[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019207806A1 - 冷媒分配器、熱交換器および空気調和機 - Google Patents

冷媒分配器、熱交換器および空気調和機 Download PDF

Info

Publication number
WO2019207806A1
WO2019207806A1 PCT/JP2018/017333 JP2018017333W WO2019207806A1 WO 2019207806 A1 WO2019207806 A1 WO 2019207806A1 JP 2018017333 W JP2018017333 W JP 2018017333W WO 2019207806 A1 WO2019207806 A1 WO 2019207806A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
header
heat transfer
heat exchanger
refrigerant distributor
Prior art date
Application number
PCT/JP2018/017333
Other languages
English (en)
French (fr)
Inventor
修平 多田
佐々木 重幸
広 米田
大木 長斗司
法福 守
高藤 亮一
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2018/017333 priority Critical patent/WO2019207806A1/ja
Priority to PCT/JP2018/046098 priority patent/WO2019207838A1/ja
Priority to CN201880092613.9A priority patent/CN112005074B/zh
Priority to JP2020516015A priority patent/JP6854971B2/ja
Publication of WO2019207806A1 publication Critical patent/WO2019207806A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a refrigerant distributor (header) capable of optimizing the distribution amount of gas-liquid two-phase refrigerant to be flowed to each of a plurality of heat transfer tubes, a heat exchanger including the refrigerant distributor, and an air conditioner. .
  • parallel flow type heat exchangers are widely used in automobile radiators and air conditioners for cooling to reduce size, weight, performance, and cost.
  • this heat exchanger two header pipes are provided at both end openings of a plurality of flat heat transfer tubes brazed with aluminum fins on the outer surface, and the inflow side header pipe is connected to the outflow side via each flat heat transfer tube. It is a heat exchanger of the form which makes a refrigerant flow toward a header pipe.
  • the refrigerant flows as a refrigerant in a gas-liquid two-phase state while changing the phase of evaporation and condensation, so that it stands in the vertical direction under the condition that the flow rate of the refrigerant is small and the momentum is low. Since the liquid refrigerant in the header pipe on the inflow side stays downward due to the influence of gravity, there is a tendency that it is difficult to supply sufficient liquid refrigerant to the flat heat transfer pipe connected to the upper part of the header pipe on the inflow side.
  • the parallel flow heat exchanger when used as an evaporator, the amount of liquid refrigerant to be supplied is reduced in the upper one of the stacked flat heat transfer tubes, and all of the liquid refrigerant is upstream of the flat heat transfer tubes. Since it evaporates, heat absorption due to the evaporation of the liquid refrigerant does not occur downstream from the middle stream. That is, in the upper flat heat transfer tube, there is a problem that the liquid component of the refrigerant is small and the degree of superheat increases from the middle flow to the downstream, and the heat transfer area in that portion is not effectively used.
  • the amount of liquid refrigerant supplied is excessive, so that the liquid refrigerant remains even at the outlet of the flat heat transfer tubes. That is, from the flat heat transfer tube below, the liquid refrigerant that has left the heat absorption capacity flows out, which causes a problem that the efficiency of the entire heat exchanger is deteriorated.
  • a part of the internal space of the header is partitioned by a partition, and a plurality of through holes are provided in the partition.
  • the refrigerant is to be uniformly distributed to the flat heat transfer tubes.
  • Patent Document 2 and Patent Document 3 have a header structure that is divided in the longitudinal direction for ease of manufacturing itself and ease of making an internal structure for refrigerant distribution, regardless of the distribution structure. It is shown.
  • Japanese Patent No. 5775226 JP 2009-270781 A Japanese Patent No. 4405819
  • the refrigerant discharged from the sectioned space in the header has a flow passage cross-sectional area that increases, so the flow rate of the liquid refrigerant is reduced, and the liquid refrigerant is easily subjected to the action of gravity. Easy to fall.
  • the liquid refrigerant tends to stay in the lower part due to the influence of gravity in the low refrigerant flow rate region. In such a case, the liquid may flow unevenly in the lower heat transfer tube.
  • a folded flow path or a branch flow path is configured by a divided header structure.
  • the refrigerant flow path the refrigerant flows one flat heat transfer tube at a time, and the refrigerant does not flow through the plurality of heat transfer tubes.
  • the amount of circulation is large, the cross-sectional area of the flow path is insufficient, so that the pressure loss becomes large and the saturation temperature is lowered downstream in the flow direction.
  • Patent Document 3 in the divided header structure, the refrigerant flow path cannot be narrowed, and the liquid refrigerant accumulates below due to the action of gravity, and the problem of refrigerant distribution when the heat exchanger is used as an evaporator. was there.
  • the present invention is an invention for solving the above-described problems, and is capable of supplying liquid refrigerant to each flat heat transfer tube in a parallel flow evaporator even when operating under minimum load conditions or intermediate load conditions.
  • An object of the present invention is to provide a refrigerant distributor capable of suppressing the unevenness of the quantity with a simple structure and improving the performance as an evaporator, a heat exchanger including the refrigerant distributor, and an air conditioner.
  • the refrigerant distributor of the present invention is a refrigerant distributor that is connected to the end portions of a plurality of heat transfer tubes forming a refrigerant flow path, communicates the plurality of heat transfer tubes, and distributes the refrigerant.
  • the refrigerant distributor includes a first member and a second member to be combined with each other, and the narrow channel is formed by combining the first member and the second member.
  • the first member and the second member are formed of a plate material, and the first member and the second member have a D-shaped cross section formed by bending the plate material, and are spaced apart from a part of the D-shaped linear portion. And the first member and the second member are combined through the separated portion, and a narrow channel is formed between the D-shaped straight portions of the first member and the second member facing each other. And The first member has a concave cross section, and the second member is fitted to the inner surface of the first member to form a narrow channel.
  • the bias of the liquid refrigerant supply amount to each flat heat transfer tube in the parallel flow type evaporator is suppressed with a simple structure, The performance as an evaporator can be improved.
  • a header insertion member is a figure of a concave shape member. It is a figure which shows the cross section of the header of the heat exchanger of Example 2 which concerns on 2nd Embodiment, and a header insertion member is a figure of a cylinder shape (hollow shape). It is a figure which shows the cross section of the header of the heat exchanger of Example 2 which concerns on 2nd Embodiment, and a header insertion member is a figure of H shape.
  • a header insertion member is a figure of trapezoid shape. It is a figure which shows the cross section of the header of the heat exchanger of Example 3 which concerns on 2nd Embodiment. It is a figure which shows the cross section of the header of the heat exchanger of Example 4 which concerns on 2nd Embodiment. It is a figure which shows the cross section of the header of the heat exchanger of Example 5 which concerns on 2nd Embodiment, and is a figure used as a reference
  • FIG. 21 is a diagram for explaining the refrigeration cycle.
  • the refrigeration cycle of the heat pump type air conditioner AC will be described with reference to FIG. 21, taking the heating operation as an example.
  • the air conditioner AC includes a compressor 8, a four-way valve 9, an indoor heat exchanger 101, an expansion valve 103, an outdoor heat exchanger 106, and the like.
  • the compressor 8 compresses the gas refrigerant, and the refrigerant 60 that has been brought to a high temperature / high pressure state by the compressor 8 is led to the indoor heat exchanger 101 (condenser) in the indoor unit 100 via the four-way valve 9. It is burned. And the room
  • the liquid refrigerant that has flowed out of the indoor unit 100 becomes a gas-liquid two-phase refrigerant in a low-temperature and low-pressure state by an expansion action when passing through the expansion valve 103.
  • This low-temperature, low-pressure gas-liquid two-phase refrigerant is guided to the outdoor heat exchanger 106 (evaporator) in the outdoor unit 105.
  • the refrigerant is gasified and returned to the compressor 8 with a degree of superheat of several degrees Celsius.
  • the heating operation of the air conditioner AC is realized by the series of refrigeration cycles in which the refrigerant 60 circulates counterclockwise as described above.
  • the four-way valve 9 is switched to form a refrigeration cycle in which the refrigerant 61 circulates clockwise.
  • the indoor heat exchanger 101 acts as an evaporator
  • the outdoor heat exchanger 106 acts as a condenser.
  • FIGS. 22A and 22B are schematic and schematic views of the evaporator, and a part of the evaporator is simplified, such as omitting the individual display of the flat heat transfer tube.
  • FIG. 22A is a diagram for explaining the degree of superheat due to the drift of refrigerant distribution in the heat exchanger, and is a diagram when there is no drift of liquid refrigerant.
  • FIG. 22B is a diagram for explaining the degree of superheat due to the drift of refrigerant distribution in the heat exchanger, and is a diagram when there is a drift of liquid refrigerant.
  • the heat exchanger is provided with headers 3a and 3b that are substantially perpendicular to the left and right, and connected by a number of flat heat transfer tubes 1 that are stacked in the vertical direction therebetween. Each flat heat transfer tube 1 is brazed with a fin for enlarging the heat transfer area, but is not shown here.
  • the hatched portion is a two-phase region 90 through which the gas-liquid two-phase refrigerant flows, and the white portion is an overheat region 91 through which the gas refrigerant flows.
  • low-temperature and low-pressure gas-liquid two-phase refrigerant flows from the lower part of the header 3b.
  • the refrigerant flowing in flows in the flat heat transfer tubes 1 in the order of the regions (A) ⁇ (B) ⁇ (C) ⁇ (D) while changing the flow direction, and exchanges heat with the air passing between the flat heat transfer tubes 1 ( After the heat absorption), the refrigerant is discharged from the upper portion of the header 3b as a medium temperature / low pressure refrigerant.
  • FIG. 23A is a schematic diagram of a header structure as a comparative example, and shows a round cross section.
  • FIG. 23B is a schematic diagram of a header structure as a comparative example, and is a diagram showing a cross-section of a header constituted by two members.
  • FIG. 23C is a schematic diagram of a header structure as a comparative example, and is a diagram showing another cross-section of the header configured by two members.
  • FIG. 23A is a header showing a round cross section that is frequently used mainly for condensers such as radiators for automobiles.
  • the header 3a to which the flat heat transfer tube 1 is connected has a round shape.
  • FIG. 23B shows the structure of the header divided in Patent Document 3.
  • the header 3a includes a first member 310a and a second member 340a.
  • the header 3a includes a first member 311a and a second member 341a.
  • FIG. 1 is a diagram illustrating an external configuration of a heat exchanger according to the first embodiment.
  • FIG. 2 is a diagram illustrating a state before the headers 3x and 3y are inserted into the flat heat transfer tube 1 according to the first embodiment.
  • the heat exchanger includes a large number of flat heat transfer tubes 1 in which the refrigerant flows and extends in the lateral direction, a plurality of fins 2 into which a large number of flat heat transfer tubes 1 are inserted, and heat exchange with the refrigerant is performed.
  • the headers 3x and 3y are connected to one of the flat heat transfer tubes 1 and extend in the vertical direction (vertical direction), and the refrigerant is distributed to a large number of flat heat transfer tubes 1.
  • a refrigerant inlet pipe 30 is connected below the header 3x.
  • a refrigerant outlet pipe 33 is connected to the central portion of the header 3x.
  • the refrigerant flows in from the refrigerant inlet pipe 30, flows through the plurality of flat heat transfer pipes 1, and flows out from the refrigerant outlet pipe 33.
  • a partition plate 35x (see FIG. 4) is inserted in the upper part, middle lower part, and lower part of the header 3x. Similarly, partition plates 35x) are inserted into the upper and lower portions of the refrigerant outlet pipe 33 of the header 3y.
  • FIG. 3 is a diagram showing a configuration of the flat heat transfer tube 1 according to the first embodiment.
  • the flat heat transfer tube 1 includes a heat transfer tube body 11 that forms an appearance, and a partition rib 13 that allows a large number of refrigerant channels 12 to be formed inside the heat transfer tube body 11.
  • the refrigerant that has flowed into the flat heat transfer tube 1 can be uniformly distributed and flown into the multiple refrigerant flow paths 12.
  • FIG. 4 is a diagram illustrating a configuration of the header 3x of the heat exchanger according to the first embodiment.
  • FIG. 5 is a diagram showing a cross section of the header 3x of the heat exchanger according to the first embodiment.
  • FIG. 5 shows an XX cross section of FIG.
  • the header 3x includes a flat tube side header member 31x (first member) and a combination header member 34x (second member).
  • partition plates 35x are inserted in the upper, middle, and lower portions of the header 3x.
  • the narrow flow path 38 is formed by combining the flat tube side header member 31x (first member) and the combined header member 34x (second member).
  • the flat tube side header member 31x and the combination header member 34x are formed of a plate material, and the flat tube side header member 31x and the combination header member 34x have a D-shaped cross section formed by bending the plate material.
  • a separation portion 39 (see FIG. 7) is provided in a part of the straight portion.
  • the flat tube side header member 31x and the combination header member 34x are combined through the separation portion 39, and the narrow flow path 38 is formed between the D-shaped straight portions of the flat tube side header member 31x and the combination header member 34x facing each other. Forming. In addition, you may manufacture the flat tube side header member 31x and the combination header member 34x, or its combination member by extrusion molding.
  • FIG. 6 is a diagram showing that the header 3x according to the first embodiment is point-symmetric.
  • the left diagram in FIG. 6 shows a cross section (XX cross section, see FIG. 4) of the header member in which the flat tube header member 31x and the combined header member 34x are combined. When this is rotated 180 degrees around the point O, the right diagram of FIG. 6 is obtained.
  • the cross-sectional shape of the header member in which the flat tube side header member 31x and the combined header member 34x are combined is a point-symmetric shape except for the hole position where the flat heat transfer tube 1 is inserted. I understand that.
  • the flat tube side header member 31x (first member) has an opening 31x3, and the combined header member 34x (second member) has an opening 34x3.
  • the first member and the second member have an opening to which the same heat transfer tube is connected.
  • the flat tube side header member 31x (first member) has a parallel surface 31x4 parallel to the end surface of the flat heat transfer tube 1, and the combined header member 34x (second member) is parallel to the end surface of the flat heat transfer tube 1. It has a parallel surface 34x4.
  • Each of the first member and the second member has a parallel surface parallel to the end surface of the heat transfer tube, and has at least one bent portion to form the parallel surface.
  • the parallel plane corresponds to the D-shaped straight portion described above.
  • FIG. 7 is a diagram showing an exploded state of the header of the heat exchanger according to the first embodiment.
  • the combined header member 34x is inserted into the flat tube side header member 31x from the upper part in the vertical direction in accordance with the separation portion 39. Thereafter, the combined header member is inserted into the flat heat transfer tube 1.
  • the partition plate 35x is inserted into the upper part, middle lower part, and lower part of the combined header member.
  • FIG. 8 is a view showing a longitudinal section of the header of the heat exchanger according to the first embodiment.
  • FIG. 8 shows a YY cross section of FIG. It can be seen that the narrow channel 38 is formed in the header 3x by combining the flat tube side header member 31x (first member) and the combined header member 34x (second member). Accordingly, the speed of the refrigerant inside the header according to the present embodiment is increased as compared with the shape shown as the header cross-sectional structure of the comparative example shown in FIG. As a result, the momentum of the liquid refrigerant increases and the liquid refrigerant can reach the flat heat transfer tube 1 attached to the upper part of the header.
  • FIG. 9 is a view showing a brazing surface of the refrigerant distributor according to the first embodiment.
  • the clad material is formed by laminating a brazing material 31x1 on the outer side of the base material 31x0 of the flat tube side header member 31x.
  • the clad material is formed by laminating a brazing material 34x1 on the outside of the base material 34x0 of the combination header member 34x.
  • the header structure according to the present embodiment can be brazed with such a configuration using a single-sided clad material.
  • FIG. 10 is a view showing another brazing surface of the refrigerant distributor according to the first embodiment.
  • FIG. 10 shows the minimum required brazing surfaces 37a, 37b, and 37c.
  • the brazing surface 37a is a joint surface between the flat tube side header member 31x and the flat heat transfer tube 1
  • the brazing surfaces 37b and 37c are joint surfaces between the flat tube side header member 31x and the combined header member 34x.
  • a substantially narrow channel 38 can be formed.
  • the narrow flow path 38 can be formed by combining the header members, and by increasing the refrigerant flow rate, the liquid refrigerant can be raised to the upper part of the heat exchanger and the refrigerant distribution can be improved.
  • the combination member is a substantially equivalent member and has excellent assemblability.
  • FIG. 11A is a diagram illustrating an external configuration of a heat exchanger according to the second embodiment.
  • FIG. 11B is a diagram illustrating a cross section of the header of Example 1 according to the second embodiment.
  • FIG. 11B shows a cross section taken along line AA in FIG. 11A.
  • a plurality of fins 2 that expand the heat transfer area are arranged with a predetermined gap in the horizontal direction.
  • the fin 2 is not shown in detail, when the heat exchanger is used as an evaporator, the fin 2 is devised so that water droplets condensed on the fin surface are likely to fall. It also has a shape for defining the gap between adjacent fins to be constant.
  • the header 3a includes a header base member 31a (first member) which is a concave-shaped member and a header insertion member 34b (second member).
  • the header 3b includes a header base member 31b (first member) that is a concave-shaped member, and a header insertion member 34b (second member).
  • the refrigerant inlet pipe 30 is connected below the header insertion member 34a.
  • the refrigerant outlet pipe 33 is connected to the header insertion member 34b.
  • the refrigerant flows in from the refrigerant inlet pipe 30, flows through the plurality of flat heat transfer pipes 1, and flows out from the refrigerant outlet pipe 33.
  • Heat is exchanged between the refrigerant and the air by air flowing between the fins in a direction substantially perpendicular to the paper surface.
  • the air side has a laminar heat transfer coefficient of about several tens to one hundred W / (m 2 K), and the flat heat transfer pipe flow path has several thousand W / (m 2 K) due to the refrigerant.
  • Heat transfer performance with a boiling heat transfer coefficient is great, the fins are thin aluminum fins with a fin gap of about 1 mm to several mm so that the area on the air side can be secured as much as possible if the heat exchanger has the same volume. Composed.
  • the feature of the present embodiment is that the end of the flat heat transfer tube 1 is inserted into a hole provided in the flat portion of the header base member 31a of the concave-shaped member.
  • the header insertion member 34a is inserted into the opposite opening side to which the flat heat transfer tube 1 of the concave shape member is connected. Both of them are brazed in a furnace such as an electric furnace, so that a header structure having a narrow flow path 38 serving as a refrigerant flow path is obtained.
  • the header 3b of the other header is inserted into the header base member 31b with the header insertion member 34b to form a narrow channel 38 serving as a coolant channel. That is, the contact surface between the header base member 31a and the header insertion member 34a, which are concave-shaped members, serves as a brazing surface.
  • FIG. 11A the flow of the refrigerant when the heat exchanger is used as an evaporator is indicated by white arrows.
  • the refrigerant that has become low temperature and low pressure due to the action of an expansion valve flows through the number of flat heat transfer tubes in parallel for each space partitioned by the partition plates 35a and 35b in the heat exchanger.
  • coolant flows upwards through the perforated partition plate 36a (partition plate with a hole), and flows the number of flat heat-transfer tubes in parallel.
  • the refrigerant that has flowed in from the refrigerant inlet pipe 30 flows upward from the lower side of the heat exchanger as the area a ⁇ the area b ⁇ the area c, and finally flows out from the refrigerant outlet pipe 33.
  • the liquid component gradually evaporates in the flow direction and the gas component increases. Therefore, when flowing with the same flow path cross-sectional area, the pressure loss per unit increases due to the increased flow velocity of the gas refrigerant. As a result, there is a problem that an effective temperature difference with the air cannot be ensured due to a decrease in the saturation temperature of the refrigerant, and the energy saving performance is deteriorated due to an increase in compression work as a whole. Therefore, it is generally performed to increase the number of flat heat transfer tubes that gradually flow in parallel toward the outlet so that the pressure loss does not increase so much.
  • Fig. 11B shows an enlarged view of the AA cross section.
  • a header insertion member 34a is inserted into the header base member 31a, which is a concave member, and the contact surface is brazed to form a narrow channel 38 (header space).
  • the area inside the header base member 31a of the concave-shaped member defined by a virtual surface on the opening side of the header base member 31a of the concave-shaped member is narrowed by inserting the header insertion member 34a into the narrow-shaped flow.
  • a path 38 is formed.
  • the momentum of the liquid refrigerant increases and the liquid refrigerant can reach the flat heat transfer tube attached to the upper part of the header. Further, there is a perforated partition plate 36a, and the liquid refrigerant is guided upward in a state where the partition plate 36a is narrowed at the smallest area and the flow velocity is increased.
  • FIG. 11A a simplified example of a heat exchanger is shown for the sake of explanation, but actually, a plurality of these basic configurations are stacked in the height direction, or a similar heat exchanger is used for air.
  • a predetermined heat transfer area can be secured by arranging them in the downwind and upwind directions.
  • the perforated partition plate 36a is provided in one place in FIG. 1 for the sake of simplifying the description, it may be provided in the header 3b at the same height position as the partition plate 35a, which improves the drift in the region b. I can plan.
  • FIG. 12 is a view of the end of the flat heat transfer tube 1 as viewed from the open side of the header base member 31a of the concave-shaped member (as viewed from the arrow B in FIG. 11A).
  • the flat heat transfer tube 1 is provided with a plurality of small channels of about 1 mm to several mm through which a plurality of refrigerants flow, and is formed by extrusion or drawing.
  • the header base member 31a of the concave shape member and each flat heat transfer tube 1 are brazed at the connection surface 131.
  • FIG. 13A is a diagram illustrating a cross section of the header of the heat exchanger of Example 2 according to the second embodiment, and the header insertion member 34a is a diagram of a concave shape member.
  • FIG. 13B is a diagram showing a cross section of the header of the heat exchanger of Example 2 according to the second embodiment, and the header insertion member 34a is a cylindrical shape (hollow shape).
  • FIG. 13C is a diagram illustrating a cross-section of the header of the heat exchanger of Example 2 according to the second embodiment, and the header insertion member 34a is an H-shaped diagram.
  • FIG. 13D is a diagram illustrating a header cross section of the heat exchanger of Example 2 according to the second embodiment, and the header insertion member 34a is a trapezoidal shape.
  • FIG. 13A is a reference configuration, and similarly to the header base member 31a of the concave-shaped member, the header insertion member 34a is also configured of a concave-shaped member that opens in the same direction. Such a configuration can most reduce the weight of the header portion as long as the strength with the header internal pressure is secured.
  • FIG. 13B shows the header insertion member 34a having a cylindrical shape (hollow shape). In such a configuration, it is possible to increase the rigidity of the header insertion member 34a.
  • the header insertion member 34a may be a solid material. In this case, the rigidity can be further increased.
  • FIG. 13C shows that the header insertion member 34a is formed of a substantially H-shaped member. It can be manufactured by extrusion processing, and it becomes possible to further narrow the flow path area surrounded by the concave header base member 31a.
  • FIG. 13D shows the header base member 31a, which is a concave-shaped member, having a laterally widening cross section.
  • each figure has shown as the shape which aligned the opening side end surface of the header base member 31a of a concave shape member, and the surface of the header insertion member 34, the shape which provided the level
  • the assembly accuracy of the parts can be improved, and the assembly condition can be managed by confirming the appearance.
  • FIG. 14 is a figure which shows the cross section of the header of the heat exchanger of Example 3 which concerns on 2nd Embodiment.
  • the difference from the invention up to FIG. 13 is that the other end is longer like 31a1 as compared to the end length of the header base member 31a of the concave-shaped member.
  • the heat exchanger can be fixed via the housing 319 and the joining component 318, a separate member for fixing becomes unnecessary. Note that it is not necessary to provide all the stretched 31a1 in the longitudinal direction, and the material and weight can be reduced by providing only the portions necessary for fixation.
  • FIG. 14 shows an example in which the heat exchanger and the casing are fixed, they may be used for fixing the heat exchangers.
  • FIG. 15 is a figure which shows the cross section of the header of the heat exchanger of Example 4 which concerns on 2nd Embodiment.
  • the clad material is formed by laminating a brazing material shown as 31a2 on the outer side of the base material 31a0 of the header base member 31a of a substantially U-shaped member. Further, the brazing material 34a1 is applied to the outside of the base material 34a0 of the header insertion member 34a.
  • the header structure according to the present invention can be brazed with such a configuration using a single-sided clad material.
  • FIG. 16A is a diagram illustrating a header cross-section of the heat exchanger of Example 5 according to the second embodiment, and serves as a reference.
  • FIG. 16B is a diagram illustrating a header cross section of the heat exchanger of Example 5 according to the second embodiment, and is a diagram in which the insertion length of the header insertion member 34a is set longer.
  • FIG. 16C is a diagram illustrating a header cross section of the heat exchanger of Example 5 according to the second embodiment, and is a diagram in which a member 340 different from the header insertion member 34a is inserted into the flow path.
  • FIG. 16B sets the insertion length of the header insertion member 34a inserted into the header base member 31a, which is a concave-shaped member, to be longer than that of FIG. 16A. By making the insertion length longer, it becomes possible to make adjustments such as reducing the flow path area of the refrigerant.
  • a member 340 different from the header insertion member 34a is inserted into the flow path cross section. With such a configuration, the refrigerant flow path can be further narrowed, so that the flow path can be partially narrowed in accordance with the region in the heat exchanger, and the degree of freedom in adjusting refrigerant drift in advance is increased.
  • the gap D between the outer surface of the insertion member 34a and the end surface of the flat heat transfer tube 1 inserted in the header facing the outer surface is 1 mm to 3 mm.
  • FIG. 17A is a diagram illustrating a method of attaching the perforated partition plate 36a (partition plate with holes) in the header of Example 6 according to the second embodiment.
  • FIG. 17B is a diagram showing another example of a method for attaching the perforated partition plate 36a in the header of Example 6 according to the second embodiment.
  • FIG. 17C is a diagram illustrating another example of the attachment method of the perforated partition plate 36a in the header of Example 6 according to the second embodiment.
  • the perforated partition plate 36 a has a square hole 360.
  • the perforated partition plate 36a is installed by inserting the projection 36a1 of the perforated partition plate 36a into the hole 34a2 of the header insertion member 34a, and is built into the opening of the header base member 31a and brazed.
  • FIG. 17B shows that the leakage of the refrigerant can be reduced by cutting off the corners of the insertion member 34a as shown in the drawing or by processing it into a round shape.
  • FIG. 17C a groove 34a3 is provided in advance in the header insertion member 34a, and a perforated partition plate 36a having a protrusion 36a1 is provided in the groove 34a3.
  • FIG. 17 shows an example of the perforated partition plate 36a, the fixing method shown in FIG. 17 may be applied to the partition plates 35a and 35b.
  • FIG. 18A is a diagram illustrating a configuration of the perforated partition plate 36a of the header of Example 7 according to the second embodiment.
  • FIG. 18B is a diagram showing another configuration of the header perforated partition plate 36a of Example 7 according to the second embodiment.
  • 18A and 18B relate to the perforated partition plate 36a described in the sixth embodiment.
  • FIG. 18A shows a configuration in which one hole 360a is formed.
  • FIG. 18B shows a configuration in which two holes 360a are formed.
  • a round hole as well as the square hole shown in FIG. 17 may be used, and a faster refrigerant speed can be realized in the header space by selecting the hole diameter.
  • FIG. 19A is a diagram illustrating a perforated plate 132 for preventing drift in the header 3a of Example 8 according to the second embodiment.
  • FIG. 19A is a view showing a CC cross section of FIG.
  • FIG. 19B is a perspective view of the perforated plate 132 for preventing drift in the header 3a of Example 8 according to the second embodiment.
  • a perforated plate 132 is built in the header base member 31a, which is a concave member, so that the end face and the surface of the flat heat transfer tube 1 are aligned.
  • the perforated plate 132 is provided with a plurality of holes 133 into which the flat heat transfer tubes 1 are inserted. With such a configuration, the gap between the side surface of the flat heat transfer tube and the step between the upper and lower sides can be filled, so that the step in the flow path can be reduced and the drift due to the disturbance of the refrigerant in the header can be prevented.
  • FIG. 20 is a diagram illustrating the position of the partition plate of the header insertion member of Example 9 according to the second embodiment.
  • the header 3a is configured to insert a header insertion member 34a into a header base member 31a.
  • the mounting height positions of the partition plate 35a and the perforated partition plate 36a with respect to the header insertion member 34a are changed.
  • the refrigerant described above can be changed by changing the mounting position of the header insertion member 34a and the partition plate (for example, the partition plate 35a and the perforated partition plate 36a).
  • the combination of the number of flat heat transfer tubes to flow can be set freely. As a result, it is possible to make adjustments at the design stage, such as differences in capability models and whether to prioritize the performance of the condenser or the evaporator.
  • the refrigerant distribution to the flat heat transfer tubes of the parallel flow type heat exchanger can be made uniform, and the heat exchanger can be operated efficiently. Thereby, the energy-saving property of an air conditioner can be improved.
  • Headers 3a, 3b, 3x, 3y can be provided. Therefore, it is possible to realize a heat exchanger having a header (indoor heat exchanger 101, outdoor heat exchanger 106) (see FIG. 21), an air conditioner AC (see FIG. 21) including the heat exchanger, and an air conditioning system.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding by the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

冷媒分配器は、冷媒の流路を形成する複数の扁平伝熱管(1)の端部とそれぞれ接続し、複数の扁平伝熱管(1)を連通させ、冷媒を分配する冷媒分配器であって、冷媒分配器(3x)は、互いに組み合わせる扁平管側ヘッダ部材(31x)および組合せヘッダ部材(34x)を備え、扁平管側ヘッダ部材(31x)と組合せヘッダ部材(34x)とを組み合わせることによって、狭小流路(38)を形成する。

Description

冷媒分配器、熱交換器および空気調和機
 本発明は、複数の伝熱管の各々に流動させる気液二相冷媒の分配量を適正化することができる冷媒分配器(ヘッダ)、その冷媒分配器を備えた熱交換器および空気調和機に関する。
 冷暖房に対応した空気調和機の多くは、現在、円形銅製伝熱管とアルミ製の短冊状のフィンで構成されるクロスフィンチューブ型熱交換器が用いられている。この熱交換器は、銅製伝熱管内にフロン系の冷媒を流動させることで、冷媒と空気の間で熱交換を行うものである。
 一方、自動車用ラジエータや冷房専用エアコンでは、小型軽量化、高性能、低コスト化を目的として、パラレルフロー型の熱交換器が広く利用されている。この熱交換器は、外表面にアルミ製フィンをロウ付けした複数の扁平伝熱管の両端開口部に二本のヘッダ管を設け、各扁平伝熱管を介して流入側のヘッダ管から流出側のヘッダ管に向けて冷媒を流動させる形態の熱交換器である。
 パラレルフロー型熱交換器では、全部のフィンの面積を有効に作用させるには、上下に並べられた複数の扁平伝熱管の各々へ、適正量の液冷媒を偏りなく流動させる必要がある。
 しかしながら、熱交換器内では、冷媒が蒸発や凝縮の相変化しながら、気液二相状態の冷媒となって流動するため、冷媒の流速が小さく運動量が低い条件下では、垂直方向に立った流入側のヘッダ管内の液冷媒は重力の影響で下方に滞留するため、流入側のヘッダ管の上部に接続された扁平伝熱管に十分な液冷媒を供給しにくい傾向がある。
 その結果、パラレルフロー型熱交換器を蒸発器として用いる場合、積層された扁平伝熱管のうち上方のものでは、供給される液冷媒の量が少なくなり、扁平伝熱管の上流で液冷媒が全て蒸発してしまうため、中流から下流では液冷媒の蒸発作用による熱吸収が発生しない。すなわち、上方の扁平伝熱管では、中流から下流にかけて、冷媒の液成分が少なく過熱度が大きくなり、その部分での伝熱面積が有効利用されないという問題が発生する。
 一方、積層された扁平伝熱管のうち下方のものでは、供給される液冷媒の量が過大であるため、扁平伝熱管の出口に至っても液冷媒が残存している。すなわち、下方の扁平伝熱管からは、熱吸収の余力を残した液冷媒が流出しており、熱交換器全体としての効率悪化を招いているという問題が発生する。
 加えて、下方の扁平伝熱管から熱交換器の下流の圧縮機に液冷媒が流入する「液戻り」が発生すると、その液冷媒が圧縮機の圧縮室を損傷する恐れがある。これを避けるには、熱交換器の上流の膨張弁を絞り蒸発圧力を下げるなどして、熱交換器の出口に至るまでに液冷媒を完全に蒸発させる必要があるが、この対策は熱交換器でのエネルギー消費量の増加を招くという問題がある。
 このような問題を避けるため、パラレルフロー型熱交換器を蒸発器として用いる場合には、流出側のヘッダ管近傍のほぼ揃った位置で各扁平伝熱管内の液冷媒が完全に無くなるのが、熱交換器の性能を最大化する上で望ましい。特に、空気調和機の室外ユニットのように、熱交換器に等風速の空気を供給する場合には、各扁平伝熱管に偏流なく冷媒を等分配できる性質が求められる。
 このような問題を解決するための従来技術として、例えば特許文献1の図6に示すものがある。この例では、垂直に立ったヘッダでの冷媒分配を改善するため、ヘッダの内部空間の一部を隔壁により区画し、前記隔壁に複数の貫通孔を設けている。これにより各扁平伝熱管に冷媒を均一に分配しようとするものである。
 また、特許文献2や特許文献3には、分配構造とは関係なく、それ自体の製作のしやすさや、冷媒分配のための内部構造の作りこみ易さのため長手方向に分割したヘッダ構造が示されている。
特許第5775226号公報 特開2009-270781号公報 特許第4405819号公報
 特許文献1では、ヘッダ内の区角された空間から出された冷媒は、流路断面積が拡大するため液冷媒の流速が低下し、重力の作用を受けやすく液冷媒がヘッダ内の下方に落ちやすい。特に低冷媒流量域において重力の影響により液冷媒が下部に滞留しやすくなる構造であり、このような場合には下側の伝熱管に液が偏って流れてしまう可能性がある。
 特許文献2では、分割したヘッダ構造で折り返し流路や、分岐流路を構成するものである。冷媒流路としては、扁平伝熱管1本ずつ冷媒が流動する構成で複数本の伝熱管には冷媒が流動しない。循環量の多い場合には、流路断面積が不足するために圧力損失が大きくなり流動方向の下流では飽和温度が低下し所定の交換熱量が確保できない課題があった。
 特許文献3では、分割したヘッダ構造では、冷媒流路を細めることはできず、液冷媒が重力の作用を受け下方に溜まってしまい、熱交換器を蒸発器として用いる場合には冷媒分配の課題があった。
 本発明は、前記の課題を解決するための発明であって、最小負荷条件や中間負荷条件での運転時であっても、パラレルフロー型の蒸発器内の各扁平伝熱管への液冷媒供給量の偏りを単純な構造で抑制し、蒸発器としての性能を改善できる冷媒分配器、その冷媒分配器を備えた熱交換器および空気調和機を提供することを目的とする。
 前記目的を達成するため、本発明の冷媒分配器は、冷媒の流路を形成する複数の伝熱管の端部とそれぞれ接続し、複数の伝熱管を連通させ、冷媒を分配する冷媒分配器であって、冷媒分配器は、互いに組み合わせる第1部材および第2部材を備え、第1部材と第2部材とを組み合わせることによって、狭小流路を形成することを特徴とする。
 第1部材および第2部材は、板材で形成され、第1部材および第2部材は、板材を折り曲げてなる横断面形状がD字形状であり、該D字形状の直線部の一部に離間部分を有し、離間部分を通じて第1部材と第2部材とが組み合わされており、第1部材および第2部材の対向するD字形状の直線部の間に狭小流路を形成することを特徴とする。また、第1部材は、横断面が凹形状を呈しており、第2部材は、第1部材の内面に嵌合し、狭小流路を形成することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
 本発明によれば、最小負荷条件や中間負荷条件での運転時であっても、パラレルフロー型の蒸発器内の各扁平伝熱管への液冷媒供給量の偏りを単純な構造で抑制し、蒸発器としての性能を改善できる。
第1実施形態に係る熱交換器の外観構成を示す図である。 第1実施形態に係る扁平伝熱管を用いた場合の熱交換器の構成を示す図である。 第1実施形態に係る扁平伝熱管の構成を示す図である。 第1実施形態に係る熱交換器のヘッダの構成を示す図である。 第1実施形態に係る熱交換器のヘッダの横断面を示す図である。 第1実施形態に係るヘッダが点対称であることを示す図である。 第1実施形態に係る熱交換器のヘッダの分解状態を示す図である。 第1実施形態に係る熱交換器のヘッダの縦断面を示す図である。 第1実施形態に係る冷媒分配器のロウ付け面を示す図である。 第1実施形態に係る冷媒分配器の他のロウ付け面を示す図である。 第2実施形態に係る熱交換器の外観構成を示す図である。 第2実施形態の係る実施例1のヘッダの横断面を示す図である。 第2実施形態に係る実施例1の熱交換器のヘッダの側面を示す図である。 第2実施形態に係る実施例2の熱交換器のヘッダの横断面を示す図であり、ヘッダ差込み部材が凹字形状部材の図である。 第2実施形態に係る実施例2の熱交換器のヘッダの横断面を示す図であり、ヘッダ差込み部材が筒形状(中空形状)の図である。 第2実施形態に係る実施例2の熱交換器のヘッダの横断面を示す図であり、ヘッダ差込み部材がH字形状の図である。 第2実施形態に係る実施例2の熱交換器のヘッダの横断面を示す図であり、ヘッダ差込み部材が台形形状の図である。 第2実施形態に係る実施例3の熱交換器のヘッダの横断面を示す図である。 第2実施形態に係る実施例4の熱交換器のヘッダの横断面を示す図である。 第2実施形態に係る実施例5の熱交換器のヘッダの横断面を示す図であり、基準となる図である。 第2実施形態に係る実施例5の熱交換器のヘッダの横断面を示す図であり、ヘッダ差込み部材の差込み長さを長めに設定する図である。 第2実施形態に係る実施例5の熱交換器のヘッダの横断面を示す図であり、ヘッダ差込み部材とは別部材を流路に差し入れる図である。 第2実施形態に係る実施例6のヘッダ内の孔空き仕切板の取付け方法を示す図である。 第2実施形態に係る実施例6のヘッダ内の孔空き仕切板の取付け方法の他の例を示す図である。 第2実施形態に係る実施例6のヘッダ内の孔空き仕切板の取付け方法のその他の例を示す図である。 第2実施形態に係る実施例7のヘッダの孔空き仕切板の構成を示す図である。 第2実施形態に係る実施例7のヘッダの孔空き仕切板の他の構成を示す図である。 第2実施形態に係る実施例8のヘッダ内の偏流防止用の孔空き板を示す図である。 第2実施形態に係る実施例8のヘッダ内の偏流防止用の孔空き板の縦断面を示す図である。 第2実施形態に係る実施例9のヘッダ差込み部材の仕切り板の位置を示す図である。 冷凍サイクルを説明する図である。 熱交換器の冷媒分配の偏流による過熱度を説明する図であり、液冷媒の偏流がない場合の図である。 熱交換器の冷媒分配の偏流による過熱度を説明する図であり、液冷媒の偏流がある場合の図である。 比較例としてのヘッダ構造の模式図あり、丸型の横断面を示す図である。 比較例としてのヘッダ構造の模式図あり、二つの部材で構成したヘッダの横断面を示す図である。 比較例としてのヘッダ構造の模式図あり、二つの部材で構成したヘッダの他の横断面を示す図である。
 本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
 まず、最初に、本実施形態の冷媒分配器および熱交換器が適用される冷凍サイクルを説明し、従来の課題について詳細に説明する。
 図21は、冷凍サイクルを説明する図である。ここで、図21を用いて、暖房運転時を例に、ヒートポンプ式の空気調和機ACの冷凍サイクルを説明する。ここに示すように、空気調和機ACは、圧縮機8、四方弁9、室内熱交換器101、膨張弁103、室外熱交換器106等で構成される。
 圧縮機8はガス冷媒を圧縮するものであり、圧縮機8で高温・高圧状態になった冷媒60は、四方弁9を介して室内ユニット100内の室内熱交換器101(凝縮器)に導かれる。そして、室内熱交換器101の扁平伝熱管内を流れる高温の冷媒が、送風機102から供給される室内空気に放熱することで、室内が暖められる。このとき、扁平伝熱管内では、熱を奪われたガス冷媒が次第に液化し、室内熱交換器101の出口からは、飽和温度よりも数℃低温の過冷却状態の液冷媒が流出する。
 その後、室内ユニット100から流出した液冷媒は、膨張弁103を通過する時の膨張作用により低温・低圧状態の気液二相冷媒となる。この低温・低圧の気液二相冷媒は、室外ユニット105内の室外熱交換器106(蒸発器)に導かれる。そして、室外熱交換器106の扁平伝熱管内を流れる低温の冷媒が、送風機107から供給される外気から吸熱することで、冷媒の乾き度(=ガスの質量速度/(液の質量速度+ガスの質量速度))が高まる。室外熱交換器106の出口では、冷媒はガス化して数℃の過熱度をとった状態で圧縮機8に戻る。以上で説明した、反時計回りに冷媒60が循環する一連の冷凍サイクルによって、空気調和機ACの暖房運転が実現される。
 一方、冷房動作時には、四方弁9を切り替えて、時計回りに冷媒61が循環する冷凍サイクルを形成する。この場合、室内熱交換器101が蒸発器として作用し、室外熱交換器106が凝縮器として作用する。
 次に、室内熱交換器101または室外熱交換器106が蒸発器として作用している場合に、その蒸発器内で発生する冷媒偏流の様子を図22A、図22Bで説明する。図22A、図22Bは蒸発器を平面的、かつ、模式的に示したものであり、扁平伝熱管の個別表示を省略するなど一部を簡略化している。
 図22Aは、熱交換器の冷媒分配の偏流による過熱度を説明する図であり、液冷媒の偏流がない場合の図である。図22Bは、熱交換器の冷媒分配の偏流による過熱度を説明する図であり、液冷媒の偏流がある場合の図である。これらに示すように、熱交換器は、左右に略垂直なヘッダ3a,3bを設け、それらの間を上下方向に積層した多数の扁平伝熱管1で接続したものである。各扁平伝熱管1には、伝熱面積を拡大するためのフィンがロウ付けされているが、ここでは図示を省略している。また、扁平伝熱管1内において、ハッチング部分は気液二相冷媒が流通する二相域90で、白抜き部分はガス冷媒が流通する過熱領域91である。
 図22A、図22Bに示す、パラレルフロー型の蒸発器では、ヘッダ3bの下部から低温・低圧の気液二相冷媒が流入する。流入した冷媒は、流動方向を変えながら、領域(A)→(B)→(C)→(D)の順に扁平伝熱管1内を流れ、扁平伝熱管1間を通過する空気と熱交換(吸熱)した後、ヘッダ3bの上部から中温・低圧状態の冷媒となって排出される。
 図22Aのように、冷媒編流が生じない場合、すなわち、冷媒の流速が大きく、領域(D)の各扁平伝熱管1に略均等量の気液二相冷媒が供給される場合には、いずれの高さの扁平伝熱管1でも、流入側から同程度の距離で二相域90から過熱領域91になるため、いずれの扁平伝熱管1からも十分に吸熱したガス冷媒のみが流出している。
 一方、図22Bのように、液冷媒の偏流が生じた場合、すなわち、流速の小さい気液二相冷媒にヘッダ3a内で重力が作用し、領域(D)上方の扁平伝熱管1に流入する液冷媒が少なく、下方の扁平伝熱管1に流入する液冷媒が多くなる場合、領域(D)の出口近傍では、下方が二相域90、上方が過熱領域91となる。
 前記したように、液冷媒を多く含む気液二相冷媒が圧縮機8に戻ると、「液戻り」によって圧縮室の損傷を招く。これを回避するには、図22Bの領域(D)の出口近傍において、液冷媒が完全にガス化しているように、蒸発器の上流の膨張弁103を絞り、蒸発圧力(温度)を下げる必要がある。しかしながら、蒸発圧力を下げると、圧縮仕事が増大し空気調和機の省エネ性が阻害されるという問題がある。
 また、冷媒偏流が生じた場合、領域(D)上方の扁平伝熱管1内では、二相域90が短く、過熱領域91が長くなるため、空気からの吸熱に大きく寄与する二相域90での伝熱面積が減少し、圧縮仕事が増加するという問題がある。
 前記問題を解決するために、特許文献1~3の各種の方法が試みられている。
 図23Aは、比較例としてのヘッダ構造の模式図あり、丸型の横断面を示す図である。図23Bは、比較例としてのヘッダ構造の模式図あり、二つの部材で構成したヘッダの横断面を示す図である。図23Cは、比較例としてのヘッダ構造の模式図あり、二つの部材で構成したヘッダの他の横断面を示す図である。
 図23Aは、主に自動車用ラジエータ等の凝縮器用として多用されている丸型横断面を示すヘッダである。扁平伝熱管1が接続されるヘッダ3aが丸型形状をしている。図23Bは、特許文献3の分割したヘッダの構造である。ヘッダ3aは、第1部材310aと第2部材340aから構成されている。この他、図23Cに示すような分割したヘッダ構造もある。ヘッダ3aは、第1部材311aと第2部材341aから構成されている。
 図23A,図23B,図23Cのヘッダ構造では、流路断面積が大きいために液冷媒の速度が小さく重量の作用を受け、ヘッダ内の下部に溜まりやすい傾向があった。
 このため、本実施形態では、最小負荷条件や中間負荷条件での運転時であっても、パラレルフロー型の蒸発器内の各扁平伝熱管への液冷媒供給量の偏りを単純な構造で抑制し、蒸発器としての性能を改善できる冷媒分配器(ヘッダ)を提案している。
<<第1実施形態>>
 図1は、第1実施形態に係る熱交換器の外観構成を示す図である。図2は、第1実施形態に係る扁平伝熱管1にヘッダ3x,3yを挿入する前の状態を示す図である。熱交換器は、冷媒が流動し、横方向に延びる多数の扁平伝熱管1と、多数の扁平伝熱管1が挿入され、冷媒との間の熱交換がなされるようにするフィン2と、多数の扁平伝熱管1の一方に結合されて縦方向(垂直方向)に延び、多数の扁平伝熱管1に冷媒が分配されるヘッダ3x,3yとを備えている。ヘッダ3xの下方には、冷媒入口管30が接続されている。また、ヘッダ3xの中央部には冷媒出口管33が接続される。冷媒入口管30から冷媒が流入し、複数の扁平伝熱管1内流路を冷媒が流動し冷媒出口管33から流出する。なお、ヘッダ3xの上部、中間下部、下部には、仕切板35x(図4参照)が挿入されている。同様に、ヘッダ3yの冷媒出口管33の上部、下部には、仕切板35x)が挿入されている。
 図3は、第1実施形態に係る扁平伝熱管1の構成を示す図である。扁平伝熱管1には、外観を形成する伝熱管ボディ11および伝熱管ボディ11の内部に多数の冷媒流路12が形成されるようにする区画リブ13が含まれる。扁平伝熱管1の内部に流入した冷媒は、多数の冷媒流路12に均一に分配されて流動できる。
 図4は、第1実施形態に係る熱交換器のヘッダ3xの構成を示す図である。図5は、第1実施形態に係る熱交換器のヘッダ3xの横断面を示す図である。図5は、図4のX-X断面を示す。ヘッダ3xは、扁平管側ヘッダ部材31x(第1部材)と、組合せヘッダ部材34x(第2部材)とを含んで構成されている。また、ヘッダ3xの上部、中間部、下部には、仕切板35xが挿入されている。
 扁平管側ヘッダ部材31x(第1部材)と組合せヘッダ部材34x(第2部材)とを組み合わせることによって、狭小流路38を形成している。
 扁平管側ヘッダ部材31xおよび組合せヘッダ部材34xは、板材で形成され、扁平管側ヘッダ部材31xおよび組合せヘッダ部材34xは、板材を折り曲げてなる横断面形状がD字形状であり、該D字形状の直線部の一部に離間部39(図7参照)を有している。離間部39を通じて扁平管側ヘッダ部材31xと組合せヘッダ部材34xとが組み合わされており、扁平管側ヘッダ部材31xおよび組合せヘッダ部材34xの対向するD字形状の直線部の間に狭小流路38を形成している。なお、扁平管側ヘッダ部材31xおよび組合せヘッダ部材34x、または、その組合せ部材は、押出成形で製作してもよい。
 図6は、第1実施形態に係るヘッダ3xが点対称であることを示す図である。図6の左図は、扁平管側ヘッダ部材31xと組合せヘッダ部材34xとが組み合わされたヘッダ部材の横断面(X-X断面、図4参照)を示す。これを、点Oを中心に180度回転すると図6の右図となる。図6に示すように、扁平管側ヘッダ部材31xと組合せヘッダ部材34xとが組み合わされたヘッダ部材の横断面形状が、扁平伝熱管1を挿入する孔位置を除いて、点対称な形状であることがわかる。
 扁平管側ヘッダ部材31x(第1部材)には、開口部31x3を有し、組合せヘッダ部材34x(第2部材)には、開口部34x3を有している。第1部材および第2部材は、同じ伝熱管が接続される開口部を有している。
 扁平管側ヘッダ部材31x(第1部材)には、扁平伝熱管1の端面に平行な平行面31x4を有し、組合せヘッダ部材34x(第2部材)には、扁平伝熱管1の端面に平行な平行面34x4を有している。第1部材および第2部材は、それぞれ伝熱管の端面に平行な平行面を有し、平行面を形成するために曲げ部を少なくとも1箇所有する。なお、平行面は、前記したD字形状の直線部に対応する。
 図7は、第1実施形態に係る熱交換器のヘッダの分解状態を示す図である。扁平管側ヘッダ部材31xに対し、組合せヘッダ部材34xを縦方向上部から、離間部39に合わせて挿入する。その後、組み合わされたヘッダ部材を扁平伝熱管1に挿入する。仕切板35xは、組み合わされたヘッダ部材の上部、中間下部、下部に挿入される。
 図8は、第1実施形態に係る熱交換器のヘッダの縦断面を示す図である。図8は、図5のY-Y断面を示す。ヘッダ3x内に、扁平管側ヘッダ部材31x(第1部材)と組合せヘッダ部材34x(第2部材)とを組み合わせることによって、狭小流路38を形成されることがわかる。このことで、図23に示した比較例のヘッダ断面構造として示した形状に比べ、本実施形態によるヘッダ内部の冷媒の速度は速められる。その結果、液冷媒の運動量が大きくなりヘッダ上部に取り付けられた扁平伝熱管1まで液冷媒が到達できる。
 図9は、第1実施形態に係る冷媒分配器のロウ付け面を示す図である。扁平管側ヘッダ部材31xの母材31x0の外側にロウ材31x1を積層したクラッド材とするものである。組合せヘッダ部材34xの母材34x0の外側にロウ材34x1を積層したクラッド材とするものである。このような片面クラッド材を用いる構成で本実施形態によるヘッダ構造のロウ付けが可能となる。
 図10は、第1実施形態に係る冷媒分配器の他のロウ付け面を示す図である。図10は最低限必要なロウ付け面37a,37b,37cを示すものである。ロウ付け面37aは、扁平管側ヘッダ部材31xと扁平伝熱管1との接合面であり、ロウ付け面37b,37cは、扁平管側ヘッダ部材31xと組合せヘッダ部材34xとの接合面である。図10の場合においても、ほぼ狭小流路38が形成できる。
 第1実施形態によれば、ヘッダ部材の組合せによって、狭小流路38を形成でき、冷媒流速をあげることによって、液冷媒を熱交換器の上部まで上昇させ冷媒分配を改善することができる。また、組合せ部材はほぼ同等な部材であり、組立て性が優れている。
<<第2実施形態>>
(実施例1)
 図11Aは、第2実施形態に係る熱交換器の外観構成を示す図である。図11Bは、第2実施形態に係る実施例1のヘッダの横断面を示す図である。図11Bは図11AにおけるA-A部の断面を示す。図11Aに示すように、上流側と下流側に略垂直に配置された二つのヘッダ3a、3bがあり、それらの間を略垂直方向に複数の扁平伝熱管1が接続されている。各扁平伝熱管1には、伝熱面積を拡大する複数のフィン2が水平方向に所定の間隙を空けて配置されている。フィン2は、詳細な図示はしないが、熱交換器を蒸発器として用いる場合にフィン表面で凝縮した水滴が落ちやすいように工夫がなされる。また、隣り合うフィンとの間隙を一定に保つように規定するための形状も有する。
 ヘッダ3aは、凹字形状部材のヘッダベース部材31a(第1部材)と、ヘッダ差込み部材34b(第2部材)とを含んで構成されている。同様に、ヘッダ3bは、凹字形状部材のヘッダベース部材31b(第1部材)と、ヘッダ差込み部材34b(第2部材)とを含んで構成されている。
 ヘッダ差込み部材34aの下方には、冷媒入口管30が接続されている。また、ヘッダ差込み部材34bには冷媒出口管33が接続される。冷媒入口管30から冷媒が流入し、複数の扁平伝熱管1内流路を冷媒が流動し冷媒出口管33から流出する。
 空気が、紙面略垂直方向にフィン間を流動されることで冷媒と空気との間で熱交換を行う。空調機で広く用いられる条件では、空気側は数十から百W/(mK)程度の層流熱伝達率であり、扁平伝熱管流路内は冷媒による数千W/(mK)程度の沸騰熱伝達率の伝熱性能である。そのため、空気側の面積拡大の効果が大きいので熱交換器が同一の体積であれば極力空気側の面積が確保できるように、フィンはアルミ製の薄いフィンで1mmから数mm程度のフィン間隙で構成される。
 本実施形態で特徴となる点は、凹字形状部材のヘッダベース部材31aの平面部分に設けた孔に、扁平伝熱管1の端部が差し込まれることである。凹字形状部材の扁平伝熱管1が接続された反対の開口側にはヘッダ差込み部材34aが差し込まれる。この両方を電気炉等の炉内でロウ付けすることで冷媒の流路となる狭小流路38を備えたヘッダ構造となる。他方のヘッダ3bも同様に、ヘッダベース部材31bにヘッダ差込み部材34bが差し込まれ冷媒流路である狭小流路38を構成する。つまり、凹字形状部材のヘッダベース部材31aとヘッダ差込み部材34aとの接触面がロウ付け面となる。
 図11Aにおいて、熱交換器を蒸発器として用いる場合の冷媒の流れを白抜きの矢印で示す。図11Aでは図示しない膨張弁の作用により低温、低圧になった冷媒は、熱交換器内の仕切板35a、35bで仕切られた空間ごとに並列に扁平伝熱管本数を流動する。そして、冷媒は、孔空き仕切板36a(孔付仕切り板)を介して上方に流動し、並列に扁平伝熱管本数を流動する。冷媒入口管30から流入した冷媒は、熱交換器下方からその流れ方向を変えながら領域a→領域b→領域cの通り上方に向かって流れ、最終的に冷媒出口管33から流れ出る。
 なお、図中では単純に熱交換器の下方から上方に向かって流れる冷媒の流動を示したが、仕切られた空間ごと部分的に一旦下方に向かう流れが含まれていても構わない。このように、冷媒がおよそ下から上に向かう熱交換器内の流れは、同じ熱交換器で流れ方向を変え凝縮器として用いる場合に、過冷却となった液冷媒が重力の作用で溜まりこみが生じないように下方に行きやすくするためである。
 蒸発器として用いた場合の冷媒は、流れ方向に向かって次第に液成分の蒸発が進みガス成分が多くなる。そのため、同一の流路断面積で流動させた場合、ガス冷媒では流速が早まることによる単位当たりの圧力損失が多くなる。その結果、冷媒の飽和温度の低下による空気との有効な温度差を確保できない不具合や、全体として圧縮仕事の増大による省エネ性能の悪化を招く。そこで、圧力損失があまり大きくならないように、出口に向かって次第に並列で流れる扁平伝熱管本数を増やすことが一般に行われる。
 図11BにA-A横断面の拡大図を示す。凹字形状部材のヘッダベース部材31aにヘッダ差込み部材34aが差し込まれ接触面がロウ付けされ、狭小流路38(ヘッダ空間)が構成される。凹字形状部材のヘッダベース部材31aの開口側の仮想的な面で規定される凹字形状部材のヘッダベース部材31a内側面積は、ヘッダ差込み部材34aが内部に差し込まれることにより狭められ、狭小流路38が形成される。このことで、図23に示した比較例のヘッダ断面構造として示した形状に比べ、本実施例によるヘッダ内部の冷媒の速度は速められる。その結果、液冷媒の運動量が大きくなりヘッダ上部に取り付けられた扁平伝熱管まで液冷媒が到達できる。さらに、孔空き仕切板36aがありここで最も小さい面積で狭められ流速が大きくなった状態で上方に液冷媒が導かれる。
 なお、図11Aでは説明のため簡略化した熱交換器の例で示したが、実際にはこれらの基本的な構成を複数、高さ方向に積層することや、同様の熱交換器を空気の風下、風上方向に並べることで所定の伝熱面積を確保することができる。さらに、孔空き仕切板36aは図1では説明を簡略化するため1箇所設けているが、仕切板35aと同一の高さ位置でヘッダ3b内に設けても良く、領域bでの偏流改善が図れる。
 図12は、凹字形状部材のヘッダベース部材31aの開放側から扁平伝熱管1端部を見た図である(図11AのB矢視)。扁平伝熱管1には複数の冷媒が流動する1mmから数mm程度の小さな流路が複数設けられ押出し加工や引き抜き加工で形成される。凹字形状部材のヘッダベース部材31aと各扁平伝熱管1は接続面131でロウ付けされる。
(実施例2)
 図13Aは、第2実施形態に係る実施例2の熱交換器のヘッダの横断面を示す図であり、ヘッダ差込み部材34aが凹字形状部材の図である。図13Bは、第2実施形態に係る実施例2の熱交換器のヘッダの横断面を示す図であり、ヘッダ差込み部材34aが筒形状(中空形状)の図である。図13Cは、第2実施形態に係る実施例2の熱交換器のヘッダの横断面を示す図であり、ヘッダ差込み部材34aがH字形状の図である。図13Dは、第2実施形態に係る実施例2の熱交換器のヘッダ横断面を示す図であり、ヘッダ差込み部材34aが台形形状の図である。
 図13Aは、基準となる構成で、凹字形状部材のヘッダベース部材31aと同様に、ヘッダ差込み部材34aも同じ方向に開口する凹字形状部材で構成する。ヘッダ内圧に伴う強度を確保した形状であれば、このような構成はヘッダ部重量を最も削減できる。
 図13Bは、ヘッダ差込み部材34aを筒形状(中空形状)で構成するものである。このような構成では、ヘッダ差込み部材34aの剛性を高めることが可能となる。なお、ヘッダ差込み部材34aは中実材であってもよく、この場合は、さらに剛性を高めることが可能となる。
 図13Cは、ヘッダ差込み部材34aを略H字形状の部材で構成するものである。押出し加工で製作でき、凹字形状のヘッダベース部材31aとで囲まれる流路面積をさらに狭めることが可能となる。
 図13Dは、凹字形状部材であるヘッダベース部材31aの横断面を末広がり形状とするものである。このような構成により、凹字形状部材のヘッダベース部材31aと差し込み部材34aの冶具等を用いた固定や、縛りながらロウ付けすることで接触面に接触荷重を加えながらロウ付けが可能となる。
 なお、各図共に凹字形状部材のヘッダベース部材31aの開口側端面とヘッダ差込み部材34の面を揃えた形状として示しているが、段差を設けた形状であっても構わない。端面を揃えた場合には、部品組立て精度の向上が図れ、組立て具合が外観確認で管理が可能となる。
(実施例3)
 図14は、第2実施形態に係る実施例3の熱交換器のヘッダの横断面を示す図である。図13までの発明と異なる点は、凹字形状部材のヘッダベース部材31aの端部長さに比べ、他端は31a1のように長めとするものである。このような構成により筐体319と接合部品318を介して熱交換器の固定ができるので固定のための別部材が不要となる。なお、延伸した31a1は長手方向に全て設ける必要はなく、固定に必要な部位のみ設けることで材料と重量を削減できる。図14では熱交換器と筐体との固定の例で示したが、熱交換器同士の固定に用いてもよい。
(実施例4)
 図15は、第2実施形態に係る実施例4の熱交換器のヘッダの横断面を示す図である。略コ字状部材のヘッダベース部材31aの母材31a0外側に31a2として示すロウ材を積層したクラッド材とするものである。また、ヘッダ差込み部材34aの母材34a0の外側にロウ材34a1を施すものである。このような片面クラッド材を用いる構成で本発明によるヘッダ構造のロウ付けが可能となる。
(実施例5)
 図16Aは、第2実施形態に係る実施例5の熱交換器のヘッダ横断面を示す図であり、基準となる図である。図16Bは、第2実施形態に係る実施例5の熱交換器のヘッダ横断面を示す図であり、ヘッダ差込み部材34aの差込み長さを長めに設定する図である。図16Cは、第2実施形態に係る実施例5の熱交換器のヘッダ横断面を示す図であり、ヘッダ差込み部材34aとは別部材340を流路に差し入れる図である。
 図16Aを基準として、図16Bは凹字形状部材のヘッダベース部材31aに差し込まれるヘッダ差込み部材34aの差込み長さを長めに設定するものである。差し込み長さを長めにすることで冷媒の流路面積を小さくできる等の調整が可能となる。図16Cは、ヘッダ差込み部材34aとは別部材340を流路断面に差し入れるものである。このような構成でさらに冷媒流路を狭めることができるので熱交換器の中で領域にあわせて部分的に流路を狭めることが可能となり、事前の冷媒偏流調整の自由度が高まる。図16Bにおいて、差込み部材34aの外面と、該外面に対抗するヘッダ内に挿入された扁平伝熱管1の端面との間隙Dが、1mmから3mmであることが好ましい。
(実施例6)
 図17Aは、第2実施形態に係る実施例6のヘッダ内の孔空き仕切板36a(孔付仕切り板)の取付け方法を示す図である。図17Bは、第2実施形態に係る実施例6のヘッダ内の孔空き仕切板36aの取付け方法の他の例を示す図である。図17Cは、第2実施形態に係る実施例6のヘッダ内の孔空き仕切板36aの取付け方法のその他の例を示す図である。孔空き仕切板36aは、角孔の孔360を有する。
 図17Aは、ヘッダ差込み部材34aの孔34a2に孔空き仕切板36aの突起36a1を差込むことで孔空き仕切板36aを設置し、ヘッダベース部材31a開口部に内蔵しロウ付けするものである。図17Bは、差込み部材34aの角部を図のような切り落としや、丸型に加工しておくことで冷媒漏れを低減できるようにしたものである。図17Cは、ヘッダ差込み部材34aに予め溝34a3を設け、これに突起36a1を有する孔空き仕切板36aを設置するものである。
なお、図17では孔空き仕切板36aの例で示したが、仕切板35a,35bについて図17に示した固定方法を適用してもよい。
(実施例7)
 図18Aは、第2実施形態に係る実施例7のヘッダの孔空き仕切板36aの構成を示す図である。図18Bは、第2実施形態に係る実施例7のヘッダの孔空き仕切板36aの他の構成を示す図である。図18A、図18Bは、実施例6を説明した孔空き仕切板36aに関するものである。図18Aは、孔360aが1個空いた構成である。図18Bは、孔360aが2個空いた構成である。これまでの図17で示した角孔のみでなく丸孔でもよく、孔径の選択によりヘッダ空間内でより速い冷媒速度を実現できる。
(実施例8)
 図19Aは、第2実施形態に係る実施例8のヘッダ3a内の偏流防止用の孔空き板132を示す図である。図19Aは、図1のC―C断面を示す図である。図19Bは、第2実施形態に係る実施例8のヘッダ3a内の偏流防止用の孔空き板132の斜視図を示す図である。凹字形状部材のヘッダベース部材31aの内部に、扁平伝熱管1の端面と表面が揃うように、孔空き板132を内蔵するものである。孔空き板132には、扁平伝熱管1が入る孔133を複数設ける。このような構成により、扁平伝熱管側面の隙間と、上下間の段差を埋めることができより流路の段差を低減できヘッダ内の冷媒の乱れによる偏流を防止できる。
(実施例9)
 図20は、第2実施形態に係る実施例9のヘッダ差込み部材の仕切り板の位置を示す図である。ヘッダ3aは、図1に示すように、ヘッダベース部材31aにヘッダ差込み部材34aを差し込む構成である。図20の(b―1)、(b―2)、(b―3)ではヘッダ差込み部材34aに対しての仕切板35aと孔空き仕切板36aの取り付け高さ位置を変えている。このように、凹字形状部材のヘッダベース部材31aは共通として用いながら、ヘッダ差込み部材34aと仕切板(例えば、仕切板35a、孔空き仕切板36a)の取り付け位置の変更で、前記した冷媒を流す扁平伝熱管本数の組合せを自由に設定できる。これにより、能力機種ごとの違いや、凝縮器または蒸発器のどちらの性能を優先するかなど設計段階での調整が可能となる。
 第2実施形態によれば、パラレルフロー型の熱交換器の各扁平伝熱管への冷媒分配を均一化し、熱交換器を効率的に作用させることができる。これにより、空気調和機の省エネ性を改善することができる。
 本実施形態によれば、最小負荷条件や中間負荷条件での運転時であっても、パラレルフロー型の蒸発器内の各扁平伝熱管への液冷媒供給量の偏りを単純な構造で抑制できるヘッダ3a,3b,3x,3yを提供できる。従って、ヘッダをもつ熱交換器(室内熱交換器101、室外熱交換器106)(図21参照)およびこれを備える空気調和機AC(図21参照)、空気調和システムを実現できる。
 なお、本発明は以上述べた実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明で分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
 1  扁平伝熱管
 2  フィン
 3a,3b,3x,3y  ヘッダ(冷媒分配器)
 8  圧縮機
 9  四方弁
 30  冷媒入口管
 33  冷媒出口管
 31a,31b  ヘッダベース部材(第1部材)
 31x  扁平管側ヘッダ部材(第1部材)
 34a,34b  ヘッダ差込み部材(第2部材)
 34x  組合せヘッダ部材(第2部材)
 35a,35b,35x 仕切板
 36a  孔空き仕切板(孔付仕切り板)
 38  狭小流路
 39  離間部(離間部分)
 90  二相域
 91  過熱領域
 100  室内ユニット
 101  室内熱交換器
 102  室内用送風機
 103  膨張弁
 105  室外ユニット
 106  室外熱交換器
 107  室外送風機
 131  接続面
 132  孔空き板
 133  孔
 318  取り付け金具
 319  筐体
 360,360a  孔
 AC  空気調和機

Claims (18)

  1.  冷媒の流路を形成する複数の伝熱管の端部とそれぞれ接続し、前記複数の伝熱管を連通させ、冷媒を分配する冷媒分配器であって、
     前記冷媒分配器は、互いに組み合わせる第1部材および第2部材を備え、
     前記第1部材と前記第2部材とを組み合わせることによって、狭小流路を形成する冷媒分配器。
  2.  前記第1部材および前記第2部材は、板材で形成され、
     前記第1部材および前記第2部材は、前記板材を折り曲げてなる横断面形状がD字形状であり、該D字形状の直線部の一部に離間部分を有し、
     前記離間部分を通じて前記第1部材と前記第2部材とが組み合わされており、
     前記第1部材および前記第2部材の対向する前記D字形状の直線部の間に狭小流路を形成する
     ことを特徴とする請求項1に記載の冷媒分配器。
  3.  前記第1部材および前記第2部材を組み合わせた部材の横断面形状が、点対称な形状である
     ことを特徴とする請求項1に記載の冷媒分配器。
  4.  前記第1部材および前記第2部材は、同じ伝熱管が接続される開口部を有する
     ことを特徴とする請求項1に記載の冷媒分配器。
  5.  前記第1部材および前記第2部材は、それぞれ伝熱管の端面に平行な平行面を有し、
     前記平行面を形成するために曲げ部を少なくとも1箇所有する
     ことを特徴とする請求項1に記載の冷媒分配器。
  6.  前記第1部材および前記第2部材は、片面に接合用のロウ材が塗布されている
     ことを特徴とする請求項2に記載の冷媒分配器。
  7.  前記第1部材は、横断面が凹形状を呈しており、
     前記第2部材は、前記第1部材の内面に嵌合し、前記狭小流路を形成する
     ことを特徴とする請求項1に記載の冷媒分配器。
  8.  前記第2部材の横断面形状は、凹形状、筒形状、中実形状、H字形状、台形形状のいずれかである
     ことを特徴とする請求項7に記載の冷媒分配器。
  9.  前記第1部材の前記凹形状の部材の開放端の一方端が、他端よりも延伸している
     ことを特徴とする請求項7に記載の冷媒分配器。
  10.  前記第1部材である前記凹形状の部材の外側と、前記第2部材のそれぞれの母材の外側にロウ材を積層した
     ことを特徴とする請求項7に記載の冷媒分配器。
  11.  前記第2部材は、前記第1部材内で差込み長さを変える
     ことを特徴とする請求項7に記載の冷媒分配器。
  12.  前記第2部材に孔を有する孔付仕切り板を固定できる
     ことを特徴とする請求項7に記載の冷媒分配器。
  13.  前記孔付仕切り板には、少なくとも一つの角孔か丸孔を有する
     ことを特徴とする請求項12に記載の冷媒分配器。
  14.  前記第1部材の前記凹形状の部材の内部には、流路空間を狭められる部材を設ける
     ことを特徴とする請求項7に記載の冷媒分配器。
  15.  冷媒が流動し、横方向に延びる多数の冷媒管と、
     前記多数の冷媒管が挿入され、冷媒と流体との間の熱交換がなされるようにする放熱フィンと、
     前記多数の冷媒管の一方に結合されて縦方向に延び、前記多数の冷媒管に冷媒が分配されるようにする冷媒分配器と、を備え、
     前記冷媒分配器は、請求項1から請求項14のいずれか1項に記載の冷媒分配器である熱交換器
  16.  二つの冷媒分配器と、当該両冷媒分配器間を接続する複数の伝熱管と、該伝熱管の伝熱面積を拡大するフィンと、を含んでなる熱交換器であって、
     前記冷媒分配器内の一つの空間領域の下部から冷媒が流入し、
     前記冷媒分配器は、伝熱管を接続した横断面が凹字形状の第1部材の内面に、差込み部材である第2部材が嵌合し、狭小流路を形成する熱交換器。
  17.  前記第2部材の外面と、該外面に対抗する前記冷媒分配器内に挿入された伝熱管端面との間隙が、1mmから3mmである
      ことを特徴とする請求項16に記載の熱交換器。
  18.  請求項15に記載の熱交換器を具備している空気調和機。
PCT/JP2018/017333 2018-04-27 2018-04-27 冷媒分配器、熱交換器および空気調和機 WO2019207806A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/017333 WO2019207806A1 (ja) 2018-04-27 2018-04-27 冷媒分配器、熱交換器および空気調和機
PCT/JP2018/046098 WO2019207838A1 (ja) 2018-04-27 2018-12-14 冷媒分配器、熱交換器および空気調和機
CN201880092613.9A CN112005074B (zh) 2018-04-27 2018-12-14 制冷剂分配器、热交换器以及空调机
JP2020516015A JP6854971B2 (ja) 2018-04-27 2018-12-14 冷媒分配器、熱交換器および空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017333 WO2019207806A1 (ja) 2018-04-27 2018-04-27 冷媒分配器、熱交換器および空気調和機

Publications (1)

Publication Number Publication Date
WO2019207806A1 true WO2019207806A1 (ja) 2019-10-31

Family

ID=68295233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017333 WO2019207806A1 (ja) 2018-04-27 2018-04-27 冷媒分配器、熱交換器および空気調和機

Country Status (1)

Country Link
WO (1) WO2019207806A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233409A (ja) * 1996-03-13 1996-09-13 Matsushita Refrig Co Ltd 分流器
JP2000346568A (ja) * 1999-05-31 2000-12-15 Mitsubishi Heavy Ind Ltd 熱交換器
JP2008008584A (ja) * 2006-06-30 2008-01-17 Sharp Corp 熱交換器
WO2008064709A1 (en) * 2006-12-01 2008-06-05 Carrier Corporation Charge minimized heat exchanger
JP2008528941A (ja) * 2005-02-02 2008-07-31 キャリア コーポレイション 小流路熱交換器のヘッダ
JP2010008020A (ja) * 2008-06-30 2010-01-14 Showa Denko Kk 熱交換器
JP4405819B2 (ja) * 2004-01-20 2010-01-27 カルソニックカンセイ株式会社 熱交換器
JP2012052715A (ja) * 2010-08-31 2012-03-15 Mitsubishi Heavy Ind Ltd 熱交換器
JP2014037898A (ja) * 2012-08-10 2014-02-27 Daikin Ind Ltd 熱交換器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233409A (ja) * 1996-03-13 1996-09-13 Matsushita Refrig Co Ltd 分流器
JP2000346568A (ja) * 1999-05-31 2000-12-15 Mitsubishi Heavy Ind Ltd 熱交換器
JP4405819B2 (ja) * 2004-01-20 2010-01-27 カルソニックカンセイ株式会社 熱交換器
JP2008528941A (ja) * 2005-02-02 2008-07-31 キャリア コーポレイション 小流路熱交換器のヘッダ
JP2008008584A (ja) * 2006-06-30 2008-01-17 Sharp Corp 熱交換器
WO2008064709A1 (en) * 2006-12-01 2008-06-05 Carrier Corporation Charge minimized heat exchanger
JP2010008020A (ja) * 2008-06-30 2010-01-14 Showa Denko Kk 熱交換器
JP2012052715A (ja) * 2010-08-31 2012-03-15 Mitsubishi Heavy Ind Ltd 熱交換器
JP2014037898A (ja) * 2012-08-10 2014-02-27 Daikin Ind Ltd 熱交換器

Similar Documents

Publication Publication Date Title
US9494368B2 (en) Heat exchanger and air conditioner
US9651317B2 (en) Heat exchanger and air conditioner
JPWO2019239446A1 (ja) 空気調和装置の室外機及び空気調和装置
WO2018173356A1 (ja) 熱交換器、および、それを用いた空気調和機
US10041710B2 (en) Heat exchanger and air conditioner
WO2014181400A1 (ja) 熱交換器及び冷凍サイクル装置
JP6927352B1 (ja) 熱交換器
JP6120978B2 (ja) 熱交換器及びそれを用いた空気調和機
JP2022028490A (ja) 熱交換器
JP5716496B2 (ja) 熱交換器および空気調和機
JP2014137177A (ja) 熱交換器および冷凍装置
JP6854971B2 (ja) 冷媒分配器、熱交換器および空気調和機
JP6987227B2 (ja) 熱交換器及び冷凍サイクル装置
JP2011112315A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
JP3632248B2 (ja) 冷媒蒸発器
KR100497429B1 (ko) 휜앤 플랫 튜브형 열교환기 및 이를 이용한 증발기
JP2006284133A (ja) 熱交換器
WO2019207806A1 (ja) 冷媒分配器、熱交換器および空気調和機
JP2014137172A (ja) 熱交換器及び冷凍装置
JP7146139B1 (ja) 熱交換器及び空気調和装置
WO2023233572A1 (ja) 熱交換器及び冷凍サイクル装置
JP2018035992A (ja) 熱交換器
KR200305987Y1 (ko) 휜앤 플랫 튜브형 열교환기 및 이를 이용한 증발기
JP2014137173A (ja) 熱交換器及び冷凍装置
JPH10300270A (ja) 冷媒蒸発器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP