[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019202860A1 - 医療用システム、接続構造、及び接続方法 - Google Patents

医療用システム、接続構造、及び接続方法 Download PDF

Info

Publication number
WO2019202860A1
WO2019202860A1 PCT/JP2019/008359 JP2019008359W WO2019202860A1 WO 2019202860 A1 WO2019202860 A1 WO 2019202860A1 JP 2019008359 W JP2019008359 W JP 2019008359W WO 2019202860 A1 WO2019202860 A1 WO 2019202860A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
light
guide cable
source device
light source
Prior art date
Application number
PCT/JP2019/008359
Other languages
English (en)
French (fr)
Inventor
人夢 中野
正悟 嘉藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2020514005A priority Critical patent/JP7207404B2/ja
Priority to EP19788708.6A priority patent/EP3782532A4/en
Priority to US17/046,305 priority patent/US20210137362A1/en
Publication of WO2019202860A1 publication Critical patent/WO2019202860A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00126Connectors, fasteners and adapters, e.g. on the endoscope handle optical, e.g. for light supply cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00117Optical cables in or with an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/3624Fibre head, e.g. fibre probe termination

Definitions

  • the present disclosure relates to a medical system, a connection structure, and a connection method.
  • Patent Document 1 describes that at least one laser light source is provided and light from the laser light source is incident on a light guide.
  • a light guide cable having a different light guide diameter may be used.
  • the space for storing the light guide cable is large, so that the diameter of the light guide section that is easy to receive illumination light
  • a large diameter light guide cable is used.
  • the space for storing the light guide cable is small, so it is difficult to receive illumination light but can be stored in a narrow space.
  • a thin light guide cable having a small diameter of the light guide is used.
  • the light emitted from the light source device is refracted by the lens and forms an image on the focal plane.
  • the diameter of the light guide is approximately equal to the size of the illumination light imaged on the focal plane
  • the light guide cable has the largest and most uniform illumination light by placing the incident end face of the light guide cable at the focal plane position. Is incident on.
  • the incident end face is arranged on the focal plane, the brightness of the observation object irradiated with light by the light guide cable There arises a problem that sufficient uniformity cannot be ensured.
  • lamp light sources xenon lamps and halogen lamps
  • white LEDs and the like are mainly used.
  • the size of the illumination light in the focal plane is larger than the diameter of the light guide portion of the light guide cable.
  • any small-diameter light guide cable having a small diameter it is possible to make the illumination light enter the light guide cable most uniformly and uniformly. Therefore, the relative positional relationship between the focal plane and the incident end face of the light guide cable is not considered according to the diameter of the light guide section, and the position in the optical axis direction of the light guard cable with respect to the focal plane is the light guide. It was the same regardless of the diameter of the part.
  • the size of the illumination light at the focal plane is smaller than the diameter of the light guide portion of the light guide cable.
  • the illumination light emitted from the light source device be optimally incident on the light guide cable.
  • a medical device including an imaging unit that images an observation target, and a light source device that emits light to irradiate the observation target and irradiates the observation target through a light guide cable. And a medical system in which the position of the incident end face of the light guide cable with respect to the focal plane of the light emitted from the light source device is determined at different positions according to the diameter of the light guide portion of the light guide cable.
  • connection structure between the light source device and the light guide cable, and the light with respect to a focal plane of light emitted from the light source device according to a diameter of a light guide portion of the light guide cable.
  • a connection structure is provided in which the position of the incident end face of the guide cable is determined at a different position.
  • a method for connecting a light source device and a light guide cable, with respect to a focal plane of light emitted from the light source device according to a diameter of a light guide portion of the light guide cable is provided.
  • illumination light emitted from the light source device can be optimally incident on the light guide cable according to the diameter of the light guide portion of the light guide cable.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
  • FIG. 1 It is a schematic diagram which shows the light guide device which concerns on one Embodiment of this indication, and the light guide cable connected to the light source device. It is sectional drawing which shows the connection part of a light source device in detail. It is a schematic diagram which shows the state which each mounted
  • FIG. 6 is a cross-sectional view showing in detail a state in which the connection portion of the light source device and the connection portion of the light guide cable shown in FIG. 5 are connected.
  • FIG. 6 is a cross-sectional view showing in detail a state in which the connection portion of the light source device and the connection portion of the light guide cable shown in FIG. 5 are connected.
  • FIG. 3 is a cross-sectional view showing an example in which the stepped shape of the inner surface of the insertion portion of the connection portion is provided in only a part of the inner diameter in the configuration shown in FIG. 2. It is sectional drawing which shows the state in which the connection part of the light source device shown in FIG. 8 and the connection part of the light guide cable were connected.
  • FIG. 8 It is sectional drawing which shows the state in which the connection part of the light source device shown in FIG. 8 and the connection part of the light guide cable were connected. It is a schematic diagram for demonstrating the structure which changes the position of the optical axis direction of a connection part according to the brightness of the observation object irradiated with the light guide cable. It is a schematic diagram for demonstrating the structure which changes the position of the optical axis direction of a connection part according to the brightness of the observation object irradiated with the light guide cable. It is a figure which shows an example of a schematic structure of an endoscopic surgery system. It is a block diagram which shows an example of a function structure of the camera head shown in FIG. 13, and CCU. It is a figure which shows an example of a schematic structure of the microscopic surgery system with which the light source device which concerns on this indication can be applied.
  • FIG. 1 is a schematic diagram illustrating a light source device 1000 and a light guide cable 2000 connected to the light source device 1000 according to an embodiment of the present disclosure.
  • the light source device 1000 and the light guide cable 2000 are applied to a medical system, for example.
  • the light source device 1000 generates light such as laser light and emits the laser light to the light guide cable 2000.
  • the light guide cable 2000 guides the light emitted from the light source device 1000 and irradiates the light toward the observation target.
  • connection part 100 is provided in the light emission part in the light source device 1000.
  • a connection portion 200 through which light emitted from the light source device 1000 enters is provided at the end of the light guide cable 2000.
  • FIG. 1 the cross section which passes along the central axis (optical axis) of the connection part 100 and the connection part 200 is shown.
  • the connection unit 100 and the connection unit 200 constitute a connection structure according to the present disclosure.
  • FIG. 2 is a cross-sectional view showing the connection part 100 of the light source device 1000 in detail.
  • 3 and 4 are cross-sectional views showing in detail a state in which the connection part 100 of the light source device 1000 and the connection part 200 of the light guide cable 2000 are connected. 2 to 4 also show a cross section passing through the central axis of the connecting portion 100 and the connecting portion 200.
  • FIG. 2 is a cross-sectional view showing the connection part 100 of the light source device 1000 in detail.
  • 3 and 4 are cross-sectional views showing in detail a state in which the connection part 100 of the light source device 1000 and the connection part 200 of the light guide cable 2000 are connected. 2 to 4 also show a cross section passing through the central axis of the connecting portion 100 and the connecting portion 200.
  • the connection unit 100 of the light source device 1000 includes a lens 102 and a lens 104 for condensing the light emitted from the light source device 1000.
  • 2 to 4 indicate how light emitted from the light source device 1000 is collected. As shown in FIGS. 2 to 4, the light emitted from the light source device 1000 forms an image on the focal plane 105.
  • connection part 100 of the light source device 1000 is provided with an insertion part 106 into which the connection part 200 of the light guide cable 2000 is inserted.
  • the inner surface of the insertion portion 106 has a stepped shape, and a first surface 108 and a second surface 110 that function as a stopper when the connection portion 200 of the light guide cable 2000 is inserted are provided.
  • the light guide cable 2000 includes a light guide unit 202 that guides light emitted from the light source device 1000. As shown in FIGS. 3 and 4, the light emitted from the light source device 1000 enters from the incident end face 204 of the light guide unit 202.
  • FIG. 3 and 4 show a state in which each of the two types of light guide cables 200 having different thicknesses of the light guide unit 202 is attached to the connection unit 100 of the light source device 1000.
  • FIG. The light guide portion 202 of the light guide cable 2000 shown in FIG. 3 is thinner than the light guide portion 202 of the light guide cable 2000 shown in FIG. 4, and the outer diameter of the tip of the connection portion 200 is also better in FIG. 3 than in FIG. Is also getting thinner.
  • the outer shape of the tip of the connecting portion 200 shown in FIG. 3 is a stepped shape, and a surface 206 is provided. As illustrated in FIG. 3, the surface 206 is in contact with the first surface 108 of the connection unit 100 of the light source device 1000.
  • a surface 208 that is the same surface as the incident end surface 204 is in contact with the second surface 110 of the connection portion 100 of the light source device 1000.
  • the position of the incident end face 204 of the light guide cable 2000 on the optical axis is the diameter of the light guide part 202 (the tip diameter of the connection part 200). Depending on the position.
  • the position of the incident end surface 204 of the light guide unit 202 on the optical axis is arranged at a position where the illumination light emitted from the light source device 1000 is the most and uniformly incident on the light guide unit 202.
  • the position of the incident end face 204 substantially coincides with the position of the focal plane 105.
  • the connecting portion 200 is located at a position where the focal plane 105 of the illumination light and the incident end face 204 of the light guide cable 2000 coincide with each other on the optical axis. Hits the connecting part 100. Accordingly, the light guide cable 2000 is fixed at a position where the illumination light is most incident and uniformly incident.
  • the position of the incident end face 204 of the light guide unit 202 is larger than that in FIG. 3, the position of the incident end face 204 is arranged at the position of the non-focal plane 107 on the right side of the focal plane 105.
  • the light imaged on the focal plane 105 spreads on the right side of the focal plane 105, and at the position of the non-focal plane 107 (that is, the position of the incident end face 204), the diameter of the light flux is that of the incident end face 204. It almost coincides with the diameter.
  • connection part 400 hits connection part 100. Accordingly, the light guide cable 2000 is fixed at a position where the illumination light is most incident and uniformly incident.
  • the illumination light emitted from the light source device 1000 can be incident on the light guide unit 202 most uniformly according to the diameter of the light guide unit 202.
  • the position of the incident end face 204 may be arranged on the right side of the focal plane 105, and the diameter of the light beam at the position of the incident end face 204 may be matched with the diameter of the incident end face 204.
  • the insertion portion 106 into which the light guide cable 2000 is inserted has a stepped shape
  • the light guide cable 2000 having a different diameter of the light guide portion 202 as shown in FIGS. 3 and 4 is detached and replaced. Even so, the incident end face 204 can be fixed at a position where the illumination light is most incident and uniformly incident without any special adjustment.
  • the stepped shape of the connecting portion 100 is two steps, and two surfaces (the first surface 108 and the second surface 110) are provided. A large number of contact surfaces may be formed to accommodate more types of light guide cables 2000.
  • FIG. 5 is a cross-sectional view showing the connection part 100 of the light source device 1000 in detail.
  • the configuration of the connecting portion 100 shown in FIG. 5 is basically the same as that shown in FIG. 2, but the insertion portion 106 of the connecting portion 100 is provided with a tapered surface (mortar shape) 112.
  • FIG. 6 and 7 are cross-sectional views showing in detail a state in which the connection part 100 of the light source device 1000 and the connection part 200 of the light guide cable 2000 shown in FIG. 5 are connected. 5 to 7 also show a cross section passing through the central axis of the connecting portion 100 and the connecting portion 200.
  • FIG. 6 and 7 are cross-sectional views showing in detail a state in which the connection part 100 of the light source device 1000 and the connection part 200 of the light guide cable 2000 shown in FIG. 5 are connected. 5 to 7 also show a cross section passing through the central axis of the connecting portion 100 and the connecting portion 200.
  • the tapered surface 112 provided in the insertion part 106 of the connection part 100 functions as a stopper when the connection part 200 of the light guide cable 2000 is inserted.
  • 6 and 7 show a state in which each of the two types of light guide cables 200 having different thicknesses of the light guide unit 202 is attached to the connection unit 100 of the light source device 1000 shown in FIG. 6 is the same as the configuration of the connection unit 200 shown in FIG. 3, and the configuration of the connection unit 200 shown in FIG. 7 is the same as the configuration of the connection unit 200 shown in FIG.
  • the light guide portion 202 of the light guide cable 2000 shown in FIG. 6 is thinner than the light guide portion 202 of the light guide cable 2000 shown in FIG. 7, and the outer diameter of the tip of the connection portion 200 is also better in FIG. 6 than in FIG. Is also getting thinner.
  • the position of the incident end face 204 of the light guide cable 2000 on the optical axis is the diameter of the light guide part 202 (the tip diameter of the connection part 200). Depending on the position.
  • the position of the incident end face 204 of the light guide unit 202 on the optical axis is the position where the illumination light emitted from the light source device 1000 is the most and uniformly incident on the light guide unit 202. Be placed.
  • the position of the incident end face 204 substantially coincides with the position of the focal plane 105.
  • the position of the incident end face 204 is arranged at the position of the non-focal plane 107 on the right side of the focal plane 105. .
  • FIG. 8 shows the configuration shown in FIG. It is sectional drawing which shows the example provided.
  • a 180 ° region centered on the optical axis is formed into a stepped shape similar to FIG. 2, and the remaining 180 ° region is connected to the connecting portion.
  • a screwing structure for fixing 200 is provided. That is, the stepped shape is provided only in the 180 ° region centered on the optical axis, and the stepped shape is not provided in the remaining 180 ° region.
  • the connection portion 200 can be positioned in the optical axis direction with respect to the connection portion 100.
  • FIG. 9 and 10 are cross-sectional views showing in detail a state where the connection part 100 of the light source device 1000 and the connection part 200 of the light guide cable 2000 shown in FIG. 8 are connected. 8 to 10 also show a cross section passing through the central axis of the connecting portion 100 and the connecting portion 200.
  • FIG. 8 to 10 also show a cross section passing through the central axis of the connecting portion 100 and the connecting portion 200.
  • connection unit 100 of the light source device 1000 shown in FIG. 9 is the same as the configuration of the connection unit 200 shown in FIG. 3, and the configuration of the connection unit 200 shown in FIG. 10 is the same as the configuration of the connection unit 200 shown in FIG.
  • a stepped shape similar to that of FIG. 2 is provided in a 180 ° region centered on the optical axis on the inner surface of the insertion unit 106 of the connecting unit 100 centered on the optical axis.
  • the surface 206 of the connection part 200 abuts on the first surface 108 of the connection part 100.
  • a surface 208 that is the same surface as the incident end surface 204 is in contact with the second surface 110 of the connection unit 100 of the light source device 1000. That is, the positioning of the incident end face 204 by the stepped shape is the same as in FIGS. Therefore, as in FIGS. 3 and 4, the position of the incident end face 204 of the light guide unit 202 on the optical axis is the position where the illumination light emitted from the light source device 1000 is the most and uniformly incident on the light guide unit 202. Be placed.
  • the screwing structure is composed of two screws 114 and 116 that are screwed from the outer periphery of the connecting portion 100 toward the optical axis.
  • the screw 114 is tightened toward the connection portion 200 when the light guide cable 2000 shown in FIG. 9 is attached to the light source device 1000.
  • the connection part 200 is fixed with respect to the connection part 100 when the screw 114 presses the connection part 200.
  • connection part 200 is fixed to the connection part 100 by the screw 116 pressing the connection part 200.
  • the space of the connecting portion 100 can be effectively utilized by arranging the screwing structure in the region where the stepped shape of the insertion portion 120 is not provided. Moreover, the connection part 200 can be reliably fixed with respect to the connection part 100 by a screwing structure.
  • connection unit 100 shown in FIGS. 11 and 12 The basic configuration of the connection unit 100 shown in FIGS. 11 and 12 is the same as that shown in FIGS.
  • FIGS. 11 and 12 show a state where the light guide cables 2000 having the same outer diameter of the connecting portion 200 and different diameters of the light guide portion 202 are mounted.
  • the light guide unit 202 illustrated in FIG. 11 has a smaller diameter than the light guide unit 202 illustrated in FIG.
  • the shape of the tip of the connection part 200 is the same as that of the connection part 200 shown in FIG.
  • the specification of the light guide cable 2000 may have a different diameter of the light guide 202 inside even if the outer diameter and shape of the tip of the connection part 200 are the same.
  • the light guide cable 2000 shown in FIGS. 11 and 12 is provided with a surface 206.
  • the surface 206 is the first surface 108 of the connection unit 100 of the light source device 1000 as in FIG. 3. Abut. Therefore, in FIG. 11, the position of the incident end face 204 is fixed at a position where the illumination light is the most and uniformly incident.
  • the outer diameter of the connecting portion 200 is the same, and the diameter of the light guide portion 202 is larger than that in FIG. 11. Instead, by setting the position of the non-focal surface 107, it becomes a position where the illumination light is incident most and uniformly.
  • the shape of the tip of the connecting portion 200 shown in FIGS. 11 and 12 is the same as that in FIG. 3, the position of the incident end face 204 cannot be matched with the position of the non-focal plane 107 by mechanical contact.
  • FIG. 12 when the position of the incident end face 204 is fixed to the position of the focal plane 205, there is a possibility that the brightness of the observation object irradiated with light by the light guide cable 2000 cannot be sufficiently secured. Arise.
  • the incident end face 204 can be moved to a position where the illumination light is most incident uniformly. Is preferred.
  • the moving mechanism includes an actuator (motor) 120 attached to the connecting portion 100, a male screw (screw) 122 provided on the rotation shaft of the actuator 120, and a female screw attached to the connecting portion 200 and engaged with the male screw 122. It is comprised from the moving member 210 which has. The moving member 210 is attached to the connection unit 200 when the connection unit 200 is inserted into the connection unit 100.
  • a control device 300 that controls the actuator 120 and a detection unit 400 that detects the brightness of a screen obtained by imaging the observation target irradiated by the light guide cable 2000 are provided. .
  • the control device 300 controls the actuator 120 based on the screen brightness obtained from the detection unit 400.
  • the actuator 120 is driven, the male screw 122 provided on the rotation shaft of the actuator 120 rotates, so that the moving member 210 having the female screw engaged with the male screw 122 moves in the arrow A1 direction.
  • the incident end face 204 of the connection part 200 can be moved to the position where the brightness of the screen becomes the highest by controlling the actuator 120 while monitoring the brightness of the screen by the detection part 400.
  • FIG. 12 shows a state in which the position of the incident end face 204 coincides with the position of the non-focal plane 109, but the position of the incident end face 204 coincides with the position of the other non-focal plane 109 by driving the actuator 120. You can also. Therefore, by providing a mechanism for moving the position of the connecting portion 200, it is possible to automatically adjust to a position where the illumination light is incident most and uniformly.
  • Configuration example of medical system 4.1 Configuration Example of Endoscope System
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 13 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system 5000 to which the technology according to the present disclosure can be applied.
  • FIG. 13 illustrates a situation where an operator (doctor) 5067 is performing surgery on a patient 5071 on a patient bed 5069 using an endoscopic surgery system 5000.
  • an endoscopic surgery system 5000 includes an endoscope 5001, other surgical tools 5017, a support arm device 5027 that supports the endoscope 5001, and various devices for endoscopic surgery. And a cart 5037 on which is mounted.
  • trocars 5025a to 5025d are punctured into the abdominal wall.
  • the lens barrel 5003 of the endoscope 5001 and other surgical tools 5017 are inserted into the body cavity of the patient 5071 from the trocars 5025a to 5025d.
  • an insufflation tube 5019, an energy treatment tool 5021, and forceps 5023 are inserted into the body cavity of the patient 5071.
  • the energy treatment device 5021 is a treatment device that performs tissue incision and separation, blood vessel sealing, or the like by high-frequency current or ultrasonic vibration.
  • the illustrated surgical tool 5017 is merely an example, and as the surgical tool 5017, for example, various surgical tools generally used in endoscopic surgery such as a lever and a retractor may be used.
  • the image of the surgical site in the body cavity of the patient 5071 captured by the endoscope 5001 is displayed on the display device 5041.
  • the surgeon 5067 performs a treatment such as excision of the affected part, for example, using the energy treatment tool 5021 and the forceps 5023 while viewing the image of the surgical part displayed on the display device 5041 in real time.
  • the pneumoperitoneum tube 5019, the energy treatment tool 5021, and the forceps 5023 are supported by an operator 5067 or an assistant during surgery.
  • the support arm device 5027 includes an arm portion 5031 extending from the base portion 5029.
  • the arm portion 5031 includes joint portions 5033a, 5033b, and 5033c and links 5035a and 5035b, and is driven by control from the arm control device 5045.
  • the endoscope 5001 is supported by the arm unit 5031, and the position and posture thereof are controlled. Thereby, the stable position fixing of the endoscope 5001 can be realized.
  • the endoscope 5001 includes a lens barrel 5003 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 5071, and a camera head 5005 connected to the proximal end of the lens barrel 5003.
  • a lens barrel 5003 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 5071, and a camera head 5005 connected to the proximal end of the lens barrel 5003.
  • an endoscope 5001 configured as a so-called rigid mirror having a rigid lens barrel 5003 is illustrated, but the endoscope 5001 is configured as a so-called flexible mirror having a flexible lens barrel 5003. Also good.
  • An opening into which an objective lens is fitted is provided at the tip of the lens barrel 5003.
  • a light source device 5043 is connected to the endoscope 5001, and light generated by the light source device 5043 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 5003. Irradiation is performed toward the observation target in the body cavity of the patient 5071 through the lens.
  • the endoscope 5001 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 5005, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU) 5039 as RAW data.
  • CCU camera control unit
  • the camera head 5005 is equipped with a function of adjusting the magnification and the focal length by appropriately driving the optical system.
  • a plurality of imaging elements may be provided in the camera head 5005 in order to cope with, for example, stereoscopic viewing (3D display).
  • a plurality of relay optical systems are provided inside the lens barrel 5003 in order to guide observation light to each of the plurality of imaging elements.
  • the CCU 5039 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 5001 and the display device 5041. Specifically, the CCU 5039 performs various types of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example, on the image signal received from the camera head 5005. The CCU 5039 provides the display device 5041 with the image signal subjected to the image processing. Further, the CCU 5039 transmits a control signal to the camera head 5005 to control the driving thereof.
  • the control signal can include information regarding imaging conditions such as magnification and focal length.
  • the display device 5041 displays an image based on an image signal subjected to image processing by the CCU 5039 under the control of the CCU 5039.
  • the endoscope 5001 is compatible with high-resolution imaging such as 4K (horizontal pixel number 3840 ⁇ vertical pixel number 2160) or 8K (horizontal pixel number 7680 ⁇ vertical pixel number 4320), and / or 3D display
  • the display device 5041 may be a display device capable of high-resolution display and / or 3D display.
  • 4K or 8K high-resolution imaging a more immersive feeling can be obtained by using a display device 5041 having a size of 55 inches or more.
  • a plurality of display devices 5041 having different resolutions and sizes may be provided depending on applications.
  • the light source device 5043 is composed of a light source such as an LED (light emitting diode), for example, and supplies irradiation light to the endoscope 5001 when photographing a surgical site.
  • a light source such as an LED (light emitting diode)
  • the arm control device 5045 is configured by a processor such as a CPU, for example, and operates according to a predetermined program to control driving of the arm portion 5031 of the support arm device 5027 according to a predetermined control method.
  • the input device 5047 is an input interface for the endoscopic surgery system 5000.
  • the user can input various information and instructions to the endoscopic surgery system 5000 via the input device 5047.
  • the user inputs various types of information related to the operation, such as the patient's physical information and information about the surgical technique, via the input device 5047.
  • the user instructs the arm unit 5031 to be driven via the input device 5047 or the instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 5001. Then, an instruction to drive the energy treatment instrument 5021 is input.
  • the type of the input device 5047 is not limited, and the input device 5047 may be various known input devices.
  • the input device 5047 for example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5057, and / or a lever can be applied.
  • the touch panel may be provided on the display surface of the display device 5041.
  • the input device 5047 is a device worn by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), and various types of input are performed according to the user's gesture and line of sight detected by these devices. Is done.
  • the input device 5047 includes a camera capable of detecting the user's movement, and various inputs are performed according to the user's gesture and line of sight detected from the video captured by the camera.
  • the input device 5047 includes a microphone that can pick up a user's voice, and various inputs are performed by voice through the microphone.
  • the input device 5047 is configured to be able to input various information without contact, so that a user belonging to a clean area (for example, an operator 5067) can operate a device belonging to an unclean area without contact. Is possible.
  • a user belonging to a clean area for example, an operator 5067
  • the user can operate the device without releasing his / her hand from the surgical tool he / she has, the convenience for the user is improved.
  • the treatment instrument control device 5049 controls the drive of the energy treatment instrument 5021 for tissue cauterization, incision, or blood vessel sealing.
  • the pneumoperitoneum device 5051 gas is introduced into the body cavity via the pneumoperitoneum tube 5019.
  • the recorder 5053 is an apparatus capable of recording various types of information related to surgery.
  • the printer 5055 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
  • the support arm device 5027 includes a base portion 5029 as a base and an arm portion 5031 extending from the base portion 5029.
  • the arm portion 5031 includes a plurality of joint portions 5033a, 5033b, and 5033c and a plurality of links 5035a and 5035b connected by the joint portion 5033b.
  • FIG. The configuration of the arm portion 5031 is shown in a simplified manner. Actually, the shape, number and arrangement of the joint portions 5033a to 5033c and the links 5035a and 5035b, the direction of the rotation axis of the joint portions 5033a to 5033c, and the like are appropriately set so that the arm portion 5031 has a desired degree of freedom. obtain.
  • the arm portion 5031 can be preferably configured to have 6 degrees of freedom or more. Accordingly, the endoscope 5001 can be freely moved within the movable range of the arm portion 5031. Therefore, the barrel 5003 of the endoscope 5001 can be inserted into the body cavity of the patient 5071 from a desired direction. It becomes possible.
  • the joint portions 5033a to 5033c are provided with actuators, and the joint portions 5033a to 5033c are configured to be rotatable around a predetermined rotation axis by driving the actuators.
  • the arm control device 5045 By controlling the driving of the actuator by the arm control device 5045, the rotation angles of the joint portions 5033a to 5033c are controlled, and the driving of the arm portion 5031 is controlled. Thereby, control of the position and orientation of the endoscope 5001 can be realized.
  • the arm control device 5045 can control the driving of the arm unit 5031 by various known control methods such as force control or position control.
  • the arm control device 5045 appropriately controls the driving of the arm unit 5031 according to the operation input.
  • the position and posture of the endoscope 5001 may be controlled.
  • the endoscope 5001 at the tip of the arm portion 5031 can be moved from an arbitrary position to an arbitrary position, and then fixedly supported at the position after the movement.
  • the arm portion 5031 may be operated by a so-called master slave method.
  • the arm unit 5031 can be remotely operated by the user via the input device 5047 installed at a location away from the operating room.
  • the arm control device 5045 When force control is applied, the arm control device 5045 receives the external force from the user and moves the actuators of the joint portions 5033a to 5033c so that the arm portion 5031 moves smoothly according to the external force. You may perform what is called power assist control to drive. Accordingly, when the user moves the arm unit 5031 while directly touching the arm unit 5031, the arm unit 5031 can be moved with a relatively light force. Therefore, the endoscope 5001 can be moved more intuitively and with a simpler operation, and user convenience can be improved.
  • an endoscope 5001 is supported by a doctor called a scopist.
  • the position of the endoscope 5001 can be more reliably fixed without relying on human hands, so that an image of the surgical site can be stably obtained. It becomes possible to perform the operation smoothly.
  • the arm control device 5045 is not necessarily provided in the cart 5037. Further, the arm control device 5045 is not necessarily a single device. For example, the arm control device 5045 may be provided in each joint portion 5033a to 5033c of the arm portion 5031 of the support arm device 5027, and the plurality of arm control devices 5045 cooperate with each other to drive the arm portion 5031. Control may be realized.
  • the light source device 5043 supplies irradiation light to the endoscope 5001 when photographing a surgical site.
  • the light source device 5043 is composed of a white light source composed of, for example, an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Adjustments can be made.
  • each RGB light source is controlled by irradiating the observation target with laser light from each of the RGB laser light sources in a time-sharing manner and controlling the driving of the image sensor of the camera head 5005 in synchronization with the irradiation timing. It is also possible to take the images that have been taken in time division. According to this method, a color image can be obtained without providing a color filter in the image sensor.
  • the driving of the light source device 5043 may be controlled so as to change the intensity of the output light every predetermined time.
  • the driving of the image sensor of the camera head 5005 is controlled to acquire images in a time-sharing manner, and the images are synthesized, so that high dynamics without so-called blackout and overexposure are obtained. A range image can be generated.
  • the light source device 5043 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation.
  • narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue.
  • a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue.
  • ICG indocyanine green
  • the light source device 5043 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 14 is a block diagram showing an example of the functional configuration of the camera head 5005 and the CCU 5039 shown in FIG.
  • the camera head 5005 has a lens unit 5007, an imaging unit 5009, a driving unit 5011, a communication unit 5013, and a camera head control unit 5015 as its functions.
  • the CCU 5039 includes a communication unit 5059, an image processing unit 5061, and a control unit 5063 as its functions.
  • the camera head 5005 and the CCU 5039 are connected to each other via a transmission cable 5065 so that they can communicate with each other.
  • the lens unit 5007 is an optical system provided at a connection portion with the lens barrel 5003. Observation light captured from the tip of the lens barrel 5003 is guided to the camera head 5005 and enters the lens unit 5007.
  • the lens unit 5007 is configured by combining a plurality of lenses including a zoom lens and a focus lens. The optical characteristics of the lens unit 5007 are adjusted so that the observation light is condensed on the light receiving surface of the image sensor of the imaging unit 5009. Further, the zoom lens and the focus lens are configured such that their positions on the optical axis are movable in order to adjust the magnification and focus of the captured image.
  • the imaging unit 5009 is configured by an imaging element, and is disposed in the subsequent stage of the lens unit 5007.
  • the observation light that has passed through the lens unit 5007 is collected on the light receiving surface of the image sensor, and an image signal corresponding to the observation image is generated by photoelectric conversion.
  • the image signal generated by the imaging unit 5009 is provided to the communication unit 5013.
  • CMOS Complementary Metal Oxide Semiconductor
  • the imaging element for example, an element capable of capturing a high-resolution image of 4K or more may be used.
  • the image sensor that configures the image capturing unit 5009 is configured to include a pair of image sensors for acquiring right-eye and left-eye image signals corresponding to 3D display. By performing the 3D display, the operator 5067 can more accurately grasp the depth of the living tissue in the surgical site.
  • the imaging unit 5009 is configured as a multi-plate type, a plurality of lens units 5007 are also provided corresponding to each imaging element.
  • the imaging unit 5009 is not necessarily provided in the camera head 5005.
  • the imaging unit 5009 may be provided inside the lens barrel 5003 immediately after the objective lens.
  • the driving unit 5011 includes an actuator, and moves the zoom lens and the focus lens of the lens unit 5007 by a predetermined distance along the optical axis under the control of the camera head control unit 5015. Thereby, the magnification and focus of the image captured by the imaging unit 5009 can be adjusted as appropriate.
  • the communication unit 5013 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 5039.
  • the communication unit 5013 transmits the image signal obtained from the imaging unit 5009 as RAW data to the CCU 5039 via the transmission cable 5065.
  • the image signal is preferably transmitted by optical communication.
  • the surgeon 5067 performs the surgery while observing the state of the affected area with the captured image, so that a moving image of the surgical site is displayed in real time as much as possible for safer and more reliable surgery. Because it is required.
  • the communication unit 5013 is provided with a photoelectric conversion module that converts an electrical signal into an optical signal.
  • the image signal is converted into an optical signal by the photoelectric conversion module, and then transmitted to the CCU 5039 via the transmission cable 5065.
  • the communication unit 5013 receives a control signal for controlling driving of the camera head 5005 from the CCU 5039.
  • the control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
  • the communication unit 5013 provides the received control signal to the camera head control unit 5015.
  • the control signal from the CCU 5039 may also be transmitted by optical communication.
  • the communication unit 5013 is provided with a photoelectric conversion module that converts an optical signal into an electric signal.
  • the control signal is converted into an electric signal by the photoelectric conversion module, and then provided to the camera head control unit 5015.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus are automatically set by the control unit 5063 of the CCU 5039 based on the acquired image signal. That is, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 5001.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Automatic White Balance
  • the camera head control unit 5015 controls driving of the camera head 5005 based on a control signal from the CCU 5039 received via the communication unit 5013. For example, the camera head control unit 5015 controls driving of the imaging element of the imaging unit 5009 based on information indicating that the frame rate of the captured image is specified and / or information indicating that the exposure at the time of imaging is specified. For example, the camera head control unit 5015 appropriately moves the zoom lens and the focus lens of the lens unit 5007 via the drive unit 5011 based on information indicating that the magnification and focus of the captured image are designated.
  • the camera head control unit 5015 may further have a function of storing information for identifying the lens barrel 5003 and the camera head 5005.
  • the camera head 5005 can be resistant to autoclave sterilization by arranging the lens unit 5007, the imaging unit 5009, and the like in a sealed structure with high airtightness and waterproofness.
  • the communication unit 5059 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 5005.
  • the communication unit 5059 receives an image signal transmitted from the camera head 5005 via the transmission cable 5065.
  • the image signal can be suitably transmitted by optical communication.
  • the communication unit 5059 is provided with a photoelectric conversion module that converts an optical signal into an electric signal.
  • the communication unit 5059 provides the image processing unit 5061 with the image signal converted into the electrical signal.
  • the communication unit 5059 transmits a control signal for controlling the driving of the camera head 5005 to the camera head 5005.
  • the control signal may also be transmitted by optical communication.
  • the image processing unit 5061 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 5005. Examples of the image processing include development processing, high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing (electronic zoom processing). Various known signal processing is included.
  • the image processing unit 5061 performs detection processing on the image signal for performing AE, AF, and AWB.
  • the image processing unit 5061 is configured by a processor such as a CPU or a GPU, and the above-described image processing and detection processing can be performed by the processor operating according to a predetermined program.
  • the image processing unit 5061 is configured by a plurality of GPUs, the image processing unit 5061 appropriately divides information related to the image signal, and performs image processing in parallel by the plurality of GPUs.
  • the control unit 5063 performs various controls relating to imaging of the surgical site by the endoscope 5001 and display of the captured image. For example, the control unit 5063 generates a control signal for controlling driving of the camera head 5005. At this time, when the imaging condition is input by the user, the control unit 5063 generates a control signal based on the input by the user. Alternatively, when the endoscope 5001 is equipped with the AE function, the AF function, and the AWB function, the control unit 5063 determines the optimum exposure value, focal length, and the like according to the detection processing result by the image processing unit 5061. A white balance is appropriately calculated and a control signal is generated.
  • control unit 5063 causes the display device 5041 to display an image of the surgical site based on the image signal subjected to the image processing by the image processing unit 5061.
  • the control unit 5063 recognizes various objects in the surgical unit image using various image recognition techniques. For example, the control unit 5063 detects the shape and color of the edge of the object included in the surgical part image, thereby removing surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 5021, and the like. Can be recognized.
  • the control unit 5063 displays various types of surgery support information on the image of the surgical site using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 5067, so that the surgery can be performed more safely and reliably.
  • the transmission cable 5065 for connecting the camera head 5005 and the CCU 5039 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 5065, but communication between the camera head 5005 and the CCU 5039 may be performed wirelessly.
  • communication between the two is performed wirelessly, there is no need to install the transmission cable 5065 in the operating room, so that the situation where the movement of the medical staff in the operating room is hindered by the transmission cable 5065 can be eliminated.
  • the endoscopic surgery system 5000 to which the technology according to the present disclosure can be applied has been described.
  • the endoscopic surgery system 5000 has been described as an example, but a system to which the technology according to the present disclosure can be applied is not limited to such an example.
  • the technology according to the present disclosure may be applied to a testing flexible endoscope system or a microscope operation system.
  • the technology according to the present disclosure can be suitably applied to a connection structure between the light guide 5043 and the light guide that guides the light generated by the light source device 5043 to the tip of the lens barrel 5003 among the configurations described above. Thereby, uniform light with a bright brightness
  • luminance can be irradiated with respect to an observation object.
  • FIG. 15 is a diagram illustrating an example of a schematic configuration of a microscope surgery system 6000 to which the light source device 1000 according to the present disclosure can be applied.
  • the microscope surgery system 6000 includes a microscope device 4000 and a light source device 1000.
  • the microscope device 4000 includes a microscope unit 4010 for magnifying and observing an observation target (a patient's surgical site), an arm unit 4020 that supports the microscope unit 4010 at the distal end, and a base unit 4030 that supports the proximal end of the arm unit 4020.
  • an observation target a patient's surgical site
  • an arm unit 4020 that supports the microscope unit 4010 at the distal end
  • a base unit 4030 that supports the proximal end of the arm unit 4020.
  • the microscope section 4010 is an electronic imaging microscope section (so-called video microscope section) that captures a captured image electronically by the imaging section.
  • Light from the observation target (hereinafter also referred to as observation light) enters the imaging unit inside the microscope unit 4010.
  • the imaging unit includes an optical system that collects the observation light and an image sensor that receives the observation light collected by the optical system.
  • the optical system is configured by combining a plurality of lenses including a zoom lens and a focus lens, and the optical characteristics thereof are adjusted so that the observation light is imaged on the light receiving surface of the image sensor.
  • the imaging element receives the observation light and photoelectrically converts it to generate a signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • an element having a Bayer array capable of color photography is used.
  • the image sensor may be various known image sensors such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor.
  • the arm portion 4020 is configured by a plurality of links (first link 4022a to sixth link 4022f) being rotatably connected to each other by a plurality of joint portions (first joint portion 4024a to sixth joint portion 4024f). Is done. Each joint is rotatable about a rotation axis indicated by a one-dot chain line.
  • the number and shape (length) of the links constituting the arm portion 4020 shown in the figure, the number of joint portions, the arrangement position, the direction of the rotation axis, and the like are appropriately designed so that a desired degree of freedom can be realized.
  • the first joint portion 4024a to the sixth joint portion 4024f may be provided with a drive mechanism such as a motor and an actuator on which an encoder for detecting a rotation angle in each joint portion is mounted. Then, by appropriately controlling the driving of each actuator provided in the first joint portion 4024a to the sixth joint portion 4024f, the posture of the arm portion 4020, that is, the position and posture of the microscope unit 4000 can be controlled.
  • the light guide cable 2000 is placed at the position where the illumination light is most incident and uniformly incident regardless of the diameter of the light guide unit 202 without performing special adjustment.
  • the incident end face 202 can be fixed. Therefore, for example, even when the size of the light beam at the focal plane of the illumination light is smaller than the diameter of the light guide portion 202 of the light guide cable 2000, the incident end face 202 can be disposed at a position where the illumination light is most incident and uniformly incident. . Therefore, while using an endoscope and a surgical microscope suitable for the size of the surgical space, the amount and uniformity of incident illumination light can be reduced. Brighter illumination can be provided.
  • the medical light source device has been described as an example, but the present technology is not limited to such an example.
  • the present embodiment can be applied to a widely used light source device such as an industrial light source device.
  • a medical device including an imaging unit that images an observation target; A light source device that emits light to irradiate the observation target and irradiates the observation target with light through a light guide cable; and The medical system in which the position of the incident end face of the light guide cable with respect to the focal plane of the light emitted from the light source device is set to a different position according to the diameter of the light guide portion of the light guide cable.
  • a connection structure between the light source device and the light guide cable The connection structure in which the position of the incident end face of the light guide cable with respect to the focal plane of the light emitted from the light source device is determined at different positions according to the diameter of the light guide portion of the light guide cable.
  • connection structure according to (2) wherein each of a plurality of light guide cables having different diameters of the light guide unit is connected to the light source device.
  • the light source device has an insertion portion into which a tip of the light guide cable is inserted,
  • the insertion portion has a stepped shape in which a plurality of contact surfaces are arranged at different positions in the optical axis direction according to a plurality of inner diameters of the insertion portion, The position of the light guide cable in the optical axis direction with respect to the insertion portion is determined by the light guide cable having a different tip diameter depending on the diameter of the light guide portion contacting the contact surface.
  • (6) The connection structure according to (5), wherein the stepped structure is provided in a predetermined range on a circumference around an optical axis.
  • a screwing structure for fixing the light guide cable to the insertion portion by fastening a screw is provided (6)
  • the insertion portion has a tapered surface that expands toward the insertion port, The light guide cable having a different tip diameter according to the diameter of the light guide portion contacts the tapered surface, so that the light guide cable is inserted at a position different in the optical axis direction according to the inner diameter of the insertion portion.
  • the light source device has an insertion portion into which a tip of the light guide cable is inserted,
  • the connection structure according to (2) further including an actuator that changes a position of the light guide cable in the optical axis direction with respect to the insertion portion.
  • a detection unit that detects the brightness of an observation target irradiated with light by the light guide cable,
  • the connection structure according to (9) wherein the actuator changes a position in the optical axis direction of the light guide cable with respect to the insertion portion based on brightness of the observation target.
  • (11) The connection structure according to any one of (2) to (10), wherein the light source device and the light guide cable are used for medical purposes.
  • a method of connecting a light source device and a light guide cable The connection method of positioning the light incident end face of the light guide cable at a different position with respect to the focal plane of the light emitted from the light source device according to the diameter of the light guide portion of the light guide cable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

【課題】ライトガイドケーブルの導光部の径に応じて、光源装置から出射される照明光をライトガイドケーブルに対して最適に入射させる。 【解決手段】観察対象を撮像する撮像部を備える医療用機器と、前記観察対象に照射する光を出射し、ライトガイドケーブルを介して前記観察対象に光を照射する光源装置と、を備え、前記ライトガイドケーブルの導光部の径に応じて、前記光源装置から出射される光の焦点面に対する前記ライトガイドケーブルの入射端面の位置が異なる位置に定められる、医療用システムが提供される。

Description

医療用システム、接続構造、及び接続方法
 本開示は、医療用システム、接続構造、及び接続方法に関する。
 従来、例えば下記の特許文献1には、少なくとも1つのレーザ光源を備え、レーザ光源からの光をライトガイドに入射させることが記載されている。
特開2015-223462号公報
 例えば、医療用システムで用いられるライトガイドケーブルにおいては、導光部の直径が異なるライトガイドケーブルが用いられることがある。例えば、手術空間に余裕があり、太い径の内視鏡もしくは大型の顕微鏡を用いることができる場合は、ライトガイドケーブルを収納するスペースが広いため、照明光を入射し易い導光部の直径の大きな太径ライトガイドケーブルが用いられる。
 一方、手術空間が狭く、細径の内視鏡もしくは小型の顕微鏡を用いる必要がある場合は、ライトガイドケーブルを収納するスペースが狭いため、照明光を入射し辛いが狭いスペースに収納が可能な、導光部の直径が小さい細径のライトガイドケーブルが用いられる。
 光源装置から出射される光はレンズにより屈折され、焦点面に結像する。導光部の直径が焦点面に結像した照明光の大きさとほぼ等しい場合は、焦点面の位置にライトガイドケーブルの入射端面を配置することで、ライトガイドケーブルにおいて照明光が最も多くかつ均一に入射する。しかし、直径が焦点面に結像した照明光の大きさよりも大きな太径のライトガイドケーブルの場合、入射端面を焦点面に配置すると、ライトガイドケーブルによって光が照射される観察対象物の明るさの均一性を十分に確保できない問題が生じる。
 従来の医療用の光源では、ランプ光源(キセノンランプやハロゲンランプ)や白色LEDなどが主に用いられている。これらの光源を用いた場合は、照明光の焦点面における大きさが、ライトガイドケーブルの導光部の直径よりも大きいため、導光部の直径の大きな太径ライトガイドケーブルと導光部の直径の小さな細径ライトガイドケーブルのいずれにおいても、照明光を最も多くかつ均一にライトガイドケーブルに入射させることが可能である。従って、導光部の径に応じて、焦点面とライトガイドケーブルの入射端面の相対的に位置関係が考慮されることはなく、焦点面に対するライトガードケーブルの光軸方向の位置は、導光部の直径に関わらず同一とされていた。
 しかしながら、光源として集光性の高いレーザを用いる場合は、照明光の焦点面における大きさがライトガイドケーブルの導光部の直径に対して小さくなる。この場合、導光部直径の大きな太径ライトガイドケーブルと導光部直径の小さな細径ライトガイドケーブルにおいて、照明光が最も多くかつ均一に入射するケーブル端面の固定位置に差が生じるようになる。
 そこで、ライトガイドケーブルの導光部の径に応じて、光源装置から出射される照明光をライトガイドケーブルに対して最適に入射させることが求められていた
 本開示によれば、観察対象を撮像する撮像部を備える医療用機器と、前記観察対象に照射する光を出射し、ライトガイドケーブルを介して前記観察対象に光を照射する光源装置と、を備え、前記ライトガイドケーブルの導光部の径に応じて、前記光源装置から出射される光の焦点面に対する前記ライトガイドケーブルの入射端面の位置が異なる位置に定められる、医療用システムが提供される。
 また、本開示によれば、光源装置とライトガイドケーブルとの接続構造であって、前記ライトガイドケーブルの導光部の径に応じて、前記光源装置から出射される光の焦点面に対する前記ライトガイドケーブルの入射端面の位置が異なる位置に定められる、接続構造が提供される。
 また、本開示によれば、光源装置とライトガイドケーブルとの接続方法であって、前記ライトガイドケーブルの導光部の径に応じて、前記光源装置から出射される光の焦点面に対して、前記ライトガイドケーブルの光の入射端面の位置を異なる位置に位置決めする、接続方法が提供される。
 以上説明したように本開示によれば、ライトガイドケーブルの導光部の径に応じて、光源装置から出射される照明光をライトガイドケーブルに対して最適に入射させることが可能となる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る光源装置と、光源装置に接続されたライトガイドケーブルを示す模式図である。 光源装置の接続部を詳細に示す断面図である。 導光部の太さが異なる2種類のライトガイドケーブルのそれぞれを、光源装置の接続部に装着した状態を示す模式図である。 導光部の太さが異なる2種類のライトガイドケーブルのそれぞれを、光源装置の接続部に装着した状態を示す模式図である。 接続部の挿入部にテーパー面を設けた構成を示す模式図である。 図5に示す光源装置の接続部とライトガイドケーブルの接続部が接続された状態を詳細に示す断面図である。 図5に示す光源装置の接続部とライトガイドケーブルの接続部が接続された状態を詳細に示す断面図である。 図2に示した構成において、接続部の挿入部の内面の段付き形状を内径の一部のみに設けた例を示す断面図である。 図8に示す光源装置の接続部とライトガイドケーブルの接続部が接続された状態を詳細に示す断面図である。 図8に示す光源装置の接続部とライトガイドケーブルの接続部が接続された状態を詳細に示す断面図である。 ライトガイドケーブルにより照射された観察対象の明るさに応じて接続部の光軸方向の位置を変化させる構成を説明するための模式図である。 ライトガイドケーブルにより照射された観察対象の明るさに応じて接続部の光軸方向の位置を変化させる構成を説明するための模式図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 図13に示すカメラヘッド及びCCUの機能構成の一例を示すブロック図である。 本開示に係る光源装置が適用され得る顕微鏡手術システムの概略的な構成の一例を示す図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.光源装置とライトガイドケーブルを含む全体構成
 2.光源装置とライトガイドケーブルの接続構造
 3.本実施形態のバリエーション
  3.1.挿入部にテーパー面を設けた例
  3.2.挿入部の内面の段付き形状を内径の一部のみに設けた例
  3.3.射端面の位置をアクチュエータにより可変させる構成例
 4.医療用システムの構成例
  4.1.内視鏡システムの構成例
  4.2.顕微鏡システムの構成例
 1.光源装置とライトガイドケーブルを含む全体構成
 図1は、本開示の一実施形態に係る光源装置1000と、光源装置1000に接続されたライトガイドケーブル2000を示す模式図である。光源装置1000及びライトガイドケーブル2000は、例えば医療用システムに適用される。光源装置1000は、一例としてレーザ光などの光を生成し、レーザ光をライトガイドケーブル2000に出射する。ライトガイドケーブル2000は、光源装置1000から出射された光を導光し、観察対象に向けて照射する。
 光源装置1000における光の出射部には、接続部100が設けられている。また、ライトガイドケーブル2000の端部には、光源装置1000から出射された光が入射する接続部200が設けられている。図1では、接続部100及び接続部200の中心軸(光軸)を通る断面が示されている。接続部100と接続部200により、本開示に係る接続構造が構成されている。
 2.光源装置とライトガイドケーブルの接続構造
 図2は、光源装置1000の接続部100を詳細に示す断面図である。また、図3及び図4は、光源装置1000の接続部100とライトガイドケーブル2000の接続部200が接続された状態を詳細に示す断面図である。図2~図4においても、接続部100、接続部200の中心軸を通る断面が示されている。
 光源装置1000の接続部100は、光源装置1000が出射した光を集光するためのレンズ102、レンズ104を備える。図2~図4に示す二点鎖線は、光源装置1000が出射する光が集光される様子を示している。図2~図4に示すように、光源装置1000が出射する光は、焦点面105にて結像する。
 光源装置1000の接続部100には、ライトガイドケーブル2000の接続部200が挿入される挿入部106が設けられている。挿入部106の内面は段付き形状とされており、ライトガイドケーブル2000の接続部200が挿入された際のストッパーとして機能する第1の面108と第2の面110が設けられている。
 ライトガイドケーブル2000は、光源装置1000から出射された光を導光する導光部202を有する。図3、図4に示すように、光源装置1000から出射された光は、導光部202の入射端面204から入射する。
 図3及び図4は、導光部202の太さが異なる2種類のライトガイドケーブル200のそれぞれを、光源装置1000の接続部100に装着した状態を示している。図3に示すライトガイドケーブル2000の導光部202の方が図4に示すライトガイドケーブル2000の導光部202よりも細く、接続部200の先端の外径も図3の方が図4よりも細くなっている。
 図3に示す接続部200の先端の外形は段付き形状とされており、面206が設けられている。図3に示すように、面206は、光源装置1000の接続部100の第1の面108と当接している。
 また、図4に示す例では、入射端面204と同一面を構成する面208が、光源装置1000の接続部100の第2の面110と当接している。
 以上のような構成により、接続部100に接続部200を装着した際に、ライトガイドケーブル2000の入射端面204の光軸上の位置が、導光部202の直径(接続部200の先端径)に応じて異なる位置に固定される。
 そして、以上のような構成により、導光部202の入射端面204の光軸上の位置は、光源装置1000が出射した照明光が最も多くかつ均一に導光部202に入射する位置に配置される。
 図3に示す例では、入射端面204の位置は、焦点面105の位置とほぼ一致している。図3のような、細径のライトガイドケーブル2000を使用する場合には、照明光の焦点面105とライトガイドケーブル2000の入射端面204の光軸上の位置が一致する位置で、接続部200が接続部100に突き当たる。これにより、ライトガイドケーブル2000は、照明光が最も多くかつ均一に入射する位置に固定される。
 また、図4に示す例では、図3よりも導光部202の入射端面204の径が大きいことから、入射端面204の位置は、焦点面105よりも右側の非焦点面107の位置に配置されている。図4において、焦点面105で結像した光は、焦点面105よりも右側で光束が拡がり、非焦点面107の位置(つまり、入射端面204の位置)では、光束の径が入射端面204の径とほぼ一致している。図4のような太い径のライトガイドケーブル2000を使用する場合には、照明光が最も多くかつ均一に入射する非焦点面107と入射端面204の光軸上の位置が一致する位置で、接続部200が接続部100に突き当たる。これにより、ライトガイドケーブル2000は、照明光が最も多くかつ均一に入射する位置に固定される。
 従って、図3及び図4に示す例によれば、導光部202の径に応じて、光源装置1000が出射した照明光を最も多くかつ均一に導光部202に入射させることができる。なお、図3に示す例においても、入射端面204の位置を焦点面105よりも右側に配置し、入射端面204の位置での光束の径を入射端面204の径と一致させても良い。
 以上のような構成により、例えば光源としてレーザ光を用いた場合など、照明光の焦点面105における光束の径がライトガイドケーブル2000の導光部202の直径より小さい場合であっても、導光部202の直径の大きさに関わらず照明光が最も多くかつ均一に入射する位置に入射端面204の位置を固定することができる。
 また、ライトガイドケーブル2000が挿入される挿入部106を段付き形状にしておくことにより、図3及び図4に示すような導光部202の直径が異なるライトガイドケーブル2000を脱着、交換した場合であっても、特別な調整を行うことなく、照明光が最も多くかつ均一に入射する位置に入射端面204を固定することができる。なお、図3~図4に示す例では、接続部100の段付き形状を2段とし、2つの面(第1の面108。第2の面110)を設けた例を示したが、より多くの当て付き面を形成して、より多くの種類のライトガイドケーブル2000に対応するように構成しても良い。
 3.本実施形態のバリエーション
  3.1.挿入部にテーパー面を設けた例
 次に、図5~図11に基づいて、本実施形態のいくつかのバリエーションについて説明する。図5は、光源装置1000の接続部100を詳細に示す断面図である。図5に示す接続部100の構成は、基本的には図2に示したものと同様であるが、接続部100の挿入部106にテーパー面(すり鉢形状)112が設けられている。
 図6及び図7は、図5に示す光源装置1000の接続部100とライトガイドケーブル2000の接続部200が接続された状態を詳細に示す断面図である。図5~図7においても、接続部100、接続部200の中心軸を通る断面が示されている。
 接続部100の挿入部106に設けられたテーパー面112は、ライトガイドケーブル2000の接続部200が挿入された際のストッパーとして機能する。図6及び図7は、導光部202の太さが異なる2種類のライトガイドケーブル200のそれぞれを、図5に示す光源装置1000の接続部100に装着した状態を示している。図6に示す接続部200の構成は図3に示す接続部200の構成と同様であり、図7に示す接続部200の構成は図4に示す接続部200の構成と同様である。図6に示すライトガイドケーブル2000の導光部202の方が図7に示すライトガイドケーブル2000の導光部202よりも細く、接続部200の先端の外径も図6の方が図7よりも細くなっている。
 図6に示すように、接続部100に接続部200を装着すると、接続部200に設けられた面206の外側のエッジ207が、接続部100のテーパー面112と当接する。
 また、図7に示す例では、入射端面204と同一面を構成する面208の外側のエッジ209が、接続部100のテーパー面112と当接する。
 以上のような構成により、接続部100に接続部200を装着した際に、ライトガイドケーブル2000の入射端面204の光軸上の位置が、導光部202の直径(接続部200の先端径)に応じて異なる位置に固定される。
 そして、図3及び図4と同様に、導光部202の入射端面204の光軸上の位置は、光源装置1000が出射した照明光が最も多くかつ均一に導光部202に入射する位置に配置される。図6に示す例では、入射端面204の位置は、焦点面105の位置とほぼ一致している。図7に示す例では、図6よりも導光部202の入射端面204の径が大きいことから、入射端面204の位置は焦点面105よりも右側の非焦点面107の位置に配置されている。
  3.2.挿入部の内面の段付き形状を内径の一部のみに設けた例
 図8は、図2に示した構成において、接続部100の挿入部106の内面の段付き形状を内径の一部のみに設けた例を示す断面図である。図8に示す構成では、挿入部106の光軸を中心とする内面において、光軸を中心とする180°の領域を図2と同様の段付き形状とし、残りの180°の領域に接続部200を固定するためのネジ止め構造を設けている。つまり、光軸を中心とする180°の領域のみに段付き形状が設けられ、残りの180°の領域には段付き形状が設けられていない。このように、段付き形状を挿入部106の内径の一部のみに設けた場合においても、接続部100に対する接続部200の光軸方向の位置決めを行うことができる。
 図9及び図10は、図8に示す光源装置1000の接続部100とライトガイドケーブル2000の接続部200が接続された状態を詳細に示す断面図である。図8~図10においても、接続部100、接続部200の中心軸を通る断面が示されている。
 図9及び図10においても、導光部202の太さが異なる2種類のライトガイドケーブル200のそれぞれを、図8に示す光源装置1000の接続部100に装着した状態を示している。図9に示す接続部200の構成は図3に示す接続部200の構成と同様であり、図10に示す接続部200の構成は図4に示す接続部200の構成と同様である。
 接続部100の挿入部106の光軸を中心とする内面において、光軸を中心とする180°の領域に図2と同様の段付き形状が設けられているため、図9に示す例では、接続部200の面206が接続部100の第1の面108と当接する。また、図10に示す例では、入射端面204と同一面を構成する面208が、光源装置1000の接続部100の第2の面110と当接する。つまり、段付き形状による入射端面204の位置決めは、図3及び図4と同様である。従って、図3及び図4と同様に、導光部202の入射端面204の光軸上の位置は、光源装置1000が出射した照明光が最も多くかつ均一に導光部202に入射する位置に配置される。
 また、ネジ止め構造は、接続部100の外周から光軸に向けてねじ込まれる2つのネジ114、ネジ116から構成される。ネジ114は、図9に示すライトガイドケーブル2000が光源装置1000に装着された場合に、接続部200に向けて締め付けられる。これにより、ネジ114が接続部200を押し付けることにより、接続部100に対して接続部200が固定される。
 また、ネジ116は、図10に示すライトガイドケーブル2000が光源装置1000に装着された場合に、接続部200に向けて締め付けられる。これにより、ネジ116が接続部200を押し付けることにより、接続部100に対して接続部200が固定される。
 従って、図8~図10に示す構成によれば、挿入部120の段付き形状が設けられていない領域にネジ止め構造を配置したことにより、接続部100のスペースを有効に活用できる。また、ネジ止め構造により、接続部100に対して接続部200を確実に固定することができる。
  3.3.射端面の位置をアクチュエータにより可変させる構成例
 次に、図11及び図12に基づいて、接続部100に対する光軸方向の接続部200の位置決めをアクチュエータにより可変させる構成について説明する。
 図11及び図12に示す接続部100の基本的な構成は図2~図4と同様である。一方、図11及び図12では、接続部200の外径が同じであり、導光部202の径が異なるライトガイドケーブル2000がそれぞれ装着された状態を示している。図11に示す導光部202は、図12に示す導光部202よりも径が細い。接続部200の先端の形状は、図3に示す接続部200と同様である。
 図11及び図12に示すように、ライトガイドケーブル2000の仕様として、接続部200の先端の外径、形状が同じであっても、内部の導光部202の径が異なる場合がある。図11及び図12に示すライトガイドケーブル2000では、面206が設けられており、図11に示す例では、図3と同様、面206は、光源装置1000の接続部100の第1の面108と当接している。従って、図11では、照明光が最も多くかつ均一に入射する位置に入射端面204の位置が固定される。
 一方、図12に示す例では、接続部200の外径が同じであり、導光部202の径が図11よりも大きいため、入射端面204の位置を、図11と同様の焦点面105ではなく、非焦点面107の位置とすることで、照明光が最も多くかつ均一に入射する位置となる。しかし、図11及び図12に示す接続部200の先端の形状は、図3と同様であるため、メカ的な当接により入射端面204の位置を非焦点面107の位置に合わせることはできない。そして、図12に示す例において、入射端面204の位置を焦点面205の位置に固定した場合は、ライトガイドケーブル2000によって光が照射される観察対象物の明るさを十分に確保できない可能性が生じる。
 また、例えばライトガイドケーブル2000により照射された観察対象を撮像した画面を観察するような場合、画面の明るさを最大限に明るくすることが望ましい。そして、ライトガイドケーブル2000を導光する光の明るさは、入射端面204における光束の径に依存するため、照明光が最も多くかつ均一に入射する位置に入射端面204を移動できるようにすることが好適である。
 このため、図12に示す例では、ライトガイドケーブル2000で照射された観察対象を撮像して得られる画面の明るさを検知して、接続部200の位置を図11に対して矢印A1方向に移動させる移動機構を設けている。移動機構は、接続部100に装着されたアクチュエータ(モータ)120、アクチュエータ120の回転軸に設けられた雄ネジ(スクリュー)122、接続部200に装着され、雄ネジ122が係合する雌ネジを有する移動部材210から構成される。移動部材210は、接続部200を接続部100に挿入する際に接続部200に対して装着される。
 また、図12に示す例では、アクチュエータ120を制御する制御装置300と、ライトガイドケーブル2000で照射された観察対象を撮像して得られる画面の明るさを検知する検知部400が設けられている。制御装置300は、検知部400から得られる画面の明るさに基づいて、アクチュエータ120を制御する。アクチュエータ120が駆動されると、アクチュエータ120の回転軸に設けられた雄ネジ122が回転することで、雄ネジ122と係合する雌ネジを有する移動部材210が矢印A1方向に移動する。これにより、検知部400により画面の明るさをモニタしながらアクチュエータ120を制御することで、画面の輝度が最も高くなる位置に接続部200の入射端面204を移動することができる。
 上述したように、図12に示す例において、入射端面204の位置を焦点面105の位置に固定した場合は、実際に表示される画面の明るさが十分ではなくなる可能性がある。検知部400により画面の明るさを取得し、アクチュエータ120を駆動して入射端面204の位置を矢印A1方向に移動し、画面の明るさが最大となる位置でアクチュエータ120を停止する。図12では、入射端面204の位置が非焦点面109の位置に一致した状態を示しているが、アクチュエータ120の駆動により、入射端面204の位置を他の非焦点面109の位置に一致させることもできる。従って、接続部200の位置を移動させる機構を設けることにより、自動的に照明光が最も多くかつ均一に入射する位置に調整することができる。
 4.医療用システムの構成例
  4.1.内視鏡システムの構成例
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図13は、本開示に係る技術が適用され得る内視鏡手術システム5000の概略的な構成の一例を示す図である。図13では、術者(医師)5067が、内視鏡手術システム5000を用いて、患者ベッド5069上の患者5071に手術を行っている様子が図示されている。図示するように、内視鏡手術システム5000は、内視鏡5001と、その他の術具5017と、内視鏡5001を支持する支持アーム装置5027と、内視鏡下手術のための各種の装置が搭載されたカート5037と、から構成される。
 内視鏡手術では、腹壁を切って開腹する代わりに、トロッカ5025a~5025dと呼ばれる筒状の開孔器具が腹壁に複数穿刺される。そして、トロッカ5025a~5025dから、内視鏡5001の鏡筒5003や、その他の術具5017が患者5071の体腔内に挿入される。図示する例では、その他の術具5017として、気腹チューブ5019、エネルギー処置具5021及び鉗子5023が、患者5071の体腔内に挿入されている。また、エネルギー処置具5021は、高周波電流や超音波振動により、組織の切開及び剥離、又は血管の封止等を行う処置具である。ただし、図示する術具5017はあくまで一例であり、術具5017としては、例えば攝子、レトラクタ等、一般的に内視鏡下手術において用いられる各種の術具が用いられてよい。
 内視鏡5001によって撮影された患者5071の体腔内の術部の画像が、表示装置5041に表示される。術者5067は、表示装置5041に表示された術部の画像をリアルタイムで見ながら、エネルギー処置具5021や鉗子5023を用いて、例えば患部を切除する等の処置を行う。なお、図示は省略しているが、気腹チューブ5019、エネルギー処置具5021及び鉗子5023は、手術中に、術者5067又は助手等によって支持される。
 (支持アーム装置)
 支持アーム装置5027は、ベース部5029から延伸するアーム部5031を備える。図示する例では、アーム部5031は、関節部5033a、5033b、5033c、及びリンク5035a、5035bから構成されており、アーム制御装置5045からの制御により駆動される。アーム部5031によって内視鏡5001が支持され、その位置及び姿勢が制御される。これにより、内視鏡5001の安定的な位置の固定が実現され得る。
 (内視鏡)
 内視鏡5001は、先端から所定の長さの領域が患者5071の体腔内に挿入される鏡筒5003と、鏡筒5003の基端に接続されるカメラヘッド5005と、から構成される。図示する例では、硬性の鏡筒5003を有するいわゆる硬性鏡として構成される内視鏡5001を図示しているが、内視鏡5001は、軟性の鏡筒5003を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒5003の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡5001には光源装置5043が接続されており、当該光源装置5043によって生成された光が、鏡筒5003の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者5071の体腔内の観察対象に向かって照射される。なお、内視鏡5001は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド5005の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)5039に送信される。なお、カメラヘッド5005には、その光学系を適宜駆動させることにより、倍率及び焦点距離を調整する機能が搭載される。
 なお、例えば立体視(3D表示)等に対応するために、カメラヘッド5005には撮像素子が複数設けられてもよい。この場合、鏡筒5003の内部には、当該複数の撮像素子のそれぞれに観察光を導光するために、リレー光学系が複数系統設けられる。
 (カートに搭載される各種の装置)
 CCU5039は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡5001及び表示装置5041の動作を統括的に制御する。具体的には、CCU5039は、カメラヘッド5005から受け取った画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。CCU5039は、当該画像処理を施した画像信号を表示装置5041に提供する。また、CCU5039は、カメラヘッド5005に対して制御信号を送信し、その駆動を制御する。当該制御信号には、倍率や焦点距離等、撮像条件に関する情報が含まれ得る。
 表示装置5041は、CCU5039からの制御により、当該CCU5039によって画像処理が施された画像信号に基づく画像を表示する。内視鏡5001が例えば4K(水平画素数3840×垂直画素数2160)又は8K(水平画素数7680×垂直画素数4320)等の高解像度の撮影に対応したものである場合、及び/又は3D表示に対応したものである場合には、表示装置5041としては、それぞれに対応して、高解像度の表示が可能なもの、及び/又は3D表示可能なものが用いられ得る。4K又は8K等の高解像度の撮影に対応したものである場合、表示装置5041として55インチ以上のサイズのものを用いることで一層の没入感が得られる。また、用途に応じて、解像度、サイズが異なる複数の表示装置5041が設けられてもよい。
 光源装置5043は、例えばLED(light emitting diode)等の光源から構成され、術部を撮影する際の照射光を内視鏡5001に供給する。
 アーム制御装置5045は、例えばCPU等のプロセッサによって構成され、所定のプログラムに従って動作することにより、所定の制御方式に従って支持アーム装置5027のアーム部5031の駆動を制御する。
 入力装置5047は、内視鏡手術システム5000に対する入力インタフェースである。ユーザは、入力装置5047を介して、内視鏡手術システム5000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、入力装置5047を介して、患者の身体情報や、手術の術式についての情報等、手術に関する各種の情報を入力する。また、例えば、ユーザは、入力装置5047を介して、アーム部5031を駆動させる旨の指示や、内視鏡5001による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示、エネルギー処置具5021を駆動させる旨の指示等を入力する。
 入力装置5047の種類は限定されず、入力装置5047は各種の公知の入力装置であってよい。入力装置5047としては、例えば、マウス、キーボード、タッチパネル、スイッチ、フットスイッチ5057及び/又はレバー等が適用され得る。入力装置5047としてタッチパネルが用いられる場合には、当該タッチパネルは表示装置5041の表示面上に設けられてもよい。
 あるいは、入力装置5047は、例えばメガネ型のウェアラブルデバイスやHMD(Head Mounted Display)等の、ユーザによって装着されるデバイスであり、これらのデバイスによって検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。また、入力装置5047は、ユーザの動きを検出可能なカメラを含み、当該カメラによって撮像された映像から検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。更に、入力装置5047は、ユーザの声を収音可能なマイクロフォンを含み、当該マイクロフォンを介して音声によって各種の入力が行われる。このように、入力装置5047が非接触で各種の情報を入力可能に構成されることにより、特に清潔域に属するユーザ(例えば術者5067)が、不潔域に属する機器を非接触で操作することが可能となる。また、ユーザは、所持している術具から手を離すことなく機器を操作することが可能となるため、ユーザの利便性が向上する。
 処置具制御装置5049は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具5021の駆動を制御する。気腹装置5051は、内視鏡5001による視野の確保及び術者の作業空間の確保の目的で、患者5071の体腔を膨らめるために、気腹チューブ5019を介して当該体腔内にガスを送り込む。レコーダ5053は、手術に関する各種の情報を記録可能な装置である。プリンタ5055は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 以下、内視鏡手術システム5000において特に特徴的な構成について、更に詳細に説明する。
 (支持アーム装置)
 支持アーム装置5027は、基台であるベース部5029と、ベース部5029から延伸するアーム部5031と、を備える。図示する例では、アーム部5031は、複数の関節部5033a、5033b、5033cと、関節部5033bによって連結される複数のリンク5035a、5035bと、から構成されているが、図13では、簡単のため、アーム部5031の構成を簡略化して図示している。実際には、アーム部5031が所望の自由度を有するように、関節部5033a~5033c及びリンク5035a、5035bの形状、数及び配置、並びに関節部5033a~5033cの回転軸の方向等が適宜設定され得る。例えば、アーム部5031は、好適に、6自由度以上の自由度を有するように構成され得る。これにより、アーム部5031の可動範囲内において内視鏡5001を自由に移動させることが可能になるため、所望の方向から内視鏡5001の鏡筒5003を患者5071の体腔内に挿入することが可能になる。
 関節部5033a~5033cにはアクチュエータが設けられており、関節部5033a~5033cは当該アクチュエータの駆動により所定の回転軸まわりに回転可能に構成されている。当該アクチュエータの駆動がアーム制御装置5045によって制御されることにより、各関節部5033a~5033cの回転角度が制御され、アーム部5031の駆動が制御される。これにより、内視鏡5001の位置及び姿勢の制御が実現され得る。この際、アーム制御装置5045は、力制御又は位置制御等、各種の公知の制御方式によってアーム部5031の駆動を制御することができる。
 例えば、術者5067が、入力装置5047(フットスイッチ5057を含む)を介して適宜操作入力を行うことにより、当該操作入力に応じてアーム制御装置5045によってアーム部5031の駆動が適宜制御され、内視鏡5001の位置及び姿勢が制御されてよい。当該制御により、アーム部5031の先端の内視鏡5001を任意の位置から任意の位置まで移動させた後、その移動後の位置で固定的に支持することができる。なお、アーム部5031は、いわゆるマスタースレイブ方式で操作されてもよい。この場合、アーム部5031は、手術室から離れた場所に設置される入力装置5047を介してユーザによって遠隔操作され得る。
 また、力制御が適用される場合には、アーム制御装置5045は、ユーザからの外力を受け、その外力にならってスムーズにアーム部5031が移動するように、各関節部5033a~5033cのアクチュエータを駆動させる、いわゆるパワーアシスト制御を行ってもよい。これにより、ユーザが直接アーム部5031に触れながらアーム部5031を移動させる際に、比較的軽い力で当該アーム部5031を移動させることができる。従って、より直感的に、より簡易な操作で内視鏡5001を移動させることが可能となり、ユーザの利便性を向上させることができる。
 ここで、一般的に、内視鏡下手術では、スコピストと呼ばれる医師によって内視鏡5001が支持されていた。これに対して、支持アーム装置5027を用いることにより、人手によらずに内視鏡5001の位置をより確実に固定することが可能になるため、術部の画像を安定的に得ることができ、手術を円滑に行うことが可能になる。
 なお、アーム制御装置5045は必ずしもカート5037に設けられなくてもよい。また、アーム制御装置5045は必ずしも1つの装置でなくてもよい。例えば、アーム制御装置5045は、支持アーム装置5027のアーム部5031の各関節部5033a~5033cにそれぞれ設けられてもよく、複数のアーム制御装置5045が互いに協働することにより、アーム部5031の駆動制御が実現されてもよい。
 (光源装置)
 光源装置5043は、内視鏡5001に術部を撮影する際の照射光を供給する。光源装置5043は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成される。このとき、RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置5043において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド5005の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置5043は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド5005の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置5043は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察するもの(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得るもの等が行われ得る。光源装置5043は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 (カメラヘッド及びCCU)
 図14を参照して、内視鏡5001のカメラヘッド5005及びCCU5039の機能についてより詳細に説明する。図14は、図13に示すカメラヘッド5005及びCCU5039の機能構成の一例を示すブロック図である。
 図14を参照すると、カメラヘッド5005は、その機能として、レンズユニット5007と、撮像部5009と、駆動部5011と、通信部5013と、カメラヘッド制御部5015と、を有する。また、CCU5039は、その機能として、通信部5059と、画像処理部5061と、制御部5063と、を有する。カメラヘッド5005とCCU5039とは、伝送ケーブル5065によって双方向に通信可能に接続されている。
 まず、カメラヘッド5005の機能構成について説明する。レンズユニット5007は、鏡筒5003との接続部に設けられる光学系である。鏡筒5003の先端から取り込まれた観察光は、カメラヘッド5005まで導光され、当該レンズユニット5007に入射する。レンズユニット5007は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。レンズユニット5007は、撮像部5009の撮像素子の受光面上に観察光を集光するように、その光学特性が調整されている。また、ズームレンズ及びフォーカスレンズは、撮像画像の倍率及び焦点の調整のため、その光軸上の位置が移動可能に構成される。
 撮像部5009は撮像素子によって構成され、レンズユニット5007の後段に配置される。レンズユニット5007を通過した観察光は、当該撮像素子の受光面に集光され、光電変換によって、観察像に対応した画像信号が生成される。撮像部5009によって生成された画像信号は、通信部5013に提供される。
 撮像部5009を構成する撮像素子としては、例えばCMOS(Complementary Metal Oxide Semiconductor)タイプのイメージセンサであり、Bayer配列を有するカラー撮影可能なものが用いられる。なお、当該撮像素子としては、例えば4K以上の高解像度の画像の撮影に対応可能なものが用いられてもよい。術部の画像が高解像度で得られることにより、術者5067は、当該術部の様子をより詳細に把握することができ、手術をより円滑に進行することが可能となる。
 また、撮像部5009を構成する撮像素子は、3D表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成される。3D表示が行われることにより、術者5067は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部5009が多板式で構成される場合には、各撮像素子に対応して、レンズユニット5007も複数系統設けられる。
 また、撮像部5009は、必ずしもカメラヘッド5005に設けられなくてもよい。例えば、撮像部5009は、鏡筒5003の内部に、対物レンズの直後に設けられてもよい。
 駆動部5011は、アクチュエータによって構成され、カメラヘッド制御部5015からの制御により、レンズユニット5007のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部5009による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部5013は、CCU5039との間で各種の情報を送受信するための通信装置によって構成される。通信部5013は、撮像部5009から得た画像信号をRAWデータとして伝送ケーブル5065を介してCCU5039に送信する。この際、術部の撮像画像を低レイテンシで表示するために、当該画像信号は光通信によって送信されることが好ましい。手術の際には、術者5067が撮像画像によって患部の状態を観察しながら手術を行うため、より安全で確実な手術のためには、術部の動画像が可能な限りリアルタイムに表示されることが求められるからである。光通信が行われる場合には、通信部5013には、電気信号を光信号に変換する光電変換モジュールが設けられる。画像信号は当該光電変換モジュールによって光信号に変換された後、伝送ケーブル5065を介してCCU5039に送信される。
 また、通信部5013は、CCU5039から、カメラヘッド5005の駆動を制御するための制御信号を受信する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。通信部5013は、受信した制御信号をカメラヘッド制御部5015に提供する。なお、CCU5039からの制御信号も、光通信によって伝送されてもよい。この場合、通信部5013には、光信号を電気信号に変換する光電変換モジュールが設けられ、制御信号は当該光電変換モジュールによって電気信号に変換された後、カメラヘッド制御部5015に提供される。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、取得された画像信号に基づいてCCU5039の制御部5063によって自動的に設定される。つまり、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡5001に搭載される。
 カメラヘッド制御部5015は、通信部5013を介して受信したCCU5039からの制御信号に基づいて、カメラヘッド5005の駆動を制御する。例えば、カメラヘッド制御部5015は、撮像画像のフレームレートを指定する旨の情報及び/又は撮像時の露光を指定する旨の情報に基づいて、撮像部5009の撮像素子の駆動を制御する。また、例えば、カメラヘッド制御部5015は、撮像画像の倍率及び焦点を指定する旨の情報に基づいて、駆動部5011を介してレンズユニット5007のズームレンズ及びフォーカスレンズを適宜移動させる。カメラヘッド制御部5015は、更に、鏡筒5003やカメラヘッド5005を識別するための情報を記憶する機能を備えてもよい。
 なお、レンズユニット5007や撮像部5009等の構成を、気密性及び防水性が高い密閉構造内に配置することで、カメラヘッド5005について、オートクレーブ滅菌処理に対する耐性を持たせることができる。
 次に、CCU5039の機能構成について説明する。通信部5059は、カメラヘッド5005との間で各種の情報を送受信するための通信装置によって構成される。通信部5059は、カメラヘッド5005から、伝送ケーブル5065を介して送信される画像信号を受信する。この際、上記のように、当該画像信号は好適に光通信によって送信され得る。この場合、光通信に対応して、通信部5059には、光信号を電気信号に変換する光電変換モジュールが設けられる。通信部5059は、電気信号に変換した画像信号を画像処理部5061に提供する。
 また、通信部5059は、カメラヘッド5005に対して、カメラヘッド5005の駆動を制御するための制御信号を送信する。当該制御信号も光通信によって送信されてよい。
 画像処理部5061は、カメラヘッド5005から送信されたRAWデータである画像信号に対して各種の画像処理を施す。当該画像処理としては、例えば現像処理、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の公知の信号処理が含まれる。また、画像処理部5061は、AE、AF及びAWBを行うための、画像信号に対する検波処理を行う。
 画像処理部5061は、CPUやGPU等のプロセッサによって構成され、当該プロセッサが所定のプログラムに従って動作することにより、上述した画像処理や検波処理が行われ得る。なお、画像処理部5061が複数のGPUによって構成される場合には、画像処理部5061は、画像信号に係る情報を適宜分割し、これら複数のGPUによって並列的に画像処理を行う。
 制御部5063は、内視鏡5001による術部の撮像、及びその撮像画像の表示に関する各種の制御を行う。例えば、制御部5063は、カメラヘッド5005の駆動を制御するための制御信号を生成する。この際、撮像条件がユーザによって入力されている場合には、制御部5063は、当該ユーザによる入力に基づいて制御信号を生成する。あるいは、内視鏡5001にAE機能、AF機能及びAWB機能が搭載されている場合には、制御部5063は、画像処理部5061による検波処理の結果に応じて、最適な露出値、焦点距離及びホワイトバランスを適宜算出し、制御信号を生成する。
 また、制御部5063は、画像処理部5061によって画像処理が施された画像信号に基づいて、術部の画像を表示装置5041に表示させる。この際、制御部5063は、各種の画像認識技術を用いて術部画像内における各種の物体を認識する。例えば、制御部5063は、術部画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具5021使用時のミスト等を認識することができる。制御部5063は、表示装置5041に術部の画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させる。手術支援情報が重畳表示され、術者5067に提示されることにより、より安全かつ確実に手術を進めることが可能になる。
 カメラヘッド5005及びCCU5039を接続する伝送ケーブル5065は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル5065を用いて有線で通信が行われていたが、カメラヘッド5005とCCU5039との間の通信は無線で行われてもよい。両者の間の通信が無線で行われる場合には、伝送ケーブル5065を手術室内に敷設する必要がなくなるため、手術室内における医療スタッフの移動が当該伝送ケーブル5065によって妨げられる事態が解消され得る。
 以上、本開示に係る技術が適用され得る内視鏡手術システム5000の一例について説明した。なお、ここでは、一例として内視鏡手術システム5000について説明したが、本開示に係る技術が適用され得るシステムはかかる例に限定されない。例えば、本開示に係る技術は、検査用軟性内視鏡システムや顕微鏡手術システムに適用されてもよい。
 本開示に係る技術は、以上説明した構成のうち、光源装置5043によって生成された光を鏡筒5003の先端まで導光するライトガイドと、光源装置5043との接続構造に好適に適用され得る。これにより、観察対象に対し輝度の明るい均一な光を照射することができる。
  8.2.顕微鏡システムの構成例
 図15は、本開示に係る光源装置1000が適用され得る顕微鏡手術システム6000の概略的な構成の一例を示す図である。図15を参照すると、顕微鏡手術システム6000は、顕微鏡装置4000と、光源装置1000と、を有してから構成される。
 顕微鏡装置4000は、観察対象(患者の術部)を拡大観察するための顕微鏡部4010と、顕微鏡部4010を先端で支持するアーム部4020と、アーム部4020の基端を支持するベース部4030と、を有する。
 顕微鏡部4010は、撮像部によって電子的に撮像画像を撮像する、電子撮像式の顕微鏡部(いわゆるビデオ式の顕微鏡部)である。観察対象からの光(以下、観察光ともいう)は、顕微鏡部4010の内部の撮像部に入射する。
 撮像部は、観察光を集光する光学系と、当該光学系が集光した観察光を受光する撮像素子と、から構成される。当該光学系は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成され、その光学特性は、観察光を撮像素子の受光面上に結像するように調整されている。当該撮像素子は、観察光を受光して光電変換することにより、観察光に対応した信号、すなわち観察像に対応した画像信号を生成する。当該撮像素子としては、例えばBayer配列を有するカラー撮影可能なものが用いられる。当該撮像素子は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ又はCCD(Charge Coupled Device)イメージセンサ等、各種の公知の撮像素子であってよい。
 アーム部4020は、複数のリンク(第1リンク4022a~第6リンク4022f)が、複数の関節部(第1関節部4024a~第6関節部4024f)によって互いに回動可能に連結されることによって構成される。各関節部は一点鎖線で示す回転軸を中心として回動可能とされている。
 なお、図示するアーム部4020を構成するリンクの数及び形状(長さ)、並びに関節部の数、配置位置及び回転軸の方向等は、所望の自由度が実現され得るように適宜設計されてよい。また、第1関節部4024a~第6関節部4024fには、モータ等の駆動機構、及び各関節部における回転角度を検出するエンコーダ等が搭載されたアクチュエータが設けられていても良い。そして、第1関節部4024a~第6関節部4024fに設けられる各アクチュエータの駆動が適宜制御されることにより、アーム部4020の姿勢、すなわち顕微鏡部4000の位置及び姿勢が制御され得る。
 光源装置1000は、例えばベース部4030の内部に内蔵されている。光源装置1000に接続されたライトガイド500は、第1リンク4022a~第6リンク4022fの内側、あるいは外側を通り、顕微鏡部4010に導かれる。顕微鏡部4010に導かれたライトガイド500の先端から観察対象に光を照射することで、顕微鏡部4010の内部の撮像部が患者の観察対象(患部)を撮像した際に、観察対象の輝度を高め、観察対象を鮮明に撮像することができる。
 以上説明したように本実施形態によれば、特別な調整を行うことなく、導光部202の直径の大きさに関わらず、照明光が最も多くかつ均一に入射する位置にライトガイドケーブル2000の入射端面202を固定することができる。従って、例えば照明光の焦点面における光束の大きさがライトガイドケーブル2000の導光部202の直径より小さい場合等においても、照明光が最も多くかつ均一に入射する位置に入射端面202を配置できる。従って、手術空間の広さに適した内視鏡及び手術顕微鏡を用いつつ、入射可能な照明光の光量及び均一性を低下させることなく。より明るい照明を提供することが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、医療用の光源装置を例に挙げて説明したが、本技術はかかる例に限定されない。本実施形態は、例えば工業用の光源装置など、広く汎用的な光源装置に適用することが可能である。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1) 観察対象を撮像する撮像部を備える医療用機器と、
 前記観察対象に照射する光を出射し、ライトガイドケーブルを介して前記観察対象に光を照射する光源装置と、を備え、
 前記ライトガイドケーブルの導光部の径に応じて、前記光源装置から出射される光の焦点面に対する前記ライトガイドケーブルの入射端面の位置が異なる位置に定められる、医療用システム。
(2) 光源装置とライトガイドケーブルとの接続構造であって、
 前記ライトガイドケーブルの導光部の径に応じて、前記光源装置から出射される光の焦点面に対する前記ライトガイドケーブルの入射端面の位置が異なる位置に定められる、接続構造。
(3) 前記光源装置に対して、前記導光部の径が異なる複数のライトガイドケーブルのそれぞれを接続する、前記(2)に記載の接続構造。
(4) 前記光源装置は、前記ライトガイドケーブルの先端が挿入される挿入部を有し、
 前記挿入部の内径に応じて光軸方向の異なる位置で前記ライトガイドケーブルが前記挿入部に位置決めされる、前記(2)又は(3)に記載の接続構造。
(5) 前記挿入部は、前記挿入部の複数の内径に応じて光軸方向の異なる位置に複数の当接面が配置された段付き形状を有し、
 前記導光部の径に応じて異なる先端径を有する前記ライトガイドケーブルが前記当接面に当接することで、前記挿入部に対して前記ライトガイドケーブルの光軸方向の位置が定められる、前記(4)に記載の接続構造。
(6) 前記段付き構造は、光軸を中心とする円周上の所定の範囲に設けられた、前記(5)に記載の接続構造。
(7) 前記段付き構造が設けられていない前記所定の範囲以外の領域に、ネジの締結により前記挿入部に対して前記ライトガイドケーブルを固定するネジ止め構造が設けられた、前記(6)に記載の接続構造。
(8) 前記挿入部は、挿入口に向けて拡がるテーパー面を有し、
 前記導光部の径に応じて異なる先端径を有する前記ライトガイドケーブルが前記テーパー面に当接することで、前記挿入部の内径に応じて光軸方向の異なる位置で前記ライトガイドケーブルが前記挿入部に位置決めされる、前記(4)に記載の接続構造。
(9) 前記光源装置は、前記ライトガイドケーブルの先端が挿入される挿入部を有し、
 前記挿入部に対する前記ライトガイドケーブルの光軸方向の位置を変化させるアクチュエータを備える、前記(2)に記載の接続構造。
(10) 前記ライトガイドケーブルにより光が照射される観察対象の明るさを検知する検知部を備え、
 前記アクチュエータは、前記観察対象の明るさに基づいて、前記挿入部に対する前記ライトガイドケーブルの光軸方向の位置を変化させる、前記(9)に記載の接続構造。
(11)
 前記光源装置及び前記ライトガイドケーブルは、医療用に用いられる、前記(2)~(10)のいずれかに記載の接続構造。
(12) 光源装置とライトガイドケーブルとの接続方法であって、
 前記ライトガイドケーブルの導光部の径に応じて、前記光源装置から出射される光の焦点面に対して、前記ライトガイドケーブルの光の入射端面の位置を異なる位置に位置決めする、接続方法。
 106  挿入部
 108  第1の面
 110  第2の面
 112  テーパー面
 114,116  ネジ
 120  アクチュエータ
 202  導光部
 204  入射端面
 205  焦点面
 400  検知部
 1000 光源装置
 2000 ライトガイドケーブル

Claims (12)

  1.  観察対象を撮像する撮像部を備える医療用機器と、
     前記観察対象に照射する光を出射し、ライトガイドケーブルを介して前記観察対象に光を照射する光源装置と、を備え、
     前記ライトガイドケーブルの導光部の径に応じて、前記光源装置から出射される光の焦点面に対する前記ライトガイドケーブルの入射端面の位置が異なる位置に定められる、医療用システム。
  2.  光源装置とライトガイドケーブルとの接続構造であって、
     前記ライトガイドケーブルの導光部の径に応じて、前記光源装置から出射される光の焦点面に対する前記ライトガイドケーブルの入射端面の位置が異なる位置に定められる、接続構造。
  3.  前記光源装置に対して、前記導光部の径が異なる複数のライトガイドケーブルのそれぞれを接続する、請求項2に記載の接続構造。
  4.  前記光源装置は、前記ライトガイドケーブルの先端が挿入される挿入部を有し、
     前記挿入部の内径に応じて光軸方向の異なる位置で前記ライトガイドケーブルが前記挿入部に位置決めされる、請求項2に記載の接続構造。
  5.  前記挿入部は、前記挿入部の複数の内径に応じて光軸方向の異なる位置に複数の当接面が配置された段付き形状を有し、
     前記導光部の径に応じて異なる先端径を有する前記ライトガイドケーブルが前記当接面に当接することで、前記挿入部に対して前記ライトガイドケーブルの光軸方向の位置が定められる、請求項4に記載の接続構造。
  6.  前記段付き構造は、光軸を中心とする円周上の所定の範囲に設けられた、請求項5に記載の接続構造。
  7.  前記段付き構造が設けられていない前記所定の範囲以外の領域に、ネジの締結により前記挿入部に対して前記ライトガイドケーブルを固定するネジ止め構造が設けられた、請求項6に記載の接続構造。
  8.  前記挿入部は、挿入口に向けて拡がるテーパー面を有し、
     前記導光部の径に応じて異なる先端径を有する前記ライトガイドケーブルが前記テーパー面に当接することで、前記挿入部の内径に応じて光軸方向の異なる位置で前記ライトガイドケーブルが前記挿入部に位置決めされる、請求項4に記載の接続構造。
  9.  前記光源装置は、前記ライトガイドケーブルの先端が挿入される挿入部を有し、
     前記挿入部に対する前記ライトガイドケーブルの光軸方向の位置を変化させるアクチュエータを備える、請求項2に記載の接続構造。
  10.  前記ライトガイドケーブルにより光が照射される観察対象の明るさを検知する検知部を備え、
     前記アクチュエータは、前記観察対象の明るさに基づいて、前記挿入部に対する前記ライトガイドケーブルの光軸方向の位置を変化させる、請求項9に記載の接続構造。
  11.  前記光源装置及び前記ライトガイドケーブルは、医療用に用いられる、請求項2に記載の接続構造。
  12.  光源装置とライトガイドケーブルとの接続方法であって、
     前記ライトガイドケーブルの導光部の径に応じて、前記光源装置から出射される光の焦点面に対して、前記ライトガイドケーブルの光の入射端面の位置を異なる位置に位置決めする、接続方法。
PCT/JP2019/008359 2018-04-18 2019-03-04 医療用システム、接続構造、及び接続方法 WO2019202860A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020514005A JP7207404B2 (ja) 2018-04-18 2019-03-04 医療用システム、接続構造、及び接続方法
EP19788708.6A EP3782532A4 (en) 2018-04-18 2019-03-04 MEDICAL SYSTEM, CONNECTION STRUCTURE, AND CONNECTION METHOD
US17/046,305 US20210137362A1 (en) 2018-04-18 2019-03-04 Medical system, connection structure, and connection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-079587 2018-04-18
JP2018079587 2018-04-18

Publications (1)

Publication Number Publication Date
WO2019202860A1 true WO2019202860A1 (ja) 2019-10-24

Family

ID=68239151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008359 WO2019202860A1 (ja) 2018-04-18 2019-03-04 医療用システム、接続構造、及び接続方法

Country Status (4)

Country Link
US (1) US20210137362A1 (ja)
EP (1) EP3782532A4 (ja)
JP (1) JP7207404B2 (ja)
WO (1) WO2019202860A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293420A (ja) * 1988-09-30 1990-04-04 Toshiba Corp 内視鏡装置
JPH0470710A (ja) * 1990-07-11 1992-03-05 Olympus Optical Co Ltd 内視鏡装置
JPH07184855A (ja) * 1993-12-28 1995-07-25 Olympus Optical Co Ltd 光源装置
JPH0894943A (ja) * 1994-09-27 1996-04-12 Asahi Optical Co Ltd 内視鏡の照明装置
JPH10295640A (ja) * 1997-04-22 1998-11-10 Asahi Optical Co Ltd 内視鏡の照明装置
JP2003325449A (ja) * 2002-05-15 2003-11-18 Fuji Photo Optical Co Ltd 内視鏡用光源コネクタの光源装置への接続構造
JP2003325450A (ja) * 2002-05-16 2003-11-18 Olympus Optical Co Ltd 内視鏡用光源装置
JP2005245908A (ja) * 2004-03-08 2005-09-15 Pentax Corp 内視鏡の光源接続アダプタ
JP2006314581A (ja) * 2005-05-13 2006-11-24 Pentax Corp 内視鏡システム
JP2007021002A (ja) * 2005-07-20 2007-02-01 Pentax Corp 立体照明内視鏡システム
JP2015223462A (ja) 2014-05-30 2015-12-14 ソニー株式会社 照明装置、照明方法及び内視鏡

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6180334B2 (ja) * 2014-01-23 2017-08-16 オリンパス株式会社 内視鏡用光源システム
WO2015190134A1 (ja) * 2014-06-09 2015-12-17 オリンパス株式会社 内視鏡システム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293420A (ja) * 1988-09-30 1990-04-04 Toshiba Corp 内視鏡装置
JPH0470710A (ja) * 1990-07-11 1992-03-05 Olympus Optical Co Ltd 内視鏡装置
JPH07184855A (ja) * 1993-12-28 1995-07-25 Olympus Optical Co Ltd 光源装置
JPH0894943A (ja) * 1994-09-27 1996-04-12 Asahi Optical Co Ltd 内視鏡の照明装置
JPH10295640A (ja) * 1997-04-22 1998-11-10 Asahi Optical Co Ltd 内視鏡の照明装置
JP2003325449A (ja) * 2002-05-15 2003-11-18 Fuji Photo Optical Co Ltd 内視鏡用光源コネクタの光源装置への接続構造
JP2003325450A (ja) * 2002-05-16 2003-11-18 Olympus Optical Co Ltd 内視鏡用光源装置
JP2005245908A (ja) * 2004-03-08 2005-09-15 Pentax Corp 内視鏡の光源接続アダプタ
JP2006314581A (ja) * 2005-05-13 2006-11-24 Pentax Corp 内視鏡システム
JP2007021002A (ja) * 2005-07-20 2007-02-01 Pentax Corp 立体照明内視鏡システム
JP2015223462A (ja) 2014-05-30 2015-12-14 ソニー株式会社 照明装置、照明方法及び内視鏡

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3782532A4

Also Published As

Publication number Publication date
EP3782532A4 (en) 2021-06-02
US20210137362A1 (en) 2021-05-13
JPWO2019202860A1 (ja) 2021-06-24
JP7207404B2 (ja) 2023-01-18
EP3782532A1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US11221296B2 (en) Imaging system
WO2017169118A1 (ja) 治具保持装置及び医療用観察装置
US11463629B2 (en) Medical system, medical apparatus, and control method
US11653824B2 (en) Medical observation system and medical observation device
WO2019239942A1 (ja) 手術用観察装置、手術用観察方法、手術用光源装置、及び手術用の光照射方法
JP2019162231A (ja) 医療用撮像装置及び医療用観察システム
WO2018088105A1 (ja) 医療用支持アーム及び医療用システム
JP2019084334A (ja) 医療用保持装置、医療用アームシステム、及びドレープ装着機構
WO2018088113A1 (ja) 関節駆動用アクチュエータ及び医療用システム
WO2017221491A1 (ja) 制御装置、制御システム、および制御方法
WO2019181242A1 (ja) 内視鏡及びアームシステム
WO2020203225A1 (ja) 医療システム、情報処理装置及び情報処理方法
US20210258456A1 (en) Interchangeable lens, imaging apparatus, and rotation detection apparatus
WO2018168578A1 (ja) 撮像装置、映像信号処理装置および映像信号処理方法
WO2018168571A1 (ja) 撮像装置、映像信号処理装置および映像信号処理方法
WO2019202860A1 (ja) 医療用システム、接続構造、及び接続方法
WO2020045014A1 (ja) 医療システム、情報処理装置及び情報処理方法
WO2020203164A1 (ja) 医療システム、情報処理装置及び情報処理方法
WO2020116067A1 (ja) 医療システム、情報処理装置及び情報処理方法
WO2018043205A1 (ja) 医療用画像処理装置、医療用画像処理方法、プログラム
WO2022004250A1 (ja) 医療システム、情報処理装置及び情報処理方法
WO2020050187A1 (ja) 医療システム、情報処理装置及び情報処理方法
WO2020084917A1 (ja) 医療システム及び情報処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019788708

Country of ref document: EP

Effective date: 20201118