νd and a high light transmittance is easily obtained.
 本実施形態に係る光学樹脂組成物は、第1及び第2のラジカル重合性成分のラジカル重合を進行させるためのラジカル重合開始剤を更に含有してもよい。ラジカル重合開始剤は、光ラジカル重合開始剤、熱ラジカル重合開始剤又はこれらの組み合わせであることができる。 The optical resin composition according to the present embodiment may further contain a radical polymerization initiator for causing the radical polymerization of the first and second radical polymerizable components to proceed. The radical polymerization initiator can be a photo radical polymerization initiator, a thermal radical polymerization initiator, or a combination thereof.
 光ラジカル重合開始剤の例としては、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、4-フェニルベンゾフェノン、4-フェノキシベンゾフェノン、4,4’-ジフェニルベンゾフェノン、及び4,4’-ジフェノキシベンゾフェノン等が挙げられる。光ラジカル重合開始剤は1種類のみで使用することもできるし、2種類以上を併用することもできる。 Examples of photo radical polymerization initiators include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 1-hydroxycyclohexyl-phenyl ketone, 2-hydroxy-2-methyl-1 -Phenyl-propan-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 4-phenylbenzophenone, 4-phenoxybenzophenone, 4,4'-diphenylbenzophenone, and 4,4'- Examples include diphenoxybenzophenone. A radical photopolymerization initiator can be used alone or in combination of two or more.
 光ラジカル重合開始剤の含有量は、光照射量、及び付加的な加熱温度等に応じて、適宜選択することができる。形成される重合体の目標とする平均分子量に応じて、光ラジカル重合開始剤の含有量を調整することもできる。光ラジカル重合開始剤の含有量は、光学樹脂組成物中の第1のラジカル重合性成分及び第2のラジカル重合性成分の合計量100質量部に対して、0.1~10質量部、0.2~8質量部、又は0.3~7質量部であってもよい。光ラジカル重合開始剤の含有量が0.1質量部よりも少ないと、重合反応が十分に進行しにくい可能性がある。光ラジカル重合開始剤の含有量が10質量部を超えると、形成される樹脂材料が着色し、光透過率が低下する可能性がある。 The content of the photo radical polymerization initiator can be appropriately selected according to the light irradiation amount, the additional heating temperature, and the like. The content of the radical photopolymerization initiator can be adjusted according to the target average molecular weight of the polymer to be formed. The content of the photo radical polymerization initiator is 0.1 to 10 parts by weight, 0 parts by weight based on 100 parts by weight of the total amount of the first radical polymerizable component and the second radical polymerizable component in the optical resin composition. It may be 2 to 8 parts by mass, or 0.3 to 7 parts by mass. If the content of the photo radical polymerization initiator is less than 0.1 parts by mass, the polymerization reaction may not proceed sufficiently. If the content of the photo radical polymerization initiator exceeds 10 parts by mass, the resin material to be formed may be colored, and the light transmittance may be reduced.
 熱ラジカル重合開始剤の例としては、アゾビソイソブチルニトリル、ベンゾイルパーオキサイド、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシネオヘキサノエート、tert-ヘキシルパーオキシネオヘキサノエート、tert-ブチルパーオキシネオデカノエート、tert-ヘキシルパーオキシネオデカノエート、クミルパーオキシネオヘキサノエート、クミルパーオキシネオデカノエート、及び1,1,3,3,-テトラメチルブチルパーオキシ2-エチルヘキサノエート等を挙げることができる。熱ラジカル重合開始剤は1種類のみで使用することもできるし、2種類以上を併用することもできる。 Examples of thermal radical polymerization initiators include azobisoisobutyl nitrile, benzoyl peroxide, tert-butyl peroxypivalate, tert-butyl peroxyneohexanoate, tert-hexylperoxyneohexanoate, tert-butyl Peroxyneodecanoate, tert-hexylperoxyneodecanoate, cumylperoxyneohexanoate, cumylperoxyneodecanoate, and 1,1,3,3-tetramethylbutylperoxy-2- Examples include ethyl hexanoate. The thermal radical polymerization initiator can be used alone or in combination of two or more.
 熱ラジカル重合開始剤の含有量は、加熱温度、ラジカル重合の間の酸素存在量等に応じて、適宜選択することができる。形成される重合体の目標とする重合度に応じて、熱ラジカル重合開始剤の含有量を調整することもできる。熱ラジカル重合開始剤の含有量は、光学樹脂組成物中の第1のラジカル重合性成分及び第2のラジカル重合性成分の合計量100質量部に対して、0.05~10質量部、0.1~8質量部、又は0.2~6質量部であってもよい。熱ラジカル重合開始剤の含有量が0.05質量部よりも少ないと、重合反応が十分に進行しにくい可能性がある。熱ラジカル重合開始剤の含有量が10質量部を超えると、形成される樹脂材料が着色し、光透過率が低下する可能性がある。 The content of the thermal radical polymerization initiator can be appropriately selected according to the heating temperature, the amount of oxygen present during radical polymerization, and the like. The content of the thermal radical polymerization initiator can be adjusted according to the target degree of polymerization of the polymer to be formed. The content of the thermal radical polymerization initiator is 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component in the optical resin composition. It may be 1 to 8 parts by mass, or 0.2 to 6 parts by mass. If the content of the thermal radical polymerization initiator is less than 0.05 parts by mass, the polymerization reaction may not proceed sufficiently. When the content of the thermal radical polymerization initiator exceeds 10 parts by mass, the formed resin material may be colored and the light transmittance may be reduced.
 ラジカル重合開始剤以外の重合開始剤として、例えば光カチオン重合開始剤、又は熱カチオン重合開始剤を利用することもできる。 As a polymerization initiator other than the radical polymerization initiator, for example, a photocationic polymerization initiator or a thermal cationic polymerization initiator can be used.
 本実施形態に係る光学樹脂組成物は、必要とされる光学特性が維持される範囲で、第1及び第2のラジカル重合性成分を含む均一相中に分散する無機微粒子等の微粒子を含有してもよい。ただし、樹脂材料の高い光透過率の維持等の観点から、微粒子の含有量は、0~15質量%、0~10質量%、0~5質量%、又は0~2質量%であってもよい。 The optical resin composition according to the present embodiment contains fine particles such as inorganic fine particles dispersed in a homogeneous phase containing the first and second radical polymerizable components as long as the required optical properties are maintained. May be. However, from the viewpoint of maintaining a high light transmittance of the resin material, the content of the fine particles may be 0 to 15% by mass, 0 to 10% by mass, 0 to 5% by mass, or 0 to 2% by mass. Good.
 本実施形態に係る光学樹脂組成物は、必要に応じてその他の成分を更に含有してもよい。その例としては、重合禁止剤、酸化防止剤、光安定剤、可塑剤、レベリング剤、消泡剤、紫外線吸収剤、カップリング剤、増感剤、金属不活性剤、連鎖移動剤、アンチブロッキング剤及び離型剤等の添加剤が挙げられる。これらの添加剤の含有量は、光学樹脂組成物中の第1のラジカル重合性成分及び第2のラジカル重合性成分の合計量100質量部に対して、0~50質量部、0~30質量部、又は0~20質量部であってもよい。 The optical resin composition according to the present embodiment may further contain other components as necessary. Examples include polymerization inhibitors, antioxidants, light stabilizers, plasticizers, leveling agents, antifoaming agents, UV absorbers, coupling agents, sensitizers, metal deactivators, chain transfer agents, antiblocking agents. And additives such as an agent and a release agent. The content of these additives is 0 to 50 parts by mass, 0 to 30 parts by mass with respect to 100 parts by mass of the total amount of the first radical polymerizable component and the second radical polymerizable component in the optical resin composition. Part, or 0 to 20 parts by mass.
 本実施形態における光学樹脂組成物から形成される樹脂材料のアッベ数νdは、18≦νd≦25であり、18≦νd≦24、又は18≦νd≦23であってもよい。前記樹脂材料の部分分散比θg,Fは、0.700以上であり、0.710以上、又は0.720以上であってもよい。アッベ数νd及び部分分散比θg,Fがこれら範囲にあることで、より容易に、十分な色収差補正能を樹脂材料に付与することができる。部分分散比θg,Fの上限は、特に限定されないが、通常、0.900程度である。 The Abbe number νd of the resin material formed from the optical resin composition in the present embodiment may be 18 ≦ νd ≦ 25, 18 ≦ νd ≦ 24, or 18 ≦ νd ≦ 23. The partial dispersion ratio θg, F of the resin material is 0.700 or more, and may be 0.710 or more, or 0.720 or more. When the Abbe number νd and the partial dispersion ratios θg, F are within these ranges, a sufficient chromatic aberration correction capability can be more easily imparted to the resin material. The upper limit of the partial dispersion ratio θg, F is not particularly limited, but is usually about 0.900.
 本明細書において、アッベ数νd及び部分分散比θg,Fは、以下の式で算出される値を意味する。
アッベ数νd=(nd-1)/(nF-nC)
部分分散比θg,F=(ng-nF)/(nF-nC)
 式中、ngはg線である波長435.8nmにおける屈折率、nFはF線である波長486.1nmにおける屈折率、ndはd線である波長587.6nmにおける屈折率、nCはC線である波長656.3nmにおける屈折率を示す。
In this specification, the Abbe number νd and the partial dispersion ratio θg, F mean values calculated by the following equations.
Abbe number νd = (nd−1) / (nF−nC)
Partial dispersion ratio θg, F = (ng−nF) / (nF−nC)
In the formula, ng is a refractive index at a wavelength of 435.8 nm which is a g-line, nF is a refractive index at a wavelength of 486.1 nm which is an F-line, nd is a refractive index at a wavelength of 587.6 nm which is a d-line, and nC is a C-line. The refractive index at a certain wavelength of 656.3 nm is shown.
 本実施形態に係る光学樹脂組成物から形成される樹脂材料が耐光性試験に供されたときに、樹脂材料の波長400nmにおける光透過率の耐光性試験前後での変化の差ΔTが、5%以下であってもよい。ΔTが5%を上回ると、該樹脂材料を用いて構成される光学系の信頼性低下を招く可能性がある。ΔTの下限は、特に限定されないが、理想的には0%である。 When the resin material formed from the optical resin composition according to the present embodiment is subjected to a light resistance test, the difference ΔT in the light transmittance of the resin material at a wavelength of 400 nm before and after the light resistance test is 5%. It may be the following. When ΔT exceeds 5%, there is a possibility that the reliability of an optical system configured using the resin material is lowered. The lower limit of ΔT is not particularly limited, but ideally 0%.
 ここでの耐光性試験は、キセノンウェザーメーター(例えば、スガ試験機株式会社製、型番:X25)を用いて、波長300~400nmの範囲の積算照度が60W/m、ブラックパネル温度が63℃の条件で100時間光照射する試験である。該耐光性試験に供する樹脂材料のシート状の試験片(成形体)の厚みは190~210μmである。耐光性試験後の試験片の波長400nmにおける光透過率がT2で、耐光性試験前の試験片の波長400nmにおける光透過率がT1であるとき、T1とT2の差がΔTである。T1及びT2として、200μm厚に換算した値が用いられる。 The light resistance test here uses a xenon weather meter (for example, model number: X25 manufactured by Suga Test Instruments Co., Ltd.), integrated illuminance in the wavelength range of 300 to 400 nm is 60 W / m 2 , and black panel temperature is 63 ° C. This is a test in which light is irradiated for 100 hours under the above conditions. The thickness of the sheet-shaped test piece (molded body) of the resin material used for the light resistance test is 190 to 210 μm. When the light transmittance at a wavelength of 400 nm of the test piece after the light resistance test is T2, and the light transmittance at a wavelength of 400 nm of the test piece before the light resistance test is T1, the difference between T1 and T2 is ΔT. As T1 and T2, values converted to a thickness of 200 μm are used.
 例えば、上述の式(b1)又は(b2)で表されるスルフィド化合物を用いて、その含有量を上述の範囲内とすることが、ΔTを5%以下とすることに寄与し得る。 For example, using the sulfide compound represented by the above formula (b1) or (b2) and setting its content within the above range can contribute to making ΔT 5% or less.
 本実施形態に係る光学樹脂組成物から形成される樹脂材料のガラス転移温度(Tg)は、100℃以上、又は110℃以上であってもよい。Tgは耐熱性を示す指標の1つである。Tgが100℃を下回ると、特に高温域において樹脂材料の成形体が変形し易く、該樹脂材料を用いて構成される光学系の高熱環境下における信頼性低下を招く可能性がある。Tgの上限は、特に限定されないが、通常、300℃程度である。ただし、樹脂材料がガラス転移温度を示さないこともある。 The glass transition temperature (Tg) of the resin material formed from the optical resin composition according to this embodiment may be 100 ° C. or higher, or 110 ° C. or higher. Tg is one of indices indicating heat resistance. When Tg is less than 100 ° C., the molded body of the resin material is likely to be deformed particularly in a high temperature range, and there is a possibility that the reliability of the optical system configured using the resin material is lowered in a high heat environment. Although the upper limit of Tg is not specifically limited, Usually, it is about 300 degreeC. However, the resin material may not exhibit a glass transition temperature.
 本明細書において、Tgは、樹脂材料の動的粘弾性を、動的粘弾性測定装置(例えばティー・エイ・インスツルメント・ジャパン社製、型番:RSA-G2)を用いて、引張モードで昇温速度10℃/分、周波数1Hzの条件で測定したときに、tanδのピークトップの温度を意味する。 In this specification, Tg indicates the dynamic viscoelasticity of a resin material in a tensile mode using a dynamic viscoelasticity measuring device (for example, model number: RSA-G2 manufactured by TA Instruments Japan). It means the temperature at the peak top of tan δ when measured under conditions of a heating rate of 10 ° C./min and a frequency of 1 Hz.
 本実施形態に係る光学樹脂組成物から形成される樹脂材料を煮沸試験に供したときに、d線(波長587.6nm)における屈折率ndの煮沸試験前後での差Δndが、0.0007以下、又は0.0005以下であってもよい。Δndが0.0007を上回ると、該樹脂材料を用いて構成される光学系の高温高湿環境下における信頼性、すなわち耐湿熱性の低下を招く可能性がある。Δndの下限は、特に限定されないが、理想的には0である。 When the resin material formed from the optical resin composition according to this embodiment is subjected to a boiling test, the difference Δnd before and after the boiling test of the refractive index nd at d-line (wavelength 587.6 nm) is 0.0007 or less. Or 0.0005 or less. When Δnd exceeds 0.0007, there is a possibility that the reliability of the optical system constituted by using the resin material in a high temperature and high humidity environment, that is, the resistance to moist heat is lowered. The lower limit of Δnd is not particularly limited, but ideally 0.
 ここでの煮沸試験は、樹脂材料の厚み1.9~2.0mmのシート状の試験片(成形体)を、100℃に保持した湯浴中に24時間浸漬する試験である。煮沸試験前後におけるそれぞれの試験片の屈折率ndを測定し、それらの差をΔndとする。 Here, the boiling test is a test in which a sheet-shaped test piece (molded body) having a thickness of 1.9 to 2.0 mm is immersed in a hot water bath maintained at 100 ° C. for 24 hours. The refractive index nd of each test piece before and after the boiling test is measured, and the difference between them is Δnd.
 本実施形態に係る光学樹脂組成物から形成される樹脂材料の屈折率ndは、1.550以上、1.600以上、1.630以上、又は1.650以上であってもよい。このように樹脂材料が高い屈折率を有すると、レンズ等の光学系材料に適用する際の光学設計上の自由度が向上する。屈折率ndの上限は、特に限定されないが、通常、1.800程度である。 The refractive index nd of the resin material formed from the optical resin composition according to the present embodiment may be 1.550 or more, 1.600 or more, 1.630 or more, or 1.650 or more. When the resin material has a high refractive index as described above, the degree of freedom in optical design when applied to an optical system material such as a lens is improved. The upper limit of the refractive index nd is not particularly limited, but is usually about 1.800.
 本実施形態に係る光学樹脂組成物から形成される樹脂材料の内部透過率Tは、50%以上、60%以上、又は75%以上であってもよい。Tが50%を下回ると、樹脂材料をレンズ等の撮像光学系に適用した場合の色再現性が損なわれ、光学設計上の自由度が低下する可能性がある。内部透過率Tの上限は特に制限されず、理想的には100%である。 Internal transmittance T i of the resin material formed from an optical resin composition according to the present embodiment, 50% or more, 60% or more, or may be 75% or more. When Ti is less than 50%, color reproducibility when a resin material is applied to an imaging optical system such as a lens is impaired, and the degree of freedom in optical design may be reduced. The upper limit of the internal transmittance T i is not particularly limited and is ideally 100%.
 ここでの内部透過率Tiは、波長400nmにおける内部透過率の厚み200μmに換算された値である。厚み90~110μmの試験片(成形体)、及び厚み190~200のμmの試験片の波長400nmにおける外部透過率を測定し、下記式から内部透過率Tiが算出される。
log(T/100)=-[{log(T)-log(T)}/(d-d)]×200
 ここで、dは厚み90~110μmの試験片の実測厚み、dは厚み190~210μmの試験片の実測厚み、Tは厚み90~110μmの試験片の波長400nmにおける外部透過率、Tは厚み190~210μmの試験片の波長400nmにおける外部透過率である。外部透過率は表面反射損失を含む光透過率である。
The internal transmittance Ti here is a value converted into a thickness of 200 μm of internal transmittance at a wavelength of 400 nm. The external transmittance at a wavelength of 400 nm of a test piece (molded body) having a thickness of 90 to 110 μm and a test piece having a thickness of 190 to 200 μm is measured, and the internal transmittance Ti is calculated from the following formula.
log (T i / 100) = − [{log (T 3 ) −log (T 4 )} / (d 4 −d 3 )] × 200
Here, d 3 is the measured thickness of the test piece having a thickness of 90 to 110 μm, d 4 is the measured thickness of the test piece having a thickness of 190 to 210 μm, T 3 is the external transmittance at a wavelength of 400 nm of the test piece having a thickness of 90 to 110 μm, T 4 is the external transmittance at a wavelength of 400 nm of a test piece having a thickness of 190 to 210 μm. The external transmittance is a light transmittance including a surface reflection loss.
 本実施形態に係るにおける光学樹脂組成物は、例えば、第1及び第2の重合性成分、及び必要に応じてその他の成分(重合開始剤、添加剤等)を混合し、混合物を攪拌する方法により得ることができる。各成分は、同時に混合してもよく、逐次混合してもよい。攪拌の間の温度は、特に限定されないが、通常0~120℃であり、10~100℃であってもよい。攪拌時間は、0.1~24時間、又は0.1~6時間であってもよい。重合開始剤の種類によって、攪拌の間の温度および攪拌時間は適宜調整される。 The optical resin composition according to the present embodiment is, for example, a method of mixing the first and second polymerizable components and, if necessary, other components (polymerization initiator, additive, etc.) and stirring the mixture. Can be obtained. Each component may be mixed simultaneously or sequentially. The temperature during stirring is not particularly limited, but is usually 0 to 120 ° C., and may be 10 to 100 ° C. The stirring time may be 0.1 to 24 hours, or 0.1 to 6 hours. Depending on the type of the polymerization initiator, the temperature and the stirring time during stirring are appropriately adjusted.
 本実施形態に係る光学樹脂組成物を用いて、任意の形状を有する樹脂材料の成形体を製造することができる。樹脂材料の成形体は、例えば、型内に充填された光学樹脂組成物中で第1のラジカル重合性成分及び第2のラジカル重合性成分をラジカル重合させて、これらの重合体を含む樹脂材料を形成することと、形成された樹脂材料の成形体を型から取り出すこととを含む方法により、製造することができる。 A molded body of a resin material having an arbitrary shape can be manufactured using the optical resin composition according to the present embodiment. The molded body of the resin material is, for example, a resin material containing these polymers by radical polymerization of the first radical polymerizable component and the second radical polymerizable component in the optical resin composition filled in the mold. Can be manufactured by a method including forming the molded body of the resin material and removing the molded body of the formed resin material from the mold.
 光学樹脂組成物を型内に充填する前に、操作性向上等の目的で光学樹脂組成物の粘度を向上させたい場合、所望の粘度になるまで、予備重合として、第1のラジカル重合性成分及び第2のラジカル重合性成分のラジカル重合をある程度進行させてもよい。 When it is desired to improve the viscosity of the optical resin composition for the purpose of improving operability before filling the optical resin composition into the mold, the first radical polymerizable component is used as a prepolymerization until the desired viscosity is reached. Further, the radical polymerization of the second radical polymerizable component may proceed to some extent.
 型内に充填される前の光学樹脂組成物を、脱気及び脱泡してもよい。これにより、光学樹脂組成物が空気(酸素)に触れない状態を維持したまま、ラジカル重合を効率的に進行させることができる。光学樹脂組成物を脱気、脱泡する方法は、特に限定されず、例えば、窒素及びアルゴン等の不活性ガスによるバブリング、真空減圧脱気、超音波脱気、中空糸膜脱気、又はこれらの組み合わせを採用することができる。 The optical resin composition before filling into the mold may be degassed and degassed. Thereby, radical polymerization can be advanced efficiently, maintaining the state where an optical resin composition does not touch air (oxygen). The method for degassing and defoaming the optical resin composition is not particularly limited. For example, bubbling with an inert gas such as nitrogen and argon, vacuum degassing, ultrasonic degassing, hollow fiber membrane degassing, or these The combination of can be adopted.
 第1のラジカル重合性成分及び第2のラジカル重合性成分のラジカル重合は、熱重合、光重合、又はこれらの組み合わせによって、進行させることができる。 The radical polymerization of the first radical polymerizable component and the second radical polymerizable component can proceed by thermal polymerization, photopolymerization, or a combination thereof.
 熱重合のための重合温度及び重合時間は、ラジカル重合性成分の種類及び配合比率、熱ラジカル重合開始剤の種類及び使用量等により異なる。通常、重合温度は、0~180℃、又は20~150℃であってもよく、重合時間は、0.1~30時間、又は0.1~12時間であってもよい。 The polymerization temperature and polymerization time for thermal polymerization vary depending on the type and blending ratio of the radical polymerizable component, the type and amount of the thermal radical polymerization initiator, and the like. Usually, the polymerization temperature may be 0 to 180 ° C., or 20 to 150 ° C., and the polymerization time may be 0.1 to 30 hours, or 0.1 to 12 hours.
 光重合の場合、型内に充填された光学樹脂組成物に紫外線等の光が照射される。光重合に用いる光源の例としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、重水素ランプ、アルゴンランプ、キセノンランプ、LED、ハロゲンランプ、エキシマレーザー、及びヘリウム-カドミウムレーザー等が挙げられる。照射する光の積算光量は、ラジカル重合性成分の種類及び比率、光ラジカル重合開始剤の種類及び使用量、並びに、成形体の形状及び等により異なる。通常、積算光量は、0.01~100J/cm、又は0.1~50J/cmであってもよい。 In the case of photopolymerization, the optical resin composition filled in the mold is irradiated with light such as ultraviolet rays. Examples of light sources used for photopolymerization include low-pressure mercury lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, metal halide lamps, deuterium lamps, argon lamps, xenon lamps, LEDs, halogen lamps, excimer lasers, and helium-cadmium lasers. Is mentioned. The integrated amount of light to be irradiated varies depending on the type and ratio of the radical polymerizable component, the type and amount of the radical photopolymerization initiator, and the shape and the like of the molded body. Usually, the integrated light quantity may be 0.01 to 100 J / cm 2 , or 0.1 to 50 J / cm 2 .
 本実施形態に係る光学樹脂組成物から得られる樹脂材料の成形体は、低いアッベ数及び高い部分分散比を示すことから、これを光学レンズ等の撮像光学系を構成する光学部材として適用することにより、光学系の色収差を高度に補正することが可能である。光学レンズ本実施形態に係る光学樹脂組成物から形成された光学レンズは、例えば、光学機器用カメラレンズ、車載用カメラレンズ、スマートフォン用カメラレンズ、デジタルカメラ用レンズ等の撮像光学系に用いることができる。光学レンズの厚みは、所望に応じて適宜設定でき、特に制限されることはないが、通常1μm~10mmであり、1μm~5mmであってもよい。図1は、光学レンズの一実施形態を示す断面図である。図1に示される光学レンズ1は、本実施形態に係る光学樹脂組成物から形成された樹脂材料の成形体からなる。 Since the molded body of the resin material obtained from the optical resin composition according to the present embodiment shows a low Abbe number and a high partial dispersion ratio, it is applied as an optical member constituting an imaging optical system such as an optical lens. Thus, it is possible to highly correct the chromatic aberration of the optical system. Optical lens The optical lens formed from the optical resin composition according to the present embodiment may be used in an imaging optical system such as a camera lens for optical equipment, a camera lens for vehicle mounting, a camera lens for smartphone, a lens for digital camera, and the like. it can. The thickness of the optical lens can be appropriately set as desired, and is not particularly limited, but is usually 1 μm to 10 mm, and may be 1 μm to 5 mm. FIG. 1 is a cross-sectional view showing an embodiment of an optical lens. An optical lens 1 shown in FIG. 1 is formed of a molded body of a resin material formed from the optical resin composition according to this embodiment.
 以下、実施例及び比較例を挙げて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples.
1.原料の準備
(A)第1のラジカル重合性成分
・化合物A-1:2-[2-ヒドロキシ-5-[2-(メタクリロイルオキシ)エチル]フェニル]-2H-ベンゾトリアゾール(下記式(a1-1)で表される化合物、東京化成製)
Figure JPOXMLDOC01-appb-C000009
・化合物A-2:2-ヒドロキシ-4-メタクリロイルオキシベンゾフェノン(下記式(a2-1)で表される化合物、Alfa Aesar社製)
Figure JPOXMLDOC01-appb-C000010
・化合物A-3:以下の製造例1で合成した下記式(a3-1)で表される化合物
Figure JPOXMLDOC01-appb-C000011
1. Preparation of raw materials (A) First radical polymerizable component / compound A-1: 2- [2-hydroxy-5- [2- (methacryloyloxy) ethyl] phenyl] -2H-benzotriazole (formula (a1- 1) Compound represented by Tokyo Chemical Industry)
Figure JPOXMLDOC01-appb-C000009
Compound A-2: 2-hydroxy-4-methacryloyloxybenzophenone (compound represented by the following formula (a2-1), manufactured by Alfa Aesar)
Figure JPOXMLDOC01-appb-C000010
Compound A-3: Compound represented by the following formula (a3-1) synthesized in the following Production Example 1
Figure JPOXMLDOC01-appb-C000011
[製造例1]
 攪拌機、滴下ロート及び温度計を備えた容積500mLの4つ口フラスコに、TINUVIN479(BASF社製、化合物名:2-[4-(4,6-ビス-ビフェニル-4-イル-[1,3,5]トリアジン-2-イル)-3-ヒドロキシ-フェノキシ]-プロピオン酸 6-メチル-ヘプチル エステル)70g(0.10モル)、DMF(脱水グレード)70g、2-エチルヘキサン酸スズ(II)0.42g(0.001モル)、及びtert-ブチルキシレノール0.01g(0.0001モル)を仕込み、これらを60℃で30分間攪拌した。次いで、ここにカレンズAOI(昭和電工製、化合物名:2-アクリロイルオキシエチルイソシアナート)15.2g(0.11モル)を10分かけて滴下した。フラスコ内の反応液にジアザビシクロウンデセン(DBU)0.16g(0.001モル)を更に加え、反応液を110℃に昇温し、110℃で6時間かけて反応を進行させた。次に、トルエン120g及び水70gを添加し、フラスコ内の混合液を85℃で2時間攪拌した。混合液から分液により取り出した有機層を、水100gで2回洗浄した。洗浄後の有機層を濃縮し、得られた粗生成物をカラムクロマトグラフィーにより精製することで、化合物A-3を25.5g取得した。得られた化合物A-3のHPLC純度は97%であった。また、TINUVIN479に対する収率は30%であった。
[Production Example 1]
To a 500 mL four-necked flask equipped with a stirrer, a dropping funnel and a thermometer, TINUVIN479 (manufactured by BASF, compound name: 2- [4- (4,6-bis-biphenyl-4-yl- [1,3 , 5] triazin-2-yl) -3-hydroxy-phenoxy] -propionic acid 6-methyl-heptyl ester) 70 g (0.10 mol), DMF (dehydrated grade) 70 g, tin (II) 2-ethylhexanoate 0.42 g (0.001 mol) and tert-butylxylenol 0.01 g (0.0001 mol) were charged, and these were stirred at 60 ° C. for 30 minutes. Next, 15.2 g (0.11 mol) of Karenz AOI (manufactured by Showa Denko, compound name: 2-acryloyloxyethyl isocyanate) was added dropwise over 10 minutes. Diazabicycloundecene (DBU) 0.16 g (0.001 mol) was further added to the reaction solution in the flask, the reaction solution was heated to 110 ° C., and the reaction was allowed to proceed at 110 ° C. for 6 hours. Next, 120 g of toluene and 70 g of water were added, and the mixed solution in the flask was stirred at 85 ° C. for 2 hours. The organic layer taken out from the mixed solution by liquid separation was washed twice with 100 g of water. The organic layer after washing was concentrated, and the resulting crude product was purified by column chromatography to obtain 25.5 g of Compound A-3. The obtained compound A-3 had an HPLC purity of 97%. The yield based on TINUVIN479 was 30%.
(B)第2のラジカル重合性成分
・化合物B-1:以下の製造例2で合成したビス(4-ビニルチオフェニル)スルフィド(式(b1)で表されるラジカル重合性化合物)
・化合物B-2:以下の製造例3で合成したS,S’-(チオジ-p-フェニレン)ビス(チオメタクリレート)(式(b2)で表されるラジカル重合性化合物)
・化合物B-3:メチルメタクリレート(東京化成製)
・化合物B-4:スチレン(東京化成製)
・化合物B-5:エトキシ化ビスフェノールAジアクリレート(新中村化学工業製、商品名:ABE-300)
・化合物B-6:トリメチロールプロパントリアクリレート(新中村化学工業製、商品名:A-TMPT)
・化合物B-7:トリエチレングリコールジアクリレート(共栄社化学製、商品名:ライトアクリレート3EG-A)
(B) Second radical polymerizable component / compound B-1: bis (4-vinylthiophenyl) sulfide synthesized in the following Production Example 2 (radical polymerizable compound represented by the formula (b1))
Compound B-2: S, S ′-(thiodi-p-phenylene) bis (thiomethacrylate) synthesized in the following Production Example 3 (radically polymerizable compound represented by the formula (b2))
Compound B-3: Methyl methacrylate (manufactured by Tokyo Chemical Industry)
Compound B-4: Styrene (manufactured by Tokyo Chemical Industry)
Compound B-5: Ethoxylated bisphenol A diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: ABE-300)
Compound B-6: trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-TMPT)
Compound B-7: Triethylene glycol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate 3EG-A)
[製造例2]
 攪拌機、滴下ロート及び温度計を備えた容積2Lの4つ口フラスコに、4,4’-チオジベンゼンチオール250.4g(1.0モル)及び17質量%水酸化ナトリウム水溶液480.0g(2.0モル)を仕込み、これらを60℃で1時間攪拌した。次いで、2-クロロエタノール169.1g(2.1モル)を60℃で1.5時間かけて滴下した。滴下終了後、60℃で1.5時間かけて反応を進行させた。反応終了後、20℃に反応液を冷却して、析出した結晶をろ過により取り出した。この結晶を水400gで2回洗浄して、ビス[4-(2-ヒドロキシエチルチオ)フェニル]スルフィドを含む湿ケーキ492.5gを得た。
[Production Example 2]
To a 2 L four-necked flask equipped with a stirrer, a dropping funnel and a thermometer, 250.4 g (1.0 mol) of 4,4′-thiodibenzenethiol and 480.0 g of a 17 mass% aqueous sodium hydroxide solution (2 0.0 moles) was added and these were stirred at 60 ° C. for 1 hour. Subsequently, 169.1 g (2.1 mol) of 2-chloroethanol was added dropwise at 60 ° C. over 1.5 hours. After completion of dropping, the reaction was allowed to proceed at 60 ° C. over 1.5 hours. After completion of the reaction, the reaction solution was cooled to 20 ° C., and the precipitated crystals were taken out by filtration. The crystals were washed twice with 400 g of water to obtain 492.5 g of a wet cake containing bis [4- (2-hydroxyethylthio) phenyl] sulfide.
 得られた湿ケーキ492.5g及びトルエン1500gを、攪拌機、滴下ロート及び温度計を備えた容積3Lの4つ口フラスコに仕込み、これを110℃で加熱して、水を共沸により留去した。留去中、水との共沸により留去されたトルエンは、水と分離してフラスコ内に戻した。残った溶液を70℃に冷却し、そこに塩化チオニル249.9g(2.1モル)を70℃で2時間かけて滴下した。滴下終了後、70℃で2時間の加熱により反応を進行させた。反応終了後、反応液に10質量%水酸化ナトリウム水溶液600g(1.5モル)を添加し、形成された混合液を70℃で分液した。分液により得られた有機層を10℃に冷却し、結晶を析出させた。結晶をろ過により取り出し、n-ヘプタン600gで洗浄した。洗浄後の結晶を減圧下で50℃に加熱することにより乾燥して、ビス[4-(2-クロロエチルチオ)フェニル]スルフィド348.0g(0.93モル)を得た。 492.5 g of the obtained wet cake and 1500 g of toluene were charged into a 3 L four-necked flask equipped with a stirrer, a dropping funnel and a thermometer, and this was heated at 110 ° C. to distill off water by azeotropic distillation. . During the distillation, toluene distilled off by azeotropy with water was separated from water and returned to the flask. The remaining solution was cooled to 70 ° C., and 249.9 g (2.1 mol) of thionyl chloride was added dropwise at 70 ° C. over 2 hours. After completion of dropping, the reaction was allowed to proceed by heating at 70 ° C. for 2 hours. After completion of the reaction, 600 g (1.5 mol) of a 10% by mass aqueous sodium hydroxide solution was added to the reaction solution, and the formed mixture was separated at 70 ° C. The organic layer obtained by liquid separation was cooled to 10 ° C. to precipitate crystals. The crystals were removed by filtration and washed with 600 g of n-heptane. The washed crystals were dried by heating to 50 ° C. under reduced pressure to obtain 348.0 g (0.93 mol) of bis [4- (2-chloroethylthio) phenyl] sulfide.
 次いで、ビス[4-(2-クロロエチルチオ)フェニル]スルフィド348.0g(0.93モル)、n-ヘプタン780g、テトラブチルアンモニウムブロマイド14.9g(0.046モル)及び48質量%水酸化ナトリウム水溶液232.5g(2.8モル)を、攪拌機及び温度計を備えた容積3Lの4つ口フラスコに仕込み、これらを75~85℃で5.5時間加熱して、反応を進行させた。反応終了後、フラスコ内の反応液に水428gを加え、形成された混合液を60℃で分液した。分液により得られた有機層を水372gで2回洗浄して、ビス(4-ビニルチオフェニル)スルフィドのn-ヘプタン溶液1050gを得た。 Next, 348.0 g (0.93 mol) of bis [4- (2-chloroethylthio) phenyl] sulfide, 780 g of n-heptane, 14.9 g (0.046 mol) of tetrabutylammonium bromide, and 48% by mass hydroxide 232.5 g (2.8 mol) of an aqueous sodium solution was charged into a 3 L four-necked flask equipped with a stirrer and a thermometer, and these were heated at 75 to 85 ° C. for 5.5 hours to proceed the reaction. . After completion of the reaction, 428 g of water was added to the reaction solution in the flask, and the formed mixture was separated at 60 ° C. The organic layer obtained by separation was washed twice with 372 g of water to obtain 1050 g of an n-heptane solution of bis (4-vinylthiophenyl) sulfide.
 得られたn-ヘプタン溶液に2,6-ジ-tert-ブチル-4-メチルフェノール1.4gを添加し、0.6kPa、40℃の条件でn-ヘプタンを留去して、ビス(4-ビニルチオフェニル)スルフィド(化合物B-1)275.3g(0.91モル)を得た。得られた化合物B-1のHPLC純度は99%であった。4,4’-チオジベンゼンチオールに対する収率は91%であった。 To the obtained n-heptane solution, 1.4 g of 2,6-di-tert-butyl-4-methylphenol was added, and n-heptane was distilled off under the conditions of 0.6 kPa and 40 ° C. to give bis (4 -275.3 g (0.91 mol) of -vinylthiophenyl) sulfide (compound B-1) was obtained. The obtained compound B-1 had an HPLC purity of 99%. The yield based on 4,4'-thiodibenzenethiol was 91%.
[製造例3]
 攪拌機、滴下ロート及び温度計を備えた容積2Lの四つ口フラスコに、窒素雰囲気下で、4,4’-チオジベンゼンチオール250.4g(1モル)及びモノクロロベンゼン800gを仕込んだ。そこに、フラスコ内を60~65℃に加熱しながら、98質量%水酸化ナトリウム114.3g(2.8モル)及び水素化ホウ素ナトリウム1.9g(0.05モル)が水546.8gに溶解した水溶液663.0gを1時間かけて滴下した。滴下終了後、同温度で1時間の加熱により反応を進行させた。反応終了後、反応溶液を分液し、4,4’-チオジベンゼンチオールのナトリウム塩を含む水溶液910.6g(水層)を得た。
[Production Example 3]
Under a nitrogen atmosphere, 250.4 g (1 mol) of 4,4′-thiodibenzenethiol and 800 g of monochlorobenzene were charged into a 2 L four-necked flask equipped with a stirrer, a dropping funnel and a thermometer. While the flask was heated to 60 to 65 ° C., 114.3 g (2.8 mol) of 98% by mass sodium hydroxide and 1.9 g (0.05 mol) of sodium borohydride were converted to 546.8 g of water. 663.0 g of the dissolved aqueous solution was added dropwise over 1 hour. After completion of dropping, the reaction was allowed to proceed by heating for 1 hour at the same temperature. After completion of the reaction, the reaction solution was separated to obtain 910.6 g (aqueous layer) of an aqueous solution containing a sodium salt of 4,4′-thiodibenzenethiol.
 攪拌機、滴下ロート及び温度計を備えた容積3Lの四つ口フラスコに、メタクリロイルクロリド230.0g(2.2モル)、n-ヘプタン450g、シクロヘキサン900g及びp-メトキシフェノール2.0gを仕込み、これらを5℃に冷却した。そこに、5℃に冷却した上記4,4’-チオジベンゼンチオールのナトリウム塩を含む水溶液910.6gを5分間かけて滴下した。滴下終了後、反応液を55~60℃で1時間加熱することにより反応を進行させた。反応終了後、反応液を分液し、有機層を得た。得られた有機層を水140gで2回洗浄した。洗浄後の有機層にp-メトキシフェノール2.0g、及び活性炭1.5gを添加し、有機層を55~60℃で30分間攪拌した。その後、熱時濾過により不溶物を取り除いた。残った有機層を0℃に冷却する晶析により、結晶を析出させた。析出した結晶を濾別した。得られた結晶を、n-ヘプタン170g、シクロヘキサン340g、及びp-メトキシフェノール0.13gからなる混合液で洗浄し、減圧乾燥して、白色のS,S’-(チオジ-p-フェニレン)ビス(チオメタクリレート)(化合物B-2)325.5g(0.84モル)を得た。得られた化合物B-1のHPLC純度は99%であった。また、4,4’-チオジベンゼンチオールに対する収率は84%であった。 A 3 L four-necked flask equipped with a stirrer, a dropping funnel and a thermometer was charged with 230.0 g (2.2 mol) of methacryloyl chloride, 450 g of n-heptane, 900 g of cyclohexane and 2.0 g of p-methoxyphenol. Was cooled to 5 ° C. Thereto was added 910.6 g of an aqueous solution containing the sodium salt of 4,4'-thiodibenzenethiol cooled to 5 ° C. over 5 minutes. After completion of the dropwise addition, the reaction was allowed to proceed by heating the reaction solution at 55-60 ° C. for 1 hour. After completion of the reaction, the reaction solution was separated to obtain an organic layer. The obtained organic layer was washed twice with 140 g of water. To the organic layer after washing, 2.0 g of p-methoxyphenol and 1.5 g of activated carbon were added, and the organic layer was stirred at 55-60 ° C. for 30 minutes. Thereafter, insoluble materials were removed by hot filtration. Crystals were precipitated by crystallization by cooling the remaining organic layer to 0 ° C. The precipitated crystals were separated by filtration. The obtained crystals were washed with a mixed solution consisting of 170 g of n-heptane, 340 g of cyclohexane and 0.13 g of p-methoxyphenol, dried under reduced pressure, and white S, S ′-(thiodi-p-phenylene) bis 325.5 g (0.84 mol) of (thiomethacrylate) (Compound B-2) was obtained. The obtained compound B-1 had an HPLC purity of 99%. The yield based on 4,4'-thiodibenzenethiol was 84%.
2.光学樹脂組成物及び樹脂材料の成形体
(実施例1)
 化合物A-1及び化合物B-4を表1に記載の質量比率で混合し、混合物を60℃で30分間攪拌した。25℃まで冷却後、混合物100質量部に対して3質量部のIRGACURE1173(BASF製、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン)を光ラジカル重合開始剤として混合物に溶解させ、得られた混合液(光学樹脂組成物)を、充分に脱気した。次いで、光学樹脂組成物を、76×52mmの2枚のガラス板が間隙200μmで配置されたガラスモールド、及び76×52mmの2枚のガラス板が間隙100μmで配置されたガラスモールドのそれぞれの間隙に充填した。ガラスモールドに充填された光学樹脂組成物に対して、高圧水銀ランプにより、5000mJ/cm(365nmセンサーでの積算照度)の光を照射して、化合物A-1及び化合物B-4のラジカル重合により形成された重合体を含む樹脂材料の成形体を形成した。形成された成形体をガラスモールドから取り出した。これにより、約200μm厚及び約100μm厚のシート状の評価用成形体を得た。
2. Optical resin composition and molded article of resin material (Example 1)
Compound A-1 and Compound B-4 were mixed at a mass ratio shown in Table 1, and the mixture was stirred at 60 ° C. for 30 minutes. After cooling to 25 ° C., 3 parts by weight of IRGACURE 1173 (manufactured by BASF, 2-hydroxy-2-methyl-1-phenyl-propan-1-one) is dissolved in the mixture as a radical photopolymerization initiator for 100 parts by weight of the mixture. The obtained mixed liquid (optical resin composition) was sufficiently deaerated. Next, the optical resin composition was separated into a glass mold in which two glass plates of 76 × 52 mm were arranged with a gap of 200 μm, and a glass mold in which two glass plates of 76 × 52 mm were arranged with a gap of 100 μm. Filled. Radical polymerization of compound A-1 and compound B-4 by irradiating the optical resin composition filled in the glass mold with light of 5000 mJ / cm 2 (integrated illuminance with a 365 nm sensor) by a high-pressure mercury lamp. A molded body of a resin material containing the polymer formed by the above was formed. The formed molded body was taken out from the glass mold. As a result, sheet-like molded articles for evaluation having a thickness of about 200 μm and a thickness of about 100 μm were obtained.
 光ラジカル重合開始剤に代えて、化合物A-1及び化合物B-4の混合物100質量部に対して0.5質量部のパーオクタO(日本油脂製、1,1,3,3,-テトラメチルブチルパーオキシ2-エチルヘキサノエート)を熱ラジカル重合開始剤として添加して、光学樹脂組成物を調製し、十分に脱気した。次いで。光学樹脂組成物を、直径73mmで円形の2枚のガラスモールドが間隙2mmで配置されたガラスモールドの間隙に充填した。光学樹脂組成物が充填されたガラスモールドを、55℃で2時間加熱した後、55℃から95℃まで12時間かけて昇温し、そのまま95℃で2時間加熱することにより、化合物A-1及び化合物B-4から形成された重合体を含む樹脂材料の成形体を形成させた。形成された成形体をガラスモールドから取り出した。これにより、約2mm厚の円板状の評価用成形体を得た。 Instead of the radical photopolymerization initiator, 0.5 parts by mass of Perocta O (Nippon Yushi Co., Ltd., 1,1,3,3-tetramethyl) is added to 100 parts by mass of the mixture of Compound A-1 and Compound B-4. Butyl peroxy 2-ethylhexanoate) was added as a thermal radical polymerization initiator to prepare an optical resin composition, which was thoroughly deaerated. Then. The optical resin composition was filled in the gap of a glass mold in which two circular glass molds having a diameter of 73 mm were arranged with a gap of 2 mm. A glass mold filled with the optical resin composition was heated at 55 ° C. for 2 hours, then heated from 55 ° C. to 95 ° C. over 12 hours, and then heated at 95 ° C. for 2 hours to obtain Compound A-1. And a molded body of a resin material containing a polymer formed from Compound B-4 was formed. The formed molded body was taken out from the glass mold. As a result, a disk-shaped molded product for evaluation having a thickness of about 2 mm was obtained.
(実施例2~16、比較例1~3)
 表1に示した比率で各原料を用いたこと以外は実施例1と同様にして、光学樹脂組成物を調製し、これを用いて3種の評価用成形体を作製した。
(Examples 2 to 16, Comparative Examples 1 to 3)
An optical resin composition was prepared in the same manner as in Example 1 except that each raw material was used in the ratio shown in Table 1, and three types of molded articles for evaluation were produced using this.
3.評価
<屈折率nd、アッベ数νd、部分分散比θg,F>
 約2mm厚の円板状の評価用の試験片(成形体)のg線(波長435.8nm)、F線(波長486.1nm)、d線(波長587.6nm)、及びC線(波長656.3nm)におけるそれぞれの屈折率ng、nd、nF及びnCを、カール ツアイス イエナ社製屈折計PR-2(Vブロック方式)を用いて25℃で測定した。得られた屈折率から、アッベ数とθg,Fを以下の式により算出した。
アッベ数νd=(nd-1)/(nF-nC)
部分分散比θg,F=(ng-nF)/(nF-nC)
3. Evaluation <refractive index nd, Abbe number νd, partial dispersion ratio θg, F>
G-line (wavelength 435.8 nm), F-line (wavelength 486.1 nm), d-line (wavelength 587.6 nm), and C-line (wavelength) of a disk-shaped evaluation specimen (molded body) having a thickness of about 2 mm The refractive indexes ng, nd, nF and nC at 656.3 nm were measured at 25 ° C. using a refractometer PR-2 (V block system) manufactured by Carl Zeiss Jena. From the obtained refractive index, the Abbe number and θg, F were calculated by the following equations.
Abbe number νd = (nd−1) / (nF−nC)
Partial dispersion ratio θg, F = (ng−nF) / (nF−nC)
<耐熱性>
 約200μm厚の評価用の試験片(成形体)の動的粘弾性の温度変化を、動的粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン社製、型番:RSA-G2)を用いて、引張モード、昇温速度10℃/min、周波数1Hzの条件で測定した。tanδのピークトップの温度を、成形体のガラス転移温度Tgとして記録した。Tgの値により、以下の基準で成形体の耐熱性を判定した。
AA:Tg≧110℃
A:100≦Tg<110℃
C:Tg<100℃
<Heat resistance>
Using a dynamic viscoelasticity measuring device (manufactured by TA Instruments Japan, model number: RSA-G2), the temperature change of the dynamic viscoelasticity of the test specimen (molded body) having a thickness of about 200 μm is used. Then, measurement was performed under the conditions of a tensile mode, a heating rate of 10 ° C./min, and a frequency of 1 Hz. The temperature at the peak top of tan δ was recorded as the glass transition temperature Tg of the molded product. Based on the value of Tg, the heat resistance of the molded product was determined according to the following criteria.
AA: Tg ≧ 110 ° C.
A: 100 ≦ Tg <110 ° C.
C: Tg <100 ° C.
<耐湿熱性>
 約2mm厚の評価用の試験片(成形体)を、100℃に保持した湯浴中に24時間浸漬する煮沸試験に供した。煮沸試験前後の試験片の屈折率ndを測定し、それらの差Δndを求めた。Δndの値により、以下の基準で成形体の耐湿熱性を判定した。
AA:Δnd≦0.0005
A:0.0005<Δnd≦0.0007
C:Δnd>0.0007
<Heat and heat resistance>
A test piece (molded body) for evaluation having a thickness of about 2 mm was subjected to a boiling test where it was immersed in a hot water bath maintained at 100 ° C. for 24 hours. The refractive index nd of the test pieces before and after the boiling test was measured, and the difference Δnd between them was determined. Based on the value of Δnd, the wet heat resistance of the molded body was determined according to the following criteria.
AA: Δnd ≦ 0.0005
A: 0.0005 <Δnd ≦ 0.0007
C: Δnd> 0.0007
<内部透過率>
 約200μm厚の評価用の試験片(成形体)、及び約100μm厚の評価用の試験片(成形体)の波長400nmにおける透過率を、分光光度計(株式会社日立製作所製、型番:UH-4150)を用いて測定した。ここで得られる測定値は、表面反射損失を含む外部透過率である。得られた測定値と、各試験片の実測した厚みを用いて、以下の式から厚み200μmに換算された波長400nmにおける内部透過率Tを算出した。
log(T/100)=-[{log(T)-log(T)}/(d-d)]×200
:約100μm厚の成形体の実測厚み
:約200μm厚の成形体の実測厚み
:約100μm厚の成形体の波長400nmにおける外部透過率
:約200μm厚の成形体の波長400nmにおける外部透過率
<Internal transmittance>
The transmittance at a wavelength of 400 nm of an evaluation test piece (molded body) of about 200 μm thickness and an evaluation test piece (molded body) of about 100 μm thickness was measured with a spectrophotometer (manufactured by Hitachi, Ltd., model number: UH- 4150). The measured value obtained here is the external transmittance including the surface reflection loss. The measured values obtained by using the actually measured thickness of each specimen was calculated internal transmittance T i at wavelength 400nm which is converted to a thickness 200μm from the following equation.
log (T i / 100) = − [{log (T 3 ) −log (T 4 )} / (d 4 −d 3 )] × 200
d 3 : Measured thickness of a molded body having a thickness of about 100 μm d 4 : Measured thickness of a molded body having a thickness of about 200 μm T 3 : External transmittance T 4 of a molded body having a thickness of about 100 μm at a wavelength of 400 nm: External transmittance at a wavelength of 400 nm
 内部透過率Tiの値により、以下の基準で成形体の内部透過率を判定した。
AA:T≧75%
A:60%≦T<75%
B:50%≦T<60%
C:T<50%
Based on the value of the internal transmittance Ti, the internal transmittance of the molded body was determined according to the following criteria.
AA: T i ≧ 75%
A: 60% ≦ T i <75%
B: 50% ≦ T i <60%
C: T i <50%
<耐光性>
 約200μm厚の評価用の試験片(成形体)を、キセノンウェザーメーター(スガ試験機株式会社製、型番:X25)を用いて、放射強度60W/m(波長300~400nm域における積算)、ブラックパネル温度63℃の条件で100時間光を照射する耐光性試験に供した。耐光性試験前後の各成形体の波長400nmにおける透過率を分光光度計(株式会社日立製作所製、型番:UH-4150)を用いて測定した。それらの値と成形体の実測した成形体の厚みを用いて、ランベルト・ベール式から200μm厚に換算された透過率を算出した。波長400nmにおける透過率の耐光性試験前後での差ΔTを求め、その値により以下の基準で耐光性を判定した。
A:ΔT=0~5%
C:ΔT>5%
<Light resistance>
About 200μm thick test piece for evaluation of (molded body), xenon weather meter (Suga Test Instruments Co., Ltd., model number: X25) with (integrated at a wavelength of 300 ~ 400 nm band) radiation intensity 60 W / m 2, The sample was subjected to a light resistance test in which light was irradiated for 100 hours at a black panel temperature of 63 ° C. The transmittance of each molded body before and after the light resistance test at a wavelength of 400 nm was measured using a spectrophotometer (manufactured by Hitachi, Ltd., model number: UH-4150). Using these values and the actually measured thickness of the molded body, the transmittance converted to 200 μm thickness was calculated from the Lambert-Beer formula. A difference ΔT before and after the light resistance test of the transmittance at a wavelength of 400 nm was determined, and the light resistance was determined based on the value according to the following criteria.
A: ΔT = 0 to 5%
C: ΔT> 5%
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 1…光学レンズ。 1 ... Optical lens.

Claims (7)

  1.  (A)下記式(a1)、(a2)又は(a3)で表される少なくとも1種のラジカル重合性化合物からなる第1のラジカル重合性成分と、
     (B)前記第1のラジカル重合性成分とは異なる少なくとも1種のラジカル重合性化合物からなる第2のラジカル重合性成分と、
    を含有する光学樹脂組成物であって、
     前記第1のラジカル重合性成分及び前記第2のラジカル重合性成分がラジカル重合したときに、これらの重合体を含む樹脂材料が形成され、
     前記樹脂材料のアッベ数νd及び部分分散比θg,Fが、以下の式:
     18≦νd≦25;及び
     θg,F≧0.700
    を満たす、光学樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(a1)中、
     Xは、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~18の炭化水素基、置換基を有していてもよい炭素数1~18のアルコキシカルボニルアルキル基、又は、(メタ)アクリロイル基を有する基を示し、
     X及びXは、それぞれ独立して、水素原子、ハロゲン原子、又は、置換基を有していてもよい炭素数1~18の炭化水素基を示し、
     Xは、水素原子、置換基を有していてもよい炭素数1~18の炭化水素基、又は、(メタ)アクリロイル基を有する基を示し、
     Xは、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~18の炭化水素基、又は、(メタ)アクリロイル基を有する基を示し、
     X、X又はXのうち少なくとも1つが、(メタ)アクリロイル基を有する基である。]
    Figure JPOXMLDOC01-appb-C000002
    [式(a2)中、
     Y及びYは、それぞれ独立して、水素原子、水酸基、置換基を有していてもよい炭素数1~8のアルコキシ基、又は、(メタ)アクリロイル基を有する基を示し、
     Y及びYは、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~18の炭化水素基、又は、(メタ)アクリロイル基を有する基を示し、
     Y、Y、Y又はYのうち少なくとも1つが、(メタ)アクリロイル基を有する基である。]
    Figure JPOXMLDOC01-appb-C000003
    [式(a3)中、
     Zは置換基を有していてもよい炭素数1~18の炭化水素基、置換基を有していてもよい炭素数1~18のアルキルカルボニルオキシアルキル基、置換基を有していてもよい炭素数1~18のアルコキシカルボニルアルキル基、又は置換基を有していてもよい炭素数1~18のアルコキシアルキル基を示し、
     Z、Z、Z、Z、Z及びZは、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~18の炭化水素基、又は置換基を有していてもよい炭素数1~8のアルコキシ基を示し、
     Zは水素原子、又は、(メタ)アクリロイル基を有する基を示し、
     Zは水素原子、水酸基、置換基を有していてもよい炭素数1~18の炭化水素基、置換基を有していてもよい炭素数1~8のアルコキシ基、又は、(メタ)アクリロイル基を有する基を示し、
     Z又はZのうち少なくとも1つは、(メタ)アクリロイル基を有する基である。]
    (A) a first radical polymerizable component comprising at least one radical polymerizable compound represented by the following formula (a1), (a2) or (a3);
    (B) a second radical polymerizable component comprising at least one radical polymerizable compound different from the first radical polymerizable component;
    An optical resin composition comprising:
    When the first radical polymerizable component and the second radical polymerizable component are radically polymerized, a resin material containing these polymers is formed,
    The Abbe number νd and the partial dispersion ratio θg, F of the resin material are expressed by the following formula:
    18 ≦ νd ≦ 25; and θg, F ≧ 0.700
    An optical resin composition satisfying
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (a1),
    X 1 represents a hydrogen atom, a halogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an optionally substituted alkoxycarbonylalkyl group having 1 to 18 carbon atoms, or , A group having a (meth) acryloyl group,
    X 2 and X 3 each independently represent a hydrogen atom, a halogen atom, or an optionally substituted hydrocarbon group having 1 to 18 carbon atoms,
    X 4 represents a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a group having a (meth) acryloyl group,
    X 5 represents a hydrogen atom, a halogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a group having a (meth) acryloyl group,
    At least one of X 1 , X 4 or X 5 is a group having a (meth) acryloyl group. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (a2),
    Y 1 and Y 2 each independently represent a hydrogen atom, a hydroxyl group, an optionally substituted alkoxy group having 1 to 8 carbon atoms, or a group having a (meth) acryloyl group,
    Y 3 and Y 4 each independently represent a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a group having a (meth) acryloyl group,
    At least one of Y 1 , Y 2 , Y 3 or Y 4 is a group having a (meth) acryloyl group. ]
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (a3),
    Z 1 has an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an optionally substituted alkylcarbonyloxyalkyl group having 1 to 18 carbon atoms, and a substituent. An optionally substituted alkoxycarbonylalkyl group having 1 to 18 carbon atoms, or an optionally substituted alkoxyalkyl group having 1 to 18 carbon atoms;
    Z 2 , Z 4 , Z 5 , Z 6 , Z 8 and Z 9 are each independently a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, or a substituent. An alkoxy group having 1 to 8 carbon atoms which may be present;
    Z 3 represents a hydrogen atom or a group having a (meth) acryloyl group,
    Z 7 represents a hydrogen atom, a hydroxyl group, an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an optionally substituted alkoxy group having 1 to 8 carbon atoms, or (meth) A group having an acryloyl group;
    At least one of Z 3 and Z 7 is a group having a (meth) acryloyl group. ]
  2.  前記樹脂材料の厚み190~210μmのシート状の成形体が、波長300~400nmの範囲の積算照度が60W/m、ブラックパネル温度が63℃の条件で100時間光を照射する耐光性試験に供されたときに、前記成形体の波長400nmにおける透過率の前記耐光性試験前後での差ΔTが、5%以下である、請求項1に記載の光学樹脂組成物。 For a light resistance test in which a sheet-shaped molded body of the resin material having a thickness of 190 to 210 μm is irradiated with light for 100 hours under the conditions of an integrated illuminance of 60 W / m 2 in a wavelength range of 300 to 400 nm and a black panel temperature of 63 ° C. 2. The optical resin composition according to claim 1, wherein when provided, the difference ΔT between the transmittance of the molded body at a wavelength of 400 nm before and after the light resistance test is 5% or less.
  3.  前記樹脂材料のガラス転移温度が100℃以上である、請求項1又は2に記載の光学樹脂組成物。 The optical resin composition according to claim 1 or 2, wherein the glass transition temperature of the resin material is 100 ° C or higher.
  4.  前記樹脂材料の厚み1.9~2.0mmのシート状の成形体を、100℃に保持した湯浴中に24時間浸漬する煮沸試験に供したときに、前記成形体のd線(波長587.6nm)における屈折率ndの前記煮沸試験前後での差Δndが、0.0007以下である、請求項1~3のいずれか一項に記載の光学樹脂組成物。 When the sheet-shaped molded body having a thickness of 1.9 to 2.0 mm of the resin material was subjected to a boiling test in which it was immersed in a hot water bath maintained at 100 ° C. for 24 hours, the d-line (wavelength 587) of the molded body. The optical resin composition according to any one of claims 1 to 3, wherein a difference Δnd of the refractive index nd at .6 nm) before and after the boiling test is 0.0007 or less.
  5.  (B)第2のラジカル重合性成分が、下記式(b1)又は(b2)で表される少なくとも1種のスルフィド化合物を含む、請求項1~4のいずれか一項に記載の光学樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    [式(b1)及び(b2)中、R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子又は炭素数1~6のアルキル基を示し、nは0~10の整数を示し、Rは水素原子又はメチル基を示し、式(b2)中の2つのRは同一でも異なってもよい。]
    The optical resin composition according to any one of claims 1 to 4, wherein (B) the second radical polymerizable component contains at least one sulfide compound represented by the following formula (b1) or (b2). object.
    Figure JPOXMLDOC01-appb-C000004
    [In the formulas (b1) and (b2), R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 6 carbon atoms, and n is 0 to 10 represents an integer, R 5 represents a hydrogen atom or a methyl group, and two R 5 in formula (b2) may be the same or different. ]
  6.  当該光学樹脂組成物が微粒子を含有していてもよい、請求項1~5のいずれか一項に記載の光学樹脂組成物。 The optical resin composition according to any one of claims 1 to 5, wherein the optical resin composition may contain fine particles.
  7.  請求項1~6のいずれか一項に記載の光学樹脂組成物中の第1のラジカル重合性成分及び第2のラジカル重合性成分のラジカル重合により形成された重合体を含む樹脂材料からなる、光学レンズ。 A resin material comprising a polymer formed by radical polymerization of a first radical polymerizable component and a second radical polymerizable component in the optical resin composition according to any one of claims 1 to 6. Optical lens.
PCT/JP2019/008203 2018-05-11 2019-03-01 Optical resin composition and optical lens WO2019216008A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020518160A JP7382313B2 (en) 2018-05-11 2019-03-01 Optical resin composition and optical lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-092404 2018-05-11
JP2018092404 2018-05-11

Publications (1)

Publication Number Publication Date
WO2019216008A1 true WO2019216008A1 (en) 2019-11-14

Family

ID=68466730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008203 WO2019216008A1 (en) 2018-05-11 2019-03-01 Optical resin composition and optical lens

Country Status (3)

Country Link
JP (1) JP7382313B2 (en)
TW (1) TW201946939A (en)
WO (1) WO2019216008A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075649A (en) * 2019-11-11 2021-05-20 東洋インキScホールディングス株式会社 Uv-absorbing monomer, uv-absorbing polymer, molding resin composition, and molding
WO2024034590A1 (en) * 2022-08-09 2024-02-15 大阪有機化学工業株式会社 Photoinitiator composition, photocurable composition, photocurable composition kit, and photocurable resin composition
EP4130073A4 (en) * 2020-03-26 2024-04-17 Sumitomo Seika Chemicals Co., Ltd. Photosensitive resin composition, molded article that is provided with pattern, and method for producing molded article that is provided with pattern

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684636A (en) * 1995-08-24 1997-11-04 Lockheed Martin Corporation Polymer-optical liquid matrix for use as a lens element
JP2010097194A (en) * 2008-09-22 2010-04-30 Canon Inc Optical material and optical element
JP2011136961A (en) * 2009-12-28 2011-07-14 Canon Inc Heteroaromatic compound, optical material and optical element
JP2011195549A (en) * 2010-03-23 2011-10-06 Canon Inc Conjugated aromatic compound, optical material and optical element
JP2011246528A (en) * 2010-05-24 2011-12-08 Canon Inc (meth)acrylate compound, optical material, and optical element
JP2014201735A (en) * 2013-04-10 2014-10-27 大日精化工業株式会社 High refractive index polymer and production method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684636A (en) * 1995-08-24 1997-11-04 Lockheed Martin Corporation Polymer-optical liquid matrix for use as a lens element
JP2010097194A (en) * 2008-09-22 2010-04-30 Canon Inc Optical material and optical element
JP2011136961A (en) * 2009-12-28 2011-07-14 Canon Inc Heteroaromatic compound, optical material and optical element
JP2011195549A (en) * 2010-03-23 2011-10-06 Canon Inc Conjugated aromatic compound, optical material and optical element
JP2011246528A (en) * 2010-05-24 2011-12-08 Canon Inc (meth)acrylate compound, optical material, and optical element
JP2014201735A (en) * 2013-04-10 2014-10-27 大日精化工業株式会社 High refractive index polymer and production method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075649A (en) * 2019-11-11 2021-05-20 東洋インキScホールディングス株式会社 Uv-absorbing monomer, uv-absorbing polymer, molding resin composition, and molding
JP7472470B2 (en) 2019-11-11 2024-04-23 artience株式会社 Ultraviolet absorbing monomer, ultraviolet absorbing polymer, molding resin composition, and molded article
EP4130073A4 (en) * 2020-03-26 2024-04-17 Sumitomo Seika Chemicals Co., Ltd. Photosensitive resin composition, molded article that is provided with pattern, and method for producing molded article that is provided with pattern
WO2024034590A1 (en) * 2022-08-09 2024-02-15 大阪有機化学工業株式会社 Photoinitiator composition, photocurable composition, photocurable composition kit, and photocurable resin composition

Also Published As

Publication number Publication date
TW201946939A (en) 2019-12-16
JPWO2019216008A1 (en) 2021-05-27
JP7382313B2 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP7382313B2 (en) Optical resin composition and optical lens
JP4126918B2 (en) High refractive index photocurable composition and cured product thereof
KR100634066B1 (en) Photopolymerizable composition and use thereof
JP2022167558A (en) Divinylbenzyl fluorene compound and method for producing the same, curable resin composition obtained from the same, curable resin cured product, optical article, and imaging device
JP5502791B2 (en) Curable resin composition, cured product and optical material
TWI529182B (en) Acluble polyfunctional (meth) acrylate copolymer having an alicyclic structure, a hardened resin composition and a hardened product
JP7151726B2 (en) Optical resin material for chromatic aberration correction
EP3940005B1 (en) Curable resin composition and cured product thereof
JPH0931136A (en) Plastic lens molding composition and plastic lens using same
JP4984419B2 (en) Plastic molded product
JP7519533B2 (en) CURABLE COMPOSITION AND OPTICAL MATERIAL OBTAINED FROM THE COMPOSITION
TW202039608A (en) Photocurable silicone resin composition, silicone resin molded body obtained by curing same and method for manufacturing said molded body
JP3647158B2 (en) Resin composition, casting composition and cured product thereof
JP2007016065A (en) Radically polymerizable curing composition, its resin and optical member
JP6463613B2 (en) Polymer and its use
KR102362785B1 (en) Siloxane (meth)acrylate oligomer for optical materials
JP7536430B2 (en) (Meth)acrylate Compound
JP2024126760A (en) Methylenebisnaphthalene compound, methylenebisnaphthalene resin composition, cured product, molded product, and optical material
JP2019112592A (en) Photosensitive polymer
JP5531545B2 (en) 10- [1,4-di (meth) acryloyloxy-2-naphthyl] anthracen-9 (10H) -one compound, production method thereof and polymer thereof
JP6759941B2 (en) Polyimide laminated transparent film
JP2021085005A (en) Ultraviolet curable resin composition and coating film
JP5213100B2 (en) Novel sulfur-containing ethylenically unsaturated group-containing compound and polymer thereof
JP2020132664A (en) Method for producing methacrylic resin
JP2003160556A (en) Acrylic acid ester compound and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799496

Country of ref document: EP

Kind code of ref document: A1