[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019203117A1 - Work environment integrated management system and work environment integrated management method - Google Patents

Work environment integrated management system and work environment integrated management method Download PDF

Info

Publication number
WO2019203117A1
WO2019203117A1 PCT/JP2019/015808 JP2019015808W WO2019203117A1 WO 2019203117 A1 WO2019203117 A1 WO 2019203117A1 JP 2019015808 W JP2019015808 W JP 2019015808W WO 2019203117 A1 WO2019203117 A1 WO 2019203117A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
information
work environment
measurement
exposure
Prior art date
Application number
PCT/JP2019/015808
Other languages
French (fr)
Japanese (ja)
Inventor
荻野 博幸
Original Assignee
荻野 博幸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荻野 博幸 filed Critical 荻野 博幸
Priority to JP2020514116A priority Critical patent/JP7361681B2/en
Publication of WO2019203117A1 publication Critical patent/WO2019203117A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/12Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop

Definitions

  • the present invention relates to a work environment overall management system and a work environment overall management method.
  • NISH National Industrial Occupational Safety and Health
  • AIHA American Industrial Hygiene Association
  • the workers are divided into a group (Same Exposure Group) that is equally likely to be exposed to exposure, and several statistically representative people are randomly selected for the measurement.
  • the NIOSH method is aimed at legal compliance.
  • the AIHA method is mainly intended for risk assessment or risk management.
  • workers with a sampler for measuring personal exposure move within the work area, and statistical processing of personal exposure and evaluation of personal exposure information and work environment information is performed on the premise of sampling pseudo-randomness. To do.
  • personal exposure measurements do not necessarily measure the distribution of health hazards or risk factors in the work environment statistically enough because the movement of workers is not completely random. . Therefore, when statistically processed and evaluated against the occupational exposure limit, all possibilities of the distribution are lognormally distributed, and 5% of people can exceed the occupational exposure limit. Examples of research and cases of health problems have been reported.
  • the range where workers work, or the range that may be affected by health hazard factors or risk factors is defined as the unit work place, and the measurement section is placed at a statistically appropriate point.
  • a measurement and B measurement which are designed and sampled by a law-based method (for example, see Non-Patent Document 3).
  • a measurement is a measure for grasping the average state of air health hazard factors, and as a result of statistical processing, it is indirectly managed by environmental management so that the working environment does not exceed the control concentration. Manage the amount of exposure.
  • the B measurement manages the working environment by performing a measurement that complements the A measurement even when the worker moves with the source of the health hazard factor.
  • the working environment measurement is not weighted with respect to working hours, there is a possibility that the amount of exposure per unit working time cannot be sufficiently sampled. Also, statistically all possibilities of the distribution are lognormal, with 5% of people likely exceeding the control concentration.
  • the sampling position is not always in the respiratory region, and it may not be possible to measure the individual exposure sufficiently.
  • B measurement is similar to individual exposure measurement, but there is a difference, and there are reports of research examples and health impairment cases that cannot always be sampled in the respiratory region.
  • the personal exposure measurement method is intended to protect workers, so wearing protective gear may prevent the measures from being completed and lead to improvement of the working environment.
  • the measurement of the work environment may be completed by the work environment management because it indirectly protects workers for the purpose of work environment management, and it may become a high concentration locally or temporally and may not lead to individual exposure measures. is there. Therefore, any measurement method has room for improvement.
  • the standard value for exposure is determined according to possible health problems. Reliable agencies and legislation define them as exposure limits or indicators. Such reliable information is shown by ACGIH (TLV-TWA, TLV-STEL, TLV-Ceiling) (see Non-Patent Document 5), MAK, Japan Society for Occupational Health (Allowable Concentration), or WHO or related organizations in each country. Yes. There are exposure limit values or indicators for long periods and for short periods, and the amount of exposure is measured in units of time during which these exposures are repeated every day. Alternatively, the amount of individual exposure is calculated or predicted from the measurement results as time-weighted unit times and evaluated.
  • the long-term exposure evaluation time is defined as 8 hours a day, 40 hours a week, and 10 minutes or more at one measurement point.
  • the ACGIH time-weighted average (TLV-TWA) is basically measured over the entire working day (8 hours).
  • the short-term exposure measurement time is defined as 15 minutes of ACGIH (TLV-STEL, TLV-Ceiling).
  • BEI biological exposure index
  • Biological tolerance values ACGIH's BEI biological exposure indices
  • biological tolerance values of the Japan Society for Occupational Health special health examinations based on laws and regulations, etc. are metabolites and blood health hazard factors. This is a method for measuring density and the like. Since these are collected by a medical method, they are generally collected and analyzed by an external medical institution or the like. These methods can investigate both airway exposure or dermal exposure, but BEI is an indicator that indirectly reflects the body intake of workers exposed to health hazards. Therefore, it is not the amount of personal exposure for airborne health hazards.
  • concentration may become high in the inside covered with clothes (refer nonpatent literature 7).
  • the distribution of the skin surface is such that mist and the like are widely adhered to the skin, but the location where the droplet adheres is local, and the chance of the detection unit capturing it may be low. Therefore, in the future, it will be necessary to appropriately measure and manage not only the lungs but also the exposure of other routes.
  • Occupational exposure histories may not be able to refer to past histories due to workers moving or changing jobs, so it is also desirable to investigate, collect information, and keep records.
  • epidemiological studies are indispensable to identify the health hazard factors and the amount of health hazards caused by occupational exposure.
  • Epidemiological studies require a survey period of several years to several decades. For example, asbestos health disorders are said to take about 40 years to develop.
  • asbestos health disorders are said to take about 40 years to develop.
  • the necessary occupational exposure history, work environment history, and related information are not recorded and stored in the epidemiological survey, or the type of information collected is considered sufficient at present, it will be insufficient in the future. There are many cases that are not useful. Therefore, it will be necessary to collect information for the future.
  • Patent Document 1 As a conventional technique, there has been proposed an automatic notification system for detecting a working environment for acute poisoning such as oxygen deficiency and hydrogen sulfide gas poisoning that causes death by one or two breaths, and radiation exposure (see Patent Document 1).
  • This is a system in which a warning is sent from a mobile terminal to a computer and reported to the parties concerned via telephone or other means when appropriate confirmation information is collected in real time or in a timely manner, if the operation for confirming the alarm issued by the work environment measuring instrument is not performed. Not what you want.
  • acute exposure that does not reach that point is not considered.
  • the time-weighted average is the product of the short time and the amount of exposure, and the effects of repeated subsequent recovery can accumulate.
  • the exposure from TLV-TWA value to TLV-STEL value should be less than 15 minutes and not more than 4 times per day, and within this range, at least 60 minutes is required between continuous exposure times .
  • chronic oxygen deficiency state, hydrogen sulfide gas poisoning, or eye, tooth, or skin disorder caused by repeated inhalation of weak oxygen-deficient air or hydrogen sulfide gas for a short time is considered. Absent.
  • Patent Document 2 a technique for measuring the dust concentration by moving the working environment in the tunnel with an automobile has been proposed (see Patent Document 2).
  • Patent Document 3 a technique for measuring dust concentration, gas concentration, temperature, humidity, light transmittance, and wind speed.
  • these technologies do not measure individual exposure or work environment by measuring the distribution of the entire workplace or breathing area, but analyzing the measurement results to evaluate individual exposure and long-term occupations. Sexual health management is not considered.
  • Patent Document 4 a means for sharing information with the outside has been proposed (see, for example, Patent Document 4).
  • this technology is a work environment management system based on a legally compliant work environment measurement method, and cannot be applied to risk management of unhealthy health hazard factors or risk factors. Also, it is not considered to respond promptly and accurately to new knowledge or factors that are born or generated daily.
  • Patent Document 6 a method has been proposed in which the result of radiation measurement is downloaded from a charging / transmission console placed at a fixed position. Moreover, although it describes that it transmits by telemetry, it is limited to text data. It has also been proposed to perform similar measurements with radiation (see Patent Document 7). These two documents indicate chemicals or biological substances in addition to radiation that can be measured, but they are not measurements based on personal exposure measurements in the occupational safety and health field or work environment measurements. . In addition, it is not possible to perform work environment overall management such as individual exposure evaluation, personal exposure history management, or work environment history management that repeats metabolism or regeneration. Nor is it useful for future epidemiological studies.
  • Non-Patent Document 4 there is theoretical literature on the biological half-life and the amount accumulated in the body of health hazard factors.
  • metabolic processes that decompose and excrete health hazards from toxicology are not considered.
  • chlorinated solvents when decomposed in air, they become phosgene, a corrosive and extremely toxic gas.
  • a similar chemical reaction occurs in the body.
  • chloroform enters the body, an active intermediate is produced by the P450 enzyme in the liver, oxidized and hydrolyzed to become water-soluble and excreted outside the body. Chloroform is broken down in this process to become the active intermediate phosgene. Since phosgene is highly toxic in the body, it binds to intracellular biomolecules and causes strong liver damage.
  • hepatocytes when hepatocytes are placed in an anaerobic environment (when the blood concentration becomes high and they can no longer be oxidized), reductive dehalogenation occurs.
  • oxidative dehalogenation occurs when placed in an oxidative environment (when the blood concentration is low enough to oxidize). For example, when halothane is low in blood concentration, an oxidative reaction occurs, and antibodies are produced that accumulate and cause fulminant hepatitis with an allergic reaction. It has also been shown that when the blood concentration is high, a reductive reaction occurs and covalently binds to a biopolymer to cause hepatocyte damage (see Non-Patent Document 6).
  • the amount of inhalation varies depending on the labor intensity. Generally, the standard working conditions are 8 hours a day, 40 hours a week, the labor intensity is moderate, and the respiration rate per unit working time or 1 shift time is 10 m 3. / 8h. Further, the exposure limit value is set to 50 kg (65 kg in the United States). However, since these vary depending on the individual or working conditions, it may be better to consider personal information in the assessment of personal exposure.
  • NIOSH OCUPATIONAL EXPOSURE SAMPLING STRATEGY MANUAL, 1977.
  • AIHA A Strategy for Assessing and Managing Occupational Expo 4th Edition, 2015. Japan Work Environment Measurement Association: Work Environment Measurement Guidebook General Review, 2005. S. A. Roach: A More Rational Basis for Air Sampling Programs, 1966. ACGIH: TLVs and BEIs, 2017. Ryuichi Kato et al .: Drug metabolism, 2nd edition, 2006.
  • AIHA The Occupational Environment: Its Evaluation, Control, and Management 3th edition, Chapter 20, 21, 2011, Sato: Encyclopedia, Environmental Control Technology, vol7, Chapter4. 1995.
  • EPA DERMAL EXPOSURE ASSESSMENT: PRINCIPLES AND APPLICATIONS, 1992.
  • the working environment is measured based on individual exposure measurement or work environment measurement, and the value is compared with the occupational exposure limit value such as the reference exposure limit value, control concentration, or allowable concentration. It is managed.
  • the individual exposure measurement is basically time-weighted over 8 hours, and the work environment measurement is a field measurement, so all statistically significant points are measured over 1 hour. Measurement takes a long time and a lot of expenses.
  • rapid and accurate measurement is lacking, and there is a lack of prompt response to new health hazard factors or risk factors and new knowledge, and quick and accurate personal exposure management and work environment management cannot be performed. there were.
  • the measurement method should be in accordance with a method stipulated by laws and regulations, for example, the OSHA Sampling Method regarding the work environment measurement method or personal exposure measurement.
  • measures such as risk assessment and higher-level personal exposure measurement methods and work environment measurement methods corresponding to risk assessment and risk management performed based on Article 28-2 of the Industrial Safety and Health Act (surveys to be conducted by business operators) It is also desirable to be able to do it.
  • the individual exposure (measurement) may be the exposure (measurement) of a single individual or the exposure (measurement) of a group of a plurality of individuals. Also referred to as “human exposure (measurement)”.
  • the present invention provides a work environment overall management system and a work environment overall management method that can perform human body exposure measurement and / or work environment measurement in real time or in a timely manner and can quickly evaluate occupational exposure.
  • the purpose is to do.
  • the gist configuration of the present invention is as follows.
  • the work environment overall management system of the present invention is A measurement unit having a first detection unit that detects one or more health hazard factors and / or risk factors in real time or in a timely manner;
  • a communication unit capable of transmitting real-time or timely information on the health hazard factor and / or risk factor detected by the first detection unit;
  • a calculation unit that evaluates human exposure and / or work environment by calculation based on information on the health hazard factor and / or risk factor transmitted from the communication unit; To do.
  • the measuring unit is The human body exposure and / or related information related to the work environment is further detected by real-time or timely measurement, A second detection unit that detects worker position and / or time-lapse information as the related information, an imaging unit that captures an image of a worker's surroundings and / or workplace as the related information, and a worker as the related information It is preferable to further include at least one of sensors that sense at least one of sound, vibration, heat, non-ionizing radiation, and radiation around and / or the workplace.
  • the communication unit is configured to be capable of transmitting information analyzing the health hazard factor and / or risk factor collected by the measurement unit in real time or in a timely manner, Information obtained by analyzing the health hazard factor and / or risk factor collected by the measurement unit, transmitted from the communication unit, or the health hazard factor and / or risk factor detected by the measurement unit It is preferable to further include a calibration unit that generates information necessary for calibration of the measurement unit based on the information.
  • the calculation unit preferably performs the evaluation using a metabolic model or a regeneration model.
  • the work environment overall management system of the present invention is It is preferable to further include a storage unit capable of registering information on health hazard factors and / or risk factors.
  • the work environment overall management system of the present invention is It is preferable to further include an external communication unit capable of communicating with the outside of the work environment.
  • the work environment overall management method of the present invention includes: Detecting one or more health hazards and / or risk factors in real time or in a timely manner; Transmitting information on the detected health hazard factor and / or risk factor in real time or in a timely manner; And evaluating the human exposure and / or work environment by calculation based on the transmitted health hazard factor and / or risk factor information.
  • a work environment overall management system and a work environment overall management method that can perform human body exposure measurement or work environment measurement in real time or in a timely manner, and can quickly evaluate occupational exposure. Can do.
  • FIG. 1 It is a figure which shows an example of the work environment integrated management system provided with the measurement part and the system calculation part.
  • An example in which a measuring unit is attached to a respiratory protective device is shown. It is a figure showing the process by which it is absorbed in the body and is metabolized or regenerated. It is a figure showing the process by which it is absorbed in the body and is metabolized or regenerated. It is a figure showing the process by which it is absorbed in the body and is metabolized or regenerated. It is a figure which shows the example of the equivalent circuit of a respiratory tract exposure. It is a figure which shows the example of the equivalent circuit of percutaneous absorption exposure. It is a figure which shows the model using a transistor about the exposure limit setting / enzyme activity value setting part. It is a figure for demonstrating the work environment integrated management system concerning other embodiment of this invention.
  • FIG. 1 is a schematic diagram for explaining a work environment overall management system according to an embodiment of the present invention.
  • the work environment overall management system of the present embodiment includes a measurement unit 1, a communication unit 2, a control unit 3, an analysis calibration unit 4, a system calculation unit 5, an external communication unit 6, and the like. It is equipped with.
  • the measurement unit 1, the communication unit 2, and the control unit 3 are attached to a worker or arranged at a fixed point in the workplace, while the analysis calibration unit 4, the system calculation unit 5, and The external communication unit 6 is disposed outside the work place.
  • the analysis / calibration unit 4, the system calculation unit 5, and the external communication unit 6 can be arranged inside the workplace.
  • the measuring unit 1 is configured to detect one or more health hazard factors and / or risk factors in real time or in a timely manner.
  • the measurement unit 1 includes a first detection unit 11 (see FIG. 2) that detects one or more health hazard factors and / or risk factors, and the detected health hazard factors and / or Or the communication part 13 which can transmit the information of a risk factor in real time or timely is provided.
  • the measurement unit 1 is a plane (as an example of an arrangement that can be statistically significant in the illustrated example) and a predetermined position of the workplace (in the illustrated example, each of five workers). Visually, it is installed at both of four locations corresponding to the vertexes of the rectangle and one location corresponding to the intersections of the two diagonals of the rectangle (a total of five locations). According to the measuring part 1 attached to the worker, the first detection part 11 makes it possible to identify one or more health hazard factors and information, particularly for human exposure (individual or multiple personal exposure) information.
  • the risk factor can be detected, and according to the measuring unit 1 installed at a predetermined position of the workplace, the first detection unit 11 can detect the health hazard factor and A risk factor can be detected.
  • the present invention is not limited to this case, and the measurement unit 1 is installed only at a predetermined position of the worker or the workplace, and only the information on one of human body exposure information and work environment information is stored. Therefore, health hazard factors and / or risk factors can also be detected.
  • the 1st detection part 11 can be used as a detector (detector), for example, can be used as a semiconductor type detector, a contact combustion type detector, an electrical resistance type detector, a photoionization detector, etc.
  • the measurement results obtained by the first detection unit 11 and the second detection unit 12 preferably transmit and receive information as measurement values. Therefore, the first detection unit 11 and the second detection unit 12 respectively It is preferable to provide a detection meter for digitizing the detected health hazard factor and / or risk factor and related information. Alternatively, they can be visually read and manually transmitted or received, or data obtained by capturing the measurement result as an image can be transmitted and received.
  • FIG. 2 is a diagram for explaining an example of components of the measurement unit 1.
  • the measurement unit 1 includes the first detection unit 11, the second detection unit 12, the communication unit 13, the imaging unit 14, the sensor 15, the control unit 16, the storage unit 17, the display unit, and / or the operation unit. 18 and a voice guidance unit 19 are provided.
  • the measurement unit 1 is configured to further collect related information related to human body exposure information and / or work environment information by real-time or timely measurement.
  • the second detection unit 12 may be a detector configured to detect worker position and / or time-lapse information as the related information.
  • the position information can be performed by, for example, position detection of a difference between GPS or GPS fixed points, optical position detection, or acoustic position detection.
  • the time-lapse information can be detected by the second detection unit 12 having a clock function or the like.
  • the second detection unit 12 specifies, for example, a measurement point of a worker's work history, specifies a time when the measurement is performed, and specifies a position and time at which the work with high concentration was performed. Can do.
  • the 2nd detection part 12 can also be used as the detector which detects information, such as temperature, humidity, atmospheric pressure, and airflow, as said related information.
  • information such as temperature, humidity, atmospheric pressure, and airflow
  • Human body exposure factors and work environment factors are affected by the divergence and scattering of air temperature, humidity, air pressure, airflow, etc., and the state of workers is also affected by sweating and body temperature.
  • the characteristics of the measurement unit also change depending on temperature, humidity, and the like. In order to correct in consideration of these, it is preferable to measure meteorological conditions such as temperature, humidity, atmospheric pressure, airflow, or biological information.
  • the communication unit 13 includes various types of information (for example, information on one or more health hazard factors and / or risk factors detected by the first detection unit 11, the second detection unit 12, and later-described information).
  • the related information detected by the function unit is transmitted to and / or received from the communication unit 2.
  • the communication unit 13 includes a transmitter and / or a receiver. Thereby, the role for the relay to the communication part 2 can be played.
  • the communication unit 13 transmits and / or receives various types of information to and from other functional units (communication unit 2, control unit 3, analysis calibration unit 4, system calculation unit 5, and external communication unit 6). It may be configured to.
  • the communication unit 13 is preferably wireless communication in the case of human exposure measurement, and is preferably wired communication in the case of measurement of a work place (work environment).
  • wireless communication workers can move freely, but for that purpose, power supply is limited and it is preferable to save power and reduce the size.
  • Wired communication has functions of supplying power and relaying wireless communication, leading to power saving in wireless communication. Moreover, since it leads also to specifying a movement point on the basis of a fixed point, combined use with wireless communication and wired communication is more preferable.
  • Such a communication unit 13 performs any known wireless communication (in the case of short-range wireless communication, for example, Bluetooth (registered trademark) or Wi-Fi (registered trademark)), or any known wired communication. Can be used. It is preferable that the system calculation unit 5 and the control unit 16 described later have an IP address.
  • the imaging unit 14 is configured to capture an image of the worker's surroundings and / or the workplace as the related information.
  • the image may be a still image or a moving image.
  • various images of light captured by the imaging unit 14 for example, visible light
  • the generation location such as exposure
  • the generation situation and the generation amount
  • the imaging unit 14 can be any known camera or the like (for example, a CCD or CMOS image sensor).
  • the sensor 15 is capable of sensing and acquiring information such as sound, vibration, heat, non-ionizing radiation, and radiation around the worker and / or the workplace as the related information.
  • sound such as on-site sound or worker voice
  • vibration can be obtained with a vibration sensor
  • heat can be obtained with a thermal sensor
  • non-ionizing radiation can be acquired with a light beam or a radiation sensor.
  • the detection of the health hazard factor and / or the risk factor by the first detection unit 11 is linked with the measurement value of the human body exposure information and / or the work environment information by linking in real time or timely. It is possible to more accurately evaluate the human exposure and / or the state of the work environment and take appropriate measures.
  • the control unit 16 provides predetermined information to the first detection unit 11, the second detection unit 12, the communication unit 13, the imaging unit 14, the sensor 15, the storage unit 17, the display unit and / or the operation unit 18, and the voice guidance unit 19. It is controlled so that the function of is exhibited.
  • the control unit 16 can be, for example, any known processor.
  • the storage unit 17 is configured to store various information, and in particular, is configured to store information on one or more health hazard factors and / or risk factors.
  • the storage unit 17 can be any known memory.
  • the health hazard factor and / or risk factor may include any known health hazard factor and / or risk factor.
  • Physical or chemical information on health hazards and / or risk factors can be provided on the web or in documents from, for example, WHO, countries, or other trusted agencies.
  • Key information includes toxicological information, exposure limits, boiling point and flash point. The exposure limit value, flash point, etc. required for risk assessment, risk management or legal compliance from these published information can be registered in advance in the storage unit 17, for example.
  • the information can be collected via the communication unit 2 (13), and the information can be registered, updated, and deleted in the storage unit 17.
  • the information may be transmitted from the outside via the external communication unit 6, or the system calculation unit 5 may include a processor having an AI function, and the AI function will be described later. May be automatically collected from the Web or a document via the communication unit 5a and the external communication unit 6 and transmitted to the storage unit 17 via the communication unit 2 (13) and the communication unit 5a.
  • the AI function includes, for example, a communication unit (transmitter and / or receiver), accesses the Web page to which the information is provided regularly or in a timely manner, and compares the information with the information registered in the storage unit 17. (In this case, the storage unit 17 is also accessed), and information that has been changed, added, or deleted can be recognized and updated to the latest information.
  • a communication unit transmitter and / or receiver
  • accesses the Web page to which the information is provided regularly or in a timely manner and compares the information with the information registered in the storage unit 17. (In this case, the storage unit 17 is also accessed), and information that has been changed, added, or deleted can be recognized and updated to the latest information.
  • the display unit and / or the operation unit 18 can be, for example, a display unit configured to display human body exposure information and / or work environment information to workers and the like.
  • the display unit can be, for example, any known display.
  • the display unit is configured to display the related information. These displays can be edited so as to be easily understood by workers.
  • the display unit and / or the operation unit 18 can be an operation unit that operates the measurement unit 1, for example. For example, the operation unit cancels an alarm such as a generated alarm, or the operation unit informs the outside that the worker is safe or dangerous through the communication unit 13 and the external communication unit 6. Can be operated.
  • the operating unit can be any known processor.
  • the display unit and / or the operation unit 18 includes both the display unit and the operation unit, but may include only one of them.
  • the voice guide unit 19 is configured to transmit, for example, human exposure information and / or work environment information to workers and the like by voice.
  • the voice guidance unit 19 may be, for example, any known speaker.
  • the voice guidance unit 19 is configured so that the related information can also be transmitted by voice.
  • a vibration generation unit that transmits information provided by the display and the voice guidance by generating a vibration may be provided.
  • FIG. 3 is a diagram illustrating an example of the measurement unit 1.
  • FIG. 3 shows an example of a wristwatch-type measuring unit 1 having a band unit 91.
  • the measurement unit 1 in the example shown in FIG. 3 can be used, for example, to measure percutaneous exposure.
  • the transdermal exposure is a path through which the health hazard factor adhering to the skin penetrates the skin and enters the capillaries and needs to be measured on the skin surface. Therefore, it is preferable that the measurement unit 1 has a shape attached to the skin surface, for example.
  • the measuring unit 1 can be attached to the skin of the worker by attaching it to the wrist of the worker with the band unit 91.
  • health hazard factors and / or risk factors adhering to the skin surface may directly adhere to the air openings on the surface of the first detection unit 11 of the measurement unit 1. Therefore, an appropriate filter is provided to keep the surface clean, and after the unit labor time or one shift time is completed and removed, it is cleaned or replaced before the next installation, and the air port is returned to the initial state. It is preferable to keep. Moreover, since it is preferable to reduce in size for carrying, and since a power source must rely on a battery, a rechargeable battery, or external power supply, power saving is preferable. It is also preferable that the first detection unit 11, the communication unit 13, and the control unit 16 only be included.
  • FIGS. 4A to 4F are diagrams illustrating other examples of the measurement unit 1.
  • FIG. The measurement unit 1 shown in FIGS. 4A and 4B is downsized.
  • a pendant type see FIG. 4A
  • a pin attachment type see FIG. 4B
  • the measurement unit 1 is further downsized using semiconductor technology or the like, and has an attachment surface 92 so that the measurement unit 1 is attached to the skin surface or attached to clothing. To do. Further, as shown in the examples shown in FIGS.
  • control unit 16 may include the communication unit 16a to perform relaying.
  • FIG. 5A and 5B are diagrams illustrating an example of a work environment overall management system including the measurement unit 1 and the system calculation unit 5.
  • the control unit 16 of the measurement unit 1 includes the communication unit 16a.
  • the measurement unit 1 includes a communication unit 13 (transmitter and / or receiver)
  • the system calculation unit 5 includes a communication unit 5a (transmitter and / or receiver).
  • the measurement unit 1 includes the communication unit 13 and the control unit 16 including the communication unit 16a
  • the system calculation unit 5 includes the communication unit 5a.
  • the connection condition, the user and other necessary information are set in both the system calculation unit 5 and the measurement unit 1.
  • Data control is performed. For example, when connecting to the measurement unit 1 and the system calculation unit 5 from the outside, it can be set to request a user ID, a password, or the like.
  • FIG. 5C shows an example in which the measuring unit 1 is attached to a respiratory protective device.
  • the example shown in FIG. 5C is miniaturized by semiconductor technology or the like, has low power consumption, and can be sampled in the respiratory region.
  • the measurement unit 1 and the communication unit 2 are attached to the respiratory protective device, but can also be attached to the outside of the filter (see FIG. 5C) or attached to the inside of the filter. It can also be attached to protective clothing or the like.
  • the communication unit 2 is configured to output various information (for example, information on health hazard factors and / or risk factors detected by the first detection unit 11 of the measurement unit 1, The above-mentioned related information detected by the two detection units 12 and other functional units) and / or a transmitter capable of transmitting and / or receiving in a timely manner.
  • the communication unit 2 can communicate (transmit and / or receive) with the measurement unit 1, the control unit 3, the analysis calibration unit 4, the system calculation unit 5, and the external communication unit 6.
  • any known wireless communication or wired communication can be used.
  • the control unit 3 controls the measurement unit 1 and the communication unit 2 so as to exhibit a predetermined function.
  • the control unit 3 can be any known processor.
  • the control unit 3 can cause the measurement unit 1 and the communication unit 2 to perform predetermined functions even when, for example, a communication failure occurs inside or outside the workplace.
  • the measurement unit 1 may be further configured to collect health hazard factors and / or risk factors, for example, for analysis.
  • the measuring unit 1 is, for example, an adsorbing unit (for example, an adsorbent, an adsorbent, an adsorbing sheet, etc.) that adsorbs health hazard factors and / or risk factors by activated carbon or silica gel, health hazard factors and / or dangers. It can have a collection part (for example, a suction device) which performs direct collection of the air containing a sex factor.
  • the analysis calibration unit 4 includes a communication unit (transmitter and / or receiver) 4a, a calculation unit, and an analysis unit.
  • the analysis calibration unit 4 is configured to analyze the health hazard factor and / or the risk factor collected by the measurement unit 1 by the analysis unit.
  • An analysis part shall perform analysis by analyzers, such as a gas chromatography analyzer, a liquid chromatography analyzer, a mass analyzer, etc., for example.
  • the health hazard factor and / or risk factor collected by the measurement unit 1 are transported to the analysis calibration unit 4 in a physicochemically stable state and measured and analyzed.
  • the first detection unit 11 and the second detection unit 12 of the measurement unit 1 may need to be calibrated because the sensitivity characteristics of the detection units 11 and 12 may vary depending on the measurement target factors. . Moreover, even if it is the same measurement object factor, a sensitivity will change if it is used for a long time. Calibration may also be necessary because the measurement circuit also changes over time. Furthermore, maintenance such as updating the function is required. Therefore, it is preferable to keep the measurement unit 1 optimal, and in the present embodiment, this is performed by the analysis calibration unit 4 and the system calculation unit 5.
  • the communication unit 2 is configured to be able to transmit information obtained by analyzing the health hazard factor and / or risk factor collected by the measurement unit 1 in real time or in a timely manner.
  • the analysis calibration unit 4 includes a communication unit (transmitter and / or receiver) 4a, and the health hazard factor and / or risk factor collected by the measurement unit 1 via the communication units 2 and 4a.
  • the analyzed information can be transmitted to the system calculation unit 5.
  • the system calculation unit 5 includes a calculation unit, and evaluates the necessity of calibration based on information obtained by analyzing the health hazard factor and / or risk factor collected by the measurement unit 1.
  • the system calculation unit 5 Based on the evaluation result, the system calculation unit 5 periodically or in a timely manner, or when knowledge about a new health hazard factor and / or risk factor is obtained, etc. , Configured to generate information necessary for calibration of the measurement unit 1.
  • the analysis calibration unit 4 receives an instruction from the system calculation unit 5 via the communication units 4a and 5a, and generates information necessary for calibration of the measurement unit 1 by the calculation unit.
  • the system calculation unit 5 evaluates the necessity of calibration of the measurement unit 1 based on the health hazard factor and / or risk factor information detected by the measurement unit 1 and related information, and the evaluation result Based on the above, the analysis calibration unit 4 may be configured to command to generate information necessary for calibration of the measurement unit 1.
  • the analysis calibration unit 4 is configured to analyze the health hazard factors and / or risk factors collected by the measurement unit 1 using the analysis unit, or the health hazard factors detected by the measurement unit 1 and / or Based on the risk factor information (and related information), information necessary for calibration of the measurement unit 1 is also generated.
  • the analysis calibration unit 4 has a processor for generating the information.
  • the system calculation unit 5 controls the measurement unit 1, the communication unit 2, the control unit 3, the analysis / calibration unit 4, and the external communication unit 6 to perform predetermined functions. To do.
  • the system calculation unit 5 can have, for example, any known processor.
  • the system calculation part 5 has a calculation part, and based on the information on the health hazard factor and / or risk factor transmitted from the communication part 2 (13), the human body exposure and / or the work environment is determined. Evaluate by calculation. For example, based on the type of health hazard factor and / or risk factor detected by the measurement unit 1 and the amount of the risk factor, an estimated amount that has entered the worker's body by calculation is calculated.
  • the degree of harm, the degree of damage to an organ, and the like can be evaluated by comparison with data stored in the above, calculation using a metabolic model or a regeneration model, and the like.
  • the analysis calibration unit 4 it is preferable to perform evaluation by calculation using the analyzed information for more accurate evaluation.
  • This evaluation result is preferably transmitted to the worker, manager, etc. by sound, vibration, display, or the like by the above-described various communication functions. Therefore, the measurement unit 1 can display the display unit and / or the operation unit 18 as described above. And a voice guidance unit 19 are preferably provided.
  • the system calculation unit 5 may include a determination unit that determines whether or not the worker can continue working based on the evaluation result.
  • a determination unit can have an AI function, for example, and can perform supervised learning using a precedent of determination such as an operational hygienist as a teacher. Or it can also comprise so that the determination reference
  • the characteristics of the first detection unit 11 (and the second detection unit 12) and the circuit characteristics are measured and stored in, for example, the storage unit of the system calculation unit 5.
  • the calculation unit of the system calculation unit 5 performs an evaluation by comparing the reference value with the actual measurement value by the measurement unit 1 and the analysis result by the analysis calibration unit 4, As a result, the analysis calibration unit 4 can generate information necessary for calibration of the measurement unit 1.
  • the calibration information can be stored in the storage unit of the system calculation unit 5 through the communication units 4a and 5a, for example, as a history. According to these methods, it is not necessary to send to the site or factory and calibrate. For example, since it can be managed from a remote location via the system calculation unit 5 etc., it can be distributed and managed efficiently and accurately. Diagnosis can also be made in the same way.
  • the calibration by the analytical calibration unit 4 is preferably performed in a timely manner when knowledge of new factors relating to health hazard factors and / or risk factors is obtained.
  • this can be achieved by the system calculation unit 5 having an AI function.
  • the system calculation unit 5 includes a communication unit (transmitter and / or receiver), and can acquire the latest information by accessing a predetermined website or the like regularly or in a timely manner. (E.g., by comparison with current information stored in a database or AI database (a database having an AI function, thus having a processor for achieving the AI function in addition to a memory etc.) 51) Can be instructed to generate information necessary for the analysis and calibration described above.
  • Examples of information collection destinations of new health hazard factors and / or risk factors include chemical substance registration organizations such as websites such as CAS (A division of American Chemical Society).
  • the AI database is particularly suitable for dealing with a case where information update is early, such as CAS.
  • the system calculation unit 5 preferably includes a storage unit (for example, a database or AI database 51) capable of registering information on health hazard factors and / or risk factors. Depending on the communication state, there is a case where information cannot be temporarily transmitted / received. Various information can be stored in the database or the AI database 51, read out in a timely manner, and the system calculation unit 5 can perform various processes.
  • a storage unit for example, a database or AI database 51
  • the above calculation and evaluation by the system calculation unit 5 may directly compare the data of the health hazard factor and / or risk factor information stored in the database or the AI database 51 with the measured value.
  • the measurement value may be compared with the data of the information on health hazard factor and / or risk factor stored in the database or the AI database 51 after performing statistical processing on the measurement value.
  • the evaluation of the exposure amount may take into account the chronic exposure amount, the short-term exposure amount, or the two effects thereof.
  • the detection by the first detection unit 11 may be detection as an individual or entire quantity, and the system calculation unit 5
  • the calculation unit can perform evaluation by calculation according to the characteristics.
  • system calculation unit 5 can have an AI function.
  • the system calculation unit 5 accesses the Web page to which the information is provided regularly or in a timely manner, and compares it with information registered in the database or the AI database 51. It can be programmed to recognize the changed, added, deleted, etc. information and update the database or AI database 51 to the latest information.
  • the database of the system calculation unit 5 or the AI database 51 may be updated from the outside via the external communication unit 6.
  • the above-described calculation and evaluation by the system calculation unit 5 can be performed by comparing the measured values of the health hazard factor and / or risk factor information measured by the measurement unit 1 under appropriate conditions with reference values. .
  • the measured value may be a statistically significant process such as a time-weighted average value obtained from the measurement result.
  • TLV-TWA values ACGIH American Conference of Governmental Industrial Hygienists
  • STEL value Threshold Limited Value - Short Term Exposure Limit
  • the ceiling value Threshold Limited Value - Ceiling
  • acceptable concentration of Japan Society for Occupational Health, regulatory control concentration, PEL (Permissible Exposure limit), etc. can be used.
  • the predicted value of the exposure limit value can be calculated from published values such as NOAEL values (No Observed Adverse Effect Level) such as OECD and US EPA (Non-Patent Document 9). It can be obtained and used as a reference value.
  • FIG. 6A to FIG. 6C are diagrams showing a process of being absorbed and metabolized or regenerated in the body.
  • FIG. 6A shows the relationship between exposure time and air concentration when exposure is performed at a constant concentration of, for example, 8 hours per day in unit working hours or one shift time.
  • FIG. 6B shows the relationship between changes in metabolic time and blood concentration as model conditions.
  • FIG. 6C shows the relationship between metabolic time and changes in blood concentration.
  • health hazard factors and / or risk factors are metabolized or retained in conditions where they are combined.
  • FIG. 6A to FIG. 6C when an operation that is exposed for a long time or an operation that is exposed to a high concentration is performed, it may be chronically accumulated in the body and cause health problems.
  • FIG. 7 is a diagram illustrating an example of an equivalent circuit for trans-airway exposure.
  • the analysis calibration unit 4 and the system calculation unit 5 it is not possible to directly measure the exposure state of the human body. Therefore, it is preferable to perform evaluation using a lung airway route exposure metabolism or regeneration model. Since health hazard factors and / or risk factors of carcinogenicity no threshold, if so, whether the value of the threshold setting element D 2 infinitesimal, or be a model obtained by removing from the circuit Can do.
  • V i corresponding to the concentration of the air health hazard factor
  • FIG. 8 is a diagram showing an example of an equivalent circuit for percutaneous absorption exposure.
  • FIG. 8 is a metabolism or regeneration model of skin route exposure, similar to FIG.
  • the constant value of the generation source corresponds to continuous exposure until the droplets are wiped off when they adhere to the skin or dry.
  • the constant circuit is applied as a constant voltage to the equivalent circuit shown in FIG.
  • FIG. 9 is a diagram showing a model using a transistor for the exposure limit setting / enzyme activity value setting unit of FIGS.
  • the functions of D 1 and D 2 are replaced with MOS transistors.
  • the health hazard factors and / or risk factors of carcinogenicity, a threshold setting element R 5 is the maximum value, is always accumulated in the C 2 through MOS transistor.
  • the work environment overall management system of the present embodiment further includes an external communication unit 6 that can communicate with the outside of the work environment.
  • an external communication unit 6 that can communicate with the outside of the work environment.
  • the external communication unit 6 includes a transmitter and / or a receiver.
  • information on health hazard factors and / or risk factors detected in real time or timely by the measurement unit 1 is transmitted to the system calculation unit 5 by the communication unit 2 (13). Since the calculation unit of the system calculation unit 5 evaluates the human body exposure and / or the work environment on the basis thereof, occupational exposure can be quickly evaluated. The evaluation can be performed more accurately by using the analysis result by the analysis calibration unit 4. And the said result can be conveyed to a worker by the display part 18 and the audio
  • control unit 3 can control the measurement unit 1 and the communication unit 2, and the system calculation unit 5 can control the measurement unit 1, the communication unit 2, and the control unit 2.
  • the unit 3, the analysis calibration unit 4, and the external communication unit 6 can be controlled.
  • the measurement unit 1 illustrated in FIGS. 3, 4A to 4F, and 5C it can be carried by a worker, and an appropriate part of the body such as a respiratory area or a percutaneous exposure area. Further, it is possible to measure at a statistically significant fixed point, such as the arrangement at the fixed position illustrated in FIG. And these can be used together.
  • the measurement unit 1 can be calibrated at an appropriate timing by the analysis calibration unit 4 and the system calculation unit 5, so that new health hazard factors and / or risk factors and new knowledge can be quickly obtained. And it can respond accurately.
  • New health hazard factors and / or risk factors and new knowledge can be registered and managed in the storage unit (database or AI database 51) of the system calculation unit 5, for example.
  • various information can be shared with the outside by the external communication unit 6, for example, a human body exposure history or a work environment history is obtained from the outside, and the system calculation unit 5 uses a reference value in consideration thereof. It is also expected to contribute to occupational safety and health through epidemiological research by providing information to epidemiological surveys to external institutions as necessary.
  • risk assessment and risk management can be performed at a high level by quickly detecting and evaluating information on health hazard factors and / or risk factors. It can also manage production, including worker activities.
  • the measuring unit 1 is configured to further detect related information related to human body exposure information and / or work environment information by real-time or timely measurement, and as related information.
  • a second detection unit 12 that detects worker position and / or time-lapse information, as related information, an imaging unit 14 that captures an image of the surroundings of the worker and / or a workplace, and as related information, It is preferable to further include at least one of sensors 15 that sense any one or more of ambient and / or workplace sound, vibration, heat, non-ionizing radiation, and radiation. This is because human exposure and / or work environment can be more accurately evaluated.
  • the communication unit 2 (4a) is configured to be able to transmit information obtained by analyzing the health hazard factor and / or risk factor collected by the measurement unit 1 in real time or in a timely manner.
  • the calculation unit evaluates using a metabolic model or a regeneration model. This is because human exposure and / or work environment can be more accurately evaluated.
  • the work environment overall management system of the present invention preferably further includes a storage unit (in the above embodiment, the database or the AI database 51) capable of registering information on health hazard factors and / or risk factors. This is because necessary information can be taken out from the storage unit, and measurement to evaluation can be performed quickly, and some communication failures can be dealt with.
  • a storage unit in the above embodiment, the database or the AI database 51
  • the work environment overall management system of the present invention preferably includes an external communication unit 6 that can communicate with the outside of the work environment. This is because various information can be exchanged with the outside to improve the accuracy of human exposure and / or evaluation of the work environment, or to provide information to an external organization.
  • FIG. 10 is a diagram for explaining a work environment overall management system according to another embodiment of the present invention.
  • FIG. 10 shows a measurement form when the worker moves over a wide range in unit time or one shift time.
  • the level of occurrence of health hazards and / or risk factors, stagnation, and intrusion may differ between equivalent exposure groups or unit workplaces. It is preferable to carry out.
  • This includes significant statistical processing (for example, time-weighted average) by the system calculation unit 5 based on the acquired worker location information and the health hazard factor and / or risk factor information of each unit workplace. The evaluation can be performed.
  • the time-weighted average value has an additive or synergistic effect, and is preferably suppressed at a value lower than the single exposure limit value.
  • said calibration can be performed for every detection part (Equivalent exposure group or every unit work place).
  • the kind and combination of a detection part can also be changed for every equivalent exposure group or a unit work place.
  • the unit labor time or the entire one shift time can be measured and managed by the system calculation unit 5. Accordingly, even in the embodiment shown in FIG. 10, risk assessment and risk management are performed at a high level by quickly detecting and evaluating information on health hazard factors and / or risk factors. Can do.
  • the work environment overall management method includes a step of detecting one or more health hazard factors and / or risk factors in real time or in a timely manner, and the detected health hazard factors and / or Or transmitting risk factor information in real time or in a timely manner, and evaluating the human exposure and / or work environment by calculation based on the transmitted health hazard factor and / or risk factor information And including.
  • This work environment overall management method can be performed using the work environment overall management system according to the above-described embodiment. Since the work environment overall management system is the same as described above, the description thereof is omitted.
  • the measurement unit 1 includes the first detection unit 11, the second detection unit 12, the imaging unit 14, and the sensor 15, and human body exposure information and / or work environment information. Relevant information related to can be further collected by real-time or timely measurements.
  • the second detection unit 12 detects the worker's position and / or time-lapse information
  • the imaging unit 14 As a process of taking an image of the surrounding area and / or the workplace, and as related information, the sensor 15 performs any one or more of the sound, vibration, heat, non-ionizing radiation, and radiation around the worker and / or the workplace.
  • the method further includes a sensing step, at least one or more steps.
  • the analysis / calibration unit 4 transmits information transmitted from the communication unit 2 (13) that analyzes the health hazard factor and / or risk factor collected by the measurement unit 1, or Preferably, the method further includes a step of generating information necessary for calibration of the measurement unit 1 based on information on health hazard factors and / or risk factors detected by the measurement unit 1.
  • the calculation unit in the calculation step, preferably performs the above calculation using a metabolic model or a regeneration model.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

This work environment integrated management system is provided with: a measurement unit having a first detection unit that detects one or a plurality of health hazard factors and/or risk factors in real time or in a timely manner; a communication unit that can transmit, in real time or in a timely manner, information about the health hazard factors and/or risk factors detected by the first detection unit; and a calculation unit that evaluates, through calculation, human body exposure and/or a work environment on the basis of the information about the health hazard factors and/or risk factors transmitted from the communication unit. This work environment integrated management method comprises: a step for detecting one or a plurality of health hazard factors and/or risk factors in real time or in a timely manner; a step for transmitting, in real time or in a timely manner, information about the detected health hazard factors and/or risk factors; and a step for evaluating, through calculation, human body exposure and/or the work environment on the basis of the transmitted information about the health hazard factors and/or risk factors.

Description

作業環境統括管理システム及び作業環境統括管理方法Work environment overall management system and work environment overall management method
 本発明は、作業環境統括管理システム及び作業環境統括管理方法に関するものである。 The present invention relates to a work environment overall management system and a work environment overall management method.
 従来、健康有害性因子又は危険性因子の個人ばく露情報又は作業環境情報に関する労働安全衛生管理の技術には、主に、法令等で規定された次の2つの方法がある。
1.個人ばく露測定方法
2.作業環境測定方法
 個人ばく露測定方法は、欧米で広く採用されている方法で、日本では「屋外作業場等における作業環境管理に関するガイドライン」等で推奨されている。また、作業環境測定方法は、作業環境測定法で規定されている方法で、欧米でも作業環境測定が行われることがある。
 しかし、いずれの方法も全ての労働者の個人ばく露情報又は作業環境情報を正確かつ完全に把握して対処できていないことが、測定結果報告や健康障害事例発表で報告されている。
Conventionally, techniques for occupational safety and health management relating to personal exposure information or work environment information of health hazard factors or risk factors mainly include the following two methods prescribed by laws and regulations.
1. Personal exposure measurement method2. Work environment measurement method The personal exposure measurement method is widely used in Europe and the United States, and is recommended in Japan as “Guidelines for Work Environment Management in Outdoor Workplaces”. The work environment measurement method is a method defined by the work environment measurement method, and the work environment measurement may be performed in Europe and the United States.
However, it has been reported in measurement result reports and cases of health problems that none of the methods can accurately and completely grasp the personal exposure information or work environment information of all workers.
 個人ばく露の測定及び評価の方法には、主に、米国で規定された次の2つの方法がある。
1.NIOSH(National Industrial Occupational Safety and Health)の方法(非特許文献1参照)
2.AIHA(American Industrial Hygiene Association)の方法(非特許文献2参照)
 これらの方法は、労働者の通常の1日の労働時間又は1シフト時間におけるばく露量を把握するための測定で、労働者に個人ばく露測定用サンプラーを装着して測定を行う。
 サンプル位置は、呼吸域に近い位置で捕集し収集する。しかし、労働者が多い場合には、個人ばく露測定用サンプラーを全ての労働者の各人に装着させて測定を行うのは現実的でないので、オキュペイショナルハイジニスト又はインダストリアルハイジニストの判断により、労働者を、ばく露を受ける可能性が同等に高い一群(Same Exposure Group)に分け、その集合について統計学的に代表される数人をランダムに選んで測定を行う。NIOSH方式は法令遵守を目的としている。一方、AIHA方式はリスクアセスメント又はリスクマネジメントを主な目的としている。AIHA方式は、個人ばく露測定用サンプラーを装着した労働者が作業範囲を移動することにより、サンプリングの疑似ランダム性を前提として、個人ばく露を統計処理し個人ばく露情報及び作業環境情報を評価する。
 しかし、個人ばく露測定は、労働者の移動が完全にランダムとは限らず、統計学的には十分に作業環境の健康有害性因子又は危険性因子の分布を測定しているとはいえない。従って、統計学的に処理して職業性ばく露限界値と比較して評価した場合、その分布の全ての可能性は対数正規分布し、5%の人は職業性ばく露限界値を超える可能性があるという研究例や健康障害事例が報告されている。
There are two main methods for measuring and evaluating personal exposure, as defined in the United States:
1. NISH (National Industrial Occupational Safety and Health) method (see Non-Patent Document 1)
2. Method of AIHA (American Industrial Hygiene Association) (see Non-Patent Document 2)
These methods are measurements for grasping the amount of exposure during a worker's normal daily working hours or one shift time, and a worker is equipped with a sampler for measuring individual exposure.
The sample position is collected and collected near the breathing zone. However, when there are many workers, it is not practical to attach a sampler for measuring individual exposure to every worker, so it is at the discretion of an operational hygienist or industrial hygienist. The workers are divided into a group (Same Exposure Group) that is equally likely to be exposed to exposure, and several statistically representative people are randomly selected for the measurement. The NIOSH method is aimed at legal compliance. On the other hand, the AIHA method is mainly intended for risk assessment or risk management. In the AIHA system, workers with a sampler for measuring personal exposure move within the work area, and statistical processing of personal exposure and evaluation of personal exposure information and work environment information is performed on the premise of sampling pseudo-randomness. To do.
However, personal exposure measurements do not necessarily measure the distribution of health hazards or risk factors in the work environment statistically enough because the movement of workers is not completely random. . Therefore, when statistically processed and evaluated against the occupational exposure limit, all possibilities of the distribution are lognormally distributed, and 5% of people can exceed the occupational exposure limit. Examples of research and cases of health problems have been reported.
 一方、作業環境測定は、労働者が作業する範囲、又は、健康有害性因子又は危険性因子の影響が及ぶおそれのある範囲を単位作業場として定め、統計学的に適切な点に測定部を置いて測定する、法令に基づく方法(例えば、非特許文献3参照)でデザインしサンプリングするA測定とB測定とがある。
 A測定は、気中健康有害性因子の平均的な状態を把握するための測定で、統計学的処理をした結果、作業環境が管理濃度を超えないように環境管理することで間接的に個人のばく露量を管理する。また、それに加えてB測定は、労働者が健康有害性因子の発生源とともに移動する場合等でもA測定を補完する測定を行い、作業環境を管理する。
 しかし、作業環境測定は、労働時間に対する加重がされていないので単位労働時間のばく露量を十分にサンプリングできない可能性がある。また、統計学的にその分布の全ての可能性は対数正規分布し、5%の人が管理濃度を超える可能性がある。またサンプリング位置が常に呼吸域とは限らず、十分に個人のばく露量が測定できているとまではいえない可能性がある。またB測定は、個人ばく露測定と似てはいるが違いがあり、常に呼吸域でサンプリングできているとまではいえないという研究例や健康障害事例が報告されている。
On the other hand, in the measurement of work environment, the range where workers work, or the range that may be affected by health hazard factors or risk factors, is defined as the unit work place, and the measurement section is placed at a statistically appropriate point. There are A measurement and B measurement which are designed and sampled by a law-based method (for example, see Non-Patent Document 3).
A measurement is a measure for grasping the average state of air health hazard factors, and as a result of statistical processing, it is indirectly managed by environmental management so that the working environment does not exceed the control concentration. Manage the amount of exposure. In addition to this, the B measurement manages the working environment by performing a measurement that complements the A measurement even when the worker moves with the source of the health hazard factor.
However, since the working environment measurement is not weighted with respect to working hours, there is a possibility that the amount of exposure per unit working time cannot be sufficiently sampled. Also, statistically all possibilities of the distribution are lognormal, with 5% of people likely exceeding the control concentration. In addition, the sampling position is not always in the respiratory region, and it may not be possible to measure the individual exposure sufficiently. In addition, B measurement is similar to individual exposure measurement, but there is a difference, and there are reports of research examples and health impairment cases that cannot always be sampled in the respiratory region.
 すなわち、個人ばく露測定法は、労働者の保護が目的であることから保護具等の着用によって対策が完結し作業環境改善につながらない可能性がある。また作業環境測定は、作業環境管理が目的で間接的に労働者を保護することから作業環境管理で完結し、局所的又は時間的に高濃度になり、個人のばく露対策につながらない可能性がある。従って、いずれの測定方法も改善の余地がある。 In other words, the personal exposure measurement method is intended to protect workers, so wearing protective gear may prevent the measures from being completed and lead to improvement of the working environment. In addition, the measurement of the work environment may be completed by the work environment management because it indirectly protects workers for the purpose of work environment management, and it may become a high concentration locally or temporally and may not lead to individual exposure measures. is there. Therefore, any measurement method has room for improvement.
 ここで、起こり得る健康障害に応じて、ばく露量の基準値が決められている。信頼できる機関や法令は、それらをばく露限界値又は指標として定めている。それら信頼できる情報は、ACGIH(TLV-TWA,TLV-STEL,TLV-Ceiling)(非特許文献5参照)、MAK、日本産業衛生学会(許容濃度)、又はWHOや各国関連機関等から示されている。ばく露限界値又は指標は、長期間でのものと短期間でのものとがあり、これらばく露が毎日繰り返される時間を単位としてばく露量を測定する。あるいは、測定結果からこれらを時間加重単位時間として個人ばく露量を計算又は予測し評価する。例えば、日本では長期間のばく露評価時間は1日の労働時間を8時間かつ1週間の労働時間を40時間で、一測定点の時間は10分間以上と定められている。また、ACGIHの時間加重平均値(TLV-TWA)の測定は1日の労働時間(8時間)全体を通じての測定が基本となる。また短期間のばく露測定時間はACGIH(TLV-STEL,TLV-Ceiling)の15分間等が定められている。 Here, the standard value for exposure is determined according to possible health problems. Reliable agencies and legislation define them as exposure limits or indicators. Such reliable information is shown by ACGIH (TLV-TWA, TLV-STEL, TLV-Ceiling) (see Non-Patent Document 5), MAK, Japan Society for Occupational Health (Allowable Concentration), or WHO or related organizations in each country. Yes. There are exposure limit values or indicators for long periods and for short periods, and the amount of exposure is measured in units of time during which these exposures are repeated every day. Alternatively, the amount of individual exposure is calculated or predicted from the measurement results as time-weighted unit times and evaluated. For example, in Japan, the long-term exposure evaluation time is defined as 8 hours a day, 40 hours a week, and 10 minutes or more at one measurement point. The ACGIH time-weighted average (TLV-TWA) is basically measured over the entire working day (8 hours). Further, the short-term exposure measurement time is defined as 15 minutes of ACGIH (TLV-STEL, TLV-Ceiling).
 また、健康有害性因子又は危険性因子の特定、及び、個人ばく露量の予測には、代謝物質や血中健康有害性因子の濃度などを測る次の方法などある。
1.BEI:生物学的ばく露指標
2.生物学的許容値
 ACGIHのBEI(biological exposure indices:生物学的ばく露指標)や日本産業衛生学会の生物学的許容値、法令に基づく特殊健康診断等は代謝物質や血中健康有害性因子の濃度などを測る方法である。これらは医学的方法で採取されることから、一般には外部の医療機関等で採取され分析される。また、これらの方法は、経気道ばく露又は経皮ばく露の両方を調査できるが、BEI等は、健康有害性因子にばく露された労働者の体内摂取量を間接的に反映する指標であって、気中健康有害性因子の個人ばく露量ではない。
In addition, for the identification of health hazard factors or risk factors and the prediction of individual exposure, there are the following methods such as measuring the concentration of metabolites and blood health hazard factors.
1. BEI: biological exposure index Biological tolerance values ACGIH's BEI (biological exposure indices), biological tolerance values of the Japan Society for Occupational Health, special health examinations based on laws and regulations, etc. are metabolites and blood health hazard factors. This is a method for measuring density and the like. Since these are collected by a medical method, they are generally collected and analyzed by an external medical institution or the like. These methods can investigate both airway exposure or dermal exposure, but BEI is an indicator that indirectly reflects the body intake of workers exposed to health hazards. Therefore, it is not the amount of personal exposure for airborne health hazards.
 また、従来は、健康有害性因子の管理は、経気道ばく露が主であったが、知見が増えて気中健康有害性因子の濃度が抑制されるに従って気中健康有害性因子の濃度が低くなり、経気道ばく露量に比べ相対的に経皮ばく露量が大きくなることが課題となってきている。例えば、ベンゼンはその比が6割になったという報告もある(非特許文献7参照)。また、気中健康有害性因子又は危険性因子の濃度は沸点や引火点の低いものがより濃度が高くなりリスクが高いとされていたが、皮膚に付着する液体は沸点や引火点が高く蒸発しにくいものがよりリスクが高くなる場合があることが分かってきた。例えば、エポキシ系樹脂塗料などはその例である。また、衣服で覆われた内部は濃度が高くなる可能性があることが示されている(非特許文献7参照)。また、経皮ばく露について、皮膚表面の分布は、ミスト等が広く皮膚に付着するが、液滴は付着する場所が局部的で検出部がそれを捉える機会が低くなる可能性がある。従って、今後は肺だけでなく、別経路のばく露を考慮して適切に測定し管理する必要もある。 In the past, management of health hazard factors was mainly through airway exposure, but as the knowledge increased and the concentration of air health hazards was suppressed, the concentration of air health hazards decreased. It has become a problem that the amount of dermal exposure is relatively large compared to the amount of respiratory tract exposure. For example, there is a report that the ratio of benzene is 60% (see Non-Patent Document 7). In addition, the concentration of airborne health hazards or risk factors was considered to be higher due to the higher concentration and risk of those having a low boiling point or flash point, but the liquid attached to the skin has a high boiling point or flash point and evaporates. It has been found that things that are difficult to do may be more risky. For example, an epoxy resin coating is an example. Moreover, it is shown that the density | concentration may become high in the inside covered with clothes (refer nonpatent literature 7). In addition, regarding dermal exposure, the distribution of the skin surface is such that mist and the like are widely adhered to the skin, but the location where the droplet adheres is local, and the chance of the detection unit capturing it may be low. Therefore, in the future, it will be necessary to appropriately measure and manage not only the lungs but also the exposure of other routes.
 職業性ばく露履歴は、労働者が会社を移動又は転職したりして過去の履歴が参照できないことがあるため、外部と情報を共有して調査、収集して、記録保存することも希求される。 Occupational exposure histories may not be able to refer to past histories due to workers moving or changing jobs, so it is also desirable to investigate, collect information, and keep records. The
 また、職業性ばく露による健康障害を起こした健康有害性因子及びその量を特定するためには疫学研究が不可欠である。疫学研究は数年から数十年の調査期間が必要で、例えば、石綿の健康障害については発症までに約40年かかるといわれている。また、疫学調査では必要な職業性ばく露履歴、作業環境履歴、及び関連情報が記録保存されていない場合や収集した情報の種類が現時点では十分と考えられていても未来では不十分で疫学研究に役立っていない場合が多くみられる。従って、今後は未来に備えた情報収集が必要になる。 In addition, epidemiological studies are indispensable to identify the health hazard factors and the amount of health hazards caused by occupational exposure. Epidemiological studies require a survey period of several years to several decades. For example, asbestos health disorders are said to take about 40 years to develop. In addition, if the necessary occupational exposure history, work environment history, and related information are not recorded and stored in the epidemiological survey, or the type of information collected is considered sufficient at present, it will be insufficient in the future. There are many cases that are not useful. Therefore, it will be necessary to collect information for the future.
 従来の技術として一呼吸か二呼吸で死に至る酸素欠乏症や硫化水素ガス中毒などの急性中毒、放射線ばく露等についての作業環境検知自動通報システムが提案されている(特許文献1参照)。これは、作業環境測定器が発した警報の確認操作をしなかった場合、携帯端末から警報をコンピュータに送信し、電話等で関係者に通報するもので、適切な情報をリアルタイム又は適時に収集するものではない。また、そこまで至らない急性ばく露は考慮されていない。短時間の急性ばく露と回復を繰り返す不可逆的な慢性的健康影響については、時間加重平均値として短い時間とばく露量との積になり、その後の回復を繰り返し受けることによる影響の蓄積となる可能性がある。ACGIHではTLV-TWA値以上、TLV-STEL値までのばく露は15分未満で、一日当たり4回以下でなければならず、この範囲内で連続ばく露時間の間に少なくとも60分必要である。例えば、弱い酸素欠乏空気や硫化水素ガスなどを短時間繰り返し吸入することにより慢性的に酸素欠乏症状態、硫化水素ガス中毒、又は、目、歯、又は皮膚障害が生じ発症することなどが考慮されていない。 As a conventional technique, there has been proposed an automatic notification system for detecting a working environment for acute poisoning such as oxygen deficiency and hydrogen sulfide gas poisoning that causes death by one or two breaths, and radiation exposure (see Patent Document 1). This is a system in which a warning is sent from a mobile terminal to a computer and reported to the parties concerned via telephone or other means when appropriate confirmation information is collected in real time or in a timely manner, if the operation for confirming the alarm issued by the work environment measuring instrument is not performed. Not what you want. In addition, acute exposure that does not reach that point is not considered. For irreversible chronic health effects that repeat acute exposure and recovery for a short period of time, the time-weighted average is the product of the short time and the amount of exposure, and the effects of repeated subsequent recovery can accumulate. There is sex. In ACGIH, the exposure from TLV-TWA value to TLV-STEL value should be less than 15 minutes and not more than 4 times per day, and within this range, at least 60 minutes is required between continuous exposure times . For example, chronic oxygen deficiency state, hydrogen sulfide gas poisoning, or eye, tooth, or skin disorder caused by repeated inhalation of weak oxygen-deficient air or hydrogen sulfide gas for a short time is considered. Absent.
また、トンネル内作業環境を自動車で移動して粉じん濃度を測定する技術が提案されている(特許文献2参照)。また、トンネル内を移動できる建機等に搭載し、粉じん濃度、ガス濃度、温度、湿度、光透過率、風速を測定し、コンピュータにより排気ファンを制御することも提案されている(特許文献3参照)。しかし、これらの技術では、作業場全体の分布や呼吸域での測定により個人ばく露や作業環境を測定するものではなく、測定結果を分析して個人ばく露量を評価することや長期間の職業性健康管理は考慮されていない。 In addition, a technique for measuring the dust concentration by moving the working environment in the tunnel with an automobile has been proposed (see Patent Document 2). In addition, it is also proposed to control the exhaust fan by a computer by mounting it on a construction machine or the like that can move in a tunnel, measuring dust concentration, gas concentration, temperature, humidity, light transmittance, and wind speed (Patent Document 3). reference). However, these technologies do not measure individual exposure or work environment by measuring the distribution of the entire workplace or breathing area, but analyzing the measurement results to evaluate individual exposure and long-term occupations. Sexual health management is not considered.
 また、外部と情報を共有する手段も提案されている(例えば、特許文献4参照)。しかし、この技術は、法令遵守の作業環境測定法に基づく作業環境管理システムで、規制対象でない健康有害性因子又は危険性因子のリスク管理には適応できていない。また、新しい知見が分かったものや日々生まれる又は発生する因子に迅速、かつ正確に対応することは考慮されていない。 Also, a means for sharing information with the outside has been proposed (see, for example, Patent Document 4). However, this technology is a work environment management system based on a legally compliant work environment measurement method, and cannot be applied to risk management of unhealthy health hazard factors or risk factors. Also, it is not considered to respond promptly and accurately to new knowledge or factors that are born or generated daily.
 また、従来の技術として労働者が測定器を携行して測定値と時間をCD等の記録媒体に記録して、作業終了後に回収する方法も提案されている(特許文献5参照)。この方法は、予め定められた作業についてCD等の記録媒体を回収して調べることですでに起こってしまった過去の被ばく量と作業工程の把握が容易になるというものである。 Also, as a conventional technique, there has been proposed a method in which a worker carries a measuring instrument, records a measurement value and time on a recording medium such as a CD, and collects the work after completion (see Patent Document 5). This method makes it easy to grasp the past exposure amount and work process that have already occurred by collecting and examining a recording medium such as a CD for a predetermined work.
 しかし、回収したCD等で被ばく量と作業工程を調べて高濃度となった固定位置の画像を参考に原因を追究するもので、長期間又は短期間の個人ばく露量、又は、作業環境を、S.A.Roachの考え方(非特許文献4参照)や代謝又は再生モデルに基づき分析、評価して職業性健康履歴又は作業環境履歴を管理するものではない。また、新しい健康有害性又は危険性因子や知見に迅速に対応できるものではない。また、固定した位置にデジタルカメラが設置され画像がCDや通信回線を通じて記録され作業台は特定できるが、作業場を自由に移動する人には適用できるものではなく、リアルタイム又は適時にそれら情報を提供し、迅速に原因究明に役立てることができるものではない。 However, with the collected CDs, etc., the amount of exposure and the work process are investigated and the cause is investigated with reference to the image of the fixed position where the concentration is high. S. A. It does not manage occupational health history or work environment history by analysis and evaluation based on Roach's concept (see Non-Patent Document 4) or metabolism or regeneration model. Moreover, it cannot respond quickly to new health hazards or risk factors or knowledge. In addition, although a digital camera is installed at a fixed location and images are recorded through CDs and communication lines, the workbench can be specified, but it is not applicable to people who move freely in the workplace, and provides such information in real time or in a timely manner. However, it cannot be used for quick cause investigation.
 また、放射線の測定で結果を固定位置に置かれた充電/トランスミッションコンソールからダウンロードする方法が提案されている(特許文献6参照)。また、テレメトリーで送信することも記載されているがテキストデータに限られている。また、放射線で同様の測定することも提案されている(特許文献7参照)。この2つの文献には、測定できるものとして放射線の他、化学物質、又は生物学的物質が示されているが、労働安全衛生の分野の個人ばく露測定、又は作業環境測定に基づく測定ではない。また、代謝又は再生を繰り返す個人ばく露評価、個人ばく露履歴管理又は作業環境履歴管理の作業環境統括管理ができるものではない。さらに未来の疫学研究に役立つものでもない。 Also, a method has been proposed in which the result of radiation measurement is downloaded from a charging / transmission console placed at a fixed position (see Patent Document 6). Moreover, although it describes that it transmits by telemetry, it is limited to text data. It has also been proposed to perform similar measurements with radiation (see Patent Document 7). These two documents indicate chemicals or biological substances in addition to radiation that can be measured, but they are not measurements based on personal exposure measurements in the occupational safety and health field or work environment measurements. . In addition, it is not possible to perform work environment overall management such as individual exposure evaluation, personal exposure history management, or work environment history management that repeats metabolism or regeneration. Nor is it useful for future epidemiological studies.
 また、健康有害性因子の生物学的半減期と体内蓄積量については理論的な文献がある(非特許文献4参照)。しかし、毒性学から健康有害性因子を分解し排泄する代謝過程は考慮されていない。例えば、塩素系溶剤は空気中で分解されると腐食性猛毒ガスのホスゲンになる。これと同様の化学反応が体内で起こる。クロロホルムは体内に入ると肝臓でP450酵素により活性中間体が生成され、酸化、加水分解されて水溶性にして体外に排泄される。クロロホルムはこの過程で分解されて活性中間体のホスゲンになる。ホスゲンの体内毒性は反応性が高いことから細胞内の生体分子と結合して強い肝障害を起こす。 In addition, there is theoretical literature on the biological half-life and the amount accumulated in the body of health hazard factors (see Non-Patent Document 4). However, metabolic processes that decompose and excrete health hazards from toxicology are not considered. For example, when chlorinated solvents are decomposed in air, they become phosgene, a corrosive and extremely toxic gas. A similar chemical reaction occurs in the body. When chloroform enters the body, an active intermediate is produced by the P450 enzyme in the liver, oxidized and hydrolyzed to become water-soluble and excreted outside the body. Chloroform is broken down in this process to become the active intermediate phosgene. Since phosgene is highly toxic in the body, it binds to intracellular biomolecules and causes strong liver damage.
 また、肝細胞が嫌気的な環境に置かれた(血中濃度が高くなり酸化できなくなったとき)場合、還元的脱ハロゲン化が起こる。また、酸化的な環境に置かれた(血中濃度が低く十分酸化できるとき)場合、酸化的脱ハロゲン化が起こる。例えば、ハロタンは血中濃度が低い場合、酸化反応が起こり、抗体が生成されて、それが蓄積されアレルギー反応を伴う劇症肝炎が起こる。また血中濃度が高い場合は還元反応が起こり生体高分子と共有結合し肝細胞障害を起こすことも示されている(非特許文献6参照)。 Also, when hepatocytes are placed in an anaerobic environment (when the blood concentration becomes high and they can no longer be oxidized), reductive dehalogenation occurs. In addition, oxidative dehalogenation occurs when placed in an oxidative environment (when the blood concentration is low enough to oxidize). For example, when halothane is low in blood concentration, an oxidative reaction occurs, and antibodies are produced that accumulate and cause fulminant hepatitis with an allergic reaction. It has also been shown that when the blood concentration is high, a reductive reaction occurs and covalently binds to a biopolymer to cause hepatocyte damage (see Non-Patent Document 6).
 単位労働時間又は1シフト時間に時系列的にばく露された場合、先にある因子にばく露された状態で次の因子のばく露が始まるので、より多く体に吸収される可能性がある。例えば、エタノールは飲酒して代謝された後、有機溶剤作業をすると有機溶剤がより多く体に吸収されることがSato,1995らによって報告されている(非特許文献8参照)。 When exposed in time series in unit working hours or 1 shift time, exposure to the next factor starts with exposure to the previous factor, so there is a possibility that it will be absorbed more by the body . For example, it has been reported by Sato, 1995 et al. That ethanol is absorbed and metabolized and then the organic solvent is absorbed into the body more when the organic solvent operation is performed (see Non-Patent Document 8).
 このように、健康有害性因子は代謝されて生物学的半減期に従って体内蓄積量は減少する。しかし代謝だけを評価した場合は減少しているが、実際には減少したのではなく、その影響は標的臓器に移って蓄積される。このように体内で起こる影響を考慮した等価モデルはまだない。 Thus, health hazard factors are metabolized and the amount accumulated in the body decreases according to the biological half-life. However, when only metabolism is evaluated, it is decreased, but it is not actually decreased, and the effect is accumulated in the target organ. There is still no equivalent model that takes into account the effects that occur in the body.
 また、吸入量は労働強度で変化するが、一般に標準的な労働条件としては1日8時間、週40時間、労働強度は中程度で、その単位労働時間または1シフト時間の呼吸量は10m/8hとして評価されている。また、ばく露限界値は体重50kg(米国では65kg)と定められている。しかし、これらは個人又は労働条件によって変わるので個人ばく露量の評価では個人情報を考慮した方がよい場合もある。 The amount of inhalation varies depending on the labor intensity. Generally, the standard working conditions are 8 hours a day, 40 hours a week, the labor intensity is moderate, and the respiration rate per unit working time or 1 shift time is 10 m 3. / 8h. Further, the exposure limit value is set to 50 kg (65 kg in the United States). However, since these vary depending on the individual or working conditions, it may be better to consider personal information in the assessment of personal exposure.
 また、これらから分かるように、作業環境測定又は個人ばく露測定をシステム化したものはほとんどない。 Also, as can be seen from these, there is almost no systematization of work environment measurement or individual exposure measurement.
特開2002-197572号公報JP 2002-197572 A 特開平9-242500号公報JP 9-242500 A 特開2017-59240号公報JP 2017-59240 A 特開2017-59240号公報JP 2017-59240 A 特開2003-281645号公報JP 2003-281645 A 米国特許第6031454号US Pat. No. 6,031,454 米国特許第9417331号U.S. Pat. No. 9,417,331
 労働環境は、個人ばく露測定又は作業環境測定に基づき測定し、その値と基準となるばく露限界値、管理濃度、又は許容濃度等の職業性ばく露限界値と、を比較し評価して管理されている。しかし、従来の技術では、個人ばく露測定は基本8時間で時間加重平均し、作業環境測定は場の測定であることから統計学的に有意な全ての点を1時間以上かけ測定するため、測定に長時間かつ多くの経費がかかる。このことから、迅速かつ正確な測定に欠け、また新しい健康有害性因子又は危険性因子や新しい知見への迅速な対応に欠け、迅速かつ正確な個人ばく露管理や作業環境管理が行えない不都合があった。 The working environment is measured based on individual exposure measurement or work environment measurement, and the value is compared with the occupational exposure limit value such as the reference exposure limit value, control concentration, or allowable concentration. It is managed. However, with the conventional technology, the individual exposure measurement is basically time-weighted over 8 hours, and the work environment measurement is a field measurement, so all statistically significant points are measured over 1 hour. Measurement takes a long time and a lot of expenses. As a result, there is a disadvantage that rapid and accurate measurement is lacking, and there is a lack of prompt response to new health hazard factors or risk factors and new knowledge, and quick and accurate personal exposure management and work environment management cannot be performed. there were.
 また、これらの測定は、法令又はリスクアセスメントやリスクマネジメントに対応する必要がある。測定方法には法令等で定められた方法、例えば、基本として作業環境測定法又は個人ばく露測定に関するOSHA Sampling Method等に従う必要がある。また労働安全衛生法第28条の2(事業者の行うべき調査等)に基づいて行われるリスクアセスメントやリスクマネジメントに対応したより高いレベルの個人ばく露測定方法や作業環境測定方法等の測定ができることも望ましい。なお、個人ばく露(測定)は、一人の個人のばく露(測定)であっても、複数の個人からなる集団のばく露(測定)であってもよく、本明細書では、それらをまとめて「人体ばく露(測定)」とも称する。 Also, these measurements need to comply with laws and regulations, risk assessment and risk management. The measurement method should be in accordance with a method stipulated by laws and regulations, for example, the OSHA Sampling Method regarding the work environment measurement method or personal exposure measurement. In addition, measures such as risk assessment and higher-level personal exposure measurement methods and work environment measurement methods corresponding to risk assessment and risk management performed based on Article 28-2 of the Industrial Safety and Health Act (surveys to be conducted by business operators) It is also desirable to be able to do it. The individual exposure (measurement) may be the exposure (measurement) of a single individual or the exposure (measurement) of a group of a plurality of individuals. Also referred to as “human exposure (measurement)”.
 そこで、本発明は、人体ばく露測定及び/又は作業環境測定をリアルタイム又は適時に実施し、職業性ばく露を迅速に評価することができる、作業環境統括管理システム及び作業環境統括管理方法を提供することを目的とする。 Therefore, the present invention provides a work environment overall management system and a work environment overall management method that can perform human body exposure measurement and / or work environment measurement in real time or in a timely manner and can quickly evaluate occupational exposure. The purpose is to do.
 本発明の要旨構成は、以下の通りである。
 本発明の作業環境統括管理システムは、
 単数又は複数の、健康有害性因子及び/又は危険性因子を、リアルタイム又は適時に検出する第1の検出部を有する測定部と、
 前記第1の検出部により検出された前記健康有害性因子及び/又は危険性因子の情報を、リアルタイム又は適時に送信可能な通信部と、
 前記通信部から送信された、前記健康有害性因子及び/又は危険性因子の情報に基づいて、人体ばく露及び/又は作業環境を計算により評価する、計算部と、を備えたことを特徴とする。
The gist configuration of the present invention is as follows.
The work environment overall management system of the present invention is
A measurement unit having a first detection unit that detects one or more health hazard factors and / or risk factors in real time or in a timely manner;
A communication unit capable of transmitting real-time or timely information on the health hazard factor and / or risk factor detected by the first detection unit;
A calculation unit that evaluates human exposure and / or work environment by calculation based on information on the health hazard factor and / or risk factor transmitted from the communication unit; To do.
 本発明の作業環境統括管理システムでは、
 前記測定部は、
 前記人体ばく露及び/又は前記作業環境に関連した関連情報を、さらに、リアルタイム又は適時な測定により検出するように構成され、
 前記関連情報として労働者の位置及び/又は経時情報を検出する第2の検出部、前記関連情報として労働者の周囲及び/又は作業場の画像を撮像する撮像部、及び、前記関連情報として労働者の周囲及び/又は作業場の音、振動、熱、非電離放射線、及び放射線のいずれか1つ以上を感知するセンサのうち、少なくともいずれか1つ以上をさらに備えていることが好ましい。
In the work environment overall management system of the present invention,
The measuring unit is
The human body exposure and / or related information related to the work environment is further detected by real-time or timely measurement,
A second detection unit that detects worker position and / or time-lapse information as the related information, an imaging unit that captures an image of a worker's surroundings and / or workplace as the related information, and a worker as the related information It is preferable to further include at least one of sensors that sense at least one of sound, vibration, heat, non-ionizing radiation, and radiation around and / or the workplace.
 本発明の作業環境統括管理システムでは、前記通信部は、前記測定部で採取された健康有害性因子及び/又は危険性因子を分析した情報を、リアルタイム又は適時に送信可能にも構成され、
 前記通信部から送信された、前記測定部で採取された健康有害性因子及び/又は危険性因子を分析した情報、又は、前記測定部で検出された健康有害性因子及び/又は危険性因子の情報に基づいて、前記測定部の較正に必要な情報を生成する、較正部をさらに備えていることが好ましい。
In the work environment overall management system of the present invention, the communication unit is configured to be capable of transmitting information analyzing the health hazard factor and / or risk factor collected by the measurement unit in real time or in a timely manner,
Information obtained by analyzing the health hazard factor and / or risk factor collected by the measurement unit, transmitted from the communication unit, or the health hazard factor and / or risk factor detected by the measurement unit It is preferable to further include a calibration unit that generates information necessary for calibration of the measurement unit based on the information.
 本発明の作業環境統括管理システムでは、
 前記計算部は、代謝モデル又は再生モデルを用いて前記評価を行うことが好ましい。
In the work environment overall management system of the present invention,
The calculation unit preferably performs the evaluation using a metabolic model or a regeneration model.
 本発明の作業環境統括管理システムは、
 健康有害性因子及び/又は危険性因子の情報を登録可能な記憶部をさらに備えていることが好ましい。
The work environment overall management system of the present invention is
It is preferable to further include a storage unit capable of registering information on health hazard factors and / or risk factors.
 本発明の作業環境統括管理システムは、
 作業環境の外部と通信可能な、外部通信部をさらに備えていることが好ましい。
The work environment overall management system of the present invention is
It is preferable to further include an external communication unit capable of communicating with the outside of the work environment.
 本発明の作業環境統括管理方法は、
 単数又は複数の、健康有害性因子及び/又は危険性因子を、リアルタイム又は適時に検出する工程と、
 検出された前記健康有害性因子及び/又は危険性因子の情報を、リアルタイム又は適時に送信する工程と、
 送信された前記健康有害性因子及び/又は危険性因子の情報に基づいて、人体ばく露及び/又は作業環境を計算により評価する工程と、を含むことを特徴とする。
The work environment overall management method of the present invention includes:
Detecting one or more health hazards and / or risk factors in real time or in a timely manner;
Transmitting information on the detected health hazard factor and / or risk factor in real time or in a timely manner;
And evaluating the human exposure and / or work environment by calculation based on the transmitted health hazard factor and / or risk factor information.
 本発明によれば、人体ばく露測定又は作業環境測定をリアルタイム又は適時に実施し、職業性ばく露を迅速に評価することができる、作業環境統括管理システム及び作業環境統括管理方法を提供することができる。 According to the present invention, it is possible to provide a work environment overall management system and a work environment overall management method that can perform human body exposure measurement or work environment measurement in real time or in a timely manner, and can quickly evaluate occupational exposure. Can do.
本発明の一実施形態にかかる作業環境統括管理システムについて説明するための概略図である。It is the schematic for demonstrating the work environment integrated management system concerning one Embodiment of this invention. 測定部の構成要素の例について説明するための図である。It is a figure for demonstrating the example of the component of a measurement part. 測定部の一例を示す図である。It is a figure which shows an example of a measurement part. 測定部の他の例を示す図である。It is a figure which shows the other example of a measurement part. 測定部の他の例を示す図である。It is a figure which shows the other example of a measurement part. 測定部の他の例を示す図である。It is a figure which shows the other example of a measurement part. 測定部の他の例を示す図である。It is a figure which shows the other example of a measurement part. 測定部の他の例を示す図である。It is a figure which shows the other example of a measurement part. 測定部の他の例を示す図である。It is a figure which shows the other example of a measurement part. 測定部とシステム計算部とを備えた作業環境統括管理システムの一例を示す図である。It is a figure which shows an example of the work environment integrated management system provided with the measurement part and the system calculation part. 測定部とシステム計算部とを備えた作業環境統括管理システムの一例を示す図である。It is a figure which shows an example of the work environment integrated management system provided with the measurement part and the system calculation part. 呼吸用保護具に測定部が取り付けられた例を示している。An example in which a measuring unit is attached to a respiratory protective device is shown. 体内に吸収されて代謝又は再生される過程を表した図である。It is a figure showing the process by which it is absorbed in the body and is metabolized or regenerated. 体内に吸収されて代謝又は再生される過程を表した図である。It is a figure showing the process by which it is absorbed in the body and is metabolized or regenerated. 体内に吸収されて代謝又は再生される過程を表した図である。It is a figure showing the process by which it is absorbed in the body and is metabolized or regenerated. 経気道ばく露の等価回路の例を示す図である。It is a figure which shows the example of the equivalent circuit of a respiratory tract exposure. 経皮吸収ばく露の等価回路の例を示す図である。It is a figure which shows the example of the equivalent circuit of percutaneous absorption exposure. ばく露限界設定/酵素活性値設定部について、トランジスタを用いたモデルを示す図である。It is a figure which shows the model using a transistor about the exposure limit setting / enzyme activity value setting part. 本発明の他の実施形態にかかる作業環境統括管理システムについて説明するための図である。It is a figure for demonstrating the work environment integrated management system concerning other embodiment of this invention.
 以下、本発明の実施形態について図面を参照して詳細に例示説明する。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
<作業環境統括管理システム>
 図1は、本発明の一実施形態にかかる作業環境統括管理システムについて説明するための概略図である。
<Work environment management system>
FIG. 1 is a schematic diagram for explaining a work environment overall management system according to an embodiment of the present invention.
 図1に示すように、本実施形態の作業環境統括管理システムは、測定部1と、通信部2と、制御部3と、分析較正部4と、システム計算部5と、外部通信部6と、を備えている。図示例では、測定部1、通信部2、及び制御部3は、作業場内で、労働者に取り付けられ又は固定点に配置されており、一方で、分析較正部4、システム計算部5、及び外部通信部6は、作業場の外に配置されている。なお、例えば、広い工場等の作業場の場合に、分析較正部4、システム計算部5、及び外部通信部6は、作業場の内部に配置することもできる。 As shown in FIG. 1, the work environment overall management system of the present embodiment includes a measurement unit 1, a communication unit 2, a control unit 3, an analysis calibration unit 4, a system calculation unit 5, an external communication unit 6, and the like. It is equipped with. In the illustrated example, the measurement unit 1, the communication unit 2, and the control unit 3 are attached to a worker or arranged at a fixed point in the workplace, while the analysis calibration unit 4, the system calculation unit 5, and The external communication unit 6 is disposed outside the work place. For example, in the case of a workplace such as a large factory, the analysis / calibration unit 4, the system calculation unit 5, and the external communication unit 6 can be arranged inside the workplace.
 測定部1は、単数又は複数の、健康有害性因子及び/又は危険性因子を、リアルタイム又は適時に検出するように構成されたものである。本実施形態では、測定部1は、単数又は複数の健康有害性因子及び/又は危険性因子を検出する第1の検出部11(図2参照)、及び、検出された健康有害性因子及び/又は危険性因子の情報を、リアルタイム又は適時に送信可能な通信部13を備えている。 The measuring unit 1 is configured to detect one or more health hazard factors and / or risk factors in real time or in a timely manner. In the present embodiment, the measurement unit 1 includes a first detection unit 11 (see FIG. 2) that detects one or more health hazard factors and / or risk factors, and the detected health hazard factors and / or Or the communication part 13 which can transmit the information of a risk factor in real time or timely is provided.
 図1に示す例では、測定部1は、労働者(図示例では5人の労働者の各人)及び作業場の所定位置(図示例では、統計学に有意となり得る配置の一例として、この平面視で、矩形の頂点に対応する4箇所と、矩形の2つ対角線上の交点に対応する1箇所の計5箇所)の両方に設置している。労働者に取り付けた測定部1によれば、第1の検出部11により、特に、人体ばく露(個人又は複数の個人のばく露)情報のために、単数又は複数の、健康有害性因子及び/又は危険性因子を検出することができ、また、作業場の所定位置に設置した測定部1によれば、第1の検出部11により、特に、作業環境情報のために、健康有害性因子及び/又は危険性因子を検出することができる。一方で、本発明は、この場合には限られず、労働者及び作業場の所定位置のいずれかのみに測定部1を設置して、人体ばく露情報及び作業環境情報のいずれか一方の情報のみのために、健康有害性因子及び/又は危険性因子を検出することもできる。第1の検出部11は、検知器(detector)とすることができ、例えば、半導体式検知器、接触燃焼式検知器、電気抵抗式検知器、光イオン化検知器等とすることができる。特に、第1の検出部11及び第2の検出部12による測定結果は、測定値として情報の送受信を行うことが好ましく、従って、第1の検出部11及び第2の検出部12が、それぞれ、検出した健康有害性因子及び/又は危険性因子や関連情報を数値化する検知メーター等を備えることが好ましい。あるいは、それらを目視で読み取って、手動で送受信することもでき、あるいは、測定結果を画像として撮像する等したデータを送受信することもできる。 In the example shown in FIG. 1, the measurement unit 1 is a plane (as an example of an arrangement that can be statistically significant in the illustrated example) and a predetermined position of the workplace (in the illustrated example, each of five workers). Visually, it is installed at both of four locations corresponding to the vertexes of the rectangle and one location corresponding to the intersections of the two diagonals of the rectangle (a total of five locations). According to the measuring part 1 attached to the worker, the first detection part 11 makes it possible to identify one or more health hazard factors and information, particularly for human exposure (individual or multiple personal exposure) information. The risk factor can be detected, and according to the measuring unit 1 installed at a predetermined position of the workplace, the first detection unit 11 can detect the health hazard factor and A risk factor can be detected. On the other hand, the present invention is not limited to this case, and the measurement unit 1 is installed only at a predetermined position of the worker or the workplace, and only the information on one of human body exposure information and work environment information is stored. Therefore, health hazard factors and / or risk factors can also be detected. The 1st detection part 11 can be used as a detector (detector), for example, can be used as a semiconductor type detector, a contact combustion type detector, an electrical resistance type detector, a photoionization detector, etc. In particular, the measurement results obtained by the first detection unit 11 and the second detection unit 12 preferably transmit and receive information as measurement values. Therefore, the first detection unit 11 and the second detection unit 12 respectively It is preferable to provide a detection meter for digitizing the detected health hazard factor and / or risk factor and related information. Alternatively, they can be visually read and manually transmitted or received, or data obtained by capturing the measurement result as an image can be transmitted and received.
 図2は、測定部1の構成要素の例について説明するための図である。この例において、測定部1は、上記第1の検出部11、第2の検出部12、通信部13、撮像部14、センサ15、制御部16、記憶部17、表示部及び/又は操作部18、及び音声案内部19を備えている。 FIG. 2 is a diagram for explaining an example of components of the measurement unit 1. In this example, the measurement unit 1 includes the first detection unit 11, the second detection unit 12, the communication unit 13, the imaging unit 14, the sensor 15, the control unit 16, the storage unit 17, the display unit, and / or the operation unit. 18 and a voice guidance unit 19 are provided.
 本実施形態では、測定部1は、人体ばく露情報及び/又は作業環境情報に関連した関連情報を、さらに、リアルタイム又は適時な測定により収集するように構成されている。第2の検出部12は、上記関連情報として、労働者の位置及び/又は経時情報を検出するように構成された検知器とすることができる。位置情報は、例えば、GPS又はGPS固定点の差分の位置検出、光学的位置検出、又は音響的位置検出等により行うことができる。また、経時情報は、第2の検出部12が時計機能等を有することにより検出を行うことができる。第2の検出部12は、例えば、労働者の作業履歴の測定点を特定し、その測定を行った時間を特定して、高濃度となった作業が行われた位置と時間を特定することができる。また、第2の検出部12は、上記関連情報として、温度、湿度、気圧、気流等の情報を検出する検知器とすることもできる。人体ばく露因子や作業環境因子は、その発散や飛散が気温、湿度、気圧、気流等の影響を受け、また労働者の状態も発汗や体温で影響を受ける。さらに、温度、湿度等で測定部の特性も変わる。これらを考慮して補正するために、温度、湿度、気圧、気流等の気象条件又は生体情報を計測しておくことが好ましい。 In this embodiment, the measurement unit 1 is configured to further collect related information related to human body exposure information and / or work environment information by real-time or timely measurement. The second detection unit 12 may be a detector configured to detect worker position and / or time-lapse information as the related information. The position information can be performed by, for example, position detection of a difference between GPS or GPS fixed points, optical position detection, or acoustic position detection. Further, the time-lapse information can be detected by the second detection unit 12 having a clock function or the like. The second detection unit 12 specifies, for example, a measurement point of a worker's work history, specifies a time when the measurement is performed, and specifies a position and time at which the work with high concentration was performed. Can do. Moreover, the 2nd detection part 12 can also be used as the detector which detects information, such as temperature, humidity, atmospheric pressure, and airflow, as said related information. Human body exposure factors and work environment factors are affected by the divergence and scattering of air temperature, humidity, air pressure, airflow, etc., and the state of workers is also affected by sweating and body temperature. Furthermore, the characteristics of the measurement unit also change depending on temperature, humidity, and the like. In order to correct in consideration of these, it is preferable to measure meteorological conditions such as temperature, humidity, atmospheric pressure, airflow, or biological information.
 通信部13は、各種情報(例えば、第1の検出部11により検出された、単数又は複数の、健康有害性因子及び/又は危険性因子の情報、及び、第2の検出部12や後述の機能部により検出された上記関連情報)を、通信部2との間で送信及び/又は受信するように構成されている。通信部13は、送信機及び/又は受信機を有する。これにより、通信部2への中継用の役割を果たすことができる。一方で、通信部13は、各種情報を、他の機能部(通信部2、制御部3、分析較正部4、システム計算部5、及び外部通信部6)との間でも送信及び/又は受信するように構成されていてもよい。
 通信部13は、人体ばく露測定の場合は、無線通信とすることが好ましく、一方で、作業場(作業環境)の測定の場合は、有線通信とすることが好ましい。無線通信では、労働者が自由に移動することができるが、そのためには電力供給に限りがあり省電力及び小型化をすることが好ましくなる。有線通信では、電力の供給や無線通信の中継の機能があり、無線通信の省電力化にもつながる。また、固定点を基準に移動点を特定するのにもつながることから無線通信と有線通信との併用がより好ましい。このような通信部13は、任意の既知の無線通信(近距離無線通信の場合は、例えば、Bluetooth(登録商標)、又はWi-Fi(登録商標))、あるいは、任意の既知の有線通信を用いることができる。システム計算部5及び後述の制御部16は、IPアドレスを有するものとすることが好ましい。
The communication unit 13 includes various types of information (for example, information on one or more health hazard factors and / or risk factors detected by the first detection unit 11, the second detection unit 12, and later-described information). The related information detected by the function unit is transmitted to and / or received from the communication unit 2. The communication unit 13 includes a transmitter and / or a receiver. Thereby, the role for the relay to the communication part 2 can be played. On the other hand, the communication unit 13 transmits and / or receives various types of information to and from other functional units (communication unit 2, control unit 3, analysis calibration unit 4, system calculation unit 5, and external communication unit 6). It may be configured to.
The communication unit 13 is preferably wireless communication in the case of human exposure measurement, and is preferably wired communication in the case of measurement of a work place (work environment). In wireless communication, workers can move freely, but for that purpose, power supply is limited and it is preferable to save power and reduce the size. Wired communication has functions of supplying power and relaying wireless communication, leading to power saving in wireless communication. Moreover, since it leads also to specifying a movement point on the basis of a fixed point, combined use with wireless communication and wired communication is more preferable. Such a communication unit 13 performs any known wireless communication (in the case of short-range wireless communication, for example, Bluetooth (registered trademark) or Wi-Fi (registered trademark)), or any known wired communication. Can be used. It is preferable that the system calculation unit 5 and the control unit 16 described later have an IP address.
 撮像部14は、上記関連情報として労働者の周囲及び/又は作業場の画像を撮像するように構成されている。画像は、静止画であっても動画であっても良い。撮像部14による撮像を第1の検出部11による健康有害性因子及び/又は危険性因子の検出とリアルタイム又は適時に連動させることにより、撮像部14によって撮像された各種光の画像(例えば可視光、赤外線等の画像)によって、(ばく露等の)発生場所や発生状況や発生量を、画像処理又は目視により予測することができる。これにより、人体ばく露情報及び/又は作業環境情報の測定値と併せて、人体ばく露及び/又は作業環境の状態をより正確に評価し、適切な対策を行うことができる。撮像部14は、任意の既知のカメラ等(例えば、CCD又はCMOSイメージセンサ)とすることができる。 The imaging unit 14 is configured to capture an image of the worker's surroundings and / or the workplace as the related information. The image may be a still image or a moving image. By linking the imaging by the imaging unit 14 with the detection of the health hazard factor and / or the risk factor by the first detection unit 11 in real time or in a timely manner, various images of light captured by the imaging unit 14 (for example, visible light) , An infrared image or the like), the generation location (such as exposure), the generation situation, and the generation amount can be predicted by image processing or visual observation. Thereby, together with the measurement values of the human body exposure information and / or the work environment information, the state of the human body exposure and / or the work environment can be more accurately evaluated, and appropriate measures can be taken. The imaging unit 14 can be any known camera or the like (for example, a CCD or CMOS image sensor).
 センサ15は、上記関連情報として、労働者の周囲及び/又は作業場の音、振動、熱、非電離放射線、及び放射線等の情報を感知して取得することができるものである。例えば、音(現場の音や労働者の声など)はマイク等により取得することができ、振動は振動センサにより取得することができ、熱は熱センサにより取得することができ、非電離放射線、及び放射線等は光線又は放射線センサにより取得することができる。この場合も、第1の検出部11による健康有害性因子及び/又は危険性因子の検出とリアルタイム又は適時に連動させること等により、人体ばく露情報及び/又は作業環境情報の測定値と併せて、人体ばく露及び/又は作業環境の状態をより正確に評価し、適切な対策を行うことができる。 The sensor 15 is capable of sensing and acquiring information such as sound, vibration, heat, non-ionizing radiation, and radiation around the worker and / or the workplace as the related information. For example, sound (such as on-site sound or worker voice) can be obtained with a microphone, vibration can be obtained with a vibration sensor, heat can be obtained with a thermal sensor, non-ionizing radiation, And radiation etc. can be acquired with a light beam or a radiation sensor. Also in this case, the detection of the health hazard factor and / or the risk factor by the first detection unit 11 is linked with the measurement value of the human body exposure information and / or the work environment information by linking in real time or timely. It is possible to more accurately evaluate the human exposure and / or the state of the work environment and take appropriate measures.
 制御部16は、第1の検出部11、第2の検出部12、通信部13、撮像部14、センサ15、記憶部17、表示部及び/又は操作部18、及び音声案内部19に所定の機能を発揮させるように制御するものである。制御部16は、例えば、任意の既知のプロセッサとすることができる。 The control unit 16 provides predetermined information to the first detection unit 11, the second detection unit 12, the communication unit 13, the imaging unit 14, the sensor 15, the storage unit 17, the display unit and / or the operation unit 18, and the voice guidance unit 19. It is controlled so that the function of is exhibited. The control unit 16 can be, for example, any known processor.
 記憶部17は、種々の情報を記憶するように構成されており、特に、単数又は複数の健康有害性因子及び/又は危険性因子に関する情報を記憶するように構成されている。記憶部17は、任意の既知のメモリとすることができる。 The storage unit 17 is configured to store various information, and in particular, is configured to store information on one or more health hazard factors and / or risk factors. The storage unit 17 can be any known memory.
 上記の健康有害因子及び/又は危険性因子としては、任意の既知の健康有害因子及び/又は危険性因子を含むことができる。健康有害性因子及び/又は危険性因子の物理的又は化学的情報は、例えば、WHO、各国、又はその他の信頼できる機関からWebや文書で提供されることができる。主要な情報としては、毒性学的情報、ばく露限界値、及び沸点や引火点等がある。これら公表されている情報からリスクアセスメント、リスクマネジメント又は法令遵守に求められるばく露限界値、引火点等を、例えば記憶部17に予め登録しておくことができる。 The health hazard factor and / or risk factor may include any known health hazard factor and / or risk factor. Physical or chemical information on health hazards and / or risk factors can be provided on the web or in documents from, for example, WHO, countries, or other trusted agencies. Key information includes toxicological information, exposure limits, boiling point and flash point. The exposure limit value, flash point, etc. required for risk assessment, risk management or legal compliance from these published information can be registered in advance in the storage unit 17, for example.
 一方で、本発明では、健康有害因子及び/又は危険性因子としては、既知の因子のみならず、新たな健康有害因子及び/又は危険性因子に関する知見(当該因子及びその測定手法等)が得られた場合には、それらの新たな健康有害因子及び/又は危険性因子を含むようにすることもできる。具体的には、通信部2(13)を介して当該情報を収集して、記憶部17に、当該情報を、登録、更新、及び削除することができる。当該情報を収集するに当たっては、外部から外部通信部6を介して情報を送信しても良いし、あるいは、システム計算部5がAI機能を有するプロセッサ等を備えることにより、当該AI機能により、後述の通信部5a及び外部通信部6を介してWeb又は文書から自動で収集して、通信部2(13)及び通信部5aを介して、記憶部17に送信しても良い。AI機能は、例えば、通信部(送信機及び/又は受信機)を有し、上記情報の提供先のWebページに定期的、又は適時にアクセスし、記憶部17に登録された情報と対比させて(この場合、記憶部17にもアクセスする)、変更、追加、削除等された情報を認識して、最新の情報に更新等するようにプログラムされたものとすることができる。 On the other hand, in the present invention, not only known factors but also new health hazard factors and / or risk factors knowledge (such factors and measurement methods thereof) are obtained as health hazard factors and / or risk factors. If present, these new health hazards and / or risk factors may be included. Specifically, the information can be collected via the communication unit 2 (13), and the information can be registered, updated, and deleted in the storage unit 17. In collecting the information, the information may be transmitted from the outside via the external communication unit 6, or the system calculation unit 5 may include a processor having an AI function, and the AI function will be described later. May be automatically collected from the Web or a document via the communication unit 5a and the external communication unit 6 and transmitted to the storage unit 17 via the communication unit 2 (13) and the communication unit 5a. The AI function includes, for example, a communication unit (transmitter and / or receiver), accesses the Web page to which the information is provided regularly or in a timely manner, and compares the information with the information registered in the storage unit 17. (In this case, the storage unit 17 is also accessed), and information that has been changed, added, or deleted can be recognized and updated to the latest information.
 表示部及び/又は操作部18は、例えば、労働者等へ人体ばく露情報及び/又は作業環境情報を表示するように構成された表示部とすることができる。表示部は、例えば任意の既知のディスプレイとすることができる。本実施形態では、表示部は、上記関連情報も表示することができるように構成されている。これらの表示は、労働者にとって分かりやすいように編集された表示とすることができる。また、表示部及び/又は操作部18は、例えば、測定部1を操作する操作部とすることができる。操作部は、例えば、発せられた警報等のアラームを解除する、あるいは、操作部は、労働者が安全又は危険であることを、通信部13及び外部通信部6を介して外部に伝えるように操作することができる。操作部は、任意の既知のプロセッサとすることができる。本実施形態では、表示部及び/又は操作部18は、表示部及び操作部の両方を備えているが、いずれか一方のみを備えていても良い。 The display unit and / or the operation unit 18 can be, for example, a display unit configured to display human body exposure information and / or work environment information to workers and the like. The display unit can be, for example, any known display. In this embodiment, the display unit is configured to display the related information. These displays can be edited so as to be easily understood by workers. In addition, the display unit and / or the operation unit 18 can be an operation unit that operates the measurement unit 1, for example. For example, the operation unit cancels an alarm such as a generated alarm, or the operation unit informs the outside that the worker is safe or dangerous through the communication unit 13 and the external communication unit 6. Can be operated. The operating unit can be any known processor. In the present embodiment, the display unit and / or the operation unit 18 includes both the display unit and the operation unit, but may include only one of them.
 音声案内部19は、例えば、労働者等へ人体ばく露情報及び/又は作業環境情報を音声により伝達するように構成されてなる。音声案内部19は、例えば、任意の既知のスピーカ等とすることができる。本実施形態では、音声案内部19は、上記関連情報も音声で伝達することができるように構成されている。なお、表示や音声案内に加えて、あるいは、表示や音声案内に代えて、表示や音声案内により提供する情報を、振動を発生させることにより伝達する、振動発生部を備えるものとしても良い。 The voice guide unit 19 is configured to transmit, for example, human exposure information and / or work environment information to workers and the like by voice. The voice guidance unit 19 may be, for example, any known speaker. In the present embodiment, the voice guidance unit 19 is configured so that the related information can also be transmitted by voice. In addition to the display and the voice guidance, or in place of the display and the voice guidance, a vibration generation unit that transmits information provided by the display and the voice guidance by generating a vibration may be provided.
 図3は、測定部1の一例を示す図である。図3は、バンド部91を有する腕時計型の測定部1の例である。図3に示す例の測定部1は、例えば、経皮ばく露を測定するのに用いることができる。経皮ばく露を測定する場合、経皮ばく露は、皮膚に付着した健康有害性因子が皮膚を浸透して毛細血管に入る経路であり、皮膚面で測定する必要がある。そのため、測定部1は、例えば皮膚面に付ける形状とすることが好ましい。図3に示す例では、測定部1をバンド部91で労働者の手首に取り付けて皮膚面に付けることができる。また、皮膚面に付着する健康有害性因子及び/又は危険性因子(例えば塗料など)は、直接、測定部1の第1の検出部11の表面の空気口に付着することがある。そこで、表面を清浄に保つための適切なフィルターを設け、単位労働時間又は1シフト時間が終了して取り外した後、次に装着する前に清浄にするか交換して、空気口を初期状態に保つことが好ましい。また、携帯するには小型化することが好ましく、また、電源は、電池、充電可能な電池、又は外部給電に頼らざるを得ず省電力化が好ましいことから、図2に示した要素のうち、第1の検出部11、通信部13、及び制御部16のみから構成されることも好ましい。 FIG. 3 is a diagram illustrating an example of the measurement unit 1. FIG. 3 shows an example of a wristwatch-type measuring unit 1 having a band unit 91. The measurement unit 1 in the example shown in FIG. 3 can be used, for example, to measure percutaneous exposure. When measuring the transdermal exposure, the transdermal exposure is a path through which the health hazard factor adhering to the skin penetrates the skin and enters the capillaries and needs to be measured on the skin surface. Therefore, it is preferable that the measurement unit 1 has a shape attached to the skin surface, for example. In the example shown in FIG. 3, the measuring unit 1 can be attached to the skin of the worker by attaching it to the wrist of the worker with the band unit 91. In addition, health hazard factors and / or risk factors (for example, paint) adhering to the skin surface may directly adhere to the air openings on the surface of the first detection unit 11 of the measurement unit 1. Therefore, an appropriate filter is provided to keep the surface clean, and after the unit labor time or one shift time is completed and removed, it is cleaned or replaced before the next installation, and the air port is returned to the initial state. It is preferable to keep. Moreover, since it is preferable to reduce in size for carrying, and since a power source must rely on a battery, a rechargeable battery, or external power supply, power saving is preferable. It is also preferable that the first detection unit 11, the communication unit 13, and the control unit 16 only be included.
 図4A~図4Fは、測定部1の他の例を示す図である。図4A、図4Bに示す測定部1は、小型化したものである。図4A、図4Bにおいては、皮膚に着ける場合及び呼吸域に着ける場合の両方に用いることができる測定部1として、ペンダント型(図4A参照)及びピン取り付け型(図4B参照)が例示されている。この例も、図3の例と同様の機能を有し、より一般的に使用できる一例である。好ましくは、図4Cに示す例のように、測定部1は、半導体技術等を使ってさらに小型化し、貼り付け面92を有するようにして、皮膚表面に張り付けられるか、着衣に付けられるようにする。また、図4D、図4Eに示す例のように、小型化した上で、労働者の着衣や持ち物等のいずれかに組み込み可能なように構成する(図4Eは、より立体的な形状の例である)ことも好ましい。また、図4Fに示す例のように、制御部16が通信部16aを有することにより中継を行うこともできる。 4A to 4F are diagrams illustrating other examples of the measurement unit 1. FIG. The measurement unit 1 shown in FIGS. 4A and 4B is downsized. In FIG. 4A and FIG. 4B, a pendant type (see FIG. 4A) and a pin attachment type (see FIG. 4B) are illustrated as the measurement unit 1 that can be used both when wearing the skin and when breathing. Yes. This example is also an example that has the same function as the example of FIG. 3 and can be used more generally. Preferably, as in the example shown in FIG. 4C, the measurement unit 1 is further downsized using semiconductor technology or the like, and has an attachment surface 92 so that the measurement unit 1 is attached to the skin surface or attached to clothing. To do. Further, as shown in the examples shown in FIGS. 4D and 4E, it is configured so that it can be incorporated into any of clothes, belongings, etc. of a worker after being downsized (FIG. 4E is an example of a more three-dimensional shape). It is also preferable that In addition, as in the example illustrated in FIG. 4F, the control unit 16 may include the communication unit 16a to perform relaying.
 図5A及び図5Bは、測定部1とシステム計算部5とを備えた作業環境統括管理システムの一例を示す図であり、特に、図5Bは、測定部1の制御部16が通信部16aを有することにより中継機能を有する場合を示している。図5Aに示す例では、測定部1は通信部13(送信機及び/又は受信機)を有しており、システム計算部5は通信部5a(送信機及び/又は受信機)を有している。図5Bに示す例では、測定部1は、通信部13、及び、通信部16aを有する制御部16を有しており、システム計算部5は通信部5aを有している。図5A及び図5Bに示す例では、ネットワーク上に分散する測定部1を検索する際に、システム計算部5と測定部1との両方に接続条件、使用者等必要な情報を設定することによりデータ制御を行っている。例えば、外部から測定部1及びシステム計算部5に接続するに当たって、ユーザIDやパスワード等を要求するように設定することができる。 5A and 5B are diagrams illustrating an example of a work environment overall management system including the measurement unit 1 and the system calculation unit 5. In particular, in FIG. 5B, the control unit 16 of the measurement unit 1 includes the communication unit 16a. The case where it has a relay function by having is shown. In the example shown in FIG. 5A, the measurement unit 1 includes a communication unit 13 (transmitter and / or receiver), and the system calculation unit 5 includes a communication unit 5a (transmitter and / or receiver). Yes. In the example illustrated in FIG. 5B, the measurement unit 1 includes the communication unit 13 and the control unit 16 including the communication unit 16a, and the system calculation unit 5 includes the communication unit 5a. In the example shown in FIG. 5A and FIG. 5B, when searching for the measurement units 1 distributed on the network, the connection condition, the user and other necessary information are set in both the system calculation unit 5 and the measurement unit 1. Data control is performed. For example, when connecting to the measurement unit 1 and the system calculation unit 5 from the outside, it can be set to request a user ID, a password, or the like.
 図5Cは、呼吸用保護具に測定部1が取り付けられた例を示している。図5Cに示す例は、半導体技術等により、小型化したものであり、低消費電力であり、また、呼吸域でのサンプリングが可能である。なお、図5Cに示す例では、測定部1及び通信部2は、呼吸用保護具に取り付けられているが、フィルターの外部に取り付けることもでき(図5C参照)、又は、フィルダーの内部に取り付けることもでき、あるいは、保護衣等に取り付けることもできる。 FIG. 5C shows an example in which the measuring unit 1 is attached to a respiratory protective device. The example shown in FIG. 5C is miniaturized by semiconductor technology or the like, has low power consumption, and can be sampled in the respiratory region. In the example shown in FIG. 5C, the measurement unit 1 and the communication unit 2 are attached to the respiratory protective device, but can also be attached to the outside of the filter (see FIG. 5C) or attached to the inside of the filter. It can also be attached to protective clothing or the like.
 図1に戻って、通信部2は、種々の情報(例えば、測定部1の第1の検出部11により検出された健康有害性因子及び/又は危険性因子の情報や、測定部1の第2の検出部12や他の機能部により検出された上記関連情報)を、リアルタイム又は適時に送信及び/又は受信可能な送信機及び/又は受信機を有する。本実施形態では、通信部2は、測定部1、制御部3、分析較正部4、システム計算部5、及び外部通信部6との間で通信(送信及び/又は受信)可能である。このような通信部2としては、任意の既知の無線通信又は有線通信を用いることができる。 Returning to FIG. 1, the communication unit 2 is configured to output various information (for example, information on health hazard factors and / or risk factors detected by the first detection unit 11 of the measurement unit 1, The above-mentioned related information detected by the two detection units 12 and other functional units) and / or a transmitter capable of transmitting and / or receiving in a timely manner. In the present embodiment, the communication unit 2 can communicate (transmit and / or receive) with the measurement unit 1, the control unit 3, the analysis calibration unit 4, the system calculation unit 5, and the external communication unit 6. As such a communication unit 2, any known wireless communication or wired communication can be used.
 制御部3は、測定部1及び通信部2を、所定の機能を発揮させるように制御するものである。制御部3は、任意の既知のプロセッサとすることができる。制御部3により、例えば、作業場の内外での通信障害が生じた場合でも、測定部1及び通信部2に所定の機能を発揮させることができる。 The control unit 3 controls the measurement unit 1 and the communication unit 2 so as to exhibit a predetermined function. The control unit 3 can be any known processor. The control unit 3 can cause the measurement unit 1 and the communication unit 2 to perform predetermined functions even when, for example, a communication failure occurs inside or outside the workplace.
 ここで、測定部1は、例えば分析用に、健康有害性因子及び/又は危険性因子を採取するようにさらに構成されたものとすることができる。測定部1は、例えば、活性炭やシリカゲルによる健康有害性因子及び/又は危険性因子の吸着を行う吸着部(例えば、吸着材、吸着剤、吸着シート等)や、健康有害性因子及び/又は危険性因子を含んだ空気の直接の採取を行う採取部(例えば、吸引器)を有するものとすることができる。分析較正部4は、通信部(送信機及び/又は受信機)4a、計算部、及び分析部を備えている。分析較正部4は、分析部により、測定部1により採取された健康有害性因子及び/又は危険性因子の分析を行うように構成されている。分析部は、例えば、ガスクロマトグラフィー分析器、液体クロマトグラフィー分析器、質量分析器等の分析装置による分析等を行うものとすることができる。なお、測定部1により採取された健康有害性因子及び/又は危険性因子は、分析較正部4へ物理化学的に安定な状態で運ばれ測定及び分析される。 Here, the measurement unit 1 may be further configured to collect health hazard factors and / or risk factors, for example, for analysis. The measuring unit 1 is, for example, an adsorbing unit (for example, an adsorbent, an adsorbent, an adsorbing sheet, etc.) that adsorbs health hazard factors and / or risk factors by activated carbon or silica gel, health hazard factors and / or dangers. It can have a collection part (for example, a suction device) which performs direct collection of the air containing a sex factor. The analysis calibration unit 4 includes a communication unit (transmitter and / or receiver) 4a, a calculation unit, and an analysis unit. The analysis calibration unit 4 is configured to analyze the health hazard factor and / or the risk factor collected by the measurement unit 1 by the analysis unit. An analysis part shall perform analysis by analyzers, such as a gas chromatography analyzer, a liquid chromatography analyzer, a mass analyzer, etc., for example. The health hazard factor and / or risk factor collected by the measurement unit 1 are transported to the analysis calibration unit 4 in a physicochemically stable state and measured and analyzed.
 ところで、測定部1の第1の検出部11及び第2の検出部12は、それら検出部11、12の感度特性がそれら測定対象因子により異なることがあるため、較正が必要となることがある。また、同じ測定対象因子であっても長期間使用すると感度が変化する。また測定回路も経年変化することから較正が必要となることがある。さらにその機能のアップデートなど保守が必要になる。従って、測定部1を最適に保つことが好ましく、本実施形態では、分析較正部4及びシステム計算部5によりそれを行う。 Incidentally, the first detection unit 11 and the second detection unit 12 of the measurement unit 1 may need to be calibrated because the sensitivity characteristics of the detection units 11 and 12 may vary depending on the measurement target factors. . Moreover, even if it is the same measurement object factor, a sensitivity will change if it is used for a long time. Calibration may also be necessary because the measurement circuit also changes over time. Furthermore, maintenance such as updating the function is required. Therefore, it is preferable to keep the measurement unit 1 optimal, and in the present embodiment, this is performed by the analysis calibration unit 4 and the system calculation unit 5.
 通信部2は、測定部1で採取された健康有害性因子及び/又は危険性因子を分析部で分析した情報を、リアルタイム又は適時に送信可能にも構成されている。そして、分析較正部4は、通信部(送信機及び又は受信機)4aを有し、通信部2、4aを介して、測定部1で採取された健康有害性因子及び/又は危険性因子を分析した情報をシステム計算部5に送信することができる。システム計算部5は、計算部を有し、測定部1で採取された健康有害性因子及び/又は危険性因子を分析した情報に基づいて、較正の必要性等を評価する。システム計算部5は、当該評価結果に基づいて、あるいは、定期的又は適時に、あるいは、新たな健康有害性因子及び/又は危険性因子に関する知見が得られた場合等に、分析較正部4に、測定部1の較正に必要な情報を生成するように命じるように構成される。分析較正部4は、通信部4a、5aを介したシステム計算部5からの命令を受けて、計算部により、測定部1の較正に必要な情報を生成する。
 あるいは、システム計算部5は、測定部1で検出した健康有害性因子及び/又は危険性因子の情報や関連情報に基づいて、測定部1の較正の必要性等を評価して、当該評価結果に基づいて、分析較正部4に、測定部1の較正に必要な情報を生成するように命じるように構成されていてもよい。
 このように、分析較正部4は、測定部1で採取された健康有害性因子及び/又は危険性因子を分析部で分析した情報、又は、測定部1で検出した健康有害性因子及び/又は危険性因子の情報(及び関連情報)に基づいて、測定部1の較正に必要な情報を生成するようにも構成されている。この例では、分析較正部4は、該情報を生成するためのプロセッサを有する。
The communication unit 2 is configured to be able to transmit information obtained by analyzing the health hazard factor and / or risk factor collected by the measurement unit 1 in real time or in a timely manner. The analysis calibration unit 4 includes a communication unit (transmitter and / or receiver) 4a, and the health hazard factor and / or risk factor collected by the measurement unit 1 via the communication units 2 and 4a. The analyzed information can be transmitted to the system calculation unit 5. The system calculation unit 5 includes a calculation unit, and evaluates the necessity of calibration based on information obtained by analyzing the health hazard factor and / or risk factor collected by the measurement unit 1. Based on the evaluation result, the system calculation unit 5 periodically or in a timely manner, or when knowledge about a new health hazard factor and / or risk factor is obtained, etc. , Configured to generate information necessary for calibration of the measurement unit 1. The analysis calibration unit 4 receives an instruction from the system calculation unit 5 via the communication units 4a and 5a, and generates information necessary for calibration of the measurement unit 1 by the calculation unit.
Alternatively, the system calculation unit 5 evaluates the necessity of calibration of the measurement unit 1 based on the health hazard factor and / or risk factor information detected by the measurement unit 1 and related information, and the evaluation result Based on the above, the analysis calibration unit 4 may be configured to command to generate information necessary for calibration of the measurement unit 1.
As described above, the analysis calibration unit 4 is configured to analyze the health hazard factors and / or risk factors collected by the measurement unit 1 using the analysis unit, or the health hazard factors detected by the measurement unit 1 and / or Based on the risk factor information (and related information), information necessary for calibration of the measurement unit 1 is also generated. In this example, the analysis calibration unit 4 has a processor for generating the information.
 図1に戻って、本実施形態において、システム計算部5は、測定部1、通信部2、制御部3、分析較正部4、及び外部通信部6を、所定の機能を発揮させるように制御するものである。システム計算部5は、例えば、任意の既知のプロセッサを有することができる。また、システム計算部5は、計算部を有し、通信部2(13)から送信された、健康有害性因子及び/又は危険性因子の情報に基づいて、人体ばく露及び/又は作業環境を計算により評価する。例えば、測定部1により検出された健康有害性因子及び/又は危険性因子の種類やその発生量に基づいて、計算により労働者の体内に入り込んだ推定量等を算出して、例えば、記憶部に記憶されたデータとの対比や、代謝モデル又は再生モデルを用いた計算等により、例えば、有害度、臓器のダメージの程度等を評価することができる。分析較正部4により健康有害性因子及び/又は危険性因子の分析が行われた場合には、より正確な評価のために、分析した情報を用いて計算による評価を行うことが好ましい。
 この評価結果は、上述した各種通信機能により、労働者や管理者等に音、振動又は表示等で伝えることが好ましく、従って、測定部1は、上記のような表示部及び/又は操作部18や音声案内部19を備えることが好ましい。法令等を順守した態様であれば、システム計算部5は、評価結果に基づいて、労働者の作業の続行の可否等を判断する判定部を備えていても良い。このような判定部は、例えばAI機能を有することができ、例えば、オキュペイショナルハイジニスト等の判断の先例を教師とした、教師あり学習を行うものとすることができる。あるいは、オキュペイショナルハイジニスト等の判断等により、各種通信部(通信機能)を用いて、判定部での判定基準をアップデートすることができるように構成することもできる。
Returning to FIG. 1, in the present embodiment, the system calculation unit 5 controls the measurement unit 1, the communication unit 2, the control unit 3, the analysis / calibration unit 4, and the external communication unit 6 to perform predetermined functions. To do. The system calculation unit 5 can have, for example, any known processor. Moreover, the system calculation part 5 has a calculation part, and based on the information on the health hazard factor and / or risk factor transmitted from the communication part 2 (13), the human body exposure and / or the work environment is determined. Evaluate by calculation. For example, based on the type of health hazard factor and / or risk factor detected by the measurement unit 1 and the amount of the risk factor, an estimated amount that has entered the worker's body by calculation is calculated. For example, the degree of harm, the degree of damage to an organ, and the like can be evaluated by comparison with data stored in the above, calculation using a metabolic model or a regeneration model, and the like. When analysis of the health hazard factor and / or risk factor is performed by the analysis calibration unit 4, it is preferable to perform evaluation by calculation using the analyzed information for more accurate evaluation.
This evaluation result is preferably transmitted to the worker, manager, etc. by sound, vibration, display, or the like by the above-described various communication functions. Therefore, the measurement unit 1 can display the display unit and / or the operation unit 18 as described above. And a voice guidance unit 19 are preferably provided. As long as the laws and regulations are observed, the system calculation unit 5 may include a determination unit that determines whether or not the worker can continue working based on the evaluation result. Such a determination unit can have an AI function, for example, and can perform supervised learning using a precedent of determination such as an operational hygienist as a teacher. Or it can also comprise so that the determination reference | standard in a determination part can be updated using various communication parts (communication function) by judgment, such as an operational hygienist.
 例えば、測定部1の製造時に、第1の検出部11(及び第2の検出部12)の特性や回路の特性を測定して、それを例えばシステム計算部5の記憶部に記憶しておき、それを基準値として用いることで、システム計算部5の計算部が、当該基準値と、測定部1による実測値や分析較正部4による分析結果と、を比較することにより、評価を行い、その結果により、分析較正部4は、測定部1の較正に必要な情報を生成することができる。なお、較正の情報は、例えば履歴として、通信部4a、5aを介して、システム計算部5の記憶部に記憶しておくことができる。
 これらの方法によれば、現場や工場に送って較正する必要がなく、例えば、遠隔地からでもシステム計算部5等を介して統括管理できるので、効率的かつ正確に分散管理でき、また、故障した場合の診断も同様にして行うことができる。
For example, when the measurement unit 1 is manufactured, the characteristics of the first detection unit 11 (and the second detection unit 12) and the circuit characteristics are measured and stored in, for example, the storage unit of the system calculation unit 5. By using it as a reference value, the calculation unit of the system calculation unit 5 performs an evaluation by comparing the reference value with the actual measurement value by the measurement unit 1 and the analysis result by the analysis calibration unit 4, As a result, the analysis calibration unit 4 can generate information necessary for calibration of the measurement unit 1. The calibration information can be stored in the storage unit of the system calculation unit 5 through the communication units 4a and 5a, for example, as a history.
According to these methods, it is not necessary to send to the site or factory and calibrate. For example, since it can be managed from a remote location via the system calculation unit 5 etc., it can be distributed and managed efficiently and accurately. Diagnosis can also be made in the same way.
 上述したように、分析較正部4による較正は、特に健康有害性因子及び/又は危険性因子に関する新しい因子等の知見が得られた場合には適時に行うことが好ましい。このことは、一例としては、システム計算部5が、AI機能を有することにより達成することができる。例えば、システム計算部5が、通信部(送信機及び/又は受信機)を有し、定期的又は適時に、所定のWebサイト等にアクセスする等して、最新の情報を取得することができるようにし、(例えばデータベース又はAIデータベース(AI機能を有するデータベースであり、従って、メモリ等の他にAI機能を達成するためのプロセッサを有する)51に記憶された現在の情報との比較により)最新の情報が得られたと判断した場合に、分析較正部4に対して、上記の分析や較正に必要な情報の生成を行うように命令することができる。なお、新しい健康有害性因子及び/又は危険性因子の情報収集先としては、化学物質の登録機関、例えばCAS(A division of American Chemical Society)等のWebサイト等が例示される。AIデータベースは、特に、CASのように情報更新が早い場合に対処するのに好適に用いられる。 As described above, the calibration by the analytical calibration unit 4 is preferably performed in a timely manner when knowledge of new factors relating to health hazard factors and / or risk factors is obtained. As an example, this can be achieved by the system calculation unit 5 having an AI function. For example, the system calculation unit 5 includes a communication unit (transmitter and / or receiver), and can acquire the latest information by accessing a predetermined website or the like regularly or in a timely manner. (E.g., by comparison with current information stored in a database or AI database (a database having an AI function, thus having a processor for achieving the AI function in addition to a memory etc.) 51) Can be instructed to generate information necessary for the analysis and calibration described above. Examples of information collection destinations of new health hazard factors and / or risk factors include chemical substance registration organizations such as websites such as CAS (A division of American Chemical Society). The AI database is particularly suitable for dealing with a case where information update is early, such as CAS.
 また、本実施形態では、システム計算部5は、健康有害性因子及び/又は危険性因子の情報を登録可能な記憶部(例えばデータベース又はAIデータベース51)を備えることが好ましい。通信状態によっては一時的に情報を送受信できない場合があり、データベース又はAIデータベース51に種々の情報を記憶させ、適時に記憶を読み取って、システム計算部5で様々な処理を行うことができる。 In the present embodiment, the system calculation unit 5 preferably includes a storage unit (for example, a database or AI database 51) capable of registering information on health hazard factors and / or risk factors. Depending on the communication state, there is a case where information cannot be temporarily transmitted / received. Various information can be stored in the database or the AI database 51, read out in a timely manner, and the system calculation unit 5 can perform various processes.
 システム計算部5による上述の計算及び評価は、データベース又はAIデータベース51に記憶された、健康有害性因子及び/又は危険性因子の情報のデータと、測定値と、を直接比較しても良いし、あるいは、測定値に対して統計処理を行ってからデータベース又はAIデータベース51に記憶された、健康有害性因子及び/又は危険性因子の情報のデータと、測定値と、を比較しても良い。例えば、ばく露量の評価は、慢性ばく露量、短期間ばく露量、又は、その2つの影響を考慮したものとすることができる。あるいは、異なる有害性因子でも標的臓器が同じ又は健康影響が同じものは、相加性又は相乗性を考慮した評価を行うなど、様々な方法を駆使して適切に評価することが好ましい。また、空間的又は時系列的混合因子や複数の因子が含まれている測定では、第1の検出部11による検出は、個別又は全体の量としての検出である場合があり、システム計算部5の計算部は、その特性に合わせて、計算による評価を行うことができる。 The above calculation and evaluation by the system calculation unit 5 may directly compare the data of the health hazard factor and / or risk factor information stored in the database or the AI database 51 with the measured value. Alternatively, the measurement value may be compared with the data of the information on health hazard factor and / or risk factor stored in the database or the AI database 51 after performing statistical processing on the measurement value. . For example, the evaluation of the exposure amount may take into account the chronic exposure amount, the short-term exposure amount, or the two effects thereof. Alternatively, it is preferable to appropriately evaluate various harmful factors that have the same target organ or the same health effects by using various methods such as an evaluation in consideration of additiveness or synergy. Further, in the measurement including a spatial or time-series mixed factor or a plurality of factors, the detection by the first detection unit 11 may be detection as an individual or entire quantity, and the system calculation unit 5 The calculation unit can perform evaluation by calculation according to the characteristics.
 また、システム計算部5は、AI機能を有することができ、例えば、上記情報の提供先のWebページに定期的又は適時にアクセスし、データベース又はAIデータベース51に登録された情報と対比させて、変更、追加、削除等された情報を認識して、データベース又はAIデータベース51を最新の情報に更新等するようにプログラムすることができる。あるいは、外部から外部通信部6を介してシステム計算部5のデータベース又はAIデータベース51を更新等することができるように構成しても良い。 Further, the system calculation unit 5 can have an AI function. For example, the system calculation unit 5 accesses the Web page to which the information is provided regularly or in a timely manner, and compares it with information registered in the database or the AI database 51. It can be programmed to recognize the changed, added, deleted, etc. information and update the database or AI database 51 to the latest information. Alternatively, the database of the system calculation unit 5 or the AI database 51 may be updated from the outside via the external communication unit 6.
 システム計算部5による上述の計算及び評価は、測定部1により適切な条件で測定された、健康有害性因子及び/又は危険性因子の情報の測定値と基準値との比較により行うことができる。測定値は、測定結果から時間加重平均値等を求めたもの等、統計学的に有意な処理を行ったものとすることもできる。また、基準値としては、ACGIH( American Conference of Governmental Industrial Hygienists)のTLV-TWA値(Threshold Limited Value -Time Weighted Average)、STEL値(Threshold Limited Value - Short Term Exposure Limit)、天井値(Threshold Limited Value - Ceiling)、日本産業衛生学会の許容濃度、規制の管理濃度、PEL(Permissible Exposure limit)等を用いることができる。このような基準値がない場合には、信頼できる機関等、例えばOECD、米国EPA(非特許文献9)などのNOAEL値(No Observed Adverse Effect Level)等公表値からばく露限界値の予測値を求めて基準値に代用することができる。 The above-described calculation and evaluation by the system calculation unit 5 can be performed by comparing the measured values of the health hazard factor and / or risk factor information measured by the measurement unit 1 under appropriate conditions with reference values. . The measured value may be a statistically significant process such as a time-weighted average value obtained from the measurement result. As the reference value, TLV-TWA values ACGIH (American Conference of Governmental Industrial Hygienists) (Threshold Limited Value -Time Weighted Average), STEL value (Threshold Limited Value - Short Term Exposure Limit), the ceiling value (Threshold Limited Value - Ceiling), acceptable concentration of Japan Society for Occupational Health, regulatory control concentration, PEL (Permissible Exposure limit), etc. can be used. If there is no such reference value, the predicted value of the exposure limit value can be calculated from published values such as NOAEL values (No Observed Adverse Effect Level) such as OECD and US EPA (Non-Patent Document 9). It can be obtained and used as a reference value.
 図6A~図6Cは、体内に吸収されて代謝又は再生される過程を表した図である。図6Aは、単位労働時間又は1シフト時間で、例えば1日8時間一定の濃度でばく露を受ける際の、ばく露時間と気中濃度との関係を示している。図6Bは、モデルの条件として、代謝時間と血中濃度との変化の関係を示している。図6Cは、代謝時間と血中濃度の変化との関係を示している。一般的には、健康有害性因子及び/又は危険性因子は、これらが組み合わされた条件で代謝又は残留される。図6A~図6Cからわかるように、長時間ばく露を受ける作業や高濃度ばく露を受ける作業を行うと慢性的に体内に蓄積され健康障害を引き起こす場合がある。 FIG. 6A to FIG. 6C are diagrams showing a process of being absorbed and metabolized or regenerated in the body. FIG. 6A shows the relationship between exposure time and air concentration when exposure is performed at a constant concentration of, for example, 8 hours per day in unit working hours or one shift time. FIG. 6B shows the relationship between changes in metabolic time and blood concentration as model conditions. FIG. 6C shows the relationship between metabolic time and changes in blood concentration. In general, health hazard factors and / or risk factors are metabolized or retained in conditions where they are combined. As can be seen from FIG. 6A to FIG. 6C, when an operation that is exposed for a long time or an operation that is exposed to a high concentration is performed, it may be chronically accumulated in the body and cause health problems.
 図7は、経気道ばく露の等価回路の例を示す図である。分析較正部4やシステム計算部5による計算及び評価では、直接、人体のばく露状態を測定することはできないので、肺気道経路ばく露代謝又は再生モデルを用いて評価を行うことが好ましい。なお、発がん性の健康有害性因子及び/又は危険性因子などは閾値がないため、その場合は、閾値設定素子Dの値を無限小とするか、あるいは、回路から取り除いたモデルとすることができる。
 図7の等価回路では、気中健康有害性因子の濃度に相当する矩形の電圧Vが供給されると、血中濃度を表すR、C、代謝を表す濡れ抵抗Rからなる積分回路でCに充電される。気中濃度が低下してVが低下するとCの電荷の放電が生じる。その様子は、図6Bにおいて代謝時間T=8hの場合を示したように減衰する。また、不可逆的に蓄積される標的臓器の電荷を表す積分回路R、D、D、Cでは、Rは、血管から臓器に入る膜抵抗で、標的臓器Cに充電される。Dは、気中濃度が低下した場合の放電防止であり、Dは、閾値がある因子のばく露限界値に相当した閾値設定ツェナーダイオードである。さらに図示はしていないが、発症にはVとして臓器蓄積量に応じた影響が間接的にBEI測定結果や健康障害として現れる。
FIG. 7 is a diagram illustrating an example of an equivalent circuit for trans-airway exposure. In the calculation and evaluation by the analysis calibration unit 4 and the system calculation unit 5, it is not possible to directly measure the exposure state of the human body. Therefore, it is preferable to perform evaluation using a lung airway route exposure metabolism or regeneration model. Since health hazard factors and / or risk factors of carcinogenicity no threshold, if so, whether the value of the threshold setting element D 2 infinitesimal, or be a model obtained by removing from the circuit Can do.
In the equivalent circuit of FIG. 7, when a rectangular voltage V i corresponding to the concentration of the air health hazard factor is supplied, an integration composed of R 1 and C 1 representing blood concentration and a wetting resistance R 2 representing metabolism. It is charged to C 1 in the circuit. When the concentration in the air decreases and V i decreases, the discharge of C 1 occurs. The state attenuates as shown in FIG. 6B in the case of the metabolic time T = 8h. Further, in the integration circuits R 3 , D 1 , D 2 , and C 2 that represent the charge of the target organ that is irreversibly accumulated, R 3 is charged to the target organ C 2 by the membrane resistance that enters the organ from the blood vessel. . D 1 is the discharge prevention when airborne concentrations is lowered, D 2 is a threshold setting Zener diode corresponds to the exposure limits of factors that threshold. Although not yet shown is the effect corresponding to the organ accumulation amount as V T appears as indirectly BEI measurements and health problems for the development.
 図8は、経皮吸収ばく露の等価回路の例を示す図である。図8は、図7と同様に、皮膚経路ばく露の代謝又は再生モデルである。図8に示す等価回路において、発生源を一定値としているのは、液滴が皮膚に付着するとふき取るか、乾くまで、ばく露を受け続けることに対応している。図8に示す等価回路では、皮膚接触濃度は一定であることから定電圧として、図7に示す等価回路に印加した図である。 FIG. 8 is a diagram showing an example of an equivalent circuit for percutaneous absorption exposure. FIG. 8 is a metabolism or regeneration model of skin route exposure, similar to FIG. In the equivalent circuit shown in FIG. 8, the constant value of the generation source corresponds to continuous exposure until the droplets are wiped off when they adhere to the skin or dry. In the equivalent circuit shown in FIG. 8, since the skin contact concentration is constant, the constant circuit is applied as a constant voltage to the equivalent circuit shown in FIG.
 図9は、図7、図8のばく露限界設定/酵素活性値設定部について、トランジスタを用いたモデルを示す図である。図9の等価回路においては、D及びDの機能をMOSトランジスタで置換している。なお、この場合、発がん性の健康有害性因子及び/又は危険性因子では、閾値設定素子Rを最大値とし、常にMOSトランジスタを通してCに蓄積させる。 FIG. 9 is a diagram showing a model using a transistor for the exposure limit setting / enzyme activity value setting unit of FIGS. In the equivalent circuit of FIG. 9, the functions of D 1 and D 2 are replaced with MOS transistors. In this case, the health hazard factors and / or risk factors of carcinogenicity, a threshold setting element R 5 is the maximum value, is always accumulated in the C 2 through MOS transistor.
 図1に戻って、本実施形態の作業環境統括管理システムは、作業環境の外部と通信可能な、外部通信部6をさらに備えている。これによれば、外部ネットワークとの接続を介した情報の送受信により、職業性健康管理や作業環境管理をさらに適切に行うことができる。この例で、外部通信部6は、送信機及び/又は受信機を有する。 Returning to FIG. 1, the work environment overall management system of the present embodiment further includes an external communication unit 6 that can communicate with the outside of the work environment. According to this, occupational health management and work environment management can be performed more appropriately by transmitting and receiving information through connection with an external network. In this example, the external communication unit 6 includes a transmitter and / or a receiver.
 本実施形態の作業環境統括管理システムによれば、測定部1によりリアルタイム又は適時に検出された健康有害性因子及び/又は危険性因子の情報を、通信部2(13)により、システム計算部5に送信し、システム計算部5の計算部がそれに基づいて、人体ばく露及び/又は作業環境を評価するため、迅速に職業性ばく露を評価することができる。当該評価は、分析較正部4による分析結果を用いてなされることでさらに正確に行うことができる。そして、当該結果は、例えば、通信部4a、2(13)を介して、測定部1の表示部18や音声案内部19によって労働者に伝えることができ、また、例えば外部通信部6を介して管理者に伝えることもでき、これにより、労働者のばく露量を低減すること等の適切な職業性健康管理や作業環境管理を行うことができ、労働者の安全を確保することができる。上述したように、この作業環境統括管理システムでは、制御部3により、測定部1及び通信部2の制御を行うことができ、また、システム計算部5により、測定部1、通信部2、制御部3、分析較正部4、及び外部通信部6の制御を行うことができる。さらに、図3、図4A~図4F、図5Cに例示したような測定部1によれば、労働者に携行させることができる上、呼吸域や経皮ばく露域等の体の適切な部位での測定が可能であり、さらに、図1に例示した固定位置での配置のように、統計学的に有意な固定点での測定も可能である。そして、これらを併用することができる。さらに、測定部1は、分析較正部4及びシステム計算部5によって適切なタイミングで較正されることができ、新しい健康有害性因子及び/又は危険性因子や、新たな知見に対しても、迅速かつ正確に対応することができる。新しい健康有害性因子及び/又は危険性因子や、新たな知見は、例えば、システム計算部5の記憶部(データベース又はAIデータベース51)に登録して統括管理することができる。さらに、外部通信部6により様々な情報を外部と共有することもでき、例えば、外部から人体ばく露履歴又は作業環境履歴を入手して、システム計算部5がそれを考慮した基準値を用いる等した評価を行うこともできるし、必要に応じて、外部の機関に疫学調査に情報を提供する等して、疫学研究を通じて労働安全衛生に貢献することも期待される。
 以上のように、本実施形態によれば、健康有害性因子及び/又は危険性因子の情報を、迅速に検出して評価することで、高いレベルで、リスクアセスメントやリスクマネジメントを実施することができ、また、労働者の活動を含めた生産を管理することもできる。
According to the work environment overall management system of this embodiment, information on health hazard factors and / or risk factors detected in real time or timely by the measurement unit 1 is transmitted to the system calculation unit 5 by the communication unit 2 (13). Since the calculation unit of the system calculation unit 5 evaluates the human body exposure and / or the work environment on the basis thereof, occupational exposure can be quickly evaluated. The evaluation can be performed more accurately by using the analysis result by the analysis calibration unit 4. And the said result can be conveyed to a worker by the display part 18 and the audio | voice guidance part 19 of the measurement part 1 via the communication parts 4a and 2 (13), for example, for example, via the external communication part 6 Can also be communicated to managers, which can ensure appropriate occupational health management and work environment management, such as reducing worker exposure, and ensure worker safety. . As described above, in this work environment overall management system, the control unit 3 can control the measurement unit 1 and the communication unit 2, and the system calculation unit 5 can control the measurement unit 1, the communication unit 2, and the control unit 2. The unit 3, the analysis calibration unit 4, and the external communication unit 6 can be controlled. Furthermore, according to the measurement unit 1 illustrated in FIGS. 3, 4A to 4F, and 5C, it can be carried by a worker, and an appropriate part of the body such as a respiratory area or a percutaneous exposure area. Further, it is possible to measure at a statistically significant fixed point, such as the arrangement at the fixed position illustrated in FIG. And these can be used together. Furthermore, the measurement unit 1 can be calibrated at an appropriate timing by the analysis calibration unit 4 and the system calculation unit 5, so that new health hazard factors and / or risk factors and new knowledge can be quickly obtained. And it can respond accurately. New health hazard factors and / or risk factors and new knowledge can be registered and managed in the storage unit (database or AI database 51) of the system calculation unit 5, for example. Furthermore, various information can be shared with the outside by the external communication unit 6, for example, a human body exposure history or a work environment history is obtained from the outside, and the system calculation unit 5 uses a reference value in consideration thereof. It is also expected to contribute to occupational safety and health through epidemiological research by providing information to epidemiological surveys to external institutions as necessary.
As described above, according to the present embodiment, risk assessment and risk management can be performed at a high level by quickly detecting and evaluating information on health hazard factors and / or risk factors. It can also manage production, including worker activities.
 本発明の作業環境統括管理システムでは、測定部1は、人体ばく露情報及び/又は作業環境情報に関連した関連情報を、さらに、リアルタイム又は適時な測定により検出するように構成され、関連情報として、労働者の位置及び/又は経時情報を検出する第2の検出部12、関連情報として、労働者の周囲及び/又は作業場の画像を撮像する撮像部14、及び、関連情報として、労働者の周囲及び/又は作業場の音、振動、熱、非電離放射線、及び放射線のいずれか1つ以上を感知するセンサ15のうち、少なくともいずれか1つ以上をさらに備えていることが好ましい。人体ばく露及び/又は作業環境をより正確に評価することができるからである。 In the work environment overall management system of the present invention, the measuring unit 1 is configured to further detect related information related to human body exposure information and / or work environment information by real-time or timely measurement, and as related information. A second detection unit 12 that detects worker position and / or time-lapse information, as related information, an imaging unit 14 that captures an image of the surroundings of the worker and / or a workplace, and as related information, It is preferable to further include at least one of sensors 15 that sense any one or more of ambient and / or workplace sound, vibration, heat, non-ionizing radiation, and radiation. This is because human exposure and / or work environment can be more accurately evaluated.
 本発明の作業環境統括管理システムでは、通信部2(4a)は、測定部1で採取された健康有害性因子及び/又は危険性因子を分析した情報を、リアルタイム又は適時に送信可能にも構成され、通信部2(4a)から送信された、測定部1で採取された健康有害性因子及び/又は危険性因子を分析した情報、又は、測定部1で検出された健康有害性因子及び/又は危険性因子の情報に基づいて、測定部1の較正に必要な情報を生成する、較正部(上記実施形態では、分析較正部4)をさらに備えていることが好ましい。測定部1の必要なアップデート等を行うことにより、人体ばく露及び/又は作業環境をより正確に評価することができるからである。 In the work environment overall management system of the present invention, the communication unit 2 (4a) is configured to be able to transmit information obtained by analyzing the health hazard factor and / or risk factor collected by the measurement unit 1 in real time or in a timely manner. Information transmitted from the communication unit 2 (4a) and analyzed for the health hazard factor and / or risk factor collected by the measurement unit 1, or the health hazard factor detected by the measurement unit 1 and / or Alternatively, it is preferable to further include a calibration unit (analysis calibration unit 4 in the above embodiment) that generates information necessary for calibration of the measurement unit 1 based on the risk factor information. This is because the human body exposure and / or the working environment can be more accurately evaluated by performing the necessary update or the like of the measurement unit 1.
 本発明の作業環境統括管理システムでは、計算部は、代謝モデル又は再生モデルを用いて評価を行うことが好ましい。人体ばく露及び/又は作業環境をさらに正確に評価することができるからである。 In the overall work environment management system of the present invention, it is preferable that the calculation unit evaluates using a metabolic model or a regeneration model. This is because human exposure and / or work environment can be more accurately evaluated.
 本発明の作業環境統括管理システムは、健康有害性因子及び/又は危険性因子の情報を登録可能な記憶部(上記実施形態ではデータベース又はAIデータベース51)をさらに備えていることが好ましい。必要な情報を記憶部から取り出して、測定から評価までを迅速に行うことができ、一部の通信障害等にも対応することができるからである。 The work environment overall management system of the present invention preferably further includes a storage unit (in the above embodiment, the database or the AI database 51) capable of registering information on health hazard factors and / or risk factors. This is because necessary information can be taken out from the storage unit, and measurement to evaluation can be performed quickly, and some communication failures can be dealt with.
 本発明の作業環境統括管理システムは、作業環境の外部と通信可能な、外部通信部6を備えていることが好ましい。外部と様々な情報をやり取りして、人体ばく露及び/又は作業環境の評価の正確さを向上させることができ、あるいは、外部機関に情報を提供する等することができるからである。 The work environment overall management system of the present invention preferably includes an external communication unit 6 that can communicate with the outside of the work environment. This is because various information can be exchanged with the outside to improve the accuracy of human exposure and / or evaluation of the work environment, or to provide information to an external organization.
 図10は、本発明の他の実施形態にかかる作業環境統括管理システムについて説明するための図である。図10は、労働者が単位時間又は1シフト時間に広い範囲を移動する場合の測定形態を示している。この場合、同等ばく露群又は単位作業場間で、健康有害性因子及び/又は危険性因子の発生、停滞、侵入等の程度が異なることがあるため、複数の同等ばく露群又は単位作業場にわたって測定を行うことが好ましい。これには、取得された労働者の位置情報と、各単位作業場の健康有害性因子及び/又は危険性因子の情報と、に基づいて、システム計算部5により有意な統計処理(例えば時間加重平均をとる)を行うことにより、評価を行うことができる。労働者が、広い範囲又は複数の作業場を移動する場合、健康有害性因子又は危険性因子の種類が異なっても標的臓器が同じであることが多く、また、健康影響が同じであれば8時間時間加重平均値で相加又は相乗効果があり、単体のばく露限界値より低い値で抑制することが好ましい。また、図10に示す実施形態では、検出部ごと(同等ばく露群又は単位作業場ごとに)に上記の較正を行うことができる。また、同等ばく露群又は単位作業場ごとに、検出部の種類や組み合わせを変更することもできる。このようにして、図10に示す実施形態でも、単位労働時間又は1シフト時間全体を測定して、システム計算部5で統括管理することができる。これにより、図10に示す実施形態の場合も、健康有害性因子及び/又は危険性因子の情報を、迅速に検出して評価することで、高いレベルで、リスクアセスメントやリスクマネジメントを実施することができる。 FIG. 10 is a diagram for explaining a work environment overall management system according to another embodiment of the present invention. FIG. 10 shows a measurement form when the worker moves over a wide range in unit time or one shift time. In this case, the level of occurrence of health hazards and / or risk factors, stagnation, and intrusion may differ between equivalent exposure groups or unit workplaces. It is preferable to carry out. This includes significant statistical processing (for example, time-weighted average) by the system calculation unit 5 based on the acquired worker location information and the health hazard factor and / or risk factor information of each unit workplace. The evaluation can be performed. When workers move across a wide area or multiple workplaces, the target organs are often the same for different types of health hazards or risk factors, and 8 hours if the health effects are the same The time-weighted average value has an additive or synergistic effect, and is preferably suppressed at a value lower than the single exposure limit value. Moreover, in embodiment shown in FIG. 10, said calibration can be performed for every detection part (Equivalent exposure group or every unit work place). Moreover, the kind and combination of a detection part can also be changed for every equivalent exposure group or a unit work place. In this way, in the embodiment shown in FIG. 10 as well, the unit labor time or the entire one shift time can be measured and managed by the system calculation unit 5. Accordingly, even in the embodiment shown in FIG. 10, risk assessment and risk management are performed at a high level by quickly detecting and evaluating information on health hazard factors and / or risk factors. Can do.
<作業環境統括管理方法>
 本発明の一実施形態にかかる作業環境統括管理方法は、単数又は複数の、健康有害性因子及び/又は危険性因子を、リアルタイム又は適時に検出する工程と、検出された健康有害性因子及び/又は危険性因子の情報を、リアルタイム又は適時に送信する工程と、送信された健康有害性因子及び/又は危険性因子の情報に基づいて、人体ばく露及び/又は作業環境を計算により評価する工程と、を含む。
<Work environment management method>
The work environment overall management method according to an embodiment of the present invention includes a step of detecting one or more health hazard factors and / or risk factors in real time or in a timely manner, and the detected health hazard factors and / or Or transmitting risk factor information in real time or in a timely manner, and evaluating the human exposure and / or work environment by calculation based on the transmitted health hazard factor and / or risk factor information And including.
 この作業環境統括管理方法は、上述の実施形態にかかる作業環境統括管理システムを用いて行うことができる。作業環境統括管理システムについては、上述したのと同様であるため、説明を省略する。 This work environment overall management method can be performed using the work environment overall management system according to the above-described embodiment. Since the work environment overall management system is the same as described above, the description thereof is omitted.
 本発明の作業環境統括管理方法では、測定部1が、第1の検出部11、第2の検出部12、撮像部14、センサ15を備え、かつ、人体ばく露情報及び/又は作業環境情報に関連した関連情報を、さらに、リアルタイム又は適時な測定により収集するように構成されることができる。そして、本発明の作業環境統括管理方法では、関連情報として、第2の検出部12により、労働者の位置及び/又は経時情報を検出する工程、関連情報として、撮像部14により、労働者の周囲及び/又は作業場の画像を撮像する工程、及び、関連情報として、センサ15により、労働者の周囲及び/又は作業場の音、振動、熱、非電離放射線、及び放射線のいずれか1つ以上を感知する工程、少なくともいずれか1つ以上の工程をさらに含むことが好ましい。 In the work environment overall management method of the present invention, the measurement unit 1 includes the first detection unit 11, the second detection unit 12, the imaging unit 14, and the sensor 15, and human body exposure information and / or work environment information. Relevant information related to can be further collected by real-time or timely measurements. In the work environment overall management method of the present invention, as the related information, the second detection unit 12 detects the worker's position and / or time-lapse information, and as the related information, the imaging unit 14 As a process of taking an image of the surrounding area and / or the workplace, and as related information, the sensor 15 performs any one or more of the sound, vibration, heat, non-ionizing radiation, and radiation around the worker and / or the workplace. Preferably, the method further includes a sensing step, at least one or more steps.
 本発明の作業環境統括管理方法では、分析較正部4により、通信部2(13)から送信された、測定部1で採取された健康有害性因子及び/又は危険性因子を分析した情報、又は、測定部1で検出された健康有害性因子及び/又は危険性因子の情報に基づいて、測定部1の較正に必要な情報を生成する工程をさらに含むことが好ましい。 In the work environment overall management method of the present invention, the analysis / calibration unit 4 transmits information transmitted from the communication unit 2 (13) that analyzes the health hazard factor and / or risk factor collected by the measurement unit 1, or Preferably, the method further includes a step of generating information necessary for calibration of the measurement unit 1 based on information on health hazard factors and / or risk factors detected by the measurement unit 1.
 本発明の作業環境統括管理方法では、計算工程において、計算部は、代謝モデル又は再生モデルを用いて上記の計算を行うことが好ましい。 In the work environment overall management method of the present invention, in the calculation step, the calculation unit preferably performs the above calculation using a metabolic model or a regeneration model.
1 測定部
2 通信部
3 制御部
4 分析較正部
5 システム計算部
6 外部通信部
11 第1の検出部
12 第2の検出部
13 通信部
14 撮像部
15 センサ
16 制御部
17 記憶部
18 表示部及び/又は操作部
19 音声案内部
 
DESCRIPTION OF SYMBOLS 1 Measurement part 2 Communication part 3 Control part 4 Analysis calibration part 5 System calculation part 6 External communication part 11 1st detection part 12 2nd detection part 13 Communication part 14 Imaging part 15 Sensor 16 Control part 17 Storage part 18 Display part And / or operation unit 19 voice guidance unit

Claims (7)

  1.  単数又は複数の、健康有害性因子及び/又は危険性因子を、リアルタイム又は適時に検出する第1の検出部を有する測定部と、
     前記第1の検出部により検出された前記健康有害性因子及び/又は危険性因子の情報を、リアルタイム又は適時に送信可能な通信部と、
     前記通信部から送信された、前記健康有害性因子及び/又は危険性因子の情報に基づいて、人体ばく露及び/又は作業環境を計算により評価する、計算部と、を備えたことを特徴とする、作業環境統括管理システム。
    A measurement unit having a first detection unit that detects one or more health hazard factors and / or risk factors in real time or in a timely manner;
    A communication unit capable of transmitting real-time or timely information on the health hazard factor and / or risk factor detected by the first detection unit;
    A calculation unit that evaluates human exposure and / or work environment by calculation based on information on the health hazard factor and / or risk factor transmitted from the communication unit; Work environment management system.
  2.  前記測定部は、
     前記人体ばく露及び/又は前記作業環境に関連した関連情報を、さらに、リアルタイム又は適時な測定により検出するように構成され、
     前記関連情報として労働者の位置及び/又は経時情報を検出する第2の検出部、前記関連情報として労働者の周囲及び/又は作業場の画像を撮像する撮像部、及び、前記関連情報として労働者の周囲及び/又は作業場の音、振動、熱、非電離放射線、及び放射線のいずれか1つ以上を感知するセンサのうち、少なくともいずれか1つ以上をさらに備えた、請求項1に記載の作業環境統括管理システム。
    The measuring unit is
    The human body exposure and / or related information related to the work environment is further detected by real-time or timely measurement,
    A second detection unit that detects worker position and / or time-lapse information as the related information, an imaging unit that captures an image of a worker's surroundings and / or workplace as the related information, and a worker as the related information The work according to claim 1, further comprising at least one of sensors that sense at least one of sound, vibration, heat, non-ionizing radiation, and radiation around and / or the workplace. Environmental management system.
  3.  前記通信部は、前記測定部で採取された健康有害性因子及び/又は危険性因子を分析した情報を、リアルタイム又は適時に送信可能にも構成され、
     前記通信部から送信された、前記測定部で採取された健康有害性因子及び/又は危険性因子を分析した情報、又は、前記測定部で検出された健康有害性因子及び/又は危険性因子の情報に基づいて、前記測定部の較正に必要な情報を生成する、較正部をさらに備えた、請求項1又は2に記載の作業環境統括管理システム。
    The communication unit is also configured to be able to transmit information analyzing the health hazard factor and / or risk factor collected by the measurement unit in real time or in a timely manner,
    Information on analysis of health hazard factors and / or risk factors collected by the measurement unit transmitted from the communication unit, or health hazard factors and / or risk factors detected by the measurement unit The work environment overall management system according to claim 1, further comprising a calibration unit that generates information necessary for calibration of the measurement unit based on the information.
  4.  前記計算部は、代謝モデル又は再生モデルを用いて前記評価を行う、請求項1~3のいずれか一項に記載の作業環境統括管理システム。 The work environment overall management system according to any one of claims 1 to 3, wherein the calculation unit performs the evaluation using a metabolic model or a regeneration model.
  5.  健康有害性因子及び/又は危険性因子の情報を登録可能な記憶部をさらに備えた、請求項1~4のいずれか一項に記載の作業環境統括管理システム。 The work environment overall management system according to any one of claims 1 to 4, further comprising a storage unit capable of registering information on health hazard factors and / or risk factors.
  6.  作業環境の外部と通信可能な、外部通信部をさらに備えた、請求項1~5のいずれか一項に記載の作業環境統括管理システム。 The work environment overall management system according to any one of claims 1 to 5, further comprising an external communication unit capable of communicating with the outside of the work environment.
  7.  単数又は複数の、健康有害性因子及び/又は危険性因子を、リアルタイム又は適時に検出する工程と、
     検出された前記健康有害性因子及び/又は危険性因子の情報を、リアルタイム又は適時に送信する工程と、
     送信された前記健康有害性因子及び/又は危険性因子の情報に基づいて、人体ばく露及び/又は作業環境を計算により評価する工程と、を含むことを特徴とする、作業環境統括管理方法。
    Detecting one or more health hazards and / or risk factors in real time or in a timely manner;
    Transmitting information on the detected health hazard factor and / or risk factor in real time or in a timely manner;
    And a step of evaluating the human exposure and / or work environment by calculation based on the transmitted information on the health hazard factor and / or risk factor transmitted.
PCT/JP2019/015808 2018-04-16 2019-04-11 Work environment integrated management system and work environment integrated management method WO2019203117A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020514116A JP7361681B2 (en) 2018-04-16 2019-04-11 Work environment overall management system and work environment overall management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-078667 2018-04-16
JP2018078667 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019203117A1 true WO2019203117A1 (en) 2019-10-24

Family

ID=68240007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015808 WO2019203117A1 (en) 2018-04-16 2019-04-11 Work environment integrated management system and work environment integrated management method

Country Status (2)

Country Link
JP (1) JP7361681B2 (en)
WO (1) WO2019203117A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903848A (en) * 2021-01-21 2021-06-04 国家卫生健康委职业安全卫生研究中心(国家卫生健康委煤炭工业职业医学研究中心) Organic solvent operation analog contact evaluation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329808A (en) * 2005-05-26 2006-12-07 Sumitomo Chemical Co Ltd Method of estimating percutaneous vivo exposure of chemical substance
JP2013502154A (en) * 2009-08-14 2013-01-17 アクセンチュア グローバル サービスィズ リミテッド System for relative positioning of access points in a real-time location system
WO2017136336A1 (en) * 2016-02-01 2017-08-10 Advanced Ventilation Applications, Inc. Systems and methods for respiratory health management

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250676A (en) 2005-03-10 2006-09-21 Sumitomo Chemical Co Ltd Evaluation/determination method of non-effect environment standard related to substance
JP2007011902A (en) 2005-07-01 2007-01-18 National Institute For Environmental Studies Healthy risk computing system and social cost computing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329808A (en) * 2005-05-26 2006-12-07 Sumitomo Chemical Co Ltd Method of estimating percutaneous vivo exposure of chemical substance
JP2013502154A (en) * 2009-08-14 2013-01-17 アクセンチュア グローバル サービスィズ リミテッド System for relative positioning of access points in a real-time location system
WO2017136336A1 (en) * 2016-02-01 2017-08-10 Advanced Ventilation Applications, Inc. Systems and methods for respiratory health management

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112903848A (en) * 2021-01-21 2021-06-04 国家卫生健康委职业安全卫生研究中心(国家卫生健康委煤炭工业职业医学研究中心) Organic solvent operation analog contact evaluation method

Also Published As

Publication number Publication date
JP7361681B2 (en) 2023-10-16
JPWO2019203117A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
Delfino et al. Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter.
US11499954B2 (en) Wireless exposure monitor
US8485019B2 (en) Methods and systems for analysis, reporting and display of environmental data
RU2605258C2 (en) System and method of providing information on compliance and prevention exposure to toxic gas
Budde et al. Investigating the use of commodity dust sensors for the embedded measurement of particulate matter
Jaimini et al. Investigation of an indoor air quality sensor for asthma management in children
KR20170024300A (en) Mobile multi-air quality measurement system using a drone
US20090090167A1 (en) Methods and Systems for Analysis, Reporting and Display of Environmental Data
Aashiq et al. An IoT-based handheld environmental and air quality monitoring station
WO2019203117A1 (en) Work environment integrated management system and work environment integrated management method
Márquez-Sánchez et al. Gas sensing in industry. A case study: Train hangar
Olegario et al. Evaluation of low-cost optical particle counters for agricultural exposure measurements
Quintana et al. Monitoring of 1-Min Personal Particulate Matter Exposures in Relation to Voice-Recorded Time–Activity Data
US10928371B1 (en) Hand-held sensor and monitor system
JP2004205470A (en) Tvoc monitor by passive method
Persing et al. Comparing respirator laboratory protection factors measured with novel personal instruments to those from the PortaCount
Janarthanan et al. Real-time indoor air quality monitoring using the Internet of Things
WO2022043827A1 (en) Systems and methods for monitoring worker fitness
Reinhardt et al. Guide to monitoring smoke exposure of wildland firefighters
CA3196170A1 (en) Wireless exposure monitor
TWM552632U (en) System to provide air quality information
CN205749273U (en) A kind of indoor harmful gas concentration measurement apparatus
Kudlinski et al. Air Monitoring: 12 Tips for Maximizing Employee Participation
Thrall et al. Design and evaluation of a breath-analysis system for biological monitoring of volatile compounds
Apostolopoulos et al. An IoT integrated air quality monitoring device based on microcomputer technology and leading industry low-cost sensor solutions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788326

Country of ref document: EP

Kind code of ref document: A1