WO2019207644A1 - 流体デバイス、バルブ装置及び検出装置 - Google Patents
流体デバイス、バルブ装置及び検出装置 Download PDFInfo
- Publication number
- WO2019207644A1 WO2019207644A1 PCT/JP2018/016606 JP2018016606W WO2019207644A1 WO 2019207644 A1 WO2019207644 A1 WO 2019207644A1 JP 2018016606 W JP2018016606 W JP 2018016606W WO 2019207644 A1 WO2019207644 A1 WO 2019207644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow path
- valve
- base material
- sheet material
- hole
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/08—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N37/00—Details not covered by any other group of this subclass
Definitions
- the present invention relates to a fluid device, a valve device, and a detection device.
- ⁇ -TAS is superior to conventional inspection devices in that it can be measured and analyzed with a small amount of sample, can be carried, and can be disposable at low cost. Furthermore, in the case of using an expensive reagent or in the case of testing a small amount of a large number of specimens, it has attracted attention as a highly useful method.
- Non-Patent Document 1 A device including a flow path and a pump disposed on the flow path as a component of ⁇ -TAS has been reported (Non-Patent Document 1).
- a plurality of solutions are injected into the channel, and the pump is operated to mix the plurality of solutions in the channel.
- a first base material and a second base material joined at a joining surface are provided, and at least one of the first base material or the second base material joins both base materials.
- the first substrate has a through-hole provided at a position facing the flow path, and the opening on the flow path side of the through-hole.
- An elastic member that adjusts the flow of fluid in the flow path by deformation and a first surface that is opposite to the joint surface of the first base material so as to cover the opening of the through hole and be peelable
- a fluid device including a valve having a formed sheet material, and a drive unit that is disposed between the sheet material and the elastic member and deforms the elastic member in the flow path direction.
- the first substrate is positioned at a position facing at least one of the first base material and the second base material joined at the joining surface and opened to the joining surface.
- a valve device is provided that includes an applying portion that applies a force to close the flow path to the valve portion when the is attached to the first surface.
- a placement part for placing the fluid device of the first aspect of the present invention, a peeling part for peeling the sheet material, and a target substance in the flow path of the fluid device There are provided a liquid feeding part for feeding a solution containing the liquid and a detection part for detecting a target substance in the solution.
- 1 is a cross-sectional view schematically showing a system including a fluidic device according to an embodiment.
- 1 is a cross-sectional view schematically showing a system including a fluidic device according to an embodiment.
- 1 is a cross-sectional view schematically showing a system including a fluidic device according to an embodiment.
- Sectional drawing which showed typically the fluidic device containing the valve apparatus of one Embodiment Sectional drawing which showed typically the fluidic device containing the valve apparatus of one Embodiment. Sectional drawing which showed typically the fluidic device containing the valve apparatus of one Embodiment. Sectional drawing which showed typically the fluidic device containing the valve apparatus of one Embodiment. The top view which showed typically the fluid device containing the valve apparatus of one Embodiment. Sectional drawing which showed typically the fluidic device containing the valve apparatus of one Embodiment.
- FIGS. 1 to 13 In the drawings used in the following description, in order to make the features easier to understand, the portions that become the features may be shown in an enlarged manner for convenience, and the dimensional ratios of the respective constituent elements may not be the same as the actual ones. I can't.
- FIG. 1 is a cross-sectional view schematically showing a fluid device 1 including a valve device V.
- the fluidic device 1 of the present embodiment includes a device that detects and inspects a sample substance that is a detection target included in a specimen sample by an immune reaction, an enzyme reaction, or the like.
- the sample substance is, for example, a biomolecule such as nucleic acid, DNA, RNA, peptide, protein, extracellular vesicle.
- the fluid device 1 includes a base material 5 and a valve device V.
- the substrate 5 has a first substrate 6 and a second substrate 9.
- the 1st base material 6 and the 2nd base material 9 of this embodiment are comprised from the resin material.
- the resin material constituting the first base material 6 and the second base material 9 include polypropylene and polycarbonate.
- the 1st base material 6 is comprised from a transparent material.
- the material which comprises the 1st base material 6 and the 2nd base material 9 is not limited.
- first base material 6 and the second base material 9 are described along the horizontal plane, and the first base material 6 is described as being disposed above the second base material 9. However, this only defines the horizontal direction and the vertical direction for convenience of explanation, and does not limit the orientation when the fluidic device 1 according to the present embodiment is used.
- the first base material 6 and the second base material 9 are plate members extending along the horizontal direction.
- the 1st base material 6 and the 2nd base material 9 are laminated
- the second substrate 9 is laminated on the lower side of the first substrate 6.
- the first base material 6 and the second base material 9 are joined using the lower surface 6a of the first base material 6 and the upper surface 9b of the second base material 9 as joint surfaces.
- the base material 5 is manufactured by joining and integrating the first base material 6 and the second base material 9 by a joining means such as adhesion using an adhesive, thermal welding, ultrasonic welding, laser welding or the like.
- the direction in which the first base material 6 and the second base material 9 are stacked is simply referred to as a stacking direction.
- the stacking direction is the vertical direction.
- the 1st base material 6 has the flow path 11 and the through-holes 35a and 35b.
- the flow path 11 is a space formed in a tube shape or a cylindrical shape surrounded by the groove provided on the lower surface 6 a of the first base material 6 and the second base material 9.
- the channel 11 accommodates a solution for performing the above-described detection / inspection.
- the through holes 35 a and 35 b are arranged at positions facing both ends of the flow path 11 and penetrate the first base material 6 in the vertical direction.
- the through holes 35 a and 35 b are, for example, an injection hole and an air hole for a solution stored in the flow path 11.
- the diameter of the through holes 35a and 35b is preferably 0.1 to 3 mm.
- the width of the flow path 11 examples include 0.01 to 100 mm, 0.05 to 50 mm, 0.1 to 10 mm, 0.1 to 5 mm, and 0.5 to 3 ⁇ m. Further, as an example, the width of the flow path 11 is 0.01 to 1000 ⁇ m, 0.05 to 1000 ⁇ m, 0.2 to 500 ⁇ m, 1 to 250 ⁇ m, and 10 to 200 ⁇ m. Considering the formability when the first substrate 6 is manufactured by injection molding, the width of the flow path 11 is preferably 0.05 to 5 mm.
- the depth of the flow path 11 examples include 0.01 to 100 mm, 0.05 to 50 mm, 0.1 to 10 mm, 0.1 to 5 mm, and 0.5 to 3 ⁇ m. Further, as an example, the depth of the flow path 11 is 0.01 to 1000 ⁇ m, 0.05 to 1000 ⁇ m, 0.2 to 500 ⁇ m, 1 to 250 ⁇ m, and 10 to 200 ⁇ m. Considering the moldability when the first substrate 6 is manufactured by injection molding, the depth of the flow path 11 is preferably 0.05 to 3 mm.
- the valve device V is provided in the second base material 9 and a valve portion Vc held in a valve holding hole (through hole) 34 that penetrates the first base material 6 in the vertical direction at a position facing the flow path 11.
- a valve holding hole through hole
- the recess 40 a sheet material 41 that is detachably attached to the upper surface (first surface) 6 b of the first base material 62, and a shaft portion (giving portion, provided on the valve portion Vc) Drive part) 42.
- the valve portion Vc is provided at a lower end portion of an annular ring portion 44 provided in the valve holding hole 34.
- the shaft portion 42 is a drive portion that deforms and drives the valve portion Vc.
- it is a provision part which provides the force which deforms the elastic member which is the valve part Vc, and is a press part which presses an elastic member.
- the valve part Vc is an elastic member.
- the valve portion Vc is a valve made of a flexible resin film.
- the opening on the flow path 11 side of the through hole 34 is closed by an elastic member that is the valve portion Vc.
- the valve portion Vc is made of an elastic material and adjusts the flow of fluid in the flow path 11 by deformation. Examples of the elastic material that can be used for the valve portion Vc include rubber and elastomer resin.
- a projecting portion 36 projecting in a hemispherical shape is provided on the lower surface of the valve portion Vc.
- the depression 40 is disposed immediately below the valve portion Vc on the upper surface 9 b of the second base material 9.
- the recess 40 is formed in a hemispherical shape.
- the valve part Vc opens and closes the flow path 11 by deformation.
- the valve part Vc operates perpendicularly to the flow path direction of the flow path 11 to open and close the flow path 11.
- the valve portion Vc is elastically deformed downward, and the projecting portion 36 comes into contact with the recess 40 to close the flow path 11. Further, the valve portion Vc opens the flow path 11 as shown in FIG. 1 by the protrusion 36 being separated from the recess 40 by the elastic restoring force.
- the shaft portion 42 has a pillar shape substantially perpendicular to the flow path 11.
- the shaft part 42 is formed in such a length that the upper end protrudes from the upper surface 6 b of the first base material 6. Further, the length of the shaft portion 42 is such that the upper end surface is substantially flush with the upper surface 6b of the first base material 62 or the upper surface 6b when the valve portion V is elastically deformed and the protruding portion 36 comes into contact with the recess 40. It is a length protruding upward. That is, the length of the shaft portion 42 in the penetrating direction of the valve holding hole 34 projects from the upper surface 6b before the sheet material 41 is attached to the upper surface 6b, and after the sheet material 41 is attached to the upper surface 6b. Is a length to close the flow path 11 by deforming.
- the height from the upper surface of the valve portion Vc to the lower surface of the sheet material 41 when the lower surface of the valve portion Vc comes into contact with the bottom surface of the flow path 11 and the height of the shaft portion 42 that is an application portion (drive portion) are: Except for the amount of deformation of the valve portion Vc due to elastic deformation, it is substantially the same. In other words, the difference obtained by subtracting the thickness of the valve portion Vc from the sum of the height from the bottom surface of the flow channel 11 to the ceiling surface of the flow channel 11 and the thickness of the first base member 6 and the height of the shaft portion 42 are elastic. Except for the amount of deformation of the valve portion Vc due to deformation, it is substantially the same.
- the valve portion Vc, the protruding portion 36, and the shaft portion 42 are formed bodies that are integrally formed of the above-described flexible elastic material.
- the sheet material 41 is used for stable storage of the solution stored in the flow path 11 and prevention of moisture absorption of the solution during storage and transportation of the fluid device 1 before performing the detection and inspection described above.
- the sheet material 41 is formed of a thin film material such as a film.
- the sheet material 41 is detachably attached to the upper surface 6b of the first base material 6.
- the sheet material 41 may have an adhesive layer on the contact surface side with the upper surface 6 b of the first base material 6. Further, the sheet material 41 may be detachably attached to the upper surface 6b of the first base material 6 via an adhesive.
- the sheet material 41 in the present embodiment has a size that covers the valve holding hole 34 and the openings of the through holes 35a and 35b.
- the first base member 6, the valve portion Vc, the protruding portion 36, and the shaft portion 42 are integrally formed molded bodies.
- the first base material 6, the valve portion Vc, the projecting portion 36, and the shaft portion 42 are formed using the mold in which the first base material 6 is accommodated after the first base material 6 is molded.
- the portion 36 and the shaft portion 42 are molded by two-color molding.
- FIGS. 3 and 4 are schematic configuration diagrams showing a first embodiment of a system having a sticking device 60 for sticking the sheet material 41 to the fluid device 1 described above.
- the system includes a roller device 61 as the sticking device 60.
- the roller device 61 rolls on the upper surface 6 b of the first base material 6 via the sheet material 41.
- the roller device 61 moves from the end portion on one side (right side in FIG. 3) to the other side ( It rolls on the upper surface 6b through the sheet material 41 until the left side in FIG. By being pressed by the roller device 61, the sheet material 41 is bonded to the upper surface 6b.
- the shaft portion 42 is pushed downward. That is, by sticking the sheet material 41, the shaft portion 42 is pushed in a direction substantially perpendicular to the direction in which the fluid flows in the flow path.
- the valve portion Vc is elastically deformed in a direction substantially perpendicular to the direction in which the fluid flows in the flow path, and the flow path 11 is closed by the protrusion 36 coming into contact with the recess 40.
- the sheet material 41 is peeled from the upper surface 6b.
- the sheet material 41 is pierced or broken in the through hole 35.
- the force applied to the shaft portion 42 by the sheet material 41 is removed.
- the valve portion Vc is separated from the recess 40 by the elastic restoring force, as shown in FIG. 1, and the flow path 11 is opened.
- the valve portion Vc functions as an initial close valve (normally close valve). That is, when the sheet material 41 is attached to the upper surface 6b, the valve portion Vc is in a closed state in which the flow of the fluid in the flow path 11 is blocked, so that the flow path is stored and transported before detection and inspection. It can suppress that the solution accommodated in 11 leaks, or the solutions before mixing are mixed.
- the sheet material 41 is peeled from the upper surface 6b, whereby the valve portion Vc is deformed into an open state in which the fluid in the flow path 11 flows, and the blockage of the flow path 11 is released. It is possible to perform detection and inspection using the fluid device 1 smoothly and stably after transportation.
- the roller device 61 rolls on the upper surface 6b via the sheet material 41, whereby the sheet material 41 can be easily attached to the upper surface 6b. In particular, when the sheet material 41 covers all the openings of the through holes 34, 35a, and 35b, the sheet material 41 can be easily attached.
- the sheet material 41 does not cover the entire upper surface 6b but may partially cover the openings on the upper surface 6b side of the through holes 34, 35a, and 35b. Further, the sheet materials 41 covering the openings of the through holes 34, 35a, and 35b may be different from each other. In this case, a small amount of sheet material is sufficient, and the through holes 34, 35a, and 35b can be released stepwise.
- FIGS. 1 to 4 the same components as those of the first embodiment shown in FIGS. 1 to 4 are denoted by the same reference numerals, and the description thereof is omitted. Since the difference between the second embodiment and the first embodiment is the configuration of the sticking device 60, the sticking device 60 will be described below.
- the fluid device 1 is packaged using the bag body 62 during storage and transportation before detection and inspection.
- a region facing the upper surface 6 b of the bag body 62 is the sheet material 41.
- a suction device 63 is provided as the sticking device 60. The suction device 63 sucks the inside of the bag body 62 through the opening of the bag body 62 under negative pressure.
- the suction device 63 sucks the inside of the bag body 62 with a negative pressure, so that the pressure inside the bag body 62 becomes lower than the outside pressure.
- the bag body 62 is pressed and attached to the outer surface of the base material 5 including the upper surface 6 b by atmospheric pressure.
- the shaft portion 42 is pushed downward as described above.
- the valve portion Vc is in a state in which the flow path 11 is closed by the protrusion 36 coming into contact with the recess 40.
- the sealing portion 64 is provided at the mouth portion of the bag body 62 by welding or the like, whereby the blockage of the flow path 11 by the valve portion Vc is maintained. Further, when performing detection / inspection using the fluid device 1, the valve portion Vc has an elastic restoring force as shown in FIG. Thus, the channel 11 is released from the recess 40 and opened.
- the fluid device 1 is packaged by the bag body 62 before detection and inspection. Contamination of the fluid device 1 with dust or the like before detection / inspection can be suppressed.
- FIGS. 1 and 2 the same components as those of the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
- FIG. 7 is a schematic cross-sectional view of a detection apparatus 70 that performs detection using the fluidic device 1 according to the second embodiment.
- FIG. 8 is a plan view schematically showing the fluidic device 1. In addition, in FIG. 8, it illustrates in the state which permeate
- the detection device 70 includes a placement unit 71 for placing the fluid device 1, a peeling unit 72 for peeling the sheet material 41, and a liquid feeding unit 73 for feeding a solution containing the target substance to the flow path 11 of the fluid device 1. And a detection unit 74 that detects a target substance in the solution.
- the fluid device 1 includes a base material 5.
- the base material 5 has three board
- the third base material 8 is formed of the same resin material as the first base material 6 and the second base material 9, and is disposed below the second base material 9.
- the upper surface 8 b of the third base material 8 is joined to the lower surface 9 a of the second base material 9.
- the base material 5 includes an injection hole 32, a reservoir 29, a flow path 11, a waste liquid tank 7, an air hole 35, a supply hole 39, a metering valve Vq, an introduction valve Vi, a discharge valve Vo, and the valves described above.
- a device V is provided.
- the injection hole 32 penetrates the first base material 6 and the second base material 9.
- the injection hole 32 is connected to a reservoir 29 located at the boundary between the second base material 9 and the third base material 8.
- the injection hole 32 connects the reservoir 29 to the outside.
- the solution is filled into the reservoir 29 through the injection hole 32.
- One injection hole 32 is provided for one reservoir 29. In FIG. 8, the injection hole 32 is not shown.
- the reservoir 29 has a flow channel shape at least in the connection portion with the flow channel 11. For example, it is a space formed in a tubular shape or a cylindrical shape provided on the lower surface 9 a of the second base material 9.
- the substrate 5 of the present embodiment is provided with a plurality of reservoirs 29.
- the reservoir 29 stores a solution.
- the plurality of reservoirs 29 contain solutions independently of each other.
- the plurality of reservoirs 29 contain, for example, a plurality of reagents.
- Each of the plurality of reservoirs 29 is provided with the above-described initial close valve.
- the reservoir 29 supplies the stored solution to the flow path 11.
- the reservoir 29 of this embodiment is a flow path type reservoir as an example. One end of the reservoir 29 in the length direction is connected to the injection hole 32. Further, the supply hole 39 is connected to the other end of the reservoir 29 in the length direction.
- the reservoir 29 is provided on the second base material 9 and the opening is covered with the third base material 8 has been described.
- the reservoir 29 may be configured to be provided in the third base material 8 and cover the opening with the second base material 9.
- the flow path 11 is a space formed in a tube shape or a cylindrical shape provided on the upper surface 9 b of the second base material 9.
- the solution is supplied to the flow path 11 from the reservoir 29 through the supply hole 39.
- the solution flows in the flow path 11.
- the supply hole 39 is provided in the second base material 9.
- the supply hole 39 penetrates the second base material 9 in the plate thickness direction.
- the supply hole 39 connects the reservoir 29 and the flow path 11.
- the solution stored in the reservoir 29 is supplied to the flow path 11 through the supply hole 39. That is, the reservoir 29 is connected to the flow path 11 through the supply hole 39.
- the waste liquid tank 7 is provided on the base material 5 in order to discard the solution in the flow path 11.
- the waste liquid tank 7 is connected to the flow path 11.
- the waste liquid tank 7 is disposed in the inner region of the circulation channel 10. Thereby, size reduction of the fluid device 1 can be achieved.
- the waste liquid tank 7 is constituted by a concave stitch provided on the upper surface 9 b side of the second base material 9.
- the air hole 35 is provided in the first base material 6.
- the air hole 35 is located immediately above the waste liquid tank 7.
- the air hole 35 connects the waste liquid tank 7 to the outside. That is, the waste liquid tank 7 is opened to the outside through the air hole 35.
- the introduction valve Vi is disposed at a position facing the flow path 11 between the supply hole 39 and the waste liquid tank 7.
- the introduction valve Vi has a valve portion Vd held in a valve holding hole 34 i that penetrates the first base material 6 in the vertical direction at a position facing the flow path 11.
- the valve portion Vd is formed of an elastic material such as rubber or elastomer resin.
- a projecting portion 36i projecting in a hemispherical shape is provided on the lower surface of the valve portion Vd.
- a recess 40i is provided in the second base material 9 facing the valve portion Vd.
- the valve portion Vd is elastically deformed downward by supplying a driving fluid (for example, air) to the valve holding hole 34i, and adjusts the flow of the solution in the flow path 11.
- the valve portion Vd is supplied with driving fluid into the valve holding hole 34i and elastically deforms downward, and the projecting portion 36i contacts the recess 40i to close the flow path 11.
- the valve portion Vd opens the flow path 11 by separating the protruding portion 36i from the recess 40i by an elastic restoring force.
- the discharge valve Vo is disposed at a position facing the flow path 11 between the introduction valve Vi and the waste liquid tank 7.
- the discharge valve Vo has a valve portion Vf held in a valve holding hole 34o penetrating the first base material 6 in the vertical direction at a position facing the flow path 11.
- the valve portion Vf is formed of an elastic material such as rubber or elastomer resin.
- a projecting portion 36o projecting in a hemispherical shape is provided on the lower surface of the valve portion Vf.
- the second base material 9 facing the valve portion Vf is provided with a recess 40o.
- the valve portion Vf is elastically deformed downward by supplying a driving fluid (for example, air) to the valve holding hole 34o and adjusts the flow of the solution in the flow path 11.
- a driving fluid for example, air
- the valve portion Vf is supplied with driving fluid into the valve holding hole 34o and elastically deforms downward, and the projecting portion 36o contacts the recess 40o to close the flow path 11.
- the valve portion Vf opens the flow path 11 by separating the protruding portion 36i from the recess 40o by an elastic restoring force.
- the metering valve Vq has a valve portion Ve held by a valve holding hole 34q that penetrates the first base material 6 in a vertical direction at a position facing the flow path 11.
- the valve portion Ve is formed of an elastic material such as rubber or elastomer resin.
- a projecting portion 36q projecting in a hemispherical shape is provided on the lower surface of the valve portion Ve.
- the second base material 9 facing the valve portion Ve is provided with a recess 40q.
- the valve portion Ve is elastically deformed downward by supplying a driving fluid (for example, air) to the valve holding hole 34q, and adjusts the flow of the solution in the flow path 11.
- a driving fluid for example, air
- the valve portion Ve is supplied with driving fluid into the valve holding hole 34q and elastically deforms downward, and the projecting portion 36q contacts the recess 40q to close the flow path 11.
- the valve portion Ve opens the flow path 11 by separating the protruding portion 36q from the recess 40q by an elastic restoring force.
- the valve device V described above is disposed at a position facing the flow path 11 between the supply hole 39 and the introduction valve Vi.
- the first base material 6, the introduction valve Vi, the discharge valve Vo, the metering valve Vq, the valve portion Vc, the protruding portion 36, and the shaft portion 42 are formed integrally.
- the first base material 6, the introduction valve Vi, the discharge valve Vo, the metering valve Vq, the valve portion Vc, the protruding portion 36 and the shaft portion 42 are accommodated in the first base material 6 after the first base material 6 is formed, for example.
- the introduction valve Vi, the discharge valve Vo, the metering valve Vq, the valve portion Vc, the protruding portion 36, and the shaft portion 42 are molded by the two-color molding using the molded mold.
- one of the first base 6 manufactured in advance, the introduction valve Vi, the discharge valve Vo, the metering valve Vq, the valve portion Vc, the protruding portion 36 and the shaft portion 42 is mounted on a mold for molding the other. It is also possible to mold by insert molding.
- the introduction valve Vi, the discharge valve Vo, and the metering valve Vq are initial open valves (second valves).
- the initial close valve and the initial open valve described above are arranged in series in the flow path 11.
- the sheet material 41 is attached to the upper surface 6b in a state where the solution is stored in the reservoir 29 before detection and inspection.
- a high-viscosity reagent is accommodated in the flow path 11 between the introduction valve Vi and the discharge valve Vo as an example.
- the injection hole 32 and the air hole 35 are closed by the sheet material 41.
- the flow path 11 and the reservoir 29 are not released to the atmosphere. Therefore, the solution stored in the reservoir 29 is held in the reservoir 29 with the flow suppressed, and the reagent stored in the flow path 11 is held in the flow path 11 with the flow suppressed. Further, in the valve portion Vc, the projecting portion 36 abuts the recess 40, the flow path 11 is closed, and the reservoir 29 and the flow path 11 are separated. Therefore, even when a large acceleration is applied to the fluid device 1, It can suppress mixing with a reagent. Furthermore, in the fluid device 1 described above, since the air flow in the reservoir 29 and the flow path 11 is also suppressed, it is possible to suppress the evaporation of the solution and the reagent.
- the channel 11 is not open to the atmosphere, the flow of the solution, reagent, and air in the reservoir 29 and the channel 11 is suppressed.
- the flow path 11 includes a circulation flow path 10, a plurality (three in the example of FIG. 8) introduction flow paths 12, and a plurality (three in the example of FIG. 8) discharge flow paths 13. And including.
- a solution is introduced into the channel 11 from a reservoir 29 (see FIG. 7).
- the circulation channel 10 is configured in a loop shape when viewed from the stacking direction.
- a pump P is disposed in the path of the circulation channel 10.
- the pump P is composed of three element pumps Pe arranged side by side in the flow path.
- the element pump Pe is a so-called valve pump.
- the pump P can convey the liquid in the circulation channel by sequentially opening and closing the three element pumps Pe.
- the number of element pumps Pe constituting the pump P may be four or more.
- a plurality of (three in the example of FIG. 8) metering valves Vq are provided in the path of the circulation channel 10.
- the plurality of metering valves Vq partitions the circulation channel 10 into a plurality of metering sections 18.
- the plurality of metering valves Vq are arranged so that each metering section 18 has a predetermined volume.
- a meandering portion 18 a is provided in one of the three quantitative sections 18.
- the meandering portion 18a is a channel formed by meandering left and right.
- the meandering portion 18a is provided in order to make one quantitative section 18 have a desired capacity.
- Quantitative sections 18 each extend in a flow path shape.
- the plurality of fixed-quantity sections 18 each have a flow path-shaped transfer flow path 80, an inflow portion 81 located at one end of the transfer flow path 80, and a merge portion provided at the other end of the transfer flow path 80. 85. Therefore, in each quantitative section 18, the transfer flow path 80 is located between the inflow portion 81 and the merging portion 85.
- the inflow portion 81 of one quantitative section 18 is connected to the merging section 85 of another quantitative section 18 via a quantitative valve Vq.
- the introduction flow path 12 is connected to the inflow portion 81 via the introduction valve Vi.
- the merging section 85 of one quantitative section 18 is connected to an inflow section 81 of another quantitative section 18 via a quantitative valve Vq.
- the discharge flow path 13 is connected to the junction 85 via a discharge valve Vo.
- the introduction flow path 12 is a flow path for introducing the solution into the quantitative section 18 of the circulation flow path 10.
- the introduction channel 12 is provided for each quantitative section 18 of the circulation channel 10.
- the introduction channel 12 is connected to the supply hole 39 on one end side.
- the introduction flow path 12 is connected to the inflow portion 81 of the circulation flow path 10 on the other end side.
- the discharge channel 13 is a channel for discharging the solution in the quantitative section 18 of the circulation channel 10 to the waste liquid tank 7.
- the discharge channel 13 is provided for each quantitative section 18 of the circulation channel 10.
- the discharge channel 13 is connected to the waste liquid tank 7 at one end side. Further, the discharge flow channel 13 is connected to the merging portion 85 of the circulation flow channel 10 on the other end side.
- the fluid device 1 In placing the fluid device 1 on the placement part 71, the fluid device 1 is positioned so that the lower surface 8 a of the third base material 8 in the fluid device 1 is in contact with the upper surface of the placement part 71.
- the peeling portion 72 moves relative to the upper surface 6 b of the first base material 6 with one end of the sheet material 41 sucked, for example, under a negative pressure.
- the material 41 is peeled from the upper surface 6b.
- the placement step for example, when the lower surface 8a of the third base material 8 in the fluid device 1 is bonded to the upper surface of the placement portion 71 or the fluid device 1 is fixed to the placement portion 71. Is easy to peel.
- the solution S stored in the reservoir 29 is sent to the flow path 11 by the liquid feeding unit 73 after the sheet material 41 is peeled from the fluid device 1.
- the opening and closing of the valves Vq, Vi, and Vo which will be described later, is performed by switching the supply and stop of the supply of the driving fluid to the valve holding holes 34q, 34i, and 34o. Omitted.
- the reservoir 29 is preliminarily held and / or filled with the solution S.
- the sheet material 41 is peeled from the upper surface 6 b of the first base 6, whereby the protrusion 36 in the valve device V is separated from the recess 40 and the flow path 11 is formed. Opened.
- the solution and the reagent are in a state in which evaporation and mixing are suppressed.
- the solution S in the reservoir 29 is moved to the flow path 11. More specifically, the solution S is sequentially introduced from the reservoir 29 into each quantitative section 18 of the circulation channel 10.
- the procedure for introducing the solution S into one quantitative section 18 will be described, but the solution S is also introduced by performing the same procedure for the other quantitative sections 18.
- valves Vq, Vi, Vo when introducing the solution S into the quantitative section 18 will be described with reference to FIG.
- the pair of metering valves Vq located on both sides in the length direction of the metering section 18 for introducing the solution S are closed.
- the discharge valve Vo of the discharge flow path 13 connected to the corresponding quantitative section 18 is opened, and the discharge valves Vo of the other discharge flow paths 13 are closed.
- the introduction valve Vi of the introduction flow path 12 connected to the corresponding quantitative section 18 is opened.
- the detection unit 74 shown in FIG. 7 detects the solution mixed in the flow path 11.
- the target substance is, for example, a sample substance included in a specimen sample.
- the sample substance is, for example, a biomolecule such as a nucleic acid, DNA, RNA, peptide, protein, extracellular vesicle or particle.
- substances mixed with the target substance in the solution include a labeling substance (detection auxiliary substance) that binds to the sample substance and assists the detection of the sample substance, and a substance that captures and collects the sample substance in the solution. .
- the detection unit 74 for example, a configuration in which the target substance is imaged and detected via the first base material 6 by an imaging element, or a configuration in which the target substance is detected by measuring the magnetic force via the first base material 6 Can be taken.
- Insert molding may be performed in which molding is performed in a state in which the metered valve Vq, the introduction valve Vi, the discharge valve Vo, the valve portion Vc, the protruding portion 36, and the shaft portion 42 are stored.
- the shaft portion 42 provided in the valve portion Vc is exemplified as the applying portion that applies the force for closing the flow path 11 to the valve portion.
- the present invention is not limited to this configuration.
- the granular member 42A loaded in the valve holding hole 34 between the seat material 41 and the valve portion Vc may be used.
- the granular member 42A may have a cylindrical shape, a cubic shape or a rectangular parallelepiped shape in addition to the spherical shape shown in FIG.
- the granular member 42A is preferably spherical from the viewpoint of maintaining the distance between the seat member 41 and the valve portion Vc at a predetermined value without being affected by the posture after being charged.
- the granular member 42A attached to the sheet material 41 can be easily and collectively removed when the sheet material 41 having the adhesive layer on the lower surface is peeled off from the upper surface 6b. It can be removed.
- the application portion is provided to protrude downward from the lower surface of the sheet material 41 as shown in FIG.
- the structure used as the axial part 42B may be sufficient. Even in this configuration, since the application portion does not protrude from the upper surface 6b after the sheet material 41 is peeled off, for example, a recess for preventing interference with the application portion needs to be formed in the member for injecting the solution into the through hole 35a. Disappear.
- valve portion Vc is a cylindrical shape attached to the inner peripheral surface of the valve holding hole 34
- the present invention is not limited to this configuration.
- a fitting convex portion 34 a that protrudes annularly radially inward is provided in the middle in the vertical direction on the inner peripheral surface of the valve holding hole 34, and the fitting convex portion 34 a is provided on the valve portion Vc.
- the structure which provides the fitting recessed part 43 to fit may be sufficient. Since the valve portion Vc having this configuration is engaged with the fitting convex portion 34a from both sides in the vertical direction, the valve portion Vc is prevented from being detached from the first base material 6 when the sheet material 41 is attached. it can.
- FIG. 12 is a plan view of the second base material 9 in which the flow path 11 is formed.
- a recess 40 is formed in the upper surface 9b of the second base material 9 at a position facing the protruding portion 36 of the valve portion Vc, as shown in FIG.
- the recess 40 is disposed in the middle of the flow path 11.
- 13 is a cross-sectional view taken along line AA in FIG. FIG.
- the bottom surface of the channel 11 is inclined upward from the position of the ridge line of the recess 40 in the upper surface 9b.
- valve portion Vc is elastically deformed downward, and the projecting portion 36 abuts on the recess 40 to close the flow path 11.
- the flow path 11 can be more reliably closed.
- the depth of the flow path 11 is 0.05 mm or more and 3 mm or less (for example, 0.3 mm).
- Examples of the diameter D of the recess around the shaft portion 42 include 1 mm or more and 5 mm or less (for example, 2.2 mm).
- Examples of the diameter of the shaft portion 42 include 0.5 mm or more and 4 mm or less (for example, 1.0 mm).
- Examples of the protruding amount of the shaft portion 42 from the upper surface 6b include 0.05 mm or more and 3 mm or less (for example, 0.4 mm).
- the gap amount t between the lower end of the protrusion 36 and the lower end of the recess 40 when the valve portion Vc opens the flow path 11 is 0.05 mm or more and 1.0 mm or less (for example, 0.1 mm).
- Examples of the diameter of the circle formed by the ridge line of the recess 40 in the upper surface 9b include 0.5 mm or more and 5.0 mm or less (for example, 2.0 mm).
- Examples of the radius RA of the spherical surface of the recess 40 include 1.0 mm or more and 5.0 mm or less (for example, 1.45 mm).
- Examples of the radius RB of the spherical surface of the protrusion 36 include 1.0 mm or more and 5.0 mm or less (for example, 1.82 mm).
- bulb Vc has the protrusion part 36
- valve part Vc illustrated the structure which opens and closes the flow path 11 by sticking and peeling of the sheet
- the flow of the flow path 11 is controlled by supplying and stopping the supply of the driving fluid to the valve holding hole 34 (solution flow adjustment ) May be switched.
- the upper end of the provision part was illustrated in the same position as the upper surface 6b, However, It is not limited to this structure, Affixed The upper end of the applying portion may protrude from the upper surface 6b as long as the sheet material 41 does not peel off.
- seat material 41 has an adhesive layer was illustrated, it is not limited to this structure, For example, a sheet
- the structure which affixes material on the upper surface 6b may be sufficient.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本発明は、保管、運搬後に安定して検出・検査を行うことができる流体デバイスを提供することを目的とする。接合面で接合された第1基材及び第2基材を備え、第1基材又は第2基材の少なくとも一方は、両基材を接合することにより流路を形成する溝を接合面に有する。第1基材は、流路と対向する位置に設けられる貫通孔と、貫通孔の流路側の開口部を塞ぎ、変形により流路中の流体の流れを調整する弾性部材と、第1基材の接合面とは逆側の第1面に、貫通孔の開口部を覆って剥離可能に貼り付けられたシート材と、シート材と弾性部材との間に配置され、弾性部材を流路方向に変形させる駆動部と、を有するバルブを備える。
Description
本発明は、流体デバイス、バルブ装置及び検出装置に関するものである。
近年、体外診断分野における試験の高速化、高効率化、および集積化、又は、検査機器の超小型化を目指したμ-TAS(Micro-Total Analysis Systems)の開発などが注目を浴びており、世界的に活発な研究が進められている。
μ-TASは、少量の試料で測定、分析が可能なこと、持ち運びが可能となること、低コストで使い捨て可能なこと等、従来の検査機器に比べて優れている。
更に、高価な試薬を使用する場合や少量多検体を検査する場合において、有用性が高い方法として注目されている。
更に、高価な試薬を使用する場合や少量多検体を検査する場合において、有用性が高い方法として注目されている。
μ-TASの構成要素として、流路と、該流路上に配置されるポンプとを備えたデバイスが報告されている(非特許文献1)。このようなデバイスでは、該流路へ複数の溶液を注入し、ポンプを作動させることで、複数の溶液を流路内で混合する。
Jong Wook Hong, Vincent Studer, Giao Hang, W French Anderson and Stephen R Quake,Nature Biotechnology 22, 435 - 439 (2004)
本発明の第1の態様に従えば、接合面で接合された第1基材及び第2基材を備え、前記第1基材又は前記第2基材の少なくとも一方は、両基材を接合することにより流路を形成する溝を接合面に有し、前記第1基材は、前記流路と対向する位置に設けられる貫通孔と、前記貫通孔の前記流路側の開口部を塞ぎ、変形により前記流路中の流体の流れを調整する弾性部材と、前記第1基材の前記接合面とは逆側の第1面に、前記貫通孔の開口部を覆って剥離可能に貼り付けられたシート材と、前記シート材と前記弾性部材との間に配置され、前記弾性部材を前記流路方向に変形させる駆動部と、を有するバルブを備える、流体デバイスが提供される。
本発明の第2の態様に従えば、接合面で接合された第1基材及び第2基材の少なくとも一方に前記接合面に開口して形成された流路と対向する位置で前記第1基材を貫通する貫通孔と、前記貫通孔の前記流路側に当該流路と対向して設けられ、弾性変形により前記流路中の流体の流れを調整するバルブ部と、前記第1基材の前記接合面と逆側の第1面に剥離可能に貼り付けられ前記貫通孔を閉塞可能なシート材と、前記貫通孔の前記シート材と前記バルブ部との間に配置され、前記シート材が前記第1面に貼り付けられたときに、前記バルブ部に前記流路を閉じる力を付与する付与部と、を備えるバルブ装置が提供される。
本発明の第3の態様に従えば、本発明の第1の態様の流体デバイスを載置する載置部と、前記シート材を剥離する剥離部と、前記流体デバイスの流路に対象物質を含む溶液を送液する送液部と、前記溶液中の対象物質を検出する検出部が提供される。
以下、本発明の流体デバイス、バルブ装置及び検出装置の実施の形態を、図1ないし図13を参照して説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限られない。
[流体デバイス及びバルブ装置の基本原理]
図1は、バルブ装置Vを含む流体デバイス1を模式的に示した断面図である。
本実施形態の流体デバイス1は、検体試料に含まれる検出対象である試料物質を免疫反応および酵素反応などにより検出・検査するデバイスを含む。試料物質は、例えば、核酸、DNA、RNA、ペプチド、タンパク質、細胞外小胞体などの生体分子である。
図1は、バルブ装置Vを含む流体デバイス1を模式的に示した断面図である。
本実施形態の流体デバイス1は、検体試料に含まれる検出対象である試料物質を免疫反応および酵素反応などにより検出・検査するデバイスを含む。試料物質は、例えば、核酸、DNA、RNA、ペプチド、タンパク質、細胞外小胞体などの生体分子である。
図1に示すように、流体デバイス1は、基材5とバルブ装置Vとを備える。
基材5は、第1基材6および第2基材9を有する。本実施形態の第1基材6および第2基材9は、樹脂材料から構成される。第1基材6および第2基材9を構成する樹脂材料としては、ポリプロピレン、ポリカーボネイト等が例示される。また、本実施形態において、第1基材6は、透明な材料から構成される。なお、第1基材6および第2基材9を構成する材料は、限定されない。
基材5は、第1基材6および第2基材9を有する。本実施形態の第1基材6および第2基材9は、樹脂材料から構成される。第1基材6および第2基材9を構成する樹脂材料としては、ポリプロピレン、ポリカーボネイト等が例示される。また、本実施形態において、第1基材6は、透明な材料から構成される。なお、第1基材6および第2基材9を構成する材料は、限定されない。
以下の説明においては、第1基材6および第2基材9は水平面に沿って配置され、第1基材6は第2基材9の上側に配置されるものとして説明する。ただし、これは、説明の便宜のために水平方向および上下方向を定義したに過ぎず、本実施形態に係る流体デバイス1の使用時の向きを限定しない。
第1基材6および第2基材9は、水平方向に沿って延びる板材である。第1基材6および第2基材9は、上下方向に沿ってこの順で積層されている。第2基材9は、第1基材6の下側に積層される。第1基材6および第2基材9は、第1基材6の下面6aと第2基材9の上面9bを接合面として接合されている。基材5は、第1基材6および第2基材9を接着材による接着、熱溶着、超音波溶着、レーザー溶着等の接合手段により接合して一体化することにより製造される。
なお、以下の説明において、第1基材6および第2基材9を積層させる方向を単に積層方向と呼ぶ。本実施形態において、積層方向は、上下方向である。
なお、以下の説明において、第1基材6および第2基材9を積層させる方向を単に積層方向と呼ぶ。本実施形態において、積層方向は、上下方向である。
図1に示すように、第1基材6は、流路11と、貫通孔35a、35bとを有している。流路11は、第1基材6の下面6aに設けられた溝部と第2基材9とによって囲まれたチューブ状、あるいは筒状に形成された空間である。流路11は、上述した検出・検査を行うための溶液を収容する。貫通孔35a、35bは、流路11の両端部と対向する位置に配置され、第1基材6を上下方向に貫通する。貫通孔35a、35bは、一例として、流路11に収容する溶液の注入孔、空気孔である。貫通孔35a、35bの孔径としては、一例として、直径0.1~3mmが好ましい。
流路11の幅は一例として、0.01~100mm、0.05~50mm、0.1~10mm、0.1~5mm、0.5~3μmが挙げられる。また、さらに一例として、流路11の幅は、0.01~1000μm、0.05~1000μm、0.2~500μm、1~250μm、10~200μmが挙げられる。第1基材6を射出成形で製作する場合の成形性を考慮すると、流路11の幅は0.05~5mmが好ましい。
流路11の深さは、一例として、0.01~100mm、0.05~50mm、0.1~10mm、0.1~5mm、0.5~3μmが挙げられる。また、さらに一例として、流路11の深さは、0.01~1000μm、0.05~1000μm、0.2~500μm、1~250μm、10~200μmが挙げられる。第1基材6を射出成形で製作する場合の成形性を考慮すると、流路11の深さは0.05~3mmが好ましい。
バルブ装置Vは、流路11と対向する位置で第1基材6を上下方向に貫通するバルブ保持孔(貫通孔)34に保持されたバルブ部Vcと、第2基材9に設けられた窪み40と、図2に示されるように、第1基材62の上面(第1面)6bに剥離可能に貼り付けられるシート材41と、バルブ部Vcに設けられた軸部(付与部、駆動部)42とを有している。バルブ部Vcは、バルブ保持孔34に設けられた環状の円環部44の下端部に設けられている。軸部42はバルブ部Vcを変形させて駆動させる駆動部である。また、バルブ部Vcである弾性部材を変形させる力を付与する付与部であり、弾性部材を押圧する押圧部であると換言できる。
バルブ部Vcは、弾性部材である。バルブ部Vcは、柔軟な樹脂の膜からなる弁である。貫通孔34の流路11側の開口部はバルブ部Vcである弾性部材で塞がれている。バルブ部Vcは弾性材料から構成され、変形により流路11中の流体の流れを調整する。バルブ部Vcに採用可能な弾性材料としては、ゴム、エラストマー樹脂などが例示される。バルブ部Vcの下面には、半球状に突出する突出部36が設けられている。第1基材6と第2基材9とが接合した際に、貫通孔の流路11側の開口部は流路11に接続する。バルブ部Vcの貫通孔の流路11側の開口部の面は、流路11の壁面の一部を構成する。
窪み40は、第2基材9の上面9bにおけるバルブ部Vcの直下に配置されている。窪み40は、半球状に形成されている。バルブ部Vcは、変形により流路11を仕切って開閉する。例えば、バルブ部Vcは、流路11の流路方向に対し垂直に動作して、流路11の開閉を行う。図2に示すように、バルブ部Vcは、下側に向かって弾性変形して突出部36が窪み40に当接することで流路11を閉塞する。また、バルブ部Vcは、弾性復元力により突出部36が窪み40から離間することで、図1に示したように、流路11を開放する。
軸部42は、流路11に対して略垂直な支柱形状である。軸部42は、上端が第1基材6の上面6bよりも突出する長さに形成されている。また、軸部42の長さは、バルブ部Vが弾性変形して突出部36が窪み40に当接したときに、上端面が第1基材62の上面6bと略面一、あるいは上面6bよりも上方に突出する長さである。すなわち、軸部42のバルブ保持孔34の貫通方向の長さは、シート材41が上面6bに貼り付けられる前に上面6bから突出し、シート材41が上面6bに貼り付けられた後にバルブ部Vcを変形させて流路11を閉じる長さである。
つまり、バルブ部Vcの下面が流路11の底面に接触したときのバルブ部Vcの上面からシート材41の下面までの高さと、付与部(駆動部)である軸部42の高さとは、弾性変形によるバルブ部Vcの変形量分を除き実質同一である。換言すると、流路11の底面から流路11の天井面までの高さと第1基材6の厚さとの和から、バルブ部Vcの厚みを引いた差分と、軸部42の高さは弾性変形によるバルブ部Vcの変形量分を除き実質同一である。バルブ部Vc、突出部36及び軸部42は、上述した可撓性を有する弾性材料で一体的に成形された成形体である。
シート材41は、上述した検出・検査を行う前に流体デバイス1の保管、運搬時に、流路11に収容された溶液の安定保管及び溶液の吸湿防止等に用いられる。シート材41は、フィルム等の薄膜材で形成されている。シート材41は、第1基材6の上面6bに剥離可能に貼り付けられる。シート材41は、第1基材6の上面6bとの接触面側に接着層を有していてもよい。また、シート材41は接着材を介して、第1基材6の上面6bに剥離可能に貼り付けられてもよい。本実施形態におけるシート材41は、バルブ保持孔34及び貫通孔35a、35bの開口部を覆う大きさを有している。
上記の流体デバイス1のうち、第1基材6、バルブ部Vc、突出部36及び軸部42は、一体的に成形された成形体である。第1基材6、バルブ部Vc、突出部36及び軸部42は、例えば、第1基材6を成形した後に、第1基材6が収容された金型を用いてバルブ部Vc、突出部36及び軸部42を成形する2色成形で成形される。また、予め製作した第1基材6と、バルブ部Vc、突出部36及び軸部42との一方を、他方を成形するための金型に装着して成形するインサート成形で成形することも可能である。
[システムの第1実施形態]
図3及び図4は、上記の流体デバイス1にシート材41を貼り付ける貼付装置60を有するシステムの第1実施形態を示す概略構成図である。
図3及び図4に示すように、システムは、貼付装置60として、ローラー装置61を有している。ローラー装置61は、シート材41を介して第1基材6の上面6b上を転動する。
図3及び図4は、上記の流体デバイス1にシート材41を貼り付ける貼付装置60を有するシステムの第1実施形態を示す概略構成図である。
図3及び図4に示すように、システムは、貼付装置60として、ローラー装置61を有している。ローラー装置61は、シート材41を介して第1基材6の上面6b上を転動する。
上記構成のシステムでは、第1基材6の上面6b側にシート材41を配置した後に、図3に示すように、ローラー装置61が一方側(図3では右側)の端部から他方側(図4では左側)までシート材41を介して上面6b上を転動する。ローラー装置61により押し付けられることにより、シート材41は上面6bに貼り付けられる。シート材41が上面6bに貼り付けられることにより、軸部42は下方に押し下げられる。すなわち、シート材41が貼り付けられることにより、軸部42は流路において流体が流れる方向とは略垂直方向に押し込まれる。これにより、バルブ部Vcは、流路において流体が流れる方向とは略垂直方向に弾性変形し、突出部36が窪み40に当接することで流路11が閉塞された状態となる。
一方、流体デバイス1を用いて検出・検査を行う際には、シート材41を上面6bから剥離する。また、貫通孔35において、前記シート材41に穴をあけたり破ったりする。これにより、シート材41により軸部42に与えられていた力が除かれる。そして、バルブ部Vcは、弾性復元力により、図1に示したように、窪み40から離間し、流路11が開放される。
上記のシステムでは、上面6bに貼り付けられたシート材41が貫通孔35a、35bを閉塞しているため、流路11は大気開放されない。そのため、流路11に収容された溶液は、当該流路11に保持される。また、シート材41が上面6bに貼り付けられた際には、バルブ部Vcが流路11を閉塞して分断する。そのため、シート材41が貫通孔35a、35bの開口部を覆わない大きさで貼り付けられた場合、分断された流路11のそれぞれは貫通孔35a、35b側が大気開放された状態となる。
この状態で分断された流路11に収容された溶液が大気開放された側に流動する力が働いた場合、分断された各流路11におけるバルブ部Vc側が負圧となるため、溶液は貫通孔35a、35bから漏れ出さず各流路11に保持される。
また、分断された各流路11に同じ溶液ではなく、例えば、後工程で混合される種類の異なる溶液が収容されていた場合でも、バルブ部Vcによって分断された各流路11の独立性を保持できるため、流体デバイス1を用いた検出・検査前に各流路11に収容された溶液同士が混合されることを効果的に抑制できる。
以上のように、本実施形態では、流体デバイス1を用いた検出・検査前にシート材41を上面6bに貼り付けたときに、流路11を閉じる力をバルブ部Vcに付与する軸部42が設けられているため、バルブ部Vcが初期クローズバルブ(ノーマリークローズバルブ)として作用する。すなわち、シート材41が上面6bに貼り付けられたとき、バルブ部Vcは流路11中の流体の流れをせき止めた状態とする閉状態であるため、検出・検査前の保管、運搬時に流路11に収容された溶液が漏れ出したり、混合前の溶液同士が混合されたりすることを抑制できる。また、本実施形態では、シート材41を上面6bから剥離することにより、バルブ部Vcは流路11中の流体が流れる開状態へと変形し、流路11の閉塞が解除されるため、保管、運搬後に円滑、且つ安定的に流体デバイス1を用いた検出・検査を行うことが可能である。また、本実施形態では、ローラー装置61がシート材41を介して上面6b上を転動することにより、シート材41を容易に上面6bに貼り付けることが可能である。特に、シート材41が貫通孔34、35a、35bの開口部のすべてを覆うものであった場合、簡便にシート材41の貼り付けができる。
なお、シート材41は、上面6b全体を覆うものではなく、貫通孔34、35a、35bの上面6b側の開口部を部分的に覆うものであってもよい。また、貫通孔34、35a、35bの開口部を覆うシート材41はそれぞれ別個のものであってもよい。この場合、少量のシート材で済み、また、段階的に貫通孔34、35a、35bを解放することができる。
なお、シート材41は、上面6b全体を覆うものではなく、貫通孔34、35a、35bの上面6b側の開口部を部分的に覆うものであってもよい。また、貫通孔34、35a、35bの開口部を覆うシート材41はそれぞれ別個のものであってもよい。この場合、少量のシート材で済み、また、段階的に貫通孔34、35a、35bを解放することができる。
[システムの第2実施形態]
次に、システムの第2実施形態について、図5及び図6を参照して説明する。
これらの図において、図1乃至図4に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
第2実施の形態と上記の第1実施形態とが異なる点は、貼付装置60の構成であるため、以下では貼付装置60について説明する。
次に、システムの第2実施形態について、図5及び図6を参照して説明する。
これらの図において、図1乃至図4に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
第2実施の形態と上記の第1実施形態とが異なる点は、貼付装置60の構成であるため、以下では貼付装置60について説明する。
図5に示すように、本実施形態では、検出・検査前の保管、運搬時に袋体62を用いて流体デバイス1を包装する。本実施形態では、袋体62のうち、上面6bと対向する領域がシート材41である。本実施形態におけるシステムでは、図6に示すように、貼付装置60として、吸引装置63が設けられている。吸引装置63は、袋体62の開口部を介して袋体62の内部を負圧吸引する。
上記構成のシステムにおいては、吸引装置63が袋体62の内部を負圧吸引することにより、袋体62の内部の気圧が外部の気圧よりも低くなる。その結果、袋体62は、図6に示すように、上面6bを含む基材5の外表面に気圧により押し付けられて貼り付けられる。袋体62が上面6bに貼り付けられることにより、上述したように、軸部42は下方に押し下げられる。これにより、バルブ部Vcは、突出部36が窪み40に当接することで流路11が閉塞された状態となる。
この後、溶着等によって袋体62の口部に封止部64を設けることにより、バルブ部Vcによる流路11の閉塞が保持される。また、流体デバイス1を用いて検出・検査を行う際には、封止部64による袋体62の封止を解除することにより、図5に示したように、バルブ部Vcは、弾性復元力により窪み40から離間し、流路11が開放される。
このように、本実施形態のシステムでは、上記第1実施形態のシステムと同様の作用・効果が得られることに加えて、検出・検査前に流体デバイス1が袋体62で包装されるため、検出・検査前に流体デバイス1が塵埃等で汚染されることを抑制できる。
[流体デバイスの第2実施形態及び検出装置]
次に、流体デバイスの第2実施形態及び検出装置について、図7及び図8を参照して説明する。
これらの図において、図1及び図2に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
次に、流体デバイスの第2実施形態及び検出装置について、図7及び図8を参照して説明する。
これらの図において、図1及び図2に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
図7は、第2実施形態に係る流体デバイス1を用いて検出を行う検出装置70の断面模式図である。図8は、流体デバイス1を模式的に示した平面図である。なお、図8においては、透明な第1基材6について、下側に配置された各部を透過させた状態で図示する。
検出装置70は、流体デバイス1を載置する載置部71と、シート材41を剥離する剥離部72と、流体デバイス1の流路11に対象物質を含む溶液を送液する送液部73と、溶液中の対象物質を検出する検出部74とを備える。
図8に示すように、流体デバイス1は、基材5を備える。また、図7に示すように、基材5は、厚さ方向に積層された3つの基板(第1基材6、第2基材9および第3基材8)を有する。第3基材8は、第1基材6及び第2基材9と同様の樹脂材で形成され、第2基材9の下側に配置されている。第3基材8の上面8bは、第2基材9の下面9aと接合されている。
基材5には、注入孔32と、リザーバー29と、流路11と、廃液槽7と、空気孔35と、供給孔39と、定量バルブVq、導入バルブVi、排出バルブVoと上述したバルブ装置Vとが設けられている。
注入孔32は、第1基材6および第2基材9を貫通する。注入孔32は、第2基材9と第3基材8との境界部に位置するリザーバー29に繋がる。注入孔32は、リザーバー29を外部に繋げる。溶液は、注入孔32を介してリザーバー29に充填される。注入孔32は、1つのリザーバー29に対して1つ設けられる。なお、図8において、注入孔32の図示は、省略されている。
リザーバー29は、少なくとも前記流路11との接続部においては、流路形状である。例えば、第2基材9の下面9aに設けられたチューブ状、あるいは筒状に形成された空間である。本実施形態の基材5には、複数のリザーバー29が設けられる。リザーバー29には、溶液が収容される。複数のリザーバー29は、互いに独立して溶液を収容する。複数のリザーバー29は、例えば、複数の試薬を収容する。複数のリザーバー29のそれぞれには、上述した初期クローズバルブが配置されている。リザーバー29は、収容した溶液を流路11に供給する。本実施形態のリザーバー29は、一例として、流路型のリザーバーである。リザーバー29の長さ方向の一端は、注入孔32に接続されている。また、リザーバー29の長さ方向の他端は、供給孔39が接続されている。
なお、本実施形態では、リザーバー29が第2基材9に設けられ第3基材8によって開口部が覆われる構成について説明した。しかしながら、リザーバー29は、第3基材8に設けられ開口部を第2基材9により覆う構成であってもよい。
流路11は、第2基材9の上面9bに設けられたチューブ状、あるいは筒状に形成された空間である。流路11には、リザーバー29から供給孔39を介して溶液が供給される。溶液は、流路11内を流れる。
供給孔39は、第2基材9に設けられている。供給孔39は、第2基材9を板厚方向に貫通する。供給孔39は、リザーバー29と流路11とを繋ぐ。リザーバー29に貯留された溶液は、供給孔39を介して流路11に供給される。すなわち、リザーバー29は、供給孔39を介して流路11と接続されている。
廃液槽7は、流路11中の溶液を廃棄する為に基材5に設けられる。廃液槽7は、流路11に接続される。図8に示すように、廃液槽7は、循環流路10の内側領域に配置されている。これにより、流体デバイス1の小型化を図ることができる。また、図7に示すように、廃液槽7は、第2基材9の上面9b側に設けられた凹部ぬいより構成される。
空気孔35は、第1基材6に設けられる。空気孔35は、廃液槽7の直上に位置する。空気孔35は、廃液槽7を外部に繋げる。すなわち、廃液槽7は、空気孔35を介して外部に開放される。
図7に示すように、導入バルブViは、供給孔39と廃液槽7との間における流路11と対向する位置に配置されている。導入バルブViは、流路11と対向する位置で第1基材6を上下方向に貫通するバルブ保持孔34iに保持されたバルブ部Vdを有している。バルブ部Vdは、ゴム、エラストマー樹脂などの弾性材料で形成されている。バルブ部Vdの下面には、半球状に突出する突出部36iが設けられている。バルブ部Vdと対向する第2基材9には、窪み40iが設けられている。バルブ部Vdは、バルブ保持孔34iに駆動流体(例えば、空気)が供給されることにより、下側に弾性変形して流路11中の溶液の流れを調整する。バルブ部Vdは、バルブ保持孔34iに駆動流体が供給されて下側に弾性変形し、突出部36iが窪み40iに当接することにより流路11を閉じる。バルブ部Vdは、バルブ保持孔34iへの駆動流体の供給が停止されたときに、弾性復元力で突出部36iが窪み40iから離間することにより流路11を開放する。
排出バルブVoは、導入バルブViと廃液槽7との間における流路11と対向する位置に配置されている。排出バルブVoは、流路11と対向する位置で第1基材6を上下方向に貫通するバルブ保持孔34oに保持されたバルブ部Vfを有している。バルブ部Vfは、ゴム、エラストマー樹脂などの弾性材料で形成されている。バルブ部Vfの下面には、半球状に突出する突出部36oが設けられている。バルブ部Vfと対向する第2基材9には、窪み40oが設けられている。バルブ部Vfは、バルブ保持孔34oに駆動流体(例えば、空気)が供給されることにより、下側に弾性変形して流路11中の溶液の流れを調整する。バルブ部Vfは、バルブ保持孔34oに駆動流体が供給されて下側に弾性変形し、突出部36oが窪み40oに当接することにより流路11を閉じる。バルブ部Vfは、バルブ保持孔34iへの駆動流体の供給が停止されたときに、弾性復元力で突出部36iが窪み40oから離間することにより流路11を開放する。
定量バルブVqは、流路11と対向する位置で第1基材6を上下方向に貫通するバルブ保持孔34qに保持されたバルブ部Veを有している。バルブ部Veは、ゴム、エラストマー樹脂などの弾性材料で形成されている。バルブ部Veの下面には、半球状に突出する突出部36qが設けられている。バルブ部Veと対向する第2基材9には、窪み40qが設けられている。バルブ部Veは、バルブ保持孔34qに駆動流体(例えば、空気)が供給されることにより、下側に弾性変形して流路11中の溶液の流れを調整する。バルブ部Veは、バルブ保持孔34qに駆動流体が供給されて下側に弾性変形し、突出部36qが窪み40qに当接することにより流路11を閉じる。バルブ部Veは、バルブ保持孔34qへの駆動流体の供給が停止されたときに、弾性復元力で突出部36qが窪み40qから離間することにより流路11を開放する。
上述したバルブ装置Vは、供給孔39と導入バルブViとの間における流路11と対向する位置に配置されている。
上記の流体デバイス1のうち、第1基材6、導入バルブVi、排出バルブVo、定量バルブVq、バルブ部Vc、突出部36及び軸部42は、一体的に成形された成形体である。第1基材6、導入バルブVi、排出バルブVo、定量バルブVq、バルブ部Vc、突出部36及び軸部42は、例えば、第1基材6を成形した後に、第1基材6が収容された金型を用いて導入バルブVi、排出バルブVo、定量バルブVq、バルブ部Vc、突出部36及び軸部42を成形する2色成形で成形される。また、予め製作した第1基材6と、導入バルブVi、排出バルブVo、定量バルブVq、バルブ部Vc、突出部36及び軸部42との一方を、他方を成形するための金型に装着して成形するインサート成形で成形することも可能である。
上記の導入バルブVi、排出バルブVo、定量バルブVqは、初期オープンバルブ(第2バルブ)である。上述した初期クローズバルブと初期オープンバルブとは、流路11において直列に並んでいる。
上記の流体デバイス1においては、検出・検査前に、リザーバー29に溶液が収容された状態で上面6bにシート材41が貼り付けられる。また、図7においては、導入バルブViと排出バルブVoとの間の流路11には、一例として、高粘度の試薬が収容されている。上面6bにシート材41が貼り付けられることにより、バルブ装置Vにおいて突出部36が窪み40に当接し流路11が閉じられる。
上記シート材41が貼り付けられて流路11が突出部36と窪み40との当接により閉じられた流体デバイス1では、シート材41により注入孔32及び空気孔35が閉塞されているため、流路11及びリザーバー29は大気開放されない状態となる。そのため、リザーバー29に収容された溶液は、流動を抑制されて当該リザーバー29に保持され、流路11に収容された試薬は、流動を抑制されて当該流路11に保持される。また、バルブ部Vcにおいて突出部36が窪み40に当接し流路11が閉じられ、リザーバー29と流路11とが分断されているため、流体デバイス1に大きな加速度が働いた場合でも、溶液と試薬とが混合されてしまうことを抑制できる。さらに、上記の流体デバイス1では、リザーバー29及び流路11における空気の流動も抑制されるため、溶液及び試薬の蒸発も抑えることが可能となる。
また、上記流体デバイス1において、シート材41が注入孔32及び空気孔35の開口部を覆わない場合でも、突出部36と窪み40との当接により流路11が閉じられた側のリザーバー29及び流路11は大気開放されていないため、リザーバー29及び流路11における溶液、試薬及び空気の流動が抑制される。
次に、流路11について、より具体的に説明する。
図8に示すように、流路11は、循環流路10と、複数(図8の例では3つ)の導入流路12と、複数(図8の例では3つ)の排出流路13と、を含む。流路11には、リザーバー29(図7参照)から溶液が導入される。
図8に示すように、流路11は、循環流路10と、複数(図8の例では3つ)の導入流路12と、複数(図8の例では3つ)の排出流路13と、を含む。流路11には、リザーバー29(図7参照)から溶液が導入される。
循環流路10は、積層方向から見て、ループ状に構成される。循環流路10の経路中には、ポンプPが配置されている。ポンプPは、流路中に並んで配置された3つの要素ポンプPeから構成されている。要素ポンプPeは、いわゆるバルブポンプである。ポンプPは、3つの要素ポンプPeを順次開閉することにより、循環流路内において液体を搬送することができる。ポンプPを構成する要素ポンプPeの数は、4以上であってもよい。
循環流路10の経路中には、複数(図8の例では3つ)の定量バルブVqが設けられる。複数の定量バルブVqは、循環流路10を複数の定量区画18に区画する。複数の定量バルブVqは、それぞれの定量区画18が所定の体積となるように配置されている。本実施形態において、3つの定量区画18のうち、1つの定量区画には、蛇行部18aが設けられている。蛇行部18aは、左右に蛇行して形成された流路である。蛇行部18aは、1つの定量区画18を所望の容量とするために設けられる。
定量区画18は、それぞれ流路状に延びる。複数の定量区画18は、それぞれ、流路状の移送流路80と、移送流路80の一方の端部に位置する流入部81と、移送流路80の他方の端部に設けられる合流部85と、を有する。したがって、それぞれの定量区画18において、移送流路80は、流入部81と、合流部85と、の間に位置する。
1つの定量区画18の流入部81は、他の定量区画18の合流部85と、定量バルブVqを介して繋がる。また、流入部81には、導入バルブViを介して、導入流路12が繋がる。
同様に、1つの定量区画18の合流部85は、他の定量区画18の流入部81と、定量バルブVqを介して繋がる。また、合流部85には、排出バルブVoを介して、排出流路13が繋がる。
同様に、1つの定量区画18の合流部85は、他の定量区画18の流入部81と、定量バルブVqを介して繋がる。また、合流部85には、排出バルブVoを介して、排出流路13が繋がる。
導入流路12は、循環流路10の定量区画18に溶液を導入するための流路である。導入流路12は、循環流路10の定量区画18毎に設けられる。導入流路12は、一端側において供給孔39に接続される。また、導入流路12は、他端側において、循環流路10の流入部81に接続される。
排出流路13は、循環流路10の定量区画18の溶液を廃液槽7に排出するための流路である。排出流路13は、循環流路10の定量区画18毎に設けられる。排出流路13は、一端側において廃液槽7に接続される。また、排出流路13は、他端側において、循環流路10の合流部85に接続される。
(検出装置70により溶液中の対象物質を検出する手順)
次に、検出装置70により上記流路11中における溶液中の対象物質を検出する手順について説明する。
当該手順は、上述したように、リザーバー29に溶液が収容された状態で上面6bにシート材41が貼り付けられた流体デバイス1を載置部71に載置することと、流体デバイス1からシート材41を剥離することと、流体デバイス1においてリザーバー29に収容された溶液を流路11に送液することと、流路11における溶液中の対象物質を検出することとを含む。
次に、検出装置70により上記流路11中における溶液中の対象物質を検出する手順について説明する。
当該手順は、上述したように、リザーバー29に溶液が収容された状態で上面6bにシート材41が貼り付けられた流体デバイス1を載置部71に載置することと、流体デバイス1からシート材41を剥離することと、流体デバイス1においてリザーバー29に収容された溶液を流路11に送液することと、流路11における溶液中の対象物質を検出することとを含む。
流体デバイス1を載置部71に載置することにおいては、流体デバイス1における第3基材8の下面8aが載置部71の上面に接するように位置させる。
流体デバイス1からシート材41を剥離することにおいては、剥離部72がシート材41の一端を、例えば負圧吸引した状態で第1基材6の上面6bに対して相対移動することにより、シート材41を上面6bから剥離する。このとき、載置工程において、例えば流体デバイス1における第3基材8の下面8aが載置部71の上面に接合していたり、流体デバイス1が載置部71に固定されていたりする場合には剥離が容易となる。
(リザーバーから流路に溶液を供給する手順)
流体デバイス1においてリザーバー29に収容された溶液Sを流路11に送液することにおいては、流体デバイス1からシート材41を剥離した後に、送液部73により行われる。
流体デバイス1においてリザーバー29に収容された溶液Sを流路11に送液することにおいては、流体デバイス1からシート材41を剥離した後に、送液部73により行われる。
なお、後述するバルブVq、Vi、Voの開閉については、上述したように、バルブ保持孔34q、34i、34oへの駆動流体の供給及び供給停止を切り替えることにより行われるが、以下ではその説明を省略する。
図7に示すように、リザーバー29には、予め溶液Sが保持、及び/又は、充填されている。流体デバイス1を用いた測定(検出)では、まず、シート材41を第1基材6の上面6bから剥離することにより、バルブ装置Vにおける突出部36が窪み40と離間して流路11が開放される。上述したように、シート材41の剥離前には、リザーバー29及び流路11における溶液、試薬及び空気の流動が抑制されていたため、溶液、試薬は蒸発及び混合が抑えられた状態である。
次いで、リザーバー29内の溶液Sを流路11に移動させる。より具体的には、循環流路10のそれぞれの定量区画18にリザーバー29から溶液Sを順番に導入する。ここでは、1つの定量区画18に溶液Sを導入する手順を説明するが、他の定量区画18についても、同様の手順を行うことで、溶液Sが導入される。
定量区画18に溶液Sを導入する際のバルブVq、Vi、Voの開閉について図8を基に説明する。まず、溶液Sを導入する定量区画18の長さ方向両側に位置する一対の定量バルブVqを閉じる。さらに、該当する定量区画18に繋がる排出流路13の排出バルブVoを開くと共に、他の排出流路13の排出バルブVoを閉じる。また、該当する定量区画18に繋がる導入流路12の導入バルブViを開く。
リザーバー29から流路11に溶液を移動させる手順について図7を基に説明する。送液部73としての吸引装置を用いて、空気孔35から廃液槽7内を負圧吸引する。これにより、リザーバー29内の溶液Sは、供給孔39を介して流路11側に移動して送液される。また、リザーバー29の溶液Sの後方には、注入孔32を通過した空気が導入される。これにより、リザーバー29に収容された溶液Sは、供給孔39、導入流路12を介して、循環流路10の定量区画18に導入される。このとき、バルブ装置Vにおいては、流路11が開放されているため、溶液Sは支障なく循環流路10の定量区画18に導入される。
(流路内の溶液を混合する手順)
次に、流体デバイス1の流路11に供給された溶液を混合する手順について図8を基に説明する。まず、上述したように循環流路10のそれぞれの定量区画18に溶液を導入した状態で、排出バルブVoおよび導入バルブViを閉じ、定量バルブVqを開く。さらに、ポンプPを用いて循環流路10内の溶液を送液して循環させる。循環流路10を循環する溶液は、流路内の流路壁面と溶液の相互作用(摩擦)により、壁面周辺の流速は遅く、流路中央の流速は速くなる。その結果、溶液の流速に分布ができるため、溶液の混合および反応が促進される。
次に、流体デバイス1の流路11に供給された溶液を混合する手順について図8を基に説明する。まず、上述したように循環流路10のそれぞれの定量区画18に溶液を導入した状態で、排出バルブVoおよび導入バルブViを閉じ、定量バルブVqを開く。さらに、ポンプPを用いて循環流路10内の溶液を送液して循環させる。循環流路10を循環する溶液は、流路内の流路壁面と溶液の相互作用(摩擦)により、壁面周辺の流速は遅く、流路中央の流速は速くなる。その結果、溶液の流速に分布ができるため、溶液の混合および反応が促進される。
流路11における溶液中の対象物質を検出することにおいては、上記流路11において混合された溶液を、図7に示した検出部74が検出することにより行われる。対象物質としては、例えば、検体試料に含まれる試料物質である。試料物質は、例えば、核酸、DNA、RNA、ペプチド、タンパク質、細胞外小胞体などの生体分子や粒子などである。また、溶液において、対象物質と混合される物質は、試料物質に結合させて試料物質の検出を補助する標識物質(検出補助物質)、溶液中の試料物質を捕捉・収集する物質等が挙げられる。
検出部74としては、例えば、撮像素子により第1基材6を介して対象物質を撮像して検出する構成や、第1基材6を介して磁力を測定することにより対象物質を検出する構成を採ることができる。
以上のように、本実施形態の流体デバイス1においては、上記第1実施形態の流体デバイス1と同様の作用・効果が得られることに加えて、定量バルブVq、導入バルブVi、排出バルブVo、バルブ部Vc、突出部36、軸部42を2色成形により一括的に成形可能であるため、製造効率の向上を図ることが可能になる。なお、定量バルブVq、導入バルブVi、排出バルブVo、バルブ部Vc、突出部36、軸部42を2色成形により一括的に成形する他に、第1基材6を成形する金型に、予め成形した定量バルブVq、導入バルブVi、排出バルブVo、バルブ部Vc、突出部36、軸部42を収容した状態で成形を行うインサート成形であってもよい。
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態では、バルブ部に流路11を閉じる力を付与する付与部として、バルブ部Vcに設けられた軸部42を例示したが、この構成に限定されず、例えば、図9に示されるように、シート材41とバルブ部Vcとの間のバルブ保持孔34に装填された粒状部材42Aであってもよい。粒状部材42Aとしては、図9に示す球状の他に円柱状、立方体状や直方体状であってもよい。粒状部材42Aとしては、投入後の姿勢に影響を受けることなくシート材41とバルブ部Vcとの距離を所定値に維持する観点から球状であることが好ましい。また、付与部がバルブ部Vcと独立して設けられることにより、下面に接着層を有するシート材41を上面6bから剥離する際に、シート材41に付着した粒状部材42Aを一括的に容易に除去することが可能となる。
また、付与部としては、バルブ部Vcに設けられる構成及びバルブ部Vc、シート材41に設けられる構成の他に、図10に示すように、シート材41の下面から下方に突出して設けられた軸部42Bとする構成であってもよい。この構成においても、シート材41を剥した後に、上面6bから付与部が突出しないため、例えば、貫通孔35aに溶液を注入するための部材に付与部と干渉しないための凹部を形成する必要がなくなる。
また、上記実施形態では、バルブ部Vcの一部がバルブ保持孔34の内周面に付着する円筒状である構成を例示したが、この構成に限定されない。例えば、図11に示すように、バルブ保持孔34の内周面における上下方向の中途に、径方向内側に環状に突出する嵌合凸部34aを設け、バルブ部Vcに嵌合凸部34aが嵌合する嵌合凹部43を設ける構成であってもよい。この構成のバルブ部Vcは、嵌合凸部34aに対して上下方向の両側から係合するため、シート材41を貼り付けたときに、バルブ部Vcが第1基材6から離脱ことを抑制できる。
また、上記実施形態では、流路11が第1基材6に形成される構成を例示したが、この構成に限定されず、第1基材6及び第2基材9の双方に跨って形成される構成、第2基材9に形成される構成であってもよい。図12は、流路11が形成された第2基材9の平面図である。第2基材9の上面9bには、バルブ部Vcの突出部36と対向する位置に、図12に示されるように、窪み40が形成されている。窪み40は、流路11の中途に配置されている。図13は、図12におけるA-A線視断面図である。図12には、突出部36が窪み40から離間して流路11が開放された状態が示されている。図12に示すように、窪み40の最も低い(下側の)位置は、流路11の底面よりも低い(下側の)位置である。流路11の底面は、上面9bにおける窪み40の稜線の位置から上側に傾斜している。
上記構成においては、バルブ部Vcが下側に向かって弾性変形して突出部36が窪み40に当接することで流路11を閉塞する。この構成では、突出部36が窪み40に当接する面積が大きくなるため、より確実に流路11を閉塞することが可能になる。
上記構成における、流路11の深さとしては、0.05mm以上、3mm以下が挙げられる(例えば、0.3mm)。軸部42周囲の凹部の直径Dとしては、1mm以上、5mm以下が挙げられる(例えば、2.2mm)。軸部42の直径としては、0.5mm以上、4mm以下が挙げられる(例えば、1.0mm)。上面6bからの軸部42の突出量としては、0.05mm以上、3mm以下が挙げられる(例えば、0.4mm)。バルブ部Vcが流路11を開放している際の突出部36下端と窪み40の下端との隙間量tとしては、0.05mm以上、1.0mm以下が挙げられる(例えば、0.1mm)。上面9bにおける窪み40の稜線で形成される円の直径としては、0.5mm以上、5.0mm以下が挙げられる(例えば、2.0mm)。窪み40の球面の半径RAとしては、1.0mm以上、5.0mm以下が挙げられる(例えば、1.45mm)。突出部36の球面の半径RBとしては、1.0mm以上、5.0mm以下が挙げられる(例えば、1.82mm)。
また、上記実施形態では、バルブVcが突出部36を有する構成を例示したが、この構成に限定されず、例えば、平板状のバルブVcが変形により窪み40に当接して流路11を閉塞する構成であってもよい。
また、上記実施形態では、バルブ部Vcがシート材41の貼り付け及び剥離により流路11を開閉する構成を例示したが、この構成に限定されない。
例えば、上述した定量バルブVq、導入バルブVi、排出バルブVoと同様に、シート材41の剥離後に、バルブ保持孔34への駆動流体の供給及び供給停止により流路11の開閉(溶液の流れ調整)を切り替える構成であってもよい。
例えば、上述した定量バルブVq、導入バルブVi、排出バルブVoと同様に、シート材41の剥離後に、バルブ保持孔34への駆動流体の供給及び供給停止により流路11の開閉(溶液の流れ調整)を切り替える構成であってもよい。
また、上記実施形態では、バルブ部Vcが流路11を閉じたときに、付与部の上端が上面6bと面一の位置にある構成を例示したが、この構成に限定されず、貼り付けられたシート材41が剥離しない範囲で付与部の上端が上面6bから突出している構成であってもよい。
また、上記実施形態では、シート材41が接着層を有する構成を例示したが、この構成に限定されず、例えば、シート材を介して基材5を上下方向から挟持するクリップ等を用いてシート材を上面6bに貼り付ける構成であってもよい。
1…流体デバイス、 5…基材、 6…第1基材、 6a…下面(接合面)、 6b…上面(第1面)、 9…第2基材、 9b…上面(接合面)、 11…流路、 34…バルブ保持孔(貫通孔)、 41…シート材、 42…軸部(付与部、駆動部)、 42A…粒状部材(付与部)、 60…貼付装置、 61…ローラー装置、 62…袋体、 63…吸引装置、 71…載置部、 72…剥離部、 73…送液部、 74…検出部、 V…バルブ装置、 Vc…バルブ部(弾性部材)
Claims (17)
- 接合面で接合された第1基材及び第2基材を備え、
前記第1基材又は前記第2基材の少なくとも一方は、両基材を接合することにより流路を形成する溝を接合面に有し、
前記第1基材は、
前記流路と対向する位置に設けられる貫通孔と、
前記貫通孔の前記流路側の開口部を塞ぎ、変形により前記流路中の流体の流れを調整する弾性部材と、
前記第1基材の前記接合面とは逆側の第1面に、前記貫通孔の開口部を覆って剥離可能に貼り付けられたシート材と、
前記シート材と前記弾性部材との間に配置され、前記弾性部材を前記流路方向に変形させる駆動部と、
を有するバルブを備える、流体デバイス。 - 前記バルブは、前記シート材を前記第1面から剥離した際に、前記弾性部材の変形が解消される、
請求項1に記載の流体デバイス。 - 前記駆動部の前記貫通孔の貫通方向の長さは、前記シート材が前記第1面から剥離された状態においては前記第1面から突出し、前記シート材が前記第1面に貼り付けられた状態においては
後に前記弾性部材を変形させて前記流路を閉じる長さである、
請求項1又は2に記載の流体デバイス。 - 前記駆動部は、前記弾性部材と一体的に成形された成形体である、
請求項3に記載の流体デバイス。 - 前記弾性部材は、前記第1基材と一体的に成形された成形体である、
請求項1~4のいずれか一項に記載の流体デバイス。 - 前記弾性部材及び前記駆動部は、前記第1基材と異なる材料で形成されている、
請求項1~5のいずれか一項に記載の流体デバイス。 - 前記駆動部は、前記弾性部材に前記第1面側に突出して設けられた軸部である、
請求項1~6のいずれか一項に記載の流体デバイス。 - 前記駆動部は、前記シート材と前記弾性部材との間の前記貫通孔に装填された粒状部材である、
請求項1~3、5、6のいずれか一項に記載の流体デバイス。 - 前記シート材は、少なくとも前記粒状部材と当接する位置に接着層を有する、
請求項8に記載の流体デバイス。 - 前記駆動部は、前記シート材に前記貫通孔内に突出して設けられ、前記シート材が前記第1面に貼り付けられた状態においては前記弾性部材を変形させ、前記流路を閉じる長さを有する軸部である、
請求項1~3、5、6のいずれか一項に記載の流体デバイス。 - 溶液が収容され、前記溶液を前記流路に供給するリザーバーをさらに備え、
前記バルブは、前記流路における前記リザーバーとの接続部に配置される、
請求項1~10のいずれか一項に記載の流体デバイス。 - 前記第1基材は、前記バルブを複数備える、請求項1から11のいずれか一項に記載の流体デバイス。
- 前記シート材は、前記第1面側に、複数の前記貫通孔の開口部を覆って貼り付けられる、請求項12に記載の流体デバイス。
- 前記第1基材は、
前記流路と対向する位置に設けられる第2貫通孔と、
前記第2貫通孔の前記流路側の開口部を塞ぎ、変形により前記流路中の流体の流れを調整する第2弾性部材と、を備える第2バルブを備え、
前記第2弾性部材は、前記貫通孔を流れる駆動流体の供給に応じて駆動され前記流路中の流体の流れを調整する、請求項1~13のいずれか一項に記載の流体デバイス。 - 前記シート材は、前記流体デバイスを包装する袋体の一部である、請求項1~14のいずれか一項に記載の流体デバイス。
- 接合面で接合された第1基材及び第2基材の少なくとも一方に前記接合面に開口して形成された流路と対向する位置で前記第1基材を貫通する貫通孔と、
前記貫通孔の前記流路側に当該流路と対向して設けられ、弾性変形により前記流路中の流体の流れを調整するバルブ部と、
前記第1基材の前記接合面と逆側の第1面に剥離可能に貼り付けられ前記貫通孔を閉塞可能なシート材と、
前記貫通孔の前記シート材と前記バルブ部との間に配置され、前記シート材が前記第1面に貼り付けられたときに、前記バルブ部に前記流路を閉じる力を付与する付与部と、
を備えるバルブ装置。 - 請求項1~14のいずれか一項に記載の流体デバイスを載置する載置部と、
前記シート材を剥離する剥離部と、
前記流体デバイスの流路に対象物質を含む溶液を送液する送液部と、
前記溶液中の対象物質を検出する検出部と、を備える検出装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/016606 WO2019207644A1 (ja) | 2018-04-24 | 2018-04-24 | 流体デバイス、バルブ装置及び検出装置 |
JP2020515339A JP7192859B2 (ja) | 2018-04-24 | 2018-04-24 | 流体デバイス、バルブ装置及び検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/016606 WO2019207644A1 (ja) | 2018-04-24 | 2018-04-24 | 流体デバイス、バルブ装置及び検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019207644A1 true WO2019207644A1 (ja) | 2019-10-31 |
Family
ID=68294425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/016606 WO2019207644A1 (ja) | 2018-04-24 | 2018-04-24 | 流体デバイス、バルブ装置及び検出装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7192859B2 (ja) |
WO (1) | WO2019207644A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150093815A1 (en) * | 2013-09-30 | 2015-04-02 | Gnubio, Inc. | Microfluidic cartridge devices and methods of use and assembly |
WO2016006615A1 (ja) * | 2014-07-07 | 2016-01-14 | 国立大学法人東京大学 | バルブ、流体デバイス、流体制御方法及びバルブの製造方法 |
WO2016136551A1 (ja) * | 2015-02-25 | 2016-09-01 | 国立大学法人東京大学 | バルブ、流体デバイスおよび流体デバイスの製造方法 |
US20170080422A1 (en) * | 2014-05-16 | 2017-03-23 | Qvella Corporation | Apparatus, system and method for performing automated centrifugal separation |
WO2018012429A1 (ja) * | 2016-07-13 | 2018-01-18 | 株式会社ニコン | 流体デバイス、流体デバイスの製造方法、及び流体デバイス用のバルブ |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102339628B1 (ko) | 2015-07-09 | 2021-12-14 | 비스타델텍, 엘엘씨 | 밸브의 제어 플레이트 |
-
2018
- 2018-04-24 JP JP2020515339A patent/JP7192859B2/ja active Active
- 2018-04-24 WO PCT/JP2018/016606 patent/WO2019207644A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150093815A1 (en) * | 2013-09-30 | 2015-04-02 | Gnubio, Inc. | Microfluidic cartridge devices and methods of use and assembly |
US20170080422A1 (en) * | 2014-05-16 | 2017-03-23 | Qvella Corporation | Apparatus, system and method for performing automated centrifugal separation |
WO2016006615A1 (ja) * | 2014-07-07 | 2016-01-14 | 国立大学法人東京大学 | バルブ、流体デバイス、流体制御方法及びバルブの製造方法 |
WO2016136551A1 (ja) * | 2015-02-25 | 2016-09-01 | 国立大学法人東京大学 | バルブ、流体デバイスおよび流体デバイスの製造方法 |
WO2018012429A1 (ja) * | 2016-07-13 | 2018-01-18 | 株式会社ニコン | 流体デバイス、流体デバイスの製造方法、及び流体デバイス用のバルブ |
Also Published As
Publication number | Publication date |
---|---|
JP7192859B2 (ja) | 2022-12-20 |
JPWO2019207644A1 (ja) | 2021-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9757724B2 (en) | Apparatus for hermetically sealed storage of liquids for a microfluidic system | |
CN101495236B (zh) | 微流体芯片及化验系统 | |
US9182326B2 (en) | Device and method for filtering blood | |
JPWO2006123578A1 (ja) | 検体中の標的物質を分析するための検査チップおよびマイクロ総合分析システム | |
US10260091B2 (en) | Analysis unit for performing a polymerase chain reaction, method for operating such an analysis unit, and method for producing such an analysis unit | |
JP2017215288A (ja) | マイクロ流路チップ | |
JP4946918B2 (ja) | 反応容器プレート及び反応処理方法 | |
WO2007055151A1 (ja) | マイクロリアクタおよびマイクロ分析システム | |
JP2018059916A (ja) | マイクロ流路チップ | |
WO2019207644A1 (ja) | 流体デバイス、バルブ装置及び検出装置 | |
JP2010025854A (ja) | マイクロ検査チップ | |
US20160263573A1 (en) | Device and Method for Handling Reagents | |
JP2007136379A (ja) | マイクロリアクタおよびその製造方法 | |
JP2009281954A (ja) | 反応容器プレート及び反応処理方法 | |
JP7036126B2 (ja) | 流体デバイスおよび流路供給システム | |
US20190255524A1 (en) | Transfer arrays for simultaneously transferring multiple aliquots of fluid | |
WO2009131043A1 (ja) | マイクロチップ | |
JP6446146B2 (ja) | マイクロチップ | |
JP7167434B2 (ja) | 流体デバイス、リザーバー供給システムおよび流路供給システム | |
JP5136225B2 (ja) | 反応容器プレート及び反応処理方法 | |
JP7196916B2 (ja) | 流体デバイス及びシステム | |
JP2009156741A (ja) | 開口封止部材、開口封止方法、マイクロ検査チップおよび開口封止治具 | |
JP2010151716A (ja) | 使い捨て式流体導入装置 | |
JP2009168761A (ja) | 検体前処理装置 | |
JP2010008191A (ja) | 反応容器プレート及び反応処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18916408 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020515339 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18916408 Country of ref document: EP Kind code of ref document: A1 |