WO2019214331A1 - 一种发送pucch的方法、装置及可读存储介质 - Google Patents
一种发送pucch的方法、装置及可读存储介质 Download PDFInfo
- Publication number
- WO2019214331A1 WO2019214331A1 PCT/CN2019/077359 CN2019077359W WO2019214331A1 WO 2019214331 A1 WO2019214331 A1 WO 2019214331A1 CN 2019077359 W CN2019077359 W CN 2019077359W WO 2019214331 A1 WO2019214331 A1 WO 2019214331A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyclic shift
- offset
- predetermined
- pucch
- initial
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000003860 storage Methods 0.000 title claims abstract description 21
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 303
- 230000005540 biological transmission Effects 0.000 claims description 46
- 238000012545 processing Methods 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000009826 distribution Methods 0.000 abstract description 2
- 230000007246 mechanism Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 26
- 238000004891 communication Methods 0.000 description 16
- 230000011664 signaling Effects 0.000 description 13
- 238000013461 design Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000004590 computer program Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013146 percutaneous coronary intervention Methods 0.000 description 1
- 235000019527 sweetened beverage Nutrition 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, and a readable storage medium for transmitting a PUCCH.
- the terminal device may send control signaling to the network device through a physical uplink control channel (PUCCH), and the transmission sequence of the PUCCH is determined by a base sequence and a cyclic shift (CS).
- PUCCH physical uplink control channel
- CS cyclic shift
- the cyclic shift of the PUCCH is indicated by the base station, so the cyclic shift of the PUCCH used by the two terminal devices for transmitting uplink control information (UCI) may be the same, if the base sequence is also the same.
- the transmission sequence of the PUCCH is exactly the same, which causes interference between the PUCCHs and reduces system performance.
- Embodiments of the present invention provide a method, an apparatus, and a readable storage medium for transmitting a PUCCH, which are used to reduce interference between PUCCHs and improve system performance.
- a method for transmitting a PUCCH comprising:
- the cyclic shift value in the initial cyclic shift set is offset adjusted according to a predetermined cyclic shift offset strategy, including:
- the cyclic shift values in the initial cyclic shift set are all offset adjusted according to the offset.
- the predetermined cyclic shift offset strategy includes:
- the offset is obtained by performing predetermined processing on the value corresponding to the predetermined identifier and the offset reference parameter.
- the predetermined identifier is a PCI of a cell where the user equipment is currently located, or the predetermined identifier is an identifier of an SSB when the user equipment synchronizes with the network device.
- the predetermined cyclic shift offset strategy includes:
- the offset is a residual result obtained by performing a remainder calculation on a value corresponding to the predetermined identifier and a value of the offset reference parameter.
- the offset reference parameter is pre-set according to a cyclic shift interval and a cell radius of the initial cyclic shift set.
- the method further includes updating the offset in accordance with a predetermined period.
- an apparatus comprising:
- a first determining module configured to determine, according to the PUCCH configuration information, a base sequence of the PUCCH and an initial cyclic shift set
- a second determining module configured to perform offset adjustment on the cyclic shift value in the initial cyclic shift set according to a predetermined cyclic shift offset policy, to obtain an adjusted initial cyclic shift
- a sending module configured to determine a transmission sequence of the PUCCH according to the base sequence and the adjusted initial cyclic shift, and send the PUCCH according to the determined transmission sequence.
- the second determining module is specifically configured to:
- the cyclic shift values in the initial cyclic shift set are all offset adjusted according to the offset.
- the predetermined cyclic shift offset strategy includes:
- the offset is obtained by performing predetermined processing on the value corresponding to the predetermined identifier and the offset reference parameter.
- the predetermined identifier is a PCI of a cell where the user equipment is currently located, or the predetermined identifier is an identifier of an SSB when the user equipment synchronizes with the network device.
- the predetermined cyclic shift offset strategy includes:
- the offset is a residual result obtained by performing a remainder calculation on a value corresponding to the predetermined identifier and a value of the offset reference parameter.
- the offset reference parameter is pre-set according to a cyclic shift interval and a cell radius of the initial cyclic shift set.
- the second determining module is further configured to:
- the offset is updated in accordance with a predetermined period.
- an apparatus in a third aspect, includes a processor and a memory coupled to the processor.
- the memory is used to store program instructions
- the processor is configured to invoke program instructions stored in the memory to implement the functions corresponding to the method described in the first aspect above.
- the apparatus can also include a communication interface for the device to communicate with other devices, which can be, by way of example, a terminal device, and the other device can be a network device.
- the device may be comprised of a chip or a chip and other discrete devices.
- a readable storage medium in a fourth aspect, storing computer executable instructions that, when executed on a computer, cause the computer to perform the method of any of the first aspects The steps included.
- an apparatus comprising at least one processor and a readable storage medium executable in a first aspect when computer executable instructions included in the readable storage medium are executed by the at least one processor
- the device may be comprised of a chip or a chip and other discrete devices.
- a chip system comprising a processor, and a memory, for implementing the method of the first aspect.
- the chip system can be composed of chips, and can also include chips and other discrete devices.
- each cyclic shift value in the initial cyclic shift set may be according to a predetermined cyclic shift offset policy.
- the cyclic shift offset strategy performs offset adjustment on the original initial cyclic shift, so that a differentiated initial cyclic shift can be obtained, and then different PUCCHs can be used to transmit uplink control information, thereby reducing interference between PUCCHs. Improve system performance.
- FIG. 1 is a schematic diagram of a possible application scenario in an embodiment of the present invention
- FIG. 2 is a flowchart of a method for transmitting a PUCCH according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of a device according to an embodiment of the present invention.
- FIG. 4 is a schematic structural view of another device in an embodiment of the present invention.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- LTE-A Advanced Long Term Evolution
- UMTS Universal Mobile Telecommunication System
- NR New Radio
- the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
- RAN Radio Access Network
- the user equipment can be a mobile phone (or "cellular"
- the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
- a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
- the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
- IP Internet Protocol
- the base station can also coordinate attribute management of the air interface.
- the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in TD-SCDMA or WCDMA, or may be an evolved base station (eNodeB or eNB or e- in LTE).
- NodeB, evolutional Node B), or a base station (gNB) in 5G NR the present invention is not limited.
- the “a plurality of” may represent at least two, for example, two, three or more, which is not limited in the embodiment of the present application.
- a terminal device which may also be referred to as a terminal, may be a device having a wireless transceiver function, which may be deployed on land, including indoor or outdoor, handheld or on-board, or deployed. On the water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
- the terminal device may be a user equipment (UE), wherein the UE includes a handheld device, an in-vehicle device, a wearable device, or a computing device having a wireless communication function.
- the UE can be a mobile phone, a tablet, or a computer with wireless transceiving capabilities.
- the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in an unmanned vehicle, a wireless terminal in telemedicine, and an intelligent device.
- the device that implements the function of the terminal may be a terminal, or may be a device that supports the terminal to implement the function, such as a chip, a circuit, or other device.
- the device in the embodiment of the present application is a device that implements the function of the terminal device, and the technical solution provided by the embodiment of the present application is described.
- the network device includes a base station (BS), and may be a device deployed in the radio access network to perform wireless communication with the terminal.
- the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
- the base station involved in the embodiment of the present invention may be a base station (gNB), long term evolution (LTE) in a 5th generation (5th generation) 5th generation (5G) new radio (NR) system.
- LTE long term evolution
- 5G 5th generation new radio
- a base station e.g., an eNB
- LTE-A evolved LTE
- the base station in the NR system may also be referred to as a transmission reception point (TRP).
- TRP transmission reception point
- the device that implements the function of the network device may be a network device, or may be a device that supports the network device to implement the function, such as a chip, a circuit, or other device.
- the device that implements the function of the network device is a network device, and the technical solution provided by the embodiment of the present invention is described.
- cyclic shift refers to the mathematical transformation of the sequence of PUCCH, because the ZC (Zadoff-Chu) sequence used in the PUCCH sequence now, if the sequence length is 12, there are 12 cyclic shifts, the so-called cyclic shift is the right
- a base sequence is multiplied by a particular set of phase factors, each element in the sequence corresponding to a different phase factor.
- the PUCCH transmission sequence is used for the PUCCH channel bearer signal, and is usually divided into a pilot sequence and a data sequence, but there is no pilot signal for PUCCH format 0, meaning that there is only one sequence, and PUCCH format 1 contains a pilot sequence and a data sequence.
- the base sequences are the same and the cyclic shifts may be different.
- the uplink control channel resource for example, the PUCCH resource, may be scheduled by the network device to the terminal device, and the terminal device may send the uplink control signaling to the network device by using the uplink control channel resource.
- the PUCCH resource is configured in two ways, one is configured by radio resource control (RRC) for RRC connection; the other is used for remaining minimum system information (RMSI).
- RRC radio resource control
- RMSI remaining minimum system information
- Configuration used for initial access of the UE before the RRC connection.
- the network device configures one PUCCH resource pool for one cell, and the PUCCH resource pool is used as a common resource of the cell by users in the cell. There are a total of 16 resource pools to choose from, and each resource pool corresponds to one PUCCH resource configuration.
- Each PUCCH resource configuration corresponds to a PUCCH parameter set, and one of the parameters in the PUCCH parameter set is an initial cyclic shift set, where the initial cyclic shift set includes multiple initial cyclic shifts for indicating All initial cyclic shifts available in one cell, and currently in a PUCCH transmission of a physical resource block (PRB), the cyclic shift of the sequence is at most 12.
- PRB physical resource block
- the initial cyclic shift set per row is configurable, and different initial cyclic shift sets may have different cyclic shift intervals, such as the initial cyclic shift set for ⁇ 0, 4, 8 ⁇
- the cyclic shift interval is 4, and for example, for the initial cyclic shift set of ⁇ 0, 3, 6, 9 ⁇ , the cyclic shift interval is 3, and for example, for ⁇ 0, 2, 4, 6,8,10 ⁇
- This initial cyclic shift set has a cyclic shift interval of 2.
- the different cyclic shift intervals are matched with the multipath delay of the channel. For example, if the channel delay of one cell is large, a large cyclic shift interval needs to be configured.
- any two adjacent initial cyclic shifts have the same cyclic shift interval, so that collisions between different PUCCH resources can be avoided as much as possible.
- Each of the initial cyclic shift sets in Table 1 can be configured for use by one cell.
- the initial cyclic shift set of ⁇ 0, 4, 8 ⁇ can be configured for use by one cell, and ⁇ 0, 3, 6, 9 ⁇
- This initial cyclic shift set configuration is used by another cell, and so on.
- the current initial cyclic shift set is limited, so there must be some cells whose initial cyclic shift set is the same.
- the PUCCH transmission sequence is determined by the base sequence and the initial cyclic shift. Therefore, if the base sequences of the PUCCHs of the multiple cells having the same initial cyclic shift set are the same, the transmission sequence of the finally obtained PUCCH is exactly the same, which greatly increases the interference between the cells.
- each user in the cell can select an initial cyclic shift in the initial cyclic shift set, for example, user 1, user 2, and User 3 selects 0, 4, and 8 in the initial cyclic shift set as the corresponding initial cyclic shifts, respectively.
- Beams beams
- users corresponding to different Beams may use the same base sequence and the same initial cyclic shift, so Under the premise that the base sequence is the same, if the initial cyclic shift used is also the same, then the PUCCH transmission sequence is also identical, which will cause large interference between the Beam.
- the transmission sequence of PUCCHs of multiple users is currently completely identical, resulting in large PUCCH interference between different cells or different Beams of the same cell.
- the embodiment of the present invention provides a method for transmitting a PUCCH, in which, after obtaining the PUCCH configuration information, the user equipment may determine, according to the PUCCH configuration information, a base sequence and an initial of a PUCCH indicated by the network device.
- the adjusted initial cyclic shift is obtained in the initial cyclic shift set, and then the PUCCH transmission sequence is determined according to the base sequence of the PUCCH and the adjusted initial cyclic shift, and finally the PUCCH is transmitted according to the determined transmission sequence of the PUCCH.
- the signal, by the offset mechanism of the predetermined cyclic shift offset policy, the user equipment can adjust the initial cyclic shift indicated by the network device to obtain a differentiated initial cyclic shift, thereby enabling different user equipments to use as much as possible.
- the initial cyclic shift used by multiple user devices presents a large difference
- the distribution is such that even if the base sequence of the PUCCH indicated by the network device is the same, different PUCCH transmission sequences can be obtained due to different initial cyclic shifts, thereby reducing interference between PUCCHs and improving system performance.
- the technical solutions of the embodiments of the present invention can be applied to various communication systems, for example, to an NR system, an LTE system, or an LTE-A system, and the like.
- the communication system to which the technical solution in the embodiment of the present invention is applied can also be applied to a communication technology that is future-oriented.
- the system described in the embodiments of the present invention is a more clear description of the technical solution of the embodiment of the present invention, and does not constitute a
- the technical solutions provided by the embodiments of the present invention are applicable to similar technical problems as the network architecture evolves.
- FIG. 1 is a schematic diagram of a possible application scenario of an embodiment of the present invention.
- a network device and a plurality of user devices are included in the application scenario.
- the plurality of user devices are, for example, user device 1, user device 2, and user device 3.
- the functions of the network device and the user device have been described in the foregoing. This will not be repeated here.
- the application scenario shown in FIG. 1 may be an application scenario in an NR system, or may be an application scenario in an LTE system.
- the application scenario shown in FIG. 1 is an application scenario in the NR system, where the network device may be a gNB in the NR system, and the user device therein may be a terminal device in the NR system.
- the network device may schedule resources used by each user equipment, for example, allocate uplink channel resources for each user equipment, for example, allocate PUCCH resources, and specifically, may be configured by using PUCCH.
- the user equipment is notified, after obtaining the PUCCH configuration information, the user equipment may determine, according to the PUCCH configuration information, a base sequence and an initial cyclic shift set of the PUCCH resources scheduled by the network device. Further, the initial cyclic shift indicated by the network device is determined according to the initial cyclic shift set. Specifically, on a PRB resource, the indicated initial cyclic shift set is an available set, but is used at a certain moment. Which initial cyclic shift is indicated by a physical downlink control channel (PDCCH).
- PDCH physical downlink control channel
- the PDCCH indicates a PUCCH resource index, and then the index corresponds to an actual PUCCH resource, which is natural.
- An initial cyclic shift is also determined by the PDCCH indication, so after obtaining the initial cyclic shift set configured by the network device for a certain cell, each user equipment in the cell may also determine that the network device needs to be used according to the indication of the network device. The initial cyclic shift.
- user equipment 1, user equipment 2, and user equipment 3 are respectively located in different cells. It can be seen that user equipment 1 is located in cell a, and user equipment 2 and user equipment 3 are located in cell b, and cell a and cell b may be phase
- the neighboring cell may also be a cell that is not adjacent.
- the user equipment 2 and the user equipment 3 may be under the same Beam, or may be under different Beams, when under different Beams,
- the Beam corresponding to the user equipment 2 and the user equipment 3 respectively may be two adjacent Beams, or may be two Beams that are not adjacent.
- FIG. 1 is not limited to the application scenario of the embodiment of the present invention.
- multiple network devices and multiple user devices may be included, for example, cell a and cell in FIG. 1 .
- b may further include other user equipments.
- one user equipment may perform data transmission with only one network device, or may perform data transmission with multiple network devices, or one network device may perform data transmission with one user equipment.
- the data transmission may be performed with a plurality of user equipments, which is not specifically limited in this embodiment of the present invention.
- FIG. 2 is a flowchart of a method for transmitting a PUCCH according to an embodiment of the present invention.
- the method may be performed by a user equipment, for example, the user equipment 1, the user equipment 2, or the user equipment in FIG. 3, and in the following description, the method is applied to the scenario shown in FIG. 1 as an example. The flow of the method is described below.
- Step 21 Obtain PUCCH configuration information.
- the uplink provides a separate physical channel for the transmission of data and control signaling
- the PUCCH is a channel designed for uplink control signaling, that is, the PUCCH is dedicated to transmitting uplink control signaling.
- the uplink control signaling includes uplink control signaling related to the data and uplink control signaling independent of the data.
- Data-related uplink control signaling usually sent with upstream data, and used in the processing of these data.
- the uplink control signaling related to the data includes a transport format indication, a multiple-input multiple-output (MIMO) parameter, and the like.
- MIMO multiple-input multiple-output
- the uplink control signaling independent of the data includes a hybrid automatic repeat request (HARQ) acknowledgement of the downlink data packet, a channel quality indicator (CQI) supporting the link adaptation, and a MIMO for the downlink transmission. Feedback, precoding matrix indicator (PMI), scheduling request (SR) of uplink transmission, and the like.
- HARQ acknowledgement includes an acknowledgement (ACK) and a negative acknowledgement (NACK).
- the PUCCH has a variety of transport formats, such as PUCCH format 0, PUCCH format 1, PUCCH format 1a, PUCCH format 1b, and the like. And different types of uplink control signaling can be transmitted through different transmission formats. For example, the HARQ ACK/NACK can be transmitted through a transmission format such as PUCCH format0.
- the PUCCH configuration information when the user equipment initially accesses the network, the PUCCH configuration information may be determined by using the RMSI, where the PUCCH configuration information is used to indicate information related to the configuration of the PUCCH, for example, the PRB resource of the PUCCH may be indicated by the PUCCH configuration information. , the type of format and the initial set of cyclic shifts that can be used, and so on.
- the base sequence of the PUCCH is generally bound to the cell ID at the time of initial access, that is, if the UE knows the ID of the cell, the ID of the base sequence can be obtained, and then the base sequence is generated.
- the information of the cell ID is obtained through a synchronization channel and a physical broadcast channel (PBCH). Therefore, the configuration information of the PUCCH includes not only the information indicated by the RMSI but also the PUCCH related information indicated by other system information.
- Step 22 Determine a base sequence of the PUCCH and an initial cyclic shift set according to the PUCCH configuration information.
- the user equipment may determine a base sequence of the PUCCH and an initial cyclic shift set that may be used according to the PUCCH configuration information, where the available initial cyclic shift set is a network device
- An initial cyclic shift set configured by the cell in which the user equipment is located, and each user equipment in the cell may use an initial cyclic shift in the initial cyclic shift set.
- a PUCCH of a user equipment is transmitted on a resource block (RB) pair, and at the same time, on a single carrier frequency division multiple access (SC-FDMA) symbol.
- the 12 subcarriers carry a data symbol and are spread and transmitted using a sequence of length 12, and the sequence of length 12 is called the base sequence of the PUCCH before being spread.
- the initial cyclic shift set configured by the network device for cell a is ⁇ 0, 4, 8 ⁇
- the initial cyclic shift configured for user equipment 1 in cell a is ⁇ 0, 4, 8 0 in ⁇
- the base sequence can be looped with 0.
- HARQ ACK/NACK For 2-bit HARQ ACK/NACK, four states of ⁇ 0, 0 ⁇ , ⁇ 0, 1 ⁇ , ⁇ 1, 0, ⁇ 1, 1 ⁇ are included, which is assumed to be the initial configuration of the terminal device 1 in the cell a.
- the cyclic shift is 0 in ⁇ 0, 3, 6, 9 ⁇ , and the specific cyclic shift for HARQ ACK/NACK can be referred to Table 3.
- Step 23 Perform offset adjustment on the cyclic shift value in the initial cyclic shift set according to a predetermined cyclic shift offset strategy to obtain an adjusted initial cyclic shift.
- the user equipment may perform offset adjustment on the cyclic shift value in the initial cyclic shift set according to a predetermined cyclic shift offset policy, thereby obtaining an adjusted initial.
- the cyclic shift set specifically, the offset of the cyclic shift offset adjustment according to a predetermined cyclic shift offset strategy, and then each cyclic shift value in the initial cyclic shift set is followed by The offset is offset adjusted. For example, if the initial cyclic shift with a value of 4 is offset adjusted by an offset of 1, then the adjusted initial cyclic shift is 5.
- a user equipment performs offset adjustment on the initial cyclic shift indicated by the network device based on a predetermined cyclic shift offset strategy, and then when multiple users follow a predetermined cyclic shift bias After the shift strategy adjusts the offset of the initial cyclic shift indicated by the network device, it is equivalent to offset adjustment of the initial cyclic shift set as a whole.
- the predetermined cyclic shift bias side strategy for performing offset adjustment on the cyclic shift value in the initial cyclic shift set may be a pre-agreed rule of the network device and the user equipment, and then the network device indicates After the user equipment has an original initial cyclic shift, the user equipment can adjust the original initial cyclic shift according to the pre-negotiated rule. Since the network device and the user equipment are agreed in advance, the user is The offset adjustments made by the device are also known to the network device.
- the predetermined cyclic shift offset policy in the embodiment of the present invention may be determined by the network device side, and when the network device configures the original initial cyclic shift to the user equipment, the foregoing
- the predetermined cyclic shift offset policy informs the user equipment that after the user equipment obtains the original initial cyclic shift and the predetermined cyclic shift offset strategy sent by the network device, the original initial cyclic shift can be corresponding.
- the offset is adjusted to obtain an adjusted initial cyclic shift.
- the initial cyclic shift used by the user equipment 1 in the cell a is 4, the initial cyclic shift used by the user equipment 2 in the cell a may also be 4, so the transmission sequence of the PUCCH corresponding to the user equipment 1 and the user equipment 2 is It is exactly the same, so there will be a large PUCCH interference.
- the user equipment can perform offset adjustment on its initial cyclic shift.
- each user equipment can perform offset adjustment, it is equivalent to the cell.
- the initial cyclic shift set of a is offset-adjusted as a whole, and specifically, each initial cyclic shift in the initial cyclic shift set ⁇ 0, 4, 8 ⁇ is adjusted by the same offset, for example, The offset is set to 1, then the initial cyclic shift set after the offset processing changes from ⁇ 0, 4, 8 ⁇ to ⁇ 1, 5, 9 ⁇ , further for the original use of ⁇ 0, 4, 8 ⁇
- the cyclic shift can be performed using 5, so that the PUCCH of the user equipment in the cell b can be different, thereby reducing the mutual interference of the two PUCCHs.
- some or all user equipments in a cell may be offset adjusted, and may be according to a cyclic shift interval of an initial cyclic shift set configured for the cell and an initial cyclic shift set that can be used. Depending on factors such as quantity.
- the base sequence of the PUCCH for which the network device schedules is definitely the same, assuming that the user equipment 2 and the user equipment 3 at this time
- the initial cyclic shift is configured as 3 of ⁇ 0, 3, 6, 9 ⁇ , and then the PUCCH of the user equipment 2 and the user equipment 3 also has a large interference, and in view of this, based on the embodiment of the present invention
- the predetermined offset policy may perform offset adjustment on the initial cyclic shift of at least one of the user equipment 2 and the user equipment 3 such that the initial cyclic shift of the user equipment 2 and the user equipment 3 is different, thereby causing the transmission sequence of the PUCCH to exist.
- the user equipment 2 and the user equipment 3 may be in the same Beam, or may be in different Beams.
- different two Beams may be adjacent Beams, or may not be The adjacent embodiment of the present invention does not limit this.
- the initial cyclic shift after the offset adjustment can be kept as different as possible from the initial cyclic shift of other user equipments.
- the transmission sequence of the PUCCH of each user equipment is kept as different as possible, thereby achieving the purpose of reducing interference of the PUCCH and improving system performance.
- the offset is directly determined according to a predetermined cyclic shift offset strategy, in other words, a predetermined loop.
- the shift offset strategy can be understood as a way of determining the offset for performing the offset, and the offset can be determined as long as the predetermined cyclic shift offset strategy is known.
- the predetermined cyclic shift offset strategy indicates the possible offset, that is, the specific setting principle of the predetermined cyclic shift offset strategy.
- the offset reference parameter set may be determined according to a cyclic shift interval of the initial cyclic shift set, wherein the offset reference parameter set is a set of multiple values of the offset reference parameter, that is, determined according to the cyclic shift interval.
- the values of the plurality of possible offset reference parameters, and the value of the offset reference parameter is an offset reference for offset adjustment of the initial cyclic shift, so as to subsequently use the value of the offset reference parameter to shift the initial cyclic Make specific offset adjustments.
- the value of each of the possible offset reference parameters is obtained according to a determination rule that the value of each offset reference parameter is greater than or equal to 1 and less than or equal to the cyclic shift interval, and the value of the offset reference parameter is a positive integer.
- the value of K may be 1 or 2 or 3 or 4, so the final offset reference parameter set is Any one of the above four values, for example, the offset reference parameter set is ⁇ 1 ⁇ , ⁇ 1, 2, 3 ⁇ , ⁇ 2, 3 ⁇ , ⁇ 1, 2, 3, 4 ⁇ , and so on.
- the offset reference parameter set may include as many elements as possible, for example, a possible offset reference parameter set is adopted. Then it is ⁇ 1, 2, 3, 4 ⁇ .
- determining a value of the offset reference parameter used for offset adjustment from the determined offset reference parameter set for example, selecting the value of the selected offset reference parameter as the target offset reference parameter, The selection may be performed at a random time, or the value of the maximum offset reference parameter may be selected, or may be selected according to the manner of the offset adjustment used later, which is not limited in the embodiment of the present invention.
- the predetermined identifier may be an identifier that can reflect the communication network where the user equipment is currently located.
- the predetermined identifier may be, for example, a physical cell identifier (PCI) of a cell where the user equipment is currently located, or It may be an identifier of a Synchronous Signal Block (SSB) when the user equipment synchronizes with the network device, that is, an SSB ID.
- PCI physical cell identifier
- SSB Synchronous Signal Block
- the offset reference parameter may be preset according to a cyclic shift interval and a cell radius of the initial cyclic shift set, that is, may be preset according to a radius of a certain cell and possible configuration to the cell.
- the cyclic shift interval of the initial cyclic shift set determines an offset reference parameter for the cell.
- the manner in which the setting of the offset reference parameter and the cyclic shift interval are set in association with the cell radius may be such that the offset in a certain cell is as close as possible to the actual situation of the cell.
- Mode 1 provides a manner of setting the predetermined cyclic shift offset policy by a cyclic shift interval of an initial cyclic shift set and a predetermined identifier of the user equipment by setting a predetermined identifier of the user equipment with a final offset Binding may be performed to associate the offset adjustment of the initial cyclic shift of the user equipment with the predetermined identifier of the user equipment itself. Since the value of the predetermined identifier of each user equipment is generally different, the offset adjustment manner is adopted.
- the initial cyclic shift of each user equipment may be made as different as possible to ensure the differentiation of the PUCCH transmission sequence of each user equipment to minimize PUCCH interference between user equipments.
- the offset of the initial cyclic shift of each user equipment can be matched with the attribute of the user equipment itself as much as possible, and then based on the difference according to the attributes of the respective user equipments.
- the differential adjustment of the initial cyclic shift improves the effectiveness and accuracy of the offset adjustment, resulting in improved matching.
- the target offset for the initial cyclic shift may be made as close as possible to the cell in which the user equipment is currently located, and then for different cells (eg, two neighboring cells or non-adjacent cells)
- the user equipment 1 in the cell a and the user equipment 2 in the cell b in FIG. 1 can calculate the respective target offsets by using the PCI of the cell in which the cell is located. Since the target offset is determined according to different PCIs of the two cells, the user equipment 1 and the user equipment 2, which are in different cells, can be used with different target offsets to achieve both.
- the offset between the two is differentiated, and the interference between the corresponding PUCCHs is reduced as much as possible. That is to say, by associating the PCI with the offset, the PUCCH interference between the cells can be greatly reduced, and the system is improved. performance.
- the target offset for the initial cyclic shift can be made as close as possible to the Beam currently in which the user equipment is actually located, because in the actual network, the number of SSBs is equal to the number of Beams, thus one SSB. ID for a Beam, specifically, when an SSB ID is used to associate with the initial cyclic shift, meaning that the initial cyclic shifts for different Beams will be different. Then, for different user equipments in the same cell, for example, the user equipment 2 and the user equipment 3 in the cell b in FIG.
- the target offset is determined according to the SSB ID of the SSB when the two user equipments are synchronized, so that the user equipment 2 and the user equipment 3, which are in different Beams, can use different target offsets as much as possible.
- PUCCH interference between beams improves system performance.
- the value of the predetermined identifier and the value of the offset reference parameter may be used as a remainder Calculate, obtain the residual result, and then directly use the residual result as the offset for offset adjustment, and then increase the aforementioned calculated offset based on the initial cyclic shift to obtain the final adjusted
- the initial cyclic shift that is, the adjusted initial cyclic shift can be calculated according to the following formula.
- Initial CS represents the initial cyclic shift after adjustment
- Intial CS0 represents the original initial cyclic shift
- cell_ID represents the value of PCI
- SSB_ID represents the value of SSB ID
- K represents the value of the target offset reference parameter
- mod represents the residual function.
- cell_ID mod K represents the remainder obtained by dividing the value of PCI by K.
- the formula (1) is a calculation formula when the predetermined identifier is PCI
- the formula (2) is a calculation formula when the predetermined identifier is the SSB ID. It can be understood that if the predetermined identifier is another identifier, then based on the formula (1) and the simple deformation of the formula (2), the formula for calculating the initial cyclic shift after adjustment based on other marks can be obtained, and the example is not extended here.
- the cyclic shift set pre-configured for the user equipment is ⁇ 0, 3, 6, 9 ⁇
- the initial cyclic shift is not performed.
- the set performs offset adjustment; when the SSB ID is 1, since the value of 1mod3 is 1, the offset is 1 at this time, and the adjusted initial cyclic shift set is ⁇ 1, 4, 7 combined with the formula 2. , 10 ⁇ ; When the SSB ID is 2, since the value of 2mod3 is 2, the offset is 2, and the initial cyclic shift set obtained by combining with Equation 2 is ⁇ 2, 5, 8, 11 ⁇ .
- the offset that can be adjusted for offset is limited, for example, for ⁇ 0, 3, 6
- the initial cyclic shift set of 9 ⁇ only the offset adjustment of 1 or 2 or 3 can be performed, so that all the offsets can be obtained completely and conveniently by the method of calculating the remainder in the embodiment of the present invention.
- the values of different predetermined identifiers can be calculated, the calculation amount is small, and the efficiency is high.
- the predetermined cyclic shift offset strategy directly indicates the offset, and the indicated offset is set according to the cyclic shift interval of the initial cyclic shift set, specifically, in one possibility
- the offset is set to be less than any natural number of the cyclic shift interval, for example, the cyclic shift interval of ⁇ 0, 4, 8 ⁇ is 4, then the predetermined cyclic shift offset according to the mode 2
- the offset indicated by the policy may be any one of four values of 0, 1, 2, and 3.
- the predetermined cyclic shift offset strategy in the embodiment of the present invention can be directly set according to the value of the cyclic shift interval, and the principle is simple and fast, and the efficiency of determining the offset by the user equipment is also high.
- the offset may be updated according to a predetermined period, and the foregoing example is continued, assuming that the offset indicated by the predetermined cyclic shift offset strategy is 1 in the first time period, and is 1 in the second time period.
- the offset can be indicated as 2, etc., so that the offset for the initial cyclic shift can be dynamically changed, the degree of differentiation of the PUCCH is increased, and the interference between the PUCCHs is reduced.
- Step 24 Determine a transmission sequence of the PUCCH according to the base sequence and the adjusted initial cyclic shift, and send the PUCCH according to the determined transmission sequence.
- the manner of determining the transmission sequence of the PUCCH according to the base sequence and the initial cyclic shift according to the existing PUCCH may be performed, and then based on the base sequence of the PUCCH and the adjusted
- the initial cyclic shift determines the transmission sequence of the PUCCH, and then the adjusted PUCCH is obtained according to the transmission sequence of the PUCCH, and finally the adjusted PUCCH is transmitted to the network device to implement uplink transmission of the uplink control information.
- FIG. 3 shows a schematic structural diagram of a device 300.
- the device 300 can be a terminal device, and can implement the terminal device or user equipment in the method provided by the embodiment of the present invention.
- the device 300 can also be a device capable of supporting a terminal device or a user device to implement the functions of the terminal device or the user device in the method provided by the embodiment of the present invention.
- Device 300 can be a hardware structure, a software module, or a hardware structure plus a software module.
- Device 300 can be implemented by a chip system. In the embodiment of the present invention, the chip system may be composed of a chip, and may also include a chip and other discrete devices.
- the apparatus 300 in the embodiment of the present invention may include an obtaining module 31, a first determining module 32, a second determining module 33, and a sending module 34. among them:
- Obtaining module 31 configured to obtain physical uplink control channel PUCCH configuration information
- the first determining module 32 is configured to determine, according to the PUCCH configuration information, a base sequence of the PUCCH and an initial cyclic shift set;
- a second determining module 33 configured to perform offset adjustment on the cyclic shift value in the initial cyclic shift set according to a predetermined cyclic shift offset policy, to obtain an adjusted initial cyclic shift
- the sending module 34 is configured to determine a transmission sequence of the PUCCH according to the base sequence and the adjusted initial cyclic shift, and send the PUCCH according to the determined transmission sequence.
- the second determining module 33 is specifically configured to: determine an offset of the cyclic shift offset adjustment according to a predetermined cyclic shift offset policy; and shift the cyclic shift in the initial cyclic shift set The bit values are offset adjusted according to the offset.
- the predetermined cyclic shift offset strategy includes: the offset is obtained by performing predetermined processing on a value corresponding to the predetermined identifier and an offset reference parameter.
- the predetermined identifier is a PCI of a cell where the user equipment is currently located, or the predetermined identifier is an identifier of the SSB when the user equipment synchronizes with the network device.
- the predetermined cyclic shift offset strategy includes: the offset is a remainder calculation of a value corresponding to the predetermined identifier and a value of the offset reference parameter. The result of the surplus.
- the second determining module 33 is further configured to update the offset according to a predetermined period.
- each functional module in each embodiment of the present invention may be integrated into one processing. In the device, it can also be physically existed alone, or two or more modules can be integrated into one module.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
- FIG. 4 is a schematic structural diagram of a device 400 according to an embodiment of the present invention.
- the device 400 may be a terminal device, which can implement the method provided by the embodiment of the present invention.
- the function of the terminal device or the user device; the device 400 may also be a device capable of supporting the terminal device to implement the functions of the terminal device or the user device in the method provided by the embodiment of the present invention.
- the device 400 can be a chip system.
- the chip system may be composed of a chip, and may also include a chip and other discrete devices.
- the device 400 includes at least one processor 420 for implementing or for supporting the device to implement the functions of the terminal device in the method provided by the embodiment of the present application.
- processor 420 can process information.
- Apparatus 400 can also include at least one memory 430 for storing program instructions and/or data.
- Memory 430 is coupled to processor 420.
- the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in an electrical, mechanical or other form for information interaction between devices, units or modules.
- Processor 420 may operate in conjunction with memory 430.
- Processor 420 may execute program instructions stored in memory 430. At least one of the at least one memory may be included in a processor.
- the apparatus 400 can also include a communication interface 410 for communicating with other devices through the transmission medium such that the devices for use in the device 400 can communicate with other devices, and the processor 420 can utilize the communication interface 410 to transceive data.
- connection medium between the communication interface 410, the processor 420, and the memory 430 is not limited in the embodiment of the present invention.
- the memory 430, the processor 420, and the communication interface 410 are connected by a bus 440 in FIG. 4, and the bus is indicated by a thick line in FIG. 4, and the connection manner between other components is only schematically illustrated. , not limited to.
- the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 4, but it does not mean that there is only one bus or one type of bus.
- the processor 420 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hardware component. Or the methods, steps, and logic blocks disclosed in the embodiments of the present application are executed.
- a general purpose processor can be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- the memory 430 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), or a volatile memory.
- a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), or a volatile memory.
- RAM random access memory
- a memory is any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and can be accessed by a computer, but is not limited thereto.
- the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function for storing program instructions and/or data.
- a readable storage medium is also provided in an embodiment of the present invention.
- the readable storage medium includes computer executable instructions that, when executed on a computer, perform the steps included in the foregoing method of transmitting a PUCCH.
- An embodiment of the present invention further provides an apparatus, the apparatus comprising at least one processor and a readable storage medium, when the computer executable instructions included in the readable storage medium are executed by the at least one processor, performing the foregoing sending
- the method of PUCCH includes the steps.
- the device may be comprised of a chip or a chip and other discrete devices.
- the embodiment of the present invention provides a chip system, which includes a processor, and may further include a memory for implementing the functions of the terminal device or the user equipment in the foregoing method for transmitting the PUCCH.
- the chip system can be composed of chips, and can also include chips and other discrete devices.
- various aspects of the method provided by the embodiments of the present invention may also be implemented in the form of a program product, including program code, when the program product is run on a terminal device or a user device,
- the program code is for causing the terminal device or user equipment to perform the steps in the method according to various exemplary embodiments of the present invention described above in this specification.
- embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
公开了一种发送PUCCH的方法、装置及可读存储介质,用于降低PUCCH间的干扰较大的技术问题。在该方法中,通过预定的循环移位偏移机制,用户设备可以对网络设备指示的初始循环移位进行调整,以得到差异化的初始循环移位,进而使得不同的用户设备能够尽量使用不同的初始循环移位,多个用户设备使用的初始循环移位呈现较大的差异化分布,这样即使网络设备指示的PUCCH的基序列是相同的,由于初始循环移位不同所以也可以得到不同的PUCCH的发送序列,进而降低PUCCH之间的干扰,提高系统性能。
Description
本申请要求在2018年05月11日提交中国专利局、申请号为201810450230.6、发明名称为“一种发送PUCCH的方法、装置及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及通信技术领域,尤其涉及一种发送PUCCH的方法、装置及可读存储介质。
终端设备可以通过物理上行链路控制信道(physical uplink control channel,PUCCH)向网络设备发送控制信令,并且PUCCH的发送序列是由基序列和循环移位(cyclic shift,CS)确定的。
在现有方案中,PUCCH的循环移位是由基站指示的,所以两个终端设备用于发送上行控制信息(uplink control information,UCI)的PUCCH的循环移位可能相同,如果基序列也相同的话,则PUCCH的发送序列完全相同,这会导致PUCCH之间发生干扰,降低系统性能。
发明内容
本发明实施例提供一种发送PUCCH的方法、装置及可读存储介质,用于降低PUCCH之间的干扰,提高系统性能。
第一方面,提供一种发送PUCCH的方法,该方法包括:
获得PUCCH配置信息;
根据所述PUCCH配置信息,确定PUCCH的基序列及初始循环移位集合;
按照预定的循环移位偏移策略对所述初始循环移位集合中的循环移位值进行偏移调整,以得到调整后的初始循环移位;
根据所述基序列和所述调整后的初始循环移位确定PUCCH的发送序列,并根据确定的发送序列发送PUCCH。
在一种可能的设计中,按照预定的循环移位偏移策略对所述初始循环移位集合中的循环移位值进行偏移调整,包括:
根据所述预定的循环移位偏移策略确定循环移位偏移调整的偏移量;
将所述初始循环移位集合中的循环移位值均按照所述偏移量进行偏移调整。
在一种可能的设计中,所述预定的循环移位偏移策略,包括:
所述偏移量通过将预定标识对应的值与偏移基准参数进行预定处理后得到。
在一种可能的设计中,所述预定标识为所述用户设备当前所处小区的PCI,或,所述预定标识为所述用户设备与所述网络设备进行同步时的SSB的标识。
在一种可能的设计中,所述预定的循环移位偏移策略,包括:
所述偏移量为将所述预定标识对应的值与所述偏移基准参数的值进行求余计算得到的求余结果。
在一种可能的设计中,所述偏移基准参数是根据所述初始循环移位集合的循环移位间隔和小区半径预先设定的。
在一种可能的设计中,所述方法还包括:按照预定周期,更新所述偏移量。
第二方面,提供一种装置,该装置包括:
获得模块,用于获得PUCCH配置信息;
第一确定模块,用于根据所述PUCCH配置信息,确定PUCCH的基序列及初始循环移位集合;
第二确定模块,用于按照预定的循环移位偏移策略对所述初始循环移位集合中的循环移位值进行偏移调整,以得到调整后的初始循环移位;
发送模块,用于根据所述基序列和所述调整后的初始循环移位确定PUCCH的发送序列,并根据确定的发送序列发送PUCCH。
在一种可能的设计中,所述第二确定模块具体用于:
根据所述预定的循环移位偏移策略确定循环移位偏移调整的偏移量;
将所述初始循环移位集合中的循环移位值均按照所述偏移量进行偏移调整。
在一种可能的设计中,所述预定的循环移位偏移策略,包括:
所述偏移量通过将预定标识对应的值与偏移基准参数进行预定处理后得到。
在一种可能的设计中,所述预定标识为所述用户设备当前所处小区的PCI,或,所述预定标识为所述用户设备与所述网络设备进行同步时的SSB的标识。
在一种可能的设计中,所述预定的循环移位偏移策略,包括:
所述偏移量为将所述预定标识对应的值与所述偏移基准参数的值进行求余计算得到的求余结果。
在一种可能的设计中,所述偏移基准参数是根据所述初始循环移位集合的循环移位间隔和小区半径预先设定的。
在一种可能的设计中,所述第二确定模块还用于:
按照预定周期,更新所述偏移量。
第三方面,提供一种装置,该装置包括处理器和存储器,所述存储器与所述处理器耦合。其中,存储器用于存储程序指令,处理器用于调用所述存储器中存储的程序指令,以实现上述第一方面描述的方法所对应的功能。该装置还可以包括通信接口,该通信接口用于该装置与其它装置进行通信,示例性地,该装置可以为终端设备,以及该其它装置可以为网络设备。该装置可以由芯片构成,也可以包含芯片和其他分立器件。
第四方面,提供一种可读存储介质,该可读存储介质存储有计算机可执行指令,当该计算机可执行指令在计算机上运行时,使得计算机可以执行第一方面中任一所述的方法包括的步骤。
第五方面,提供一种装置,该装置包括至少一个处理器及可读存储介质,当该可读存储介质中包括的计算机可执行指令被该至少一个处理器执行时,可以执行第一方面中任一所述的方法包括的步骤。该装置可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本发明实施例中,在根据获得的PUCCH配置信息确定出PUCCH的基序列及初始循环移位集合之后,可以按照预定的循环移位偏移策略对初始循环移位集合中的各个循环移位值进行偏移调整,进而得到调整后的初始循环移位,然后再根据基序列和调整后的初始循环移位确定出的PUCCH的发送序列来发送PUCCH,例如发送HARQ ACK/NACK,由于通过预定的循环移位偏移策略对原始的初始循环移位进行了偏移调整,这样可以得到差异化的初始循环移位,进而可以使用不同的PUCCH来发送上行控制信息,从而可以降低PUCCH之间的干扰,提高系统性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例中的一种可能的应用场景的示意图;
图2为本发明实施例中的一种发送PUCCH的方法的流程图;
图3为本发明实施例中的一种装置的结构示意图;
图4为本发明实施例中的另一种装置的结构示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、新空口(New Radio,NR)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是TD-SCDMA或WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNodeB或eNB或e-NodeB,evolutional Node B),或者是5G NR中的基站(gNB),本发明并不限定。
本发明的说明书和权利要求书及上述附图中的术语“第一”和“第二”是用于区别不同对象,而非用于描述特定顺序。此外,术语“包括”以及它们任何变形,意图在于覆盖不排他的保护。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例中,“多个”可以表示至少两个,例如可以是两个、三个或者更多个,本申请实施例不做限制。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,在不做特别说明的情况下,一般表示前后关联对象是一种“或”的关系。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1、终端设备,本发明实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,实现终端的功能的装置可以是终端,也可以是支持终端实现该功能的装置,例如芯片、电路或者其它装置。本申请实施例以实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2、网络设备,本发明实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本发明实施例涉及到的基站可以是第5代移动通信(the 5th generation,5G)新空口(new radio,NR)系统中的基站(gNB)、长期演进(long term evolution,LTE)中的基站(例如eNB)或演进的LTE(LTE-advanced,LTE-A)系统中的基站。其中,NR系统中的基站还可以称为发送接收点(transmission reception point,TRP)。本发明实施例中,实现网络设备的功能的装置可以是网络设备,也可以是支持网络设备实现该功能的装置,例如芯片、电路或者其它装置。本发明实施例中以实现网络设备的功能的装置是网络设备为例,描述本发明实施例提供的技术方案。
3、循环移位,指的是PUCCH的序列的数学变换,因为现在PUCCH序列使用的ZC(Zadoff-Chu)序列,如果序列长度为12,则有12个循环移位,所谓循环移位就是对一个基序列乘以一个特定的相位因子集,序列中的每个元素对应的相位因子不同。
4、PUCCH的发送序列用于PUCCH信道承载信号,通常分为导频序列和数据序列,但对PUCCH format 0则没有导频信号,意味着只有一个序列,PUCCH format 1含有导频序列 和数据序列,但基序列是相同的,循环移位有可能不同。
5、上行控制信道资源,例如PUCCH资源,可以是由网络设备调度给终端设备的,终端设备可以利用上行控制信道资源向网络设备发送上行控制信令。
下面简单介绍本发明实施例的技术背景。
PUCCH资源的配置采用两种方式,一种是通过无线资源控制(radio resource control,RRC)配置,用于在RRC连接之后;另外一种是用剩余的最小系统信息(remaining minimum system information,RMSI)配置,用于在RRC连接之前,UE初始接入使用。对于在RRC连接之前的配置方式,网络设备为一个小区配置一个PUCCH资源池,该PUCCH资源池作为该小区的公共资源被小区内的用户使用。总共有16个资源池可以选择,每个资源池对应一种PUCCH资源配置。
其中,每一种PUCCH资源配置对应于一种PUCCH参数集,该PUCCH参数集中的其中一种参数是初始循环移位集合,该初始循环移位集合中包括多个初始循环移位,用于指示一个小区中可用的全部初始循环移位,并且目前在一个物理资源块(physical resource block,PRB)的PUCCH传输中,序列的循环移位最多是12个。例如,一种可能的PUCCH参数配置如表1所示。
表1
在表1中,每行的初始循环移位集合是可以配置的,并且不同的初始循环移位集合可以具有不同的循环移位间隔,例如对于{0,4,8}这个初始循环移位集合来说,其循环移位间隔是4,又例如对于{0,3,6,9}这个初始循环移位集合来说,其循环移位间隔是3,再例如对于{0,2,4,6,8,10}这个初始循环移位集合来说,其循环移位间隔是2。不同的循环移位间隔是和信道的多径时延相匹配的,例如一个小区的信道时延较大,则需要配置较大的循环移位间隔。并且,对于任意一个初始循环移位集合来说,其中任意相邻的两个初始循环移位具有相同的循环移位间隔,这样可以尽量避免不同PUCCH资源之间的碰撞。
如表1中的每一种初始循环移位集合可以配置给一个小区使用,例如可以将{0,4,8}这个初始循环移位集合配置给一个小区使用,将{0,3,6,9}这个初始循环移位集合配置给另外一个小区使用,等等。然而目前的初始循环移位集合是有限的,所以必然会有一些小区被配置的初始循环移位集合是相同的,如前所述,PUCCH的发送序列是由基序列和初始循环移位确定的,所以若这些配置有相同的初始循环移位集合的多个小区的PUCCH的基序列也是相同的话,那么最终得到的PUCCH的发送序列就是完全相同的,这会大大增加小区间的干扰。
针对上述配置了{0,4,8}的小区来说,该小区里面的每个用户可以选择该初始循环移位集合中的一个初始循环移位,例如该小区里面的用户1、用户2和用户3分别选择了该初始循环移位集合中的0、4、8作为对应的初始循环移位。由于同一小区中的不同波束(Beam)的PUCCH的基序列是完全相同的,由于一个小区的PUCCH资源是有限的,不同Beam对应的用户可能使用相同基序列和相同的初始循环移位,所以在基序列相同的前提下,若使用的初始循环移位也相同的话,那么PUCCH的发送序列也完全相同,这样会引起Beam之间的较大干扰。
也就是说,目前多个用户的PUCCH的发送序列在很大可能上是完全相同的,从而导致不同小区之间或同一小区的不同Beam之间存在较大的PUCCH干扰。
鉴于以上所述,本发明实施例提供一种发送PUCCH的方法,在该方法中,用户设备在得到PUCCH配置信息之后,则可以根据该PUCCH配置信息确定网络设备所指示的PUCCH的基序列和初始循环移位集合,然后再以预定的循环移位偏移策略对初始循环移位集合中的循环移位值进行偏移调整,进而得到调整后的初始循环移位集合,进一步地可以从调整后的初始循环移位集合中得到调整后的初始循环移位,进而再根据PUCCH的基序列和调整后的初始循环移位确定出PUCCH的发送序列,最后根据确定出的PUCCH的发送序列发送PUCCH的信号,通过预定的循环移位偏移策略的偏移机制,用户设备可以对网络设备指示的初始循环移位进行调整,以得到差异化的初始循环移位,进而使得不同的用户设备能够尽量使用不同的初始循环移位,多个用户设备使用的初始循环移位呈现较大的差异化分布,这样即使网络设备指示的PUCCH的基序列是相同的,由于初始循环移位不同所以也可以得到不同的PUCCH的发送序列,进而降低PUCCH之间的干扰,提高系统性能。
本发明实施例的技术方案可以应用于各种通信系统,例如可以应用于NR系统、LTE系统或LTE-A系统,等等。
此外,本发明实施例中的技术方案所应用的通信系统还可以适用于面向未来的通信技术,本发明实施例描述的系统是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
接下来对本发明实施例的应用场景作简要介绍。
图1示出了本发明实施例的一种可能的应用场景的示意图。在该应用场景中包括一个网络设备和多个用户设备,多个用户设备例如是用户设备1、用户设备2和用户设备3,其中,网络设备和用户设备的功能已经在前述进行了描述,在此不再赘述。图1所示的应用场景可以是NR系统中的应用场景,或者可以是LTE系统中的应用场景等。例如,图1所示的应用场景是NR系统中的应用场景,那么其中的网络设备可以是NR系统中的gNB,以及其中的用户设备可以是NR系统中的终端设备。
在图1所示的应用场景中,网络设备可以对各个用户设备所使用的资源进行调度,例如为各个用户设备分配上行信道资源,例如分配PUCCH资源,具体来说可以是以PUCCH配置信息的方式告知用户设备,用户设备在获得PUCCH配置信息之后,则可以根据PUCCH配置信息确定网络设备所调度的PUCCH资源的基序列和初始循环移位集合。进一步地,再根据初始循环移位集合确定网络设备所指示的初始循环移位,具体来说,在一个PRB资源上,指示的初始循环移位集合都是可用的集合,但是在某一时刻使用哪个初始循环移位,则是由物理下行控制信道(physical downlink control channel,PDCCH)所指示的,通常的,PDCCH会指示一个PUCCH资源索引,然后这个索引和一个实际的PUCCH资源相对应,自然的,一个初始循环移位也由PDCCH指示确定,所以在获得了网络设备为某个小区所配置的初始循环移位集合之后,该小区中的每个用户设备还可以根据网络设备的指示确定需要使用的初始循环移位。
在图1中,用户设备1、用户设备2和用户设备3分别位于不同的小区,可见用户设备1位于小区a,而用户设备2和用户设备3位于小区b,小区a和小区b可以是相邻小区,也可以是不相邻的小区。以及,对于均位于小区b中的用户设备2和用户设备3来说,用户设备2和用户设备3可以处于相同的Beam下,或者也可以处于不同的Beam下,当处于不同的Beam下时,用户设备2和用户设备3分别所对应的Beam可以是相邻的两个Beam,或者也可以是不相邻的两个Beam。
需要说明的是,图1所示的场景不应对本发明实施例的应用场景造成限定,在实际的应用中,可以包括多个网络设备和多个用户设备,例如图1中的小区a和小区b还可以再包括其它的用户设备,再例如,一个用户设备可以只与一个网络设备进行数据传输,也可以与多个网络设备进行数据传输,或者一个网络设备可以与一个用户设备进行数据传输,也可以与多个用户设备进行数据传输,本发明实施例对此不作具体限定。
请参考图2,为本发明实施例提供的一种发送PUCCH的方法的流程图,该方法可以由用户设备执行,该用户设备例如可以是图1中的用户设备1、用户设备2或用户设备3,并且在下文的介绍过程中,以将该方法应用于图1所示的场景为例。该方法的流程描述如下。
步骤21:获得PUCCH配置信息。
在通信系统中,上行链路为数据和控制信令的传输提供了分离的物理信道,而PUCCH就是针对上行控制信令所设计的信道,也就是说,PUCCH是专用于发送上行控制信令的,而上行控制信令又包括与数据相关的上行控制信令和与数据无关的上行控制信令。
1)与数据相关的上行控制信令,通常和上行数据一起发送,并且在这些数据的处理过程中使用。与数据相关的上行控制信令包括传输格式指示、多输入多输出(multiple-input multiple-output,MIMO)参数,等等,。
2)与数据无关的上行控制信令,与任何上行数据包的发送相互独立。与数据无关的上行控制信令包括下行数据包的自动重传请求(hybrid automatic repeat request,HARQ)确认、支持链路自适应的信道质量指示(channel quality indicator,CQI)、用于下行传输的MIMO反馈、预编码矩阵指示(precoding matrix indicator,PMI)、上行传输的调度请求(scheduling request,SR)等等。其中,HARQ确认包括确认(acknowledgement,ACK)和否定性确认(nagative acknowledgement,NACK)。
PUCCH具有多种传输格式(format),例如PUCCH format 0、PUCCH format 1、PUCCH format 1a、PUCCH format 1b,等等。并且可以通过不同的传输格式传输不同类型的上行控制信令,例如,可以通过PUCCH format0这种传输格式传输HARQ ACK/NACK。
在本发明实施例中,用户设备在初始接入网络时,可以通过RMSI确定PUCCH配置信息,PUCCH配置信息是用于指示与PUCCH的配置相关的信息,例如通过PUCCH配置信息可以指示PUCCH的PRB资源、format类型及可以使用的初始循环移位集合,等等。另外,PUCCH的基序列在初始接入时一般和小区ID绑定,就是说,如果UE知道小区的ID是多少,就可以获得基序列的ID,然后生成基序列。小区ID的信息是通过同步信道和物理广播信道(physical broadcast channel,PBCH)获得。因此,PUCCH的配置信息不仅包含RMSI指示的信息,也包括其他系统信息指示的PUCCH相关的信息。
步骤22:根据PUCCH配置信息,确定PUCCH的基序列及初始循环移位集合。
如前所述,用户设备在获得了PUCCH配置信息之后,就可以根据PUCCH配置信息确定出PUCCH的基序列和可以使用的初始循环移位集合,该可以使用的初始循环移位集合是网络设备为该用户设备所在的小区所配置的初始循环移位集合,该小区中的每个用户设备可以使用该初始循环移位集合中的一个初始循环移位。
一般来说,一个用户设备的PUCCH在一个资源块(resource block,RB)对上传输,同时,在一个时域单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号上的12个子载波上,承载一个数据符号,并使用一个长度为12的序列对这个数据符号进行扩频后发送,而这个长度为12的序列在进行扩频之前即称作PUCCH的基序列。
以图1为例,假设网络设备为小区a配置的初始循环移位集合是{0,4,8},并且为小区a 中的用户设备1配置的初始循环移位是{0,4,8}中的0,那么在传输1比特的HARQ ACK/NACK(其中HARQ应答的值为0时表示HARQ ACK,以及HARQ应答的值为1时表示HARQ NACK)时,可以用0对基序列进行循环移位以传输HARQ ACK,以及用6对基序列进行循环移位以传输HARQ NACK,需要说明的是,因为最大循环移位是12,为了确保循环移位间隔最大以避免HARQ ACK和HARQ NACK之间的混淆,所以在以0作为初始循环移位传输HARQ ACK时,就再以6作为初始循环移位传输HARQ NACK。类似地,当为用户设备1配置的初始循环移位是{0,4,8}中的4,那么在以4作为初始循环移位传输HARQ ACK时,就可以以10作为初始循环移位传输HARQ NACK,具体如表2所示。
表2
对于2比特的HARQ ACK/NACK,则包括{0,0},{0,1},{1,0,{1,1}这四种状态,假设为小区a中的终端设备1配置的初始循环移位是{0,3,6,9}中的0,那么针对HARQ ACK/NACK的具体循环移位可以参照表3所示。
表3
HARQ应答的值 | {0,0} | {0,1} | {1,0} | {1,1} |
循环移位的值 | 0 | 3 | 6 | 9 |
步骤23:按照预定的循环移位偏移策略对初始循环移位集合中的循环移位值进行偏移调整,以得到调整后的初始循环移位。
在确定了网络设备所配置的初始循环移位集合之后,用户设备可以按照预定的循环移位偏移策略对初始循环移位集合中的循环移位值进行偏移调整,进而得到调整后的初始循环移位集合,具体来说,是根据预定的循环移位偏移策略确定循环移位偏移调整的偏移量,进而再将初始循环移位集合中的每个循环移位值均按照该偏移量进行偏移调整,例如对值是4的初始循环移位以1的偏移量进行偏移调整,那么调整后的初始循环移位就是5。也就是说,在实际中,一个用户设备是基于预定的循环移位偏移策略对网络设备为其指示的初始循环移位进行偏移调整,那么当多个用户均按照预定的循环移位偏移策略对网络设备为其指示的初始循环移位进行偏移调整之后,就相当于是对初始循环移位集合整体上进行了偏移调整。
在本发明实施例中,针对初始循环移位集合中的循环移位值进行偏移调整的预定的循环移位偏侧策略可以是网络设备和用户设备预先约定好的规则,那么在网络设备指示给用户设备一个原始的初始循环移位之后,用户设备则可以根据预先协商好的该规则对该原始的初始循环移位进行调整,由于网络设备和用户设备是事先约定好了的,所以对于用户设备所进行的偏移调整,网络设备也是可以知晓的。在另一种实施方式中,本发明实施例中的预定的循环移位偏移策略可以由网络设备侧确定,当网络设备向用户设备配置了原始的初始循环移位时,还可以将前述的预定的循环移位偏移策略告知用户设备,用户设备在获得了网络设备发送的原始的初始循环移位和预定的循环移位偏移策略之后,就可以对原始的初始循环移位进行对应的偏移调整,进而得到调整后的初始循环移位。
继续以图1为例,假设网络设备配置给小区a和小区b的PUCCH的基序列相同,并且为小区a和小区b配置的初始循环移位集合均是{0,4,8},那么在小区a中的用户设备1使用的初始循环移位是4时,小区a中的用户设备2使用的初始循环移位也可能是4,所以与用户设备1和用户设备2对应的PUCCH的发送序列就是完全一样的,所以会存在较大的PUCCH干扰。鉴于此,基于本发明实施例中的预定的循环移位偏移策略,用户设备可以对其初始循环移位进行偏移调整,由于每个用户设备都可以进行偏移调整,所以相当于是对小区a的初始循环移位集合整体上进行了偏移调整,具体可以是将初始循环移位集合{0,4,8}中的每个初始循环移位以相同的偏移量进行调整,例如将偏移量设置为1,那么偏移处理后的初始循环移位集合就从{0,4,8}变成了{1,5,9},进一步地对于原本使用{0,4,8}中的4进行循环移位的用户设备1来说,就可以使用5来进行循环移位,这样就可以和小区b中的用户设备的PUCCH产生差异,进而降低两个PUCCH的相互干扰。在具体实施过程中,可以令一个小区中的部分或全部用户设备进行偏移调整,具体可以根据为该小区配置的初始循环移位集合的循环移位间隔和可使用的初始循环移位集合的数量等因素而定。
类似地,对于小区b中的用户设备2和用户设备3来说,由于处于同一个小区,所以网络设备为其调度的PUCCH的基序列肯定是相同的,假设此时用户设备2和用户设备3的初始循环移位都被配置为{0,3,6,9}中的3,那么用户设备2和用户设备3的PUCCH也就会存在较大干扰,鉴于此,基于本发明实施例中的预定偏移策略可以对用户设备2和用户设备3中的至少一个的初始循环移位进行偏移调整,以使得用户设备2和用户设备3的初始循环移位不同,进而使得PUCCH的发送序列存在差异化,以减低PUCCH之间的干扰。在具体实施过程中,用户设备2和用户设备3可以处于同一Beam,或者可以处于不同的Beam,当处于不同的Beam下时,不同的两个Beam可以是相邻的Beam,或者也可以是不相邻的Beam,本发明实施例对此不作限制。
可见,由于可以按照预定的循环移位偏移策略对原始的初始循环移位进行偏移调整,那么偏移调整后的初始循环移位就可以尽量与其它用户设备的初始循环移位保持不同,进 而使得各用户设备的PUCCH的发送序列尽量保持差异化,实现降低PUCCH的干扰进而提升系统性能的目的。
在对初始循环移位进行偏移调整时,首先需要确定进行偏移的偏移量,具体来说,就是按照预定的循环移位偏移策略直接确定偏移量,换句话说,预定的循环移位偏移策略可以理解为是用于指示进行偏移的偏移量的确定方式,只要知晓了预定的循环移位偏移策略,就可以确定出偏移量。
为了便于理解,以下对预定的循环移位偏移策略是如何指示偏移量的可能的方式进行说明,也即,对预定的循环移位偏移策略的具体设置原理进行介绍。
方式一
首先,可以根据初始循环移位集合的循环移位间隔确定偏移基准参数集合,其中,偏移基准参数集合是偏移基准参数的多个值组成的集合,也就是根据循环移位间隔确定出的多个可能的偏移基准参数的值,而偏移基准参数的值是用于对初始循环移位进行偏移调整的偏移参考,以便后续利用偏移基准参数的值对初始循环移位进行具体的偏移调整。具体来说,是按照每个偏移基准参数的值均大于等于1且小于等于循环移位间隔的确定规则得到多个可能的偏移基准参数的值,并且偏移基准参数的值是正整数,假设循环移位间隔是4,以及以K表示偏移基准参数的值,按照前述的确定规则,那么K的取值就可能是1或2或3或4,所以最终的偏移基准参数集合就是包括前述四个取值中的至少一个取值的任意一种集合,例如偏移基准参数集合是{1}、{1,2,3}、{2,3}、{1,2,3,4},等等。在具体实施时,为了确保能够尽量多样化地对初始循环移位进行偏移调整,这里的偏移基准参数集合所包括的元素可以尽量的多,例如采用的一种可能的偏移基准参数集合则是{1,2,3,4}。
然后,再从确定出的偏移基准参数集合中确定一个用来进行偏移调整的偏移基准参数的值,例如将选择出的这个偏移基准参数的值称作目标偏移基准参数,在选择时候,可以随机选择,或者可以选择最大的偏移基准参数的值,或者可以根据后续使用的偏移调整的方式来进行选择,本发明实施例对此不作限制。
最后,再将预定标识对应的值与前述确定出的目标偏移基准参数进行预定处理,以得到进行偏移调整的偏移量。其中,所述预定标识可以是能够反映用户设备当前所处的通信网络的标识,举例来说,该预定标识例如可以是用户设备当前所处小区的物理小区标识(physical cell identifier,PCI),或者可以是用户设备与网络设备进行同步时的同步信号块(Synchronous signal block,SSB)的标识,即SSB ID。
在一种可能的实施方式中,偏移基准参数可以是根据初始循环移位集合的循环移位间隔和小区半径预先设定的,即,可以预先根据某个小区的半径和可能配置给该小区的初始循环移位集合的循环移位间隔来确定出针对该小区的偏移基准参数。将偏移基准参数的设置和循环移位间隔与小区半径关联设置的方式,可以使得在某小区的偏移量是尽量与该小 区的实际情况相匹配的。
方式一提供了一种通过初始循环移位集合的循环移位间隔和用户设备的预定标识设置所述预定的循环移位偏移策略的方式,通过将用户设备的预定标识与最终的偏移量进行绑定,可以使得用户设备的初始循环移位的偏移调整与用户设备自身的预定标识进行关联,由于每个用户设备的预定标识的值一般是不同的,所通过这种偏移调整方式可以尽量使得各用户设备的初始循环移位不同,以确保各个用户设备的PUCCH的发送序列的差异化,以尽量降低用户设备之间的PUCCH干扰。同时,通过与用户设备得到预定标识进行关联,可以将每个用户设备的初始循环移位的偏移量尽量与用户设备自身的属性进行匹配,进而基于根据各个用户设备自身属性的差异来实现对初始循环移位的差异化调整,继而提高偏移调整的有效性和准确性,使得匹配性提高。
当预定标识是PCI时,可以使得针对初始循环移位的目标偏移量尽量与用户设备当前实际所处的小区关联起来,那么对于不同小区(例如两个相邻小区或非相邻小区)中的用户设备来说,例如图1中的小区a中的用户设备1和小区b中的用户设备2来说,就可以分别使用自身所在的小区的PCI来计算得到各自相应的目标偏移量,由于目标偏移量是根据两个小区不同的PCI来确定的,所以可以尽量使得用户设备1与用户设备2这两个处于不同小区中的用户能够采用不同的目标偏移量,以实现两者之间的偏移差异化,进而尽量降低两者对应的PUCCH之间的干扰,也就是说,通过将PCI与偏移进行关联的方式,可以较大程度上降低小区间的PUCCH干扰,提高系统性能。
当预定标识是SSB ID时,可以使得针对初始循环移位的目标偏移量尽量与用户设备当前实际所处的Beam关联起来,因为在实际网络中,SSB的数目等于Beam的数目,因此一个SSB ID对于一个Beam,具体来说,当一个SSB ID用来和初始循环移位联系起来,意味着不同的Beam对应的初始循环移位会不同。那么对于同一小区中的不同用户设备来说,例如图1中的小区b中的用户设备2和用户设备3来说,可以分别使用对应的SSB ID来计算得到各自相应的目标偏移量,由于目标偏移量是根据两个用户设备在同步时的SSB的SSB ID确定的,所以可以尽量使得用户设备2与用户设备3这两个处于不同Beam中的用户能够采用不同的目标偏移量,以实现两者之间的偏移量异化,进而尽量降低两者对应的PUCCH之间的干扰,也就是说,通过将SSB ID与偏移进行关联的方式,可以较大程度上同一小区内不同Beam之间的PUCCH干扰,提高系统性能。
进一步地,针对上述的将预定标识对应的值与偏移基准参数进行预定处理的预定的循环移位偏移策略,具体来说,可以将预定标识的值与偏移基准参数的值进行求余计算,得到求余结果,进而再直接将求余结果作为进行偏移调整的偏移量,然后,再在初始循环移位的基础上增加前述的计算出的偏移量以得到最终的调整后的初始循环移位,也就是说,可以按照如下公式计算出调整后的初始循环移位。
Initial CS=Intial CS0+cell_ID mod K (公式1)
Initial CS=Intial CS0+SSB_ID mod K (公式2)
其中,Initial CS表示调整后初始循环移位,Intial CS0表示原始的初始循环移位,cell_ID表示PCI的值,SSB_ID表示SSB ID的值,K表示目标偏移基准参数的值,mod表示求余函数,所以cell_ID mod K即表示用PCI的值除以K之后得到的余数。
具体来说,公式(1)是针对预定标识为PCI时的计算公式,公式(2)是针对预定标识为SSB ID时的计算公式,可以明白的是,若预定标识为其它标识,那么基于公式(1)和公式(2)的简单变形就可以得到基于其它标识计算调整后的初始循环移位的公式,此处就不展开举例说明了。
假设K=2,并且为用户设备预先配置的循环移位集合是{0,4,8},则当PCI为0时,由于0mod2的值为0,此时则不对初始循环移位集合进行偏移调整,当PCI为1时,由于1mod2的值为1,此时偏移量即为1,结合到公式1可以得到调整后的初始循环移位集合是{1,5,9},当PCI为2时,由于1mod2的值为0,此时则不对初始循环移位集合进行偏移调整。可见,当将K设置为2时,PCI的值为奇数时则对初始循环移位集合偏移调整1,PCI的值为偶数时则不对初始循环移位集合进行任何调整。当然,在具体实施过程中,还可以将K设置1或3或4,等等,具体可以结合公式(1)进行计算,此处就不重复举例了。
假设K=3,并且为用户设备预先配置的循环移位集合是{0,3,6,9},则当SSB ID为0时,由于0mod3的值为0,此时则不对初始循环移位集合进行偏移调整;当SSB ID为1时,由于1mod3的值为1,此时偏移量即为1,结合到公式2可以得到调整后的初始循环移位集合是{1,4,7,10};当SSB ID为2时,由于2mod3的值为2,此时偏移量即为2,结合到公式2可以得到调整后的初始循环移位集合是{2,5,8,11}。
由于循环移位最多只能移12位,并且在目标标准中已经定义好的初始循环移位集合的基础上,能够进行偏移调整的偏移量是有限的,例如对于{0,3,6,9}的初始循环移位集合而言,就只能够进行1或2或3的偏移调整,所以通过本发明实施例中的求余计算的方式能够完整且方便地得到所有的偏移量,并且可以针对不同的预定标识的值均可以进行计算,计算量小,且效率较高。
另外,在具体实施过程中,还可以按照预定周期更新偏移基准参数的值,例如对于某个用户设备来说,在一段时间内使用利用预定的循环移位偏移策略和K=2去计算偏移量,在预定周期到来时,又使用K=3去计算偏移量,这样可以使得针对初始循环移位的偏移量能够动态变化,增加PUCCH的差异化程度,进一步地降低PUCCH之间的干扰。
方式二
在方式二中,预定的循环移位偏移策略是直接指示偏移量,而所指示的偏移量是根据初始循环移位集合的循环移位间隔设置的,具体来说,在一种可能的实施方式中,将偏移 量设置为小于循环移位间隔的任一自然数,例如{0,4,8}的循环移位间隔是4,那么按照方式二中的预定的循环移位偏移策略所指示的偏移量可以是0、1、2、3这四个值中的任意一个。
也就是说,可以直接根据循环移位间隔的值设置本发明实施例中的预定的循环移位偏移策略,其原理简单快捷,用户设备确定偏移量的效率也较高。并且,也可以按照预定周期更新偏移量,继续前述例子,假设在第一个时间周期内,通过预定的循环移位偏移策略指示的偏移量是1,而在第二个时间周期内就可以将偏移量指示为2,等等,这样可以使得针对初始循环移位的偏移量能够动态变化,增加PUCCH的差异化程度,降低PUCCH之间的干扰。
步骤24:根据基序列和调整后的初始循环移位确定PUCCH的发送序列,并根据确定的发送序列发送PUCCH。
在采用前述的方式得到了调整后的初始循环移位之后,就可以按照现有的根据PUCCH的基序列和初始循环移位确定PUCCH的发送序列的方式,再基于PUCCH的基序列和调整后的初始循环移位确定PUCCH的发送序列,进而根据PUCCH的发送序列得到调整后的PUCCH,最后再向网路设备发送调整后的PUCCH,以实现上行控制信息的上行传输。
基于同一发明构思,本发明实施例提供了一种装置,图3示出了一种装置300的结构示意图,装置300可以是终端设备,能够实现本发明实施例提供的方法中终端设备或用户设备的功能;装置300也可以是能够支持终端设备或用户设备实现本发明实施例提供的方法中终端设备或用户设备的功能的装置。装置300可以是硬件结构、软件模块、或硬件结构加软件模块。装置300可以由芯片系统实现。本发明实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图3所示,本发明实施例中的装置300可以包括获得模块31、第一确定模块32、第二确定模块33和发送模块34。其中:
获得模块31,用于获得物理上行链路控制信道PUCCH配置信息;
第一确定模块32,用于根据所述PUCCH配置信息,确定PUCCH的基序列及初始循环移位集合;
第二确定模块33,用于按照预定的循环移位偏移策略对所述初始循环移位集合中的循环移位值进行偏移调整,以得到调整后的初始循环移位;
发送模块34,用于根据所述基序列和所述调整后的初始循环移位确定PUCCH的发送序列,并根据确定的发送序列发送PUCCH。
在一种可能的实施方式中,第二确定模块33具体用于:根据预定的循环移位偏移策略确定循环移位偏移调整的偏移量;以及将初始循环移位集合中的循环移位值均按照所述偏移量进行偏移调整。
在一种可能的实施方式中,所述预定的循环移位偏移策略,包括:所述偏移量通过将 预定标识对应的值与偏移基准参数进行预定处理后得到。
在一种可能的实施方式中,预定标识为用户设备当前所处小区的PCI,或,预定标识为用户设备与网络设备进行同步时的SSB的标识。
在一种可能的实施方式中,所述预定的循环移位偏移策略,包括:所述偏移量为将所述预定标识对应的值与所述偏移基准参数的值进行求余计算得到的求余结果。
在一种可能的实施方式中,所述第二确定模块33还用于按照预定周期,更新所述偏移量。
其中,前述发送PUCCH的方法实施例涉及的各步骤的所有相关内容均可以援引到本发明实施例中的对应功能模块的功能描述,在此不再赘述。
本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本发明各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
基于同一构思,本申请实施例提供了一种装置,图4示出了本发明实施例提供的装置400的结构示意图,其中,装置400可以是终端设备,能够实现本发明实施例提供的方法中终端设备或用户设备的功能;装置400也可以是能够支持终端设备实现本发明实施例提供的方法中终端设备或用户设备的功能的装置。其中,该装置400可以为芯片系统。本发明实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
装置400包括至少一个处理器420,用于实现或用于支持该装置实现本申请实施例提供的方法中终端设备的功能。示例性地,处理器420可以处理信息。装置400还可以包括至少一个存储器430,用于存储程序指令和/或数据。存储器430和处理器420耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器420可能和存储器430协同操作。处理器420可能执行存储器430中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置400还可以包括通信接口410,用于通过传输介质和其它设备进行通信,从而用于装置400中的装置可以和其它设备进行通信,处理器420可以利用通信接口410收发数据。
本发明实施例中不限定上述通信接口410、处理器420以及存储器430之间的具体连接介质。本发明实施例在图4中以存储器430、处理器420以及通信接口410之间通过总线440连接,总线在图4中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图4中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器420可以是通用处理器、数字信号处理器、专用集成电路、 现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器430可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本发明实施例中还提供一种可读存储介质,该可读存储介质包括计算机可执行指令,当该计算机可执行指令在计算机上运行时,可以执行前述的发送PUCCH的方法包括的步骤。
本发明实施例还提供一种装置,该装置包括至少一个处理器及可读存储介质,当该可读存储介质中包括的计算机可执行指令被该至少一个处理器执行时,可以执行前述的发送PUCCH的方法包括的步骤。该装置可以由芯片构成,也可以包含芯片和其他分立器件。
本发明实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述发送PUCCH的方法中终端设备或用户设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在一种可能的实施方式中,本发明实施例提供的方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备或用户设备上运行时,所述程序代码用于使所述终端设备或用户设备执行本说明书上述描述的根据本发明各种示例性实施方式的方法中的步骤。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (23)
- 一种发送物理上行链路控制信道PUCCH的方法,其特征在于,所述方法包括:获得PUCCH配置信息;根据所述PUCCH配置信息,确定PUCCH的基序列及初始循环移位集合;按照预定的循环移位偏移策略对所述初始循环移位集合中的循环移位值进行偏移调整,以得到调整后的初始循环移位;根据所述基序列和所述调整后的初始循环移位确定PUCCH的发送序列,并根据确定的发送序列发送PUCCH。
- 如权利要求1所述的方法,其特征在于,按照预定的循环移位偏移策略对所述初始循环移位集合中的循环移位值进行偏移调整,包括:根据所述预定的循环移位偏移策略确定循环移位偏移调整的偏移量;将所述初始循环移位集合中的循环移位值均按照所述偏移量进行偏移调整。
- 如权利要求2所述的方法,其特征在于,所述预定的循环移位偏移策略,包括:所述偏移量为通过将预定标识对应的值与偏移基准参数进行预定处理后得到的结果。
- 如权利要求3所述的方法,其特征在于,所述预定标识为所述用户设备当前所处小区的物理小区标识PCI,或,所述预定标识为所述用户设备与所述网络设备进行同步时的同步信号块SSB的标识。
- 如权利要求3所述的方法,其特征在于,所述预定的循环移位偏移策略,包括:所述偏移量为将所述预定标识对应的值与所述偏移基准参数的值进行求余计算得到的求余结果。
- 如权利要求3所述的方法,其特征在于,所述偏移基准参数是根据所述初始循环移位集合的循环移位间隔和小区半径预先设定的。
- 如权利要求2-6中任一所述的方法,其特征在于,所述方法还包括:按照预定周期,更新所述偏移量。
- 一种装置,其特征在于,所述装置包括:获得模块,用于获得物理上行链路控制信道PUCCH配置信息;第一确定模块,用于根据所述PUCCH配置信息,确定PUCCH的基序列及初始循环移位集合;第二确定模块,用于按照预定的循环移位偏移策略对所述初始循环移位集合中的循环移位值进行偏移调整,以得到调整后的初始循环移位;发送模块,用于根据所述基序列和所述调整后的初始循环移位确定PUCCH的发送序列,并根据确定的发送序列发送PUCCH。
- 如权利要求8所述的装置,其特征在于,所述第二确定模块具体用于:根据所述预定的循环移位偏移策略确定循环移位偏移调整的偏移量;将所述初始循环移位集合中的循环移位值均按照所述偏移量进行偏移调整。
- 如权利要求9所述的装置,其特征在于,所述预定的循环移位偏移策略,包括:所述偏移量通过将预定标识对应的值与偏移基准参数进行预定处理后得到。
- 如权利要求10所述的装置,其特征在于,所述预定标识为所述用户设备当前所处小区的物理小区标识PCI,或,所述预定标识为所述用户设备与所述网络设备进行同步时的同步信号块SSB的标识。
- 如权利要求9所述的装置,其特征在于,所述预定的循环移位偏移策略,包括:所述偏移量为将所述预定标识对应的值与所述偏移基准参数的值进行求余计算得到的求余结果。
- 如权利要求9所述的装置,其特征在于,所述偏移基准参数是根据所述初始循环移位集合的循环移位间隔和小区半径预先设定的。
- 如权利要求8-13中任一所述的装置,其特征在于,所述第二确定模块还用于:按照预定周期,更新所述偏移量。
- 一种装置,其特征在于,所述装置包括:存储器,用于存储程序指令;处理器,用于调用所述存储器中存储的程序指令,按照获得的程序指令执行以下步骤:获得PUCCH配置信息;根据所述PUCCH配置信息,确定PUCCH的基序列及初始循环移位集合;按照预定的循环移位偏移策略对所述初始循环移位集合中的循环移位值进行偏移调整,以得到调整后的初始循环移位;根据所述基序列和所述调整后的初始循环移位确定PUCCH的发送序列,并根据确定的发送序列发送PUCCH。
- 如权利要求15所述的装置,其特征在于,按照预定的循环移位偏移策略对所述初始循环移位集合中的循环移位值进行偏移调整时,所述处理器用于:根据所述预定的循环移位偏移策略确定循环移位偏移调整的偏移量;将所述初始循环移位集合中的循环移位值均按照所述偏移量进行偏移调整。
- 如权利要求16所述的装置,其特征在于,所述预定的循环移位偏移策略,包括:所述偏移量为通过将预定标识对应的值与偏移基准参数进行预定处理后得到的结果。
- 如权利要求17所述的装置,其特征在于,所述预定标识为所述用户设备当前所处小区的物理小区标识PCI,或,所述预定标识为所述用户设备与所述网络设备进行同步时的同步信号块SSB的标识。
- 如权利要求17所述的装置,其特征在于,所述预定的循环移位偏移策略,包括:所述偏移量为将所述预定标识对应的值与所述偏移基准参数的值进行求余计算得到的求余结果。
- 如权利要求17所述的装置,其特征在于,所述偏移基准参数是根据所述初始循环移位集合的循环移位间隔和小区半径预先设定的。
- 如权利要求16-20中任一所述的装置,其特征在于,所述处理器还用于:按照预定周期,更新所述偏移量。
- 一种可读存储介质,其特征在于,所述可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行权利要求1-7中任一所述的方法包括的步骤。
- 一种装置,包括至少一个处理器以及可读存储介质,其特征在于,当所述可读存储介质中包括的指令被所述至少一个处理器执行时,可以执行权利要求1-7中任一所述的方法包括的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810450230.6A CN110475348B (zh) | 2018-05-11 | 2018-05-11 | 一种发送pucch的方法、装置及可读存储介质 |
CN201810450230.6 | 2018-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019214331A1 true WO2019214331A1 (zh) | 2019-11-14 |
Family
ID=68466655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/077359 WO2019214331A1 (zh) | 2018-05-11 | 2019-03-07 | 一种发送pucch的方法、装置及可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110475348B (zh) |
WO (1) | WO2019214331A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113163434A (zh) * | 2020-01-07 | 2021-07-23 | 中国移动通信有限公司研究院 | 一种配置方法、网络设备及网管系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090046645A1 (en) * | 2007-08-13 | 2009-02-19 | Pierre Bertrand | Uplink Reference Signal Sequence Assignments in Wireless Networks |
CN101873602A (zh) * | 2010-05-31 | 2010-10-27 | 新邮通信设备有限公司 | Lte系统中物理上行控制信道的干扰抑制方法 |
CN103023606A (zh) * | 2011-09-23 | 2013-04-03 | 华为技术有限公司 | 传输信息的方法、用户设备和基站 |
CN103139916A (zh) * | 2011-11-29 | 2013-06-05 | 华为技术有限公司 | 在物理上行控制信道上传输数据的方法和装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101192875B (zh) * | 2006-11-27 | 2011-05-25 | 上海无线通信研究中心 | 用于通用陆地无线接入系统的上行正交参考信号分配方法 |
WO2011077743A1 (ja) * | 2009-12-25 | 2011-06-30 | パナソニック株式会社 | 端末装置及び送信方法 |
CN103228049A (zh) * | 2012-01-30 | 2013-07-31 | 华为技术有限公司 | 一种无线网络信道分配方法、设备及系统 |
-
2018
- 2018-05-11 CN CN201810450230.6A patent/CN110475348B/zh active Active
-
2019
- 2019-03-07 WO PCT/CN2019/077359 patent/WO2019214331A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090046645A1 (en) * | 2007-08-13 | 2009-02-19 | Pierre Bertrand | Uplink Reference Signal Sequence Assignments in Wireless Networks |
CN101873602A (zh) * | 2010-05-31 | 2010-10-27 | 新邮通信设备有限公司 | Lte系统中物理上行控制信道的干扰抑制方法 |
CN103023606A (zh) * | 2011-09-23 | 2013-04-03 | 华为技术有限公司 | 传输信息的方法、用户设备和基站 |
CN103139916A (zh) * | 2011-11-29 | 2013-06-05 | 华为技术有限公司 | 在物理上行控制信道上传输数据的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110475348B (zh) | 2022-04-19 |
CN110475348A (zh) | 2019-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021043058A1 (zh) | 数据传输方法、装置、传输接收节点、终端及介质 | |
WO2019153964A1 (zh) | 一种进行混合自动重传请求反馈的方法和终端 | |
US10277363B2 (en) | Hybrid automatic repeat request acknowledgement transmission method, user equipment, and base station | |
TWI433497B (zh) | 混合式自動重送請求時序判定 | |
US12035311B2 (en) | Feedback information sending method and apparatus | |
WO2019127199A1 (zh) | 用于上行数据传输的方法和终端设备 | |
TWI687080B (zh) | Pucch傳輸方法、使用者設備和裝置 | |
WO2019213968A1 (zh) | 上行信道的发送方法和终端设备 | |
WO2021003620A1 (zh) | 下行信号传输的方法和设备 | |
CN111294971A (zh) | 用于信道传输的方法、终端设备及网络设备 | |
WO2018165987A1 (zh) | 上行传输方法、装置、终端设备、接入网设备及系统 | |
WO2019157975A1 (zh) | 上行功率控制的方法和装置 | |
JP2020533826A (ja) | データを伝送する方法及び端末装置 | |
JP2021503210A (ja) | リソース構成方法、端末装置及びネットワーク装置 | |
JP7503656B2 (ja) | リソース決定方法及び装置 | |
WO2022147735A1 (zh) | 确定发送功率的方法及装置 | |
TW202019208A (zh) | 一種回饋資源的複用方法、終端設備及網路設備 | |
WO2019096273A1 (zh) | 一种信息发送、接收的方法及装置 | |
TW201632013A (zh) | 方法、裝置及系統 | |
WO2019214331A1 (zh) | 一种发送pucch的方法、装置及可读存储介质 | |
WO2016169479A1 (zh) | 一种数据传输方法及设备 | |
WO2022156436A1 (zh) | 一种终端识别方法及设备 | |
JP6977064B2 (ja) | 上り伝送方法及び端末デバイス | |
WO2023050402A1 (en) | Method and apparatus for beam determination | |
TW201904226A (zh) | 無線通訊方法和設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19800660 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19800660 Country of ref document: EP Kind code of ref document: A1 |