[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019207920A1 - Mounting method and mounting device for semiconductor elements - Google Patents

Mounting method and mounting device for semiconductor elements Download PDF

Info

Publication number
WO2019207920A1
WO2019207920A1 PCT/JP2019/005756 JP2019005756W WO2019207920A1 WO 2019207920 A1 WO2019207920 A1 WO 2019207920A1 JP 2019005756 W JP2019005756 W JP 2019005756W WO 2019207920 A1 WO2019207920 A1 WO 2019207920A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
semiconductor element
substrate
adhesive layer
mounting
Prior art date
Application number
PCT/JP2019/005756
Other languages
French (fr)
Japanese (ja)
Inventor
石井 寛之
光 水野
大喜多 健三
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2019207920A1 publication Critical patent/WO2019207920A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips

Definitions

  • the present invention relates to a semiconductor element mounting method and a mounting apparatus.
  • a semiconductor module usually has a plurality of semiconductor elements mounted thereon.
  • a micro LED display is a display in which light emitting diodes (LEDs) are arranged as sub-pixels, and it is required to mount LEDs having a size of several tens of ⁇ m ⁇ several tens of ⁇ m on a circuit board with high accuracy.
  • LEDs light emitting diodes
  • the LEDs are arranged by selectively picking up a plurality of LEDs by a carrier member (transfer head). Specifically, the LEDs held on the substrate by an adhesive are selectively selected by the transfer head. A plurality of pickups are performed, and then the plurality of LEDs are collectively arranged on a circuit board (for example, see Patent Document 1).
  • Such an adhesive is required to have the ability to hold the LED on the substrate and the ability to selectively reduce the adhesive force when the LED is selectively picked up by the transfer head.
  • a manufacturing method of a micro LED display using an adhesive that can reduce adhesive strength by being cured by ultraviolet rays is known (see, for example, Patent Document 2).
  • the semiconductor elements are used to avoid adverse effects such as damage to the semiconductor elements due to light irradiation. It is necessary to devise such that the light is not irradiated.
  • the present inventors have studied to solve the above problems. As a result, the present inventors have found that the above problems can be solved by a semiconductor element mounting method and mounting apparatus having the following configuration, and have completed the present invention.
  • the present invention relates to the following [1] to [11], for example.
  • [1] (1) A step of disposing a semiconductor element on a first substrate through an adhesive layer including at least a laser-decomposable adhesive layer; (2) laser from the first substrate side to the laser-decomposable adhesive layer. (3) a step of picking up the semiconductor element from the first substrate by holding the semiconductor element on a carrier member; and (4) the semiconductor element picked up on a second substrate.
  • a method for mounting a semiconductor element comprising: a step of mounting.
  • the laser beam is a solid-state laser beam.
  • the solid-state laser light is 2 to 4 times higher than a YAG laser.
  • the laser beam is selectively applied to the laser-decomposable adhesive layer at a location corresponding to a semiconductor element to be picked up.
  • the laser beam is selectively irradiated.
  • An apparatus for mounting a semiconductor element comprising: a carrier member that picks up the semiconductor element from the first substrate by holding the element; and a placement portion on which the second substrate is placed.
  • the present invention it is possible to provide a method for mounting a semiconductor element that can be mounted without adversely affecting the semiconductor element, and to provide a mounting apparatus used for mounting the semiconductor element.
  • FIG. 1 illustrates an example of a semiconductor element mounting process according to the present invention.
  • the mounting method of the semiconductor element of the present invention is (1) A step of disposing a semiconductor element on the first substrate via an adhesive layer including at least a laser-decomposable adhesive layer; (2) irradiating the laser decomposable adhesive layer with laser light from the first substrate side; (3) a step of picking up the semiconductor element from the first substrate by holding the semiconductor element on a carrier member; and (4) a step of mounting the picked-up semiconductor element on a second substrate;
  • a semiconductor element is disposed on the first substrate via an adhesive layer including at least a laser decomposable adhesive layer.
  • an adhesive layer including at least a laser decomposable adhesive layer is disposed on the first substrate via an adhesive layer including at least a laser decomposable adhesive layer.
  • an adhesive layer 25 including a laser-decomposable adhesive layer is formed on the first substrate 20, followed by a crystal growth substrate.
  • the semiconductor elements 15 arranged on the substrate 10 are transferred onto the adhesive layer 25 formed on the first substrate 20.
  • the surface of the semiconductor element opposite to the surface held by the crystal growth substrate is attached to the adhesive layer on the first substrate, and then the crystal growth substrate is removed.
  • the method for removing the crystal growth substrate is not particularly limited, and examples thereof include a method for peeling and removing the crystal growth substrate from the semiconductor element by a laser lift-off method that irradiates laser light, and a method for removing the crystal growth substrate by a back grinding method.
  • the semiconductor element examples include a light emitting diode (LED), a transistor, and an integrated circuit (IC). Among these, an LED is preferable, and a micro LED is more preferable. In one embodiment, the micro LED has, for example, a width of 0.5 to 200 ⁇ m, a length of 0.5 to 200 ⁇ m, and a height of 0.5 to 200 ⁇ m.
  • the semiconductor element can have connection electrodes such as bumps for connection to a second substrate such as a circuit substrate described later.
  • the semiconductor elements are usually formed in a two-dimensional array (for example, a lattice shape) on the crystal growth substrate.
  • the crystal growth substrate usually has a circular shape or a rectangular shape, and is made of, for example, silicon, gallium arsenide, sapphire, or the like.
  • the semiconductor element can also be formed as follows. For example, a plurality of regions are defined by dividing lines arranged in a lattice pattern on the surface of a disk-shaped wafer that is a workpiece, and a semiconductor element is formed in each of the partitioned regions. After grinding to form a predetermined thickness, the wafer is cut along a division line by a dicing apparatus. In this manner, the regions are divided to form individual semiconductor elements. The formed semiconductor element is transferred onto the adhesive layer formed on the first substrate so that a predetermined surface faces.
  • the first substrate is a substrate holding a semiconductor element.
  • the laser beam is decomposed by irradiating laser light from the first substrate side in step (2) to decompose at least a part of the laser-decomposable adhesive layer.
  • a substrate that transmits light is preferable, and examples thereof include a glass substrate, a quartz substrate, and a transparent resin substrate.
  • the light transmittance at the laser wavelength used in the step (2) in the first substrate is preferably 50% or more, more preferably 70% or more.
  • the light transmittance can usually be measured with a spectrophotometer.
  • the laser-decomposable adhesive layer is not particularly limited as long as it is an adhesive layer that can hold the semiconductor element on the first substrate during the handling operation before laser irradiation and decomposes the contained components by laser irradiation. Examples thereof include the adhesives described in JP-A-2009-155652, JP-A-2012-106486, International Publication No. 2010/147102, JP-A-2018-022763, and JP-A-2017-069541.
  • a resin composition for laser ablation can be used as an adhesive for forming the laser-decomposable adhesive layer.
  • Laser ablation means that when a solid material is irradiated with laser light with an irradiation intensity higher than a threshold value, the solid material that has absorbed the laser light is decomposed, and the substances constituting the solid material are various atoms, molecules, radicals, etc. The solid material is released in the form, and the solid material is decomposed and removed in the laser irradiation portion.
  • the laser decomposable adhesive layer preferably contains a polymer.
  • the polymer include olefin resin, cycloolefin resin, terpene resin, rosin resin, petroleum resin, novolac resin, (meth) acrylic resin, polyvinyl chloride, ethylene-vinyl acetate copolymer, phenoxy resin. , Thermoplastic polyimide resins, and thermoplastic resins such as thermoplastic polybenzoxazole resins; and elastomers such as conjugated diene polymer rubbers.
  • the laser-decomposable adhesive layer preferably contains a light absorber that absorbs laser light.
  • the light absorber for example, absorbs the light and causes alteration such as decomposition of components in the laser-decomposable adhesive layer.
  • Examples of the light absorber include benzotriazole-based light absorbers, hydroxyphenyltriazine-based light absorbers, benzophenone-based light absorbers, salicylic acid-based light absorbers, radiation-sensitive radical polymerization initiators, and light-sensitive acid generators.
  • Organic light absorbers such as: reaction products of phenolic compounds and aldehyde compounds; black pigments such as carbon black, non-black pigments, and dyes.
  • a polymer containing a structure that absorbs laser light in a repeating unit may be used as the light absorber.
  • a polymer having a structure containing a conjugated ⁇ -electron system examples include a polymer having a quinone structure, and a polymer having a structure that forms a quinone structure by heat treatment.
  • the thickness of the laser decomposable adhesive layer is usually 0.01 to 100 ⁇ m, preferably 0.1 to 10 ⁇ m. When the thickness is in the above range, the semiconductor element can be protected from the laser beam while efficiently performing the decomposition by the laser beam.
  • conventional photocurable adhesives usually contain a crosslinking agent such as a (meth) acrylate monomer and a photopolymerization initiator such as a photoradical polymerization initiator.
  • a crosslinking agent such as a (meth) acrylate monomer
  • a photopolymerization initiator such as a photoradical polymerization initiator.
  • the cross-linking / curing of the portion far from the light irradiation side where light does not easily reach hardly proceeds.
  • a laser decomposable adhesive is used to hold the semiconductor element on the first substrate.
  • the adhesive strength is weakened if it is decomposed in any of the adhesive layers, so that it is possible to pick up a semiconductor element satisfactorily.
  • the semiconductor element can be prevented from being damaged by heat because there is almost no heat generated by laser irradiation.
  • the light transmittance at the laser wavelength used in the step (2) in the adhesive layer and / or the laser decomposable adhesive layer used in the present invention is preferably 45% or less, more preferably 40. % Or less, more preferably 35% or less.
  • the adhesive layer for holding the semiconductor element on the first substrate can be composed only of the laser decomposable adhesive layer, or has a laser decomposable adhesive layer and another adhesive layer. Can do.
  • the multilayer structure having two or more layers is, for example, protection of the circuit surface of the semiconductor element, adhesiveness / separation between the semiconductor element and the first substrate, shielding of light used during the laser irradiation process, Moreover, it can have a good balance of functions such as heat resistance during laser irradiation treatment.
  • the adhesive layer has another adhesive layer, adverse effects on the semiconductor element can be suppressed even when heat is generated in the laser-decomposable adhesive layer that has been irradiated with the laser. From the above viewpoint, it is preferable that the laser-decomposable adhesive layer is in contact with the first substrate.
  • adhesive layers can be formed using a known adhesive.
  • the adhesive include thermoplastic resin-based, elastomer-based, and thermosetting resin-based adhesives, and may be a mixed system of two or more selected from these.
  • the adhesive may be any of a solvent type, an emulsion type, and a hot melt type.
  • the thickness of the other adhesive layer is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • a spin coating method, an ink jet method, or a slit coating method can be used for the formation of the laser-decomposable adhesive layer and other adhesive layers.
  • the layers can be formed by, for example, heating to evaporate the solvent.
  • the laser decomposition type adhesive layer is irradiated with laser light from the first substrate side.
  • the laser beam is not particularly limited as long as the laser-decomposable adhesive can be decomposed.
  • the laser include a solid laser such as a YAG laser, a ruby laser, a glass laser, a YVO 4 laser, an LD laser, a fiber laser, and a photoexcited semiconductor laser; a liquid laser such as a dye laser; a CO 2 laser; Examples include gas lasers such as excimer laser, Ar laser, and He—Ne laser.
  • a gas laser or a solid laser is preferable from the viewpoint of suppressing the generation of heat in the adhesive layer during ablation
  • a solid laser beam is preferable from the viewpoint of cost
  • a 2 to 4 times harmonic of a YAG laser is more preferable.
  • the wavelength of the laser light includes a laser having an oscillation wavelength of any wavelength from the ultraviolet region to the infrared region, and among these, a short wavelength, specifically 400 nm or less, more preferably 360 nm or less, and still more preferably.
  • a laser having a wavelength of 310 nm or less from the viewpoint of suppressing the generation of heat in the adhesive layer during ablation.
  • the laser irradiation conditions vary depending on the type of light source and the like, but the output is usually 10 mW to 100 W, and the integrated light quantity is usually 10 to 10,000 mJ / cm 2 .
  • the laser at a location corresponding to the semiconductor element 15 to be picked up (specifically, a location where the semiconductor element 15 is bonded).
  • the laser beam (indicated by an arrow in FIG. 1C) can be selectively irradiated to the decomposable adhesive layer 25.
  • the laser-decomposable adhesive layer it is preferable to irradiate the laser-decomposable adhesive layer while scanning the laser beam from the first substrate side, and it is more preferable to irradiate the laser beam focused on the laser-decomposable adhesive layer.
  • the scanning method is not particularly limited.
  • the laser beam is linear in the X-axis direction, and it corresponds to the semiconductor element scheduled for pickup.
  • the component contained in the laser-decomposable adhesive layer absorbs laser light due to laser irradiation, and its adhesive strength is reduced. Therefore, the semiconductor element can be easily picked up from the first substrate after the laser irradiation on the laser decomposable adhesive layer.
  • step (3) the semiconductor element is picked up from the first substrate by holding the semiconductor element on the carrier member.
  • the carrier member 30 is disposed above the semiconductor element 15 disposed on the first substrate 20, is brought into contact with the semiconductor element 15, and has a pickup collet 35. 30 selectively picks up the semiconductor element 15a.
  • the semiconductor element 15 b that has not been picked up remains on the first substrate 20.
  • the number of semiconductor elements 15a picked up may be one, or a plurality of semiconductor elements 15a at the same time, for example, hundreds to millions. In one embodiment, it is preferable to pick up an array of semiconductor elements.
  • a conventionally known transfer head can be used as the carrier member.
  • a transfer head that picks up a semiconductor element by utilizing electrostatic action, particularly voltage application see Japanese Patent Laid-Open No. 2015-500561), vacuum suction, or the like.
  • a transfer head for picking up a semiconductor element by using a semiconductor device see Japanese Patent Application Laid-Open No. 2018-32740
  • a contact portion to the semiconductor element is made of a viscoelastic elastomer, and kinetically between the semiconductor element and the surface of the viscoelastic elastomer
  • a transfer head (see Japanese Patent Application Publication No. 2017-521859) for picking up a semiconductor element by using adjustable adhesion can be used.
  • a semiconductor element corresponding to the irradiation region in the array of semiconductor elements is selected using a carrier member. Can be picked up.
  • step (3) and step (4) described below a semiconductor element is picked up from the first substrate, and the picked-up semiconductor element is placed on the second substrate.
  • step (4) the picked-up semiconductor element is mounted on the second substrate.
  • the semiconductor element 15a held by the carrier member 30 is brought into contact with the second substrate 40, and then the carrier member 30 is separated from the semiconductor element 15a, and then the second substrate.
  • the semiconductor element 15 a is left on 40.
  • the semiconductor element mounted on the second substrate is also referred to as “semiconductor element 15 c”. In this way, a semiconductor module is manufactured.
  • step (4) a plurality of semiconductor elements picked up by the carrier member are bonded and mounted on the second substrate.
  • the second substrate examples include a circuit substrate having wiring and the like such as a display substrate, an illumination substrate, a substrate having a functional device such as a transistor or an integrated circuit (IC).
  • the second substrate can be a rigid substrate or a flexible substrate, and examples thereof include a rigid resin substrate, a ceramic substrate or a glass substrate, and a flexible resin substrate.
  • the adhesive layer residue remaining on the semiconductor element after laser ablation may be removed by, for example, wet cleaning with a solvent or dry cleaning such as ashing.
  • the second substrate can be entirely heated when the semiconductor element is mounted.
  • the heating method include a method using a hot plate, an infrared heating lamp, a laser, a resistance heating element, and the like.
  • the electrodes such as solder bumps (not shown) provided on the semiconductor element 15c can be joined to the electrodes 45 such as electrode pads formed on the second substrate 40.
  • the electrodes of the semiconductor element 15c and the electrodes 45 of the second substrate 40 can be electrically connected.
  • an underfill material can be used to protect the junction between the semiconductor element and the second substrate after mounting the semiconductor element.
  • a plurality of semiconductor elements 15c can be mounted on each electrode 45 of the second substrate 40 having a plurality of electrodes 45 arranged in an array.
  • a micro LED display comprising the semiconductor module can be obtained.
  • the mounting apparatus of the present invention is a semiconductor element mounting apparatus for transferring a semiconductor element held on a first substrate to a second substrate and mounting the semiconductor element on the second substrate, A holding unit for holding the semiconductor element on the first substrate via an adhesive layer including at least a laser-decomposable adhesive layer; A laser irradiation unit for irradiating the laser decomposition type adhesive layer with laser light from the first substrate side; A carrier member for picking up the semiconductor element from the first substrate by holding the semiconductor element; And a placement portion on which the second substrate is placed.
  • the holding unit holds a structure including a first substrate, an adhesive layer including a laser decomposable adhesive layer, and a semiconductor element.
  • the laser irradiation unit includes the laser described above.
  • the laser irradiation unit is optically applied from the first substrate side to the laser-decomposable adhesive layer in the first substrate, the adhesive layer including the laser-decomposable adhesive layer and the semiconductor element structure held by the holding unit. It is arranged at a position where laser irradiation is possible.
  • Examples of the carrier member include the transfer head described above.
  • the transfer head is configured to be movable by a robot arm, for example, and can pick up a semiconductor element from the first substrate and release the semiconductor element onto the second substrate.
  • the second substrate is placed on the placement portion, and the semiconductor element picked up using the carrier member is mounted on the second substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Die Bonding (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Laser Beam Processing (AREA)

Abstract

This mounting method for semiconductor elements includes: (1) a step for arranging semiconductor elements on a first substrate via an adhesive layer that includes at least a laser-degradable adhesive layer; (2) a step for radiating laser light at the laser-degradable adhesive layer from the first substrate side; (3) a step for making a carrier member hold the semiconductor elements and thereby picking the semiconductor elements off the first substrate; and (4) a step for mounting the picked-off semiconductor elements on a second substrate.

Description

半導体素子の実装方法および実装装置Semiconductor element mounting method and mounting apparatus
 本発明は、半導体素子の実装方法および実装装置に関する。 The present invention relates to a semiconductor element mounting method and a mounting apparatus.
 半導体モジュールは、通常、複数の半導体素子を実装している。例えば、マイクロLEDディスプレイは、発光ダイオード(LED)をサブピクセルとして配列したディスプレイであり、数十μm×数十μmの大きさのLEDを高精度で回路基板に実装することが求められている。 A semiconductor module usually has a plurality of semiconductor elements mounted thereon. For example, a micro LED display is a display in which light emitting diodes (LEDs) are arranged as sub-pixels, and it is required to mount LEDs having a size of several tens of μm × several tens of μm on a circuit board with high accuracy.
 このためLEDの配列は、キャリア部材(転写ヘッド)により複数のLEDを選択的にピックアップして行われており、具体的には、接着剤により基板上に保持したLEDを転写ヘッドにより選択的に複数ピックアップして、次いで、前記複数のLEDを一括で回路基板に配置することで行われている(例えば、特許文献1参照)。 For this reason, the LEDs are arranged by selectively picking up a plurality of LEDs by a carrier member (transfer head). Specifically, the LEDs held on the substrate by an adhesive are selectively selected by the transfer head. A plurality of pickups are performed, and then the plurality of LEDs are collectively arranged on a circuit board (for example, see Patent Document 1).
 このような接着剤には、基板上にLEDを保持できる性能と、転写ヘッドにより選択的にLEDをピックアップするときに選択的に接着力を低減できる性能とが求められている。例えば、紫外線により硬化することで粘着力を低減できる接着剤を用いたマイクロLEDディスプレイの製造方法が知られている(例えば、特許文献2参照)。 Such an adhesive is required to have the ability to hold the LED on the substrate and the ability to selectively reduce the adhesive force when the LED is selectively picked up by the transfer head. For example, a manufacturing method of a micro LED display using an adhesive that can reduce adhesive strength by being cured by ultraviolet rays is known (see, for example, Patent Document 2).
特表2015-500561号公報Special table 2015-500561 gazette 特開2016-213353号公報Japanese Unexamined Patent Publication No. 2016-213353
 半導体素子を配列および保持するために用いられる接着剤において、光照射により接着剤の接着力を選択的に変える場合、半導体素子への光照射によるダメージ等の悪影響を避けるために、半導体素子には前記光が照射されないような工夫が必要である。 In the adhesive used to arrange and hold the semiconductor elements, when the adhesive force of the adhesive is selectively changed by light irradiation, the semiconductor elements are used to avoid adverse effects such as damage to the semiconductor elements due to light irradiation. It is necessary to devise such that the light is not irradiated.
 本発明は、半導体素子への悪影響なく実装可能な半導体素子の実装方法を提供すること、および半導体素子の実装に用いられる実装装置を提供することを課題とする。 It is an object of the present invention to provide a method for mounting a semiconductor element that can be mounted without adversely affecting the semiconductor element, and to provide a mounting apparatus used for mounting the semiconductor element.
 本発明者らは上記課題を解決するための検討を行った。その結果、以下の構成を有する半導体素子の実装方法および実装装置により上記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors have studied to solve the above problems. As a result, the present inventors have found that the above problems can be solved by a semiconductor element mounting method and mounting apparatus having the following configuration, and have completed the present invention.
 本発明は、例えば以下の[1]~[11]に関する。
 [1](1)第1基板上に、レーザー分解型接着層を少なくとも含む接着剤層を介して半導体素子を配置する工程;(2)前記第1基板側から前記レーザー分解型接着層にレーザー光を照射する工程;(3)前記半導体素子をキャリア部材に保持させることにより、前記第1基板から前記半導体素子をピックアップする工程;および(4)前記ピックアップされた半導体素子を、第2基板に実装する工程;を有する、半導体素子の実装方法。
The present invention relates to the following [1] to [11], for example.
[1] (1) A step of disposing a semiconductor element on a first substrate through an adhesive layer including at least a laser-decomposable adhesive layer; (2) laser from the first substrate side to the laser-decomposable adhesive layer. (3) a step of picking up the semiconductor element from the first substrate by holding the semiconductor element on a carrier member; and (4) the semiconductor element picked up on a second substrate. A method for mounting a semiconductor element, comprising: a step of mounting.
 [2]前記レーザー光が、固体レーザー光である前記[1]に記載の半導体素子の実装方法。
 [3]前記固体レーザー光が、YAGレーザーの2~4倍波である前記[2]に記載の半導体素子の実装方法。
 [4]前記レーザー光の波長が、400nm以下である前記[1]~[3]のいずれかに記載の半導体素子の実装方法。
 [5]前記工程(2)において、ピックアップを予定している半導体素子に対応する箇所の前記レーザー分解型接着層に前記レーザー光を選択的に照射し、前記工程(3)において、選択的に複数の半導体素子をピックアップする前記[1]~[4]のいずれかに記載の半導体素子の実装方法。
 [6]前記第1基板における工程(2)で使用されるレーザー波長における光の透過率が、50%以上である前記[1]~[5]のいずれかに記載の半導体素子の実装方法。
 [7]前記工程(1)において、前記接着剤層が、前記レーザー分解型接着層および他の接着層を有する前記[1]~[6]のいずれかに記載の半導体素子の実装方法。
[2] The semiconductor element mounting method according to [1], wherein the laser beam is a solid-state laser beam.
[3] The semiconductor element mounting method according to [2], wherein the solid-state laser light is 2 to 4 times higher than a YAG laser.
[4] The semiconductor element mounting method according to any one of [1] to [3], wherein the laser beam has a wavelength of 400 nm or less.
[5] In the step (2), the laser beam is selectively applied to the laser-decomposable adhesive layer at a location corresponding to a semiconductor element to be picked up. In the step (3), the laser beam is selectively irradiated. The semiconductor element mounting method according to any one of [1] to [4], wherein a plurality of semiconductor elements are picked up.
[6] The semiconductor element mounting method according to any one of [1] to [5], wherein light transmittance at a laser wavelength used in the step (2) on the first substrate is 50% or more.
[7] The semiconductor element mounting method according to any one of [1] to [6], wherein, in the step (1), the adhesive layer includes the laser decomposable adhesive layer and another adhesive layer.
 [8]前記工程(1)において、前記レーザー分解型接着層が、前記第1基板と接している前記[7]に記載の半導体素子の実装方法。
 [9]前記接着剤層および/または前記レーザー分解型接着層における工程(2)で使用されるレーザー波長における光の透過率が、45%以下である前記[1]~[8]のいずれかに記載の半導体素子の実装方法。
 [10]前記半導体素子が、発光ダイオードである前記[1]~[9]のいずれかに記載の半導体素子の実装方法。
 [11]第1基板上に保持された半導体素子を第2基板に転写して、前記第2基板上に前記半導体素子を実装するための、半導体素子の実装装置であり、第1基板上に、レーザー分解型接着層を少なくとも含む接着剤層を介して半導体素子を保持する保持部と、前記第1基板側から、前記レーザー分解型接着層にレーザー光を照射するレーザー照射部と、前記半導体素子を保持することにより、前記第1基板から前記半導体素子をピックアップするキャリア部材と、第2基板を載置する載置部とを有する、半導体素子の実装装置。
[8] The method for mounting a semiconductor element according to [7], wherein in the step (1), the laser-decomposable adhesive layer is in contact with the first substrate.
[9] Any of [1] to [8] above, wherein the light transmittance at the laser wavelength used in the step (2) in the adhesive layer and / or the laser-decomposable adhesive layer is 45% or less. The mounting method of the semiconductor element as described in 2.
[10] The method for mounting a semiconductor element according to any one of [1] to [9], wherein the semiconductor element is a light emitting diode.
[11] A semiconductor device mounting apparatus for transferring a semiconductor device held on a first substrate to a second substrate and mounting the semiconductor device on the second substrate. A holding unit for holding a semiconductor element via an adhesive layer including at least a laser-decomposable adhesive layer, a laser irradiation unit for irradiating the laser-decomposable adhesive layer with laser light from the first substrate side, and the semiconductor An apparatus for mounting a semiconductor element, comprising: a carrier member that picks up the semiconductor element from the first substrate by holding the element; and a placement portion on which the second substrate is placed.
 本発明によれば、半導体素子への悪影響なく実装可能な半導体素子の実装方法を提供すること、および半導体素子の実装に用いられる実装装置を提供することができる。 According to the present invention, it is possible to provide a method for mounting a semiconductor element that can be mounted without adversely affecting the semiconductor element, and to provide a mounting apparatus used for mounting the semiconductor element.
図1に、本発明での半導体素子の実装工程の一例を図示する。FIG. 1 illustrates an example of a semiconductor element mounting process according to the present invention.
 以下、本発明を実施するための形態について説明する。
 [半導体素子の実装方法]
 本発明の半導体素子の実装方法は、
(1)第1基板上に、レーザー分解型接着層を少なくとも含む接着剤層を介して半導体素子を配置する工程;
(2)前記第1基板側から前記レーザー分解型接着層にレーザー光を照射する工程;
(3)前記半導体素子をキャリア部材に保持させることにより、前記第1基板から前記半導体素子をピックアップする工程;および
(4)前記ピックアップされた半導体素子を、第2基板に実装する工程;
を有する。
Hereinafter, modes for carrying out the present invention will be described.
[Semiconductor element mounting method]
The mounting method of the semiconductor element of the present invention is
(1) A step of disposing a semiconductor element on the first substrate via an adhesive layer including at least a laser-decomposable adhesive layer;
(2) irradiating the laser decomposable adhesive layer with laser light from the first substrate side;
(3) a step of picking up the semiconductor element from the first substrate by holding the semiconductor element on a carrier member; and (4) a step of mounting the picked-up semiconductor element on a second substrate;
Have
 <工程(1)>
 工程(1)では、第1基板上に、レーザー分解型接着層を少なくとも含む接着剤層を介して半導体素子を配置する。工程(1)により、図1(c)に示すように、第1基板20と、当該第1基板20上に形成された接着剤層25と、当該接着剤層25上に配置された複数の半導体素子15とを有する構造体を得ることができる。
<Step (1)>
In the step (1), a semiconductor element is disposed on the first substrate via an adhesive layer including at least a laser decomposable adhesive layer. Through the step (1), as shown in FIG. 1C, the first substrate 20, the adhesive layer 25 formed on the first substrate 20, and the plurality of layers arranged on the adhesive layer 25. A structure having the semiconductor element 15 can be obtained.
 工程(1)では、図1(a)および(b)に示すように、好ましくは、レーザー分解型接着層を含む接着剤層25を第1基板20上に形成し、続いて、結晶成長基板10上に配列された半導体素子15を第1基板20上に形成された前記接着剤層25上に転写する。例えば、半導体素子における結晶成長基板に保持された面とは反対側の面を第1基板上の前記接着剤層に貼付し、次に、結晶成長基板を除去する。結晶成長基板を除去する方法は特に限定されないが、レーザー光を照射するレーザーリフトオフ法により半導体素子から結晶成長基板を剥離し除去する方法、バックグラインド法により結晶成長基板を除去する方法が挙げられる。 In step (1), as shown in FIGS. 1 (a) and (b), preferably, an adhesive layer 25 including a laser-decomposable adhesive layer is formed on the first substrate 20, followed by a crystal growth substrate. The semiconductor elements 15 arranged on the substrate 10 are transferred onto the adhesive layer 25 formed on the first substrate 20. For example, the surface of the semiconductor element opposite to the surface held by the crystal growth substrate is attached to the adhesive layer on the first substrate, and then the crystal growth substrate is removed. The method for removing the crystal growth substrate is not particularly limited, and examples thereof include a method for peeling and removing the crystal growth substrate from the semiconductor element by a laser lift-off method that irradiates laser light, and a method for removing the crystal growth substrate by a back grinding method.
 半導体素子としては、例えば、発光ダイオード(LED)、トランジスタ、集積回路(IC)が挙げられ、これらの中でもLEDが好ましく、マイクロLEDがより好ましい。一実施態様において、マイクロLEDは、例えば、0.5~200μmの幅、0.5~200μmの長さ、および0.5~200μmの高さを有する。半導体素子は、後述する回路基板などの第2基板に接続するための、バンプなどの接続電極を有することができる。 Examples of the semiconductor element include a light emitting diode (LED), a transistor, and an integrated circuit (IC). Among these, an LED is preferable, and a micro LED is more preferable. In one embodiment, the micro LED has, for example, a width of 0.5 to 200 μm, a length of 0.5 to 200 μm, and a height of 0.5 to 200 μm. The semiconductor element can have connection electrodes such as bumps for connection to a second substrate such as a circuit substrate described later.
 半導体素子は、通常、結晶成長基板上に2次元状(例えば格子状)に複数個配列して形成されている。結晶成長基板は、通常は円形又は四角形を有し、例えばシリコン、ガリウムヒ素、サファイヤ等からなる。 The semiconductor elements are usually formed in a two-dimensional array (for example, a lattice shape) on the crystal growth substrate. The crystal growth substrate usually has a circular shape or a rectangular shape, and is made of, for example, silicon, gallium arsenide, sapphire, or the like.
 また、半導体素子は、以下の様にして形成することもできる。例えば、被加工物である円板形状のウエハの表面に格子状に配列された分割予定ラインによって複数の領域を区画し、この区画された領域それぞれに半導体素子を形成し、当該ウエハの裏面を研削して所定の厚さに形成した後、ダイシング装置により分割予定ラインに沿って当該ウエハを切断する。このようにして、前記領域を分割して個々の半導体素子を形成する。形成された半導体素子を所定の面が向くように、第1基板上に形成された前記接着剤層上に転写する。 The semiconductor element can also be formed as follows. For example, a plurality of regions are defined by dividing lines arranged in a lattice pattern on the surface of a disk-shaped wafer that is a workpiece, and a semiconductor element is formed in each of the partitioned regions. After grinding to form a predetermined thickness, the wafer is cut along a division line by a dicing apparatus. In this manner, the regions are divided to form individual semiconductor elements. The formed semiconductor element is transferred onto the adhesive layer formed on the first substrate so that a predetermined surface faces.
 第1基板は、半導体素子を保持する基板であり、例えば、工程(2)で第1基板側からレーザー光を照射してレーザー分解型接着層の少なくとも一部を分解させることから、前記レーザー光を透過する基板が好ましく、例えば、ガラス基板、石英基板および透明樹脂製基板が挙げられる。第1基板における工程(2)で使用されるレーザー波長における光の透過率は、好ましくは50%以上、より好ましくは70%以上である。 The first substrate is a substrate holding a semiconductor element. For example, the laser beam is decomposed by irradiating laser light from the first substrate side in step (2) to decompose at least a part of the laser-decomposable adhesive layer. A substrate that transmits light is preferable, and examples thereof include a glass substrate, a quartz substrate, and a transparent resin substrate. The light transmittance at the laser wavelength used in the step (2) in the first substrate is preferably 50% or more, more preferably 70% or more.
 光の透過率は、通常、分光光度計により測定することができる。
 レーザー分解型接着層は、レーザー照射前の取扱い作業の間には半導体素子を第1基板上に保持でき、かつレーザー照射により含有成分が分解する接着剤層であれば特に限定されず、例えば、特開2009-155652号公報、特開2012-106486号公報、国際公開第2010/147102号、特開2018-022763号公報、および特開2017-069541号公報に記載された接着剤が挙げられる。
The light transmittance can usually be measured with a spectrophotometer.
The laser-decomposable adhesive layer is not particularly limited as long as it is an adhesive layer that can hold the semiconductor element on the first substrate during the handling operation before laser irradiation and decomposes the contained components by laser irradiation. Examples thereof include the adhesives described in JP-A-2009-155652, JP-A-2012-106486, International Publication No. 2010/147102, JP-A-2018-022763, and JP-A-2017-069541.
 一実施態様では、レーザー分解型接着層を形成する接着剤として、レーザーアブレーション用樹脂組成物を用いることができる。レーザーアブレーションとは、閾値以上の照射強度でレーザー光を固体材料に照射した場合に、レーザー光を吸収した固体材料が分解して、固体材料を構成する物質が原子、分子、ラジカル等の様々な形態で放出され、レーザー照射部分において固体材料が分解、除去されることをいう。 In one embodiment, a resin composition for laser ablation can be used as an adhesive for forming the laser-decomposable adhesive layer. Laser ablation means that when a solid material is irradiated with laser light with an irradiation intensity higher than a threshold value, the solid material that has absorbed the laser light is decomposed, and the substances constituting the solid material are various atoms, molecules, radicals, etc. The solid material is released in the form, and the solid material is decomposed and removed in the laser irradiation portion.
 レーザー分解型接着層は、重合体を含有することが好ましい。重合体としては、例えば、オレフィン系樹脂、シクロオレフィン系樹脂、テルペン系樹脂、ロジン系樹脂、石油樹脂、ノボラック樹脂、(メタ)アクリル樹脂、ポリ塩化ビニル、エチレン-酢酸ビニル共重合体、フェノキシ樹脂、熱可塑性ポリイミド樹脂、および熱可塑性ポリベンゾオキサゾール樹脂等の熱可塑性樹脂;共役ジエン重合体ゴム等のエラストマーが挙げられる。 The laser decomposable adhesive layer preferably contains a polymer. Examples of the polymer include olefin resin, cycloolefin resin, terpene resin, rosin resin, petroleum resin, novolac resin, (meth) acrylic resin, polyvinyl chloride, ethylene-vinyl acetate copolymer, phenoxy resin. , Thermoplastic polyimide resins, and thermoplastic resins such as thermoplastic polybenzoxazole resins; and elastomers such as conjugated diene polymer rubbers.
 レーザー分解型接着層は、レーザー光を吸収する光吸収剤を含有することが好ましい。光吸収剤は、例えば、前記光を吸収し、レーザー分解型接着層において構成成分の分解等の変質を発生させる。光吸収剤としては、例えば、ベンゾトリアゾール系光吸収剤、ヒドロキシフェニルトリアジン系光吸収剤、ベンゾフェノン系光吸収剤、サリチル酸系光吸収剤、感放射線性ラジカル重合開始剤、および光感応性酸発生剤等の有機系光吸収剤;フェノール化合物とアルデヒド化合物との反応生成物;カーボンブラック等の黒色顔料、非黒色顔料、染料が挙げられる。 The laser-decomposable adhesive layer preferably contains a light absorber that absorbs laser light. The light absorber, for example, absorbs the light and causes alteration such as decomposition of components in the laser-decomposable adhesive layer. Examples of the light absorber include benzotriazole-based light absorbers, hydroxyphenyltriazine-based light absorbers, benzophenone-based light absorbers, salicylic acid-based light absorbers, radiation-sensitive radical polymerization initiators, and light-sensitive acid generators. Organic light absorbers such as: reaction products of phenolic compounds and aldehyde compounds; black pigments such as carbon black, non-black pigments, and dyes.
 また、光吸収剤としては、レーザー光を吸収する構造を繰返し単位中に含む重合体を用いてもよい。このような重合体としては、例えば、共役π電子系を含む構造を有する重合体が挙げられ、具体的には、キノン構造を有する重合体、加熱処理によりキノン構造を形成する構造を有する重合体、ベンゼン環、縮合環または複素環等を有する重合体が挙げられる。 Further, as the light absorber, a polymer containing a structure that absorbs laser light in a repeating unit may be used. Examples of such a polymer include a polymer having a structure containing a conjugated π-electron system. Specifically, a polymer having a quinone structure, and a polymer having a structure that forms a quinone structure by heat treatment. , A polymer having a benzene ring, a condensed ring or a heterocyclic ring.
 レーザー分解型接着層の厚さは、通常は0.01~100μm、好ましくは0.1~10μmである。厚さが前記範囲にあると、レーザー光による分解を効率的に行いながら、レーザー光から半導体素子を保護することができる。 The thickness of the laser decomposable adhesive layer is usually 0.01 to 100 μm, preferably 0.1 to 10 μm. When the thickness is in the above range, the semiconductor element can be protected from the laser beam while efficiently performing the decomposition by the laser beam.
 なお、従来の光硬化型接着剤は、通常、(メタ)アクリレートモノマー等の架橋剤と光ラジカル重合開始剤等の光重合開始剤とを含有する。しかしながら、半導体素子へのダメージを防ぐため、このような光硬化型接着剤からなる接着剤層の光透過率を0%に近づけると、光照射を行っても架橋・硬化が進行しづらく、特に、接着剤層において光の届きにくい光照射側から遠い部分の架橋・硬化はほとんど進行しない。このため、従来の光硬化型接着剤では、光透過率を0%に近づけ、かつ光照射により接着力を充分に低下させることは困難である。さらに、(メタ)アクリレートモノマーの重合硬化の際に発熱があるため、半導体素子に熱によるダメージを与える可能性もある。 Note that conventional photocurable adhesives usually contain a crosslinking agent such as a (meth) acrylate monomer and a photopolymerization initiator such as a photoradical polymerization initiator. However, in order to prevent damage to the semiconductor element, when the light transmittance of the adhesive layer made of such a photocurable adhesive is close to 0%, it is difficult to proceed with crosslinking / curing even if light irradiation is performed. In the adhesive layer, the cross-linking / curing of the portion far from the light irradiation side where light does not easily reach hardly proceeds. For this reason, it is difficult for a conventional photo-curing adhesive to bring the light transmittance close to 0% and to sufficiently reduce the adhesive force by light irradiation. Furthermore, since heat is generated during polymerization and curing of the (meth) acrylate monomer, the semiconductor element may be damaged by heat.
 本発明では、光硬化型接着剤とは異なり、半導体素子を第1基板上に保持するためにレーザー分解型接着剤を用いることを特徴としている。レーザー分解型接着剤であれば、光透過率が0%付近であっても、接着剤層のいずれかで分解していれば接着力が弱まることから、良好に半導体素子をピックアップすることができる。また、波長の短いレーザー光を使用すれば、レーザー照射による発熱がほとんど無いため、熱による半導体素子へのダメージを防ぐこともできる。 In the present invention, unlike the photo-curing adhesive, a laser decomposable adhesive is used to hold the semiconductor element on the first substrate. With a laser-decomposable adhesive, even if the light transmittance is near 0%, the adhesive strength is weakened if it is decomposed in any of the adhesive layers, so that it is possible to pick up a semiconductor element satisfactorily. . In addition, if laser light having a short wavelength is used, the semiconductor element can be prevented from being damaged by heat because there is almost no heat generated by laser irradiation.
 以上の観点から、本発明で使用される接着剤層および/またはレーザー分解型接着層における工程(2)で使用されるレーザー波長における光の透過率は、好ましくは45%以下、より好ましくは40%以下、さらに好ましくは35%以下である。 From the above viewpoint, the light transmittance at the laser wavelength used in the step (2) in the adhesive layer and / or the laser decomposable adhesive layer used in the present invention is preferably 45% or less, more preferably 40. % Or less, more preferably 35% or less.
 本発明では、第1基板上に半導体素子を保持するための接着剤層は、レーザー分解型接着層のみからなることができ、あるいは、レーザー分解型接着剤層と他の接着層とを有することができる。 In the present invention, the adhesive layer for holding the semiconductor element on the first substrate can be composed only of the laser decomposable adhesive layer, or has a laser decomposable adhesive layer and another adhesive layer. Can do.
 このように2層以上の層を有する多層構造は、例えば半導体素子が有する回路面の保護、半導体素子と第1基板との接着性・分離性、レーザー照射処理時に使用される光の遮断性、およびレーザー照射処理時における耐熱性等の機能をバランス良く有することができる。また、接着剤層が他の接着層を有することで、レーザー照射を受けたレーザー分解型接着層で熱が発生した場合でも半導体素子への悪影響を抑制することができる。上記観点から、レーザー分解型接着層が第1基板と接していることが好ましい。 Thus, the multilayer structure having two or more layers is, for example, protection of the circuit surface of the semiconductor element, adhesiveness / separation between the semiconductor element and the first substrate, shielding of light used during the laser irradiation process, Moreover, it can have a good balance of functions such as heat resistance during laser irradiation treatment. In addition, when the adhesive layer has another adhesive layer, adverse effects on the semiconductor element can be suppressed even when heat is generated in the laser-decomposable adhesive layer that has been irradiated with the laser. From the above viewpoint, it is preferable that the laser-decomposable adhesive layer is in contact with the first substrate.
 他の接着層は、公知の接着剤を用いて形成することができる。接着剤としては、例えば、熱可塑性樹脂系、エラストマー系、または熱硬化性樹脂系の接着剤が挙げられ、これらから選ばれる2種以上の混合系であってもよい。接着剤は、溶剤型、エマルジョン型またはホットメルト型のいずれであってもよい。 Other adhesive layers can be formed using a known adhesive. Examples of the adhesive include thermoplastic resin-based, elastomer-based, and thermosetting resin-based adhesives, and may be a mixed system of two or more selected from these. The adhesive may be any of a solvent type, an emulsion type, and a hot melt type.
 他の接着層の厚さは、通常は1~100μm、好ましくは5~50μmである。
 レーザー分解型接着層および他の接着層の形成には、例えば、スピンコート法、インクジェット法、スリットコート法を用いることができる。前記各接着剤を塗布して塗膜を形成した後は、例えば加熱して、溶剤を蒸発させることにより、前記各層を形成することができる。
The thickness of the other adhesive layer is usually 1 to 100 μm, preferably 5 to 50 μm.
For the formation of the laser-decomposable adhesive layer and other adhesive layers, for example, a spin coating method, an ink jet method, or a slit coating method can be used. After forming the coating film by applying the adhesives, the layers can be formed by, for example, heating to evaporate the solvent.
 <工程(2)>
 工程(2)では、第1基板側からレーザー分解型接着層にレーザー光を照射する。
 レーザー光としては、レーザー分解型接着剤を分解することができれば特に限定されない。レーザーとしては、例えば、YAGレーザー、ルビーレーザー、ガラスレーザー、YVO4レーザー、LDレーザー、ファイバーレーザー、光励起半導体レーザーを用いた全固体レーザー等の固体レーザー;色素レーザー等の液体レーザー;CO2レーザー、エキシマレーザー、Arレーザー、He-Neレーザー等の気体レーザーが挙げられる。これらの中でも、アブレーション時の接着層の熱の発生を抑制できる観点から、気体レーザーまたは固体レーザーが好ましく、コストの観点から、固体レーザー光が好ましく、YAGレーザーの2~4倍波がより好ましい。
<Step (2)>
In the step (2), the laser decomposition type adhesive layer is irradiated with laser light from the first substrate side.
The laser beam is not particularly limited as long as the laser-decomposable adhesive can be decomposed. Examples of the laser include a solid laser such as a YAG laser, a ruby laser, a glass laser, a YVO 4 laser, an LD laser, a fiber laser, and a photoexcited semiconductor laser; a liquid laser such as a dye laser; a CO 2 laser; Examples include gas lasers such as excimer laser, Ar laser, and He—Ne laser. Among these, a gas laser or a solid laser is preferable from the viewpoint of suppressing the generation of heat in the adhesive layer during ablation, a solid laser beam is preferable from the viewpoint of cost, and a 2 to 4 times harmonic of a YAG laser is more preferable.
 また、レーザー光の波長としては、発振波長が紫外線領域から赤外線領域までのいずれかの波長のレーザーが挙げられ、これらの中でも短波長、具体的には400nm以下、より好ましくは360nm以下、さらに好ましくは310nm以下の波長のレーザーが、アブレーション時の接着層の熱の発生を抑制できる観点から、好ましい。 The wavelength of the laser light includes a laser having an oscillation wavelength of any wavelength from the ultraviolet region to the infrared region, and among these, a short wavelength, specifically 400 nm or less, more preferably 360 nm or less, and still more preferably. Is preferably a laser having a wavelength of 310 nm or less from the viewpoint of suppressing the generation of heat in the adhesive layer during ablation.
 レーザー照射の条件は、光源等の種類によって異なるが、出力が通常は10mW~100W、積算光量が通常は10~10,000mJ/cm2である。
 ここで、図1(c)および(d)に示すように、ピックアップを予定している半導体素子15に対応する箇所(具体的には、前記半導体素子15が接着している箇所)の前記レーザー分解型接着層25に前記レーザー光(図1(c)中では矢印で示す)を選択的に照射することができる。
The laser irradiation conditions vary depending on the type of light source and the like, but the output is usually 10 mW to 100 W, and the integrated light quantity is usually 10 to 10,000 mJ / cm 2 .
Here, as shown in FIGS. 1C and 1D, the laser at a location corresponding to the semiconductor element 15 to be picked up (specifically, a location where the semiconductor element 15 is bonded). The laser beam (indicated by an arrow in FIG. 1C) can be selectively irradiated to the decomposable adhesive layer 25.
 また、第1基板側から、レーザー光を走査させながらレーザー分解型接着層に照射することが好ましく、レーザー光をレーザー分解型接着層に焦点を絞って照射することがより好ましい。走査方法としては特に限定されず、例えば、レーザー分解型接着層の面(以下「XY平面」とする)において、X軸方向にレーザー光を線状に、ピックアップを予定している半導体素子に対応する箇所に選択的に照射し、Y軸方向に照射部を順次移動させて照射する方法や、レーザー光を角周状に、ピックアップを予定している半導体素子に対応する箇所に選択的に照射し、中心部から周縁部へ外側に又は周縁部から中心部へ内側に照射部を順次移動させて照射する方法が挙げられる。 Further, it is preferable to irradiate the laser-decomposable adhesive layer while scanning the laser beam from the first substrate side, and it is more preferable to irradiate the laser beam focused on the laser-decomposable adhesive layer. The scanning method is not particularly limited. For example, on the surface of the laser-decomposable adhesive layer (hereinafter referred to as “XY plane”), the laser beam is linear in the X-axis direction, and it corresponds to the semiconductor element scheduled for pickup. Selectively irradiate the part to be picked up, move the irradiation part sequentially in the Y-axis direction, and irradiate the part corresponding to the semiconductor element that is planned to pick up the laser light in a square shape In addition, there is a method of irradiating by moving the irradiation unit sequentially from the central part to the outer side or from the peripheral part to the inner side.
 レーザー照射により、レーザー分解型接着層の含有成分がレーザー光を吸収し、その接着力が低下する。したがって、レーザー分解型接着層に対するレーザー照射の後であれば、第1基板から半導体素子を容易にピックアップすることができる。 The component contained in the laser-decomposable adhesive layer absorbs laser light due to laser irradiation, and its adhesive strength is reduced. Therefore, the semiconductor element can be easily picked up from the first substrate after the laser irradiation on the laser decomposable adhesive layer.
 <工程(3)>
 工程(3)では、半導体素子をキャリア部材に保持させることにより、第1基板から半導体素子をピックアップする。
<Step (3)>
In step (3), the semiconductor element is picked up from the first substrate by holding the semiconductor element on the carrier member.
 例えば、図1(d)に示すように、キャリア部材30を、第1基板20上に配置されている半導体素子15の上方に配置し、半導体素子15と接触させ、ピックアップコレット35を有するキャリア部材30に半導体素子15aを選択的にピックアップさせる。この場合、ピックアップされなかった半導体素子15bが第1基板20上に残る。ここでピックアップされる半導体素子15aは、1つであっても、例えば数百個から数百万個のように同時に複数個であることもできる。一実施態様では、半導体素子のアレイをピックアップすることが好ましい。 For example, as shown in FIG. 1D, the carrier member 30 is disposed above the semiconductor element 15 disposed on the first substrate 20, is brought into contact with the semiconductor element 15, and has a pickup collet 35. 30 selectively picks up the semiconductor element 15a. In this case, the semiconductor element 15 b that has not been picked up remains on the first substrate 20. The number of semiconductor elements 15a picked up here may be one, or a plurality of semiconductor elements 15a at the same time, for example, hundreds to millions. In one embodiment, it is preferable to pick up an array of semiconductor elements.
 キャリア部材としては、従来公知の転写ヘッドを用いることができ、例えば、静電作用、特に電圧印加を利用して半導体素子をピックアップする転写ヘッド(特表2015-500561号公報参照)や、真空吸着を利用して半導体素子をピックアップする転写ヘッド(特開2018-32740号公報参照)、半導体素子への接触部分が粘弾性エラストマーからなり、半導体素子と粘弾性エラストマー表面との間で動力学的に調整可能な接着を利用して半導体素子をピックアップする転写ヘッド(特表2017-521859号公報参照)を用いることができる。 As the carrier member, a conventionally known transfer head can be used. For example, a transfer head that picks up a semiconductor element by utilizing electrostatic action, particularly voltage application (see Japanese Patent Laid-Open No. 2015-500561), vacuum suction, or the like. A transfer head for picking up a semiconductor element by using a semiconductor device (see Japanese Patent Application Laid-Open No. 2018-32740), a contact portion to the semiconductor element is made of a viscoelastic elastomer, and kinetically between the semiconductor element and the surface of the viscoelastic elastomer A transfer head (see Japanese Patent Application Publication No. 2017-521859) for picking up a semiconductor element by using adjustable adhesion can be used.
 例えば、レーザー光を選択的に照射した部分のレーザー分解型接着層は接着力が低下しているので、キャリア部材を用いて、半導体素子のアレイのうちの前記照射領域に対応する半導体素子を選択的にピックアップすることができる。
 工程(3)および以下に説明する工程(4)により、第1基板から半導体素子をピックアップし、ピックアップされた半導体素子を、第2基板上に配置する。
For example, since the adhesive force of the laser-resolvable adhesive layer in the portion selectively irradiated with laser light is reduced, a semiconductor element corresponding to the irradiation region in the array of semiconductor elements is selected using a carrier member. Can be picked up.
In step (3) and step (4) described below, a semiconductor element is picked up from the first substrate, and the picked-up semiconductor element is placed on the second substrate.
 <工程(4)>
 工程(4)では、前記ピックアップされた半導体素子を、第2基板に実装する。例えば、図1(d)および(e)に示すように、キャリア部材30に保持された半導体素子15aを第2基板40に接触させ、続いてキャリア部材30を半導体素子15aから離し、第2基板40上に半導体素子15aを残す。以下、第2基板上に実装された半導体素子を「半導体素子15c」とも記載する。このようにして、半導体モジュールを製造する。工程(4)では、キャリア部材によりピックアップした複数の半導体素子を、第2基板上に接合して実装する。
<Process (4)>
In step (4), the picked-up semiconductor element is mounted on the second substrate. For example, as shown in FIGS. 1D and 1E, the semiconductor element 15a held by the carrier member 30 is brought into contact with the second substrate 40, and then the carrier member 30 is separated from the semiconductor element 15a, and then the second substrate. The semiconductor element 15 a is left on 40. Hereinafter, the semiconductor element mounted on the second substrate is also referred to as “semiconductor element 15 c”. In this way, a semiconductor module is manufactured. In step (4), a plurality of semiconductor elements picked up by the carrier member are bonded and mounted on the second substrate.
 第2基板としては、例えば、ディスプレイ基板、照明基板、トランジスタまたは集積回路(IC)等の機能デバイスを有する基板などのように、配線等を有する回路基板が挙げられる。第2基板は、リジッド基板またはフレキシブル基板であることができ、例えば、リジッドな樹脂製基板、セラミック基板またはガラス基板、フレキシブルな樹脂製基板が挙げられる。 Examples of the second substrate include a circuit substrate having wiring and the like such as a display substrate, an illumination substrate, a substrate having a functional device such as a transistor or an integrated circuit (IC). The second substrate can be a rigid substrate or a flexible substrate, and examples thereof include a rigid resin substrate, a ceramic substrate or a glass substrate, and a flexible resin substrate.
 一実施態様において、半導体素子実装前に、レーザーアブレーション後に半導体素子上に残った前記接着剤層の残渣を、例えば、溶剤等によるウェット洗浄やアッシング等によるドライ洗浄により除去してもよい。 In one embodiment, before the semiconductor element is mounted, the adhesive layer residue remaining on the semiconductor element after laser ablation may be removed by, for example, wet cleaning with a solvent or dry cleaning such as ashing.
 一実施態様において、半導体素子実装時に、第2基板を全体的に加熱することができる。加熱方法としては、例えば、ホットプレート、赤外線加熱ランプ、レーザー、抵抗発熱体などを用いる方法が挙げられる。例えば、図1(e)に示すように、半導体素子15cに設けられた図示せぬはんだバンプ等の電極が第2基板40に形成された電極パッド等の電極45と接合可能な温度に前記第2基板40を加熱制御することにより、半導体素子15cの前記電極と第2基板40の前記電極45とを電気的に接続することができる。 In one embodiment, the second substrate can be entirely heated when the semiconductor element is mounted. Examples of the heating method include a method using a hot plate, an infrared heating lamp, a laser, a resistance heating element, and the like. For example, as shown in FIG. 1E, the electrodes such as solder bumps (not shown) provided on the semiconductor element 15c can be joined to the electrodes 45 such as electrode pads formed on the second substrate 40. By controlling the heating of the two substrates 40, the electrodes of the semiconductor element 15c and the electrodes 45 of the second substrate 40 can be electrically connected.
 一実施態様において、半導体素子実装後に、半導体素子と第2基板との接合部位を保護するために、アンダーフィル材を用いることができる。
 以上の様にして、図1(e)に示すように、配列形成された複数の電極45を有する第2基板40の各電極45上に、複数の半導体素子15cを実装することができる。本発明の方法により、一実施態様では、前記半導体モジュールからなるマイクロLEDディスプレイを得ることができる。
In one embodiment, an underfill material can be used to protect the junction between the semiconductor element and the second substrate after mounting the semiconductor element.
As described above, as shown in FIG. 1E, a plurality of semiconductor elements 15c can be mounted on each electrode 45 of the second substrate 40 having a plurality of electrodes 45 arranged in an array. According to the method of the present invention, in one embodiment, a micro LED display comprising the semiconductor module can be obtained.
 [半導体素子の実装装置]
 本発明の実装装置は、第1基板上に保持された半導体素子を第2基板に転写して、前記第2基板上に前記半導体素子を実装するための、半導体素子の実装装置であり、
 第1基板上に、レーザー分解型接着層を少なくとも含む接着剤層を介して半導体素子を保持する保持部と、
 前記第1基板側から、前記レーザー分解型接着層にレーザー光を照射するレーザー照射部と、
 前記半導体素子を保持することにより、前記第1基板から前記半導体素子をピックアップするキャリア部材と、
 前記第2基板を載置する載置部と
を有する。
[Semiconductor element mounting equipment]
The mounting apparatus of the present invention is a semiconductor element mounting apparatus for transferring a semiconductor element held on a first substrate to a second substrate and mounting the semiconductor element on the second substrate,
A holding unit for holding the semiconductor element on the first substrate via an adhesive layer including at least a laser-decomposable adhesive layer;
A laser irradiation unit for irradiating the laser decomposition type adhesive layer with laser light from the first substrate side;
A carrier member for picking up the semiconductor element from the first substrate by holding the semiconductor element;
And a placement portion on which the second substrate is placed.
 前記保持部は、第1基板、レーザー分解型接着層を含む接着剤層および半導体素子からなる構造体を保持する。
 前記レーザー照射部は、上述したレーザーを有する。レーザー照射部は、前記保持部で保持された、第1基板、レーザー分解型接着層を含む接着剤層および半導体素子からなる構造体におけるレーザー分解型接着層に、第1基板側から、光学的にレーザー照射可能な位置に配置される。
The holding unit holds a structure including a first substrate, an adhesive layer including a laser decomposable adhesive layer, and a semiconductor element.
The laser irradiation unit includes the laser described above. The laser irradiation unit is optically applied from the first substrate side to the laser-decomposable adhesive layer in the first substrate, the adhesive layer including the laser-decomposable adhesive layer and the semiconductor element structure held by the holding unit. It is arranged at a position where laser irradiation is possible.
 前記キャリア部材としては、上述した転写ヘッドが挙げられる。転写ヘッドは、例えばロボットアームにより移動可能なように構成されており、第1基板からの半導体素子のピックアップおよび第2基板上への半導体素子のリリースを行うことができる。
 前記載置部に第2基板を載置し、前記キャリア部材を用いてピックアップされた半導体素子を第2基板上に実装する。
Examples of the carrier member include the transfer head described above. The transfer head is configured to be movable by a robot arm, for example, and can pick up a semiconductor element from the first substrate and release the semiconductor element onto the second substrate.
The second substrate is placed on the placement portion, and the semiconductor element picked up using the carrier member is mounted on the second substrate.
10…結晶成長基板
15…半導体素子
15a…ピックアップされた半導体素子
15b…ピックアップされなかった半導体素子
15c…第2基板上に実装された半導体素子
20…第1基板
25…レーザー分解型接着層(接着剤層)
30…キャリア部材(転写ヘッド)
35…ピックアップコレット
40…第2基板(回路基板)
45…電極
DESCRIPTION OF SYMBOLS 10 ... Crystal growth board | substrate 15 ... Semiconductor element 15a ... The picked-up semiconductor element 15b ... The semiconductor element 15c not picked up ... The semiconductor element 20 mounted on the 2nd board | substrate ... 1st board | substrate 25 ... Laser-decomposable adhesive layer (adhesion) Agent layer)
30 ... Carrier member (transfer head)
35 ... Pickup collet 40 ... Second board (circuit board)
45 ... Electrode

Claims (11)

  1. (1)第1基板上に、レーザー分解型接着層を少なくとも含む接着剤層を介して半導体素子を配置する工程;
    (2)前記第1基板側から前記レーザー分解型接着層にレーザー光を照射する工程;
    (3)前記半導体素子をキャリア部材に保持させることにより、前記第1基板から前記半導体素子をピックアップする工程;および
    (4)前記ピックアップされた半導体素子を、第2基板に実装する工程;
    を有する、半導体素子の実装方法。
    (1) A step of disposing a semiconductor element on the first substrate via an adhesive layer including at least a laser-decomposable adhesive layer;
    (2) irradiating the laser-decomposable adhesive layer with laser light from the first substrate side;
    (3) a step of picking up the semiconductor element from the first substrate by holding the semiconductor element on a carrier member; and (4) a step of mounting the picked-up semiconductor element on a second substrate;
    A method for mounting a semiconductor element, comprising:
  2.  前記レーザー光が、固体レーザー光である請求項1に記載の半導体素子の実装方法。 2. The semiconductor element mounting method according to claim 1, wherein the laser beam is a solid-state laser beam.
  3.  前記固体レーザー光が、YAGレーザーの2~4倍波である請求項2に記載の半導体素子の実装方法。 The method for mounting a semiconductor element according to claim 2, wherein the solid-state laser beam is 2 to 4 times higher than a YAG laser.
  4.  前記レーザー光の波長が、400nm以下である請求項1~3のいずれか1項に記載の半導体素子の実装方法。 4. The method of mounting a semiconductor element according to claim 1, wherein the wavelength of the laser beam is 400 nm or less.
  5.  前記工程(2)において、ピックアップを予定している半導体素子に対応する箇所の前記レーザー分解型接着層に前記レーザー光を選択的に照射し、前記工程(3)において、選択的に複数の半導体素子をピックアップする請求項1~4のいずれか1項に記載の半導体素子の実装方法。 In the step (2), the laser beam is selectively irradiated to the laser decomposable adhesive layer at a location corresponding to a semiconductor element to be picked up, and a plurality of semiconductors are selectively used in the step (3). The method for mounting a semiconductor element according to claim 1, wherein the element is picked up.
  6.  前記第1基板における工程(2)で使用されるレーザー波長における光の透過率が、50%以上である請求項1~5のいずれか1項に記載の半導体素子の実装方法。 6. The method of mounting a semiconductor element according to claim 1, wherein the light transmittance at the laser wavelength used in the step (2) of the first substrate is 50% or more.
  7.  前記工程(1)において、前記接着剤層が、前記レーザー分解型接着層および他の接着層を有する請求項1~6のいずれか1項に記載の半導体素子の実装方法。 The semiconductor element mounting method according to any one of claims 1 to 6, wherein, in the step (1), the adhesive layer includes the laser-decomposable adhesive layer and another adhesive layer.
  8.  前記工程(1)において、前記レーザー分解型接着層が、前記第1基板と接している請求項7に記載の半導体素子の実装方法。 The method for mounting a semiconductor element according to claim 7, wherein in the step (1), the laser decomposable adhesive layer is in contact with the first substrate.
  9.  前記接着剤層および/または前記レーザー分解型接着層における工程(2)で使用されるレーザー波長における光の透過率が、45%以下である請求項1~8のいずれか1項に記載の半導体素子の実装方法。 The semiconductor according to any one of claims 1 to 8, wherein light transmittance at a laser wavelength used in the step (2) in the adhesive layer and / or the laser decomposable adhesive layer is 45% or less. Device mounting method.
  10.  前記半導体素子が、発光ダイオードである請求項1~9のいずれか1項に記載の半導体素子の実装方法。 10. The method for mounting a semiconductor device according to claim 1, wherein the semiconductor device is a light emitting diode.
  11.  第1基板上に保持された半導体素子を第2基板に転写して、前記第2基板上に前記半導体素子を実装するための、半導体素子の実装装置であり、
     第1基板上に、レーザー分解型接着層を少なくとも含む接着剤層を介して半導体素子を保持する保持部と、
     前記第1基板側から、前記レーザー分解型接着層にレーザー光を照射するレーザー照射部と、
     前記半導体素子を保持することにより、前記第1基板から前記半導体素子をピックアップするキャリア部材と、
     第2基板を載置する載置部と
    を有する、半導体素子の実装装置。
    A semiconductor device mounting apparatus for transferring a semiconductor device held on a first substrate to a second substrate and mounting the semiconductor device on the second substrate,
    A holding unit for holding the semiconductor element on the first substrate via an adhesive layer including at least a laser-decomposable adhesive layer;
    A laser irradiation unit for irradiating the laser decomposition type adhesive layer with laser light from the first substrate side;
    A carrier member for picking up the semiconductor element from the first substrate by holding the semiconductor element;
    A mounting device for a semiconductor element, comprising: a mounting portion on which a second substrate is mounted.
PCT/JP2019/005756 2018-04-26 2019-02-18 Mounting method and mounting device for semiconductor elements WO2019207920A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084990 2018-04-26
JP2018084990 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019207920A1 true WO2019207920A1 (en) 2019-10-31

Family

ID=68293510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005756 WO2019207920A1 (en) 2018-04-26 2019-02-18 Mounting method and mounting device for semiconductor elements

Country Status (2)

Country Link
TW (1) TW201946133A (en)
WO (1) WO2019207920A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153878A1 (en) * 2021-01-13 2022-07-21 リンテック株式会社 Workpiece handling sheet, method for manufacturing semiconductor device, and use of workpiece handling sheet
WO2022153745A1 (en) * 2021-01-13 2022-07-21 リンテック株式会社 Workpiece handling sheet and device manufacturing method
WO2022201766A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Workpiece handling sheet and device manufacturing method
WO2022201765A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Workpiece handling sheet and device manufacturing method
WO2022201767A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Workpiece handling sheet and device manufacturing method
WO2022210154A1 (en) * 2021-04-01 2022-10-06 東レ株式会社 Laminate and manufacturing method of semiconductor device
WO2023108449A1 (en) * 2021-12-15 2023-06-22 厦门市芯颖显示科技有限公司 Addressing transfer device and addressing transfer method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314053A (en) * 2001-04-19 2002-10-25 Sony Corp Chip part transfer method, element arraying method using the same, and manufacturing method of image display device
JP2010251359A (en) * 2009-04-10 2010-11-04 Sony Corp Device transferring method
US20160144608A1 (en) * 2014-11-23 2016-05-26 Mikro Mesa Technology Co., Ltd. Method for transferring device
WO2016158264A1 (en) * 2015-03-30 2016-10-06 ソニーセミコンダクタソリューションズ株式会社 Electronic device and method for producing electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314053A (en) * 2001-04-19 2002-10-25 Sony Corp Chip part transfer method, element arraying method using the same, and manufacturing method of image display device
JP2010251359A (en) * 2009-04-10 2010-11-04 Sony Corp Device transferring method
US20160144608A1 (en) * 2014-11-23 2016-05-26 Mikro Mesa Technology Co., Ltd. Method for transferring device
WO2016158264A1 (en) * 2015-03-30 2016-10-06 ソニーセミコンダクタソリューションズ株式会社 Electronic device and method for producing electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153878A1 (en) * 2021-01-13 2022-07-21 リンテック株式会社 Workpiece handling sheet, method for manufacturing semiconductor device, and use of workpiece handling sheet
WO2022153745A1 (en) * 2021-01-13 2022-07-21 リンテック株式会社 Workpiece handling sheet and device manufacturing method
WO2022153877A1 (en) * 2021-01-13 2022-07-21 リンテック株式会社 Workpiece handling sheet, method for handling small workpiece item, device manufacturing method, and use of workpiece handling sheet
WO2022201766A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Workpiece handling sheet and device manufacturing method
WO2022201765A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Workpiece handling sheet and device manufacturing method
WO2022201767A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Workpiece handling sheet and device manufacturing method
JPWO2022201766A1 (en) * 2021-03-26 2022-09-29
JP7146145B1 (en) * 2021-03-26 2022-10-03 リンテック株式会社 Work handling sheet and device manufacturing method
JP7325634B2 (en) 2021-03-26 2023-08-14 リンテック株式会社 Work handling sheet and device manufacturing method
WO2022210154A1 (en) * 2021-04-01 2022-10-06 東レ株式会社 Laminate and manufacturing method of semiconductor device
WO2023108449A1 (en) * 2021-12-15 2023-06-22 厦门市芯颖显示科技有限公司 Addressing transfer device and addressing transfer method

Also Published As

Publication number Publication date
TW201946133A (en) 2019-12-01

Similar Documents

Publication Publication Date Title
WO2019207920A1 (en) Mounting method and mounting device for semiconductor elements
JP7130701B2 (en) A method of assembling discrete components in parallel on a board
KR20200130076A (en) Method of manufacturing a display apparatus and source susbrate structure
KR100853410B1 (en) Element transfer method, element arrangement method using the same, and image display apparatus production method
KR20180081461A (en) Processing method of resin package substrate
KR20100073984A (en) Method of thining a semiconductor substrate
TW200411755A (en) Method of processing a semiconductor wafer
JP7072977B2 (en) How to relocate the device
KR101950157B1 (en) Support Separation Device and Support Separation Method
JP6904368B2 (en) Semiconductor substrate processing method and semiconductor substrate processing equipment
TWI549174B (en) A method of manufacturing a semiconductor device
JP2019514199A (en) Method and apparatus for bonding two substrates
US11374149B2 (en) Method of manufacturing display device and source substrate structure
JP2003203886A (en) Method for isolating element, and method for transferring the element
JP6626413B2 (en) Support separating method and substrate processing method
TW201824355A (en) Mounting method and mounting device
TWI744253B (en) Manufacturing method of semiconductor device
JP2004281659A (en) Holding member and method for manufacturing semiconductor device
JP6980999B2 (en) Object processing method and semiconductor device manufacturing method
TW202002256A (en) Semiconductor element forming sapphire substrate, method of manufacturing semiconductor element forming sapphire substrate, and method of transferring semiconductor element
JP2007227810A (en) Surface protection sheet, and method for manufacturing semiconductor device using surface protection sheet
JP6670190B2 (en) Support separating apparatus and support separating method
JP2024500382A (en) Method and apparatus for debonding temporarily bonded wafers in wafer level packaging applications
JP2680104B2 (en) Method for manufacturing semiconductor device
JP2021005605A (en) Cleaning method of element chip, cleaning apparatus of element chip, and manufacturing method of element chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP