WO2019245892A1 - Procédé de traitement d'objets de fabrication additive avec un composé d'intérêt - Google Patents
Procédé de traitement d'objets de fabrication additive avec un composé d'intérêt Download PDFInfo
- Publication number
- WO2019245892A1 WO2019245892A1 PCT/US2019/037144 US2019037144W WO2019245892A1 WO 2019245892 A1 WO2019245892 A1 WO 2019245892A1 US 2019037144 W US2019037144 W US 2019037144W WO 2019245892 A1 WO2019245892 A1 WO 2019245892A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- partially
- additive
- combination
- carried out
- resin
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/188—Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
- B29C71/0009—After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0855—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
- B29C71/0009—After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
- B29C2071/0018—Absorbing ingredients, e.g. drugs, flavourings, UV screeners, embedded in the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
- B29C71/0009—After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
- B29C2071/0045—Washing using non-reactive liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/35—Cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
- B29C71/02—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
- B29C71/04—After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0037—Production of three-dimensional images
Definitions
- the present invention concerns methods for additive manufacturing, particularly for stereolithography techniques such as continuous liquid interface production.
- a group of additive manufacturing techniques sometimes referred to as "stereolithography” create a three-dimensional object by the sequential polymerization of a light polymerizable resin.
- Such techniques may be “bottom-up” techniques, where light is projected into the resin onto the bottom of the growing object through a light transmissive window, or “top down” techniques, where light is projected onto the resin on top of the growing object, which is then immersed downward into the pool of resin.
- Some additives that may be desirable to include in polymeric objects may, however, be deleterious to steps such as the light polymerization in the additive manufacturing process. Accordingly, new approaches to additive manufacturing are needed.
- a first aspect of the invention is a method of making an object from a dual cure resin by additive manufacturing, which object is at least partially impregnated with one or more additives, the method comprising the steps of:
- suitable additives include, but are not limited to, ultraviolet light stabilizers or absorbing compounds, colorants, flame retardants, heat stabilizers, antioxidant agents, antistatic agents, radiation stabilizers, or a combination thereof.
- the present invention is useful for the production of a variety of objects, including but not limited to midsoles, shock absorbers, cushions, electronic device protective housings such as cell phone housings, and the like.
- the object is flexible or elastic (for which articles at least partial impregnation of the additive therein, rather than simply a surface coating which could flake off upon bending or stretching, is particularly advantageous).
- the producing step is carried out by top-down or bottom-up stereolithography (for example, continuous liquid interface production).
- the resin comprises a polyurethane, polyurea, epoxy, silicone, or cyanate ester resin, or combination thereof.
- FIG. 1 is a photograph of a finished object with open lattice structures produced by dual cure continuous liquid interface production (CLIP) that was immersed in an impregnation solution (rhodamine pigment in isopropanol) at ambient temperature (room temperature, or approximately 25 degrees Celsius), for six hours. As shown in the photograph, the immersed portion was strongly colored by the rhodamine pigment.
- CLIP dual cure continuous liquid interface production
- FIG. 2 is a drawing representing a cross-section of a portion of the open lattice structure before (left side) and after the impregnation (right side). Upon cutting into the lattice, the dye was seen to have impregnated below the surface of the object, partially into the polymer lattice structures themselves, as schematically illustrated.
- the resin is a dual cure resin.
- Such resins are described in, for example, Rolland et al., US Patent Nos. 9,676,963; 9,598,606; and 9,453,142, and in Wu et al., US Patent Application Pub. No. US 2017/0260418, the disclosures of which are incorporated herein by reference.
- Resins may be in any suitable form, including "one pot” resins and “dual precursor” resins (where cross-reactive constituents are packaged separately and mixed together before use, and which may be identified as an "A" precursor resin and a "B” precursor resin).
- suitable resins include, but are not limited to, Carbon, Inc. rigid polyurethane resin (RPU), flexible polyurethane resin (FPU), elastomeric polyurethane resin (EPU), cyanate ester resin (CE), epoxy resin (EPX), or urethane methacrylate resin (UMA), all available from Carbon, Inc. (Redwood City, California).
- RPU rigid polyurethane resin
- FPU flexible polyurethane resin
- EPU elastomeric polyurethane resin
- CE cyanate ester resin
- EPX epoxy resin
- UMA urethane methacrylate resin
- the part, following manufacturing may be contacted with a penetrant liquid, with the penetrant liquid carrying a further constituent of the dual cure system, such as a reactive monomer, into the part for participation in a subsequent cure.
- a penetrant liquid carrying a further constituent of the dual cure system, such as a reactive monomer
- polymerizable liquids for carrying out the present invention comprise a mixture of:
- At least one free-radically polymerizable constituent such as: (i) a blocked or reactive blocked prepolymer, (ii) a blocked or reactive blocked polyisocyanate, (Hi) a blocked or reactive blocked polyisocyanate chain extender, and (iv) combinations of two or three of the foregoing (e.g., in a combined amount of from 5 to 90 percent by weight),
- At least one additional chain extender e.g., in an amount of from 1 or 5 to 30 percent by weight when present
- a free radical photoinitiator e.g., in an amount of from 0.1 to 4 percent by weight
- a free radical thermal initiator e.g., in an amount of from 0.1 to 4 percent by weight
- a polyol and/or a polyamine e.g, in an amount of from 5 to 90 percent by weight
- a reactive diluent e.g, included in an amount of from 1 to 40 percent by weight when present
- At least one non-reactive light absorbing pigment or dye e.g, titanium dioxide, carbon black, and/or an organic ultraviolet light absorber
- at least one non-reactive light absorbing pigment or dye e.g, titanium dioxide, carbon black, and/or an organic ultraviolet light absorber
- a filler e.g, in an amount of from 1 to 50 percent by weight, when present.
- the liquid resin or polymerizable material can have (among other things) solid particles suspended or dispersed therein. Any suitable solid particle can be used, depending upon the end product being fabricated.
- the particles can be metallic, organic/polymeric, inorganic, or composites or mixtures thereof.
- the particles can be nonconductive, semi-conductive, or conductive (including metallic and non-metallic or polymer conductors); and the particles can be magnetic, ferromagnetic, paramagnetic, or nonmagnetic.
- the particles can be of any suitable shape, including spherical, elliptical, cylindrical, etc.
- the particles can be of any suitable size (for example, ranging from 1 nm to 20 pm average diameter).
- the particles can comprise an active agent or detectable compound as described below, though these may also be provided dissolved or solubilized in the liquid resin as also discussed below.
- magnetic or paramagnetic particles or nanoparticles can be employed.
- the liquid resin can have additional ingredients solubilized therein, including pigments, dyes, diluents, active compounds or pharmaceutical compounds, detectable compounds (e.g., fluorescent, phosphorescent, radioactive), etc., again depending upon the particular purpose of the product being fabricated.
- additional ingredients include, but are not limited to, proteins, peptides, nucleic acids (DNA, RNA) such as siRNA, sugars, small organic compounds (drugs and drug-like compounds), etc., including combinations thereof.
- polymerizable liquids for carrying out the present invention include a non-reactive pigment or dye that absorbs light, particularly UV light.
- Suitable examples of such light absorbers include, but are not limited to: (i) titanium dioxide (e.g., included in an amount of from 0.05 or 0.1 to 1 or 5 percent by weight), (ii) carbon black (e.g., included in an amount of from 0.05 or 0.1 to 1 or 5 percent by weight), and/or (iii) an organic ultraviolet light absorber such as a a hydroxybenzophenone, hydroxyphenylbenzotriazole, oxanilide, benzophenone, thioxanthone, hydroxypenyltriazine, and/or benzotriazole ultraviolet light absorber (e.g., Mayzo BLS® 1326) (e.g, included in an amount of 0.001 or 0.005 to 1, 2 or 4 percent by weight).
- suitable organic ultraviolet light absorbers include
- fillers may be solid or liquid, organic or inorganic, and may include reactive and non-reactive rubbers: siloxanes, acrylonitrile-butadiene rubbers; reactive and non-reactive thermoplastics (including but not limited to: poly(ether imides), maleimide-styrene terpolymers, polyarylates, polysulfones and polyethersulfones, etc.) inorganic fillers such as silicates (such as talc, clays, silica, mica), glass, carbon nanotubes, graphene, cellulose nanocrystals, etc., including combinations of all of the foregoing.
- Suitable fillers include tougheners, such as core-shell rubbers, as discussed below.
- Tougheners One or more polymeric and/or inorganic tougheners can be used as a filler in the present invention.
- the toughener may be uniformly distributed in the form of particles in the cured product. The particles could be less than 5 microns (pm) in diameter.
- Such tougheners include, but are not limited to, those formed from elastomers, branched polymers, hyperbranched polymers, dendrimers, rubbery polymers, rubbery copolymers, block copolymers, core-shell particles, oxides or inorganic materials such as clay, polyhedral oligomeric silsesquioxanes (POSS), carbonaceous materials (e.g., carbon black, carbon nanotubes, carbon nanofibers, fullerenes), ceramics and silicon carbides, with or without surface modification or functionalization.
- PES polyhedral oligomeric silsesquioxanes
- carbonaceous materials e.g., carbon black, carbon nanotubes, carbon nanofibers, fullerenes
- ceramics and silicon carbides with or without surface modification or functionalization.
- Core-shell rubbers are particulate materials (particles) having a rubbery core. Such materials are known and described in, for example, US Patent Application Publication No. 20150184039, as well as US Patent Application Publication No. 20150240113, and US Patent Nos. 6,861,475, 7,625,977, 7,642,316, 8,088,245, and elsewhere.
- the core-shell rubber particles are nanoparticles (/. e. , having an average particle size of less than 1000 nanometers (nm)).
- the average particle size of the core-shell rubber nanoparticles is less than 500 nm, e.g., less than 300 nm, less than 200 nm, less than 100 nm, or even less than 50 nm.
- such particles are spherical, so the particle size is the diameter; however, if the particles are not spherical, the particle size is defined as the longest dimension of the particle.
- Suitable core-shell rubbers include, but are not limited to, those sold by Kaneka Corporation under the designation Kaneka Kane Ace, including the Kaneka Kane Ace 15 and 120 series of products, including Kaneka Kane Ace MX 120, Kaneka Kane Ace MX 153, Kaneka Kane Ace MX 154, Kaneka Kane Ace MX 156, Kaneka Kane Ace MX170, Kaneka Kane Ace MX 257 and Kaneka Kane Ace MX 120 core-shell rubber dispersions, and mixtures thereof.
- Kaneka Kane Ace including the Kaneka Kane Ace 15 and 120 series of products, including Kaneka Kane Ace MX 120, Kaneka Kane Ace MX 153, Kaneka Kane Ace MX 154, Kaneka Kane Ace MX 156, Kaneka Kane Ace MX170, Kaneka Kane Ace MX 257 and Kaneka Kane Ace MX 120 core-shell rubber dispersions, and mixtures thereof.
- diluents for use in the present invention are preferably reactive organic diluents; that is, diluents that will degrade, isomerize, cross-react, or polymerize, with themselves or a light polymerizable component, during the additive manufacturing step.
- the diluent(s) are included in an amount sufficient to reduce the viscosity of the polymerizable liquid or resin (e.g., to not more than 15,000, 10,000, 6,000, 5,000, 4,000, or 3,000 centipoise at 25 degrees Centigrade).
- Suitable examples of diluents include, but are not limited to, AiV-dimethylacrylamide, A-vinyl-2-pyrrolidone, and A- vinyl formamide, or a mixture if two or more thereof.
- the diluent may be included in the polymerizable liquid in any suitable amount, typically from 1, 5 or 10 percent by weight, up to about 30 or 40 percent by weight, or more.
- the liquid may include a deoxygenating compound as an accelerator of stereolithography (particularly CLIP).
- a deoxygenating compound as an accelerator of stereolithography (particularly CLIP).
- An example of a suitable such accelerator is triphenylphosphine.
- Polymerizable liquids or resins as described herein may be used to make three- dimensional objects, in a "light” cure (typically by additive manufacturing) which in some embodiments generates a "green” intermediate object, followed in some embodiments by a second (typically heat) cure of that intermediate object.
- a "light” cure typically by additive manufacturing
- a second (typically heat) cure of that intermediate object typically by additive manufacturing
- Suitable techniques include bottom-up or top-down additive manufacturing, generally known as stereolithography.
- Such methods are known and described in, for example, U.S. Patent No. 5,236,637 to Hull, US Patent Nos. 5,391,072 and 5,529,473 to Lawton, U.S. Patent No. 7,438,846 to John, US Patent No. 7,892,474 to Shkolnik, U.S. Patent No. 8,110,135 to El-Siblani, U.S. Patent Application Publication No. 2013/0292862 to Joyce, and US Patent Application Publication No. 2013/0295212 to Chen et al. The disclosures of these patents and applications are incorporated by reference herein in their entirety.
- the intermediate object is formed by continuous liquid interface production (CLIP).
- CLIP is known and described in, for example, US Patent Nos. 9,211,678, 9,205,601, 9,216,546; and in J. Tumbleston, D. Shirvanyants, N. Ermoshkin et al., Continuous liquid interface production of 3D Objects, Science 347, 1349-1352 (2015). See also R. Janusziewcz et al., Layerless fabrication with continuous liquid interface production, Proc. Natl. Acad. Sci. USA 113, 11703-11708 (2016).
- Other examples of methods and apparatus for carrying out particular embodiments of CLIP, or of additive manufacturing include but are not limited to those described in B. Feller, US Patent App. Pub. No.
- CLIP employs features of a bottom-up three-dimensional fabrication as described above, but the irradiating and/or said advancing steps are carried out while also concurrently maintaining a stable or persistent liquid interface between the growing object and the build surface or window, such as by: (i) continuously maintaining a dead zone of polymerizable liquid in contact with said build surface, and (ii) continuously maintaining a gradient of polymerization zone (such as an active surface) between the dead zone and the solid polymer and in contact with each thereof, the gradient of polymerization zone comprising the first component in partially cured form.
- a gradient of polymerization zone such as an active surface
- the optically transparent member comprises a semipermeable member (e.g., a fluoropolymer), and the continuously maintaining a dead zone is carried out by feeding an inhibitor of polymerization through the optically transparent member, thereby creating a gradient of inhibitor in the dead zone and optionally in at least a portion of the gradient of polymerization zone.
- a semipermeable member e.g., a fluoropolymer
- Other approaches for carrying out CLIP that can be used in the present invention and potentially obviate the need for a semipermeable "window" or window structure include utilizing a liquid interface comprising an immiscible liquid (see L. Robeson et al., WO 2015/164234), generating oxygen as an inhibitor by electrolysis (see I. Craven et al., WO 2016/133759), and incorporating magnetically positionable particles to which the photoactivator is coupled into the polymerizable liquid (see J. Rolland, WO 2016/145182).
- the intermediate three-dimensional object After the intermediate three-dimensional object is formed, it is optionally cleaned, optionally dried (e.g., air dried) and/or rinsed (in any sequence). It is then further cured, preferably by heating (although further curing may in some embodiments be concurrent with the first cure, or may be by different mechanisms such as contacting to water, as described in US Patent No. 9,453,142 to Rolland et ah).
- Objects as described above can be cleaned in any suitable apparatus, in some embodiments with a wash liquid as described herein, and in other embodiments by wiping (with an absorbent, air blade, etc.) spinning, or variations thereof.
- Wash liquids that may be used to carry out the present invention include, but are not limited to, water, organic solvents, and combinations thereof (e.g., combined as co-solvents), optionally containing additional ingredients such as surfactants, chelants (ligands), enzymes, borax, dyes or colorants, fragrances, etc., including combinations thereof.
- the wash liquid may be in any suitable form, such as a solution, emulsion, dispersion, etc.
- the wash liquid has a boiling point of at least 30 °C, but not more than 80 or 90 °C. Boiling points are given herein for a pressure of 1 bar or 1 atmosphere.
- the wash liquid consists of a 50:50 (volume: volume) solution of water and an alcohol organic solvent such as isopropanol (2-propanol).
- alcohol organic solvent such as isopropanol (2-propanol).
- hydrofluorocarbon solvents include, but are not limited to, l,l,l,2,3,4,4,5,5,5-decafluoropentane (Vertrel® XF, DuPontTM Chemours), l,l,l,3,3-pentafluoropropane, l,l,l,3,3-pentafluorobutane, etc.
- hydrochlorofluorocarbon solvents examples include, but are not limited to, 3,3-dichloro-l,l,l,2,2-pentafluoropropane, l,3-dichloro-l,l,2,2,3-pentfluoropropane, l,l-dichloro-l-fluoroethane, etc., including mixtures thereof.
- hydrofluoroether solvents examples include, but are not limited to, methyl nonafluorobutyl ether (HFE-7100), methyl nonafluoroisobutyl ether (HFE-7100), ethyl nonafluorobutyl ether (HFE-7200), ethyl nonafluoroisobutyl ether (FIFE-7200), l,l,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, etc., including mixtures thereof.
- this solvent include Novec 7100 (3M), Novec 7200 (3M).
- volatile methylsiloxane solvents examples include, but are not limited to, hexamethyldisiloxane (OS -10, Dow Corning), octamethyltrisiloxane (OS-20, Dow Coming), decamethyltetrasiloxane (OS-30, Dow Coming), etc., including mixtures thereof.
- siloxane solvents e.g., NAVSOLVETM solvent
- NAVSOLVETM solvent e.g., NAVSOLVETM solvent
- the wash liquid comprises an azeotropic mixture comprising, consisting of, or consisting essentially of a first organic solvent (e.g, a hydrofluorocarbon solvent, a hydrochlorofluorocarbon solvent, a hydrofluoroether solvent, a methylsiloxane solvent, or a combination thereof; e.g, in an amount of from 80 or 85 to 99 percent by weight) and a second organic solvent (e.g, a C1-C4 or C6 alcohol such as methanol, ethanol, isopropanol, tert- butanol, etc.; e.g, in an amount of from 1 to 15 or 20 percent by weight). Additional ingredients such as surfactants or chelants may optionally be included.
- a first organic solvent e.g, a hydrofluorocarbon solvent, a hydrochlorofluorocarbon solvent, a hydrofluoroether solvent, a methylsiloxane solvent, or a combination thereof; e.g, in an amount of
- the azeotropic wash liquid may provide superior cleaning properties, and/or enhanced recyclability, of the wash liquid.
- suitable azeotropic wash liquids include, but are not limited to, those set forth in US Patent Nos. 6,008,179; 6,426,327; 6,753,304; 6,288,018; 6,646,020; 6,699,829; 5,824,634; 5,196,137; 6,689,734; and 5,773,403, the disclosures of which are incorporated by reference herein in their entirety.
- the initial wash with the wash liquid can be followed with a further rinsing step with a rinse liquid, such as water (e.g., distilled and/or deionized water), or a mixture of water and an alcohol such as isopropanol.
- a rinse liquid such as water (e.g., distilled and/or deionized water), or a mixture of water and an alcohol such as isopropanol.
- the object is in some embodiments further cured, preferably by heating or baking.
- Heating may be active heating (e.g., in an oven, such as an electric, gas, solar oven or microwave oven, heated bath, or combination thereof), or passive heating (e.g., at ambient (room) temperature). Active heating will generally be more rapid than passive heating and in some embodiments is preferred, but passive heating—such as simply maintaining the intermediate at ambient temperature for a sufficient time to effect further cure— is in some embodiments preferred.
- the heating step is carried out at at least a first (oven) temperature and a second (oven) temperature, with the first temperature greater than ambient temperature, the second temperature greater than the first temperature, and the second temperature less than 300 °C (e.g., with ramped or step-wise increases between ambient temperature and the first temperature, and/or between the first temperature and the second temperature).
- the intermediate may be heated in a stepwise manner at a first temperature of about 70°C to about l50°C, and then at a second temperature of about 150°C to 200 or 250 °C, with the duration of each heating depending on the size, shape, and/or thickness of the intermediate.
- the intermediate may be cured by a ramped heating schedule, with the temperature ramped from ambient temperature through a temperature of 70 to 150 °C, and up to a final (oven) temperature of 250 or 300 °C, at a change in heating rate of 0.5°C per minute, to 5 °C per minute. (See, e.g., US Patent No. 4,785,075).
- the heating step is carried out in an inert gas atmosphere.
- Inert atmosphere ovens are known, and generally employ an atmosphere enriched in nitrogen, argon, or carbon dioxide in the oven chamber. Suitable examples include but are not limited to those available from Grieve Corporation, 500 Hart Road Round Lake, Illinois 60073-2898 USA, Davron Technologies, 4563 Pinnacle Lane, Chattanooga, TN 37415 USA, Despatch Thermal Processing Technology, 8860 207th Street, Minneapolis, MN 55044 USA, and others.
- the heating step is carried out in an inert liquid bath.
- Suitable inert liquids may be aqueous liquids (i.e., pure water, salt solutions, etc.), organic liquids (e.g., mineral oil, fluorinated, perfluorinated, and polysiloxane organic compounds such as perfluorohexane, perfluoro(2-butyl-tetrahydrofurane), perfluorotripentylamine, etc. (commercially available as PERFLUORINERT® inert liquids from 3M Company), and mixtures thereof.
- organic liquids e.g., mineral oil, fluorinated, perfluorinated, and polysiloxane organic compounds such as perfluorohexane, perfluoro(2-butyl-tetrahydrofurane), perfluorotripentylamine, etc.
- inert liquids can be deoxygenated if necessary, such as by bubbling an inert gas such as nitrogen through the liquid, by boiling the inert liquid, by mixing oxygenscavenging agents with the inert liquid medium (or contacting them to one another), etc., including combinations thereof (see, e.g., US Patent No. 5,506,007).
- the further curing or heating step (whether carried out in a liquid or gas fluid) is carried out at an elevated pressure (e.g, elevated sufficiently to reduce volatilization or out-gassing of residual monomers, prepolymers, chain extenders, and/or reactive diluents, etc.).
- elevated pressure e.g, elevated sufficiently to reduce volatilization or out-gassing of residual monomers, prepolymers, chain extenders, and/or reactive diluents, etc.
- Suitable pressure ranges are from 10 or 15 psi to 70 or 100 psi, or more.
- additives examples include, but are not limited to, colorants, ultraviolet light stabilizers or absorbing compounds, flame retardants, heat stabilizers, antioxidant agents, antistatic agents, radiation stabilizers, and combinations thereof.
- the colorant comprises a blue, red, orange, yellow, green, violet, brown or black pigment or dye, or a combination of two or more thereof.
- the colorant comprises a non-reactive pigment or dye that absorbs light, particularly UV light.
- Suitable examples of such light absorbers include, but are not limited to: (i) titanium dioxide (e.g., included in an amount of from 0.05 or 0.1 to 1 or 5 percent by weight), (u) carbon black (e.g, included in an amount of from 0.05 or 0.1 to 1 or 5 percent by weight), and/or (Hi) an organic ultraviolet light absorber such as a a hydroxybenzophenone, hydroxyphenylbenzotriazole, oxanilide, benzophenone, thioxanthone, hydroxypenyltriazine, and/or benzotriazole ultraviolet light absorber (e.g., Mayzo BLS1326).
- suitable organic ultraviolet light absorbers include, but are not limited to, those described in US Patent Nos. 3,213,058; 6,916,867; 7,157,586; and 7,695,643, the disclosures of which are incorporated herein by reference.
- the ultraviolet (UV) light stabilizers or absorbing compounds are, in general, polysubstituted linear polyacenes (e.g, naphthalene, anthracene, tetracene, pentacene, hexacene).
- the compounds are polysubstituted with two or more of bromo, chloro, -Se-R’, -S-R’, or combinations thereof, where each R’ is independently selected from alkyl, aryl, and arylalkyl.
- Additional examples include, but are not limited to, benzotriazoles and benzophenones, hindered amine light stabilizers (HALS), and benzoates (available from Mayzo, Suwanee, Georgia).
- antioxidant agents include, but are not limited to, phenols, hindered phenols, phosphites, thiosynergists, and combinations thereof (available from Mayzo, Suwanee, Georgia).
- flame retardant additives include, but are not limited to, alumina trihydrate, magnesium hydroxide, etc.
- heat stabilizers include, but are not limited to, organophosphites, phenolic antioxidants, etc.
- radiation stabilizers include, but are not limited to, light stabilizers such as UV absorbers, quenchers, and hindered amine stabilizers.
- antistatic additives include, but are not limited to, imidazolinium, pyridinium, piperidinium and morpholinium salts. Additional examples of antistatic additive include, but are not limited to, monoglycerides, diglycerides, glycerol esters, polyglycerol esters, etc. (available from Palsgaard®, Morris Plains, New Jersey).
- ultraviolet light stabilizers or absorbing compounds, colorants, flame retardants, heat stabilizers, antioxidant agents, and radiation stabilizers include, but are not limited to, those set forth in US Patent Nos. 10,000,636; 9,988,483; 9,938,401; 8,883,044; 7,479,326; 6,933,344; 4,341,885; and 4,167,503, the disclosures of which are incorporated herein by reference in their entirety.
- the additive may be combined with a solvent such as an alcohol solvent (optionally including water), and then the object, after it is further cured, impregnated with the additive by immersing the object in the solvent, at least partially, as described above and below.
- a solvent such as an alcohol solvent (optionally including water)
- the solvent comprises or consists essentially of methanol, ethanol, propanol (e.g isopropyl alcohol, IP A), butanol (e.g., n-butanol), or a combination thereof, optionally in combination with up to 30, 40, or 50 percent (by volume) water.
- propanol e.g isopropyl alcohol, IP A
- butanol e.g., n-butanol
- up to 30, 40, or 50 percent (by volume) water optionally in combination with up to 30, 40, or 50 percent (by volume) water.
- the immersing step is carried out at a temperature of from 20 or 25 degrees centigrade to 30, 40, or 50 degrees Centigrade.
- immersing step is carried out at ambient temperature and/or ambient pressure. In other embodiments, the immersing step is carried out at an elevated temperature (that is, with heating) and/or elevated pressure (e.g., in an enclosed pressure vessel).
- the immersing step may be carried out for any suitable time, such as from 1, 2, or 3 hours, to 12 or 24 hours.
- the object is only partially immersed in the impregnation solution, and only that portion of the object immersed is at least partially impregnated with the at least one additive.
- the object is at least partially immersed under conditions only sufficient to only partially impregnate the object with the additive (for example, when the object is partially impregnated with a pigment or dye, to provide a surface wear indicator feature to the finished object).
- a green intermediate object in the form of an open lattice was produced by continuous liquid interface production from a polyurethane dual cure additive manufacturing resin, washed, and then baked in an oven to produce a cured object, still in the form of an open polymer lattice, in accordance with known techniques.
- the finished object after baking, was immersed in the impregnation solution at ambient temperature (approximately 25 degrees centigrade), for approximately six hours.
- the immersed portion was strongly colored by the rhodamine pigment, as shown in FIG. 1.
- the dye On cutting into the lattice, the dye was seen to have impregnated below the surface of the object, partially into the polymer lattice structures themselves, as schematically illustrated in FIG. 2, where the drawing on the left represents a cross-section of a portion of a lattice prior to the immersing step, and the drawing on the right represents a cross-section of the same portion of the lattice following the immersing step.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
L'invention concerne un procédé de fabrication d'un objet à partir d'une résine à double durcissement par fabrication additive, ledit objet étant au moins partiellement imprégné d'un ou plusieurs additifs, comprenant: (a) la production par fabrication additive d'un objet intermédiaire cru à partir de la résine à double durcissement ; (b) facultativement le nettoyage de l'objet (c) puis le durcissement de l'objet ; et ensuite (d) l'immersion au moins partielle de l'objet dans un solvant contenant l'additif dans des conditions suffisantes pour imprégner au moins partiellement l'objet de l'additif. L'invention concerne également un objet produit par un tel procédé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862687293P | 2018-06-20 | 2018-06-20 | |
US62/687,293 | 2018-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019245892A1 true WO2019245892A1 (fr) | 2019-12-26 |
Family
ID=67263048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/037144 WO2019245892A1 (fr) | 2018-06-20 | 2019-06-14 | Procédé de traitement d'objets de fabrication additive avec un composé d'intérêt |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019245892A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021183263A1 (fr) * | 2020-03-13 | 2021-09-16 | Carbon, Inc. | Produits fabriqués de manière additive ayant une finition de surface mate |
US11890812B1 (en) * | 2022-12-01 | 2024-02-06 | Amplifi Tech (Xiamen) Limited | 3D printing method and 3D printing formed body |
Citations (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3213058A (en) | 1960-12-19 | 1965-10-19 | American Cyanamid Co | Polymers reacted with benzotriazole uv absorbers |
US4167503A (en) | 1977-11-28 | 1979-09-11 | Cipriano Cipriani | Liquid colorant/additive carrier for use in compounding polymers |
US4341885A (en) | 1980-04-04 | 1982-07-27 | Stamicarbon, B.V. | Polymer composition |
US4785075A (en) | 1987-07-27 | 1988-11-15 | Interez, Inc. | Metal acetylacetonate/alkylphenol curing catalyst for polycyanate esters of polyhydric phenols |
US5196137A (en) | 1991-10-01 | 1993-03-23 | E. I. Du Pont De Nemours And Company | Azeotropic composition of 1,1,1,2,3,4,4,5,5,5-decafluoropentane and trans-1,2-dichloroethylene, cis-1,2-dichloroethylene or 1,1-dichlorethane |
US5236637A (en) | 1984-08-08 | 1993-08-17 | 3D Systems, Inc. | Method of and apparatus for production of three dimensional objects by stereolithography |
US5391072A (en) | 1990-10-29 | 1995-02-21 | E. I. Du Pont De Nemours And Company | Solid imaging apparatus having a semi-permeable film |
US5506007A (en) | 1995-08-02 | 1996-04-09 | Minnesota Mining And Manufacturing Company | Polymerization of systems using a deoxygenated medium |
US5529473A (en) | 1990-07-05 | 1996-06-25 | E. I. Du Pont De Nemours And Company | Solid imaging system using differential tension elastomerc film |
US5773403A (en) | 1992-01-21 | 1998-06-30 | Olympus Optical Co., Ltd. | Cleaning and drying solvent |
US5824634A (en) | 1990-10-03 | 1998-10-20 | E. I. Du Pont De Nemours And Company | Cleaning compositions with decafluoropentane and acetone |
US6008179A (en) | 1995-05-16 | 1999-12-28 | 3M Innovative Properties Company | Azeotrope-like compositions and their use |
US6288018B1 (en) | 1995-05-16 | 2001-09-11 | 3M Innovative Properties Company | Azeotrope-like compositions and their use |
US6646020B2 (en) | 2001-05-23 | 2003-11-11 | Vulcan Chemicals A Division Of Vulcan Materials Company | Isopropyl chloride with hydrofluorocarbon or hydrofluoroether as foam blowing agents |
US6689734B2 (en) | 1997-07-30 | 2004-02-10 | Kyzen Corporation | Low ozone depleting brominated compound mixtures for use in solvent and cleaning applications |
US6699829B2 (en) | 2002-06-07 | 2004-03-02 | Kyzen Corporation | Cleaning compositions containing dichloroethylene and six carbon alkoxy substituted perfluoro compounds |
US6713125B1 (en) * | 2002-03-13 | 2004-03-30 | 3D Systems, Inc. | Infiltration of three-dimensional objects formed by solid freeform fabrication |
US6753304B1 (en) | 1997-12-15 | 2004-06-22 | Solvay (Societe Anonyme) | Compositions comprising perfluorobutyl methyl ether and use of said compositions |
US6861475B2 (en) | 2002-10-16 | 2005-03-01 | Rohm And Haas Company | Smooth, flexible powder coatings |
US6916867B2 (en) | 2000-04-04 | 2005-07-12 | Ciba Specialty Chemicals Corporation | Synergistic mixtures of UV-absorbers in polyolefins |
US6933344B2 (en) | 2001-09-20 | 2005-08-23 | Delphi Technologies, Inc. | Thermoplastic elastomeric compositions and methods of preparing thermoplastic elastomeric compositions |
US7157586B2 (en) | 2000-02-01 | 2007-01-02 | Ciba Specialty Chemcials Corporation | Bloom-resistant benzotriazole UV absorbers and compositions stabilized therewith |
US7438846B2 (en) | 2001-04-23 | 2008-10-21 | Envisiontec Gmbh | Apparatus and method for the non-destructive separation of hardened material layers from a flat construction plane |
US7479326B2 (en) | 2005-03-08 | 2009-01-20 | Valspar Sourcing, Inc. | Oxygen scavenging polymers |
US7625977B2 (en) | 2007-06-20 | 2009-12-01 | Dow Global Technologies Inc. | Adhesive of epoxy resin, toughener and blocked isocyanate polytetrahydrofuran toughener |
US7642316B2 (en) | 2004-10-14 | 2010-01-05 | Dow Global Technologies, Inc. | Rubber modified monovinylidene aromatic polymers and fabricated articles prepared therefrom |
US7695643B2 (en) | 2005-02-02 | 2010-04-13 | Ciba Specialty Chemicals Corporation | Long wavelength shifted benzotriazole UV-absorbers and their use |
US7892474B2 (en) | 2006-11-15 | 2011-02-22 | Envisiontec Gmbh | Continuous generative process for producing a three-dimensional object |
US7897558B1 (en) | 2009-12-16 | 2011-03-01 | The United States Of America As Represented By The Secretary Of The Navy | Siloxane solvent compositions |
US8088245B2 (en) | 2007-04-11 | 2012-01-03 | Dow Global Technologies Llc | Structural epoxy resins containing core-shell rubbers |
US8110135B2 (en) | 2007-10-26 | 2012-02-07 | Envisiontec Gmbh | Process and freeform fabrication system for producing a three-dimensional object |
US20130292862A1 (en) | 2012-05-03 | 2013-11-07 | B9Creations, LLC | Solid Image Apparatus With Improved Part Separation From The Image Plate |
US20130295212A1 (en) | 2012-04-27 | 2013-11-07 | University Of Southern California | Digital mask-image-projection-based additive manufacturing that applies shearing force to detach each added layer |
US8883044B2 (en) | 2009-12-23 | 2014-11-11 | Cheil Industries Inc. | Multi-functional resin composite material and molded product using the same |
US20150184039A1 (en) | 2012-08-27 | 2015-07-02 | Dow Global Technologies Llc | Accelerated and toughened two part epoxy adhesives |
US20150240113A1 (en) | 2012-09-17 | 2015-08-27 | 3N Innovative Properties Company | Powder coating epoxy compositions, methods, and articles |
WO2015164234A1 (fr) | 2014-04-25 | 2015-10-29 | Carbon3D, Inc. | Fabrication continue en trois dimensions à partir de liquides non miscibles |
US20150331402A1 (en) | 2014-05-13 | 2015-11-19 | Autodesk, Inc. | Intelligent 3d printing through optimization of 3d print parameters |
US9205601B2 (en) | 2013-02-12 | 2015-12-08 | Carbon3D, Inc. | Continuous liquid interphase printing |
US20150360419A1 (en) | 2014-05-13 | 2015-12-17 | Autodesk, Inc. | 3d print adhesion reduction during cure process |
WO2016133759A1 (fr) | 2015-02-20 | 2016-08-25 | Carbon3D, Inc. | Procédés et appareil pour l'impression à interface liquide continue (clip) avec zone morte assistée par voie électrochimique |
FR3032904A1 (fr) * | 2015-02-19 | 2016-08-26 | Prodways | Procede de post-traitement d'objets tridimensionnels fabriques par stereolithographie |
WO2016145182A1 (fr) | 2015-03-12 | 2016-09-15 | Carbon3D, Inc. | Fabrication additive à l'aide d'initiateurs de polymérisation ou d'inhibiteurs présentant une migration contrôlée |
US9453142B2 (en) | 2014-06-23 | 2016-09-27 | Carbon3D, Inc. | Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects |
US20160288376A1 (en) | 2015-03-31 | 2016-10-06 | Dentsply Sirona Inc. | Three-dimensional fabricating systems for rapidly producing objects |
US20170129169A1 (en) | 2015-11-06 | 2017-05-11 | Stratasys, Inc. | Continuous liquid interface production system with viscosity pump |
US20170129167A1 (en) | 2015-04-30 | 2017-05-11 | Raymond Fortier | Stereolithography system |
US20170173872A1 (en) * | 2015-12-22 | 2017-06-22 | Carbon, Inc. | Wash liquids for use in additive manufacturing with dual cure resins |
WO2017112483A2 (fr) * | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Accélérateurs pour fabrication d'additif avec des résines à double polymérisation |
US20170260418A1 (en) | 2016-03-08 | 2017-09-14 | 3D Systems, Incorporated | Non-Isocyanate Polyurethane Inks for 3D Printing |
US9938401B2 (en) | 2012-11-05 | 2018-04-10 | Kraton Polymers U.S. Llc | Fire retardant systems for polymers that enable flexibility and strength |
US20180126630A1 (en) | 2016-11-04 | 2018-05-10 | Carbon, Inc. | Continuous liquid interface production with upconversion photopolymerization |
WO2018094131A1 (fr) | 2016-11-21 | 2018-05-24 | Carbon, Inc. | Procédé de fabrication d'un objet tridimensionnel par distribution d'un constituant réactif pour un durcissement ultérieur |
US9988483B2 (en) | 2014-06-27 | 2018-06-05 | Huntsman Petrochemical Llc | Pyrrolidine-based catalysts for use in polyurethane materials |
US10000636B2 (en) | 2013-03-15 | 2018-06-19 | Sabic Global Technologies B.V. | Methods for improving chemical and flame resistance with multi-functional photoactive additives |
US20180243976A1 (en) | 2015-09-30 | 2018-08-30 | Carbon, Inc. | Method and Apparatus for Producing Three- Dimensional Objects |
US20180290374A1 (en) | 2014-09-08 | 2018-10-11 | Holo, Inc. | Three dimensional printing adhesion reduction using photoinhibition |
-
2019
- 2019-06-14 WO PCT/US2019/037144 patent/WO2019245892A1/fr active Application Filing
Patent Citations (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3213058A (en) | 1960-12-19 | 1965-10-19 | American Cyanamid Co | Polymers reacted with benzotriazole uv absorbers |
US4167503A (en) | 1977-11-28 | 1979-09-11 | Cipriano Cipriani | Liquid colorant/additive carrier for use in compounding polymers |
US4341885A (en) | 1980-04-04 | 1982-07-27 | Stamicarbon, B.V. | Polymer composition |
US5236637A (en) | 1984-08-08 | 1993-08-17 | 3D Systems, Inc. | Method of and apparatus for production of three dimensional objects by stereolithography |
US4785075A (en) | 1987-07-27 | 1988-11-15 | Interez, Inc. | Metal acetylacetonate/alkylphenol curing catalyst for polycyanate esters of polyhydric phenols |
US5529473A (en) | 1990-07-05 | 1996-06-25 | E. I. Du Pont De Nemours And Company | Solid imaging system using differential tension elastomerc film |
US5824634A (en) | 1990-10-03 | 1998-10-20 | E. I. Du Pont De Nemours And Company | Cleaning compositions with decafluoropentane and acetone |
US5391072A (en) | 1990-10-29 | 1995-02-21 | E. I. Du Pont De Nemours And Company | Solid imaging apparatus having a semi-permeable film |
US5196137A (en) | 1991-10-01 | 1993-03-23 | E. I. Du Pont De Nemours And Company | Azeotropic composition of 1,1,1,2,3,4,4,5,5,5-decafluoropentane and trans-1,2-dichloroethylene, cis-1,2-dichloroethylene or 1,1-dichlorethane |
US5773403A (en) | 1992-01-21 | 1998-06-30 | Olympus Optical Co., Ltd. | Cleaning and drying solvent |
US6008179A (en) | 1995-05-16 | 1999-12-28 | 3M Innovative Properties Company | Azeotrope-like compositions and their use |
US6288018B1 (en) | 1995-05-16 | 2001-09-11 | 3M Innovative Properties Company | Azeotrope-like compositions and their use |
US6426327B1 (en) | 1995-05-16 | 2002-07-30 | 3M Innovative Properties Company | Azeotrope-like compositions and their use |
US5506007A (en) | 1995-08-02 | 1996-04-09 | Minnesota Mining And Manufacturing Company | Polymerization of systems using a deoxygenated medium |
US6689734B2 (en) | 1997-07-30 | 2004-02-10 | Kyzen Corporation | Low ozone depleting brominated compound mixtures for use in solvent and cleaning applications |
US6753304B1 (en) | 1997-12-15 | 2004-06-22 | Solvay (Societe Anonyme) | Compositions comprising perfluorobutyl methyl ether and use of said compositions |
US7157586B2 (en) | 2000-02-01 | 2007-01-02 | Ciba Specialty Chemcials Corporation | Bloom-resistant benzotriazole UV absorbers and compositions stabilized therewith |
US6916867B2 (en) | 2000-04-04 | 2005-07-12 | Ciba Specialty Chemicals Corporation | Synergistic mixtures of UV-absorbers in polyolefins |
US7438846B2 (en) | 2001-04-23 | 2008-10-21 | Envisiontec Gmbh | Apparatus and method for the non-destructive separation of hardened material layers from a flat construction plane |
US6646020B2 (en) | 2001-05-23 | 2003-11-11 | Vulcan Chemicals A Division Of Vulcan Materials Company | Isopropyl chloride with hydrofluorocarbon or hydrofluoroether as foam blowing agents |
US6933344B2 (en) | 2001-09-20 | 2005-08-23 | Delphi Technologies, Inc. | Thermoplastic elastomeric compositions and methods of preparing thermoplastic elastomeric compositions |
US6713125B1 (en) * | 2002-03-13 | 2004-03-30 | 3D Systems, Inc. | Infiltration of three-dimensional objects formed by solid freeform fabrication |
US6699829B2 (en) | 2002-06-07 | 2004-03-02 | Kyzen Corporation | Cleaning compositions containing dichloroethylene and six carbon alkoxy substituted perfluoro compounds |
US6861475B2 (en) | 2002-10-16 | 2005-03-01 | Rohm And Haas Company | Smooth, flexible powder coatings |
US7642316B2 (en) | 2004-10-14 | 2010-01-05 | Dow Global Technologies, Inc. | Rubber modified monovinylidene aromatic polymers and fabricated articles prepared therefrom |
US7695643B2 (en) | 2005-02-02 | 2010-04-13 | Ciba Specialty Chemicals Corporation | Long wavelength shifted benzotriazole UV-absorbers and their use |
US7479326B2 (en) | 2005-03-08 | 2009-01-20 | Valspar Sourcing, Inc. | Oxygen scavenging polymers |
US7892474B2 (en) | 2006-11-15 | 2011-02-22 | Envisiontec Gmbh | Continuous generative process for producing a three-dimensional object |
US8088245B2 (en) | 2007-04-11 | 2012-01-03 | Dow Global Technologies Llc | Structural epoxy resins containing core-shell rubbers |
US7625977B2 (en) | 2007-06-20 | 2009-12-01 | Dow Global Technologies Inc. | Adhesive of epoxy resin, toughener and blocked isocyanate polytetrahydrofuran toughener |
US8110135B2 (en) | 2007-10-26 | 2012-02-07 | Envisiontec Gmbh | Process and freeform fabrication system for producing a three-dimensional object |
US7897558B1 (en) | 2009-12-16 | 2011-03-01 | The United States Of America As Represented By The Secretary Of The Navy | Siloxane solvent compositions |
US8883044B2 (en) | 2009-12-23 | 2014-11-11 | Cheil Industries Inc. | Multi-functional resin composite material and molded product using the same |
US20130295212A1 (en) | 2012-04-27 | 2013-11-07 | University Of Southern California | Digital mask-image-projection-based additive manufacturing that applies shearing force to detach each added layer |
US20130292862A1 (en) | 2012-05-03 | 2013-11-07 | B9Creations, LLC | Solid Image Apparatus With Improved Part Separation From The Image Plate |
US20150184039A1 (en) | 2012-08-27 | 2015-07-02 | Dow Global Technologies Llc | Accelerated and toughened two part epoxy adhesives |
US20150240113A1 (en) | 2012-09-17 | 2015-08-27 | 3N Innovative Properties Company | Powder coating epoxy compositions, methods, and articles |
US9938401B2 (en) | 2012-11-05 | 2018-04-10 | Kraton Polymers U.S. Llc | Fire retardant systems for polymers that enable flexibility and strength |
US9205601B2 (en) | 2013-02-12 | 2015-12-08 | Carbon3D, Inc. | Continuous liquid interphase printing |
US9211678B2 (en) | 2013-02-12 | 2015-12-15 | Carbon3D, Inc. | Method and apparatus for three-dimensional fabrication |
US9216546B2 (en) | 2013-02-12 | 2015-12-22 | Carbon3D, Inc. | Method and apparatus for three-dimensional fabrication with feed through carrier |
US10000636B2 (en) | 2013-03-15 | 2018-06-19 | Sabic Global Technologies B.V. | Methods for improving chemical and flame resistance with multi-functional photoactive additives |
WO2015164234A1 (fr) | 2014-04-25 | 2015-10-29 | Carbon3D, Inc. | Fabrication continue en trois dimensions à partir de liquides non miscibles |
US20150360419A1 (en) | 2014-05-13 | 2015-12-17 | Autodesk, Inc. | 3d print adhesion reduction during cure process |
US20150331402A1 (en) | 2014-05-13 | 2015-11-19 | Autodesk, Inc. | Intelligent 3d printing through optimization of 3d print parameters |
US9453142B2 (en) | 2014-06-23 | 2016-09-27 | Carbon3D, Inc. | Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects |
US9598606B2 (en) | 2014-06-23 | 2017-03-21 | Carbon, Inc. | Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening |
US9676963B2 (en) | 2014-06-23 | 2017-06-13 | Carbon, Inc. | Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening |
US9988483B2 (en) | 2014-06-27 | 2018-06-05 | Huntsman Petrochemical Llc | Pyrrolidine-based catalysts for use in polyurethane materials |
US20180290374A1 (en) | 2014-09-08 | 2018-10-11 | Holo, Inc. | Three dimensional printing adhesion reduction using photoinhibition |
FR3032904A1 (fr) * | 2015-02-19 | 2016-08-26 | Prodways | Procede de post-traitement d'objets tridimensionnels fabriques par stereolithographie |
WO2016133759A1 (fr) | 2015-02-20 | 2016-08-25 | Carbon3D, Inc. | Procédés et appareil pour l'impression à interface liquide continue (clip) avec zone morte assistée par voie électrochimique |
WO2016145182A1 (fr) | 2015-03-12 | 2016-09-15 | Carbon3D, Inc. | Fabrication additive à l'aide d'initiateurs de polymérisation ou d'inhibiteurs présentant une migration contrôlée |
US20160288376A1 (en) | 2015-03-31 | 2016-10-06 | Dentsply Sirona Inc. | Three-dimensional fabricating systems for rapidly producing objects |
US20170129167A1 (en) | 2015-04-30 | 2017-05-11 | Raymond Fortier | Stereolithography system |
US20180243976A1 (en) | 2015-09-30 | 2018-08-30 | Carbon, Inc. | Method and Apparatus for Producing Three- Dimensional Objects |
US20170129169A1 (en) | 2015-11-06 | 2017-05-11 | Stratasys, Inc. | Continuous liquid interface production system with viscosity pump |
WO2017112483A2 (fr) * | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Accélérateurs pour fabrication d'additif avec des résines à double polymérisation |
US20170173872A1 (en) * | 2015-12-22 | 2017-06-22 | Carbon, Inc. | Wash liquids for use in additive manufacturing with dual cure resins |
US20170260418A1 (en) | 2016-03-08 | 2017-09-14 | 3D Systems, Incorporated | Non-Isocyanate Polyurethane Inks for 3D Printing |
US20180126630A1 (en) | 2016-11-04 | 2018-05-10 | Carbon, Inc. | Continuous liquid interface production with upconversion photopolymerization |
WO2018094131A1 (fr) | 2016-11-21 | 2018-05-24 | Carbon, Inc. | Procédé de fabrication d'un objet tridimensionnel par distribution d'un constituant réactif pour un durcissement ultérieur |
Non-Patent Citations (2)
Title |
---|
J. TUMBLESTOND. SHIRVANYANTSN. ERMOSHKIN ET AL.: "Continuous liquid interface production of 3D Objects", SCIENCE, vol. 347, 2015, pages 1349 - 1352 |
R. JANUSZIEWCZ ET AL.: "Layerless fabrication with continuous liquid interface production", PROC. NATL. ACAD. SCI. USA, vol. 113, 2016, pages 11703 - 11708, XP055542052, doi:10.1073/pnas.1605271113 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021183263A1 (fr) * | 2020-03-13 | 2021-09-16 | Carbon, Inc. | Produits fabriqués de manière additive ayant une finition de surface mate |
US11890812B1 (en) * | 2022-12-01 | 2024-02-06 | Amplifi Tech (Xiamen) Limited | 3D printing method and 3D printing formed body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220118689A1 (en) | Production of low density products by additive manufacturing | |
US11535714B2 (en) | Light-curable siloxane resins for additive manufacturing | |
US11376786B2 (en) | Methods and apparatus for additive manufacturing | |
US20240336010A1 (en) | Sustainable additive manufacturing resins and methods of recycling | |
Wang et al. | Bioinspired shape-memory graphene film with tunable wettability | |
CN103260841B (zh) | 表面具有微细凹凸结构的物品的制造方法 | |
US11027487B2 (en) | Functional surface coating methods for additively manufactured products | |
US11654620B2 (en) | Serially curable resins useful in additive manufacturing | |
Liu et al. | Mechanically induced self-healing superhydrophobicity | |
US11312066B2 (en) | Method of making three-dimensional objects by additive manufacturing | |
EP3073298A1 (fr) | Composition de résine d'impression durcissable à la lumière et film antireflet | |
WO2019245892A1 (fr) | Procédé de traitement d'objets de fabrication additive avec un composé d'intérêt | |
TW201139467A (en) | Liquid repellent surfaces | |
JP7191096B2 (ja) | 付加製造による透光性物体の製造 | |
WO2020131675A1 (fr) | Élastomères de polyuréthane à double durcissement absorbant l'énergie pour la fabrication additive | |
US20190119459A1 (en) | Branched interconnected microvascular network in polymers and composites using sacrificial polylactide films, sheets, and plates | |
US11649312B2 (en) | Shelf stable, low tin concentration, dual cure additive manufacturing resins | |
WO2020023823A1 (fr) | Prépolymères bloqués réactifs ramifiés pour fabrication additive | |
US11504903B2 (en) | 1K alcohol dual cure resins for additive manufacturing | |
WO2019083876A1 (fr) | Réduction du retrait ou du gauchissement dans des objets produits par fabrication additive | |
US20210107211A1 (en) | Lip supports useful for making objects by additive manufacturing | |
WO2020028498A1 (fr) | Procédé pour l'encapsulation rapide de dispositifs microélectroniques | |
KR101923096B1 (ko) | 열팽창 마이크로 캡슐 및 그 제조방법 | |
Wolfs et al. | Superhydrophobic polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19739765 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19739765 Country of ref document: EP Kind code of ref document: A1 |