[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019202761A1 - Spectrometer, imaging device, scanning device, and position measuring device - Google Patents

Spectrometer, imaging device, scanning device, and position measuring device Download PDF

Info

Publication number
WO2019202761A1
WO2019202761A1 PCT/JP2018/041099 JP2018041099W WO2019202761A1 WO 2019202761 A1 WO2019202761 A1 WO 2019202761A1 JP 2018041099 W JP2018041099 W JP 2018041099W WO 2019202761 A1 WO2019202761 A1 WO 2019202761A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spectroscope
main surface
wavelength
spectrometer
Prior art date
Application number
PCT/JP2018/041099
Other languages
French (fr)
Japanese (ja)
Inventor
佳史 村田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880088746.9A priority Critical patent/CN111684335A/en
Publication of WO2019202761A1 publication Critical patent/WO2019202761A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a spectroscope, an imaging device, a scanning device, and a position measuring device.
  • an etalon is known as a filter for extracting light of a desired wavelength from broadband light.
  • An etalon is a device that extracts light of a narrow band wavelength by multiple reflection of light between two reflecting mirrors installed in parallel and facing each other.
  • Patent Document 1 discloses an air gap etalon that extracts light of a desired wavelength based on a gap between a wavelength conversion element that converts the wavelength of incident basic light and an optical member. .
  • Patent Document 2 discloses a photoelastic modulation (PEM) element that periodically modulates the polarization state of incident light, and a plurality of polarizers and reflections provided above and below the PEM element.
  • a tunable filter comprising a mirror is disclosed. In the wavelength tunable filter, incident light passes through the PEM element while being multiple-reflected between the upper and lower reflection mirrors, and light having a desired wavelength is emitted.
  • a wavelength to be extracted can be variably controlled using such an etalon, for example, a wavelength-swept light source can be configured.
  • a wavelength-swept light source can be configured.
  • the wavelength of light is determined according to the distance between the wavelength conversion element and the optical member, at least one of these members is mechanically controlled to control the wavelength. Needs to be moved. Therefore, the wavelength cannot be controlled at high speed depending on the configuration.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a spectroscope, an imaging device, a scanning device, and a position measuring device capable of controlling the wavelength of light at high speed and with high accuracy. To do.
  • a spectrometer has a first main surface and a second main surface that face each other in parallel, and the distance between the first main surface and the second main surface is piezoelectric when an alternating voltage is applied.
  • the piezoelectric member includes a piezoelectric member that periodically varies depending on the effect.
  • the piezoelectric member multi-reflects light incident on the piezoelectric member between the first main surface and the second main surface, and the first main surface and the second main surface. The light having a wavelength that varies in accordance with the variation in the distance between the two is emitted.
  • a spectroscope an imaging device, a scanning device, and a position measuring device that can control the wavelength of light at high speed and with high accuracy.
  • FIG. 2 is a sectional view taken along line II-II in FIG. It is a figure for demonstrating the principle from which an etalon extracts a desired wavelength component. It is a figure which shows the synthetic
  • 6 is a graph showing a simulation result of light transmittance in the spectrometer 1.
  • 6 is a graph showing a simulation result of light transmittance in the spectrometer 1. It is the figure which showed the modification of the spectrometer 1 which concerns on one Embodiment of this invention. It is the figure which showed the modification of the spectrometer 1 which concerns on one Embodiment of this invention. It is the figure which showed the modification of the spectrometer 1 which concerns on one Embodiment of this invention. It is the figure which showed the modification of the spectrometer 1 which concerns on one Embodiment of this invention. It is the figure which showed sectional drawing of the crystal piece in which a pair of electrode film was formed.
  • 4 is a timing chart of the wavelength of light transmitted through the spectroscopes 1 and 2 and a detection signal in the detector 530. 4 is a timing chart of the wavelength of light transmitted through the spectroscopes 1 and 2 and a detection signal in the detector 530.
  • FIG. 1 is a view showing a spectrometer 1 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • Spectroscope 1 is a device for extracting and outputting light of a desired wavelength from broadband light. As shown in FIG. 1, the spectroscope 1 includes a crystal piece 10 (Quartz Crystal Element), a pair of reflection films 20 and 21 formed on the crystal piece 10, and an AC power source that applies an AC voltage to the crystal piece 10. 30.
  • crystal piece 10 Quadrat Crystal Element
  • reflection films 20 and 21 formed on the crystal piece 10
  • AC power source that applies an AC voltage to the crystal piece 10.
  • the crystal piece 10 is a specific example of a piezoelectric member constituting the spectrometer 1.
  • the crystal piece 10 has, as a main surface, a plane parallel to a plane specified by the Y axis and the Z axis (optical axis) among the X axis, the Y axis, and the Z axis that are crystal axes of the artificial quartz. It is constituted by a quartz substrate of artificial quartz cut out (so-called X cut).
  • the X axis, the Y axis, and the Z axis are orthogonal to each other, and the normal line of the main surface of the crystal piece is along the X axis. Quartz pieces using an X-cut quartz substrate are often used with the stretching vibration mode as the main vibration.
  • each configuration of the spectrometer 1 will be described with reference to the axial direction of the crystal axis.
  • the crystal piece 10 has a flat plate shape having two main surfaces facing each other in parallel. Specifically, the crystal piece 10 has a main surface 11 (first main surface) on the X-axis positive direction side and a main surface 12 (second main surface) on the X-axis negative direction side. The main surface 11 and the main surface 12 have a substantially rectangular shape having a long side parallel to the Z axis and a short side parallel to the Y axis in plan view. Further, the crystal piece 10 has a thickness parallel to the X axis. In the following description, the thickness parallel to the X axis is also simply referred to as “thickness”.
  • the present invention is not limited to a mode in which each side of the crystal piece 10 extends along the axis, and is strictly parallel to the axis.
  • the long side, the short side, and the side in the thickness direction may be rotated about ⁇ 5 degrees from each crystal axis.
  • One reflective film 20 (first reflective film) is formed on the main surface 11 of the crystal piece 10, and the other reflective film 21 (second reflective film) is formed on the main surface 12.
  • the pair of reflective films 20 and 21 are arranged to face each other so that substantially the whole overlaps with the crystal piece 10 interposed therebetween.
  • the pair of reflection films 20 and 21 are respectively formed on the main surfaces 11 and 12 of the crystal piece 10, and the main surface 11 and the main surface 12 of the crystal piece 10 are parallel to each other.
  • 20 and the reflective film 21 are arranged in parallel.
  • the pair of reflective films 20 and 21 also function as excitation electrodes for vibrating the quartz piece 10 by the piezoelectric effect.
  • the reflective films 20 and 21 are films formed of a conductive member, and include, for example, an electrode film.
  • the crystal piece 10 When an AC voltage is applied from the AC power source 30 to the reflective film 20 and the reflective film 21, the crystal piece 10 periodically vibrates at a high frequency (for example, MHz band) in a predetermined vibration mode such as a stretching vibration mode due to the piezoelectric effect. To do. Due to this vibration, the thickness d of the crystal piece 10 (that is, the distance between the main surface 11 and the main surface 12) periodically varies. Accordingly, the distance between the reflection films 20 and 21 formed on the main surfaces 11 and 12 also varies periodically.
  • the reflective films 20 and 21 also serve as the excitation electrode, the manufacturing process can be reduced as compared with the configuration in which the reflective film and the excitation electrode are provided separately.
  • incident light Li is incident from an incident portion 13 that is a region of the main surface 11 of the crystal piece 10.
  • incident light Li vibrates in the paper.
  • Incident light Li passes through the inside of the crystal piece 10 while being reflected a plurality of times (for example, about several tens of times) between the reflection film 20 and the reflection film 21, and is a region of the main surface 12 of the crystal piece 10.
  • Outgoing light Lo is emitted from the emitting portion 14.
  • the incident light Li is incident so that the optical axis is inclined with respect to the main surface 12 (that is, not orthogonal to the main surface 12), and the outgoing light Lo has the optical axis as the main surface.
  • FIG. 3 is a diagram for explaining the principle by which the etalon extracts a desired wavelength component.
  • FIG. 4A is a diagram illustrating the light combination when the traveling wave and the reflected wave are in phase
  • FIG. 4B is a diagram illustrating the light combination when the traveling wave and the reflected wave are in opposite phases.
  • the incident light includes light of various wavelengths. While this incident light undergoes multiple reflections on parallel and opposed reflecting surfaces, the traveling wave and the reflected wave are repeatedly superimposed. Then, as shown in FIG. 4A, when the traveling wave and the reflected wave have the same phase, the intensity of light increases due to superposition, and a standing wave is generated. On the other hand, when the traveling wave and the reflected wave are out of phase, for example, in the opposite phase as shown in FIG. 4B, the light is canceled by the superposition. Therefore, light having a wavelength at which the traveling wave and the reflected wave have the same phase is selectively extracted and emitted as outgoing light.
  • the traveling wave and the reflected wave have the same phase when the integral multiple of the half wavelength of the light is equal to the distance G between the reflecting surfaces.
  • the light intensity remains.
  • FIG. 5 is a graph showing the relationship between the light transmittance of the etalon and the wavelength.
  • the horizontal axis indicates the wavelength and the vertical axis indicates the transmittance.
  • the etalon transmits light whose distance between the reflecting surfaces is an integral multiple of a half wavelength. Accordingly, the etalon has a characteristic that the transmittance is periodically increased with respect to the wavelength.
  • the transmittance peak-to-peak interval is referred to as FSR (Free-Spectral Range).
  • FSR Free-Spectral Range
  • a desired wavelength component can be extracted by the same principle as the above-mentioned etalon. Further, according to the spectroscope 1, the wavelength to be extracted can be variably controlled by changing the thickness of the crystal piece 10. Next, the variable control of the wavelength will be described.
  • FIG. 6 is an image diagram showing a standing wave when the thickness of the crystal piece 10 is three times the half wavelength. From FIG. 6, when the thickness of the quartz piece 10 changes from d1 to d2, the optical path length of the light changes, so that the wavelength at which the standing wave is generated changes from ⁇ 1 to ⁇ 2. From this, it can be seen that the wavelength of the light extracted by the spectroscope 1 changes due to the change in the thickness of the crystal piece.
  • FIG. 7A and 7B are graphs showing simulation results of light transmittance in the spectrometer 1.
  • the horizontal axis indicates the wavelength (nm) and the vertical axis indicates the transmittance (ratio).
  • FIG. 7B shows a simulation result when the thickness of the crystal piece 10 is increased from 100 ⁇ m to 100.1 ⁇ m compared to FIG. 7A.
  • the wavelength at which the transmittance reaches a peak is increased by increasing the thickness of the crystal piece 10. From this, it can be said that the wavelength ⁇ of the extracted outgoing light Lo can be periodically changed by periodically changing the thickness d of the crystal piece 10.
  • the distance between the reflective film 20 and the reflective film 21, that is, the inside of the crystal piece 10 is transmitted by periodically changing the thickness of the crystal piece 10 by the piezoelectric effect.
  • the optical path length of light varies periodically.
  • the wavelength of the emitted light Lo can be varied at the same frequency (for example, about several MHz) as the vibration of the crystal piece 10. Accordingly, for example, as in the configuration disclosed in Patent Document 1, it is not necessary to mechanically move the components of the apparatus, so that the wavelength can be controlled at high speed.
  • the transmitted light is refracted a plurality of times at the interface having different refractive indexes, so that stray light is generated every time it is refracted, and the amount of light can be lost.
  • the loss of light amount can be suppressed as compared with the configuration disclosed in Patent Document 2.
  • the spectroscope 1 can be reduced in size because it requires a smaller number of parts than the configurations disclosed in Patent Documents 1 and 2.
  • the crystal used as the piezoelectric member in the present embodiment has the following three characteristics.
  • quartz has a lower refractive index than other piezoelectric members, it is possible to suppress fluctuations in characteristics due to unintended changes in the shape of the quartz piece. Therefore, for example, even if the crystal piece expands due to a temperature change, the degradation of the spectral performance is suppressed, and the resistance to changes in the external environment is improved.
  • it is necessary to reduce the thickness of the member with a higher refractive index.
  • quartz even when it corresponds to broadband incident light, it can be made thicker than other members. Therefore, according to the present embodiment, processability and strength can be ensured as compared with a configuration in which another piezoelectric member is used.
  • quartz has a faster response to fluctuations in AC voltage than other piezoelectric members. Therefore, according to the present embodiment, it is possible to control the wavelength at a higher speed than in a configuration in which other piezoelectric members are used.
  • quartz has a wider wavelength band that can be transmitted than other piezoelectric members.
  • the quartz crystal hardly deteriorates its optical characteristics and progresses slowly. Therefore, according to the present embodiment, for example, it is possible to transmit light rays having wavelengths from ultraviolet rays to infrared rays.
  • the crystal piece 10 is X-cut and vibrates in the stretching vibration mode. Therefore, vibration of about MHz is easily excited, and a wider spectral bandwidth can be obtained compared to other vibration modes.
  • the crystal piece is X-cut and vibrates in the stretching vibration mode, but the crystal cut angle and vibration mode are not limited thereto.
  • the crystal piece is obtained by rotating the Y-axis and the Z-axis among the X-axis, the Y-axis, and the Z-axis that are the crystal axes of the artificial quartz by about 51 degrees around the X-axis from the Y-axis to the Z-axis.
  • the X 'axis, the Y' axis, and the Z 'axis are obtained by rotating the X' axis and the Z 'axis around the Y' axis by about 45 degrees in the direction from the Z 'axis to the X' axis, respectively.
  • a cut (so-called GT) cut out with a plane parallel to the plane specified by the X ′′ axis and the Z ′′ axis.
  • the variation in the thickness of the crystal piece (and hence the bandwidth of the wavelength of the emitted light) is reduced as compared with the X-cut, and temperature stability can be obtained. Therefore, resistance to environmental fluctuations can be improved compared to X-cut.
  • the optical path lengths of the forward path and the return path are not the same due to the influence of birefringence because the symmetry between the light traveling direction and the axial direction is lost between the two main surfaces. Can also be considered. However, if the optical path lengths in the reciprocation are the same, the polarization and phase in the reciprocation are the same, so that the same function as in the above-described embodiment is achieved.
  • a known method can be used (for example, refer to Japanese Patent Application Laid-Open No. 2008-076120), and thus description thereof is omitted.
  • the crystal piece may be constituted by a crystal substrate cut out by another cut such as a so-called AT cut.
  • the material of the piezoelectric member is not limited to quartz, and may be made of a material different from quartz.
  • the spectroscope 1 may include an excitation electrode for applying an AC voltage separately from the reflection films 20 and 21 that multiple-reflect light.
  • the spectroscope 1 may be provided with an antireflection film for reducing the reflectance at one or both of the incident portion 13 where the light is incident and the emitting portion 14 where the light is emitted.
  • a reflection film to be enhanced may be formed.
  • FIGS. 8 to 11 and 13 are diagrams showing modifications of the spectrometer 1 according to an embodiment of the present invention.
  • the same elements as those of the spectrometer 1 are denoted by the same reference numerals and the description thereof is omitted. Further, description of matters common to the spectrometer 1 is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be sequentially described for each embodiment.
  • the side surfaces 15 and 16 disposed between the main surface 11 and the main surface 12 of the crystal piece 10 a are inclined with respect to the main surfaces 11 and 12.
  • the side surface 15 on one side (positive side) in the Z-axis direction of the crystal piece 10a is an inclined surface (first inclined surface) inclined with respect to the main surface 11.
  • the side surface 16 on the other side (negative direction side) in the Z-axis direction of the crystal piece 10 a is an inclined surface (second inclined surface) that is inclined with respect to the main surface 12.
  • the side surface 15 and the side surface 16 are disposed at positions facing each other between the main surface 11 and the main surface 12.
  • incident light Li is incident from the side surface 15 and outgoing light Lo is emitted from the side surface 16.
  • the light is incident on the main surface 12 of the crystal piece 10a with an inclination (that is, not orthogonal). Accordingly, light incident on the crystal piece 10a from a light source (not shown) is prevented from being reflected by the reflective film 21a and returning to the light source again, so that damage and noise to the light source can be suppressed.
  • the reflection films 20a and 21a are formed on the entire main surfaces 11 and 12 of the crystal piece 10a. Also good. Further, the side surfaces 15 and 16 do not necessarily have an inclined surface as a whole, and for example, a part of the side surface may include an inclined surface, and light may enter and exit from the inclined surface. .
  • the spectroscope 1B shown in FIG. 9 includes electrode films 22a and 23a instead of the reflective films 20 and 21 as compared to the spectroscope 1 shown in FIG.
  • the spectrometer 1C shown in FIG. 10 includes electrode films 22b and 23b instead of the reflection films 20 and 21.
  • the electrode film 22a is formed on the main surface 11 of the crystal piece 10b so as to surround the incident portion 17 of the incident light Li located in the central region. Also on the main surface 12, an electrode film 23 a is formed so as to surround the periphery of the emission part 18 of the emitted light Lo.
  • the electrode films 22a and 23a face each other through the crystal piece 10b, and an AC voltage is applied from the AC power supply 30.
  • the incident portion 17 and the emission portion 18 may be provided with a highly reflective coating that transmits part of the light and reflects part of the light.
  • the thickness of the peripheral region of the crystal piece 10b varies due to the piezoelectric effect, so that the thickness of the central region also varies with the variation, and the same effect as the above-described spectrometer 1 is obtained. be able to.
  • the electrode film having the function of vibrating the crystal piece and the reflection film having the function of reflecting incident light are not necessarily shared, and may be provided separately.
  • the spectroscopes 1B and 1C may have an arrangement in which the main surface is inclined with respect to the traveling direction of the incident light, similarly to the spectroscope 1A.
  • the electrode films 22a and 23a do not necessarily need to surround the entire central region, and for example, there may be discontinuities in some of the electrode films 22b and 23b shown in FIG. Thereby, for example, when the electrode films 22b and 23b are formed on the crystal piece 10c by vapor deposition, the film forming process is facilitated.
  • the crystal piece 10d has a circular flat plate shape.
  • the shape of the crystal piece is not particularly limited, and may be a rectangular flat plate shape, a circular flat plate shape, or a polygonal flat plate shape.
  • the crystal piece 10d has an annular inner electrode film 24x formed around the incident portion located near the center of the circle on one main surface, and further has an annular shape so as to surround the outer side of the inner electrode film 24x.
  • the outer electrode film 24y (outer electrode film) is formed concentrically.
  • the inner electrode film 25x and the outer electrode film 25y are also formed on the other main surface so as to face the inner electrode film 24x and the outer electrode film 24y, respectively.
  • An AC voltage is applied from the AC power supply 31 to the inner electrode film 24x and the inner electrode film 25x, and an AC voltage is applied from the AC power supply 32 to the outer electrode film 24y and the outer electrode film 25y.
  • the electrode film formed on the crystal piece is not limited to a pair, and may be two or more pairs. At this time, AC voltages having different phases may be applied to the two pairs of electrode films. This effect will be described.
  • FIG. 12A is a diagram showing a cross-sectional view of a crystal piece on which a pair of electrode films are formed
  • FIG. 12B is a diagram showing a cross-sectional view of the crystal piece on which two pairs of electrode films are formed. 12A and 12B show cross sections in the same direction as in FIG. 2, and the electrode film is omitted for convenience of explanation.
  • an alternating voltage is applied to a pair of electrode films (for example, an electrode film corresponding to the inner electrode film 24x and the inner electrode film 25x shown in FIG. 11) partially formed in the plane.
  • the peripheral region of the crystal piece may be thick and the central region may be thin.
  • the crystal piece in the region facing the inner electrode film tends to become thicker, while the outer electrode film
  • the crystal pieces in the area where the two face each other are going to be thin. Thereby, nonuniformity of the thickness of the crystal piece is suppressed, and as a result, the parallelism of the reflecting surface in the region where the light is multiply reflected is improved.
  • the spectroscope 1D improves the accuracy of spectroscopy compared to a configuration including a pair of electrode films.
  • the case where the crystal piece 10d is a circular flat plate has been described as an example.
  • two pairs of electrode films may be formed in the same manner.
  • the electrode films formed on the quartz piece are not limited to two pairs, and may be three or more pairs.
  • a plurality of electrode films 26 and 27 and a plurality of highly reflective films 40 and 41 are formed on both main surfaces of the crystal piece 10e.
  • the plurality of electrode films 26 and 27 have a function of an excitation electrode, and an AC voltage is applied from the AC power supply 30.
  • the plurality of high reflection films 40 and 41 are reflection films having a higher reflectance than the main surface of the crystal piece and the electrode films 26 and 27.
  • the members of the highly reflective films 40 and 41 are not particularly limited, but may be, for example, a conductive film or a dielectric film.
  • the plurality of electrode films 26 and the plurality of highly reflective films 40 are alternately arranged along the light traveling direction (Z-axis direction) on one main surface of the crystal piece 10e.
  • a plurality of electrode films 27 and a plurality of highly reflective films 41 are alternately arranged along the light traveling direction (Z-axis direction) on the other main surface of the crystal piece 10e.
  • the electrode films 26 and 27 and the high reflection films 40 and 41 are used in combination, so that the amount of light loss due to multiple reflection is reduced as compared with the configuration without the high reflection films 40 and 41. It is suppressed, and attenuation of the light quantity of the emitted light Lo can be suppressed.
  • the above-described spectroscopes 1A to 1E are examples of modifications of the spectroscope 1, and the configuration of the present invention is not limited to this.
  • the configuration in which the electrode film is provided on a part of the main surface of the crystal piece is shown, but the electrode film may be provided on the entire main surface of the crystal piece.
  • the electrode film may be formed of a member having a property of transmitting and reflecting light of a predetermined wavelength, such as ITO (Indium Tin Oxide). preferable.
  • a configuration is shown in which a pair of opposing reflective films are formed on the main surface of the crystal piece, but the reflecting member that multi-reflects light is not necessarily on the main surface of the crystal piece.
  • the film may not be formed directly, and may be disposed on one main surface side and the other main surface side, respectively.
  • a pair of reflecting members may be provided so as to be separated from the main surface of the crystal piece and to be parallel and opposed to each other with the crystal piece interposed therebetween. In this case, the incident light incident on the spectroscope is subjected to multiple reflections between these reflecting members while passing through the crystal piece a plurality of times.
  • FIG. 14 is a diagram showing a laser apparatus to which a spectroscope according to an embodiment of the present invention is applied.
  • a laser apparatus 100 shown in the figure includes a spectrometer 1, a laser diode 110, a lens 120, an optical fiber 130, and an amplifier 140.
  • the spectrometer applied to the laser apparatus 100 is not specifically limited. The same applies to the following application examples.
  • the light emitted from the laser diode 110 that is a light source is dispersed in the spectroscope 1, and the dispersed light is output via the lens 120 and the optical fiber 130.
  • the amplifier 140 is a device that amplifies the amount of light, and includes, for example, an SOA (Semiconductor Optical Amplifier).
  • SOA semiconductor Optical Amplifier
  • the laser apparatus 100 may include a plurality of amplifiers 140 to compensate for the loss of light quantity, and the light quantity may be amplified a plurality of times.
  • the position where the amplifier 140 is disposed may be the rear stage of the spectroscope 1 or the front stage of the spectroscope 1.
  • a laser device capable of variably controlling the wavelength at high speed can be realized as described above.
  • FIG. 15 is a diagram showing an inspection apparatus to which a spectroscope according to an embodiment of the present invention is applied.
  • the inspection apparatus 200 shown in the figure includes a spectrometer 1, a plurality of light sources 210, lenses 220 and 230, and a detector 240 (imaging device).
  • the inspection apparatus 200 In the inspection apparatus 200, light emitted from the plurality of light sources 210 to the object W on the conveyor is incident on the spectrometer 1 through the lens 220. The light split by the spectroscope 1 is input to the detector 240 via the lens 230.
  • the inspection apparatus does not include the spectroscope 1, it is necessary to simultaneously detect light of a plurality of wavelengths (for example, red, yellow, green, blue, etc.) with the detector 240. Therefore, in the inspection of the color of the object W, it is necessary to use a multi-pixel imaging device as the detector 240, and a mechanism for assigning a color to each pixel is required. For example, this is performed by a lens and a color filter arranged directly above the grating or each pixel. However, if the number of pixels is increased in order to improve spectral performance, an increase in size is inevitable.
  • a multi-pixel imaging device for example, this is performed by a lens and a color filter arranged directly above the grating or each pixel.
  • the pixel pitch of the image sensor of the detector 240 must be reduced to have low sensitivity, and a long exposure time is required. That is, in this case, high-speed spectroscopy cannot be performed.
  • a grating since the pixel pitch becomes small, crosstalk noise between signals due to adjacent wavelengths tends to occur, and this tendency becomes remarkable.
  • the inspection apparatus 200 since the inspection apparatus 200 includes the spectroscope 1, light whose wavelength varies at a high frequency is supplied to the detector 240. Thereby, the light incident on the detector 240 can be appropriately changed according to time such as red, yellow, green, blue, red,... As described above, since the spectroscope 1 performs the spectroscopic analysis, the number of necessary pixels may be small as compared with the configuration in which the light having a plurality of wavelengths is simultaneously supplied to the detector 240. As a result, the area per pixel can be increased and the sensitivity can be increased, and the exposure time can be shortened. Furthermore, if the number of pixels is small, reading can be performed at high speed.
  • the wavelength change of the spectrometer 1 is performed at high speed and the detector 240 can also detect light at high speed, the color of the object W that is being moved by the conveyor as compared with the configuration that does not include the spectrometer 1. Can be inspected at high speed.
  • the detector 240 may be, for example, a single pixel detector, or binning processing may be performed in which a plurality of pixels are handled as one pixel.
  • FIG. 16 is a diagram showing an inspection apparatus to which a spectroscope according to an embodiment of the present invention is applied.
  • the inspection apparatus 300 shown in FIG. 15 is configured to scan light with respect to a stationary object W instead of moving the object W.
  • the inspection apparatus 300 further includes a lens 310, a beam splitter 320, and a scanner 330, as compared with the inspection apparatus 200.
  • the light emitted from the light source 210 enters the scanner 330 through the lens 310 and the beam splitter 320.
  • the scanner 330 is a device that includes one or more mirrors and scans light when the mirror operates, and is configured by, for example, a two-dimensional galvanometer mirror.
  • the light emitted from the scanner 330 and applied to the object W through the lens 220 is incident on the spectroscope 1 again through the lens 220, the scanner 330 and the beam splitter 320.
  • the light split by the spectroscope 1 is input to the detector 240 via the lens 230.
  • the color or the like of the object W can be detected by scanning the light using the scanner 330.
  • a one-dimensional galvanometer mirror may be used as the scanner 330 and a plurality of detectors 240 may be provided.
  • the arrangement of the spectroscope 1 may not be in front of the detector 240, and may be, for example, between the light source 210 and the lens 310. In this case, due to the loss of the light amount in the spectroscope 1, the light amount of the light irradiated to the object decreases. Therefore, it functions suitably when the object is difficult to irradiate with strong light, such as biological observation. Furthermore, the spectroscope 1 may be inserted in both the subsequent stage of the light source 210 and the previous stage of the detector 240, and the plurality of spectroscopes 1 may be operated in synchronization.
  • the light source 210 has been described as emitting visible light.
  • the wavelength of light emitted from the light source 210 is not limited to visible light.
  • a light source that irradiates light of near-infrared wavelength with deep reachability it can also be used for an inspection apparatus that inspects the inside of a painted surface.
  • FIG. 17 is a diagram illustrating an imaging apparatus to which a spectroscope according to an embodiment of the present invention is applied.
  • An imaging apparatus 400 shown in the figure is an example of an optical tomographic imaging apparatus that captures an optical tomographic image of a living body.
  • the imaging apparatus 400 includes a spectrometer 1, a light source 410, a measurement optical system 420, a reference optical system 430, a detector 440, a timing control system 450, and a signal processing system 460.
  • the spectroscope 1 sweeps the wavelength of broadband light incident from the light source 410 and emits it.
  • the measurement optical system 420 measures the object W using a part of the emitted light from the spectrometer 1.
  • the reference optical system 430 uses another part of the light emitted from the spectrometer 1 as reference light.
  • the detector 440 detects the measurement interference light based on the reflected light from the object W and the reference light from the reference optical system 430, and outputs the measurement interference signal to the signal processing system 460.
  • the detector 440 is constituted by, for example, a balanced photodetector.
  • the timing control system 450 transmits a trigger signal corresponding to the wavelength of the emitted light from the spectrometer 1 to the signal processing system 460, and controls the arithmetic processing of the signal processing system 460.
  • the timing control system 450 includes an FBG 451, a circulator 452, and a detector 453.
  • the FBG (Fiber Bragg Grating) 451 has a property of reflecting only a predetermined wavelength (so-called Bragg wavelength) component of incident light and transmitting other wavelength components. Accordingly, when the light emitted from the spectrometer 1 is supplied to the FBG 451, the reflected light is emitted from the FBG 451 when the Bragg wavelength component of the FBG 451 is incident. The reflected light is supplied to the detector 453 via the circulator 452.
  • the detector 453 controls the arithmetic processing in the signal processing system 460 by detecting the reflected light and transmitting a trigger signal to the signal processing system 460.
  • the signal processing system 460 performs arithmetic processing based on the measurement interference signal transmitted from the detector 440 and the trigger signal transmitted from the timing control system 450 and outputs a tomographic image of the object W. As described above, according to the imaging apparatus 400, a captured image of the object W can be obtained while controlling the wavelength of light applied to the object W.
  • optical tomographic imaging devices are often used under in-vivo conditions, so it is possible to suppress artifacts (virtual images) caused by the movement of the living body that is the object or to repeatedly capture similar parts. Therefore, it is required to sweep the wavelength of the light source at high speed. Therefore, the spectroscope 1 functions suitably in such an optical tomographic imaging apparatus.
  • the configuration of the timing control is not limited to the configuration shown in FIG.
  • the imaging apparatus 400 may insert an FBG between the measurement optical system 420 and the detector 440.
  • the light detected by the detector 440 is interrupted only when the wavelength of the light incident from the measurement optical system 420 matches the Bragg wavelength.
  • the wavelength of the light emitted from the spectroscope 1 can be detected at this interrupted timing.
  • the imaging device 400 may include a control device that synchronously controls the light emission timings of the detector 440 and the light source 410 instead of including the timing control system 450. Thereby, the object W can be irradiated with light of a desired wavelength.
  • the imaging apparatus 400 may include a detector that detects the wavelength of the emitted light from the spectrometer 1 instead of including the timing control system 450.
  • the detector may be a detector that outputs light of a predetermined wavelength and detects the wavelength of the light emitted from the spectrometer 1 by detecting a beat signal with the light emitted from the spectrometer 1.
  • the imaging device using the spectroscope 1 is not limited to this.
  • an optical tomographic imaging apparatus see Japanese Patent Application Laid-Open No. 2017-2012257) that obtains a tomographic image of the cornea, retina, etc. of an eyeball, or a disease such as degeneration of biological tissue or cancer that detects fluorescence contained in a living body
  • the present invention may be applied to a fluorescence diagnostic apparatus (see Japanese Patent Application Laid-Open No. 2005-305182) for diagnosing a state.
  • FIG. 18 is a diagram showing a scanning device to which a spectroscope according to an embodiment of the present invention is applied.
  • the scanning device 500 shown in the figure includes a spectrometer 1, a light source 510, and a prism 520.
  • broadband light emitted from the light source 510 is dispersed by the spectroscope 1, and further refracted and emitted by the prism 520 with a different refractive index depending on the wavelength.
  • the light temporally dispersed by the spectroscope 1 is spatially dispersed by the prism 520, so that light that scans a certain area at high speed and periodically can be emitted.
  • Such a scanning device 500 can be applied as a scanner that spatially scans light from a light source in, for example, LIDAR (Light Detection and Ranging) described below.
  • the spectroscopic element that spatially separates light in the scanning device 500 is not limited to a prism, and may be, for example, a grating. The same applies to the position measuring apparatus 600 described below.
  • 19A to 19C are diagrams showing a position measuring device to which the spectroscope according to one embodiment of the present invention is applied.
  • 19A to 19C further includes a spectroscope 2 configured similarly to the spectroscope 1 and a detector 530, in addition to the scanning device 500 described above.
  • the spectroscope 2 transmits the reflected light emitted from the scanning device 500 at different angles according to the wavelength and reflected from the object X.
  • the detector 530 receives and detects the reflected light that has passed through the spectroscope 2. That is, in the position measurement apparatus 600, the spectroscope 1 (first spectroscope) has a function of periodically changing the wavelength of the emitted light, and the spectroscope 2 (second spectroscope) is a specific wavelength of the reflected light. It has a function as a filter that transmits light.
  • FIG. 19A shows a state in which light of a certain wavelength is reflected by the object X at the point A.
  • FIG. 19B shows a state in which light having the same wavelength as that of the point A is reflected on the object X at the point B closer to the position measuring device 600 than the point A.
  • FIG. 19C shows a state in which light having a wavelength different from that in the case of point A and point B is reflected on the object X in the point C located in a different direction from the point A and point B.
  • the object X is detected by the so-called Time of Flight method. Can be calculated. This principle will be described below.
  • 20A to 20C are timing charts of the wavelength of light transmitted through the spectroscopes 1 and 2 and the detection signal in the detector 530 in the situation shown in FIGS. 19A to 19C, respectively.
  • description will be made assuming that light of three types of wavelengths (wavelength 1 to wavelength 3) is emitted from the prism 520.
  • the light source side spectroscope 1 and the detection side spectroscope 2 are controlled synchronously.
  • the vibration frequency of the piezoelectric element of the detection-side spectrometer 2 (that is, the wavelength fluctuation frequency of the transmitted light of the spectrometer 2) is the light-source-side spectrometer. It is controlled so as to be higher than the vibration frequency of the piezoelectric element 1 (that is, the frequency fluctuation wavelength of the transmitted light of the spectrometer 1). Thereby, the light of a specific wavelength can be selectively detected.
  • the light of wavelength 3 emitted at time t1 is reflected by the object X.
  • the reflected light reaches the spectroscope 2 and is supplied to the detector 530 when the spectroscope 2 is in a state of transmitting light of wavelength 3.
  • the detection signal in detector 530 indicates that light has been detected at time t2.
  • the light of wavelength 3 emitted at time t1 is reflected by the target object X, the reflected light reaches the spectroscope 2, and
  • the detector 2 is supplied to the detector 530 when the device 2 is in a state of transmitting light of wavelength 3.
  • the detection signal in detector 530 indicates that light was detected at time t2.
  • the light of the wavelength 1 and the wavelength 2 does not hit the object X, and the reflected light does not return.
  • the position measurement apparatus 600 can measure the azimuth of the position where the object is located according to the wavelength of the reflected light detected by the detector 530.
  • the wavelength can be converted into an angle using the refractive index dispersion of the glass material constituting the prism and the law of refraction (Snell's law). .
  • the distance d from the position measuring apparatus 600 to the object can be calculated based on the difference between the time t1 and the time t2.
  • two-dimensional scanning has been described above for the sake of simplicity, three-dimensional scanning can be realized by using a plurality of prisms or using a hologram element.
  • the spectroscope according to the present embodiment has a first main surface and a second main surface that face each other in parallel, and the distance between the first main surface and the second main surface due to application of an alternating voltage is caused by the piezoelectric effect.
  • the piezoelectric member is provided with a periodically changing piezoelectric member, and the piezoelectric member multi-reflects light incident on the piezoelectric member between the first main surface and the second main surface, and between the first main surface and the second main surface. The light having a wavelength that varies according to the variation in the distance is emitted.
  • the optical path length of the light is changed by the piezoelectric effect, it is not necessary to mechanically move parts of the apparatus, and the wavelength can be variably controlled at high speed.
  • the optical path length can be changed while maintaining the parallelism between the first main surface and the second main surface of the piezoelectric member, adjustment by components or the like is not required, and light is robust and highly accurate against disturbance. Spectroscopy is possible.
  • the spectroscope 1 further includes a first reflection film provided on the first main surface side and a second reflection film provided on the second main surface side, and the piezoelectric member includes the first reflection film.
  • the light may be multiple-reflected between the film and the second reflective film.
  • the reflectance is increased as compared with the configuration without the reflective film, it is possible to suppress the loss of light amount.
  • each of the first reflective film and the second reflective film may include an electrode film to which an alternating voltage is applied.
  • the reflective film also serves as the excitation electrode, the manufacturing process can be reduced.
  • each of the first reflective film and the second reflective film may include a high reflective film having a higher reflectance than the electrode film.
  • the loss of the light amount due to the multiple reflection is suppressed, and the attenuation of the light amount of the emitted light can be suppressed.
  • the first reflective film and the second reflective film are each an inner electrode film and an outer electrode film provided so as to surround the outer side of the inner electrode film in a plan view of the first main surface or the second main surface.
  • AC voltages having opposite phases may be applied to the inner electrode film and the outer electrode film.
  • the piezoelectric member further includes a first inclined surface that is inclined with respect to the first main surface, and a second inclined surface that is inclined with respect to the second main surface, and the first inclined surface and the second inclined surface.
  • the inclined surface may be disposed at a position facing each other between the first main surface and the second main surface, and the piezoelectric member may emit light incident from the first inclined surface from the second inclined surface.
  • the piezoelectric member may be configured by an X-cut artificial quartz crystal.
  • the piezoelectric member vibrates in the expansion / contraction vibration mode, it is possible to widen the spectral bandwidth compared to other vibration modes.
  • the piezoelectric member may be formed of a GT-cut artificial quartz crystal.
  • the imaging apparatus is reflected by the above-described spectroscope, a light source that makes light incident on the piezoelectric member of the spectroscope, an optical system that irradiates the object with light emitted from the spectroscope, and the object. And an imaging device that receives the reflected light.
  • the scanning device includes the above-described spectroscope, a light source that makes light incident on the piezoelectric member of the spectroscope, and a spectroscopic element that spatially splits the light emitted from the spectroscope.
  • the light spectrally dispersed by the spectroscope is spatially dispersed by the spectroscopic element, it is possible to emit light that scans a certain area at high speed and periodically.
  • the position measuring apparatus is the above-described spectroscope, and includes a first spectroscope that transmits incident light, a light source that enters light into a piezoelectric member of the first spectroscope, and an output from the first spectroscope.
  • a spectroscopic element that spatially separates the emitted light, the above-described spectroscope, a second spectroscope that transmits reflected light emitted from the spectroscopic element and reflected by the object, and transmitted through the second spectroscope And a detector for receiving the transmitted light.
  • the distance from the position measuring device to the object can be calculated based on the difference between the emission time and the detection time. Further, according to this, it is possible to calculate in which direction the object is located based on the wavelength of the detected light. Therefore, it is not necessary to mechanically move the parts of the apparatus, for example, compared to LIDAR that rotates a light source or a mirror, and therefore, measurement can be performed at high speed and with high accuracy.
  • the vibration frequency of the piezoelectric member of the second spectrometer may be higher than the vibration frequency of the piezoelectric member of the first spectrometer.
  • each embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention.
  • the present invention can be changed or improved without departing from the gist thereof, and equivalents thereof are also included in the present invention.
  • those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention.
  • each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate.
  • each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
  • detector 300 ... inspection device, 310 ... lens, 320 ... Beam splitter, 330 ... Scanner, 400 ... Imaging device, 410 ... Light source, 420 ... Measurement optical system, 430 ... Reference optical system, 440 ... Detector, 450 ... Timing control system, 451 ... FBG, 452 ... circulator, 453 ... detector, 460 ... signal processing system, 500 ... scanning device 510 ... light source, 520 ... prism, 530 ... detector, 600 ... position measuring device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

The present invention provides a spectrometer, an imaging device, a scanning device, and a position measuring device capable of controlling the wavelength of light at high speed with high accuracy. A spectrometer (1) has a piezoelectric member (10) that has mutually parallel and opposite first principal surface (11) and second principal surface (12) with the distance between the first principal surface and the second principal surface periodically changed by the piezoelectric effect when an alternating voltage is applied thereto. The piezoelectric member allows the light entering therein to reflect multiple times between the first principal surface and the second principal surface and outputs light having a wavelength that varies in accordance with the fluctuation in the distance between the first principal surface and the second principal surface.

Description

分光器、撮像装置、走査装置、及び位置測定装置Spectrometer, imaging device, scanning device, and position measuring device
 本発明は、分光器、撮像装置、走査装置、及び位置測定装置に関する。 The present invention relates to a spectroscope, an imaging device, a scanning device, and a position measuring device.
 従来、広帯域の光から所望の波長の光を抽出するためのフィルタとして、エタロンが知られている。エタロンは、平行かつ対向して設置された2枚の反射鏡間において光を多重反射させることにより、狭帯域の波長の光を抽出する装置である。 Conventionally, an etalon is known as a filter for extracting light of a desired wavelength from broadband light. An etalon is a device that extracts light of a narrow band wavelength by multiple reflection of light between two reflecting mirrors installed in parallel and facing each other.
 例えば、下記特許文献1には、入射される基本光の波長を変換する波長変換素子と光学部材との間のギャップに基づいて、所望の波長の光を抽出するエアギャップエタロンが開示されている。 For example, Patent Document 1 below discloses an air gap etalon that extracts light of a desired wavelength based on a gap between a wavelength conversion element that converts the wavelength of incident basic light and an optical member. .
 また、下記特許文献2には、入射光の偏光状態を周期的に変調させる光弾性変調(PEM:Photoelastic Modulator)素子と、当該PEM素子の上側及び下側に設けられた複数の偏光子及び反射ミラーを備える波長可変フィルタが開示されている。当該波長可変フィルタでは、入射光が上側及び下側の反射ミラーの間で多重反射しつつPEM素子を通過することにより、所望の波長の光が出射される。 Patent Document 2 below discloses a photoelastic modulation (PEM) element that periodically modulates the polarization state of incident light, and a plurality of polarizers and reflections provided above and below the PEM element. A tunable filter comprising a mirror is disclosed. In the wavelength tunable filter, incident light passes through the PEM element while being multiple-reflected between the upper and lower reflection mirrors, and light having a desired wavelength is emitted.
特開2014-142422号公報JP 2014-142422 A 特開2009-265195号公報JP 2009-265195 A
 このようなエタロンを用いて、抽出される波長を可変制御することができれば、例えば波長掃引された光源を構成することができる。しかしながら、上記特許文献1に開示された構成では、波長変換素子と光学部材との間の距離に応じて光の波長が決まるため、波長を制御するためにはこれらの部材の少なくとも一方を機械的に動かす必要が生じる。従って、当該構成によっては高速に波長を制御することができない。 If a wavelength to be extracted can be variably controlled using such an etalon, for example, a wavelength-swept light source can be configured. However, in the configuration disclosed in Patent Document 1, since the wavelength of light is determined according to the distance between the wavelength conversion element and the optical member, at least one of these members is mechanically controlled to control the wavelength. Needs to be moved. Therefore, the wavelength cannot be controlled at high speed depending on the configuration.
 他方、上記特許文献2に開示された構成では、PEM素子の歪みにより波長ごとの偏光状態が制御されるため、分光を行うに際しては複数の偏光子を備える必要がある。従って、部品点数が増加し、これらの部材の精密な調整が困難となる。 On the other hand, in the configuration disclosed in Patent Document 2, since the polarization state for each wavelength is controlled by the distortion of the PEM element, it is necessary to provide a plurality of polarizers when performing spectroscopy. Therefore, the number of parts increases, and precise adjustment of these members becomes difficult.
 本発明はこのような事情に鑑みてなされたものであり、光の波長を高速かつ高精度に制御することができる分光器、撮像装置、走査装置、及び位置測定装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a spectroscope, an imaging device, a scanning device, and a position measuring device capable of controlling the wavelength of light at high speed and with high accuracy. To do.
 本発明の一側面に係る分光器は、互いに平行に対向する第1主面及び第2主面を有し、交流電圧の印加により第1主面と第2主面との間の距離が圧電効果により周期的に変動する圧電部材を備え、圧電部材は、当該圧電部材に入射した光を第1主面と第2主面との間において多重反射させ、第1主面と第2主面との間の距離の変動に応じて変動する波長を有する光を出射する。 A spectrometer according to one aspect of the present invention has a first main surface and a second main surface that face each other in parallel, and the distance between the first main surface and the second main surface is piezoelectric when an alternating voltage is applied. The piezoelectric member includes a piezoelectric member that periodically varies depending on the effect. The piezoelectric member multi-reflects light incident on the piezoelectric member between the first main surface and the second main surface, and the first main surface and the second main surface. The light having a wavelength that varies in accordance with the variation in the distance between the two is emitted.
 本発明によれば、光の波長を高速かつ高精度に制御することができる分光器、撮像装置、走査装置、及び位置測定装置を提供することができる。 According to the present invention, it is possible to provide a spectroscope, an imaging device, a scanning device, and a position measuring device that can control the wavelength of light at high speed and with high accuracy.
本発明の一実施形態に係る分光器1を示した図である。It is the figure which showed the spectrometer 1 which concerns on one Embodiment of this invention. 図1のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. エタロンが所望の波長成分を抽出する原理について説明するための図である。It is a figure for demonstrating the principle from which an etalon extracts a desired wavelength component. 進行波と反射波が同位相である場合の光の合成を示す図である。It is a figure which shows the synthetic | combination of light in case a traveling wave and a reflected wave are the same phases. 進行波と反射波が逆位相である場合の光の合成を示す図である。It is a figure which shows the synthetic | combination of light in case a traveling wave and a reflected wave are antiphase. エタロンの光の透過率と波長の関係を示すグラフである。It is a graph which shows the light transmittance of an etalon, and the relationship of a wavelength. 水晶片10の厚みが半波長の3倍である場合の定在波の様子を示すイメージ図である。It is an image figure which shows the mode of a standing wave in case the thickness of the crystal piece 10 is 3 times the half wavelength. 分光器1における光の透過率のシミュレーション結果を示すグラフである。6 is a graph showing a simulation result of light transmittance in the spectrometer 1. 分光器1における光の透過率のシミュレーション結果を示すグラフである。6 is a graph showing a simulation result of light transmittance in the spectrometer 1. 本発明の一実施形態に係る分光器1の変形例を示した図である。It is the figure which showed the modification of the spectrometer 1 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る分光器1の変形例を示した図である。It is the figure which showed the modification of the spectrometer 1 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る分光器1の変形例を示した図である。It is the figure which showed the modification of the spectrometer 1 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る分光器1の変形例を示した図である。It is the figure which showed the modification of the spectrometer 1 which concerns on one Embodiment of this invention. 一対の電極膜が形成された水晶片の断面図を示した図である。It is the figure which showed sectional drawing of the crystal piece in which a pair of electrode film was formed. 二対の電極膜が形成された水晶片の断面図を示した図である。It is the figure which showed sectional drawing of the crystal piece in which two pairs of electrode films were formed. 本発明の一実施形態に係る分光器1の変形例を示した図である。It is the figure which showed the modification of the spectrometer 1 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る分光器が適用されたレーザー装置を示す図である。It is a figure which shows the laser apparatus with which the spectrometer which concerns on one Embodiment of this invention was applied. 本発明の一実施形態に係る分光器が適用された検査装置を示す図である。It is a figure which shows the inspection apparatus with which the spectrometer which concerns on one Embodiment of this invention was applied. 本発明の一実施形態に係る分光器が適用された検査装置を示す図である。It is a figure which shows the inspection apparatus with which the spectrometer which concerns on one Embodiment of this invention was applied. 本発明の一実施形態に係る分光器が適用された撮像装置を示す図である。It is a figure which shows the imaging device to which the spectrometer which concerns on one Embodiment of this invention was applied. 本発明の一実施形態に係る分光器が適用された走査装置を示す図である。It is a figure which shows the scanning apparatus with which the spectrometer which concerns on one Embodiment of this invention was applied. 本発明の一実施形態に係る分光器が適用された位置測定装置を示す図である。It is a figure which shows the position measuring apparatus with which the spectrometer which concerns on one Embodiment of this invention was applied. 本発明の一実施形態に係る分光器が適用された位置測定装置を示す図である。It is a figure which shows the position measuring apparatus with which the spectrometer which concerns on one Embodiment of this invention was applied. 本発明の一実施形態に係る分光器が適用された位置測定装置を示す図である。It is a figure which shows the position measuring apparatus with which the spectrometer which concerns on one Embodiment of this invention was applied. 分光器1,2を透過する光の波長と、ディテクタ530における検出信号のタイミングチャートである。4 is a timing chart of the wavelength of light transmitted through the spectroscopes 1 and 2 and a detection signal in the detector 530. 分光器1,2を透過する光の波長と、ディテクタ530における検出信号のタイミングチャートである。4 is a timing chart of the wavelength of light transmitted through the spectroscopes 1 and 2 and a detection signal in the detector 530. 分光器1,2を透過する光の波長と、ディテクタ530における検出信号のタイミングチャートである。4 is a timing chart of the wavelength of light transmitted through the spectroscopes 1 and 2 and a detection signal in the detector 530.
 以下に本発明の実施の形態を説明する。なお、以下の図面の記載において同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本願発明の技術的範囲を当該実施の形態に限定して解するべきではない。 Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar components are denoted by the same or similar reference numerals. The drawings are exemplary, the dimensions and shapes of each part are schematic, and the technical scope of the present invention should not be construed as being limited to the embodiments.
 図1及び図2を参照して、本発明の一実施形態に係る分光器を説明する。図1は、本発明の一実施形態に係る分光器1を示した図であり、図2は、図1のII-II線断面図である。 A spectroscope according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a view showing a spectrometer 1 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
 分光器1は、広帯域の光から所望の波長の光を抽出して出力するための装置である。図1に示されるように、分光器1は、水晶片10(Quartz Crystal Element)と、水晶片10に形成された一対の反射膜20,21と、水晶片10に交流電圧を印加する交流電源30と、を備える。 Spectroscope 1 is a device for extracting and outputting light of a desired wavelength from broadband light. As shown in FIG. 1, the spectroscope 1 includes a crystal piece 10 (Quartz Crystal Element), a pair of reflection films 20 and 21 formed on the crystal piece 10, and an AC power source that applies an AC voltage to the crystal piece 10. 30.
 水晶片10は、分光器1を構成する圧電部材の一具体例である。本実施形態において、水晶片10は、人工水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸とZ軸(光学軸)によって特定される面と平行な面を主面として切り出されたカット(いわゆるXカット)された人工水晶の水晶基板により構成されている。なお、X軸、Y軸及びZ軸は互いに直交し、水晶片の主面の法線がX軸に沿っている。Xカットされた水晶基板を用いた水晶片は、伸縮振動モードを主振動として用いられることが多い。以下、結晶軸の軸方向を基準として分光器1の各構成を説明する。 The crystal piece 10 is a specific example of a piezoelectric member constituting the spectrometer 1. In the present embodiment, the crystal piece 10 has, as a main surface, a plane parallel to a plane specified by the Y axis and the Z axis (optical axis) among the X axis, the Y axis, and the Z axis that are crystal axes of the artificial quartz. It is constituted by a quartz substrate of artificial quartz cut out (so-called X cut). The X axis, the Y axis, and the Z axis are orthogonal to each other, and the normal line of the main surface of the crystal piece is along the X axis. Quartz pieces using an X-cut quartz substrate are often used with the stretching vibration mode as the main vibration. Hereinafter, each configuration of the spectrometer 1 will be described with reference to the axial direction of the crystal axis.
 水晶片10は、互いに平行に対向する2つの主面を有する平板状をなしている。具体的に、水晶片10は、X軸正方向側の主面11(第1主面)と、X軸負方向側の主面12(第2主面)を有する。主面11及び主面12は、平面視において、Z軸に平行な長辺とY軸に平行な短辺を有する略矩形状をなしている。また、水晶片10は、X軸に平行な厚みを有する。なお、以下の説明において、X軸に平行な厚みを、単に「厚み」ともいう。また、本明細書では、水晶片10の長辺、短辺及び厚み方向の辺が、それぞれ対応する結晶軸に対して平行である態様を一例として説明するが、本発明はこれに限定されるものではなく、水晶片10の各辺が軸に沿って延びるものであればよく、軸に対して厳密に平行である態様に限られるものではない。例えば、長辺、短辺及び厚み方向の辺は、それぞれ、各結晶軸から±5度程度回転していてもよい。 The crystal piece 10 has a flat plate shape having two main surfaces facing each other in parallel. Specifically, the crystal piece 10 has a main surface 11 (first main surface) on the X-axis positive direction side and a main surface 12 (second main surface) on the X-axis negative direction side. The main surface 11 and the main surface 12 have a substantially rectangular shape having a long side parallel to the Z axis and a short side parallel to the Y axis in plan view. Further, the crystal piece 10 has a thickness parallel to the X axis. In the following description, the thickness parallel to the X axis is also simply referred to as “thickness”. Further, in this specification, an example in which the long side, the short side, and the side in the thickness direction of the crystal piece 10 are parallel to the corresponding crystal axes will be described as an example, but the present invention is limited to this. However, the present invention is not limited to a mode in which each side of the crystal piece 10 extends along the axis, and is strictly parallel to the axis. For example, the long side, the short side, and the side in the thickness direction may be rotated about ± 5 degrees from each crystal axis.
 水晶片10の主面11上には、一方の反射膜20(第1反射膜)が形成され、主面12には、他方の反射膜21(第2反射膜)が形成されている。一対の反射膜20,21は、水晶片10を介して略全体が重なり合うように互いに対向して配置されている。ここで、一対の反射膜20,21は、それぞれ、水晶片10の主面11,12上に成膜されており、水晶片10の主面11と主面12が平行であるため、反射膜20と反射膜21も同様に平行に配置される。 One reflective film 20 (first reflective film) is formed on the main surface 11 of the crystal piece 10, and the other reflective film 21 (second reflective film) is formed on the main surface 12. The pair of reflective films 20 and 21 are arranged to face each other so that substantially the whole overlaps with the crystal piece 10 interposed therebetween. Here, the pair of reflection films 20 and 21 are respectively formed on the main surfaces 11 and 12 of the crystal piece 10, and the main surface 11 and the main surface 12 of the crystal piece 10 are parallel to each other. Similarly, 20 and the reflective film 21 are arranged in parallel.
 また、本実施形態では、一対の反射膜20,21がそれぞれ水晶片10を圧電効果により振動させるための励振電極としての機能を兼ねる。すなわち、反射膜20,21は、導電性部材により形成された膜であり、例えば電極膜を含む。交流電源30から反射膜20と反射膜21に交流電圧が印加されると、圧電効果により伸縮振動モード等の所定の振動モードで水晶片10が高い周波数(例えば、MHz帯)で周期的に振動する。この振動により、水晶片10の厚みd(すなわち、主面11と主面12との間の距離)が周期的に変動する。従って、主面11,12にそれぞれ形成された反射膜20,21間の距離も同様に周期的に変動する。なお、反射膜20,21が励振電極を兼ねることにより、反射膜と励振電極を別々に設ける構成に比べて、製造工程を削減することができる。 In the present embodiment, the pair of reflective films 20 and 21 also function as excitation electrodes for vibrating the quartz piece 10 by the piezoelectric effect. That is, the reflective films 20 and 21 are films formed of a conductive member, and include, for example, an electrode film. When an AC voltage is applied from the AC power source 30 to the reflective film 20 and the reflective film 21, the crystal piece 10 periodically vibrates at a high frequency (for example, MHz band) in a predetermined vibration mode such as a stretching vibration mode due to the piezoelectric effect. To do. Due to this vibration, the thickness d of the crystal piece 10 (that is, the distance between the main surface 11 and the main surface 12) periodically varies. Accordingly, the distance between the reflection films 20 and 21 formed on the main surfaces 11 and 12 also varies periodically. In addition, since the reflective films 20 and 21 also serve as the excitation electrode, the manufacturing process can be reduced as compared with the configuration in which the reflective film and the excitation electrode are provided separately.
 図2に示されるように、分光器1では、水晶片10の主面11の一領域である入射部13から入射光Liが入射される。ここで簡単のために、入射光Liは紙面内で振動するものとして考える。入射光Liは、反射膜20と反射膜21との間において複数回(例えば、数十回程度)反射しつつ水晶片10の内部を透過し、水晶片10の主面12の一領域である出射部14から出射光Loとして出射される。なお、図2において、入射光Liは、光軸が主面12に対して傾きを持つように(すなわち、主面12と直交せずに)入射し、出射光Loは、光軸が主面11に対して傾きを持つように(すなわち、主面11と直交せずに)出射している。次に、分光器1における水晶片10の厚みの変動の効果について説明する前に、一般的なエタロンにおいて広帯域の波長成分を含む入射光から所望の波長成分を抽出する原理について説明する。 As shown in FIG. 2, in the spectrometer 1, incident light Li is incident from an incident portion 13 that is a region of the main surface 11 of the crystal piece 10. Here, for the sake of simplicity, it is assumed that the incident light Li vibrates in the paper. Incident light Li passes through the inside of the crystal piece 10 while being reflected a plurality of times (for example, about several tens of times) between the reflection film 20 and the reflection film 21, and is a region of the main surface 12 of the crystal piece 10. Outgoing light Lo is emitted from the emitting portion 14. In FIG. 2, the incident light Li is incident so that the optical axis is inclined with respect to the main surface 12 (that is, not orthogonal to the main surface 12), and the outgoing light Lo has the optical axis as the main surface. 11 is emitted so as to have an inclination with respect to 11 (that is, without being orthogonal to the main surface 11). Next, the principle of extracting a desired wavelength component from incident light including a broadband wavelength component in a general etalon will be described before describing the effect of the thickness variation of the crystal piece 10 in the spectrometer 1.
 図3は、エタロンが所望の波長成分を抽出する原理について説明するための図である。図4Aは、進行波と反射波が同位相である場合の光の合成を示す図であり、図4Bは、進行波と反射波が逆位相である場合の光の合成を示す図である。 FIG. 3 is a diagram for explaining the principle by which the etalon extracts a desired wavelength component. FIG. 4A is a diagram illustrating the light combination when the traveling wave and the reflected wave are in phase, and FIG. 4B is a diagram illustrating the light combination when the traveling wave and the reflected wave are in opposite phases.
 図3に示されるように、入射光には様々な波長の光が含まれている。この入射光は、平行かつ対向して配置された反射面において多重反射する間に、進行波と反射波が繰り返し重ね合わせられる。すると、図4Aに示されるように、進行波と反射波が同位相となる場合、重ね合わせにより光の強度が大きくなり、定在波が生じる。他方、進行波と反射波の位相がずれ、例えば図4Bに示されるように逆位相となる場合、重ね合わせにより光は相殺される。従って、進行波と反射波の位相が同位相となる波長の光が選択的に抽出され、出射光として出射されることとなる。ここで、進行波と反射波の位相が同位相となるのは、光の半波長の整数倍が反射面間の距離Gと等しくなるときであり、この場合に複数回の反射を経ても相殺されずに光強度が残る。これにより、エタロンは、半波長の整数倍が距離Gと等しくなる(すなわち、nλ/2=G(n:自然数、λ:波長)を満たす)ような波長λの光を抽出するバンドパスフィルタとして機能する。 As shown in FIG. 3, the incident light includes light of various wavelengths. While this incident light undergoes multiple reflections on parallel and opposed reflecting surfaces, the traveling wave and the reflected wave are repeatedly superimposed. Then, as shown in FIG. 4A, when the traveling wave and the reflected wave have the same phase, the intensity of light increases due to superposition, and a standing wave is generated. On the other hand, when the traveling wave and the reflected wave are out of phase, for example, in the opposite phase as shown in FIG. 4B, the light is canceled by the superposition. Therefore, light having a wavelength at which the traveling wave and the reflected wave have the same phase is selectively extracted and emitted as outgoing light. Here, the traveling wave and the reflected wave have the same phase when the integral multiple of the half wavelength of the light is equal to the distance G between the reflecting surfaces. The light intensity remains. As a result, the etalon is a band-pass filter that extracts light having a wavelength λ such that an integral multiple of a half wavelength is equal to the distance G (that is, satisfying nλ / 2 = G (n: natural number, λ: wavelength)). Function.
 図5は、エタロンの光の透過率と波長の関係を示すグラフである。当該グラフにおいて、横軸は波長を示し、縦軸は透過率を示す。エタロンは、上述のとおり、反射面間の距離が半波長の整数倍となる光を透過させる。従って、エタロンは、波長に対して透過率が周期的に高くなる特性を持つ。図5に示されるように、透過率のピークとピークの間隔をFSR(Free-Spectral Range)という。エタロンにより入射光を波長掃引する場合、入射光の帯域がFSRの帯域内に含まれるようにエタロンを設計することが好ましい。これにより、一意の波長の光を抽出することができる。 FIG. 5 is a graph showing the relationship between the light transmittance of the etalon and the wavelength. In the graph, the horizontal axis indicates the wavelength and the vertical axis indicates the transmittance. As described above, the etalon transmits light whose distance between the reflecting surfaces is an integral multiple of a half wavelength. Accordingly, the etalon has a characteristic that the transmittance is periodically increased with respect to the wavelength. As shown in FIG. 5, the transmittance peak-to-peak interval is referred to as FSR (Free-Spectral Range). When the incident light is swept in wavelength by the etalon, it is preferable to design the etalon so that the band of the incident light is included in the band of the FSR. Thereby, the light of a unique wavelength can be extracted.
 本実施形態に係る分光器1においても、上述のエタロンと同様の原理により所望の波長成分を抽出することができる。さらに、分光器1によると、水晶片10の厚みを変動させることにより、抽出される波長を可変制御することができる。次に、この波長の可変制御について説明する。 Also in the spectroscope 1 according to the present embodiment, a desired wavelength component can be extracted by the same principle as the above-mentioned etalon. Further, according to the spectroscope 1, the wavelength to be extracted can be variably controlled by changing the thickness of the crystal piece 10. Next, the variable control of the wavelength will be described.
 図6は、水晶片10の厚みが半波長の3倍である場合の定在波の様子を示すイメージ図である。図6から、水晶片10の厚みがd1からd2に変化すると、光の光路長が変化するため、定在波が生じる波長がλ1からλ2に変化している。ここから、水晶片の厚みの変化により、分光器1によって抽出される光の波長が変化することが分かる。 FIG. 6 is an image diagram showing a standing wave when the thickness of the crystal piece 10 is three times the half wavelength. From FIG. 6, when the thickness of the quartz piece 10 changes from d1 to d2, the optical path length of the light changes, so that the wavelength at which the standing wave is generated changes from λ1 to λ2. From this, it can be seen that the wavelength of the light extracted by the spectroscope 1 changes due to the change in the thickness of the crystal piece.
 図7A及び図7Bは、分光器1における光の透過率のシミュレーション結果を示すグラフである。当該グラフにおいて、横軸は波長(nm)を示し、縦軸は透過率(割合)を示す。なお、図7Bは、図7Aに比べて水晶片10の厚みを100μmから100.1μmに厚くした場合のシミュレーション結果を示す。 7A and 7B are graphs showing simulation results of light transmittance in the spectrometer 1. In the graph, the horizontal axis indicates the wavelength (nm) and the vertical axis indicates the transmittance (ratio). FIG. 7B shows a simulation result when the thickness of the crystal piece 10 is increased from 100 μm to 100.1 μm compared to FIG. 7A.
 図7Aと図7Bの比較から、水晶片10の厚みを厚くすることにより、透過率がピークとなる波長が長くなっていることが分かる。ここから、水晶片10の厚みdを周期的に変動させることにより、抽出される出射光Loの波長λを周期的に変動させることができると言える。 7A and 7B, it can be seen that the wavelength at which the transmittance reaches a peak is increased by increasing the thickness of the crystal piece 10. From this, it can be said that the wavelength λ of the extracted outgoing light Lo can be periodically changed by periodically changing the thickness d of the crystal piece 10.
 以上説明したとおり、分光器1によると、圧電効果により水晶片10の厚みを周期的に変動させることにより、反射膜20と反射膜21との間の距離、すなわち水晶片10の内部を透過する光の光路長が周期的に変動する。これにより、出射光Loの波長を、水晶片10の振動と同様の周波数(例えば、数MHz程度)において変動させることができる。従って、例えば特許文献1に開示される構成のように、装置の部品を機械的に動かす必要がないため、高速に波長を制御することができる。 As described above, according to the spectrometer 1, the distance between the reflective film 20 and the reflective film 21, that is, the inside of the crystal piece 10 is transmitted by periodically changing the thickness of the crystal piece 10 by the piezoelectric effect. The optical path length of light varies periodically. Thereby, the wavelength of the emitted light Lo can be varied at the same frequency (for example, about several MHz) as the vibration of the crystal piece 10. Accordingly, for example, as in the configuration disclosed in Patent Document 1, it is not necessary to mechanically move the components of the apparatus, so that the wavelength can be controlled at high speed.
 また、例えば上記特許文献1、2に開示される構成では、装置の部品間の平行度を維持したり、複数の偏光子と反射ミラーとを精密に調整したりする必要があり、全ての部材について精度を確保し、それを維持することは難しい。この点、分光器1によると、水晶片10の主面11,12(すなわち、光の反射面)の平行度を確保しておけば、界面の平行度を維持しつつ光路長を変動させることができる。従って、分光器1によると、部品等による調整が不要となり、外乱に対してロバストかつ高精度に光を分光することができる。 For example, in the configurations disclosed in Patent Documents 1 and 2 described above, it is necessary to maintain the parallelism between the components of the apparatus or to precisely adjust the plurality of polarizers and the reflecting mirror, and all members It is difficult to ensure accuracy and maintain it. In this respect, according to the spectroscope 1, if the parallelism of the main surfaces 11 and 12 (that is, the light reflection surfaces) of the crystal piece 10 is secured, the optical path length can be changed while maintaining the parallelism of the interface. Can do. Therefore, according to the spectroscope 1, adjustment by components or the like is not required, and light can be dispersed with high accuracy and robustness against disturbance.
 さらに、特許文献2に開示される構成では、屈折率の異なる界面において透過光が複数回屈折するため、屈折のたびに迷光が発生し、光量が損失し得る。この点、分光器1では、界面の数は前述のとおり2つであるため、特許文献2に開示される構成に比べて光量の損失を抑制することができる。 Furthermore, in the configuration disclosed in Patent Document 2, the transmitted light is refracted a plurality of times at the interface having different refractive indexes, so that stray light is generated every time it is refracted, and the amount of light can be lost. In this respect, in the spectroscope 1, since the number of interfaces is two as described above, the loss of light amount can be suppressed as compared with the configuration disclosed in Patent Document 2.
 また、分光器1は、特許文献1、2に開示される構成に比べて必要な部品点数が少ないため、小型化することができる。 Further, the spectroscope 1 can be reduced in size because it requires a smaller number of parts than the configurations disclosed in Patent Documents 1 and 2.
 また、本実施形態において圧電部材として用いられている水晶は、以下の3つの特徴を有する。1つ目に、水晶は、他の圧電部材に比べて屈折率が低いため、水晶片の意図しない形状の変化に伴う特性の変動を抑えることができる。従って、例えば温度変化により水晶片が膨張しても分光性能の劣化が抑制され、外部環境の変化への耐性が向上する。また、広帯域の入射光に対応したFSRを確保するためには、屈折率が高い部材ほど部材の厚みを薄くする必要が生じる。この点、水晶によると、広帯域の入射光に対応する場合であっても、他の部材に比べて厚みを厚くすることができる。従って、本実施形態によると、他の圧電部材が用いられる構成に比べて、加工性や強度を確保することができる。 Further, the crystal used as the piezoelectric member in the present embodiment has the following three characteristics. First, since quartz has a lower refractive index than other piezoelectric members, it is possible to suppress fluctuations in characteristics due to unintended changes in the shape of the quartz piece. Therefore, for example, even if the crystal piece expands due to a temperature change, the degradation of the spectral performance is suppressed, and the resistance to changes in the external environment is improved. Moreover, in order to ensure FSR corresponding to broadband incident light, it is necessary to reduce the thickness of the member with a higher refractive index. In this regard, according to quartz, even when it corresponds to broadband incident light, it can be made thicker than other members. Therefore, according to the present embodiment, processability and strength can be ensured as compared with a configuration in which another piezoelectric member is used.
 2つ目に、水晶は、他の圧電部材に比べて交流電圧の変動に対する応答が速い。従って、本実施形態によると、他の圧電部材が用いられる構成に比べて、高速に波長を制御することが可能となる。 Second, quartz has a faster response to fluctuations in AC voltage than other piezoelectric members. Therefore, according to the present embodiment, it is possible to control the wavelength at a higher speed than in a configuration in which other piezoelectric members are used.
 3つ目に、水晶は、他の圧電部材に比べて透過可能な波長帯域が広い。また、水晶は、光の波長が比較的短くエネルギーが強力な場合であっても、光学的特徴が損なわれにくく劣化の進行が遅い。従って、本実施形態によると、例えば紫外線から赤外線までの波長の光線を透過させることができる。 Third, quartz has a wider wavelength band that can be transmitted than other piezoelectric members. In addition, even when the wavelength of light is relatively short and the energy is strong, the quartz crystal hardly deteriorates its optical characteristics and progresses slowly. Therefore, according to the present embodiment, for example, it is possible to transmit light rays having wavelengths from ultraviolet rays to infrared rays.
 加えて、本実施形態では、水晶片10がXカットであり、伸縮振動モードにおいて振動する。従って、MHz程度の振動が励起されやすく、また他の振動モードに比べて分光可能な帯域幅を広くとることができる。 In addition, in this embodiment, the crystal piece 10 is X-cut and vibrates in the stretching vibration mode. Therefore, vibration of about MHz is easily excited, and a wider spectral bandwidth can be obtained compared to other vibration modes.
 上述の実施形態においては、水晶片がXカットであり、伸縮振動モードにおいて振動する場合について説明したが、水晶のカット角及び振動モードはこれに限られない。例えば、水晶片は、人工水晶の結晶軸であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に51度程度回転させて得られる軸をそれぞれX´軸、Y´軸、Z´軸とし、さらにX´軸及びZ´軸をY´軸の周りにZ´軸からX´軸の方向に45度程度回転させて得られる軸をそれぞれX´´軸、Y´´軸、Z´´軸とした場合、X´´軸及びZ´´軸によって特定される面と平行な面を主面として切り出されたカット(いわゆるGTカット)された水晶基板により構成されていてもよい。このようなGTカットでは、主面の法線がZ軸に対して39度程度の傾きを持つ。この場合、Xカットに比べて水晶片の厚みの変動量(ひいては、出射光の波長の帯域幅)が小さくなる一方、温度安定性を得ることができる。従って、Xカットに比べて環境変動への耐性を向上させることができる。 In the above-described embodiment, the case where the crystal piece is X-cut and vibrates in the stretching vibration mode has been described, but the crystal cut angle and vibration mode are not limited thereto. For example, the crystal piece is obtained by rotating the Y-axis and the Z-axis among the X-axis, the Y-axis, and the Z-axis that are the crystal axes of the artificial quartz by about 51 degrees around the X-axis from the Y-axis to the Z-axis. The X 'axis, the Y' axis, and the Z 'axis are obtained by rotating the X' axis and the Z 'axis around the Y' axis by about 45 degrees in the direction from the Z 'axis to the X' axis, respectively. When the axes are the X ″ axis, the Y ″ axis, and the Z ″ axis, respectively, a cut (so-called GT) cut out with a plane parallel to the plane specified by the X ″ axis and the Z ″ axis. You may be comprised by the quartz substrate cut | disconnected. In such a GT cut, the normal of the main surface has an inclination of about 39 degrees with respect to the Z axis. In this case, the variation in the thickness of the crystal piece (and hence the bandwidth of the wavelength of the emitted light) is reduced as compared with the X-cut, and temperature stability can be obtained. Therefore, resistance to environmental fluctuations can be improved compared to X-cut.
 なお、GTカットの水晶片が用いられる場合、2つの主面の間で光の進行方向と軸方向の対称性が崩れるために、複屈折の影響で往路と復路の光路長が同一でなくなることも考えうる。しかし、往復での光路長が揃っていれば往復での偏光と位相が揃うため、上述の実施形態と同様に機能することとなる。なお、光路長を計算する手法は、公知のものを用いることが出来る(例えば、特開2008-076120参照)ため説明を省略する。 When a GT-cut crystal piece is used, the optical path lengths of the forward path and the return path are not the same due to the influence of birefringence because the symmetry between the light traveling direction and the axial direction is lost between the two main surfaces. Can also be considered. However, if the optical path lengths in the reciprocation are the same, the polarization and phase in the reciprocation are the same, so that the same function as in the above-described embodiment is achieved. As a method for calculating the optical path length, a known method can be used (for example, refer to Japanese Patent Application Laid-Open No. 2008-076120), and thus description thereof is omitted.
 また、水晶片は、いわゆるATカット等の他のカットにより切り出された水晶基板によって構成されていてもよい。また、圧電部材の材料は水晶に限られず、水晶とは異なる材料により構成されてもよい。 Further, the crystal piece may be constituted by a crystal substrate cut out by another cut such as a so-called AT cut. The material of the piezoelectric member is not limited to quartz, and may be made of a material different from quartz.
 さらに、上述の実施形態においては、反射膜20,21が励振電極の機能を兼ね備え、反射膜20,21に交流電圧が印加される例が示されているが、交流電圧が印加される部材はこれに限られない。例えば、分光器1は、光を多重反射させる反射膜20,21とは別に、交流電圧を印加するための励振電極を備えていてもよい。 Furthermore, in the above-described embodiment, an example in which the reflection films 20 and 21 have the function of the excitation electrode and an AC voltage is applied to the reflection films 20 and 21 is shown, but the member to which the AC voltage is applied is It is not limited to this. For example, the spectroscope 1 may include an excitation electrode for applying an AC voltage separately from the reflection films 20 and 21 that multiple-reflect light.
 また、分光器1は、光が入射する入射部13及び光が出射する出射部14のいずれか一方又は双方に、反射率を低下させる反射防止膜が形成されていてもよく、あるいは反射率を高める反射膜が形成されていてもよい。これらは、例えば光源から入射される入射光Liの光量や、出射光Loとして必要な光量に応じて適宜設計可能である。 In addition, the spectroscope 1 may be provided with an antireflection film for reducing the reflectance at one or both of the incident portion 13 where the light is incident and the emitting portion 14 where the light is emitted. A reflection film to be enhanced may be formed. These can be appropriately designed according to, for example, the amount of incident light Li incident from a light source and the amount of light necessary as outgoing light Lo.
 次に、図8から図13を参照して、本実施形態の変形例に係る分光器について説明する。図8から図11及び図13は、それぞれ、本発明の一実施形態に係る分光器1の変形例を示した図である。なお、以下の説明において、分光器1と同一の要素には同一の符号を付して説明を省略する。また、分光器1と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Next, a spectroscope according to a modification of the present embodiment will be described with reference to FIGS. FIGS. 8 to 11 and 13 are diagrams showing modifications of the spectrometer 1 according to an embodiment of the present invention. In the following description, the same elements as those of the spectrometer 1 are denoted by the same reference numerals and the description thereof is omitted. Further, description of matters common to the spectrometer 1 is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be sequentially described for each embodiment.
 図8に示される分光器1Aは、水晶片10aの主面11と主面12との間に配置された側面15,16が、主面11,12に対して傾斜している。 In the spectroscope 1 </ b> A shown in FIG. 8, the side surfaces 15 and 16 disposed between the main surface 11 and the main surface 12 of the crystal piece 10 a are inclined with respect to the main surfaces 11 and 12.
 具体的に、水晶片10aのZ軸方向の一方側(正方向側)の側面15は、主面11に対して傾斜する傾斜面(第1傾斜面)である。また、水晶片10aのZ軸方向の他方側(負方向側)の側面16は、主面12に対して傾斜する傾斜面(第2傾斜面)である。これらの側面15と側面16は、主面11と主面12との間において互いに対向する位置に配置されている。 Specifically, the side surface 15 on one side (positive side) in the Z-axis direction of the crystal piece 10a is an inclined surface (first inclined surface) inclined with respect to the main surface 11. Further, the side surface 16 on the other side (negative direction side) in the Z-axis direction of the crystal piece 10 a is an inclined surface (second inclined surface) that is inclined with respect to the main surface 12. The side surface 15 and the side surface 16 are disposed at positions facing each other between the main surface 11 and the main surface 12.
 分光器1Aでは、側面15から入射光Liが入射され、側面16から出射光Loが出射される。これにより、例えば側面15に対して垂直に光が入射しても、水晶片10aの主面12に対して傾きを持って(すなわち、直交せずに)光が入射することとなる。従って、光源(不図示)から水晶片10aに入射した光が、反射膜21aにおいて反射して再び光源に戻ることが回避されるため、光源に与えるダメージやノイズを抑制することができる。 In the spectroscope 1A, incident light Li is incident from the side surface 15 and outgoing light Lo is emitted from the side surface 16. Thereby, for example, even if light is incident on the side surface 15 perpendicularly, the light is incident on the main surface 12 of the crystal piece 10a with an inclination (that is, not orthogonal). Accordingly, light incident on the crystal piece 10a from a light source (not shown) is prevented from being reflected by the reflective film 21a and returning to the light source again, so that damage and noise to the light source can be suppressed.
 なお、分光器1Aのように、光の反射面とは異なる面から光が入射及び出射される場合、反射膜20a,21aは、水晶片10aの主面11,12の全面に形成されていてもよい。また、側面15,16は、必ずしも面全体が傾斜面となっている必要はなく、例えば側面のうち一部が傾斜面を含み、当該傾斜面から光が入射及び出射する構成であってもよい。 In addition, when light enters and exits from a surface different from the light reflection surface as in the spectroscope 1A, the reflection films 20a and 21a are formed on the entire main surfaces 11 and 12 of the crystal piece 10a. Also good. Further, the side surfaces 15 and 16 do not necessarily have an inclined surface as a whole, and for example, a part of the side surface may include an inclined surface, and light may enter and exit from the inclined surface. .
 図9に示される分光器1Bは、図1に示される分光器1に比べて、反射膜20,21に代えて電極膜22a,23aを備える。同様に、図10に示される分光器1Cは、反射膜20,21に代えて電極膜22b,23bを備える。 The spectroscope 1B shown in FIG. 9 includes electrode films 22a and 23a instead of the reflective films 20 and 21 as compared to the spectroscope 1 shown in FIG. Similarly, the spectrometer 1C shown in FIG. 10 includes electrode films 22b and 23b instead of the reflection films 20 and 21.
 具体的に、分光器1Bでは、水晶片10bの主面11において、中央領域に位置する入射光Liの入射部17の周囲を囲むように電極膜22aが形成されている。主面12においても、出射光Loの出射部18の周囲を囲むように電極膜23aが形成されている。電極膜22a,23aは、水晶片10bを介して互いに対向し、交流電源30から交流電圧が印加される。なお、入射部17及び出射部18には、光の一部が透過するとともに、一部が反射する高反射コーティングが施されていてもよい。 Specifically, in the spectroscope 1B, the electrode film 22a is formed on the main surface 11 of the crystal piece 10b so as to surround the incident portion 17 of the incident light Li located in the central region. Also on the main surface 12, an electrode film 23 a is formed so as to surround the periphery of the emission part 18 of the emitted light Lo. The electrode films 22a and 23a face each other through the crystal piece 10b, and an AC voltage is applied from the AC power supply 30. The incident portion 17 and the emission portion 18 may be provided with a highly reflective coating that transmits part of the light and reflects part of the light.
 このような構成であっても、圧電効果により水晶片10bの周囲領域の厚みが変動することにより、当該変動に伴って中央領域の厚みも変動し、上述の分光器1と同様の効果を得ることができる。 Even in such a configuration, the thickness of the peripheral region of the crystal piece 10b varies due to the piezoelectric effect, so that the thickness of the central region also varies with the variation, and the same effect as the above-described spectrometer 1 is obtained. be able to.
 このように、分光器は、水晶片を振動させる機能を有する電極膜と、入射光を反射させる機能を有する反射膜が必ずしも共有される必要はなく、それぞれ別々に設けられていてもよい。また、分光器1B,1Cにおいても分光器1Aと同様に、入射光の進行方向に対し、主面を傾けた配置としてもよい。 Thus, in the spectroscope, the electrode film having the function of vibrating the crystal piece and the reflection film having the function of reflecting incident light are not necessarily shared, and may be provided separately. Further, the spectroscopes 1B and 1C may have an arrangement in which the main surface is inclined with respect to the traveling direction of the incident light, similarly to the spectroscope 1A.
 なお、電極膜22a,23aは、必ずしも中央領域を全て囲む必要はなく、例えば図10に示される電極膜22b,23bのように、その一部に不連続部があってもよい。これにより、例えば電極膜22b,23bを蒸着により水晶片10cに成膜する場合に、成膜工程が容易となる。 It should be noted that the electrode films 22a and 23a do not necessarily need to surround the entire central region, and for example, there may be discontinuities in some of the electrode films 22b and 23b shown in FIG. Thereby, for example, when the electrode films 22b and 23b are formed on the crystal piece 10c by vapor deposition, the film forming process is facilitated.
 図11に示される分光器1Dは、水晶片10dが円形平板状をなしている。このように、水晶片の形状は特に限定されず、矩形平板状や円形平板状であってもよく、あるいは多角形平板状であってもよい。 In the spectroscope 1D shown in FIG. 11, the crystal piece 10d has a circular flat plate shape. Thus, the shape of the crystal piece is not particularly limited, and may be a rectangular flat plate shape, a circular flat plate shape, or a polygonal flat plate shape.
 また、水晶片10dは、一方の主面において、円形の中央付近に位置する入射部の周囲に円環状の内側電極膜24xが形成され、さらに内側電極膜24xの外側を囲むように円環状の外側電極膜24y(外側電極膜)が同心円状に形成されている。また、内側電極膜24x及び外側電極膜24yとそれぞれ対向するように、他方の主面においても、内側電極膜25x及び外側電極膜25yが形成されている。内側電極膜24xと内側電極膜25xには交流電源31から交流電圧が印加され、外側電極膜24yと外側電極膜25yには交流電源32から交流電圧が印加される。 In addition, the crystal piece 10d has an annular inner electrode film 24x formed around the incident portion located near the center of the circle on one main surface, and further has an annular shape so as to surround the outer side of the inner electrode film 24x. The outer electrode film 24y (outer electrode film) is formed concentrically. The inner electrode film 25x and the outer electrode film 25y are also formed on the other main surface so as to face the inner electrode film 24x and the outer electrode film 24y, respectively. An AC voltage is applied from the AC power supply 31 to the inner electrode film 24x and the inner electrode film 25x, and an AC voltage is applied from the AC power supply 32 to the outer electrode film 24y and the outer electrode film 25y.
 このように、水晶片に形成される電極膜は一対に限られず、二対以上であってもよい。このとき、二対の電極膜には、互いに異なる位相の交流電圧が印加されてもよい。この効果について説明する。 Thus, the electrode film formed on the crystal piece is not limited to a pair, and may be two or more pairs. At this time, AC voltages having different phases may be applied to the two pairs of electrode films. This effect will be described.
 図12Aは、一対の電極膜が形成された水晶片の断面図を示した図であり、図12Bは、二対の電極膜が形成された水晶片の断面図を示した図である。なお、図12A及び図12Bは、図2と同様の方向の断面を示しており、説明の便宜上、電極膜は省略されている。 FIG. 12A is a diagram showing a cross-sectional view of a crystal piece on which a pair of electrode films are formed, and FIG. 12B is a diagram showing a cross-sectional view of the crystal piece on which two pairs of electrode films are formed. 12A and 12B show cross sections in the same direction as in FIG. 2, and the electrode film is omitted for convenience of explanation.
 図12Aに示されるように、仮に面内において部分的に形成された一対の電極膜(例えば、図11に示される内側電極膜24xと内側電極膜25xに相当する電極膜)に交流電圧が印加された場合、圧電効果により、例えば水晶片の周囲領域が厚くなり、中央領域が薄くなることがある。これにより、光が多重反射する領域における反射面の平行度が悪化し、分光の精度が低下するおそれがある。他方、図12Bに示されるように、二対の電極膜に例えば互いに逆位相である交流電圧が印加された場合、内側電極膜が対向する領域の水晶片は厚くなろうとする一方、外側電極膜が対向する領域の水晶片は薄くなろうとする。これにより、水晶片の厚みの不均一が抑制され、結果として光が多重反射する領域における反射面の平行度が向上する。このように、分光器1Dは、一対の電極膜を備える構成に比べて、分光の精度が向上する。 As shown in FIG. 12A, an alternating voltage is applied to a pair of electrode films (for example, an electrode film corresponding to the inner electrode film 24x and the inner electrode film 25x shown in FIG. 11) partially formed in the plane. In this case, due to the piezoelectric effect, for example, the peripheral region of the crystal piece may be thick and the central region may be thin. Thereby, the parallelism of the reflecting surface in the region where the light is multiple-reflected may deteriorate, and the spectral accuracy may be reduced. On the other hand, as shown in FIG. 12B, when AC voltages having opposite phases, for example, are applied to two pairs of electrode films, the crystal piece in the region facing the inner electrode film tends to become thicker, while the outer electrode film The crystal pieces in the area where the two face each other are going to be thin. Thereby, nonuniformity of the thickness of the crystal piece is suppressed, and as a result, the parallelism of the reflecting surface in the region where the light is multiply reflected is improved. As described above, the spectroscope 1D improves the accuracy of spectroscopy compared to a configuration including a pair of electrode films.
 なお、分光器1Dにおいては、水晶片10dが円形平板状である場合を例として説明したが、水晶片が異なる形状であっても、同様に二対の電極膜が形成されていてもよい。また、水晶片に形成される電極膜は二対に限られず、三対以上であってもよい。 In the spectroscope 1D, the case where the crystal piece 10d is a circular flat plate has been described as an example. However, even if the crystal pieces have different shapes, two pairs of electrode films may be formed in the same manner. Further, the electrode films formed on the quartz piece are not limited to two pairs, and may be three or more pairs.
 図13に示される分光器1Eは、水晶片10eの双方の主面のそれぞれに、複数の電極膜26,27と、複数の高反射膜40,41が形成されている。 In the spectroscope 1E shown in FIG. 13, a plurality of electrode films 26 and 27 and a plurality of highly reflective films 40 and 41 are formed on both main surfaces of the crystal piece 10e.
 複数の電極膜26,27は、励振電極の機能を有し、交流電源30から交流電圧が印加される。複数の高反射膜40,41は、水晶片の主面及び電極膜26,27に比べて高い反射率を有する反射膜である。高反射膜40,41の部材は特に限定されないが、例えば、導電膜であってもよく、あるいは誘電体膜であってもよい。分光器1Eでは、水晶片10eの一方の主面上において、複数の電極膜26と複数の高反射膜40とが、光の進行方向(Z軸方向)に沿って交互に配置されている。水晶片10eの他方の主面上においても同様に、複数の電極膜27と複数の高反射膜41とが、光の進行方向(Z軸方向)に沿って交互に配置されている。 The plurality of electrode films 26 and 27 have a function of an excitation electrode, and an AC voltage is applied from the AC power supply 30. The plurality of high reflection films 40 and 41 are reflection films having a higher reflectance than the main surface of the crystal piece and the electrode films 26 and 27. The members of the highly reflective films 40 and 41 are not particularly limited, but may be, for example, a conductive film or a dielectric film. In the spectroscope 1E, the plurality of electrode films 26 and the plurality of highly reflective films 40 are alternately arranged along the light traveling direction (Z-axis direction) on one main surface of the crystal piece 10e. Similarly, a plurality of electrode films 27 and a plurality of highly reflective films 41 are alternately arranged along the light traveling direction (Z-axis direction) on the other main surface of the crystal piece 10e.
 このように、分光器1Eでは、電極膜26,27と高反射膜40,41が併用されることにより、高反射膜40,41を備えない構成に比べて、多重反射に伴う光量の損失が抑制され、出射光Loの光量の減衰を抑制することができる。 As described above, in the spectroscope 1E, the electrode films 26 and 27 and the high reflection films 40 and 41 are used in combination, so that the amount of light loss due to multiple reflection is reduced as compared with the configuration without the high reflection films 40 and 41. It is suppressed, and attenuation of the light quantity of the emitted light Lo can be suppressed.
 上述の分光器1A~1Eは、分光器1の変形例の一例であり、本発明の構成はこれに限定されない。例えば、上述の実施形態においては、電極膜が水晶片の主面の一部に設けられた構成が示されているが、電極膜は水晶片の主面の全面に設けられていてもよい。電極膜が主面の全面に設けられる場合、当該電極膜は、例えばITO(Indium Tin Oxide)などのように、所定の波長の光を透過させつつ反射させる性質を持つ部材により構成されることが好ましい。 The above-described spectroscopes 1A to 1E are examples of modifications of the spectroscope 1, and the configuration of the present invention is not limited to this. For example, in the above-described embodiment, the configuration in which the electrode film is provided on a part of the main surface of the crystal piece is shown, but the electrode film may be provided on the entire main surface of the crystal piece. When the electrode film is provided on the entire main surface, the electrode film may be formed of a member having a property of transmitting and reflecting light of a predetermined wavelength, such as ITO (Indium Tin Oxide). preferable.
 また、上述の実施形態においては、対向する一対の反射膜がそれぞれ水晶片の主面に形成された構成が示されているが、光を多重反射させる反射部材は必ずしも水晶片の主面上に直接成膜されていなくてもよく、一方の主面側及び他方の主面側にそれぞれ配置されていればよい。具体的には、例えば、一対の反射部材が水晶片の主面から離れ、それぞれ水晶片を挟んで互いに平行かつ対向して設けられていてもよい。この場合、分光器に入射する入射光は、水晶片を複数回通過しつつ、これらの反射部材の間を多重反射することとなる。 Further, in the above-described embodiment, a configuration is shown in which a pair of opposing reflective films are formed on the main surface of the crystal piece, but the reflecting member that multi-reflects light is not necessarily on the main surface of the crystal piece. The film may not be formed directly, and may be disposed on one main surface side and the other main surface side, respectively. Specifically, for example, a pair of reflecting members may be provided so as to be separated from the main surface of the crystal piece and to be parallel and opposed to each other with the crystal piece interposed therebetween. In this case, the incident light incident on the spectroscope is subjected to multiple reflections between these reflecting members while passing through the crystal piece a plurality of times.
 次に、図14から図17を参照して、本発明の一実施形態に係る分光器1の適用例について説明する。 Next, with reference to FIGS. 14 to 17, an application example of the spectrometer 1 according to an embodiment of the present invention will be described.
 図14は、本発明の一実施形態に係る分光器が適用されたレーザー装置を示す図である。同図に示されるレーザー装置100は、分光器1と、レーザーダイオード110と、レンズ120と、光ファイバ130と、増幅器140と、を備える。なお、図14においては、分光器1Bの構成が図示されているが、レーザー装置100に適用される分光器は特に限定されない。以下の適用例においても同様である。 FIG. 14 is a diagram showing a laser apparatus to which a spectroscope according to an embodiment of the present invention is applied. A laser apparatus 100 shown in the figure includes a spectrometer 1, a laser diode 110, a lens 120, an optical fiber 130, and an amplifier 140. In addition, in FIG. 14, although the structure of the spectrometer 1B is illustrated, the spectrometer applied to the laser apparatus 100 is not specifically limited. The same applies to the following application examples.
 レーザー装置100では、光源であるレーザーダイオード110から照射された光が、分光器1において分光され、分光された光がレンズ120及び光ファイバ130を介して出力される。増幅器140は、光量を増幅する装置であり、例えばSOA(Semiconductor Optical Amplifier)等により構成される。なお、レーザー装置100は、光量の損失を補償するために、複数の増幅器140を備え、複数回にわたって光量の増幅が行われてもよい。また、増幅器140が配置される位置は、分光器1の後段であってもよく、あるいは分光器1の前段であってもよい。 In the laser device 100, the light emitted from the laser diode 110 that is a light source is dispersed in the spectroscope 1, and the dispersed light is output via the lens 120 and the optical fiber 130. The amplifier 140 is a device that amplifies the amount of light, and includes, for example, an SOA (Semiconductor Optical Amplifier). Note that the laser apparatus 100 may include a plurality of amplifiers 140 to compensate for the loss of light quantity, and the light quantity may be amplified a plurality of times. In addition, the position where the amplifier 140 is disposed may be the rear stage of the spectroscope 1 or the front stage of the spectroscope 1.
 レーザー装置100に分光器1を適用することにより、上述のとおり、波長を高速に可変制御することができるレーザー装置を実現することができる。 By applying the spectroscope 1 to the laser device 100, a laser device capable of variably controlling the wavelength at high speed can be realized as described above.
 図15は、本発明の一実施形態に係る分光器が適用された検査装置を示す図である。同図に示される検査装置200は、分光器1と、複数の光源210と、レンズ220,230と、ディテクタ240(撮像素子)と、を備える。 FIG. 15 is a diagram showing an inspection apparatus to which a spectroscope according to an embodiment of the present invention is applied. The inspection apparatus 200 shown in the figure includes a spectrometer 1, a plurality of light sources 210, lenses 220 and 230, and a detector 240 (imaging device).
 検査装置200では、複数の光源210からコンベア上の対象物Wに照射された光が、レンズ220を介して分光器1に入射される。そして、分光器1により分光された光は、レンズ230を介してディテクタ240に入力される。 In the inspection apparatus 200, light emitted from the plurality of light sources 210 to the object W on the conveyor is incident on the spectrometer 1 through the lens 220. The light split by the spectroscope 1 is input to the detector 240 via the lens 230.
 ここで、仮に検査装置が分光器1を備えないとすると、複数の波長の光(例えば、赤色、黄色、緑色、青色等)をディテクタ240で同時に検出する必要がある。従って、対象物Wの色の検査においては、ディテクタ240として多画素の撮像素子を用いる必要があり、各画素に色を割り当てる機構を必要とする。例えばこれは、レンズと、グレーティング又は各画素の直上に配置されたカラーフィルタによりなされるが、分光性能を向上させるために画素を多くすると大型化が避けられない。他方、これを小型化しようとすると、ディテクタ240の撮像素子の画素ピッチを小さくし低感度とせざるを得ず、長い露光時間を必要とする。すなわち、この場合高速な分光をすることができない。特に、グレーティングを用いる場合は、画素ピッチが小さくなることで、相隣る波長による信号間のクロストークノイズが生じやすくなるので、その傾向は顕著になる。 Here, if the inspection apparatus does not include the spectroscope 1, it is necessary to simultaneously detect light of a plurality of wavelengths (for example, red, yellow, green, blue, etc.) with the detector 240. Therefore, in the inspection of the color of the object W, it is necessary to use a multi-pixel imaging device as the detector 240, and a mechanism for assigning a color to each pixel is required. For example, this is performed by a lens and a color filter arranged directly above the grating or each pixel. However, if the number of pixels is increased in order to improve spectral performance, an increase in size is inevitable. On the other hand, if it is intended to reduce the size, the pixel pitch of the image sensor of the detector 240 must be reduced to have low sensitivity, and a long exposure time is required. That is, in this case, high-speed spectroscopy cannot be performed. In particular, when a grating is used, since the pixel pitch becomes small, crosstalk noise between signals due to adjacent wavelengths tends to occur, and this tendency becomes remarkable.
 この点、検査装置200は、分光器1を備えるため、高い周波数で波長が変動する光がディテクタ240に供給される。これにより、ディテクタ240に入射される光を赤色、黄色、緑色、青色、赤色、・・・というように時間に応じて適宜変化させることができる。このように、分光器1で分光がなされているために、ディテクタ240に同時に複数の波長の光が供給される構成に比べて、必要な画素数は少数でよい。その結果、1画素あたりの面積を大きくし高感度とすることも可能となり、露光時間を短縮することができる。さらに、画素が少数であれば読み出しも高速で行うことができる。このように、分光器1の波長変化が高速に行われ、かつディテクタ240もまた光を高速に検出できるため、分光器1を備えない構成に比べて、コンベアにより移動中の対象物Wの色を高速に検査することができる。また、分光器1によって波長同士の干渉が抑制されるため、信号同士のクロストークの発生を回避することができる。なお、ディテクタ240は、例えばシングルピクセルディテクタであってもよく、あるいは複数画素をまとめて1つの画素のごとく扱う、ビニング処理が行われてもよい。 In this regard, since the inspection apparatus 200 includes the spectroscope 1, light whose wavelength varies at a high frequency is supplied to the detector 240. Thereby, the light incident on the detector 240 can be appropriately changed according to time such as red, yellow, green, blue, red,... As described above, since the spectroscope 1 performs the spectroscopic analysis, the number of necessary pixels may be small as compared with the configuration in which the light having a plurality of wavelengths is simultaneously supplied to the detector 240. As a result, the area per pixel can be increased and the sensitivity can be increased, and the exposure time can be shortened. Furthermore, if the number of pixels is small, reading can be performed at high speed. Thus, since the wavelength change of the spectrometer 1 is performed at high speed and the detector 240 can also detect light at high speed, the color of the object W that is being moved by the conveyor as compared with the configuration that does not include the spectrometer 1. Can be inspected at high speed. Moreover, since the interference between wavelengths is suppressed by the spectroscope 1, it is possible to avoid the occurrence of crosstalk between signals. The detector 240 may be, for example, a single pixel detector, or binning processing may be performed in which a plurality of pixels are handled as one pixel.
 図16は、本発明の一実施形態に係る分光器が適用された検査装置を示す図である。同図に示される検査装置300は、図15に示される検査装置200に比べて、対象物Wが移動する代わりに、静止した対象物Wに対して光を走査させる構成である。具体的に、検査装置300は、検査装置200に比べて、レンズ310と、ビームスプリッタ320と、スキャナ330と、をさらに備える。 FIG. 16 is a diagram showing an inspection apparatus to which a spectroscope according to an embodiment of the present invention is applied. Compared to the inspection apparatus 200 shown in FIG. 15, the inspection apparatus 300 shown in FIG. 15 is configured to scan light with respect to a stationary object W instead of moving the object W. Specifically, the inspection apparatus 300 further includes a lens 310, a beam splitter 320, and a scanner 330, as compared with the inspection apparatus 200.
 検査装置300では、光源210から照射された光が、レンズ310とビームスプリッタ320を介してスキャナ330に入射される。スキャナ330は、1つ以上のミラーを含み、当該ミラーが動作することにより光を走査させる装置であり、例えば2次元のガルバノミラーにより構成される。スキャナ330から出射され、レンズ220を介して対象物Wに照射された光は、再びレンズ220、スキャナ330及びビームスプリッタ320を介して、分光器1に入射される。分光器1により分光された光は、レンズ230を介してディテクタ240に入力される。 In the inspection apparatus 300, the light emitted from the light source 210 enters the scanner 330 through the lens 310 and the beam splitter 320. The scanner 330 is a device that includes one or more mirrors and scans light when the mirror operates, and is configured by, for example, a two-dimensional galvanometer mirror. The light emitted from the scanner 330 and applied to the object W through the lens 220 is incident on the spectroscope 1 again through the lens 220, the scanner 330 and the beam splitter 320. The light split by the spectroscope 1 is input to the detector 240 via the lens 230.
 このように、対象物Wが静止している場合であっても、スキャナ330を用いて光を走査することにより、対象物Wの色等を検出することができる。なお、スキャナ330として1次元のガルバノミラーを用い、複数のディテクタ240を設ける構成としてもよい。 As described above, even when the object W is stationary, the color or the like of the object W can be detected by scanning the light using the scanner 330. Note that a one-dimensional galvanometer mirror may be used as the scanner 330 and a plurality of detectors 240 may be provided.
 また、分光器1の配置はディテクタ240の前段でなくてもよく、例えば光源210とレンズ310の間であってもよい。この場合、分光器1における光量の損失により、対象物に照射される光の光量が減少する。従って、例えば生体観測のように、強い光を照射することが難しい対象物である場合に好適に機能する。さらに、光源210の後段と、ディテクタ240の前段の双方に分光器1を挿入し、これらの複数の分光器1を同期させて動作させてもよい。これによると、いずれか一方に分光器1が挿入される構成に比べて、より鋭敏な波長選択性を得ることができ、より高い分解能で分光を行うことができる。なお、上述の実施形態では簡単のため、光源210が可視光を照射するものとして説明したが、光源210が照射する光の波長は可視光に限定されない。例えば深部到達性のある近赤外波長の光を照射する光源を用いることで、塗装表面の内部を検査する検査装置にも用い得る。 Further, the arrangement of the spectroscope 1 may not be in front of the detector 240, and may be, for example, between the light source 210 and the lens 310. In this case, due to the loss of the light amount in the spectroscope 1, the light amount of the light irradiated to the object decreases. Therefore, it functions suitably when the object is difficult to irradiate with strong light, such as biological observation. Furthermore, the spectroscope 1 may be inserted in both the subsequent stage of the light source 210 and the previous stage of the detector 240, and the plurality of spectroscopes 1 may be operated in synchronization. According to this, it is possible to obtain a sharper wavelength selectivity than in the configuration in which the spectrometer 1 is inserted in either one, and to perform spectroscopy with higher resolution. In the above-described embodiment, for the sake of simplicity, the light source 210 has been described as emitting visible light. However, the wavelength of light emitted from the light source 210 is not limited to visible light. For example, by using a light source that irradiates light of near-infrared wavelength with deep reachability, it can also be used for an inspection apparatus that inspects the inside of a painted surface.
 次に、図17を参照して、分光器1が波長掃引光源として適用される場合の撮像装置の構成例について説明する。 Next, a configuration example of the imaging apparatus when the spectrometer 1 is applied as a wavelength swept light source will be described with reference to FIG.
 図17は、本発明の一実施形態に係る分光器が適用された撮像装置を示す図である。同図に示される撮像装置400は、例えば、生体の光断層像を撮像する光断層像撮像装置の一例である。具体的に、撮像装置400は、分光器1と、光源410と、測定光学系420と、参照光学系430と、ディテクタ440と、タイミング制御系450と、信号処理系460と、を備える。 FIG. 17 is a diagram illustrating an imaging apparatus to which a spectroscope according to an embodiment of the present invention is applied. An imaging apparatus 400 shown in the figure is an example of an optical tomographic imaging apparatus that captures an optical tomographic image of a living body. Specifically, the imaging apparatus 400 includes a spectrometer 1, a light source 410, a measurement optical system 420, a reference optical system 430, a detector 440, a timing control system 450, and a signal processing system 460.
 分光器1は、光源410から入射される広帯域の光を波長掃引して出射する。測定光学系420は、分光器1の出射光の一部を用いて、対象物Wの測定を行う。参照光学系430は、分光器1の出射光の他の一部を参照光とする。ディテクタ440は、対象物Wからの反射光と参照光学系430からの参照光に基づいて、測定用干渉光を検出し、測定用干渉信号を信号処理系460に出力する。ディテクタ440は、例えばバランス型光検出器により構成される。 The spectroscope 1 sweeps the wavelength of broadband light incident from the light source 410 and emits it. The measurement optical system 420 measures the object W using a part of the emitted light from the spectrometer 1. The reference optical system 430 uses another part of the light emitted from the spectrometer 1 as reference light. The detector 440 detects the measurement interference light based on the reflected light from the object W and the reference light from the reference optical system 430, and outputs the measurement interference signal to the signal processing system 460. The detector 440 is constituted by, for example, a balanced photodetector.
 タイミング制御系450は、分光器1の出射光の波長に応じたトリガー信号を信号処理系460に送信し、信号処理系460の演算処理を制御する。具体的に、タイミング制御系450は、FBG451と、サーキュレータ452と、ディテクタ453と、を備える。FBG(Fiber Bragg Grating)451は、入射された光のうち所定の波長(いわゆるブラッグ波長)成分のみを反射させ、他の波長成分を透過させる性質を有する。従って、分光器1の出射光がFBG451に供給されると、FBG451のブラッグ波長成分が入射された時に、FBG451から反射光が出射される。当該反射光は、サーキュレータ452を介してディテクタ453に供給される。ディテクタ453は、当該反射光を検出し、トリガー信号を信号処理系460に送信することにより、信号処理系460における演算処理を制御する。 The timing control system 450 transmits a trigger signal corresponding to the wavelength of the emitted light from the spectrometer 1 to the signal processing system 460, and controls the arithmetic processing of the signal processing system 460. Specifically, the timing control system 450 includes an FBG 451, a circulator 452, and a detector 453. The FBG (Fiber Bragg Grating) 451 has a property of reflecting only a predetermined wavelength (so-called Bragg wavelength) component of incident light and transmitting other wavelength components. Accordingly, when the light emitted from the spectrometer 1 is supplied to the FBG 451, the reflected light is emitted from the FBG 451 when the Bragg wavelength component of the FBG 451 is incident. The reflected light is supplied to the detector 453 via the circulator 452. The detector 453 controls the arithmetic processing in the signal processing system 460 by detecting the reflected light and transmitting a trigger signal to the signal processing system 460.
 信号処理系460は、ディテクタ440から送信される測定用干渉信号と、タイミング制御系450から送信されるトリガー信号に基づいて、演算処理を行い、対象物Wの断層像を出力する。このように、撮像装置400によると、対象物Wに照射される光の波長を制御しつつ、対象物Wの撮像画像を得ることができる。 The signal processing system 460 performs arithmetic processing based on the measurement interference signal transmitted from the detector 440 and the trigger signal transmitted from the timing control system 450 and outputs a tomographic image of the object W. As described above, according to the imaging apparatus 400, a captured image of the object W can be obtained while controlling the wavelength of light applied to the object W.
 一般に、光断層像撮像装置では、イン・ビボの条件にて使用されることが多いため、対象物である生体が動くことに起因するアーチファクト(虚像)を抑制したり、同様の部位を繰り返し撮像したりするために、光源の波長掃引を高速に行うことが求められている。従って、このような光断層像撮像装置において分光器1が好適に機能する。 In general, optical tomographic imaging devices are often used under in-vivo conditions, so it is possible to suppress artifacts (virtual images) caused by the movement of the living body that is the object or to repeatedly capture similar parts. Therefore, it is required to sweep the wavelength of the light source at high speed. Therefore, the spectroscope 1 functions suitably in such an optical tomographic imaging apparatus.
 なお、タイミング制御の構成は図17に示される構成に限られない。例えば、撮像装置400は、タイミング制御系450を備える代わりに、FBGが測定光学系420とディテクタ440との間に挿入されてもよい。この場合、測定光学系420から入射された光の波長がブラッグ波長と一致したときのみ、ディテクタ440において検出される光が途切れることとなる。この途切れたタイミングにより、分光器1から出射された光の波長を検出することができる。 Note that the configuration of the timing control is not limited to the configuration shown in FIG. For example, instead of including the timing control system 450, the imaging apparatus 400 may insert an FBG between the measurement optical system 420 and the detector 440. In this case, the light detected by the detector 440 is interrupted only when the wavelength of the light incident from the measurement optical system 420 matches the Bragg wavelength. The wavelength of the light emitted from the spectroscope 1 can be detected at this interrupted timing.
 また、撮像装置400は、タイミング制御系450を備える代わりに、ディテクタ440と光源410の発光タイミングを同期制御する制御装置を備えていてもよい。これにより、所望の波長の光を対象物Wに照射させることができる。あるいは、撮像装置400は、タイミング制御系450を備える代わりに、分光器1の出射光の波長を検出するディテクタを備えていてもよい。当該ディテクタは、例えば、所定の波長の光を出力し、分光器1の出射光とのビート信号を検出することにより、分光器1の出射光の波長を検出するディテクタであってもよい。 In addition, the imaging device 400 may include a control device that synchronously controls the light emission timings of the detector 440 and the light source 410 instead of including the timing control system 450. Thereby, the object W can be irradiated with light of a desired wavelength. Alternatively, the imaging apparatus 400 may include a detector that detects the wavelength of the emitted light from the spectrometer 1 instead of including the timing control system 450. For example, the detector may be a detector that outputs light of a predetermined wavelength and detects the wavelength of the light emitted from the spectrometer 1 by detecting a beat signal with the light emitted from the spectrometer 1.
 さらに、分光器1が用いられる撮像装置はこれに限られない。例えば、眼球の角膜や網膜などの断層像を得る光断層像撮像装置(特開2017-201257号公報参照)や、生体に含まれる蛍光を画像として検出し、生体組織の変性や癌等の疾患状態を診断する蛍光診断装置(特開2005-305182号公報参照)などに適用されてもよい。 Furthermore, the imaging device using the spectroscope 1 is not limited to this. For example, an optical tomographic imaging apparatus (see Japanese Patent Application Laid-Open No. 2017-2012257) that obtains a tomographic image of the cornea, retina, etc. of an eyeball, or a disease such as degeneration of biological tissue or cancer that detects fluorescence contained in a living body The present invention may be applied to a fluorescence diagnostic apparatus (see Japanese Patent Application Laid-Open No. 2005-305182) for diagnosing a state.
 図18は、本発明の一実施形態に係る分光器が適用された走査装置を示す図である。同図に示される走査装置500は、分光器1と、光源510と、プリズム520と、を備える。 FIG. 18 is a diagram showing a scanning device to which a spectroscope according to an embodiment of the present invention is applied. The scanning device 500 shown in the figure includes a spectrometer 1, a light source 510, and a prism 520.
 走査装置500では、光源510から出射される広帯域の光が分光器1において分光され、さらにプリズム520において波長に応じて異なる屈折率で屈折して出射される。このように、走査装置500によると、分光器1により時間的に分光された光がプリズム520により空間的に分光されるため、ある領域を高速かつ周期的に走査する光を出射することができる。このような走査装置500は、例えば以下に示すLIDAR(Light Detection and Ranging)等において、光源からの光を空間走査するスキャナして適用することができる。なお、走査装置500において光を空間的に分光する分光素子は、プリズムに限られず、例えばグレーティング等であってもよい。このことは、以下に説明する位置測定装置600においても同様である。 In the scanning device 500, broadband light emitted from the light source 510 is dispersed by the spectroscope 1, and further refracted and emitted by the prism 520 with a different refractive index depending on the wavelength. As described above, according to the scanning device 500, the light temporally dispersed by the spectroscope 1 is spatially dispersed by the prism 520, so that light that scans a certain area at high speed and periodically can be emitted. . Such a scanning device 500 can be applied as a scanner that spatially scans light from a light source in, for example, LIDAR (Light Detection and Ranging) described below. Note that the spectroscopic element that spatially separates light in the scanning device 500 is not limited to a prism, and may be, for example, a grating. The same applies to the position measuring apparatus 600 described below.
 図19Aから図19Cは、本発明の一実施形態に係る分光器が適用された位置測定装置を示す図である。図19Aから図19Cに示される位置測定装置600は、上述の走査装置500に加えて、分光器1と同様に構成される分光器2と、ディテクタ530をさらに備える。 19A to 19C are diagrams showing a position measuring device to which the spectroscope according to one embodiment of the present invention is applied. 19A to 19C further includes a spectroscope 2 configured similarly to the spectroscope 1 and a detector 530, in addition to the scanning device 500 described above.
 分光器2は、走査装置500により波長に応じて異なる角度で出射され、かつ対象物Xにおいて反射された反射光を透過させる。ディテクタ530は、分光器2を透過した反射光を受光して検出する。すなわち、位置測定装置600において、分光器1(第1分光器)は出射光の波長を周期的に変動させる機能を有し、分光器2(第2分光器)は反射光のうち特定の波長の光を透過させるフィルタとしての機能を有する。 The spectroscope 2 transmits the reflected light emitted from the scanning device 500 at different angles according to the wavelength and reflected from the object X. The detector 530 receives and detects the reflected light that has passed through the spectroscope 2. That is, in the position measurement apparatus 600, the spectroscope 1 (first spectroscope) has a function of periodically changing the wavelength of the emitted light, and the spectroscope 2 (second spectroscope) is a specific wavelength of the reflected light. It has a function as a filter that transmits light.
 具体的に、図19Aは、地点Aにある対象物Xにおいてある波長の光が反射する様子を示している。また、図19Bは、地点Aより位置測定装置600に近い地点Bにある対象物Xにおいて、地点Aの場合と同じ波長の光が反射する様子を示している。また、図19Cは、地点A及び地点Bとは異なる方位に位置する地点Cにある対象物Xにおいて、地点A及び地点Bの場合とは異なる波長の光が反射する様子を示している。これらのいずれの場合も、光源510が光を出射する出射時刻と、対象物Xにおいて反射した反射光をディテクタ530が検出する検出時刻との差分に基づいて、いわゆるTime of Flight法により対象物Xまでの距離を算出することができる。この原理について以下に説明する。 Specifically, FIG. 19A shows a state in which light of a certain wavelength is reflected by the object X at the point A. FIG. 19B shows a state in which light having the same wavelength as that of the point A is reflected on the object X at the point B closer to the position measuring device 600 than the point A. FIG. 19C shows a state in which light having a wavelength different from that in the case of point A and point B is reflected on the object X in the point C located in a different direction from the point A and point B. In any of these cases, based on the difference between the emission time at which the light source 510 emits light and the detection time at which the detector 530 detects the reflected light reflected by the object X, the object X is detected by the so-called Time of Flight method. Can be calculated. This principle will be described below.
 図20Aから図20Cは、それぞれ、図19Aから図19Cに示される状況における、分光器1,2を透過する光の波長と、ディテクタ530における検出信号のタイミングチャートである。なお、簡単のため、プリズム520からは3種類の波長(波長1~波長3)の光が出射されるものとして説明する。 20A to 20C are timing charts of the wavelength of light transmitted through the spectroscopes 1 and 2 and the detection signal in the detector 530 in the situation shown in FIGS. 19A to 19C, respectively. For the sake of simplicity, description will be made assuming that light of three types of wavelengths (wavelength 1 to wavelength 3) is emitted from the prism 520.
 位置測定装置600において、光源側の分光器1と検出側の分光器2は同期制御される。具体的には、図20Aから図20Cに示されるように、検出側の分光器2の圧電素子の振動周波数(すなわち、分光器2の透過光の波長変動の周波数)が、光源側の分光器1の圧電素子の振動周波数(すなわち、分光器1の透過光の波長変動の周波数)より高くなるように制御される。これにより、特定の波長の光を選択的に検出することができる。 In the position measurement apparatus 600, the light source side spectroscope 1 and the detection side spectroscope 2 are controlled synchronously. Specifically, as shown in FIGS. 20A to 20C, the vibration frequency of the piezoelectric element of the detection-side spectrometer 2 (that is, the wavelength fluctuation frequency of the transmitted light of the spectrometer 2) is the light-source-side spectrometer. It is controlled so as to be higher than the vibration frequency of the piezoelectric element 1 (that is, the frequency fluctuation wavelength of the transmitted light of the spectrometer 1). Thereby, the light of a specific wavelength can be selectively detected.
 具体的に、例えば対象物Xが地点Aにある場合(図19A参照)、時刻t1に出射された波長3の光が、対象物Xにおいて反射する。当該反射光は、分光器2に到達し、かつ分光器2が波長3の光を透過させる状態であるときにディテクタ530に供給される。そしてディテクタ530における検出信号は、時刻t2において光が検出されたことを示す。これにより、位置測定装置600から対象物Xまでの距離dは、d=c(t2-t1)/2(cは光速)により算出することができる。なお、プリズム520により光が波長に応じて異なる角度で出射されるため、波長1及び波長2の光は対象物Xには当たらず、反射光は戻らない。 Specifically, for example, when the object X is at the point A (see FIG. 19A), the light of wavelength 3 emitted at time t1 is reflected by the object X. The reflected light reaches the spectroscope 2 and is supplied to the detector 530 when the spectroscope 2 is in a state of transmitting light of wavelength 3. The detection signal in detector 530 indicates that light has been detected at time t2. Thereby, the distance d from the position measuring apparatus 600 to the object X can be calculated by d = c (t2−t1) / 2 (c is the speed of light). Since light is emitted from the prism 520 at different angles depending on the wavelength, the light of the wavelength 1 and the wavelength 2 does not hit the object X, and the reflected light does not return.
 同様に、例えば対象物Xが地点Bにある場合(図19B参照)、時刻t1において出射された波長3の光は対象物Xにおいて反射し、当該反射光が分光器2に到達し、かつ分光器2が波長3の光を透過させる状態であるときにディテクタ530に供給される。これにより、ディテクタ530における検出信号は、時刻t2において光が検出されたことを示す。この場合も、波長1及び波長2の光は対象物Xには当たらず、反射光は戻らない。 Similarly, for example, when the target object X is at the point B (see FIG. 19B), the light of wavelength 3 emitted at time t1 is reflected by the target object X, the reflected light reaches the spectroscope 2, and The detector 2 is supplied to the detector 530 when the device 2 is in a state of transmitting light of wavelength 3. Thereby, the detection signal in detector 530 indicates that light was detected at time t2. Also in this case, the light of the wavelength 1 and the wavelength 2 does not hit the object X, and the reflected light does not return.
 他方、例えば対象物Xが地点Cにある場合(図19C参照)、時刻t1において出射された波長2の光は対象物Xにおいて反射し、当該反射光が分光器2に到達し、かつ分光器2が波長2の光を透過させる状態であるときにディテクタ530に供給される。これにより、ディテクタ530における検出信号は、時刻t2において光が検出されたことを示す。この場合、波長1及び波長3の光は対象物Xには当たらず、反射光は戻らない。このように、位置測定装置600では、ディテクタ530において検出される反射光の波長に応じて、対象物がある位置の方位を測定することができる。なお、上記のようにプリズムを用いて空間走査を行う場合は、プリズムを構成する硝材の屈折率分散と屈折の法則(スネルの法則)とを用いて、波長を角度へと換算することができる。 On the other hand, for example, when the object X is at the point C (see FIG. 19C), the light of wavelength 2 emitted at time t1 is reflected by the object X, and the reflected light reaches the spectroscope 2, and the spectroscope 2 is supplied to the detector 530 when light of wavelength 2 is transmitted. Thereby, the detection signal in detector 530 indicates that light was detected at time t2. In this case, light of wavelength 1 and wavelength 3 does not strike the object X, and reflected light does not return. As described above, the position measurement apparatus 600 can measure the azimuth of the position where the object is located according to the wavelength of the reflected light detected by the detector 530. When performing spatial scanning using a prism as described above, the wavelength can be converted into an angle using the refractive index dispersion of the glass material constituting the prism and the law of refraction (Snell's law). .
 上述のとおり、位置測定装置600によると、時刻t1と時刻t2との差分に基づいて、位置測定装置600から対象物までの距離dを算出することができる。加えて、位置測定装置600によると、ディテクタ530において検出される光の波長に基づいて、対象物Xがどの方位にあるかを算出することができる。すなわち、位置測定装置600によると、例えば光源やミラーを回転させて出射光の出射領域を拡げるLIDARに比べて、装置の部品を機械的に動かす必要がないため、高速かつ高精度に測定を行うことができる。なお、上記では簡単のため2次元走査の例を示したが、複数のプリズムを用いたり、あるいはホログラム素子を用いたりすることで、3次元走査を実現することができる。 As described above, according to the position measuring apparatus 600, the distance d from the position measuring apparatus 600 to the object can be calculated based on the difference between the time t1 and the time t2. In addition, according to the position measuring apparatus 600, it is possible to calculate in which direction the object X is located based on the wavelength of light detected by the detector 530. That is, according to the position measuring apparatus 600, it is not necessary to move the parts of the apparatus mechanically compared to LIDAR, for example, by rotating a light source or a mirror to expand the emission area of the emitted light, so that measurement is performed at high speed and with high accuracy. be able to. Although an example of two-dimensional scanning has been described above for the sake of simplicity, three-dimensional scanning can be realized by using a plurality of prisms or using a hologram element.
 以上、本発明の例示的な実施形態について説明した。本実施形態に係る分光器は、互いに平行に対向する第1主面及び第2主面を有し、交流電圧の印加により第1主面と第2主面との間の距離が圧電効果により周期的に変動する圧電部材を備え、圧電部材は、圧電部材に入射した光を第1主面と第2主面との間において多重反射させ、第1主面と第2主面との間の距離の変動に応じて変動する波長を有する光を出射する。 The exemplary embodiments of the present invention have been described above. The spectroscope according to the present embodiment has a first main surface and a second main surface that face each other in parallel, and the distance between the first main surface and the second main surface due to application of an alternating voltage is caused by the piezoelectric effect. The piezoelectric member is provided with a periodically changing piezoelectric member, and the piezoelectric member multi-reflects light incident on the piezoelectric member between the first main surface and the second main surface, and between the first main surface and the second main surface. The light having a wavelength that varies according to the variation in the distance is emitted.
 これによれば、圧電効果によって光の光路長を変動させるため、装置の部品を機械的に動かす必要がなく、高速に波長を可変制御することができる。また、圧電部材の第1主面と第2主面の平行度を維持しつつ光路長を変動させることができるため、部品等による調整が不要となり、外乱に対してロバストかつ高精度に光を分光することができる。 According to this, since the optical path length of the light is changed by the piezoelectric effect, it is not necessary to mechanically move parts of the apparatus, and the wavelength can be variably controlled at high speed. In addition, since the optical path length can be changed while maintaining the parallelism between the first main surface and the second main surface of the piezoelectric member, adjustment by components or the like is not required, and light is robust and highly accurate against disturbance. Spectroscopy is possible.
 上記構成において、分光器1は、第1主面側に設けられた第1反射膜と、第2主面側に設けられた第2反射膜と、をさらに備え、圧電部材は、第1反射膜と第2反射膜との間において光を多重反射させてもよい。 In the above configuration, the spectroscope 1 further includes a first reflection film provided on the first main surface side and a second reflection film provided on the second main surface side, and the piezoelectric member includes the first reflection film. The light may be multiple-reflected between the film and the second reflective film.
 これによれば、反射膜を備えない構成に比べて反射率が高まるため、光量の損失を抑制することができる。 According to this, since the reflectance is increased as compared with the configuration without the reflective film, it is possible to suppress the loss of light amount.
 上記構成において、第1反射膜及び第2反射膜は、それぞれ、交流電圧が印加される電極膜を含んでいてもよい。 In the above configuration, each of the first reflective film and the second reflective film may include an electrode film to which an alternating voltage is applied.
 これによれば、反射膜が励振電極を兼ねることにより、製造工程を削減することができる。 According to this, since the reflective film also serves as the excitation electrode, the manufacturing process can be reduced.
 上記構成において、第1反射膜及び第2反射膜は、それぞれ、電極膜より反射率が高い高反射膜を含んでいてもよい。 In the above configuration, each of the first reflective film and the second reflective film may include a high reflective film having a higher reflectance than the electrode film.
 これによれば、多重反射に伴う光量の損失が抑制され、出射光の光量の減衰を抑制することができる。 According to this, the loss of the light amount due to the multiple reflection is suppressed, and the attenuation of the light amount of the emitted light can be suppressed.
 上記構成において、第1反射膜及び第2反射膜は、それぞれ、内側電極膜と、第1主面又は第2主面の平面視において内側電極膜の外側を囲むように設けられた外側電極膜と、を含み、内側電極膜と外側電極膜には、互いに逆位相の交流電圧が印加されてもよい。 In the above configuration, the first reflective film and the second reflective film are each an inner electrode film and an outer electrode film provided so as to surround the outer side of the inner electrode film in a plan view of the first main surface or the second main surface. AC voltages having opposite phases may be applied to the inner electrode film and the outer electrode film.
 これによれば、水晶片の厚みの不均一が抑制され、光が多重反射する領域における反射面の平行度が向上するため、分光の精度が向上する。 According to this, nonuniformity of the thickness of the crystal piece is suppressed and the parallelism of the reflecting surface in the region where the light is multiply reflected is improved, so that the accuracy of spectroscopy is improved.
 上記構成において、圧電部材は、第1主面に対して傾斜する第1傾斜面と、第2主面に対して傾斜する第2傾斜面と、をさらに有し、第1傾斜面及び第2傾斜面は、第1主面と第2主面との間において互いに対向する位置に配置され、圧電部材は、第1傾斜面から入射した光を第2傾斜面から出射してもよい。 In the above configuration, the piezoelectric member further includes a first inclined surface that is inclined with respect to the first main surface, and a second inclined surface that is inclined with respect to the second main surface, and the first inclined surface and the second inclined surface. The inclined surface may be disposed at a position facing each other between the first main surface and the second main surface, and the piezoelectric member may emit light incident from the first inclined surface from the second inclined surface.
 これによれば、光源から圧電部材に入射した光が反射して再び光源に戻ることが回避され、光源に与えるダメージやノイズを抑制することができる。 According to this, it is avoided that the light incident on the piezoelectric member from the light source is reflected and returned to the light source again, and damage and noise to the light source can be suppressed.
 上記構成において、圧電部材は、Xカットされた人工水晶により構成されていてもよい。 In the above configuration, the piezoelectric member may be configured by an X-cut artificial quartz crystal.
 これによれば、圧電部材が伸縮振動モードにおいて振動するため、他の振動モードに比べて分光可能な帯域幅を広くとることができる。 According to this, since the piezoelectric member vibrates in the expansion / contraction vibration mode, it is possible to widen the spectral bandwidth compared to other vibration modes.
 上記構成において、圧電部材は、GTカットされた人工水晶により構成されていてもよい。 In the above configuration, the piezoelectric member may be formed of a GT-cut artificial quartz crystal.
 これによれば、Xカットされた人工水晶に比べて温度安定性を得ることができる。従って、環境変動への耐性を向上させることができる。 According to this, it is possible to obtain temperature stability as compared with the X-cut artificial quartz. Therefore, resistance to environmental fluctuations can be improved.
 本実施形態に係る撮像装置は、上述の分光器と、分光器の圧電部材に光を入射する光源と、分光器から出射された光を対象物に照射する光学系と、対象物において反射された反射光を受光する撮像素子と、を備える。 The imaging apparatus according to the present embodiment is reflected by the above-described spectroscope, a light source that makes light incident on the piezoelectric member of the spectroscope, an optical system that irradiates the object with light emitted from the spectroscope, and the object. And an imaging device that receives the reflected light.
 これによれば、高速で波長掃引された光源を提供することができる。従って、例えば生体の光断層像を撮像する装置において、生体が動くことに起因するアーチファクトを抑制したり、撮像を繰り返し行う場合の撮像精度を向上したりすることができる。 According to this, it is possible to provide a light source that is wavelength-swept at high speed. Therefore, for example, in an apparatus that captures an optical tomographic image of a living body, artifacts due to the movement of the living body can be suppressed, and the imaging accuracy when imaging is repeated can be improved.
 本実施形態に係る走査装置は、上述の分光器と、分光器の圧電部材に光を入射する光源と、分光器から出射された光を空間的に分光する分光素子と、を備える。 The scanning device according to the present embodiment includes the above-described spectroscope, a light source that makes light incident on the piezoelectric member of the spectroscope, and a spectroscopic element that spatially splits the light emitted from the spectroscope.
 これによれば、分光器により時間的に分光された光が分光素子により空間的に分光されるため、ある領域を高速かつ周期的に走査する光を出射することができる。 According to this, since the light spectrally dispersed by the spectroscope is spatially dispersed by the spectroscopic element, it is possible to emit light that scans a certain area at high speed and periodically.
 本実施形態に係る位置測定装置は、上述の分光器であって、入射光を透過させる第1分光器と、第1分光器の圧電部材に光を入射する光源と、第1分光器から出射された光を空間的に分光する分光素子と、上述の分光器であって、分光素子から出射されかつ対象物において反射された反射光を透過させる第2分光器と、第2分光器を透過した透過光を受光する検出器と、を備える。 The position measuring apparatus according to the present embodiment is the above-described spectroscope, and includes a first spectroscope that transmits incident light, a light source that enters light into a piezoelectric member of the first spectroscope, and an output from the first spectroscope. A spectroscopic element that spatially separates the emitted light, the above-described spectroscope, a second spectroscope that transmits reflected light emitted from the spectroscopic element and reflected by the object, and transmitted through the second spectroscope And a detector for receiving the transmitted light.
 これによれば、出射時刻と検出時刻との差分に基づいて、位置測定装置から対象物までの距離を算出することができる。また、これによると、検出される光の波長に基づいて、対象物がどの方位にあるかを算出することができる。従って、例えば光源やミラーを回転させるLIDARに比べて、装置の部品を機械的に動かす必要がないため、高速かつ高精度に測定を行うことができる。 According to this, the distance from the position measuring device to the object can be calculated based on the difference between the emission time and the detection time. Further, according to this, it is possible to calculate in which direction the object is located based on the wavelength of the detected light. Therefore, it is not necessary to mechanically move the parts of the apparatus, for example, compared to LIDAR that rotates a light source or a mirror, and therefore, measurement can be performed at high speed and with high accuracy.
 上記構成において、第2分光器の圧電部材の振動周波数は、第1分光器の圧電部材の振動周波数より高くてもよい。 In the above configuration, the vibration frequency of the piezoelectric member of the second spectrometer may be higher than the vibration frequency of the piezoelectric member of the first spectrometer.
 これによれば、特定の波長の光を選択的に検出することができる。 According to this, it is possible to selectively detect light of a specific wavelength.
 なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更又は改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 Each embodiment described above is for facilitating understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed or improved without departing from the gist thereof, and equivalents thereof are also included in the present invention. In other words, those obtained by appropriately modifying the design of each embodiment by those skilled in the art are also included in the scope of the present invention as long as they include the features of the present invention. For example, each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate. In addition, each element included in each embodiment can be combined as much as technically possible, and combinations thereof are included in the scope of the present invention as long as they include the features of the present invention.
 1,1A~1E…分光器、10,10a~10e…水晶片、11,12…主面、13…入射部、14…出射部、15,16…側面、20,20a,21,21a…反射膜、22a,22b,23a,23b,26,27…電極膜、24x,25x…内側電極膜、24y,25y…外側電極膜、30~32…交流電源、40,41…高反射膜、100…レーザー装置、110…レーザーダイオード、120…レンズ、130…光ファイバ、140…増幅器、200…検査装置、210…光源、220,230…レンズ、240…ディテクタ、300…検査装置、310…レンズ、320…ビームスプリッタ、330…スキャナ、400…撮像装置、410…光源、420…測定光学系、430…参照光学系、440…ディテクタ、450…タイミング制御系、451…FBG、452…サーキュレータ、453…ディテクタ、460…信号処理系、500…走査装置、510…光源、520…プリズム、530…ディテクタ、600…位置測定装置 DESCRIPTION OF SYMBOLS 1,1A-1E ... Spectroscope, 10, 10a-10e ... Quartz piece, 11, 12 ... Main surface, 13 ... Incident part, 14 ... Outgoing part, 15, 16 ... Side, 20, 20a, 21, 21a ... Reflection Film, 22a, 22b, 23a, 23b, 26, 27 ... electrode film, 24x, 25x ... inner electrode film, 24y, 25y ... outer electrode film, 30-32 ... AC power supply, 40, 41 ... highly reflective film, 100 ... Laser device, 110 ... laser diode, 120 ... lens, 130 ... optical fiber, 140 ... amplifier, 200 ... inspection device, 210 ... light source, 220,230 ... lens, 240 ... detector, 300 ... inspection device, 310 ... lens, 320 ... Beam splitter, 330 ... Scanner, 400 ... Imaging device, 410 ... Light source, 420 ... Measurement optical system, 430 ... Reference optical system, 440 ... Detector, 450 ... Timing control system, 451 ... FBG, 452 ... circulator, 453 ... detector, 460 ... signal processing system, 500 ... scanning device 510 ... light source, 520 ... prism, 530 ... detector, 600 ... position measuring device

Claims (12)

  1.  互いに平行に対向する第1主面及び第2主面を有し、交流電圧の印加により前記第1主面と前記第2主面との間の距離が圧電効果により周期的に変動する圧電部材を備え、
     前記圧電部材は、当該圧電部材に入射した光を前記第1主面と前記第2主面との間において多重反射させ、前記第1主面と前記第2主面との間の距離の変動に応じて変動する波長を有する光を出射する、分光器。
    A piezoelectric member having a first main surface and a second main surface facing each other in parallel, wherein a distance between the first main surface and the second main surface is periodically changed by a piezoelectric effect by application of an alternating voltage. With
    The piezoelectric member multi-reflects light incident on the piezoelectric member between the first main surface and the second main surface, and a variation in the distance between the first main surface and the second main surface. A spectrometer that emits light having a wavelength that varies depending on the wavelength.
  2.  前記分光器は、前記第1主面側に設けられた第1反射膜と、前記第2主面側に設けられた第2反射膜と、をさらに備え、
     前記圧電部材は、前記第1反射膜と前記第2反射膜との間において光を多重反射させる、
     請求項1に記載の分光器。
    The spectroscope further includes a first reflective film provided on the first main surface side, and a second reflective film provided on the second main surface side,
    The piezoelectric member multi-reflects light between the first reflective film and the second reflective film,
    The spectroscope according to claim 1.
  3.  前記第1反射膜及び前記第2反射膜は、それぞれ、前記交流電圧が印加される電極膜を含む、
     請求項2に記載の分光器。
    Each of the first reflective film and the second reflective film includes an electrode film to which the AC voltage is applied.
    The spectroscope according to claim 2.
  4.  前記第1反射膜及び前記第2反射膜は、それぞれ、前記電極膜より反射率が高い高反射膜を含む、
     請求項3に記載の分光器。
    Each of the first reflective film and the second reflective film includes a high reflective film having a higher reflectance than the electrode film.
    The spectroscope according to claim 3.
  5.  前記第1反射膜及び前記第2反射膜は、それぞれ、内側電極膜と、前記第1主面又は前記第2主面の平面視において前記内側電極膜の外側を囲むように設けられた外側電極膜と、を含み、
     前記内側電極膜と前記外側電極膜には、互いに逆位相の交流電圧が印加される、
     請求項2に記載の分光器。
    The first reflective film and the second reflective film are respectively an inner electrode film and an outer electrode provided so as to surround the outer side of the inner electrode film in a plan view of the first main surface or the second main surface. A membrane, and
    AC voltages having opposite phases are applied to the inner electrode film and the outer electrode film,
    The spectroscope according to claim 2.
  6.  前記圧電部材は、前記第1主面に対して傾斜する第1傾斜面と、前記第2主面に対して傾斜する第2傾斜面と、をさらに有し、
     前記第1傾斜面及び前記第2傾斜面は、前記第1主面と前記第2主面との間において互いに対向する位置に配置され、
     前記圧電部材は、前記第1傾斜面から入射した光を前記第2傾斜面から出射する、
     請求項1から5のいずれか一項に記載の分光器。
    The piezoelectric member further includes a first inclined surface that is inclined with respect to the first main surface, and a second inclined surface that is inclined with respect to the second main surface,
    The first inclined surface and the second inclined surface are disposed at positions facing each other between the first main surface and the second main surface,
    The piezoelectric member emits light incident from the first inclined surface from the second inclined surface,
    The spectroscope according to any one of claims 1 to 5.
  7.  前記圧電部材は、Xカットされた人工水晶により構成された、
     請求項1から6のいずれか一項に記載の分光器。
    The piezoelectric member is composed of an X-cut artificial quartz crystal,
    The spectroscope according to any one of claims 1 to 6.
  8.  前記圧電部材は、GTカットされた人工水晶により構成された、
     請求項1から6のいずれか一項に記載の分光器。
    The piezoelectric member is composed of a GT-cut artificial quartz crystal,
    The spectroscope according to any one of claims 1 to 6.
  9.  請求項1から8のいずれか一項に記載の分光器と、
     前記分光器の前記圧電部材に光を入射する光源と、
     前記分光器から出射された光を対象物に照射する光学系と、
     前記対象物において反射された反射光を受光する撮像素子と、を備える、撮像装置。
    A spectrometer according to any one of claims 1 to 8,
    A light source that makes light incident on the piezoelectric member of the spectroscope;
    An optical system for irradiating an object with light emitted from the spectroscope;
    An imaging device comprising: an imaging device that receives reflected light reflected by the object.
  10.  請求項1から8のいずれか一項に記載の分光器と、
     前記分光器の前記圧電部材に光を入射する光源と、
     前記分光器から出射された光を空間的に分光する分光素子と、を備える、走査装置。
    A spectrometer according to any one of claims 1 to 8,
    A light source that makes light incident on the piezoelectric member of the spectroscope;
    And a spectroscopic element that spatially separates the light emitted from the spectroscope.
  11.  請求項1から8のいずれか一項に記載の分光器であって、入射光を透過させる第1分光器と、
     前記第1分光器の前記圧電部材に光を入射する光源と、
     前記第1分光器から出射された光を空間的に分光する分光素子と、
     請求項1から8のいずれか一項に記載の分光器であって、前記分光素子から出射されかつ対象物において反射された反射光を透過させる第2分光器と、
     前記第2分光器を透過した透過光を受光する検出器と、を備える、位置測定装置。
    The spectroscope according to any one of claims 1 to 8, wherein the first spectroscope transmits incident light;
    A light source that makes light incident on the piezoelectric member of the first spectrometer;
    A spectroscopic element for spatially dispersing light emitted from the first spectroscope;
    The spectroscope according to any one of claims 1 to 8, wherein the second spectroscope transmits the reflected light emitted from the spectroscopic element and reflected by an object;
    And a detector that receives the transmitted light that has passed through the second spectroscope.
  12.  前記第2分光器の前記圧電部材の振動周波数は、前記第1分光器の前記圧電部材の振動周波数より高い、
     請求項11に記載の位置測定装置。
    The vibration frequency of the piezoelectric member of the second spectrometer is higher than the vibration frequency of the piezoelectric member of the first spectrometer.
    The position measuring device according to claim 11.
PCT/JP2018/041099 2018-04-20 2018-11-06 Spectrometer, imaging device, scanning device, and position measuring device WO2019202761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880088746.9A CN111684335A (en) 2018-04-20 2018-11-06 Spectrometer, imaging device, scanning device, and position measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018081409 2018-04-20
JP2018-081409 2018-04-20

Publications (1)

Publication Number Publication Date
WO2019202761A1 true WO2019202761A1 (en) 2019-10-24

Family

ID=68238847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041099 WO2019202761A1 (en) 2018-04-20 2018-11-06 Spectrometer, imaging device, scanning device, and position measuring device

Country Status (2)

Country Link
CN (1) CN111684335A (en)
WO (1) WO2019202761A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174909A (en) * 2020-01-19 2020-05-19 深圳奥比中光科技有限公司 Optical filter, imaging device and electronic equipment
TWI737474B (en) * 2020-08-31 2021-08-21 國立中興大學 Solid-state optical phased scanning component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332832A (en) * 1992-05-29 1993-12-17 Shimadzu Corp Etalon drive mechanism
JP2003309319A (en) * 2002-04-15 2003-10-31 Toyo Commun Equip Co Ltd Wavelength locker module
JP2005203517A (en) * 2004-01-14 2005-07-28 Toshiba Corp Waveform stabilizing apparatus
JP2007212376A (en) * 2006-02-13 2007-08-23 Fujifilm Corp Optical tomographic imaging device
WO2010131784A1 (en) * 2009-05-11 2010-11-18 Jhiyeon Jeanne Oh Reflection type display and manufacturing method thereof
JP2015141067A (en) * 2014-01-28 2015-08-03 セイコーエプソン株式会社 Electronic apparatus
JP2015165323A (en) * 2015-05-07 2015-09-17 セイコーエプソン株式会社 Optical filter, and analytical instrument and optical apparatus using the same
US20170146400A1 (en) * 2015-11-20 2017-05-25 Raytheon Company Proximity focus imaging interferometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228132B2 (en) * 2002-10-18 2009-02-25 株式会社トプコン Position measuring device
JP6010275B2 (en) * 2010-03-15 2016-10-19 セイコーエプソン株式会社 Optical filter and analytical instrument and optical instrument using the same
CN102554709A (en) * 2010-12-10 2012-07-11 通用电气公司 Distance measuring system and distance measuring method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332832A (en) * 1992-05-29 1993-12-17 Shimadzu Corp Etalon drive mechanism
JP2003309319A (en) * 2002-04-15 2003-10-31 Toyo Commun Equip Co Ltd Wavelength locker module
JP2005203517A (en) * 2004-01-14 2005-07-28 Toshiba Corp Waveform stabilizing apparatus
JP2007212376A (en) * 2006-02-13 2007-08-23 Fujifilm Corp Optical tomographic imaging device
WO2010131784A1 (en) * 2009-05-11 2010-11-18 Jhiyeon Jeanne Oh Reflection type display and manufacturing method thereof
JP2015141067A (en) * 2014-01-28 2015-08-03 セイコーエプソン株式会社 Electronic apparatus
JP2015165323A (en) * 2015-05-07 2015-09-17 セイコーエプソン株式会社 Optical filter, and analytical instrument and optical apparatus using the same
US20170146400A1 (en) * 2015-11-20 2017-05-25 Raytheon Company Proximity focus imaging interferometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174909A (en) * 2020-01-19 2020-05-19 深圳奥比中光科技有限公司 Optical filter, imaging device and electronic equipment
TWI737474B (en) * 2020-08-31 2021-08-21 國立中興大學 Solid-state optical phased scanning component

Also Published As

Publication number Publication date
CN111684335A (en) 2020-09-18

Similar Documents

Publication Publication Date Title
JP4286667B2 (en) Low coherence interferometer for optical scanning of objects
JP6053523B2 (en) Fabry-Perot Fourier transform spectrometer
EP2499474B1 (en) Resonant waveguide grating biosensor with tunable light source
US7852484B2 (en) Light control unit, optical tomographic imaging method and apparatus
US7495762B2 (en) High-density channels detecting device
CN108572161B (en) Optical coherence tomography device based on sub-wavefront interferometer
US9857221B2 (en) Spectral image acquisition apparatus and light reception wavelength acquisition method
WO2016202930A2 (en) Common-path integrated low coherence interferometry system and method therefor
JP2010249808A (en) Spectrum imaging device with variable spectral transmittance element and adjustment method of variable spectral transmittance element therein
CA2826737C (en) Apparatus and method for optical coherence tomography
WO2019202761A1 (en) Spectrometer, imaging device, scanning device, and position measuring device
JP5772783B2 (en) Optical tomographic image acquisition device
JP5827507B2 (en) Ellipsometry system
JP4804977B2 (en) Tunable laser device and optical tomographic imaging apparatus
US20130342849A1 (en) Shape measurement device and shape measurement method
JP2008008842A (en) Electromagnetic wave measuring instrument
WO2024209942A1 (en) Optical interference measuring method
JP6790879B2 (en) OCT device
JP2019023593A (en) Laser displacement meter and laser ultrasonic inspection device using the same
US10408600B2 (en) Optical coherence tomography with a fizeau-type interferometer
WO2017017476A1 (en) Apparatus for spectroscopic analysis of light from a sample
US20140071434A1 (en) Optical tomographic image acquisition apparatus
JP5730076B2 (en) Light source device, inspection device, and optical coherence tomography apparatus
JP2023103301A (en) Measuring device
JP2019196949A (en) Optical interference device and OCT device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP