WO2019244709A1 - 遮蔽装置およびそれを備えた冷蔵庫 - Google Patents
遮蔽装置およびそれを備えた冷蔵庫 Download PDFInfo
- Publication number
- WO2019244709A1 WO2019244709A1 PCT/JP2019/023067 JP2019023067W WO2019244709A1 WO 2019244709 A1 WO2019244709 A1 WO 2019244709A1 JP 2019023067 W JP2019023067 W JP 2019023067W WO 2019244709 A1 WO2019244709 A1 WO 2019244709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shielding
- rotation
- shielding wall
- moving shaft
- wall
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/04—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
- F25D17/06—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
- F25D17/08—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D21/00—Defrosting; Preventing frosting; Removing condensed or defrost water
- F25D21/04—Preventing the formation of frost or condensate
Definitions
- the present invention relates to a shielding device and a refrigerator including the same, and more particularly, to a shielding device that appropriately blocks an air passage from a cooling room to a storage room, and a refrigerator including the same.
- Patent Literature 1 a refrigerator as described in Patent Literature 1 that appropriately cools a plurality of storage rooms with one cooler is known.
- FIG. 51 schematically shows the refrigerator 1100 described in this document.
- a refrigerator compartment 1101, a freezer compartment 1102, and a vegetable compartment 1103 are formed from above.
- a cooling chamber 1104 in which a cooler 1108 is housed is formed at the back side of the freezing room 1102, and a partition wall 1105 that separates the cooling room 1104 and the freezing room 1102 supplies cool air to each storage room. Opening 1106 is formed.
- a blower fan 1107 that blows cool air is disposed in the opening 1106, and a blower cover 1110 that covers the blower fan 1107 is disposed on the freezing room 1102 side.
- a damper 1114 is provided in the middle of an air passage 1109 through which the cool air supplied to the refrigerator compartment 1101 flows.
- the blower cover 1110 is formed with a recess 1111 having a substantially square shape, and an opening 1113 is formed by partially notching the upper portion of the recess 1111.
- the opening 1113 of the blower cover 1110 communicates with the air passage 1109 on the refrigerator body side.
- the refrigerator 1100 having the above configuration operates as follows. First, when cooling both the refrigerator compartment 1101 and the freezer compartment 1102, the blower cover 1110 is separated from the blower fan 1107, the damper 1114 is opened, and the blower fan 1107 is rotated in this state. Then, a part of the cool air cooled by the cooler 1108 inside the cooling room 1104 is blown to the freezing room 1102 by the blowing air of the blowing fan 1107. Another part of the cool air is sent to the refrigerator compartment 1101 via the air passage 1109, the damper 1114 and the air passage 1109. Thus, both the freezer compartment 1102 and the refrigerator compartment 1101 are cooled.
- the blower fan 1107 when cooling only the refrigerator compartment 1101, the blower fan 1107 is covered with a blower cover 1110, the damper 1114 is opened, and in this state, the cool air cooled by the cooler 1108 is blown by the blower fan 1107.
- the opening 1113 formed at the top of the blower cover 1110 communicates with the air passage 1109. Therefore, the cool air blown by the blower fan 1107 is supplied to the refrigerator compartment 1101 via the opening 1113, the damper 1114, and the air passage 1109 described above.
- a single cooler 1108 can appropriately cool a plurality of storage rooms.
- blower cover 1110 having the above configuration closes the opening 1106 of the cooling chamber 1104 by moving backward, and releases the opening 1106 of the cooling chamber 1104 by moving forward. Further, a drive mechanism for moving the blower cover 1110 in the front-rear direction is required. If cool air is blown onto the drive mechanism, the drive mechanism may freeze and may not be able to open and close the blower cover 1110.
- the blower cover 1110 needs a space for performing opening and closing operations along the front-back direction. Therefore, a large space is required inside the refrigerator 1100 for the blower cover 1110 to perform the opening and closing operation. As a result, the internal volume of the freezer compartment 1102 formed in front of the blower cover 1110 is compressed, and there is a problem in that the amount of stored objects that can be stored in the freezer compartment 1102 is limited. Furthermore, a driving sound is generated when the blower cover 1110 is moved in the front-rear direction by the motor, and if the driving sound is too loud, it may be uncomfortable for the user.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a shielding device that does not freeze the drive mechanism, does not press down the internal volume of the refrigerator, and has a small drive sound, and a shield device. It is to provide a refrigerator.
- the shielding device of the present invention is a shielding device that closes an air path through which cool air is blown inside a refrigerator, and a rotating shielding wall that surrounds the blower from a radial outside, and a shielding wall drive that drives the rotating shielding wall. And the shielding wall drive mechanism is provided in a region outside the air path.
- the shielding wall drive mechanism may include a disk-shaped rotating plate having a moving shaft slide groove formed therein, and a moving shaft engaged with the moving shaft slide groove.
- a cam rotatably connected to a wall, and a drive motor for rotating the rotating plate, wherein the cam opens and closes the rotary shielding wall by the moving shaft sliding in the moving shaft slide groove. It is characterized by making it.
- the moving shafts of the plurality of cams are engaged with one moving shaft slide groove.
- the present invention is a shielding device that closes an air passage through which cool air is blown inside a refrigerator, and is arranged side by side so as to surround a blower from a radial outside, and is configured to open and close the air passage by rotating.
- a shielding wall driving mechanism for driving the rotating shielding wall wherein the shielding wall driving mechanism transmits a driving source and power of the driving source to the rotating shielding wall.
- a power transmission mechanism for transmits a driving source and power of the driving source to the rotating shielding wall.
- the present invention is a shielding device that closes an air passage through which cool air is blown inside a refrigerator, a plurality of rotating shielding walls surrounding a blower from a radial outside, and a shielding wall for driving the rotating shielding wall. And a driving mechanism, wherein a plurality of the shielding wall driving mechanisms are provided.
- a cooler of a refrigeration cycle for cooling air supplied to the storage room via the air passage, and a blower outlet provided with the cooler and connected to the storage room are formed.
- the shielding wall driving mechanism that drives the rotating shielding wall is disposed outside the air path through which the cool air is blown, it is possible to prevent the shielding wall driving mechanism from freezing. it can.
- the shielding wall drive mechanism may include a disk-shaped rotating plate having a moving shaft slide groove formed therein, and a moving shaft engaged with the moving shaft slide groove.
- a cam rotatably connected to a wall, and a drive motor for rotating the rotating plate, wherein the cam opens and closes the rotary shielding wall by the moving shaft sliding in the moving shaft slide groove. It is characterized by making it.
- the shielding device can easily drive the opening / closing operation of the rotating shielding wall by the rotating operation of the rotating plate, so that the members constituting the shielding device move in the front-back direction compared to the conventional shielding device.
- the volume occupied by the shielding device can be reduced, and the internal volume is not pressed.
- the moving shaft of the cam slides the moving shaft slide groove to open and close the rotary shielding wall, so that the generation of driving noise can be greatly reduced.
- the moving shafts of the plurality of cams are engaged with one moving shaft slide groove.
- the rotary shielding wall is opened and closed by the cam that slides by the rotation of the rotating plate, so that the shielding device becomes thin and a large internal volume of the storage room can be secured.
- the meandering shape of the slide groove can be made smooth by engaging the moving shafts of the plurality of cams with one slide groove. Therefore, the sliding operation between the slide groove and the moving shaft and the turning operation of the turning shielding wall can be performed smoothly. Further, the number of slide grooves can be reduced, and the configuration of the shielding device can be simplified.
- the present invention is a shielding device that closes an air passage through which cool air is blown inside a refrigerator, and is arranged side by side so as to surround a blower from a radial outside, and is configured to open and close the air passage by rotating.
- a shielding wall driving mechanism for driving the rotating shielding wall wherein the shielding wall driving mechanism transmits a driving source and power of the driving source to the rotating shielding wall.
- a power transmission mechanism a power transmission mechanism.
- the present invention is a shielding device that closes an air passage through which cool air is blown inside a refrigerator, a plurality of rotating shielding walls surrounding a blower from a radial outside, and a shielding wall for driving the rotating shielding wall. And a driving mechanism, wherein a plurality of the shielding wall driving mechanisms are provided.
- the shielding device of the present invention by having a plurality of shielding wall driving mechanisms, the rotating shielding walls can be individually operated, and the degree of freedom of the opening and closing operation of the entire rotating shielding wall is improved. can do.
- a cooler of a refrigeration cycle for cooling air supplied to the storage room via the air passage, and a blower outlet provided with the cooler and connected to the storage room are formed.
- the airflow resistance of the shielding device is small, a large amount of air can be obtained with a small amount of energy, and the storage room can be effectively cooled.
- FIG. 1 It is a figure showing the shielding device concerning a 1st embodiment of the present invention, (A) is an exploded perspective view, and (B) is an exploded sectional view showing a shielding wall drive mechanism. It is a figure showing the shielding device concerning a 1st embodiment of the present invention, (A) is an exploded perspective view showing a shielding device partially, and (B) is a perspective view showing a cam. It is a figure which shows the shielding device which concerns on 1st Embodiment of this invention, (A) is a figure which shows the rotation shielding wall of a shielding device when it sees from the front, (B) shows the structure of a rotating plate when it sees from a back. FIG.
- FIG. 8 A
- A is a figure which shows a shielding apparatus seen from back
- B is a cut surface line of FIG. 8 (A).
- C is a figure which shows a rotation plate seen from back
- D is the elements on larger scale of FIG. 8 (B).
- A is a figure which shows the fully opened state of the shielding apparatus which concerns on 1st Embodiment of this invention
- A) is a figure which shows a shielding apparatus seen from back
- B is a cut surface line C of FIG.9 (A).
- FIG. 9 (B) is the elements on larger scale of FIG. 9 (B). It is a figure which shows the state which supplies cold air only to a lower freezer compartment in the shielding apparatus concerning 1st Embodiment of this invention when it sees from back, (A) is a figure which shows a shielding apparatus, (B) is rotation. It is a figure showing a plate. It is a figure which shows the situation of the air path when supplying cold air only to a lower freezer compartment in the shielding device according to the first embodiment of the present invention when viewed from behind.
- FIG. It is a figure which shows the state of the air path at the time of supplying cool air only to a freezing room seen from back in the shielding device concerning a 1st embodiment of the present invention.
- FIG. it is a diagram showing a state in which cool air is supplied only to the upper freezer compartment as viewed from the rear, (A) is a diagram showing the shielding device, and (B) is a diagram showing rotation. It is a figure showing a plate.
- FIG. 1 It is a figure which shows the state of the air path at the time of supplying cool air only to an upper stage freezing room seen from back in the shielding device concerning a 1st embodiment of the present invention.
- the shielding device according to the first embodiment of the present invention it is a diagram showing a state where cool air is not supplied when viewed from the rear, (A) is a diagram showing the shielding device, and (B) is a diagram showing a rotating plate. is there. It is a figure which shows the state of the air path at the time of not supplying cool air from the back in the shielding apparatus concerning 1st Embodiment of this invention.
- FIG. It is a figure which shows the state which supplies cold air only to a refrigerator compartment in the shielding device concerning a 1st embodiment of the present invention when it sees from the back
- (A) is a figure showing a shielding device
- (B) is a rotating plate.
- FIG. It is a figure which shows the state of the air path at the time of supplying cold air only to a refrigerator compartment in the shielding device concerning 1st Embodiment of this invention seen from back.
- the shielding device according to the first embodiment of the present invention it is a diagram showing a state where cool air is supplied to the upper freezer compartment and the refrigerating compartment as viewed from the rear
- (A) is a diagram showing the shielding device
- (B) is a diagram showing FIG.
- FIG. 3 is a view showing a rotating plate. It is a figure which shows the state of the air path at the time of supplying cool air to an upper freezer compartment and a refrigerating compartment seen from back in the shielding device concerning a 1st embodiment of the present invention.
- the shielding device according to the first embodiment of the present invention it is a diagram showing a state in which cool air is supplied to the entire freezing room and the refrigerating room as viewed from the rear, (A) is a diagram showing the shielding device, (B) FIG. 3 is a view showing a rotating plate.
- FIG. 1 It is a figure which shows the state of the air path at the time of supplying cold air to the whole freezer compartment and a refrigerator compartment in the shielding device concerning 1st Embodiment of this invention when it sees from back.
- a shielding device concerning a 2nd embodiment of the present invention (A) is a perspective view and (B) is an exploded perspective view.
- the shielding device concerning a 2nd embodiment of the present invention (A) is an exploded view showing the rotation shielding wall of a shielding device seen from back, and (B) is a portion where gears mesh.
- FIG. It is a figure which shows the fully closed state of the shielding apparatus which concerns on 2nd Embodiment of this invention
- (A) is a figure which shows a shielding apparatus seen from back
- (B) is a front cover with which the shielding apparatus was assembled.
- FIG. It is a figure which shows the fully opened state of the shielding apparatus which concerns on 2nd Embodiment of this invention
- (A) is a figure which shows a shielding apparatus seen from back
- (B) shows the front cover with which the shielding apparatus was assembled. It is a perspective view.
- FIG. 1 It is a figure which shows the shielding apparatus which concerns on 2nd Embodiment of this invention, (A) is a perspective view which shows the shielding apparatus of a closed state, (B) is a perspective view which shows the shielding apparatus of an open state. It is an exploded perspective view showing the shielding device concerning a 2nd embodiment of the present invention. It is a figure which shows the shielding apparatus which concerns on embodiment of this invention, (A) is a figure which shows the operation
- FIG. 1 It is a figure showing the shielding device concerning a 3rd embodiment of the present invention, (A) is an exploded perspective view and (B) is an exploded sectional view. It is a figure showing the shielding device concerning a 3rd embodiment of the present invention, (A) is an exploded perspective view showing a shielding device partially, and (B) is a perspective view showing a cam. It is a figure which shows the shielding apparatus which concerns on 3rd Embodiment of this invention, (A) is a figure which shows the rotation shielding wall of a shielding apparatus when it sees from back, (B) is a figure which sees the structure of a rotating plate from back. FIG.
- (A) is a figure which shows a shielding apparatus seen from back
- (B) is a cut surface line D- of (A). It is sectional drawing of the shielding apparatus seen from D
- (C) is a figure which shows a rotation plate etc. seen from the front
- (D) is a partial expanded sectional view of (B).
- (A) is a figure which shows the fully opened state of the shielding apparatus which concerns on 3rd Embodiment of this invention
- (A) is a figure which shows a shielding apparatus seen from back
- (B) is a cut surface line EE of (A).
- FIG. 1 It is sectional drawing of the shielding apparatus seen from the front, (C) is a figure which shows a rotation plate etc. seen from the front, (D) is a partial expanded sectional view of (B). It is a figure showing the shielding device concerning a 3rd embodiment of the present invention, (A) is an exploded perspective view, and (B) is an enlarged sectional view showing a shielding wall drive mechanism. It is a figure which shows the fully closed state of the shielding apparatus which concerns on 3rd Embodiment of this invention, (A) is a figure which shows a shielding apparatus seen from back, (B) is a cut surface line F- of (A).
- FIG. 2 is a cross-sectional view of the shielding device as viewed from above
- (C) is a diagram showing a rotating plate and the like viewed from behind
- (D) is a partially enlarged cross-sectional view of (B).
- FIG. 1 It is a figure showing the shielding device concerning a 3rd embodiment of the present invention. It is a figure showing the shielding device concerning a 4th embodiment of the present invention, (A) is an exploded perspective view and (B) is an exploded sectional view. It is a figure showing the shielding device concerning a 4th embodiment of the present invention, (A) is an exploded perspective view showing a shielding device partially, and (B) is a perspective view showing a cam. It is a figure which shows the shielding device which concerns on 4th Embodiment of this invention, (A) is a figure which shows the rotation shielding wall of a shielding device when it sees from back, (B) is a figure which sees the structure of a rotating plate from back. FIG.
- (A) is a figure which shows a shielding apparatus seen from back
- (B) is a sectional view line H- of (A). It is sectional drawing of the shielding apparatus seen from H
- (C) is a figure which shows a rotation plate seen from back
- (D) is the elements on larger scale of (B).
- (A) is a figure which shows the fully opened state of the shielding apparatus which concerns on 4th Embodiment of this invention
- (A) is a figure which shows a shielding apparatus seen from back
- (B) is a cut surface line II of (A).
- FIG. It is sectional drawing of the shielding apparatus seen from FIG., (C) is a figure which shows a rotating plate seen from back, (D) is a partial expanded sectional view of (B).
- (A) is an exploded perspective view showing a shielding device
- (B) is a perspective view showing a cam.
- (A) is an exploded perspective view which shows a shielding apparatus partially
- (B) is an exploded perspective view which shows the structure in which a cam is accommodated. is there.
- FIG. It is a figure which shows the shielding device concerning 5th Embodiment of this invention
- (A) is a figure which shows the rotation shielding wall of a shielding device when it sees from back
- (B) is a figure which sees the structure of a rotating plate from back.
- FIG. It is a figure which shows the fully closed state of the shielding apparatus which concerns on 5th Embodiment of this invention
- (A) is a figure which shows a shielding apparatus seen from back
- (B) is a figure which shows a rotating plate seen from back.
- (C) is a cutaway perspective view of the shielding device.
- FIG. 2C is a cutaway perspective view of the shielding device. It is a figure showing the 1st sliding range and the 2nd sliding range seen from the back in the shielding device concerning a 5th embodiment of the present invention. It is an expanded sectional view showing the refrigerator concerning a background art. It is a perspective view which shows the blower cover employ
- FIG. 1 is a front external view showing a schematic structure of a refrigerator 10 of the present embodiment.
- the refrigerator 10 includes a heat insulating box 11 as a main body, and forms a storage room for storing foods and the like inside the heat insulating box 11.
- the uppermost compartment is a refrigerator compartment 15
- the lower compartment is an upper freezer compartment 18
- the lower compartment is a lower freezer compartment 19
- the lowermost compartment is a vegetable compartment 20.
- the upper freezing compartment 18 and the lower freezing compartment 19 are both storage compartments in the freezing temperature range, and may be collectively referred to as the freezing compartment 17 in the following description.
- the upper freezing compartment 18 may be divided into right and left, and one side may be used as an ice making compartment.
- the front surface of the heat-insulating box 11 is open, and the heat-insulating doors 21 and the like are provided in the openings corresponding to the storage rooms so as to be openable and closable.
- the heat insulating door 21 divides and closes the front surface of the refrigerator compartment 15 in the left-right direction, and upper and lower outer ends in the width direction of the heat insulating door 21 are rotatably attached to the heat insulating box 11.
- the heat-insulating doors 23, 24, and 25 are each integrally combined with the storage container, and are supported by the heat-insulating box 11 so as to be able to be drawn out to the front of the refrigerator 10. Specifically, the heat insulating door 23 closes the upper freezing compartment 18, the heat insulating door 24 closes the lower freezing compartment 19, and the heat insulating door 25 closes the vegetable compartment 20.
- FIG. 2 is a side sectional view showing a schematic structure of the refrigerator 10.
- the heat insulating box 11 which is the main body of the refrigerator 10 has an outer box 12 made of a steel plate having an open front, and an inner box 13 made of a synthetic resin which is disposed with a gap in the outer box 12 and has an open front. It is composed of A gap between the outer box 12 and the inner box 13 is filled and foamed with a heat insulating material 14 made of polyurethane foam.
- the above-described heat-insulating doors 21 and the like also employ the same heat-insulating structure as the heat-insulating box 11.
- the refrigerator compartment 15 and the freezer compartment 17 located below the refrigerator compartment 15 are partitioned by a heat insulating partition wall 42. Further, between the upper freezing compartment 18 and the lower freezing compartment 19 provided therebelow, cool air, which is cooled air, communicates freely.
- the freezing compartment 17 and the vegetable compartment 20 are separated by a heat insulating partition wall 43.
- a refrigerator air supply passage 29 is formed on the back surface of the refrigerator compartment 15 by a partition 65 made of synthetic resin and serves as a supply air passage for supplying cool air to the refrigerator compartment 15.
- An outlet 33 for flowing cool air into the refrigerator compartment 15 is formed in the refrigerator compartment supply air passage 29.
- a freezer supply air passage 31 is formed on the inner side of the freezer 17 to allow the cool air cooled by the cooler 45 to flow into the freezer 17.
- a cooling chamber 26 is formed further deeper than the freezing room supply air passage 31, and a cooler 45 as an evaporator for cooling air circulating in the refrigerator is disposed inside the cooling chamber 26.
- the freezing room supply air passage 31 is a space surrounded by the front cover 67 and the partition body 66 from the front-back direction.
- the cooler 45 is connected to the compressor 44, a radiator (not shown), and a capillary tube as expansion means (not shown) via a refrigerant pipe, and forms a vapor compression refrigeration cycle circuit.
- FIG. 3 is a side sectional view showing the structure near the cooling chamber 26 of the refrigerator 10.
- the cooling chamber 26 is provided inside the heat-insulating box 11 on the back side of the freezing-room supply air passage 31.
- the cooling room 26 and the freezing room 17 are partitioned by a partition 66 made of synthetic resin.
- the freezer supply air passage 31 formed in front of the cooling chamber 26 is a space formed between the cooling chamber 26 and a front cover 67 made of a synthetic resin assembled in front of the cooling chamber 26, and is cooled by the cooler 45.
- An air passage for flowing the cold air into the freezer compartment 17 is provided.
- the front cover 67 is formed with an outlet 34 which is an opening for blowing cool air into the freezer compartment 17.
- a return port 38 for returning air from the freezing compartment 17 to the cooling compartment 26 is formed on the lower rear surface of the lower freezing compartment 19. Further, below the cooling chamber 26, a return port 28 is formed which is connected to the return port 38 and inhales return cool air from each storage chamber into the cooling chamber 26. Cool air returning through the return port 39 (see FIG. 2) of the vegetable compartment 20 and the vegetable compartment return air passage 37 also flows into the return port 28.
- a defrost heater 46 is provided below the cooler 45 as a defrost means for melting and removing frost attached to the cooler 45.
- the defrost heater 46 is an electric resistance heating type heater.
- a blower port 27 which is an opening connected to each storage chamber is formed in an upper part of the cooling chamber 26.
- the air outlet 27 is an opening through which the cool air cooled by the cooler 45 flows, and connects the cooling room 26 with the refrigerating room supply air passage 29 and the freezing room supply air passage 31.
- a blower 47 that blows out cool air toward the freezer compartment 17 and the like is provided in the blower port 27 from the front. Further, since the function of the damper is performed by the rotation shielding wall 71 of the shielding device 70 described later, the damper can be omitted.
- a shielding device 70 is provided outside the air outlet 27 of the cooling chamber 26 to appropriately block an air path connected to the air outlet 27.
- the shielding device 70 is covered with a front cover 67 from the front.
- FIG. 4A is a perspective view showing a partition body 66 to which the shielding device 70 is attached
- FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A
- FIG. (C) is a diagram showing a wind path configuration when the front cover 67 is viewed from the rear.
- circular air outlet 27 penetrating in the thickness direction is formed in upper part of partition body 66, and blower 47 and shielding device 70 are provided in front of air outlet 27. It is arranged.
- the shielding device 70 is hidden by the partition 66.
- the opening portion 59 formed on the upper end side of the partition body 66 communicates with the refrigerator compartment supply air passage 29 shown in FIG.
- freezer compartment supply air passage 31 is formed as a space surrounded by partition body 66 and front cover 67. As will be described later, the freezer compartment supply air passage 31 is divided into a plurality of air passages.
- a shielding device 70 and a shielding wall driving mechanism 60 are provided between the partition 66 and the front cover 67. The shielding device 70 shields the blower 47, and the shielding wall driving mechanism 60 drives the shielding device 70.
- the configurations of the shielding device 70 and the shielding wall driving mechanism 60 will be described later with reference to FIG.
- a plurality of air passages are formed by partitioning the internal space of front cover 67. Specifically, rib-shaped airway partition walls 50 and 56 extending rearward from the rear main surface of the front cover 67 are formed. The rear ends of the airway partition walls 50 and 56 are in contact with the partition 66 shown in FIG.
- the air passage for blowing the cool air is partitioned from above into a refrigerator compartment supply air passage 51, an upper stage freezer compartment supply air passage 52, and a lower stage freezer compartment supply air passage 53.
- the cold air supplied to the refrigerator compartment 15 is circulated through the refrigerating compartment supply air passage 51
- the cold air supplied to the upper freezing compartment 18 is circulated through the upper freezing compartment supply air passage 52
- the lower freezing compartment supply air passage 53 is supplied through the lower freezing compartment supply air passage 53.
- the cool air blown into the chamber 19 flows.
- the cool air flowing through the refrigerating room supply air passage 51 is sent to the refrigerating room 15 shown in FIG.
- the cool air flowing through the upper freezing room supply air passage 52 is blown to the upper freezing room 18 shown in FIG.
- the cool air flowing through the lower-stage freezer supply air passage 53 is blown to the lower-stage freezer 19 shown in FIG.
- the refrigerating room supply air passage 51, the upper stage freezing room supply air passage 52, and the lower stage freezing room supply air passage 53 are formed so as to expand around the shielding device 70.
- the refrigerating room supply air passage 51 and the upper freezing room supply air passage 52 are partitioned by the air passage partition wall 50. Further, the upper freezing room supply air passage 52 and the lower freezing room supply air passage 53 are partitioned by an air passage partition wall 56.
- FIG. 5A is an exploded perspective view of the shielding device 70
- FIG. 5B is an exploded side sectional view of the shielding wall driving mechanism 60.
- shielding device 70 includes support base 63, rotating shielding wall 71, rotating plate 73, lid member 57, shielding wall driving mechanism 60, Is provided.
- the shielding device 70 is a device that shields the air path of the cool air blown by the blower 47. By opening the shielding device 70, an air path connecting the cooling chamber 26 and each storage room is communicated, and by closing the shielding device 70, the air path is shut off.
- the blower 47 is disposed at the center of the front surface of the support base 63 via a fastening means such as a screw.
- the blower 47 includes, for example, a centrifugal fan such as a turbo fan and a blower motor for rotating the centrifugal fan, and blows cool air radially outward.
- the support base 63 is a member made of a synthetic resin having a substantially disk shape when viewed from the front. As shown in FIG. 5B, the peripheral portion of the support base 63 is bent substantially perpendicularly toward the front.
- the support accommodating portion 62 is formed on the support base 63, which will be described later with reference to FIG.
- a side wall 58 is formed around the support base 63.
- the side wall portion 58 is a wall-shaped portion extending rearward from the support base 63.
- a plurality of (six in this embodiment) side wall portions 58 are arranged at substantially equal intervals in the circumferential direction of the support base 63.
- the rear end of the side wall portion 58 is fastened to the partition 66 shown in FIG. 4B via fastening means such as screws.
- the rotation shielding wall 71 is a plate-shaped member made of a rectangular synthetic resin, and has a long side along the tangential direction of the outer edge of the support base 63.
- the rotation shielding wall 71 is attached to the periphery of the support base 63 so as to be rotatable rearward around an axis parallel to the main surface of the support base 63.
- a plurality (six in the present embodiment) of the rotation shielding walls 71 are arranged near the periphery of the support base 63.
- the rotation shielding wall 71 is arranged in a path through which the cool air blown by the blower 47 flows, and shields the air path.
- the rotating plate 73 is made of a substantially disk-shaped steel plate as viewed from the front, and is rotatably disposed in front of the support base 63.
- a moving shaft slide groove 80 for rotating the rotation shielding wall 71 is formed in the rotating plate 73.
- a gear portion 77 for transmitting torque is formed at a peripheral portion of the rotating plate 73. As will be described later, the drive motor 74 is driven, torque is transmitted via the gear portion 77 of the gear 30, and the rotation plate 73 is rotated.
- the lid member 57 is a plate-like member that covers the rotary plate 73 from the front, is formed slightly larger than the rotary plate 73, and has a substantially circular shape when viewed from the front.
- a flange to which a drive motor 74 for driving the rotation plate 73 is attached is formed on the left portion of the support base 63.
- a gear 30 for transmitting the rotation speed and torque is provided between the drive motor 74 and the rotation plate 73. Is arranged. When the gear 30 and the rotating plate 73 mesh with each other, the torque of the drive motor 74 is transmitted to the rotating plate 73.
- FIG. 6A is an exploded perspective view showing a lower portion of the shielding device 70
- FIG. 6B is a perspective view showing a cam 61.
- the shielding wall driving mechanism 60 includes a cam 61 and a rotating plate 73.
- the cam 61 is a flat rectangular parallelepiped member made of synthetic resin. As shown in FIG. 6 (B), at one end of the cam 61, there is formed a rotary connecting portion 48 in which a hole through which the pin 55 can be inserted is formed.
- the cam 61 is housed in the cam housing 62 of the support base 63.
- the cam housing 62 is a cavity formed in the support base 63, and is elongated along the radial direction of the support base 63.
- the cam housing portions 62 are formed corresponding to the respective rotation shielding walls 71.
- the size of the cam storage portion 62 is such that the cam 61 can be stored and the cam 61 can slide in the radial direction.
- the moving shaft 76 is a column-shaped protrusion protruding from the front surface of the cam 61, as shown in FIG.
- the diameter of the moving shaft 76 is slightly smaller than the width of the moving shaft slide groove 80 formed in the rotating plate 73.
- the moving shaft 76 is slidably engaged with the moving shaft slide groove 80 of the rotating plate 73.
- the rotation shielding wall 71 is formed with a rotation connecting portion 68 that is inclined and protrudes from the base end of the rotation shielding wall 71.
- a hole through which the pin 55 can be inserted is formed in the rotation connecting portion 68.
- a rotation connection portion 64 is formed in the vicinity of both ends on the upper side of the rotation shielding wall 71.
- the rotation connecting portion 64 is formed with a hole through which the pin 69 can be inserted.
- the rib 32 and the rotation connecting portion 54 are formed near the periphery of the support base 63.
- the rib 32 and the rotation connecting portion 54 are provided corresponding to each rotation shielding wall 71.
- the rib 32 is a wall-shaped portion protruding rearward of the support base 63, and is formed by connecting adjacent side wall portions 58 with a straight line. Each end of the rib 32 is connected to the side wall 58. The end of the rotation shielding wall 71 on the rotation connection portion 68 side contacts the rib 32.
- Rotating connection portion 54 is formed near each rib 32. A hole through which the pin 69 can be inserted is formed in the rotation connecting portion 54.
- the support base 63 and the rotation shielding wall 71 are rotatably connected by inserting the pins 69 into the holes of the rotation connection portion 54 and the holes of the rotation connection portion 64.
- the drive shaft 74 is rotated by driving the drive motor 74, so that the moving shaft 76 slides in the moving shaft slide groove 80.
- the rotation shielding wall 71 can be rotated around the pin 55. Specifically, when the cam 61 is slid toward the peripheral edge of the support base 63, the rotation shielding wall 71 rotates around the rotation connection portion 64 so as to be in an upright state, and the rotation shielding wall 71 is rotated.
- the wall 71 is orthogonal to the main surface of the support base 63.
- the rotation shielding wall 71 rotates so as to be in a reclined state around the rotation connection portion 64, and the rotation shielding wall 71 is supported.
- the state is substantially parallel to the main surface of the base 63.
- the rotation shielding wall 71 can be closed. Conversely, if the moving shaft slide groove 80 is formed on the center side of the support base 63, the rotation shielding wall 71 can be opened.
- the open / close state of each rotation shielding wall 71 can be arbitrarily set.
- the rotation shield wall 71 can be fully opened or fully closed without employing a complicated configuration, and some of the rotation shield walls 71 are in a closed state or an open state. It can also be in a state.
- the rotating plate 73 and the cam 61 constituting the shielding wall driving mechanism 60 are disposed in a region sandwiched between the support base 63 and the cover member 57. Therefore, as shown in FIG. 4B, the members constituting the shielding wall drive mechanism 60 are not exposed to the freezing room supply air passage 31 through which the cool air flows. Therefore, since the cold air is not blown to the shielding wall driving mechanism 60, it is possible to prevent the shielding wall driving mechanism 60 from freezing.
- a side wall portion 58 is formed at each longitudinal end of the rotation shielding wall 71.
- each longitudinal end of the rotation shielding wall 71 contacts the side wall portion 58.
- the airtightness when the rotation shielding wall 71 is in the closed state can be improved. Cold air leakage and inflow of warm air at the time of defrost can be reliably suppressed.
- the rib 32 is formed on the support base 63, so that when the rotation shielding wall 71 is closed, the end of the rotation shielding wall 71 on the rotation connecting portion 68 side. The part contacts the rib 32. Thereby, the airtightness when closed by the rotation shielding wall 71 can be further improved.
- FIG. 7A and 7B are diagrams showing the shielding device 70
- FIG. 7A is a diagram showing the rotating shielding wall of the shielding device 70 viewed from the rear
- FIG. 7B is a diagram showing the configuration of the rotating plate viewed from the rear.
- shielding device 70 has rotating shielding walls 71, 712, 713, 714, 715, 716 as rotating shielding walls 71.
- the rotation shielding wall 711 to the rotation shielding wall 716 have a rectangular shape having long sides substantially parallel to the tangential direction of the support base 63. Further, the rotation shielding wall 711 to the rotation shielding wall 716 are rotatably attached to the peripheral portion of the support base 63 shown in FIG.
- a radially inner end of the rotation shielding wall 711 is rotatably connected to a cam 611 on which a moving shaft 761 is formed.
- a radially inner end of the rotation shielding wall 712 is rotatably connected to a cam 612 on which a moving shaft 762 is formed.
- a radially inner end of the rotation blocking wall 713 is rotatably connected to a cam 613 on which a moving shaft 763 is formed.
- the radially inner end of the rotation shielding wall 714 is rotatably connected to a cam 614 on which a moving shaft 764 is formed.
- a radially inner end of the rotation blocking wall 715 is rotatably connected to a cam 615 on which a moving shaft 765 is formed.
- a radially inner end of the rotation blocking wall 716 is rotatably connected to a cam 616 on which a moving shaft 766 is formed.
- rotating plate 73 is a steel plate formed in a substantially disk shape, and has a plurality of moving shaft slide grooves 80 for controlling the opening / closing operation of rotating shield wall 711 and the like. Have been. Further, a gear groove 49 is formed in a part of the peripheral portion of the rotating plate 73, and the gear 30 and the gear groove 49 shown in FIG. The plate 73 rotates.
- the rotating plate 73 is formed with moving shaft slide grooves 801, 802, 803, 804, 805 and 806 as the moving shaft slide grooves 80.
- the moving shaft slide groove 801 to the moving shaft slide groove 806 are groove-shaped portions formed along the circumferential direction of the rotating plate 73.
- the moving shaft slide groove 801 to the moving shaft slide groove 806 have a predetermined bent shape in order to slide the cams 611 to 616 shown in FIG. Further, the moving shaft 761 to the moving shaft 766 are engaged with the moving shaft slide groove 801 to the moving shaft slide groove 806.
- the moving shaft slide groove 801 is composed of a groove 8013 to a groove 8011.
- Groove 8013 extends radially outward and circumferentially
- groove 8012 slopes clockwise inward radially
- groove 8011 extends radially inward and circumferentially.
- the moving shaft slide groove 802 is composed of a groove 8026 to a groove 8021.
- the groove portion 8026 is inclined clockwise inward in the radial direction
- the groove portion 8025 is extended radially inward along the circumferential direction
- the groove portion 8024 is inclined in clockwise direction outward in the radial direction.
- the groove 8023 extends radially outward and along the circumferential direction.
- the groove 8022 is inclined clockwise inward in the radial direction
- the groove 8021 extends radially inward in the circumferential direction.
- the moving shaft slide groove 803 is composed of a groove 8034 to a groove 8031.
- Groove 8034 extends radially inward and circumferentially, and groove 8033 slopes clockwise outward in the radial direction.
- the groove 8032 extends radially outward and circumferentially, and the groove 8031 is inclined clockwise inwardly in the radial direction.
- the moving shaft slide groove 804 is composed of a groove 8044 to a groove 8041.
- the groove portion 8044 extends radially inward and along the circumferential direction, and the groove portion 8043 is inclined clockwise in a radially outward direction.
- the groove portion 8042 extends radially outward and along the circumferential direction, and the groove portion 8041 is inclined clockwise inwardly in the radial direction.
- the moving shaft slide groove 805 is composed of a groove 8054 to a groove 8051.
- the groove portion 8054 extends radially inward and along the circumferential direction, and the groove portion 8053 is inclined clockwise in a radially outward direction.
- the groove portion 8052 extends radially outward and along the circumferential direction, and the groove portion 8051 slopes clockwise and inward radially inward.
- the moving shaft slide groove 806 is composed of a groove 8066 to a groove 8061.
- the groove portion 8066 is inclined clockwise inward in the radial direction
- the groove portion 8065 is radially inwardly extending along the circumferential direction
- the groove portion 8064 is inclined clockwise in the radially outward direction.
- Groove 8063 extends radially outward and circumferentially
- groove 8062 slopes clockwise radially inward
- groove 8061 extends radially inward circumferentially.
- a rotating shaft slide groove 79 extending in the circumferential direction is formed in the inner portion of the rotating plate 73.
- three rotating shaft slide grooves 79 are formed at equal intervals.
- the rotating plate 73 is held by the support base 63 via a rotating shaft 75 (see FIG. 8C) slidably engaged with the rotating shaft slide groove 79.
- the moving shaft 761 and the like shown in FIG. 7A engage with the moving shaft slide groove 801 and the like shown in FIG. 7B.
- the moving shaft 761 engages with the moving shaft slide groove 801
- the moving shaft 762 engages with the moving shaft slide groove 802
- the moving shaft 763 engages with the moving shaft slide groove 803.
- the moving shaft 764 engages with the moving shaft slide groove 804
- the moving shaft 765 engages with the moving shaft slide groove 805
- the moving shaft 766 engages with the moving shaft slide groove 806.
- FIG. 8 shows the configuration of the shielding device 70 in the fully closed state.
- 8A is a view of the shielding device 70 in the fully closed state as viewed from the rear
- FIG. 8B is a cross-sectional view taken along line BB of FIG. 8A
- FIG. 8 8) is a view of the rotating plate 73 and the like in the fully closed state as viewed from the rear
- FIG. 8D is an enlarged view of a main part of FIG. 8B.
- the fully closed state is a state in which the periphery of the blower 47 is shielded by the rotary shield wall 71, and thereby the blower opening 27 illustrated in FIG. 4 is closed. In this fully closed state, the blower 47 does not rotate.
- shielding device 70 prevents air from flowing out of blower 47 to the outside in the fully closed state. That is, in the fully closed state, all the shielding devices 70 are in the upright state, the communication with the air path for supplying cool air is cut off, and cool air is not supplied to the refrigerator compartment 15 and the freezer compartment 17. Further, even in the defrosting step of defrosting the cooler 45 shown in FIG. 2, warm air does not flow from the cooling chamber 26 into the refrigerator compartment 15 and the freezer compartment 17 because the shielding device 70 is in the fully closed state.
- the rotation shielding wall 71 in the fully closed state, is in a closed state that stands substantially perpendicular to the main surface of the support base 63.
- all the rotation shielding walls 71 of the shielding device 70 are in the closed state.
- the rear end of the rotary shielding wall 71 is in contact with the partition 66 shown in FIG. By doing so, the airtightness when the air passage is closed by the rotation shielding wall 71 can be improved.
- FIG. 8 (C) when the shielding device 70 is to be fully closed, first, the drive motor 74 is driven to rotate the rotary plate 73 via the gear 30. Here, by rotating the rotating plate 73, each moving shaft 76 is slid in the moving shaft slide groove 80, and each moving shaft 76 is moved outward in the radial direction. As a result, as shown in FIG. 8D, the cam 61 moves radially outward.
- the rotation shielding wall 71 rotatably connected to the cam 61 rotates around the rotation connection portion 68 as a rotation center, and rises substantially at right angles to the main surface of the support base 63 in a closed state. It becomes.
- FIG. 8D illustrates the turning shielding wall 71 in the middle of transition from the open state to the closed state.
- FIG. 9 shows the configuration of the shielding device 70 in the fully opened state.
- FIG. 9A is a view of the shielding device 70 in a fully opened state as viewed from the rear
- FIG. 9B is a cross-sectional view taken along line CC of FIG. 9A
- FIG. 9D is a view of the rotating plate 73 and the like in the fully opened state as viewed from the rear
- FIG. 9D is an enlarged view of a main part of FIG.
- the fully open state is a state in which the surroundings of the blower 47 are not blocked by the turning shield wall 71 from communicating with the air path for supplying cool air, whereby the cool air blown by the blower 47 spreads around.
- shield device 70 does not hinder the flow of air from blower 47 to the outside when fully opened. That is, in the fully opened state, the cool air blown from the blower 47 by the shielding device 70 is blown to the refrigerating room 15 and the freezing room 17 without being interfered by the rotating shielding wall 71. As shown in FIG. 9A, in the fully opened state, all the rotation shielding walls 71 are open toward the periphery.
- the rotation shielding wall 71 in the fully open state, is in an open state substantially parallel to the main surface of the support base 63. Since all the rotary shielding walls 71 of the shielding device 70 are in the open state, the rotary shielding wall 71 does not exist in the air path blown from the blower 47, and the flow path resistance of the air path is reduced. 47 can be increased.
- FIG. 10 shows a state in which cool air is supplied only to the lower freezing compartment 19 in the shielding device 70 according to the embodiment of the present invention.
- FIG. 10A is a view of the shielding device 70 as viewed from the rear, and FIG. It is the figure which looked at the plate 73 from back.
- FIG. 11 is a diagram illustrating the state of the air passage when supplying the cool air only to the lower freezing compartment 19 in the shielding device 70 according to the embodiment of the present invention, as viewed from the rear.
- 12A and 12B show a case where cool air is supplied only to the freezing room 17 in the shielding device 70 according to the embodiment of the present invention
- FIG. 12A is a diagram of the shielding device 70 viewed from the rear, and FIG.
- FIG. 13 is a diagram showing the state of the air passage when supplying cool air only to the freezer compartment 17 in the shielding device 70 according to the embodiment of the present invention, as viewed from the rear.
- 14A and 14B show a state in which cool air is supplied only to the upper freezing compartment 18 in the shielding device 70 according to the embodiment of the present invention
- FIG. 14A is a diagram of the shielding device 70 viewed from the rear
- FIG. 15 is a diagram of the air conditioner when the cool air is supplied only to the upper freezer compartment 18 in the shielding device 70 according to the embodiment of the present invention, as viewed from the rear.
- FIG. 16A and 16B show a state in which cool air is not supplied in the shielding device 70 according to the embodiment of the present invention.
- FIG. 16A is a diagram of the shielding device 70 viewed from the rear
- FIG. FIG. FIG. 17 is a rear view of a state of an air path when cool air is not supplied in the shielding device 70 according to the embodiment of the present invention.
- FIGS. 18A and 18B show a state where cold air is supplied only to the refrigerator compartment 15 in the shielding device 70 according to the embodiment of the present invention.
- FIG. 18A is a view of the shielding device 70 as viewed from the rear, and FIG. It is the figure which looked at 73 from back.
- FIG. 19 is a view of the state of the air path when supplying the cool air only to the refrigerator compartment 15 in the shielding device 70 according to the embodiment of the present invention, as viewed from the rear.
- FIG. 20 shows a state in which cool air is supplied to the upper freezing compartment 18 and the refrigerator compartment 15 in the shielding device 70 according to the embodiment of the present invention, wherein FIG. () Is a view of the rotating plate 73 viewed from the rear.
- FIG. 21 is a diagram showing the state of the air passage when supplying cool air to the upper freezer compartment 18 and the refrigerating compartment 15 in the shielding device 70 according to the embodiment of the present invention, as viewed from the rear.
- FIG. 22 shows a state in which cold air is supplied to the entire freezing room 17 and the refrigerator compartment 15 in the shielding device 70 according to the embodiment of the present invention.
- FIG. () Is a view of the rotating plate 73 viewed from the rear.
- FIG. 23 is a rear view of the air passage when supplying cool air to the entire freezing room 17 and the refrigerator compartment 15 in the shielding device 70 according to the embodiment of the present invention.
- FIGS. 10 and 11 show a state where cold air is supplied to the lower freezing compartment 19.
- FIG. 10A is a view of the shielding device 70 in this state as viewed from the rear
- FIG. 10B is a view of the rotating plate 73 in this state as viewed from the rear
- FIG. It is the figure which looked at the state of the wind path in this state from back.
- moving shafts 761 to 766 are arranged at opposite ends of moving shaft slide grooves 801 to 806.
- the moving shaft 761 is arranged at the opposite end of the groove 8013 of the moving shaft slide groove 801
- the moving shaft 762 is arranged at the opposite end of the groove 8026 of the moving shaft slide groove 802.
- a moving shaft 763 is arranged at the end of the groove 803 in the opposite direction to the groove 8034.
- a moving shaft 764 is arranged at the opposite end of the groove 8044 of the moving shaft slide groove 804, and the moving shaft 765 is arranged at the opposite end of the groove 8054 of the moving shaft slide groove 805.
- a moving shaft 766 is arranged at the opposite end of the groove 8066.
- the moving shafts 761, 762, 766 are disposed radially outward, and the rotation blocking walls 711, 712, 716 are closed.
- the moving shafts 763, 764, and 765 are arranged radially inward, and the rotation blocking walls 713, 714, and 715 are in an open state.
- FIGS. 12 and 13 show a state in which cool air is supplied only to the freezing compartment 17.
- FIG. 12A is a view of the shielding device 70 in this state as viewed from the rear
- FIG. 12B is a view of the rotating plate 73 in this state as viewed from the rear
- FIG. It is the figure which looked at the state of the wind path in this state from back.
- rotation shielding wall 711 is in a closed state, and rotation shielding walls 712, 713, 714, 715, 716 are in an open state. It is. With this open / close state, the blower 47 can blow cool air into the freezing compartment 17 shown in FIG.
- the moving shaft 761 is disposed at an intermediate portion of the groove 8013 of the moving shaft slide groove 801, and the moving shaft 762 is disposed at the forward end of the groove 8026 of the moving shaft slide groove 802.
- a moving shaft 763 is arranged in the groove 8034 at the forward end of the groove 8034 of the slide groove 803.
- a moving shaft 764 is disposed at a forward end of the groove 8044 of the moving shaft slide groove 804, and a moving shaft 765 is disposed at the forward end of the groove 8054 of the moving shaft slide groove 805.
- a moving shaft 766 is arranged in the groove 8066 at the forward end of the groove 8066 of the groove 806.
- the moving shaft 761 remains disposed radially outward, and the rotation shielding wall 711 is maintained in the closed state.
- the moving shafts 762, 763, 764, 765, and 766 are disposed radially inward, and the rotation shielding walls 712, 713, 714, 715, and 716 are in an open state.
- the rotation shielding walls 712 and 716 are in the open state, so that the cool air is blown into the upper freezing room supply air passage 52, It is blown out to the upper freezer compartment 18 shown in FIG. Further, since the rotation shielding walls 713, 714, and 715 are also opened, the cool air is blown to the lower freezing room supply air passage 53, and is blown out to the lower freezing room 19 shown in FIG. You.
- FIGS. 14 and 15 show a state in which cool air is supplied only to the upper freezing compartment 18.
- FIG. 14A is a view of the shielding device 70 in this state as viewed from the rear
- FIG. 14B is a view of the rotating plate 73 in this state as viewed from the rear
- FIG. It is the figure which looked at the state of the wind path in this state from back.
- the rotation shielding walls 711, 713, 714, and 715 are in a closed state, and the rotation shielding walls 712 and 712 are closed.
- 716 is an open state. With such an open / closed state, the blower 47 can blow cool air only to the upper freezing compartment 18.
- the moving shaft 761 is disposed at an intermediate portion of the groove 8013 of the moving shaft slide groove 801, the moving shaft 762 is disposed at the forward end of the groove 8025 of the moving shaft slide groove 802, and the moving shaft slide groove 803 is provided.
- a moving shaft 763 is disposed at a forward end of the groove 8033.
- a moving shaft 764 is disposed at a forward end of the groove 8043 of the moving shaft slide groove 804, a moving shaft 765 is disposed at a forward end of the groove 8053 of the moving shaft slide groove 805, and a moving shaft slide groove 806 is formed.
- a moving shaft 766 is arranged at a forward end of the groove 8065.
- the moving shafts 761, 763, 764, and 765 are arranged radially outward, and the rotation blocking walls 711, 713, 714, and 715 are closed.
- the moving shafts 762 and 766 are disposed radially inward, and the rotation blocking walls 712 and 716 are in an open state.
- FIGS. 16 and 17 show a fully closed state in which the shielding device 70 closes all air paths.
- FIG. 16 (A) is a view of the shielding device 70 in this state as viewed from behind
- FIG. 16 (B) is a view of the rotating plate 73 in this state as viewed from behind
- FIG. It is the figure which looked at the state of the wind path in this state from back.
- rotation blocking walls 711 to 716 are in the closed state. By adopting such a state, it is possible to prevent air from flowing through each air passage.
- the moving shaft 761 is arranged at the forward end of the groove 8013 of the moving shaft slide groove 801, and the moving shaft 762 is arranged at the forward end of the groove 8024 of the moving shaft slide groove 802.
- a moving shaft 763 is arranged at an intermediate portion of the groove 8032 of the groove 803.
- a moving shaft 764 is arranged at an intermediate portion of the groove portion 8042 of the moving shaft slide groove 804, a moving shaft 765 is arranged at an intermediate portion of the groove portion 8052 of the moving shaft slide groove 805, and a groove 8064 of the moving shaft slide groove 806 is arranged in this order.
- a moving shaft 766 is arranged at the end in the direction.
- the moving shafts 761 to 766 are arranged radially outward, and the rotation blocking walls 711 to 716 are closed.
- FIGS. 18 and 19 show a state in which cool air is supplied only to the refrigerator compartment 15.
- FIG. 18A is a view of the shielding device 70 in this state as viewed from behind
- FIG. 18B is a view of the rotating plate 73 in this state as viewed from behind
- FIG. It is the figure which looked at the state of the wind path in this state from back.
- the moving shaft 761 is arranged at the forward end of the groove 8012 of the moving shaft slide groove 801, and the moving shaft 762 is arranged at the forward end of the groove 8023 of the moving shaft slide groove 802.
- a moving shaft 763 is arranged at an intermediate portion of the groove 8032 of the groove 803.
- a moving shaft 764 is arranged at an intermediate portion of the groove portion 8042 of the moving shaft slide groove 804, a moving shaft 765 is arranged at an intermediate portion of the groove portion 8052 of the moving shaft slide groove 805, and a groove 8063 of the moving shaft slide groove 806 is arranged in this order.
- a moving shaft 766 is arranged at the end in the direction.
- the moving shafts 762 to 766 are arranged radially outward, and the rotation blocking walls 712 to 716 are closed.
- the moving shaft 761 is disposed radially inward, and the rotation blocking wall 711 is in an open state.
- the rotation shielding wall 711 is in the open state, so that cool air is blown to the refrigerator compartment supply air passage 51, and the refrigerator compartment supply air passage is provided. It is blown out to the refrigerator compartment 15 through 29. In addition, part of the cool air blown to the refrigerator compartment 15 can be blown to the vegetable compartment 20.
- FIGS. 20 and 21 show a state where the shielding device 70 supplies cool air to the refrigerator compartment 15 and the upper freezer compartment 18.
- FIG. 20 (A) is a view of the shielding device 70 in this state as viewed from the rear
- FIG. 20 (B) is a view of the rotating plate 73 in this state as viewed from the rear
- FIG. It is the figure which looked at the state of the wind path in this state from back.
- rotation shielding walls 711, 712, 716 are in an open state, and rotation shielding wall 713 is provided. 715 are closed states. With such an open / close state, the blower 47 can blow cool air into the refrigerator compartment 15 and the upper freezing compartment 18.
- the moving shaft 761 is disposed at an intermediate portion of the groove 8011 of the moving shaft slide groove 801, the moving shaft 762 is disposed at a forward end of the groove 8022 of the moving shaft slide groove 802, and the moving shaft slide groove 803 is provided.
- the moving shaft 763 is arranged at the forward end of the groove 8032 of the first embodiment.
- a moving shaft 764 is disposed at a forward end of the groove 8042 of the moving shaft slide groove 804, a moving shaft 765 is disposed at a forward end of the groove 8052 of the moving shaft slide groove 805, and a moving shaft slide groove 806 is formed.
- a moving shaft 766 is arranged at a forward end of the groove 8062.
- the moving shafts 763 to 765 are arranged radially outward, and the rotation blocking walls 713 to 715 are closed.
- the moving shafts 761, 762, and 766 are disposed radially inward, and the rotation blocking walls 711, 712, and 716 are in an open state.
- the rotation shield wall 711 is in the open state, so that cool air is blown to the refrigerator compartment 15 via the refrigerator compartment supply air passage 29. You.
- the rotation shielding walls 712 and 716 are in the open state, the cool air is blown into the upper freezing room supply air passage 52 and is blown out to the upper freezing room 18 via the outlet 34.
- FIGS. 22 and 23 show a fully open state in which cool air is supplied to both the refrigerator compartment 15 and the freezer compartment 17.
- FIG. 22 (A) is a view of the shielding device 70 in this state as viewed from behind
- FIG. 22 (B) is a view of the rotating plate 73 in this state as viewed from behind
- FIG. It is the figure which looked at the state of the wind path in this state from back.
- FIG. 22 (A) in a situation where cool air is supplied to refrigerator compartment 15 and freezer compartment 17 shown in FIG. 2, rotation blocking walls 711, 712, 713, 714, 715 and 716 are in an open state. By setting this fully open state, as described later, the blower 47 can blow cool air to the refrigerator compartment 15 and the freezer compartment 17.
- the moving shaft 761 is arranged at the forward end of the groove 8011 of the moving shaft slide groove 801, and the moving shaft 762 is arranged at the forward end of the groove 8021 of the moving shaft slide groove 802.
- a moving shaft 763 is arranged at a forward end of the groove 8031 of the groove 803.
- a moving shaft 764 is disposed at a forward end of the groove 8041 of the moving shaft slide groove 804, a moving shaft 765 is disposed at a forward end of the groove 8051 of the moving shaft slide groove 805, and a moving shaft 806 of the moving shaft slide groove 806 is formed.
- a moving shaft 766 is arranged at a forward end of the groove 8061.
- the moving shafts 761 to 766 are arranged radially inward, and the rotation blocking walls 711 to 716 are in the open state.
- the rotation shielding wall 711 when the shielding device 70 is in the state shown in FIG. 22, the rotation shielding wall 711 is in the open state, so that cool air is blown to the refrigerator compartment supply air passage 51, and the refrigerator compartment supply air passage is provided. The cold air is blown out to the refrigerator compartment 15 through 29.
- the cool air when the rotation shielding walls 712 and 716 are in the open state, the cool air is blown into the upper freezing room supply air passage 52 and is blown out to the upper freezing room 18 via the outlet 34.
- cool air can be supplied to the lower freezing compartment 19 via the lower freezing compartment supply air passage 53 and the outlet 34.
- the shielding device 70 can switch the open / close state of each of the rotary shielding walls 711 to 716 by rotating the rotary plate 73 shown in FIG. Therefore, the members are not displaced along the axial direction of the blower 47. Therefore, the thickness dimension occupied by the shielding device 70 can be reduced. Further, referring to FIG. 3, since the volume occupied by shielding device 70 can be reduced, the internal volume of freezing room 17 formed in front of shielding device 70 is increased, and Can be stored in the freezer 17.
- a shielding device 270 according to the second embodiment will be described with reference to FIGS.
- the basic configuration of the shielding device 270 according to the second embodiment and the configuration applied to the refrigerator 10 are the same as those of the first embodiment, and therefore the description will focus on the differences.
- the opening and closing of the shielding device 270 is driven by a gear mechanism or a wire mechanism.
- FIG. 24A is a perspective view showing the shielding device 270
- FIG. 24B is an exploded perspective view showing the shielding device 270.
- the shielding device 270 includes a support base 263, a rotating shielding wall 271, and a shielding wall driving mechanism 260.
- the shielding device 270 is a device that shields the air path of the cool air blown by the blower 47. By setting the shielding device 270 to the open state, the air path connecting the cooling chamber 26 and each storage room is communicated, and by setting the shielding device 270 to the closed state, the air path is blocked.
- blower 47 is disposed at the center of support base 263 via fastening means such as screws.
- the blower 47 includes, for example, a centrifugal fan such as a turbo fan and a blower motor for rotating the centrifugal fan, and blows cool air radially outward.
- the support base 263 is a member made of a synthetic resin that is integrally molded, and has a substantially square shape when viewed from behind.
- a rotation shielding wall 271 is rotatably disposed on each side of the support base 263. By projecting a part of the support base 263 to the rear side, a plurality of projecting portions 258 are formed.
- a cover plate 235 is attached to the rear end of the protrusion 258.
- the cover plate 235 is a plate-like member that has a substantially forward direction when viewed from the rear, and has an opening 236 formed in the center. The cool air taken in from the opening 236 is blown toward the surroundings by the blower 47.
- the shielding wall driving mechanism 260 drives the opening and closing operation of the rotation shielding wall 271.
- the shield wall drive mechanism 260 includes a drive motor 274 as a drive source, a gear 2811 as a power transmission mechanism for transmitting the power of the drive motor 274 to the rotary shield wall 271, and the like.
- the specific configuration of the shielding wall driving mechanism 260 will be described later with reference to FIG.
- the drive motor 274 is disposed on the lower left side of the support base 263, and generates a driving force for opening and closing the rotation shielding wall 271.
- the rotation shield wall 271 is a plate-shaped member made of a rectangular synthetic resin, and includes a rotation shield wall 2711 to a rotation shield wall 2714. Details of the rotation shielding wall 271 will be described later with reference to FIG.
- FIG. 25A is an exploded view showing the shielding device 270
- FIG. 25B is an enlarged view showing a portion where the rotating shielding wall 2711 and the rotating shielding wall 2714 are drivingly connected.
- the support base 263 and the blower 47 are covered with a cover plate 235.
- the rotation shielding wall 271 includes a rotation shielding wall 2711 to a rotation shielding wall 2714.
- the rotation shielding wall 271 has a long side along each side of the support base 263.
- the rotation shielding wall 271 is attached to the periphery of the support base 263 so as to be rotatable around an axis parallel to the main surface of the support base 263.
- the rotation shielding wall 271 is arranged in a path through which the cool air blown by the blower 47 flows, and shields each air path.
- an inner side of the rotation shielding wall 2711 or the rotation shielding wall 2714 is rotatably attached to the support base 263 via the rotation connection portion 264.
- a gear 2811 and the like are disposed on the rotation shielding wall 2711 to the rotation shielding wall 2714 as a power transmission mechanism for transmitting power from the drive motor 274.
- a gear 2812 and a gear 2813 are provided at both inner ends of the rotation shielding wall 2711
- a gear 2814 and a gear 2815 are provided at both inner ends of the rotation shielding wall 2712.
- a gear 2816 and a gear 2817 are provided at both ends on the inner side of the gear 2813
- a drive shaft 254 and a gear 2811 are provided at both ends of the rotation shielding wall 2714.
- the drive shaft 254 is a shaft rotated by the drive motor 274.
- the gear 2811 of the rotation shielding wall 2714 meshes with the gear 2812 of the rotation shielding wall 2711.
- the gear 2813 of the rotation shielding wall 2711 meshes with the gear 2814 of the rotation shielding wall 2712.
- the gear 2815 of the rotation shielding wall 2712 meshes with the gear 2816 of the rotation shielding wall 2713.
- the gear 2811 of the rotation shielding wall 2714 and the gear 2812 of the rotation shielding wall 2711 constitute, for example, a bevel gear.
- power can be transmitted from the rotation shielding wall 2714 to the rotation shielding wall 2711 in a direction orthogonal to the rotation shielding wall 2711.
- Such a structure includes a gear 2813 of the rotation shielding wall 2711, a gear 2814 of the rotation shielding wall 2712, a gear 2815 of the rotation shielding wall 2712, and a gear 2816 of the rotation shielding wall 2713 shown in FIG. The same applies to the configuration.
- the opening / closing operation of the shielding device 270 will be described.
- the driving motor 274 is rotated in one direction, the driving force is changed by the rotation shielding wall 2711 via the gear 2811 and the gear 2812. Is transmitted to the rotation shielding wall 2712 via the gear 2813 and the gear 2814, and is transmitted to the rotation shielding wall 2713 via the gear 2815 and the gear 2816.
- the rotation shielding wall 2711 to the rotation shielding wall 2714 simultaneously rotate so as to be in an upright state that is a state orthogonal to the main surface of the support base 263.
- the support 263 rotates so as to be in a reclined state that is substantially parallel to the main surface.
- FIG. 26 shows the configuration of the shielding device 270 in the fully closed state.
- FIG. 26A is a view of the shielding device 270 in the fully closed state as viewed from the rear
- FIG. 26B is a view of the front cover 67 to which the shielding device 270 in the fully closed state is mounted as viewed from the rear.
- the fully closed state is a state in which all the air paths that supply cool air are blocked by the rotation blocking wall 271.
- the driving force of drive motor 274 is transmitted to rotation shielding wall 2711 or rotation shielding wall 2714 by gear 2811 or the like as a power transmission mechanism, so that rotation shielding wall 2711 or rotation shielding wall 2714 is rotated.
- the rotation shielding wall 2714 is in an upright state in which it stands with respect to the main surface of the support base 263, that is, in a closed state in which the air passages connected to the respective storage rooms are closed. In this fully closed state, the blower 47 does not rotate.
- shielding device 270 prevents air from flowing out of blower 47 to the outside in the fully closed state. That is, in the fully closed state, the rotation shielding wall 2711 to the rotation shielding wall 2714 are in the upright state, the communication with the air path for supplying cool air is cut off, and the refrigerator compartment 15 and the freezer compartment 17 shown in FIG. No cool air is supplied. Further, even in the defrosting step of defrosting the cooler 45 shown in FIG. 2, warm air does not flow from the cooling chamber 26 to the refrigeration chamber 15 and the freezing chamber 17 because the shielding device 270 is in the fully closed state.
- FIG. 27 shows the configuration of the shielding device 270 in the fully opened state.
- FIG. 27A is a view of the shielding device 270 in the fully opened state as viewed from the rear
- FIG. 27B is a view of the front cover 67 to which the shielding device 270 in the fully opened state is mounted as viewed from the rear.
- the fully open state is a state in which the communication with the air path for supplying cool air is not blocked by the rotation blocking wall 271, and the cool air blown by the blower 47 flows so as to spread around.
- shield device 270 does not hinder the flow of air from blower 47 to the outside when fully opened. That is, in the fully opened state, the rotation shielding wall 2711 or the rotation shielding wall 2714 is in a lying state in which the rotation shielding wall 2711 or the rotation shielding wall 2714 lies substantially parallel to the main surface of the support base 263 by the driving force of the drive motor 274. Therefore, the cool air blown from the blower 47 by the shielding device 270 is blown to the refrigerating room 15 and the freezing room 17 without being interfered by the rotating shielding walls 2711 to 2714.
- all of the rotation shielding walls 2711 to 2714 of the shielding device 270 are in the open state in which they are lying down, so that the flow path resistance is reduced and the air volume of the blower 47 is reduced. Can be increased. Specifically, when the rotation shielding wall 2711 is in the open state, the cool air is blown to the refrigerator compartment supply air passage 51, and the cool air is sent to the refrigerator compartment 15 shown in FIG. Be blown out. When the rotation shielding wall 2712 and the rotation shielding wall 2714 are in the open state, the cool air is blown to the upper freezing room supply air passage 52 and passes through the air outlet 34, and the upper freezing room 18 shown in FIG. Is blown out. Further, by opening the rotation shielding wall 2713, the cool air can be supplied to the lower freezing room 19 (see FIG. 2) via the lower freezing room supply air passage 53 and the air outlet 34.
- the above-described rotation shielding wall 2711 to the rotation shielding wall 2714 may be in a half-open state. Specifically, based on an instruction from a control device (not shown), a drive motor, which is a stepping motor, is used when transitioning from the fully closed state shown in FIG. 26A to the fully open state shown in FIG. By stopping 274 on the way, the rotation shielding wall 2711 to the rotation shielding wall 2714 can be set to a half-open state. By setting the rotation shielding wall 2711 or the rotation shielding wall 2714 in a half-open state, the amount of cool air blown into the freezing compartment 17 can be precisely adjusted.
- a drive motor which is a stepping motor
- the damper 22 can be interposed in the refrigerating room supply air passage 29, and the turning shield wall 2711 shown in FIG. 26A can be omitted. That is, the shielding device 270 has only the rotating shielding wall 2712, the rotating shielding wall 2713, and the rotating shielding wall 2714. Further, the rotation shielding wall 2712, the rotation shielding wall 2713, and the rotation shielding wall 2714 can be in a fully closed state, a fully open state, and a half open state. By doing so, the degree of freedom in blowing air to the refrigerator compartment 15 and the freezer compartment 17 can be freely adjusted.
- FIG. 28A is a perspective view showing the shielding device 290 in a closed state
- FIG. 28B is a perspective view showing the shielding device 290 in an open state
- FIG. 29 is an exploded perspective view showing the shielding device 290 in detail
- FIG. FIG. 30A is a diagram showing a method of bringing the shielding device 290 into a fully open state
- FIG. 30B is a diagram showing a method of bringing the shielding device 290 into a fully closed state.
- shielding device 290 has a plurality of rotating shielding walls 291 which surround blower 294 from the surroundings and open and close the air path.
- the blower 294 is provided at the center of the rear surface of the support base 296 having a substantially disk shape.
- An end of the rotation shielding wall 291 is rotatably attached to a peripheral portion of the support base 296 via a rotation connection portion 293.
- twelve rotation shield walls 291 are attached to the periphery of the support base 296.
- the turning shielding wall 291 In the closed state, the turning shielding wall 291 is in an upright state in which the turning shielding wall 291 stands upright with respect to the main surface of the support base 296.
- an annular wall composed of a plurality of rotation shielding walls 291 is formed around the support base 296.
- the shielding device 290 has a wire 292 as a power transmission for transmitting a driving force for opening and closing the rotation shielding wall 291. Specifically, a wire insertion portion 295 is formed at the inner end of each rotation shielding wall 291. The wire 292 is inserted through the wire insertion portion 295 of each of the rotation shielding walls 291 and has a substantially annular shape as a whole. Therefore, when the diameter of the wire 292 is reduced by squeezing, the rotation blocking wall 291 rotates so as to rise from the rotation connection portion 293 as a starting point, and becomes substantially orthogonal to the main surface of the support base 296. It stands up. By closing the shielding device 290, the air supply to each storage room can be stopped as shown in FIG.
- FIG. 28B shows the shielding device 290 in the fully opened state.
- each of the rotation shielding walls 291 is in a fully open state that is substantially parallel to the main surface of the support base 296.
- the turning shield wall 291 is turned so as to lie down in the radial direction and the turning shield wall 291 is fully opened. Can be.
- cool air can be blown to each storage room.
- the specific configuration of the shielding device 290 will be described with reference to the exploded perspective view of FIG.
- the shielding device 290 includes a lid 297, a blower 294, a wire cover 288, a rotary shielding wall 291, a support base 296, a wire rotating body 286, a lid 299, and a drive motor 289 from the rear side.
- the lid 297 has a substantially circular outer shape, and has an opening 282 for taking in cool air blown by the blower 294.
- the cover 297 covers the blower 294 from the rear side.
- the blower 294 is similar to the blower 47 described above, and blows cool air taken in through the opening 282 toward the outside in the circumferential direction.
- the blower 294 is mounted on the support base 296 via a blower mounting portion 287.
- the wire cover 288 is made of a substantially annular plate and protects the wire 292 from the rear to secure a space for allowing the movement of the wire 292.
- a plurality of the rotation shielding walls 291 are arranged around the blower 294, and open and close the air path extending from the blower 294 to the periphery by rotating.
- the support base 296 is made of a plate formed in a substantially annular shape, and is provided with the rotation shielding wall 291 and the wire 292.
- a rotation connecting portion 298 is formed around the support base 296 so as to correspond to the rotation connecting portion 293 (see FIG. 28A) of the rotation shielding wall 291.
- Each rotation connection portion 293 of the rotation shielding wall 291 is rotatably connected to the rotation connection portion 298 of the support base 296.
- one end of the wire 292 described above is fixed to the support base 296.
- a groove 285 is formed in an inner portion of the support base 296. The groove 285 is formed to be elongated along the circumferential direction. The end of the wire 292 is connected to the wire rotating body 286 via the groove 285.
- the wire rotating body 286 is made of a plate material formed in a substantially disk shape, and is disposed in front of the support base 296. The other end of the wire 292 is connected to the wire rotating body 286.
- the wire rotating body 286 is drivingly connected to a drive motor 289 via a gear (not shown). Therefore, when the drive motor 289 rotates in one direction, the wire rotating body 286 also rotates in one direction. Conversely, when the drive motor 289 rotates in the opposite direction, the wire rotator 286 also rotates in the opposite direction.
- the lid 299 is a substantially disk-shaped plate member that protects the wire rotator 286 from the front.
- a drive motor 289 is attached to the lid 299.
- the wire 292 has a wire end 2921 on one end and a wire end 2922 on the other end.
- the wire end portion 2921 is fixed to the rotation connecting portion 298 via a wire fixing portion 284 described later, and its position does not change even when the wire rotating body 286 rotates.
- the wire end portion 2922 is fixed to the wire rotator 286 via a wire fixing portion 283 described later, and is displaced along the circumferential direction of the wire rotator 286 as the wire rotator 286 rotates.
- FIG. 30A shows the shielding device 290 in an open state
- FIG. 30B shows the shielding device 290 in a closed state.
- one end of wire 292 is fixed to support base 296 shown in FIG. 29 via wire fixing portion 284 as described above.
- the position of the wire fixing part 284 is unchanged.
- the other end of the wire 292 is fixed to the wire rotating body 286 shown in FIG. With the rotation of the wire rotating body 286, the position of the wire fixing part 283 moves along the groove 285.
- the wire fixing portion 283 also moves inside the groove 285 counterclockwise.
- the wire 292 is drawn out along the anti-circumferential direction, so that the diameter of the wire 292 having an annular shape is expanded.
- each of the rotation shielding walls 291 is simultaneously rotated so as to fall toward the surroundings and is in a lying state.
- the cool air blown by the rotation of the blower 294 is, for example, the refrigerating room supply air passage 51, the upper freezing room supply air passage 52, and the lower freezing room supply air passage shown in FIG. Via the 53, it is supplied to the refrigerator compartment 15, freezer compartment 17 and vegetable compartment 20 shown in FIG.
- the turning shield wall 291 can be opened by expanding the diameter of one annular wire 292, and the turning shield wall 291 can be closed by reducing the diameter. Can be. Therefore, the opening and closing operation of the shielding device 290 can be performed with a simple configuration. Further, the shielding device 290 opens and closes in the diameter direction of the blower 294, and the constituent members do not move along the axial direction of the blower 294, that is, the depth direction of the refrigerator 10. Therefore, in the depth direction of refrigerator 10, the volume occupied by shielding device 290 can be reduced, and the effective volume used as a storage room can be increased.
- the above-described shielding device 290 can be set to a half-open state. Specifically, based on an instruction from a control device (not shown), a drive motor, which is a stepping motor, is used to change from the fully closed state shown in FIG. 28A to the fully open state shown in FIG. By stopping 289 on the way, the rotation shielding wall 291 can be brought into a half-open state. By setting the rotation shielding wall 291 in a half-open state, the amount of cool air blown into the freezing compartment 17 can be precisely adjusted.
- the damper 22 can be interposed in the refrigerating room supply air passage 29, and the turning shield wall 291 at the upper end shown in FIG. 28 (A) can be omitted. Further, the rotation shielding wall 291 can be in a fully closed state, a fully opened state, and a half open state. By doing so, the degree of freedom in blowing air to the refrigerator compartment 15 and the freezer compartment 17 can be freely adjusted.
- the present invention is a shielding device that closes an air passage through which cool air is blown inside a refrigerator, and is arranged side by side so as to surround a blower from a radial outside, and a plurality of circuits that open and close the air passage by rotating.
- a mechanism a mechanism.
- the power transmission mechanism is a gear mechanism disposed between the adjacent rotary shield walls.
- the power transmission mechanism can control opening and closing operations of the multiple rotary shield walls.
- the rotation shielding wall is disposed in a substantially annular shape so as to surround the blower, and the power transmission mechanism is a wire inserted through the rotation shielding wall, Is inserted through a wire insertion portion formed in the rotation shielding wall.
- the turning shield wall can be set up by shortening the diameter of the wire so as to reduce the diameter, and conversely, the wire is extended so that the diameter of the wire increases.
- the turning shielding wall can be placed in a lying state.
- a cooler of a refrigeration cycle for cooling air supplied to the storage room via the air passage, and a blower outlet provided with the cooler and connected to the storage room are formed.
- a shielding device 370 according to the third embodiment will be described with reference to FIGS.
- the basic configuration of the shielding device 370 according to the third embodiment and the configuration applied to the refrigerator 10 are the same as those of the first embodiment, and therefore, the description will focus on the differences.
- the shielding device 370 has an individual opening / closing drive mechanism.
- FIG. 31A is an exploded perspective view of the shielding device 370
- FIG. 31B is a side sectional view of the shielding device 370.
- the shielding device 370 includes a support base 363, a rotation shielding wall 371, and a shielding wall driving mechanism 360.
- the shielding device 370 is a device that shields the air path of the cool air blown by the blower 47. By setting the shielding device 370 to the open state, the air path connecting the cooling chamber 26 and each storage room is communicated, and by setting the shielding device 370 to the closed state, the air path is shut off.
- the blower 47 is disposed at the center of the support base 363 via a fastening means such as a screw.
- the blower 47 includes, for example, a centrifugal fan such as a turbo fan and a blower motor for rotating the centrifugal fan, and blows cool air radially outward.
- the support base 363 is a member made of a synthetic resin that is integrally molded. On the rear surface side of the support base 363, each of the rotary shielding walls 371 is rotatably disposed.
- a side wall 358 is formed around the support base 363.
- the side wall portion 358 is a portion extending rearward from the support base 363.
- a plurality of side wall portions 358 are arranged at substantially equal intervals in the circumferential direction of the support base 363.
- the side wall portion 358 is disposed between the rotation shielding walls 371.
- the rear end of the side wall 358 is fastened to the partition 66 shown in FIG. 4B via fastening means such as screws.
- Rotation shielding wall 371 is a plate-like member made of a rectangular synthetic resin, and has a long side along a tangent to the outer edge of blower 47.
- the rotation shield wall 371 is attached to the vicinity of the peripheral edge of the support base 363 so as to be rotatable rearward around an axis parallel to the main surface of the support base 363. Further, a plurality (five in the present embodiment) of the rotation shielding walls 371 are provided.
- the rotation shield wall 371 is disposed in a path through which the cool air blown by the blower 47 flows, and shields the air path.
- the shielding wall driving mechanism 360 includes a cam 361, a rotating plate 373, and a driving motor 374 for rotating the rotating plate 373.
- a shielding wall drive mechanism 360 is provided on each of the rotating shielding walls 371. That is, five shielding wall driving mechanisms 360 are provided for the five rotating shielding walls 371.
- each shield wall driving mechanism 360 rotates the rotary shield wall 371 based on an instruction from a control device (not shown), thereby changing the rotation pattern of the rotary shield wall 371. It can be realized without limitation.
- the specific shape and function of the shielding wall driving mechanism 360 will be described later.
- FIG. 32 is an exploded perspective view showing the shielding wall driving mechanism 360
- FIG. 32 (B) is a perspective view showing the cam 361.
- shielding wall driving mechanism 360 includes cam 361, rotating plate 373 with which moving shaft 376 of cam 361 is engaged, and driving motor 374 that rotates rotating plate 373. I have.
- the cam 361 is a flat rectangular parallelepiped member made of synthetic resin. As shown in FIG. 32 (B), the cam 361 is formed at the right end thereof with a rotation connecting portion 348 having a hole through which the pin 355 can be inserted. The cam 361 is slidably accommodated in a cam accommodating portion in which the front surface of the support base 363 shown in FIG.
- the rotation plate 373 is a plate-like member having a substantially tongue-like shape, and has a left end connected to a rotation shaft of the drive motor 374 so as not to rotate relatively. Therefore, the rotation plate 373 is rotated by the drive motor 374.
- a moving shaft slide groove 380 for moving the moving shaft 376 of the cam 361 is formed on the right side of the rotating plate 373.
- the moving shaft slide groove 380 has an arcuate shape, and the moving shaft 376 of the cam 361 is slidably engaged with the moving shaft slide groove 380.
- a turning connection portion 368 is formed on the turning shield wall 371 so as to project from the base end of the turning shield wall 371 in an inclined manner.
- a hole through which the pin 355 can be inserted is formed in the rotation connection portion 368.
- a rotation connection portion 364 is formed in the vicinity of both ends of the side of the rotation shielding wall 371.
- a hole through which the pin 369 can be inserted is formed in the rotation connecting portion 364.
- the moving shaft 376 is a columnar protrusion protruding from the front surface of the cam 361.
- the diameter of the moving shaft 376 is slightly shorter than the width of the moving shaft slide groove 380 formed in the rotating plate 373.
- the moving shaft 376 is slidably engaged with the moving shaft slide groove 380.
- the cam 361 is inserted by inserting the pin 355 into the hole of the rotation connection portion 348 of the cam 361 and the hole of the rotation connection portion 368 of the rotation shielding wall 371.
- the rotation shielding wall 371 are connected to be rotatable around the pin 355.
- the rotation shielding wall 371 is rotatably connected to the support base 363 shown in FIG. 31A via a pin 369 inserted into the rotation connection portion 364 of the rotation shielding wall 371.
- the opening and closing operation of the rotation shielding wall 371 can be performed.
- the drive motor 374 rotates the rotating plate 373
- the moving shaft 376 moves in the left and right direction along the moving shaft slide groove 380, that is, the cam 361 moves in the left and right direction.
- the rotation shielding wall 371 rotatably connected to the cam 361 opens and closes by rotating about the rotation connection portion 364 as a rotation center.
- each member constituting the shielding wall driving mechanism 360 is not exposed to the freezing room supply air passage 31 through which the cool air flows. Therefore, since cool air is not blown to the shielding wall driving mechanism 360, it is possible to prevent the shielding wall driving mechanism 360 from freezing.
- FIG. 33 is a diagram showing a shielding device 370 according to an embodiment of the present invention
- FIG. 33 (A) is a diagram showing a turning shielding wall 3711 and the like of the shielding device 370 as viewed from the rear
- FIG. FIG. 3 is a diagram showing a configuration of a rotating plate viewed from the front.
- shielding device 370 has rotating shielding walls 371, 3712, 3713, 3714, and 3715 as rotating shielding wall 371 described above.
- the rotation shielding wall 3711 to the rotation shielding wall 3715 have a rectangular shape having a long side substantially parallel to a tangent to the outer edge of the blower 47 shown in FIG. Further, the rotation shielding wall 3711 to the rotation shielding wall 3715 are rotatably attached to the peripheral portion of the support base 363 shown in FIG.
- a radially inner end of the rotation shielding wall 3711 is rotatably connected to a cam 3611 on which a moving shaft 3761 is formed.
- a radially inner end of the rotation blocking wall 3712 is rotatably connected to a cam 3612 having a moving shaft 3762 formed therein.
- a radially inner end of the rotation shielding wall 3713 is rotatably connected to a cam 3613 having a moving shaft 3763 formed thereon.
- a radially inner end portion of the rotation shielding wall 3714 is rotatably connected to a cam 3614 on which a moving shaft 3764 is formed.
- a radially inner end of the rotation shielding wall 3715 is rotatably connected to a cam 3615 having a moving shaft 3765 formed thereon.
- the cam 3611 to the cam 3615 are rotatably connected to the rotation shielding wall 3711 to the inner side of the rotation shielding wall 3715, respectively. Accordingly, the cam 3611 to the cam 3615 are disposed outside, and the rotation shielding wall 3711 to the rotation shielding wall 3715 are in an upright state. On the other hand, when the cam 3612 to the cam 3615 are arranged inside, the rotation shielding wall 3712 to the rotation shielding wall 3715 are in the lying state.
- the moving shaft 3761 of the cam 3611 is slidably engaged with the moving shaft slide groove 3801 of the rotating plate 3731.
- the moving shaft 3762 of the cam 3612 is slidably engaged with the moving shaft slide groove 3802 of the rotating plate 3732.
- the moving shaft 3763 of the cam 3613 is slidably engaged with the moving shaft slide groove 3803 of the rotating plate 3733.
- the moving shaft 3764 of the cam 3614 is slidably engaged with the moving shaft slide groove 3804 of the rotating plate 3734.
- the moving shaft 3765 of the cam 3615 is slidably engaged with the moving shaft slide groove 3805 of the rotating plate 3735.
- FIG. 34 shows the configuration of the shielding device 370 in the fully closed state.
- FIG. 34 (A) is a view of the shielding device 370 in the fully closed state as viewed from the rear
- FIG. 34 (B) is a cross-sectional view taken along a line DD of FIG. 34 (A).
- (C) is a view of the rotating plate 373 and the like in the fully closed state as viewed from the front
- FIG. 34 (D) is an enlarged view of a main part of FIG. 34 (B).
- the fully closed state is a state in which the periphery of the blower 47 is shielded by the rotary shield wall 371, thereby closing the blower port 27 illustrated in FIG. In this fully closed state, the blower 47 does not rotate.
- shielding device 370 prevents air from flowing out of blower 47 to the outside in the fully closed state. That is, in the fully closed state, all the rotation shielding walls 371 are in the upright state, the communication with the air path for supplying cool air is cut off, and cool air is not supplied to the refrigerator compartment 15 and the freezer compartment 17. Further, even in the defrosting step of defrosting the cooler 45 shown in FIG. 2, warm air does not flow from the cooling chamber 26 to the refrigerator compartment 15 and the freezer compartment 17 because the shielding device 370 is in the fully closed state.
- rotation blocking wall 371 in the fully closed state, is in a closed state in which it stands substantially perpendicular to the main surface of support base 363.
- all the rotation shielding walls 371 of the shielding device 370 are in the closed state.
- the rear end of the rotation shielding wall 371 is in contact with the partition 66 shown in FIG. By doing so, the airtightness when closing the air path with the rotation shielding wall 371 can be improved.
- the drive motor 374 is driven to rotate the rotating plate 373.
- the moving shaft 376 is slid in the moving shaft slide groove 380, and the moving shaft 376 is arranged at the outer end of the moving shaft slide groove 380.
- the cam 361 moves radially outward.
- the rotation shielding wall 371 rotatably connected to the cam 361 rotates around the rotation connection portion 368 as a rotation center, and stands up substantially at right angles to the main surface of the support base 363. It becomes.
- FIG. 35 shows the configuration of the shielding device 370 in the fully opened state.
- FIG. 35 (A) is a view of the shielding device 370 in the fully opened state as viewed from the rear
- FIG. 35 (B) is a cross-sectional view taken along the line EE of FIG. 35 (A).
- FIG. 35C is a view of the rotating plate 373 and the like in the fully opened state as viewed from the front
- FIG. 35D is an enlarged view of a main part of FIG. 35B.
- the fully open state is a state in which the surroundings of the blower 47 are not blocked by the turning shield wall 371 from communicating with the air path that supplies the cool air, whereby the cool air blown by the blower 47 spreads around.
- shielding device 370 does not hinder the flow of air from blower 47 to the outside when fully opened. That is, in the fully opened state, the cool air blown from the blower 47 by the shielding device 370 is blown to the refrigerating room 15 and the freezing room 17 without being interfered by the rotating shielding wall 371. As shown in FIG. 35 (A), in the fully opened state, all the rotation shielding walls 371 are in a reclined state in which they fall down radially outward.
- the shielding device 370 separately rotates the rotating plate 3731 to the rotating plate 3735 by the driving motor 3741 to the driving motor 3745, and thereby the rotation shielding illustrated in FIG.
- the wall 3711 or the turning shield wall 3715 can be individually turned to open and close. Therefore, since the rotation operation of the rotation shielding wall 3711 or the rotation shielding wall 3715 can be freely controlled, the cool air is cooled according to the temperature in the refrigerator room 15, the freezing room 17 and the vegetable room 20 shown in FIG. The air volume can be controlled precisely.
- the volume occupied by shielding device 370 can be reduced, the internal volume of freezing compartment 17 formed in front of shielding device 370 is increased, and more frozen objects are provided. Can be stored in the freezer 17.
- a shielding device 370 according to another embodiment will be described.
- the configuration of the shielding device 370 described with reference to these drawings is different in that a solenoid 381 is provided as a driving source of the shielding wall driving mechanism 360, and therefore, the description will be focused on this point.
- FIG. 36 (A) is an exploded perspective view of the shielding device 370
- FIG. 36 (B) is a sectional view showing the shielding wall driving mechanism 360.
- shielding device 370 has blower 47, rotating shielding wall 371, support base 363, and shielding wall driving mechanism 360 from the rear side.
- the shielding wall driving mechanism 360 is arranged corresponding to each of the rotating shielding walls 371. Except for the configuration of the shielding wall driving mechanism 360, the configuration is the same as that of the shielding device 370 shown in FIG.
- shielding wall drive mechanism 360 includes a cam 361 having a contact portion 382 formed thereon, and a solenoid 381.
- the cam 361 is made of an integrally molded synthetic resin or the like, and the upper end of the cam 361 is rotatably connected to the rotation shielding wall 371.
- a contact portion 382 that projects forward is formed at a lower portion of the cam 361.
- the configuration in which the cam 361 and the rotation shielding wall 371 are rotatably connected is as shown in FIG.
- a movable portion 387 is formed downward from the lower end of the solenoid 381.
- the lower end of the movable portion 387 of the solenoid 381 is connected to the contact portion 382 of the cam 361.
- the movable part 387 is arranged above, and when the solenoid 381 is not energized, the movable part 387 is arranged below.
- the cam 361 can be moved to rotate the rotating shielding wall 371, and the rotating shielding wall 371 can be opened and closed. .
- FIG. 37 shows the configuration of the shielding device 370 in the fully closed state.
- FIG. 37 (A) is a view of the shielding device 370 in the fully closed state as viewed from the rear
- FIG. 37 (B) is a cross-sectional view taken along the line FF of FIG. 37 (A).
- (C) is a diagram of the solenoid 381 and the like in the fully closed state as viewed from the front
- FIG. 37 (D) is an enlarged view of a main part of FIG. 37 (B).
- shielding device 370 prevents air from flowing out of blower 47 to the outside in the fully closed state.
- the rotation shielding wall 371 In the fully closed state, the rotation shielding wall 371 is in a closed state that stands up substantially perpendicular to the main surface of the support base 363. Here, all the rotation shielding walls 371 of the shielding device 370 are in the closed state.
- FIG. 38 shows the configuration of the shielding device 370 in the fully opened state.
- FIG. 38 (A) is a view of the shielding device 370 in the fully opened state as viewed from the rear
- FIG. 38 (B) is a cross-sectional view taken along the line GG of FIG. 38 (A).
- FIG. 38C is a view of the solenoid 381 and the like in the fully opened state as viewed from the front
- FIG. 38D is an enlarged view of a main part of FIG. 38B.
- shielding device 370 does not hinder the flow of air from blower 47 to the outside when fully opened.
- all the rotation shielding walls 371 are in a lying state that is substantially parallel to the main surface of the support base 363.
- each rotation shielding wall 371 can be individually controlled to open and close, the degree of freedom in controlling the opening and closing of the air path can be increased, and the temperature inside the storage can be adjusted with high accuracy.
- a configuration of a shielding device 370 will be described.
- a shielding wall driving mechanism 360 is provided for each rotating shielding wall 371.
- the opening and closing operations of the rotating shielding wall 3711 to the rotating shielding wall 3714 are driven by the shielding wall driving mechanism 3601 and the shielding wall driving mechanism 3602. That is, the opening / closing operation of the four rotating shielding walls 3711 to 3714 is driven by the two shielding wall driving mechanisms 3601 and 3602.
- the inner side of the rotation shielding wall 3711 to the rotation shielding wall 3714 is rotatably attached to the support base 363 illustrated in FIG.
- the shielding wall drive mechanism 3601 has a winding portion 3851, a drive motor 3741, a wire 3861 and a wire 3862.
- the drive motor 3741 rotates the substantially rod-shaped winding portion 3851 in the normal rotation direction or the reverse rotation direction.
- One end of the wire 3861 is connected to the rotation shielding wall 3711, and the other end is connected to the winding portion 3851.
- One end of the wire 3862 is connected to the rotation shielding wall 3712, and the other end is connected to the winding portion 3851.
- the shielding wall driving mechanism 3601 drives opening and closing operations of the rotating shielding wall 3711 and the rotating shielding wall 3712.
- the winding portion 3851 rotates, so that the wire 3861 and the wire 3862 are wound, and the rotation shielding wall 3711 and the rotation shielding wall 3712 are in the lying state. From the upright position, and the closed state closes the air path.
- the winding 3851 rotates, so that the wire 3861 and the wire 3862 are fed out, and the rotation shielding wall 3711 and the rotation shielding wall 3712 are changed from the standing state to the lying state. As a result, the above-mentioned air path is opened to open.
- the shielding wall drive mechanism 3602 has a winding portion 3852, a drive motor 3742, wires 3863 and 3864.
- the drive motor 3742 rotates the substantially rod-shaped winding portion 3852 in the normal rotation direction or the reverse rotation direction.
- One end of the wire 3863 is connected to the rotation shielding wall 3713, and the other end is connected to the winding portion 3852.
- One end of the wire 3864 is connected to the rotation shielding wall 3714, and the other end is connected to the winding portion 3852.
- the shielding wall drive mechanism 3602 drives opening and closing operations of the rotating shielding wall 3713 and the rotating shielding wall 3714.
- the winding portion 3852 rotates to wind the wire 3863 and the wire 3864, and the rotation shielding wall 3713 and the rotation shielding wall 3714 are in the lying state. From the upright position, and the closed state closes the air path.
- the winding portion 3852 rotates, whereby the wire 3863 and the wire 3864 are paid out, and the rotation shielding wall 3713 and the rotation shielding wall 3714 are changed from the standing state to the lying state. As a result, the above-mentioned air path is opened to open.
- the opening / closing operation of the rotation shielding wall 3711 or the rotation shielding wall 3714 is individually driven by the shielding wall driving mechanism 3601 and the shielding wall driving mechanism 3602, so that the rotation shielding wall 3711 or the rotation shielding wall is driven.
- the configuration of the shielding device 370 can be simplified while securing the degree of freedom of the opening and closing operation of the 3714.
- rotation blocking wall 371 can be half-opened. By doing so, the amount of cool air blown into the storage room can be finely controlled.
- the present invention relates to a shielding device that closes an air path through which cool air is blown inside a refrigerator, and a plurality of rotating shielding walls that surround the blower from a radial outside, and a shielding wall driving mechanism that drives the rotating shielding wall. And a plurality of the shielding wall driving mechanisms are provided.
- the shielding device of the present invention by having a plurality of shielding wall driving mechanisms, the rotating shielding walls can be individually operated, and the degree of freedom of the opening and closing operation of the entire rotating shielding wall is improved. can do.
- the shield wall drive mechanism is provided for each of the rotary shield walls.
- the shielding wall driving mechanism is provided corresponding to each of the rotating shielding walls, the rotating shielding walls can be individually rotated, and The degree of freedom of the opening / closing operation of the shielding wall can be further increased.
- the shielding wall driving mechanism includes a cam rotatably connected to the rotating shielding wall, a rotating plate having a groove for slidingly moving the cam, and rotating, And a drive motor for rotating the rotating plate.
- the rotary shield wall can be opened and closed with a simple configuration including the drive motor.
- the shield wall driving mechanism includes a cam rotatably connected to the rotary shield wall, and a solenoid for moving the cam.
- the rotary shield wall can be opened and closed with a simple configuration including the solenoid.
- the refrigerator according to the present invention includes a cooling unit of a refrigeration cycle for cooling air supplied to the storage room through the air passage, and a cooling unit in which the cooler is provided and an air outlet connected to the storage room is formed.
- the air conditioner further includes a chamber, the blower that blows the air supplied from the blow port toward the storage chamber, and the shielding device that at least partially blocks the air path.
- a shielding device 470 according to the fourth embodiment will be described with reference to FIGS.
- the basic configuration of the shielding device 470 according to the fourth embodiment and the configuration applied to the refrigerator 10 are the same as those of the first embodiment, and therefore, the description will focus on the differences.
- the air passage is opened by the rotation shielding wall 471 falling inward in the radial direction.
- FIG. 40A is an exploded perspective view of the shielding device 470
- FIG. 40B is a side sectional view of the shielding device 470.
- the shielding device 470 includes a support base 463, a rotating shielding wall 471, and a shielding wall driving mechanism 460.
- the shielding device 470 is a device that shields the air path of the cool air blown by the blower 47. By setting the shielding device 470 to the open state, the air path connecting the cooling chamber 26 and each storage room is communicated, and by setting the shielding device 470 to the closed state, the air path is shut off.
- the blower 47 is disposed at the center of the front surface of the support base 463 via fastening means such as screws.
- the blower 47 includes, for example, a centrifugal fan such as a turbo fan and a blower motor for rotating the centrifugal fan, and blows cool air radially outward.
- the support base 463 is a member made of synthetic resin that is integrally molded. On the rear surface side of the support base 463, each of the rotation shielding walls 471 is rotatably disposed. Further, a cam housing portion 462 for housing the cam 461 is formed on the front side of the support base 463. The cam storage section 462 will be described later with reference to FIG. A rotating plate 473 is rotatably mounted on the front side of the support base 463. Further, a drive motor 474 for generating a driving force for rotating the rotation shielding wall 471 is also attached to the support base 463.
- a side wall 458 is formed around the support base 463.
- the side wall portion 458 is a portion extending rearward from the support base 463.
- a plurality of side wall portions 458 are arranged at substantially equal intervals in the circumferential direction of the support base 463.
- the side wall portion 458 is disposed between the rotation shielding walls 471.
- the rear end of the side wall 458 is fastened to the partition 66 shown in FIG. 4B via fastening means such as screws.
- the rotation blocking wall 471 is a plate-like member made of a rectangular synthetic resin, and has a long side along the outer edge of the rotating plate 473.
- the rotation shielding wall 471 is attached near the periphery of the support base 463 so as to be rotatable rearward around an axis parallel to the main surface of the support base 463. Further, a plurality (5 in the present embodiment) of the rotation shielding walls 471 are arranged near the peripheral portion of the support base 463.
- the rotation shielding wall 471 is disposed in a path through which the cool air blown by the blower 47 flows, and shields the air path.
- the rotating plate 473 is made of a substantially disk-shaped steel plate or a synthetic resin plate when viewed from the front, and is rotatably disposed in front of the support base 463.
- the rotation plate 473 has a moving shaft slide groove 480 for rotating the rotation shielding wall 471.
- a gear 477 for transmitting torque is formed on the periphery of the rotating plate 473. As will be described later, the drive motor 474 is driven, torque is transmitted via the gear portion 477, and the rotation plate 473 is rotated, whereby the rotation shield wall 471 is opened and closed.
- a flange to which a drive motor 474 for driving the rotation of the rotating plate 473 is mounted on the right side of the support base 463.
- a gear (not shown) is arranged between the gear 477 of the rotating plate 473 and the drive motor 474.
- FIG. 41 a description will be given of a shielding wall driving mechanism 460 that drives the above-described rotating shielding wall 471.
- FIG. 41 (A) is an exploded perspective view showing a left portion of the shielding device 470
- FIG. 41 (B) is a perspective view showing a cam 461.
- a shielding wall driving mechanism 460 includes a cam 461, a rotating plate 473 with which a moving shaft 476 of the cam 461 is engaged, and a driving motor 474 for rotating the rotating plate 473 (see FIG. ))).
- the cam 461 is a flat rectangular parallelepiped member made of synthetic resin. As shown in FIG. 41 (B), at one end of the cam 461, a rotation connection portion 448 having a hole through which the pin 455 can be inserted is formed. The cam 461 is housed in the cam housing 462 of the support base 463.
- the moving shaft 476 is a columnar protrusion protruding from the front surface of the cam 461 as shown in FIG.
- the diameter of the moving shaft 476 is slightly shorter than the width of the moving shaft slide groove 480 formed in the rotating plate 473.
- the moving shaft 476 is slidably engaged with the moving shaft slide groove 480.
- the cam housing 462 is a cavity formed in the support base 463, and is formed to be elongated along the radial direction of the support base 463.
- the cam accommodating portions 462 are formed corresponding to the respective rotation shielding walls 471, and are formed by recessing the support base 463 from the front.
- the size of the cam storage portion 462 is such that the cam 461 can be stored and the cam 461 can slide in the radial direction.
- a turning connection portion 468 is formed on the turning shielding wall 471 so as to project obliquely from the base end of the turning shielding wall 471.
- a hole through which the pin 455 can be inserted is formed in the rotation connection portion 468.
- a rotation connecting portion 464 is formed near both ends of the side of the rotation shielding wall 471. The rotation connecting portion 464 has a hole through which the pin 469 can be inserted.
- a rotation connecting portion 454 is formed near the periphery of the support base 463.
- the rotation connection portions 454 are provided corresponding to the rotation connection portions 464 of the respective rotation shielding walls 471.
- the rotation connection portion 454 has a hole through which the pin 469 can be inserted.
- the pin 455 is inserted into the hole of the rotation connection part 448 of the cam 461 and the hole of the rotation connection part 468 of the rotation shield wall 471, so that the cam 461 and the rotation shield wall 471 are around the pin 455. Is rotatably connected. Further, the pin 469 is inserted into the hole of the rotation connection portion 454 of the support base 463 and the hole of the rotation connection portion 464 of the rotation shield wall 471, so that the support base 463 and the rotation shield wall 471 are inserted. And are connected rotatably.
- the drive motor 474 is driven to rotate the rotating plate 473, and the moving shaft 476 slides in the moving shaft slide groove 480. This causes the cam 461 to slide within the cam housing 462. By sliding the cam 461, the rotation shielding wall 471 can be rotated around the pin 455.
- the rotation shielding wall 471 rotates so as to be in an upright state with the rotation connecting portion 464 as a rotation center, and the rotation shielding wall 471 is rotated. 471 is perpendicular to the main surface of the support base 463.
- the rotation shielding wall 471 rotates so as to be in a reclined state around the rotation connecting portion 464, and the rotation shielding wall 471 is supported. The state is substantially parallel to the main surface of the base 463.
- the rotation shielding wall 471 can be opened. Conversely, if the moving shaft slide groove 480 is formed on the center side of the support base 463, the rotation shielding wall 471 can be closed.
- the open / close state of each rotation shielding wall 471 can be arbitrarily set.
- the rotation shield wall 471 can be fully opened or fully closed without employing a complicated configuration, and some of the rotation shield walls 471 are in a closed state or an open state. It can also be in a state.
- each member constituting shield wall drive mechanism 460 is not exposed to freezer compartment supply air passage 31 through which cool air flows. Therefore, since cool air is not blown to the shielding wall driving mechanism 460, it is possible to prevent the shielding wall driving mechanism 460 from freezing.
- each end of turning shield wall 471 in the longitudinal direction comes into contact with side wall portion 458.
- the airtightness when the rotation shielding wall 471 is in the closed state can be improved, so that the cooling air can be cooled. Cold air leakage and inflow of warm air at the time of defrost can be reliably suppressed.
- a frame 441 is formed between the side walls 458.
- the size of the frame portion 441 is approximately equal to the size of the rotation shielding wall 471.
- FIG. 42 is a diagram illustrating a shielding device 470 according to an embodiment of the present invention
- FIG. 42 (A) is a diagram illustrating a turning shielding wall of the shielding device as viewed from the rear
- FIG. 42 (B) is a rotating plate.
- FIG. 3 is a diagram showing the configuration of FIG.
- shielding device 470 has rotating shielding walls 471, 4712, 4713, 4714, and 4715 as rotating shielding wall 471 described above.
- the rotation shielding wall 4711 to the rotation shielding wall 4715 have a rectangular shape having a long side substantially parallel to a tangential direction of the rotation plate 473. Further, the rotation shielding wall 4711 to the rotation shielding wall 4715 are rotatably attached to a peripheral portion of the support base 463 shown in FIG.
- a radially inner end of the rotation shielding wall 4711 is rotatably connected to a cam 4611 on which a moving shaft 4761 is formed.
- a radially outer end of the rotary shield wall 4712 is rotatably connected to a cam 4612 having a moving shaft 4762 formed thereon.
- the radially outer end of the rotation blocking wall 4713 is rotatably connected to a cam 4613 having a moving shaft 4763 formed thereon.
- a radially outer end of the rotation shielding wall 4714 is rotatably connected to a cam 4614 on which a moving shaft 4764 is formed.
- the radially outer end of the rotation blocking wall 4715 is rotatably connected to a cam 4615 having a moving shaft 4765 formed thereon.
- the cam 4611 is rotatably connected to the inner side of the rotation shielding wall 4711.
- the rotation shielding wall 4711 is placed in an upright state when the cam 4611 is disposed outside, and the rotation shielding wall 4711 is placed in a lying state when the cam 4611 is disposed inside.
- the cams 4612 to 4615 are rotatably connected to the outer side sides of the rotation shielding wall 4712 to the rotation shielding wall 4715, respectively. Accordingly, the cam 4612 to the cam 4615 are arranged inside, so that the turning shielding wall 4712 to the turning shielding wall 4715 are in an upright state. On the other hand, by disposing the cam 4612 to the cam 4615 on the outside, the turning shielding wall 4712 to the turning shielding wall 4715 are in the lying state.
- rotating plate 473 is a steel plate formed in a substantially disk shape, and has a plurality of moving shaft slide grooves 480 for controlling the opening / closing operation of rotation blocking wall 4711 and the like. Have been.
- a gear 477 is formed on a part of the peripheral edge of the rotating plate 473. When the drive motor 474 and the gear 477 shown in FIG. The rotating plate 473 rotates.
- moving shaft slide grooves 4801, 4802, 4804, and 4805 are formed as the moving shaft slide grooves 480.
- the moving shaft slide groove 4801 to the moving shaft slide groove 4805 are groove-shaped portions formed along the circumferential direction of the rotating plate 473.
- the moving shaft slide groove 4801 to the moving shaft slide groove 4805 have a predetermined bent shape in order to slide the cam 4611 to the cam 4615 shown in FIG. 42A in the radial direction.
- the moving shaft 4761 or the moving shaft 4765 shown in FIG. 42A is engaged with the moving shaft slide groove 4801 or the moving shaft slide groove 4805.
- the moving shaft 4761 is engaged with the moving shaft slide groove 4801
- the moving shaft 4762 and the moving shaft 4763 are engaged with the moving shaft slide groove 4802
- the moving shaft 4764 is engaged with the moving shaft slide groove 4804.
- the moving shaft 4765 is engaged with the moving shaft slide groove 4805.
- the moving shaft slide groove 4801 is composed of a groove 48011 to a groove 48013.
- the groove portion 48011 extends in the circumferential direction
- the groove portion 48012 inclines counterclockwise inward in the radial direction
- the groove portion 48013 extends in the circumferential direction.
- the moving shaft slide groove 4802 is composed of a groove 48021 to a groove 48029.
- the groove portion 48021 is inclined inward in the radial direction in the counterclockwise direction
- the groove portion 48022 is extended in the circumferential direction
- the groove portion 48023 is inclined in the radially outward direction in the counterclockwise direction
- the groove portion 48024 is inclined. It extends along the circumferential direction.
- the groove portion 48025 is inclined inward in the radial direction in the counterclockwise direction
- the groove portion 48026 is extended in the circumferential direction
- the groove portion 48027 is inclined in the counterclockwise direction outward in the radial direction.
- the groove portion 48028 extends in the circumferential direction
- the groove portion 48029 is inclined inward in the radial direction in the counterclockwise direction.
- the moving shaft slide groove 4804 is composed of a groove 48041 to a groove 48044.
- the groove 48041 extends in the circumferential direction
- the groove 48042 inclines radially outward in a counterclockwise direction
- the groove 48043 extends in the circumferential direction
- the groove 48044 has a radius in the counterclockwise direction. Inclining in the direction.
- the moving shaft slide groove 4805 is composed of a groove 48051 to a groove 48056.
- the groove portion 48051 is inclined inward in the radial direction in the counterclockwise direction
- the groove portion 48052 is extended in the circumferential direction
- the groove portion 48053 is inclined outward in the counterclockwise direction
- the groove portion 48054 is inclined in the counterclockwise direction. It extends along the circumferential direction.
- the groove 48055 is inclined in a counterclockwise direction inward in the radial direction
- the groove 48056 extends along the circumferential direction.
- a rotary shaft slide groove 479 extending along the circumferential direction is formed in the inner portion of the rotary plate 473.
- three rotation shaft slide grooves 479 are formed at equal intervals.
- the rotating plate 473 is held by the support base 463 via a rotating shaft 475 (see FIG. 43C) slidably engaged with the rotating shaft slide groove 479.
- FIG. 43 shows the configuration of the shielding device 470 in the fully closed state.
- FIG. 43 (A) is a view of the shielding device 470 in the fully closed state as viewed from the rear
- FIG. 43 (B) is a cross-sectional view taken along the line HH of FIG. 43 (A).
- FIG. 43 (C) is a view of the rotating plate 473 and the like in the fully closed state as viewed from the rear
- FIG. 43 (D) is an enlarged view of a main part of FIG.
- the fully closed state is a state in which the periphery of the blower 47 is shielded by the rotary shield wall 471, thereby closing the blower port 27 illustrated in FIG. In this fully closed state, the blower 47 does not rotate.
- shielding device 470 prevents air from flowing out of blower 47 to the outside in the fully closed state. That is, in the fully closed state, all the rotation shielding walls 471, that is, the rotation shielding walls 4711 to 4715 are in the upright state, and communication with the air path for supplying cool air is shut off. Also, no cool air is supplied to the freezer compartment 17. Further, even in the defrosting step of defrosting the cooler 45 shown in FIG. 2, warm air does not flow into the refrigerator compartment 15 and the freezer compartment 17 from the cooling compartment 26 because the shielding device 470 is in the fully closed state.
- the rotation shielding wall 4715 and the rotation shielding wall 4712 are in a closed state in which the rotation shielding wall 4715 stands substantially perpendicularly to the main surface of the support base 463.
- the rear ends of the rotation shielding walls 4715 and 4712 are in contact with the partition 66 shown in FIG. By doing so, the airtightness when closing the air path with the rotation shielding wall 471 can be improved.
- the cam 4615 moves radially inward by disposing the moving shaft 4765 at the radially inner portion.
- the rotation shielding wall 4715 rotatably connected to the cam 4615 rotates radially outward around the rotation connection portion 468 as a rotation center, and is substantially rotated with respect to the main surface of the support base 463.
- the closed state stands at a right angle.
- FIG. 44 shows the configuration of the shielding device 470 in the fully opened state.
- FIG. 44 (A) is a view of the shielding device 470 in the fully opened state as viewed from the rear
- FIG. 44 (B) is a cross-sectional view taken along the line II of FIG. 44 (A).
- FIG. 44C is a view of the rotating plate 473 and the like in the fully opened state as viewed from the rear
- the fully open state is a state in which the surroundings of the blower 47 are not blocked by the turning shield wall 471 from communicating with the air path for supplying the cool air, whereby the cool air blown by the blower 47 spreads around.
- shield device 470 does not hinder the flow of air from blower 47 to the outside when fully opened. That is, in the fully opened state, the cool air blown from the blower 47 by the shielding device 470 is not interfered with by the rotating shielding wall 471, that is, the rotating shielding wall 4711 or the rotating shielding wall 4715, and the cold room 15 and the freezing room are not interfered with. 17 is blown.
- the turning shield wall 4711 in the fully opened state, the turning shield wall 4711 is in a reclined state in which it falls down radially outward, and the turning shield wall 4712 or the turning shield wall 4715 is inward in the radial direction. Lying on its side.
- rotation shielding wall 4715 and rotation shielding wall 4712 are in a lying state substantially parallel to the main surface of support base 463.
- the rotation shielding wall 471 does not exist in the air path blown from the blower 47, and the flow path resistance of the air path is reduced. 47 can be increased.
- the driving plate 473 is rotated via the gear 430 by driving the driving motor 474, and each moving shaft 476 is moved along the moving shaft.
- the moving shaft 4761 is arranged at a radially inner portion of the moving shaft slide groove 4801.
- a moving shaft 4762 and a moving shaft 4763 are arranged at a radially outer portion of the moving shaft slide groove 4802.
- a moving shaft 4764 is arranged at a radially outer portion of the moving shaft slide groove 4804
- a moving shaft 4765 is arranged at a radially outer portion of the moving shaft slide groove 4805.
- the cam 4615 moves radially outward by disposing the moving shaft 4765 at the radially outer portion.
- the rotation shielding wall 4715 rotatably connected to the upper end portion of the cam 4615 is pivoted inward in the radial direction with the rotation center near the rotation connection portion 468 as a rotation center, and falls down, and
- the main surface of the wall 4715 is substantially parallel to the main surface of the cam housing 462.
- the shielding device 470 can switch between the open and closed states of the respective rotating shielding walls 4711 to 4715 by rotating the rotating plate 473 shown in FIG. Therefore, the members are not displaced along the axial direction of the blower 47, that is, along the depth direction of the refrigerator 10. Therefore, the thickness dimension occupied by the shielding device 470 can be reduced. Furthermore, referring to FIG. 3, since the volume occupied by shielding device 470 can be reduced, the internal volume of freezing compartment 17 formed in front of shielding device 470 is increased, so that more frozen objects Can be stored in the freezer 17.
- the following invention can be grasped.
- the present invention is a shielding device that closes an air passage through which cool air is blown inside a refrigerator, a rotating shielding wall surrounding a blower from a radial outside, and a shielding wall driving mechanism that drives the rotating shielding wall,
- the rotation shielding wall rotates to fall down inward in the radial direction to release the air path, and rotates to stand up in the radial direction to release the air path. It is characterized by closing.
- the rotation shielding wall pivots outward in the radial direction to shield the air path, so that the direction in which the rotation shielding wall rotates at the time of shielding and the blower Since the direction in which the air is blown substantially coincides, the airtightness at the time of shielding can be improved.
- the shielding wall drive mechanism may include a disk-shaped rotating plate having a moving shaft slide groove formed therein, and a moving shaft engaged with the moving shaft slide groove.
- a cam rotatably connected to a wall, and a drive motor for rotating the rotating plate, wherein the rotating plate rotates, whereby the moving shaft slides in the moving shaft slide groove,
- the rotation blocking wall closes the air path, and the rotating plate rotates, so that the moving shaft slides in the moving shaft slide groove, so that the cam moves in the radial direction.
- the turning shielding wall releases the air path.
- the shielding device of the present invention since the opening and closing operation of the rotary shielding wall can be easily driven by the rotating operation of the rotating plate, the conventional shielding device in which the members constituting the shielding device move in the depth direction is used. Compared with the device, the volume occupied by the shielding device can be reduced, and the volume in the refrigerator is not compressed.
- the rotation shielding wall is rotatably mounted, and further includes a support base on which a cam housing portion is formed, wherein the cam is provided in the cam housing portion in a radial direction. And is stored in a slidable state.
- the moving direction of the cam is regulated in the radial direction inside the cam housing portion of the support base, so that the opening and closing of the rotary shielding wall is suitably driven by the sliding operation of the cam. can do.
- a space is formed between the blower and the rotating shielding wall to allow the rotating shielding wall to fall inward in the radial direction.
- a space where the rotating shielding wall can fall can be secured between the blower and the rotating shielding wall.
- a space through which cool air can flow can be sufficiently secured between the rotation shielding wall and the blower.
- the refrigerator according to the present invention includes a cooling unit of a refrigeration cycle for cooling air supplied to the storage room through the air passage, and a cooling unit in which the cooler is provided and an air outlet connected to the storage room is formed.
- the air conditioner further includes a chamber, the blower that blows the air supplied from the blow port toward the storage chamber, and the shielding device that at least partially blocks the air path.
- the shielding device 570 according to the fifth embodiment will be described with reference to FIGS.
- the basic configuration of the shielding device 570 according to the fifth embodiment and the configuration applied to the refrigerator 10 are the same as those of the first embodiment, and therefore, the description will focus on the differences.
- the moving shafts 576 of the plurality of cams 561 are engaged with the slide grooves 580 of the rotating plate 573.
- FIG. 45A is an exploded perspective view of the shielding device 570
- FIG. 45B is a perspective view showing the cam 561.
- shielding device 570 includes a support base 563, a rotating plate 573, a lid member 57, and a shielding wall driving mechanism 560.
- the shielding device 570 is a device for shielding the air path of the cool air blown by the blower 47. By setting the shielding device 570 to the open state, the air path connecting the cooling chamber 26 and each storage room is communicated, and by setting the shielding device 570 to the closed state, the air path is shut off.
- the blower 47 is disposed at the center of the rear surface of the support base 563 via a fastening means such as a screw.
- the blower 47 includes, for example, a centrifugal fan such as a turbo fan and a blower motor for rotating the centrifugal fan, and blows cool air outward in the radial direction.
- the rotation shield wall 571 is a plate-like member made of a rectangular synthetic resin, and has a long side along the tangential direction of the outer edge of the rotation plate 573.
- the rotation shielding wall 571 is attached to the vicinity of the periphery of the support base 563 so as to be able to rotate rearward.
- a plurality (four in the present embodiment) of the rotation shielding walls 571 are provided.
- the rotation shielding wall 571 is disposed in a path through which the cool air blown by the blower 47 flows, and appropriately shields the air path.
- a frame-like portion 583 that surrounds the rotation shielding wall 571 in the upright state is adjacent to a base end that is the rotation center of the rotation shielding wall 571.
- the frame portion 583 is made of a synthetic resin molded in a frame shape, and is arranged on the rear surface of the support base 563 so as to surround the blower 47.
- the frame portions 583 are arranged corresponding to the respective rotation shielding walls 571, and the rotation shielding walls 571 close the openings of the frame portions 583, thereby closing the air passage.
- the rotating plate 573 has a substantially disk shape when viewed from the rear, and is rotatably disposed on the front side of the support base 563.
- the rotation plate 573 has a slide groove 580 for rotating the rotation shielding wall 571.
- the slide groove 580 is formed on the rear surface of the rotating plate 573 as a bottomed groove surrounded by a rib.
- a gear groove 549 for transmitting torque is formed in a peripheral portion of the rotating plate 573.
- the lid member 57 is a plate-like member that covers the rotating plate 573 from the front, is formed slightly larger than the rotating plate 573, and has a substantially circular shape when viewed from the front.
- the shielding wall driving mechanism 560 that performs the opening and closing operation of the above-described rotating shielding wall 571 includes a rotating plate 573, a cam 561, and a driving motor 574 that rotates the rotating plate 573 (see FIG. 48A). .
- cam 561 is a flat rectangular parallelepiped member made of synthetic resin.
- the rotation connecting portion 548 is formed by projecting the left end of the cam 561 rearward.
- the rotation connection portion 548 has a hole through which a pin 569 described later can be inserted.
- a moving shaft 576 projecting in a substantially cylindrical shape from the front surface on the right end side of the cam 561 is formed.
- the moving shaft 576 is engaged with the slide groove 580 of the rotating plate 573 described above, and slides with the slide groove 580 under a use condition. To enable this sliding, the diameter of the moving shaft 576 is set to be approximately the same as or slightly shorter than the radial width of the slide groove 580.
- FIG. 46A is an exploded perspective view of the rotation shield wall 571, the support base 563, and the cam 561 as viewed from the left rear side
- FIG. 46B is a view illustrating the rotation connection portion 568 and the cam 561 from the left front side. It is the disassembled perspective view which was seen.
- the rotation shielding wall 571 is formed with a rotation connecting portion 568 that is inclined and protrudes from the base end of the rotation shielding wall 571.
- a hole through which the pin 569 can be inserted is formed in the rotation connection portion 568.
- a rotation connection portion 564 projecting in a substantially columnar shape is formed at the front end portions of the upper and lower sides of the rotation shielding wall 571.
- the rotation connecting portion 564 is inserted into a cylindrical concave portion 585 formed on the inner wall of the frame portion 583.
- a through hole 586 is formed by penetrating the support base 563 in a rectangular shape.
- the turning connection portion 568 of the turning shielding wall 571 is inserted into the through hole 586 from behind.
- the rotation connecting portion 548 of the cam 561 is also inserted into the through hole 586 from the front.
- a pin 569 is inserted into a hole of the rotation connection portion 568 of the rotation shielding wall 571 and a hole of the rotation connection portion 548 of the cam 561.
- a cam housing 562 is formed on the front surface of support base 563.
- the cam housing 562 is a rectangular area surrounded by ribs, and the above-described through hole 586 is formed inside the cam housing 562.
- the cam 561 is housed inside the cam housing 562 and slides.
- the direction in which the cam 561 slides inside the cam accommodating portion 562 is the left-right direction, in other words, the radial direction of the rotating plate 573 shown in FIG.
- the drive shaft 576 slides in the slide groove 580 by driving the drive motor 574 to rotate the rotary plate 573.
- the cam 561 slides in the cam housing 562.
- the rotation blocking wall 571 can be rotated around the pin 569.
- the rotation blocking wall 571 rotates so as to be in an upright state with the rotation connecting portion 564 as a rotation center.
- the wall 571 is orthogonal to the main surface of the support base 563.
- the rotation shielding wall 571 rotates about the rotation connection portion 564 so as to be in a lying state, and the rotation shielding wall 571 is supported.
- the state is substantially parallel to the main surface of the base 563.
- the rotation shielding wall 571 can be closed. Conversely, if the slide groove 580 is formed on the center side of the rotating plate 573, the rotation blocking wall 571 can be opened. If the shape of the slide groove 580 is selected using this principle, the open / closed state of the rotation shielding wall 571 can be set arbitrarily. Thus, the rotation blocking wall 571 can be fully opened or fully closed without employing a complicated configuration.
- FIG. 47A is a diagram showing the turning shield wall 5711 and the like of the shielding device 570 as viewed from the rear.
- the shielding device 570 has a rotating shielding wall 5711 or a rotating shielding wall 5714 as the rotating shielding wall 571 described above.
- the rotation shielding wall 5711 to the rotation shielding wall 5714 have a rectangular shape having a long side substantially parallel to the tangential direction of the rotation plate 573 described above. Further, the rotation shielding wall 5711 to the rotation shielding wall 5714 are rotatably attached to a peripheral portion of the support base 563 shown in FIG.
- the base end of the rotation shielding wall 5711 is rotatably connected to a cam 5611 on which a moving shaft 5761 is formed.
- a radially inner end of the rotary shielding wall 5712 is rotatably connected to a cam 5612 on which a moving shaft 5762 is formed.
- a radially inner end of the rotation blocking wall 5713 is rotatably connected to a cam 5613 on which a moving shaft 5763 is formed.
- a radially inner end portion of the rotation shielding wall 5714 is rotatably connected to a cam 5614 on which a moving shaft 5754 is formed.
- the direction in which the cam 5611 slides is orthogonal to the longitudinal direction of the rotation shielding wall 5711. By doing so, the distance that the cam 5611 should slide when opening and closing the rotation blocking wall 5711 can be shortened.
- Such a configuration is the same for the other rotation shielding walls 5712 and the like.
- rotating plate 573 is a steel plate or a synthetic resin plate molded in a substantially disk shape, and has a slide groove 580 for controlling the opening / closing operation of the above-described rotation shielding wall 5711 and the like. Is formed.
- a gear groove 549 is formed in most of the periphery of the rotating plate 573, and the gear 30 and the gear groove 549, which will be described later with reference to FIG.
- the rotation plate 573 is rotated by the torque of the drive motor 574 shown in FIG.
- the gear groove 549 may be formed over the entire circumference of the rotating plate 573, but here, the gear groove 549 is not formed on a part of the outer circumference of the rotating plate 573. That is, the gear groove 549 has both ends. Since the gear groove 549 has an end, the gear 30 described later rotates to the end of the gear groove 549, so that the position of the rotating plate 573 in the rotation direction can be easily detected.
- the slide groove 580 is formed in a substantially annular shape near the outer peripheral edge of the rotating plate 573. Further, when the rotating plate 573 is viewed from the rear, the shape of the slide groove 580 is not a perfect circle but a meandering shape meandering along the circumferential direction of the rotating plate 573. More specifically, the slide groove 580 is composed of slide grooves 5801, 5802, 5803, 5804, 5805, 5806, 5807, 5808, 58010, 58011 and 58012 along the clockwise direction. The slide groove 5801 is curved outward in the radial direction along the clockwise direction. The slide groove 5802 extends substantially parallel to the circumferential direction.
- the slide groove 5803 is curved inward in the radial direction along the clockwise direction.
- the slide groove 5804 is curved radially outward along the clockwise direction.
- the slide groove 5805 is curved radially inward along the clockwise direction.
- the slide groove 5806 is curved outward in the radial direction along the clockwise direction.
- the slide groove 5807 is curved inward in the radial direction along the clockwise direction.
- the slide groove 5808 is curved radially outward along the clockwise direction.
- the slide groove 5809 is curved inward in the radial direction along the clockwise direction.
- the slide groove 58010 is curved radially outward in a clockwise direction.
- the slide groove 58011 extends substantially parallel to the circumferential direction.
- the slide groove 58012 is curved inward in the radial direction along the clockwise direction.
- a change point at which the curved shape of the groove changes is set. Specifically, a change point 5812 is set between the slide groove 5801 and the slide groove 5802, and a change point 5813 is set between the slide groove 5802 and the slide groove 5803. A change point 5814 is set between the slide groove 5803 and the slide groove 5804, and a change point 5815 is set between the slide groove 5804 and the slide groove 5805. A change point 5816 is set between the slide groove 5805 and the slide groove 5806, and a change point 5817 is set between the slide groove 5806 and the slide groove 5807.
- a change point 5818 is set between the slide groove 5807 and the slide groove 5808, and a change point 5819 is set between the slide groove 5808 and the slide groove 5809.
- a change point 58110 is set between the slide groove 5809 and the slide groove 58010, and a change point 58111 is set between the slide groove 58010 and the slide groove 58011.
- a change point 58112 is set between the slide groove 58011 and the slide groove 58012, and a change point 5811 is set between the slide groove 58012 and the slide groove 5801.
- the change point 5812, the change point 5813, the change point 5815, the change point 5817, the change point 5819, the change point 58111, and the change point 5812 described above are arranged radially outside the rotating plate 573.
- the changing point 5811, the changing point 5814, the changing point 5816, the changing point 5818, and the changing point 58110 are arranged radially inside the rotating plate 573.
- FIG. 48 shows the configuration of the shielding device 570 in the fully closed state.
- 48A is a view of the shielding device 570 in the fully closed state as viewed from the rear
- FIG. 48B is a view of the rotating plate 573 and the like in the fully closed state as viewed from the rear
- shielding device 570 prevents air from flowing out of blower 47 to the outside in the fully closed state. That is, in the fully closed state, all the shielding devices 570, that is, the rotary shielding walls 5711 to 5714 are in the upright state. Therefore, the communication with the air path for supplying cool air is shut off, and no cool air is supplied to the freezing chamber 17. Further, even in the defrosting step of defrosting the cooler 45 shown in FIG. 1, warm air does not flow from the cooling chamber 26 into the refrigeration chamber 15 and the freezing chamber 17 because the shielding device 570 is in the fully closed state.
- drive motor 574 shown in FIG. 48 (A) drives rotating plate 573 through gear 30 to rotate. Let it.
- the moving shaft 5761 and the like are slid in the slide groove 580 and moved outward in the radial direction.
- the moving shaft 5761 is arranged at the changing point 5813 of the slide groove 580
- the moving shaft 5762 is arranged at the changing point 5815 of the slide groove 580.
- the moving shaft 5763 is arranged at the changing point 5817 of the slide groove 580
- the moving shaft 5764 is arranged at the changing point 5819 of the slide groove 580.
- cam 5611 moves radially outward.
- the rotation shielding wall 5711 rotatably connected to the cam 5611 rotates around the rotation connection portion 568 as a rotation center, and rises substantially at right angles to the main surface of the support base 563. It becomes.
- the opening of the frame portion 583 is closed by the rotation shielding wall 5711, and the air path is shielded.
- Such a configuration is the same for the other rotation shielding walls 5712 and the like.
- FIG. 49 shows the configuration of the shielding device 570 in the fully opened state.
- FIG. 49 (A) is a view of the shielding device 570 in the fully opened state as viewed from the rear
- FIG. 49 (B) is a view of the rotating plate 573 and the like in the fully opened state as viewed from the rear
- FIG. 49 (C) is a fully opened state. It is a cutting
- shield device 570 does not hinder the flow of air from blower 47 to the outside when fully opened.
- all the rotation shielding walls 5711 and the like are open toward the periphery. That is, in the fully opened state, the cool air blown from the blower 47 by the shield device 570 is blown to the refrigerator compartment 15 and the freezer compartment 17 without being interfered by the rotating shield wall 571.
- the drive motor 574 shown in FIG. 48 (A) is driven to rotate the rotary plate 573 via the gear 30.
- the moving shaft 5761 and the like are slid in the slide groove 580, and move inward in the radial direction.
- moving shaft 5761 is arranged at a changing point 5814 of slide groove 580
- moving shaft 5762 is arranged at a changing point 5816 of slide groove 580.
- the moving shaft 5763 is arranged at a changing point 5818 of the slide groove 580
- the moving shaft 5766 is arranged at a changing point 58110 of the slide groove 580.
- cam 5611 moves radially inward.
- the rotation shielding wall 5711 rotatably connected to the cam 5611 rotates around the rotation connection portion 568 as a rotation center, and falls down substantially in parallel with the main surface of the support base 563. It becomes.
- the opening of the frame-shaped portion 583 is not closed by the rotation shielding wall 5711, so that the flow path resistance of the air path can be reduced and the amount of air blown by the blower 47 can be increased.
- Such a configuration is the same for the other rotation shielding walls 5712 and the like.
- the opening and closing operation of the rotation shielding wall 571 is performed by the rotation of the rotating plate 573, so that the thickness of the shielding device 570 is reduced as compared with the background art described above. can do. Therefore, referring to FIG. 2, it is possible to increase the volume of freezing room 17 formed in front of shielding device 570.
- a slide groove 580 is formed in the shielding device 570 in a substantially annular shape, and a plurality of moving shafts 5762 or 5764 are engaged with the slide groove 580. Have been combined. Then, by rotating the rotating plate 573, the moving shaft 5762 or the moving shaft 5774 slides in the slide groove 580, and slides in the radial direction of the rotating plate 573. When the moving shaft 5762 or the moving shaft 5754 slides, the cam 5611 or the cam 5614 also slides, and as a result, the turning shielding wall 5711 or the turning shielding wall 5714 is opened and closed.
- the slide groove 580 can be smoothly bent along the circumferential direction, and the pressure generated when the moving shaft 5761 or the moving shaft 5764 slides on the slide groove 580 is reduced, and the opening and closing operation of the rotary shielding wall 5711 is reduced. Can be performed smoothly.
- the sliding range of the slide groove 580 is overlapped by the plurality of cams 5611 and the like.
- the present invention relates to a shielding device that closes an air passage through which cool air is blown inside a refrigerator, and a plurality of rotating shielding walls that surround the blower from a radial outside, and a shielding wall driving mechanism that drives the rotating shielding wall.
- the shielding wall driving mechanism comprises: a rotating plate having a sliding groove formed in a circumferential direction; and a moving shaft engaging with the sliding groove formed to rotate on the rotating shielding wall. It has a plurality of cams that can be connected to each other and a motor that rotates the rotating plate, and the moving shafts of the plurality of cams are engaged with one slide groove.
- the rotary shielding wall is opened and closed by the cam that slides by the rotation of the rotating plate, so that the shielding device becomes thin and a large internal volume of the storage room can be secured.
- the meandering shape of the slide groove can be made smooth by engaging the moving shafts of the plurality of cams with one slide groove. Therefore, the sliding operation between the slide groove and the moving shaft and the turning operation of the turning shielding wall can be performed smoothly. Further, the number of slide grooves can be reduced, and the configuration of the shielding device can be simplified.
- the cam has a first cam and a second cam, a first sliding range in which the first cam slides in the slide groove, and the second cam. Is overlapped with a second sliding range in which the sliding groove slides.
- the slide groove is formed in an annular shape.
- the slide groove is formed in an incomplete annular shape.
- the initial position of the rotating plate can be easily detected by sliding the engaging portion of the cam to the end of the slide groove.
- the slide groove has a first slide groove and a second slide groove formed inside the first slide groove in a radial direction.
- the rotation shielding wall which is rotated by the cam in which the engagement portion engages with the first slide groove, and the rotation is rotated by the cam in which the engagement portion engages with the second slide groove.
- the motor may rotate the rotating plate via a gear that meshes with a gear groove formed around the rotating plate.
- the gear groove is not formed.
- a cooler of a refrigeration cycle for cooling air supplied to the storage room via the air passage, and a blower outlet provided with the cooler and connected to the storage room are formed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
占有容積を減少させることができる遮蔽装置および冷蔵庫を提供する。本発明の遮蔽装置70は、冷蔵庫10の内部で冷気が送風される風路を適宜塞ぐ装置である。具体的には、遮蔽装置70は、送風モータで回転する送風機47を半径方向外側から囲む複数の回動遮蔽壁71と、回動遮蔽壁71の開閉動作を駆動する遮蔽壁駆動機構60と、を具備する。更に、遮蔽装置70では、遮蔽装置70を冷気が送風される経路に配設し、遮蔽壁駆動機構60を風路と区画された領域に配設している。
Description
本発明は、遮蔽装置およびそれを備えた冷蔵庫に関し、特に、冷却室から貯蔵室につながる風路を適宜塞ぐ遮蔽装置およびそれを備えた冷蔵庫に関する。
従来から、特許文献1に記載されたような、一つの冷却器で複数の貯蔵室を適宜冷却する冷蔵庫が知られている。
図51に、この文献に記載された冷蔵庫1100を模式的に示す。この図に示す冷蔵庫1100には、上方から、冷蔵室1101、冷凍室1102および野菜室1103が形成されている。冷凍室1102の奥側には、冷却器1108が収納される冷却室1104が形成されており、冷却室1104と冷凍室1102とを区画する区画壁1105には、冷気を各貯蔵室に供給するための開口部1106が形成されている。また、この開口部1106には、冷気を送風する送風ファン1107が配設されており、この送風ファン1107を覆う送風機カバー1110が冷凍室1102側に配置されている。冷蔵室1101に供給される冷気が流通する風路1109の途中には、ダンパ1114が配設されている。
図52を参照して、上記した送風機カバー1110を詳述する。送風機カバー1110は、略四角形形状を呈する凹部1111が形成されており、凹部1111の上部を部分的に切り欠いて開口部1113が形成されている。ここで、送風機カバー1110が、上記した送風ファン1107を覆う状況では、送風機カバー1110の開口部1113は、冷蔵庫本体側の風路1109と連通している。
上記した構成の冷蔵庫1100は次のように動作する。先ず、冷蔵室1101および冷凍室1102の両方を冷却する場合は、送風機カバー1110を送風ファン1107から離間させ、ダンパ1114を開き、この状態で送風ファン1107を回転させる。そうすると、冷却室1104の内部で冷却器1108により冷却された冷気の一部は、送風ファン1107の送風力で、冷凍室1102に送風される。また、この冷気の他の一部は、風路1109、ダンパ1114および風路1109を経由して、冷蔵室1101に送風される。これより、冷凍室1102と冷蔵室1101の両方が冷却される。
一方、冷蔵室1101のみを冷却する際には、送風ファン1107を送風機カバー1110で覆い、ダンパ1114を開き、この状態にて冷却器1108で冷却された冷気を送風ファン1107で送風する。送風機カバー1110を閉鎖状態にすると、送風機カバー1110の上部に形成された開口部1113が、風路1109と連通するようになる。よって、送風ファン1107で送風された冷気は、上記した開口部1113、ダンパ1114、風路1109を経由して、冷蔵室1101に供給される。
上記のように、開口部1113が形成された送風機カバー1110を用いることで、一つの冷却器1108で、複数の貯蔵室を適宜冷却することが可能となった。
しかしながら、上記した構成の送風機カバー1110は、後方に移動することで冷却室1104の開口部1106を塞ぎ、前方に移動することで冷却室1104の開口部1106を解放する。また、送風機カバー1110を前後方向に移動させるための駆動機構が必要になる。この駆動機構に冷気が吹き付けられると、駆動機構が凍結し、送風機カバー1110を開閉移動させることができなくなる恐れがある。
更に、送風機カバー1110は、開閉動作を前後方向に沿って行うための空間を必要とする。よって、冷蔵庫1100の内部に於いて、送風機カバー1110が開閉動作を行うために大きな空間が必要とされる。この結果、送風機カバー1110の前方に形成される冷凍室1102の庫内容積が圧迫されてしまい、冷凍室1102に収納することができる被貯蔵物の量が制限されてしまう課題があった。更には、モータで送風機カバー1110を前後方向に移動させる際に駆動音が発生し、この駆動音が大きいと使用者にとって不快である恐れがあった。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、駆動機構が凍結することなく、庫内容積を圧迫せず、駆動音が小さい遮蔽装置およびそれを備えた冷蔵庫を提供することにある。
本発明の遮蔽装置は、冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、送風機を半径方向外側から囲む回動遮蔽壁と、前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を有し、前記遮蔽壁駆動機構は、前記風路外の領域に配設されることを特徴とする。
また、本発明の遮蔽装置では、前記遮蔽壁駆動機構は、移動軸スライド溝が形成される円盤状の回転プレートと、前記移動軸スライド溝に係合する移動軸が形成され、前記回動遮蔽壁に回転可能に連結されたカムと、前記回転プレートを回転させる駆動モータと、を有し、前記カムは前記移動軸が前記移動軸スライド溝をスライドすることにより前記回動遮蔽壁を開閉動作させることを特徴とする。
また、本発明の遮蔽装置では、一つの前記移動軸スライド溝に、複数の前記カムの前記移動軸が係合することを特徴とする。
また、本発明は、冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、送風機を半径方向外側から囲むように並設され、回動することで前記風路を開閉する複数の回動遮蔽壁と、前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を具備し、前記遮蔽壁駆動機構は、駆動源と、前記駆動源の動力を前記回動遮蔽壁に伝達する動力伝達機構と、を有することを特徴とする。
また、本発明は、冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、送風機を半径方向外側から囲む複数の回動遮蔽壁と、前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を具備し、前記遮蔽壁駆動機構は、複数設けられることを特徴とする。
また、本発明の冷蔵庫は、貯蔵室に前記風路を経由して供給される空気を冷却する冷凍サイクルの冷却器と、前記冷却器が配設されて前記貯蔵室につながる送風口が形成される冷却室と、前記送風口から供給される前記空気を前記貯蔵室に向けて送風する前記送風機と、前記風路を少なくとも部分的に塞ぐ前記遮蔽装置と、を具備することを特徴とする。
本発明によれば遮蔽装置は、回動遮蔽壁を駆動する遮蔽壁駆動機構が、冷気が送風される風路外に配設されるので、遮蔽壁駆動機構が凍結することを防止することができる。
また、本発明の遮蔽装置では、前記遮蔽壁駆動機構は、移動軸スライド溝が形成される円盤状の回転プレートと、前記移動軸スライド溝に係合する移動軸が形成され、前記回動遮蔽壁に回転可能に連結されたカムと、前記回転プレートを回転させる駆動モータと、を有し、前記カムは前記移動軸が前記移動軸スライド溝をスライドすることにより前記回動遮蔽壁を開閉動作させることを特徴とする。これによって、遮蔽装置は、回転プレートの回転動作で容易に回動遮蔽壁の開閉動作を駆動することができるので、遮蔽装置を構成する部材が前後方向に移動する従来の遮蔽装置と比較して、遮蔽装置が占有する容積を小さくすることができ、庫内容積を圧迫することがない。また本発明の遮蔽装置は、カムの移動軸が移動軸スライド溝をスライドすることにより回動遮蔽壁を開閉動作させるので、駆動音の発生を大きく低減することができる。
また、本発明の遮蔽装置では、一つの前記移動軸スライド溝に、複数の前記カムの前記移動軸が係合することを特徴とする。これにより、本発明の遮蔽装置によれば、回転プレートの回転でスライドするカムにより回動遮蔽壁が開閉するので、遮蔽装置が薄型となり、貯蔵室の庫内容積を大きく確保することができる。また、一つのスライド溝に、複数のカムの移動軸が係合することで、スライド溝の蛇行形状を滑らかにすることができる。よって、スライド溝と移動軸との摺動動作および回動遮蔽壁の回動動作をスムーズに行うことができる。更に、スライド溝の数を少なくでき、遮蔽装置の構成を簡略化できる。
また、本発明は、冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、送風機を半径方向外側から囲むように並設され、回動することで前記風路を開閉する複数の回動遮蔽壁と、前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を具備し、前記遮蔽壁駆動機構は、駆動源と、前記駆動源の動力を前記回動遮蔽壁に伝達する動力伝達機構と、を有することを特徴とする。これにより、本発明の遮蔽装置によれば、送風機を周囲から囲む回動遮蔽壁により風路を開閉することで、遮蔽装置全体の厚み方向に於ける寸法を小さくでき、装置全体の小型化を実現できる。また、駆動源から動力伝達機構を用いて回動遮蔽壁に動力を伝達することで、回動遮蔽壁の開閉動作を良好に行うことができる。
また、本発明は、冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、送風機を半径方向外側から囲む複数の回動遮蔽壁と、前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を具備し、前記遮蔽壁駆動機構は、複数設けられることを特徴とする。これにより、本発明の遮蔽装置によれば、複数の遮蔽壁駆動機構を有することで、回動遮蔽壁を個別に動作させることができ、回動遮蔽壁全体としての開閉動作の自由度を向上することができる。
また、本発明の冷蔵庫は、貯蔵室に前記風路を経由して供給される空気を冷却する冷凍サイクルの冷却器と、前記冷却器が配設されて前記貯蔵室につながる送風口が形成される冷却室と、前記送風口から供給される前記空気を前記貯蔵室に向けて送風する前記送風機と、前記風路を少なくとも部分的に塞ぐ前記遮蔽装置と、を具備することを特徴とする。これによって、遮蔽装置が占有する庫内容積を低減することができるので、各貯蔵室の有効容積を大きく確保することができる。また、遮蔽装置の風路抵抗が小さいので、少ないエネルギで大きな送風量を得ることができ、貯蔵室を効果的に冷却することができる。
[第1実施形態]
以下、本発明の実施形態に係る遮蔽装置70および冷蔵庫10を図面に基づき詳細に説明する。以下の説明では、同一の部材には原則的に同一の符号を付し、繰り返しの説明は省略する。更に以下の説明では、上下前後左右の各方向を適宜用いるが、左右とは冷蔵庫10を後方から見た場合の左右を示している。更に、以下の説明において、回転方向を時計回りおよび反時計回りで表現するが、これらの回転方向は、冷蔵庫10を背面面視した場合の方向を示している。また、以下の説明では、時計回りを順方向と称し、反時計回りを逆方向と称する場合もある。更にまた、各図面に記載された構成等は相互に組み合わせることができる。
以下、本発明の実施形態に係る遮蔽装置70および冷蔵庫10を図面に基づき詳細に説明する。以下の説明では、同一の部材には原則的に同一の符号を付し、繰り返しの説明は省略する。更に以下の説明では、上下前後左右の各方向を適宜用いるが、左右とは冷蔵庫10を後方から見た場合の左右を示している。更に、以下の説明において、回転方向を時計回りおよび反時計回りで表現するが、これらの回転方向は、冷蔵庫10を背面面視した場合の方向を示している。また、以下の説明では、時計回りを順方向と称し、反時計回りを逆方向と称する場合もある。更にまた、各図面に記載された構成等は相互に組み合わせることができる。
図1は、本形態の冷蔵庫10の概略構造を示す正面外観図である。図1に示すように、冷蔵庫10は、本体としての断熱箱体11を備え、この断熱箱体11の内部に食品等を貯蔵する貯蔵室を形成している。この貯蔵室としては、最上段が冷蔵室15、その下段が上段冷凍室18、更にその下段が下段冷凍室19、そして最下段が野菜室20である。尚、上段冷凍室18および下段冷凍室19は、何れも冷凍温度域の貯蔵室であり、以下の説明ではこれらを冷凍室17と総称する場合もある。ここで、上段冷凍室18は、左右に分割され、一方側が製氷室として用いられても良い。
断熱箱体11の前面は開口しており、前記各貯蔵室に対応した開口には、各々断熱扉21等が開閉自在に設けられている。断熱扉21は、冷蔵室15の前面を左右方向に分割して塞ぐもので、断熱扉21の幅方向における外側上下端部が断熱箱体11に回転自在に取り付けられている。また、断熱扉23,24,25は、各々収納容器と一体的に組み合わされ、冷蔵庫10の前方に引出自在に、断熱箱体11に支持されている。具体的には、断熱扉23は上段冷凍室18を閉鎖し、断熱扉24は下段冷凍室19を閉鎖し、断熱扉25は野菜室20を閉鎖する。
図2は、冷蔵庫10の概略構造を示す側方断面図である。冷蔵庫10の本体である断熱箱体11は、前面が開口する鋼板製の外箱12と、この外箱12内に間隙を持たせて配設され、前面が開口する合成樹脂製の内箱13とから構成されている。外箱12と内箱13との間隙には、発泡ポリウレタン製の断熱材14が充填発泡されている。尚、上記した各断熱扉21等も、断熱箱体11と同様の断熱構造を採用している。
冷蔵室15と、その下段に位置する冷凍室17とは、断熱仕切壁42によって仕切られている。また、上段冷凍室18と、その下段に設けられた下段冷凍室19との間は、冷却された空気である冷気が流通自在に連通している。そして、冷凍室17と野菜室20との間は、断熱仕切壁43によって区分けされている。
冷蔵室15の背面には、合成樹脂製の仕切体65で区画され、冷蔵室15へと冷気を供給する供給風路としての冷蔵室供給風路29が形成されている。冷蔵室供給風路29には、冷蔵室15に冷気を流す吹出口33が形成されている。
冷凍室17の奥側には、冷却器45で冷却された冷気を冷凍室17へと流す冷凍室供給風路31が形成されている。冷凍室供給風路31の更に奥側には、冷却室26が形成されており、その内部には、庫内を循環する空気を冷却するための蒸発器である冷却器45が配置されている。冷凍室供給風路31は、前面カバー67と仕切体66とで前後方向から囲まれた空間である。
冷却器45は、圧縮機44、図示しない放熱器、図示しない膨張手段であるキャピラリーチューブに冷媒配管を介して接続されており、蒸気圧縮式の冷凍サイクル回路を構成するものである。
図3は、冷蔵庫10の冷却室26付近の構造を示す側方断面図である。冷却室26は、断熱箱体11の内部で、冷凍室供給風路31の奥側に設けられている。冷却室26と冷凍室17との間は、合成樹脂製の仕切体66によって仕切られている。
冷却室26の前方に形成される冷凍室供給風路31は、冷却室26とその前方に組み付けられる合成樹脂製の前面カバー67との間に形成された空間であり、冷却器45で冷却された冷気を冷凍室17に流す風路となる。前面カバー67には、冷凍室17に冷気を吹き出す開口である吹出口34が形成されている。
下段冷凍室19の下部背面には、冷凍室17から冷却室26へと空気を戻す戻り口38が形成されている。そして、冷却室26の下方には、この戻り口38につながり、各貯蔵室からの帰還冷気を冷却室26の内部へと吸入する、戻り口28が形成されている。戻り口28には、野菜室20の戻り口39(図2参照)および野菜室帰還風路37を経由して帰還する冷気も流入する。
また、冷却器45の下方には、冷却器45に付着した霜を融かして除去する除霜手段として、除霜ヒータ46が設けられている。除霜ヒータ46は、電気抵抗加熱式のヒータである。
冷却室26の上部には、各貯蔵室につながる開口である送風口27が形成されている。送風口27は、冷却器45で冷却された冷気を流す開口であり、冷却室26と、冷蔵室供給風路29および冷凍室供給風路31とを連通させる。送風口27には、前方から、冷凍室17等に向けて冷気を送り出す送風機47が配設されている。また、ダンパの機能は後述する遮蔽装置70の回動遮蔽壁71が担っているので、ダンパを省くことが可能である。
冷却室26の送風口27の外側には、送風口27からつながる風路を適宜塞ぐための遮蔽装置70が設けられている。遮蔽装置70は、前方から前面カバー67で覆われている。
図4を参照して、上記した風路を規制する遮蔽装置70が組み付けられる構成を説明する。図4(A)は遮蔽装置70が組み付けられた仕切体66を示す斜視図であり、図4(B)は図4(A)のA-A線に於ける断面図であり、図4(C)は前面カバー67を後方から見た場合の風路構成を示す図である。
図4(A)を参照して、仕切体66には、上方部分において、厚み方向に貫通する円形の送風口27が形成されており、送風口27の前方には送風機47および遮蔽装置70が配設されている。ここでは、遮蔽装置70は仕切体66に隠れている。また、仕切体66の上端側に形成された開口部位59は、図3に示した冷蔵室供給風路29に連通している。
図4(B)を参照して、上記したように、仕切体66および前面カバー67で囲まれる空間として冷凍室供給風路31が形成されている。後述するように、冷凍室供給風路31は、複数の風路に区分されている。また、仕切体66と前面カバー67との間には、遮蔽装置70および遮蔽壁駆動機構60が配設されている。遮蔽装置70は送風機47を遮蔽し、遮蔽壁駆動機構60は遮蔽装置70を駆動する。遮蔽装置70および遮蔽壁駆動機構60の構成は図5等を参照して後述する。
図4(C)を参照して、前面カバー67の内部空間を仕切ることで複数の送風路が形成されている。具体的には、前面カバー67の後側主面から後方に向かって延びるリブ状の風路区画壁50,56が形成されている。風路区画壁50,56の後端は、図4(B)に示した仕切体66に当接している。
ここでは、冷気を送風する送風路は、上方から、冷蔵室供給風路51、上段冷凍室供給風路52、下段冷凍室供給風路53に区画されている。冷蔵室供給風路51は冷蔵室15に送風される冷気が流通し、上段冷凍室供給風路52は上段冷凍室18に送風される冷気が流通し、下段冷凍室供給風路53は下段冷凍室19に送風される冷気が流通する。冷蔵室供給風路51を流れる冷気は、開口部位59を経由して、図2に示す冷蔵室15に送風される。上段冷凍室供給風路52を流れる冷気は、吹出口34を介して、図2に示す上段冷凍室18に送風される。下段冷凍室供給風路53を流れる冷気は、吹出口34を介して、図2に示す下段冷凍室19に送風される。ここで、冷蔵室供給風路51、上段冷凍室供給風路52および下段冷凍室供給風路53は、遮蔽装置70を中心として周囲に広がるように形成されている。
冷蔵室供給風路51と上段冷凍室供給風路52とは、風路区画壁50で区画されている。更に、上段冷凍室供給風路52と下段冷凍室供給風路53とは、風路区画壁56で区画されている。
図5を参照して、遮蔽装置70の構成を説明する。図5(A)は遮蔽装置70の分解斜視図であり、図5(B)は遮蔽壁駆動機構60を分解して示す側方断面図である。
図5(A)および図5(B)を参照して、遮蔽装置70は、支持基体63と、回動遮蔽壁71と、回転プレート73と、蓋部材57と、遮蔽壁駆動機構60と、を具備している。遮蔽装置70は送風機47で送風された冷気の風路を遮蔽する装置である。遮蔽装置70を開状態とすることで冷却室26と各貯蔵室とをつなぐ風路を連通させ、遮蔽装置70を閉状態とすることで風路を遮断する。
送風機47は、ビスなどの締結手段を介して、支持基体63の前面中心部に配設されている。送風機47は、ここでは図示しないが、例えば、ターボファンなどの遠心ファンと、この遠心ファンを回転させる送風モータとを具備しており、半径方向外側に向かって冷気を送風する。
支持基体63は、前面視で略円盤形状の合成樹脂から成る部材である。図5(B)に示すように、支持基体63の周辺部は前方に向かって略直角に曲折されている。支持基体63には、カム収納部62が形成されているが、これは図6を参照して後述する。
支持基体63の周辺部には、側壁部58が形成されている。側壁部58は、支持基体63から後方に向かって伸びる壁状の部位である。側壁部58は、支持基体63の周方向に関して略等間隔に複数(本実施形態では6個)配置されている。側壁部58の後端は、ビス等の締結手段を介して、図4(B)に示した仕切体66に締結されている。
回動遮蔽壁71は、矩形状の合成樹脂からなる板状部材であり、支持基体63の外縁の接線方向に沿う長辺を有している。回動遮蔽壁71は、支持基体63の周縁部付近に、支持基体63の主面に平行な軸線回りに、後方に向かって回動可能に取り付けられている。回動遮蔽壁71は、支持基体63の周縁部付近に、複数(本実施形態では6個)が配設されている。回動遮蔽壁71は、送風機47で送風される冷気が流通する経路に配置され、風路を遮蔽する。
回転プレート73は、前面視で略円盤形状の鋼板から成り、支持基体63の前方側に回転自在に配設されている。回転プレート73には、回動遮蔽壁71を回動させるための移動軸スライド溝80が形成されている。回転プレート73の周縁部にはトルクを伝達するためのギア部77が形成されている。後述するように、駆動モータ74を駆動し、ギア30のギア部77を介してトルクが伝達し、回転プレート73を回転させることで、回動遮蔽壁71が開閉動作する。
蓋部材57は、回転プレート73を前方から覆う板状の部材であり、回転プレート73よりも若干大きく形成され、正面視で略円形を呈している。
支持基体63の左方部分には、回転プレート73を回転駆動する駆動モータ74が取り付けられるフランジが形成され、駆動モータ74と回転プレート73との間には、回転速度およびトルクを伝達するギア30が配設される。ギア30と回転プレート73とが噛合することにより、駆動モータ74のトルクが回転プレート73に伝達される。
図6を参照して、上記した回動遮蔽壁71を駆動する遮蔽壁駆動機構60を説明する。図6(A)は遮蔽装置70の下方部分を示す分解斜視図であり、図6(B)はカム61を示す斜視図である。
図6(A)を参照して、遮蔽壁駆動機構60は、カム61と、回転プレート73と、を備えている。
カム61は、合成樹脂から成る扁平な直方体形状の部材である。図6(B)に示すように、カム61の一方端にはピン55を挿通可能な孔部が形成される回動連結部48が形成されている。カム61は、支持基体63のカム収納部62に収納される。
カム収納部62は、支持基体63に形成された空洞であり、支持基体63の半径方向に沿って細長く形成される。カム収納部62は、各回動遮蔽壁71に対応して形成される。カム収納部62の大きさは、カム61を収容でき、且つ、カム61が半径方向に沿ってスライドできる程度である。
移動軸76は、図6(B)に示すように、カム61の前面から突出する円柱状の突起体である。移動軸76の直径は、回転プレート73に形成される移動軸スライド溝80の幅よりも若干短い程度である。移動軸76は、回転プレート73の移動軸スライド溝80に、摺動可能に係合する。
図6(A)に示すように、回動遮蔽壁71には、回動遮蔽壁71の基端部から傾斜して突出する回動連結部68が形成されている。回動連結部68には、ピン55を挿通することが可能な孔部が形成されている。また、回動遮蔽壁71の上辺の両端部付近には、回動連結部64が形成されている。回動連結部64には、ピン69を挿通することが可能な孔部が形成されている。
支持基体63の周縁部付近には、リブ32および回動連結部54が形成されている。リブ32および回動連結部54は、各回動遮蔽壁71に対応して設けられている。
リブ32は、支持基体63の後方に突出する壁状の部位であり、隣り合う側壁部58間を直線で結んで形成される。リブ32の各端部は側壁部58に連結されている。回動遮蔽壁71の回動連結部68側端部は、リブ32に当接する。
回動連結部54は、各リブ32の近傍に形成されている。回動連結部54には、ピン69を挿通することができる孔部が形成されている。
回動連結部48の孔部と回動連結部68の孔部にピン55が挿通されることにより、カム61と回動遮蔽壁71とはピン55周りに回動可能に接続される。
また、回動連結部54の孔部と回動連結部64の孔部にピン69が挿通されることにより、支持基体63と回動遮蔽壁71とは回動可能に連結される。
遮蔽壁駆動機構60を上記のように構成することにより、駆動モータ74を駆動して回転プレート73を回転させることにより、移動軸76が移動軸スライド溝80内を摺動する。これによってカム61はカム収納部62内をスライド移動する。カム61をスライドさせることで、回動遮蔽壁71をピン55周りに回動させることが出来る。具体的には、カム61を支持基体63の周縁部側にスライドさせると、回動遮蔽壁71は回動連結部64を回動中心として、起立状態となるように回動し、回動遮蔽壁71は支持基体63の主面に対して直交した状態となる。一方、カム61を支持基体63の中心側にスライドさせると、回動遮蔽壁71は回動連結部64を回動中心として、横臥状態となるように回動し、回動遮蔽壁71は支持基体63の主面に対して略平行な状態となる。
したがって、移動軸スライド溝80を支持基体63の周縁部側に形成すれば、回動遮蔽壁71を閉状態とすることができる。反対に移動軸スライド溝80を支持基体63の中心側に形成すれば、回動遮蔽壁71を開状態とすることができる。この原理を利用して、各回動遮蔽壁71に対応する移動軸スライド溝80の形状を選択すれば、各回動遮蔽壁71の開閉状態を任意に設定することができる。これによって、複雑な構成を採用せずに、回動遮蔽壁71を全開状態としたり、全閉状態としたりすることもでき、また一部の回動遮蔽壁71が閉状態または開状態である状態とすることもできる。
図5(B)に示したように、遮蔽壁駆動機構60を構成する回転プレート73およびカム61は、支持基体63および蓋部材57で挟まれた領域に配設される。よって、図4(B)を参照して、遮蔽壁駆動機構60を構成する各部材は、冷気が流通する冷凍室供給風路31に露出しない。従って、冷気が遮蔽壁駆動機構60に吹き付けられないので、遮蔽壁駆動機構60が凍結することを防止することができる。
また、図6(A)を参照して、回動遮蔽壁71の長手方向の各端部には、側壁部58が形成されている。回動遮蔽壁71を閉状態とすると、回動遮蔽壁71の長手方向の各端部は側壁部58に当接する。このように、回動遮蔽壁71の長手方向各端部に側壁部58を形成することで、回動遮蔽壁71が閉状態にあるときにおける気密性を向上することができるので、冷却時の冷気漏れや除霜時の暖気流入を確実に抑制することができる。
また、図6(A)を参照して、支持基体63にリブ32を形成することで、回動遮蔽壁71を閉鎖状態とした際に、回動遮蔽壁71の回動連結部68側端部がリブ32に当接する。これによって、回動遮蔽壁71で閉鎖した際の気密性を更に向上することができる。
図7は遮蔽装置70を示す図であり、図7(A)は遮蔽装置70の回動遮蔽壁を後方から見て示す図であり、図7(B)は回転プレートの構成を後方から見て示す図である。
図7(A)を参照して、遮蔽装置70は、上記した回動遮蔽壁71として、回動遮蔽壁711,712,713,714,715,716を有している。回動遮蔽壁711ないし回動遮蔽壁716は、支持基体63の接線方向に対して略平行な長辺を有する長方形形状を呈している。また、回動遮蔽壁711ないし回動遮蔽壁716は、図5(A)に示した支持基体63の周縁部に回動可能に取り付けられている。
回動遮蔽壁711の半径方向内側端部は、移動軸761が形成されたカム611に回動可能に接続されている。同様に、回動遮蔽壁712の半径方向内側端部は、移動軸762が形成されたカム612に回動可能に接続されている。回動遮蔽壁713の半径方向内側端部は、移動軸763が形成されたカム613に回動可能に連結されている。また、回動遮蔽壁714の半径方向内側端部は、移動軸764が形成されたカム614に回動可能に連結されている。回動遮蔽壁715の半径方向内側端部は、移動軸765が形成されたカム615に回動可能に連結されている。回動遮蔽壁716の半径方向内側端部は、移動軸766が形成されたカム616に回動可能に連結されている。
図7(B)を参照して、回転プレート73は、略円板状に成型された鋼板であり、上記した回動遮蔽壁711等の開閉動作を司るための移動軸スライド溝80が複数形成されている。また、回転プレート73の周縁部の一部分にはギア溝49が形成されており、図5(A)に示したギア30とギア溝49とが歯合することで、駆動モータ74のトルクで回転プレート73が回転する。
回転プレート73には、移動軸スライド溝80として、移動軸スライド溝801,802,803,804,805,806が形成されている。移動軸スライド溝801ないし移動軸スライド溝806は、回転プレート73の円周方向に沿って形成された、溝状部位である。移動軸スライド溝801ないし移動軸スライド溝806は、図7(A)に示したカム611ないしカム616をスライドさせるために、所定の曲折形状を呈している。更に、移動軸スライド溝801ないし移動軸スライド溝806には、上記した移動軸761ないし移動軸766が係合する。
移動軸スライド溝801は、溝部8013ないし溝部8011から構成されている。溝部8013は半径方向外側で円周方向に沿って伸び、溝部8012は時計回りに於いて半径方向内側に向かって傾斜し、溝部8011は半径方向内側で円周方向に沿って伸びている。
移動軸スライド溝802は、溝部8026ないし溝部8021から構成されている。溝部8026は時計回りに於いて半径方向内側に向かって傾斜し、溝部8025は半径方向内側で円周方向に沿って伸び、溝部8024は時計回りに於いて半径方向外側に向かって傾斜する。溝部8023は半径方向外側で円周方向に沿って伸びる。また、溝部8022は時計回りに於いて半径方向内側に向かって傾斜し、溝部8021は半径方向内側で円周方向に沿って伸びる。
移動軸スライド溝803は、溝部8034ないし溝部8031から構成されている。溝部8034は半径方向内側で円周方向に沿って伸び、溝部8033は時計回りに於いて半径方向外側に向かって傾斜する。溝部8032は半径方向外側で円周方向に沿って伸び、溝部8031は時計回りに於いて半径方向内側に向かって傾斜する。
移動軸スライド溝804は、溝部8044ないし溝部8041から構成される。溝部8044は半径方向内側で円周方向に沿って伸び、溝部8043は時計回りに於いて半径方向外側に向かって傾斜する。溝部8042は半径方向外側で円周方向に沿って伸び、溝部8041は時計回りに於いて半径方向内側に向かって傾斜する。
移動軸スライド溝805は、溝部8054ないし溝部8051から構成される。溝部8054は半径方向内側で円周方向に沿って伸び、溝部8053は時計回りに於いて半径方向外側に向かって傾斜する。溝部8052は半径方向外側で円周方向に沿って伸び、溝部8051は半径方向内側で時計回りに於いて半径方向内側に向かって傾斜する。
移動軸スライド溝806は、溝部8066ないし溝部8061から構成される。溝部8066は時計回りに於いて半径方向内側に向かって傾斜し、溝部8065は半径方向内側で円周方向に沿って伸び、溝部8064は時計回りに於いて半径方向外側に向かって傾斜する。溝部8063は半径方向外側で円周方向に沿って伸び、溝部8062は時計回りに於いて半径方向内側に向かって傾斜し、溝部8061は半径方向内側で円周方向に沿って伸びる。
また、回転プレート73の内側部分には、円周方向に沿って伸びる回転軸スライド溝79が形成されている。ここでは、回転軸スライド溝79は、等間隔に3個が形成されている。回転軸スライド溝79にスライド可能に係合する回転軸75(図8(C)参照)を介して、回転プレート73は支持基体63に保持される。
ここで、図7(A)に示した移動軸761等は、図7(B)に示す移動軸スライド溝801等に係合する。具体的には、移動軸761が移動軸スライド溝801に係合し、移動軸762が移動軸スライド溝802に係合し、移動軸763が移動軸スライド溝803に係合する。また、移動軸764が移動軸スライド溝804に係合し、移動軸765が移動軸スライド溝805に係合し、移動軸766が移動軸スライド溝806に係合する。
図8に全閉状態における遮蔽装置70の構成を示す。図8(A)は全閉状態の遮蔽装置70を後方から見た図であり、図8(B)は図8(A)のB-B線に於ける断面図であり、図8(C)は全閉状態における回転プレート73等を後方から見た図であり、図8(D)は図8(B)の要所拡大図である。ここで、全閉状態とは、送風機47の周囲を回動遮蔽壁71で遮蔽し、これにより図4に示した送風口27を閉鎖する状態である。また、この全閉状態では、送風機47は回転しない。
図8(A)を参照して、遮蔽装置70は、全閉状態では送風機47から外部への空気の流出を防止する。即ち、全閉状態では、全ての遮蔽装置70が起立状態であり、冷気を供給する風路との連通は遮断され、冷蔵室15および冷凍室17には冷気が供給されない。また、図2に示した冷却器45を除霜する除霜行程でも、遮蔽装置70が全閉状態となることで、暖気が冷却室26から冷蔵室15および冷凍室17に流入しない。
図8(B)を参照して、全閉状態では、回動遮蔽壁71は、支持基体63の主面に対して略垂直に起立する閉状態となっている。ここでは、遮蔽装置70が有する全ての回動遮蔽壁71が閉状態となる。また、この状態では、回動遮蔽壁71の後方端部は、図4に示す仕切体66に当接しているか、仕切体66の直近に配置されている。このようにすることで、回動遮蔽壁71で風路を閉鎖する際の気密性を向上することができる。
図8(C)を参照して、遮蔽装置70を全閉状態とする際には、先ず、駆動モータ74を駆動することでギア30を介して回転プレート73を回転させる。ここでは、回転プレート73を回転させることで、各移動軸76を移動軸スライド溝80内で摺動させ、各移動軸76を半径方向外側に移動する。この結果、図8(D)に示すように、カム61は、半径方向外側に向かって移動する。そして、カム61と回転可能に連結されている回動遮蔽壁71は、回動連結部68近傍を回動中心として回動し、支持基体63の主面に対して略直角に起立する閉状態となる。図8(D)では、開状態から閉状態に遷移する途中段階の回動遮蔽壁71を図示している。
図9に全開状態における遮蔽装置70の構成を示す。図9(A)は全開状態の遮蔽装置70を後方から見た図であり、図9(B)は図9(A)のC-C線に於ける断面図であり、図9(C)は全開状態における回転プレート73等を後方から見た図であり、図9(D)は図9(B)の要所拡大図である。ここで、全開状態とは、送風機47の周囲を回動遮蔽壁71で冷気を供給する風路との連通を遮蔽せず、これにより送風機47で送風される冷気が周囲に広がる状態である。
図9(A)を参照して、遮蔽装置70は、全開状態では送風機47から外部への空気の流れを妨げない。即ち、全開状態では、遮蔽装置70が送風機47から送風される冷気は、回動遮蔽壁71に干渉されることなく、冷蔵室15および冷凍室17に送風される。図9(A)に示すように、全開状態では、全ての回動遮蔽壁71は周囲に向かって開いた状態となっている。
図9(B)を参照して、全開状態では、回動遮蔽壁71は、支持基体63の主面に対して略平行な開状態となっている。遮蔽装置70が有する全ての回動遮蔽壁71が開状態となることで、送風機47から送風される風路に回動遮蔽壁71が存在せず、風路の流路抵抗を小さくし、送風機47の送風量を増大することができる。
図9(C)を参照して、遮蔽装置70を全開状態とする際には、駆動モータ74を駆動することでギア30を介して回転プレート73を回転させ、各移動軸76を移動軸スライド溝80内で摺動させる。これにより、各移動軸76が半径方向内側に移動する。そのようになると、図9(D)に示すとおり、カム61が、半径方向内側に向かって移動する。その結果、カム61の上端部分に対して回動可能に接続されている回動遮蔽壁71は、回動連結部68の近傍を回転中心として回動し、回動遮蔽壁71の主面が、カム収納部62の主面に対して略平行な状態となる。
図10は本発明の実施形態に係る遮蔽装置70において、下段冷凍室19のみに冷気を供給する状態を示し、(A)は遮蔽装置70を後方から見た図であり、(B)は回転プレート73を後方から見た図である。図11は本発明の実施形態に係る遮蔽装置70において、下段冷凍室19のみに冷気を供給する際の風路の状況を後方から見た図である。図12は本発明の実施形態に係る遮蔽装置70において、冷凍室17のみに冷気を供給する際を示し、(A)は遮蔽装置70を後方から見た図であり、(B)は回転プレート73を後方から見た図である。図13は本発明の実施形態に係る遮蔽装置70において、冷凍室17のみに冷気を供給する際の風路の状況を後方から見た図である。図14は本発明の実施形態に係る遮蔽装置70において、上段冷凍室18のみに冷気を供給する状態を示し、(A)は遮蔽装置70を後方から見た図であり、(B)は回転プレート73を後方から見た図である。図15は本発明の実施形態に係る遮蔽装置70において、上段冷凍室18のみに冷気を供給する際の風路の状況を後方から見た図である。図16は本発明の実施形態に係る遮蔽装置70において、冷気を供給しない状態を示し、(A)は遮蔽装置70を後方から見た図であり、(B)は回転プレート73を後方から見た図である。図17は本発明の実施形態に係る遮蔽装置70において、冷気を供給しない際の風路の状況を後方から見た図である。
図18は本発明の実施形態に係る遮蔽装置70において、冷蔵室15のみに冷気を供給する状態を示し、(A)は遮蔽装置70を後方から見た図であり、(B)は回転プレート73を後方から見た図である。図19は本発明の実施形態に係る遮蔽装置70において、冷蔵室15のみに冷気を供給する際の風路の状況を後方から見た図である。図20は本発明の実施形態に係る遮蔽装置70において、上段冷凍室18および冷蔵室15に冷気を供給する状態を示し、(A)は遮蔽装置70を後方から見た図であり、(B)は回転プレート73を後方から見た図である。図21は本発明の実施形態に係る遮蔽装置70において、上段冷凍室18および冷蔵室15に冷気を供給する際の風路の状況を後方から見た図である。
図22は本発明の実施形態に係る遮蔽装置70において、冷凍室17全体および冷蔵室15に冷気を供給する状態を示し、(A)は遮蔽装置70を後方から見た図であり、(B)は回転プレート73を後方から見た図である。図23は本発明の実施形態に係る遮蔽装置70において、冷凍室17全体および冷蔵室15に冷気を供給する際の風路を後方から見た図である。
以下、図10から図23を参照して、遮蔽装置70の回転プレート73を回転させることで、回動遮蔽壁711~716を開閉し、風路の開閉および切替えを行う動作を説明する。以下の各図に於いては、時計回り方向を「順方向」と称し、反時計回りの方向を「逆方向」と称する。更に、以下の説明では、回転プレート73の半径方向および円周方向を、単に、半径方向および円周方向と称する。
図10および図11に、下段冷凍室19に冷気を供給する状態を示す。図10(A)はこの状態に於ける遮蔽装置70を後方から見た図であり、図10(B)はこの状態に於ける回転プレート73を後方から見た図であり、図11にはこの状態に於ける風路の状況を後方から見た図である。
図10(A)を参照して、下段冷凍室19のみに冷気を供給する状況では、回動遮蔽壁712,711,716は閉状態であり、回動遮蔽壁713,714,715は開状態である。係る開閉状態とすることで、送風機47で下段冷凍室19のみに冷気を送風することができる。
図10(B)を参照して、この状態では、各移動軸スライド溝801~806の逆方向側の端部に、移動軸761~766が配置されている。具体的には、移動軸スライド溝801の溝部8013の逆方向端部に移動軸761が配置され、移動軸スライド溝802の溝部8026の逆方向端部に移動軸762が配置され、移動軸スライド溝803の溝部8034の逆方向端部に移動軸763が配置されている。また、移動軸スライド溝804の溝部8044の逆方向端部に移動軸764が配置され、移動軸スライド溝805の溝部8054の逆方向端部に移動軸765が配置され、移動軸スライド溝806の溝部8066の逆方向端部に移動軸766が配置されている。
このとき、移動軸761,762,766が半径方向外側に配置され、回動遮蔽壁711,712,716が閉状態と成る。一方、移動軸763,764,765は半径方向内側に配置され、回動遮蔽壁713,714,715は開状態と成る。
図11を参照して、遮蔽装置70が図10に示した状態となると、回動遮蔽壁713,714,715が開状態となるので、冷気は下段冷凍室供給風路53に送風される。下段冷凍室供給風路53に流れた冷気は、吹出口34を経由して、図2に示す下段冷凍室19に吹き出される。
一方、回動遮蔽壁711,712,716が閉状態であることで、図2に示す冷蔵室15および上段冷凍室18には冷気が送風されない。
図12および図13に、冷凍室17のみに冷気を供給する状態を示す。図12(A)はこの状態に於ける遮蔽装置70を後方から見た図であり、図12(B)はこの状態に於ける回転プレート73を後方から見た図であり、図13にはこの状態に於ける風路の状況を後方から見た図である。
図12(A)を参照して、下段冷凍室19のみに冷気を供給する状況では、回動遮蔽壁711は閉状態であり、回動遮蔽壁712,713,714,715,716は開状態である。係る開閉状態とすることで、送風機47で図2に示す冷凍室17に冷気を送風することができる。
図12(B)を参照して、この状態では、図10(B)に示した状態から回転プレート73を逆方向に回転させた状態となっている。
具体的には、移動軸スライド溝801の溝部8013の中間部に移動軸761が配置され、移動軸スライド溝802の溝部8026の順方向端部に溝部8026に移動軸762が配置され、移動軸スライド溝803の溝部8034の順方向端部に溝部8034に移動軸763が配置されている。また、移動軸スライド溝804の溝部8044の順方向端部に移動軸764が配置され、移動軸スライド溝805の溝部8054の順方向端部に溝部8054に移動軸765が配置され、移動軸スライド溝806の溝部8066の順方向端部に溝部8066に移動軸766が配置されている。
上記のようにすることで、移動軸761は半径方向外側に配置されたままになり、回動遮蔽壁711は閉状態のまま維持される。一方、移動軸762,763,764,765,766は半径方向内側に配置され、回動遮蔽壁712,713,714,715,716は開状態と成る。
図13を参照して、遮蔽装置70が図12に示した状態となると、回動遮蔽壁712,716が開状態となることで、冷気は上段冷凍室供給風路52に送風され、吹出口34を介して図2に示す上段冷凍室18に吹き出される。また、回動遮蔽壁713,714,715も開状態となることで、冷気は下段冷凍室供給風路53に送風され、吹出口34を経由して図2に示す下段冷凍室19に吹き出される。
一方、回動遮蔽壁711は閉状態であることで、冷蔵室15には冷気が送風されない。
図14および図15に、上段冷凍室18のみに冷気を供給する状態を示す。図14(A)はこの状態に於ける遮蔽装置70を後方から見た図であり、図14(B)はこの状態に於ける回転プレート73を後方から見た図であり、図15にはこの状態に於ける風路の状況を後方から見た図である。
図14(A)を参照して、図2に示す上段冷凍室18のみに冷気を供給する状況では、回動遮蔽壁711,713,714,715は閉状態であり、回動遮蔽壁712,716は開状態である。係る開閉状態とすることで、送風機47で上段冷凍室18のみに冷気を送風することができる。
図14(B)を参照して、この状態では、図12(B)に示した状態から回転プレート73を逆方向に回転させた状態となっている。
具体的には、移動軸スライド溝801の溝部8013の中間部に移動軸761が配置され、移動軸スライド溝802の溝部8025の順方向端部に移動軸762が配置され、移動軸スライド溝803の溝部8033の順方向端部に移動軸763が配置されている。また、移動軸スライド溝804の溝部8043の順方向端部に移動軸764が配置され、移動軸スライド溝805の溝部8053の順方向端部に移動軸765が配置され、移動軸スライド溝806の溝部8065の順方向端部に移動軸766が配置されている。
このとき、移動軸761,763,764,765が半径方向外側に配置され、回動遮蔽壁711,713,714,715は閉状態となる。一方、移動軸762,766は半径方向内側に配置され、回動遮蔽壁712,716は開状態と成る。
図15を参照して、遮蔽装置70が図14に示した状態となると、回動遮蔽壁712,716が開状態となることで、冷気は上段冷凍室供給風路52に送風され、吹出口34を介して、上段冷凍室18に吹き出される。
一方、回動遮蔽壁711は閉状態であるので、冷蔵室15には冷気が送風されない。また、回動遮蔽壁713,714,715も閉状態であるので、下段冷凍室19には冷気が送風されない。
図16および図17に、遮蔽装置70が、全ての風路を閉鎖する全閉状態を示す。図16(A)はこの状態に於ける遮蔽装置70を後方から見た図であり、図16(B)はこの状態に於ける回転プレート73を後方から見た図であり、図17にはこの状態に於ける風路の状況を後方から見た図である。
図16(A)を参照して、全閉状態では、回動遮蔽壁711~716は閉状態である。係る状態とすることで、各風路に空気が流れることを防止することができる。
図16(B)を参照して、この状態では、図14(B)に示した状態から回転プレート73を逆方向に回転させた状態となっている。
具体的には、移動軸スライド溝801の溝部8013の順方向端部に移動軸761が配置され、移動軸スライド溝802の溝部8024の順方向端部に移動軸762が配置され、移動軸スライド溝803の溝部8032の中間部に移動軸763が配置されている。また、移動軸スライド溝804の溝部8042の中間部に移動軸764が配置され、移動軸スライド溝805の溝部8052の中間部に移動軸765が配置され、移動軸スライド溝806の溝部8064の順方向端部に移動軸766が配置されている。
このとき、移動軸761~766は半径方向外側に配置され、回動遮蔽壁711~716は閉状態となる。
図17を参照して、遮蔽装置70が図16に示した状態となると、回動遮蔽壁711~716は閉状態となり、全ての貯蔵室には空気が供給されない。換言すると、冷却室26と各風路とを、回動遮蔽壁711~716で遮蔽することができる。よって、除霜行程で冷却室26の内部を温めた際に、冷却室26の内部の暖気が各風路を経由して各貯蔵室に漏れ出すことを防止することができる。本実施形態では、回動遮蔽壁711~716で気密性高く風路を遮蔽することができるので、この遮蔽効果を大きくすることができる。
図18および図19に、冷蔵室15のみに冷気を供給する状態を示す。図18(A)はこの状態に於ける遮蔽装置70を後方から見た図であり、図18(B)はこの状態に於ける回転プレート73を後方から見た図であり、図19にはこの状態に於ける風路の状況を後方から見た図である。
図18(A)を参照して、上段冷凍室18のみに冷気を供給する状況では、回動遮蔽壁711は開状態であり、回動遮蔽壁712~716は閉状態である。係る開閉状態とすることで、後述するように、送風機47で冷蔵室15のみに冷気を送風することができる。
図18(B)を参照して、この状態では、図16(B)に示した状態から回転プレート73を逆方向に回転させた状態となっている。
具体的には、移動軸スライド溝801の溝部8012の順方向端部に移動軸761が配置され、移動軸スライド溝802の溝部8023の順方向端部に移動軸762が配置され、移動軸スライド溝803の溝部8032の中間部に移動軸763が配置されている。また、移動軸スライド溝804の溝部8042の中間部に移動軸764が配置され、移動軸スライド溝805の溝部8052の中間部に移動軸765が配置され、移動軸スライド溝806の溝部8063の順方向端部に移動軸766が配置されている。
このとき、移動軸762~766が半径方向外側に配置され、回動遮蔽壁712~716は閉状態となる。一方、移動軸761は半径方向内側に配置され、回動遮蔽壁711は開状態と成る。
図19を参照して、遮蔽装置70が図18に示した状態となると、回動遮蔽壁711が開状態となることで、冷気は冷蔵室供給風路51に送風され、冷蔵室供給風路29を介して冷蔵室15に吹き出される。また、冷蔵室15に送風された冷気の一部を、野菜室20に送風することもできる。
一方、回動遮蔽壁712~716が閉状態であることで、冷凍室17には冷気が吹き出されない。
図20および図21に、遮蔽装置70が、冷蔵室15および上段冷凍室18に冷気を供給する状態を示す。図20(A)はこの状態に於ける遮蔽装置70を後方から見た図であり、図20(B)はこの状態に於ける回転プレート73を後方から見た図であり、図21にはこの状態に於ける風路の状況を後方から見た図である。
図20(A)を参照して、図2に示す冷蔵室15および上段冷凍室18に冷気を供給する状況では、回動遮蔽壁711,712,716は開状態であり、回動遮蔽壁713~715は閉状態である。係る開閉状態とすることで、送風機47で冷蔵室15および上段冷凍室18に冷気を送風することができる。
図20(B)を参照して、この状態では、図18(B)に示した状態から回転プレート73を逆方向に回転させた状態となっている。
具体的には、移動軸スライド溝801の溝部8011の中間部に移動軸761が配置され、移動軸スライド溝802の溝部8022の順方向端部に移動軸762が配置され、移動軸スライド溝803の溝部8032の順方向端部に移動軸763が配置されている。また、移動軸スライド溝804の溝部8042の順方向端部に移動軸764が配置され、移動軸スライド溝805の溝部8052の順方向端部に移動軸765が配置され、移動軸スライド溝806の溝部8062の順方向端部に移動軸766が配置されている。
このとき、移動軸763~765が半径方向外側に配置され、回動遮蔽壁713~715は閉状態となる。一方、移動軸761,762,766は半径方向内側に配置され、回動遮蔽壁711,712,716は開状態と成る。
図21を参照して、遮蔽装置70が図20に示した状態となると、回動遮蔽壁711が開状態となることで、冷気は冷蔵室供給風路29を介して冷蔵室15に送風される。また、回動遮蔽壁712,716が開状態となることで、冷気は上段冷凍室供給風路52に送風され、吹出口34を経由して上段冷凍室18に吹き出される。
一方、回動遮蔽壁713~715は閉状態であるので、下段冷凍室19には冷気が送風されない。
図22および図23に、冷蔵室15および冷凍室17の両方に冷気を供給する全開状態を示す。図22(A)はこの状態に於ける遮蔽装置70を後方から見た図であり、図22(B)はこの状態に於ける回転プレート73を後方から見た図であり、図23にはこの状態に於ける風路の状況を後方から見た図である。
図22(A)を参照して、図2に示す冷蔵室15および冷凍室17に冷気を供給する状況では、回動遮蔽壁711,712,713,714,715,716は開状態である。係る全開状態とすることで、後述するように、送風機47で冷蔵室15および冷凍室17に冷気を送風することができる。
図22(B)を参照して、この状態では、図20(B)に示した状態から回転プレート73を逆方向に回転させた状態となっている。また、ここでは移動軸761~766は移動軸スライド溝801~806の順方向端部に配置されている。
具体的には、移動軸スライド溝801の溝部8011の順方向端部に移動軸761が配置され、移動軸スライド溝802の溝部8021の順方向端部に移動軸762が配置され、移動軸スライド溝803の溝部8031の順方向端部に移動軸763が配置されている。また、移動軸スライド溝804の溝部8041の順方向端部に移動軸764が配置され、移動軸スライド溝805の溝部8051の順方向端部に移動軸765が配置され、移動軸スライド溝806の溝部8061の順方向端部に移動軸766が配置されている。
このとき、移動軸761~766は半径方向内側に配置され、回動遮蔽壁711~716は開状態となる。
図23を参照して、遮蔽装置70が図22に示した状態となると、回動遮蔽壁711が開状態となることで、冷気は冷蔵室供給風路51に送風され、冷蔵室供給風路29を介して冷気は冷蔵室15に吹き出される。また、回動遮蔽壁712,716が開状態となることで、冷気は上段冷凍室供給風路52に送風され、吹出口34を経由して上段冷凍室18に吹き出される。更に、回動遮蔽壁713~715が開状態となることで、下段冷凍室供給風路53および吹出口34を経由して冷気を下段冷凍室19に供給することができる。
上記のように、本実施形態に係る遮蔽装置70は、図5に示した回転プレート73を回転させることで、各回動遮蔽壁711~716の開閉状態を切換えることができる。よって、送風機47の軸方向に沿って部材が変位することがない。従って、遮蔽装置70が占有する厚み寸法を小さくすることができる。更に、図3を参照して、遮蔽装置70が占有する容積を小さくすることができるので、遮蔽装置70の前方に形成される冷凍室17の庫内容積を大きくし、より多くの被冷凍物を冷凍室17に貯蔵することができる。
[第2実施形態]
図24から図30を参照して、第2実施形態に係る遮蔽装置270を説明する。第2実施形態に係る遮蔽装置270の基本構成および冷蔵庫10への適用構成は第1実施形態と同様であるので、相違点を中心に説明する。本形態では、ギア機構またはワイヤ機構で、遮蔽装置270の開閉を駆動している。
図24から図30を参照して、第2実施形態に係る遮蔽装置270を説明する。第2実施形態に係る遮蔽装置270の基本構成および冷蔵庫10への適用構成は第1実施形態と同様であるので、相違点を中心に説明する。本形態では、ギア機構またはワイヤ機構で、遮蔽装置270の開閉を駆動している。
図24を参照して、遮蔽装置270の構成を説明する。図24(A)は遮蔽装置270を示す斜視図であり、図24(B)は遮蔽装置270を示す分解斜視図である。
図24(A)および図24(B)を参照して、遮蔽装置270は、支持基体263と、回動遮蔽壁271と、遮蔽壁駆動機構260と、を具備している。遮蔽装置270は送風機47で送風された冷気の風路を遮蔽する装置である。遮蔽装置270を開状態とすることで冷却室26と各貯蔵室とをつなぐ風路を連通させ、遮蔽装置270を閉状態とすることで風路を遮断する。
図24(B)を参照して、送風機47は、ビスなどの締結手段を介して、支持基体263の中心部に配設されている。送風機47は、ここでは図示しないが、例えば、ターボファンなどの遠心ファンと、この遠心ファンを回転させる送風モータとを具備しており、半径方向外側に向かって冷気を送風する。
支持基体263は、一体成型された合成樹脂から成る部材であり、後方から見たら略正方形を呈している。支持基体263の各々の側辺には、回動遮蔽壁271が回動可能に配設されている。支持基体263の一部を後方側に突出させることで、複数の突出部258が形成されている。突出部258の後端には、被覆板235が取り付けられる。
被覆板235は、後方から見たら略正方向を呈する板状の部材であり、中央部に開口部236が形成されている。開口部236から取り入れられた冷気が送風機47により周囲に向かって送風される。
遮蔽壁駆動機構260は、回動遮蔽壁271の開閉動作を駆動する。遮蔽壁駆動機構260は、駆動源である駆動モータ274と、駆動モータ274の動力を回動遮蔽壁271に伝達する動力伝達機構としてのギア2811等を有している。遮蔽壁駆動機構260の具体的構成は図25を参照して後述する。
駆動モータ274は、支持基体263の左方下端側に配設されており、回動遮蔽壁271を開閉動作するための駆動力を発生させる。
回動遮蔽壁271は、矩形状の合成樹脂からなる板状部材であり、回動遮蔽壁2711ないし回動遮蔽壁2714から成る。回動遮蔽壁271の詳細は図25を参照して後述する。
図25を参照して、遮蔽装置270を詳述する。図25(A)は遮蔽装置270を示す分解図であり、図25(B)は回動遮蔽壁2711と回動遮蔽壁2714とが駆動的に連結される部分を拡大して示す図である。図25(A)では、支持基体263および送風機47は、被覆板235により覆われている。
図25(A)を参照して、回動遮蔽壁271は、回動遮蔽壁2711ないし回動遮蔽壁2714から成る。回動遮蔽壁271は、支持基体263の各側辺に沿う長辺を有している。回動遮蔽壁271は、支持基体263の周縁部付近に、支持基体263の主面に平行な軸線回りに、回動可能に取り付けられている。回動遮蔽壁271は、送風機47で送風される冷気が流通する経路に配置され、各風路を遮蔽する。また、回動遮蔽壁2711ないし回動遮蔽壁2714の内側側辺は、回動連結部264を介して、支持基体263に対して回動可能に取り付けられている。
回動遮蔽壁2711ないし回動遮蔽壁2714には、駆動モータ274からの動力を伝達させる動力伝達機構としてギア2811等が配設されている。具体的には、回動遮蔽壁2711の内側両端部にギア2812およびギア2813が配設されており、回動遮蔽壁2712の内側両端部にギア2814およびギア2815が配設されている。また、ギア2813の内側両端部にギア2816およびギア2817が配設されており、回動遮蔽壁2714の両端部には駆動シャフト254およびギア2811が配設されている。駆動シャフト254は駆動モータ274により回転される軸である。
回動遮蔽壁2714のギア2811は、回動遮蔽壁2711のギア2812と歯合する。回動遮蔽壁2711のギア2813は、回動遮蔽壁2712のギア2814と歯合する。回動遮蔽壁2712のギア2815は、回動遮蔽壁2713のギア2816と歯合する。
図25(B)を参照して、回動遮蔽壁2714のギア2811と、回動遮蔽壁2711のギア2812とは、例えば、かさ歯車を構成している。係る構成とすることで、回動遮蔽壁2714から回動遮蔽壁2711に、直交する方向に動力を伝達させることができる。係る構成は、図25(A)に示した、回動遮蔽壁2711のギア2813と回動遮蔽壁2712のギア2814、回動遮蔽壁2712のギア2815と回動遮蔽壁2713のギア2816との構成に関しても同様である。
図25(A)を再び参照して、遮蔽装置270の開閉動作を説明すると、駆動モータ274を一方方向に回転させると、その駆動力は、ギア2811およびギア2812を介して回動遮蔽壁2711に伝達され、ギア2813およびギア2814を介して回動遮蔽壁2712に伝達され、ギア2815およびギア2816を介して回動遮蔽壁2713に伝達される。その結果、回動遮蔽壁2711ないし回動遮蔽壁2714は、同時に、支持基体263の主面に対して直交する状態である起立状態となるように回動する。
駆動モータ274を逆方向に回転させると、上記と同様に、その駆動力は回動遮蔽壁2711ないし回動遮蔽壁2714に伝達され、回動遮蔽壁2711ないし回動遮蔽壁2714は、同時に、支持基体263の主面に対して略平行となる横臥状態となるように回動する。
図26に全閉状態における遮蔽装置270の構成を示す。図26(A)は全閉状態の遮蔽装置270を後方から見た図であり、図26(B)は全閉状態の遮蔽装置270が取り付けられた前面カバー67を後方から見た図である。全閉状態とは、回動遮蔽壁271により、冷気を供給する全ての風路を遮蔽する状態である。
図26(A)を参照して、駆動モータ274の駆動力を、動力伝達機構であるギア2811等で回動遮蔽壁2711ないし回動遮蔽壁2714に伝達させることで、回動遮蔽壁2711ないし回動遮蔽壁2714は、支持基体263の主面に対して起立する起立状態、即ち、各貯蔵室に繋がる風路を閉鎖する閉状態となっている。また、この全閉状態では、送風機47は回転しない。
図26(B)を参照して、遮蔽装置270は、全閉状態では送風機47から外部への空気の流出を防止する。即ち、全閉状態では、回動遮蔽壁2711ないし回動遮蔽壁2714が起立状態であり、冷気を供給する風路との連通は遮断され、図2に示す冷蔵室15および冷凍室17には冷気が供給されない。また、図2に示した冷却器45を除霜する除霜行程でも、遮蔽装置270が全閉状態となることで、暖気が冷却室26から冷蔵室15および冷凍室17に流入しない。
図27に全開状態における遮蔽装置270の構成を示す。図27(A)は全開状態の遮蔽装置270を後方から見た図であり、図27(B)は全開状態の遮蔽装置270が取り付けられた前面カバー67を後方から見た図である。全開状態とは、回動遮蔽壁271で冷気を供給する風路との連通を遮蔽せず、これにより送風機47で送風される冷気が周囲に広がるように流れる状態である。
図27(A)を参照して、遮蔽装置270は、全開状態では送風機47から外部への空気の流れを妨げない。即ち、全開状態では、駆動モータ274の駆動力により回動遮蔽壁2711ないし回動遮蔽壁2714は、支持基体263の主面に対して略平行に横臥する横臥状態となっている。よって、遮蔽装置270が送風機47から送風される冷気は、回動遮蔽壁2711ないし回動遮蔽壁2714に干渉されることなく、冷蔵室15および冷凍室17に送風される。
図27(B)を参照して、遮蔽装置270が有する全ての回動遮蔽壁2711ないし回動遮蔽壁2714が横臥する開状態となることで、流路抵抗を小さくし、送風機47の送風量を増大することができる。具体的には、回動遮蔽壁2711が開状態となることで、冷気は冷蔵室供給風路51に送風され、冷蔵室供給風路29を介して冷気は、図2に示す冷蔵室15に吹き出される。また、回動遮蔽壁2712および回動遮蔽壁2714が開状態となることで、冷気は上段冷凍室供給風路52に送風され、吹出口34を経由して、図2に示す上段冷凍室18に吹き出される。更に、回動遮蔽壁2713が開状態となることで、下段冷凍室供給風路53および吹出口34を経由して冷気を下段冷凍室19(図2参照)に供給することができる。
ここで、上記した回動遮蔽壁2711ないし回動遮蔽壁2714を、半開状態にすることもできる。具体的には、ここでは図示しない制御装置の指示に基づいて、図26(A)に示す全閉状態から、図27(A)に示す全開状態に遷移する際に、ステッピングモータである駆動モータ274を途中で停止させることで、回動遮蔽壁2711ないし回動遮蔽壁2714を半開状態にすることができる。回動遮蔽壁2711ないし回動遮蔽壁2714を半開状態にすることで、冷凍室17に送風される冷気の風量を精密に調整することができる。
また、図2を参照して、冷蔵室供給風路29にダンパ22を介装し、更に、図26(A)に示す回動遮蔽壁2711を省くことができる。即ち、遮蔽装置270は、回動遮蔽壁2712、回動遮蔽壁2713および回動遮蔽壁2714のみを有する。更に、回動遮蔽壁2712、回動遮蔽壁2713および回動遮蔽壁2714は、全閉状態、全開状態および半開状態をとることができる。このようにすることで、冷蔵室15および冷凍室17への送風の自由度を自在に調整することができる。
図28ないし図30を参照して、他の形態に係る遮蔽装置290の構成等を説明する。図28(A)は閉状態の遮蔽装置290を示す斜視図であり、図28(B)は開状態の遮蔽装置290を示す斜視図であり、図29は遮蔽装置290を詳細に示す分解斜視図である。図30(A)は遮蔽装置290を全開状態にする方法を示す図であり、図30(B)は遮蔽装置290を全閉状態にする方法を示す図である。
図28(A)を参照して、遮蔽装置290は、送風機294を周囲から囲み風路を開閉する複数の回動遮蔽壁291とを有している。送風機294は、略円盤形状を呈している支持基体296の後面中心部に配設されている。回動遮蔽壁291の端部は、回動連結部293を介して、支持基体296の周辺部に回動可能に取り付けられている。回動遮蔽壁291は支持基体296の周辺部に、一例として12個が取り付けられている。閉状態に於いては、回動遮蔽壁291は、支持基体296の主面に対して直立する起立状態となっている。換言すると、支持基体296の周辺部に、複数の回動遮蔽壁291から成る環状の壁体が形成される。
また、遮蔽装置290は、回動遮蔽壁291の開閉動作のための駆動力を伝達する動力伝達として、ワイヤ292を有している。具体的には、各々の回動遮蔽壁291の内側端部に、ワイヤ挿通部295が形成されている。ワイヤ292は、各々の回動遮蔽壁291のワイヤ挿通部295に挿通されており、全体として略環状を呈している。よって、ワイヤ292を絞ることで縮径させると、回動遮蔽壁291は回動連結部293を起点として起立するように回動し、支持基体296の主面に対して略直交するようになる起立状態となる。遮蔽装置290を閉状態とすることで、図26(B)に示したように、各貯蔵室への送風を停止することができる。
図28(B)に、全開状態の遮蔽装置290を示す。ここでは、各々の回動遮蔽壁291が、支持基体296の主面に対して略平行となる全開状態となっている。ワイヤ292の環形状が拡径するように、ワイヤ292を繰り出すことで、回動遮蔽壁291を半径方向外側に向かって横臥するように回動させ、回動遮蔽壁291を全開状態にすることができる。遮蔽装置290を全開状態とすることで、図27(B)に示したように、各貯蔵室に冷気を送風することができる。
図29の分解斜視図を参照して、遮蔽装置290の具体的構成を説明する。遮蔽装置290は、後方側から、蓋部297、送風機294、ワイヤカバー288、回動遮蔽壁291、支持基体296、ワイヤ回転体286、蓋部299、駆動モータ289を有している。
蓋部297は、略円形の外形形状を呈しており、送風機294で送風される冷気を取り入れるための開口部282が形成されている。蓋部297は、後方側から送風機294を塞いでいる。
送風機294は、上記した送風機47と同様であり、開口部282を経由して取り入れた冷気を、円周方向外側に向かって送風する。送風機294は、送風機取付部287を介して、支持基体296に取り付けられている。
ワイヤカバー288は、略円環状に形成された板材から成り、ワイヤ292を後方から保護することで、ワイヤ292の移動を許容する為の空間を確保する。
回動遮蔽壁291は、送風機294の周囲に複数が配置され、回動することにより送風機294から周囲に広がる風路の開閉動作を行う。
支持基体296は、略環状に形成された板材から成り、回動遮蔽壁291およびワイヤ292が配設される。支持基体296の周囲には、回動遮蔽壁291の回動連結部293(図28(A)参照)に対応して、回動連結部298が形成されている。回動遮蔽壁291の各々の回動連結部293は、支持基体296の回動連結部298に回動可能に連結される。また、支持基体296には、上記したワイヤ292の一端が固定される。更に、支持基体296の内側部分に溝285が形成されている。溝285は円周方向に沿って細長く形成されている。ワイヤ292の端部は、溝285を介してワイヤ回転体286に接続されている。
ワイヤ回転体286は、略円盤形状に形成された板材から成り、支持基体296の前方に配置されている。ワイヤ回転体286は、ワイヤ292の他端側が接続される。また、ワイヤ回転体286は、ここでは図示しないギアを介して、駆動モータ289と駆動的に接続されている。よって、駆動モータ289が一方方向に回転すると、ワイヤ回転体286も一方方向に回転する。逆に、駆動モータ289が逆方向に回転すると、ワイヤ回転体286も逆方向に回転する。
蓋部299は、ワイヤ回転体286を前方から保護する略円盤形状を呈する板材である。蓋部299には駆動モータ289が取り付けられる。
ワイヤ292は、一端側のワイヤ端部2921と、他端側のワイヤ端部2922を有する。ワイヤ端部2921は、後述するワイヤ固定部284を介して回動連結部298に固定され、ワイヤ回転体286が回転してもその位置は変動しない。ワイヤ端部2922は、後述するワイヤ固定部283を介してワイヤ回転体286に固定され、ワイヤ回転体286の回転に伴い、ワイヤ回転体286の円周方向に沿って変位する。
図30を参照して、ワイヤ292を操作することで回動遮蔽壁291を開閉動作させる具体的方法を説明する。図30(A)は開状態の遮蔽装置290を示し、図30(B)は閉状態の遮蔽装置290を示している。
図30(A)を参照して、上記したように、ワイヤ292の一端は、ワイヤ固定部284を介して、図29に示した支持基体296に固定されている。ワイヤ固定部284の位置は不変である。一方、ワイヤ292の他端は、ワイヤ固定部283を介して、図29に示したワイヤ回転体286に固定されている。ワイヤ回転体286の回転に伴い、ワイヤ固定部283の位置は、溝285に沿って移動する。ここでは、図29に示した駆動モータ289の駆動力で、ワイヤ回転体286が反時計周りに向かって回転すると、ワイヤ固定部283も反時計周りに溝285の内部で移動する。これに伴い、ワイヤ292は反円周方向に沿って繰り出されるので、円環状を呈するワイヤ292は拡径される。また、上記したように、各々の回動遮蔽壁291のワイヤ挿通部295にワイヤ292は挿通されている。よって、各々の回動遮蔽壁291は、同時に周囲に向かって倒れるように回動して横臥状態となる。係る状態となることで、送風機294が回転することで送風される冷気は、例えば、図27(B)に示す冷蔵室供給風路51、上段冷凍室供給風路52および下段冷凍室供給風路53を経由して、図2に示す冷蔵室15、冷凍室17および野菜室20に供給される。
図30(B)を参照して、回動遮蔽壁291を閉状態にする方法を説明する。先ず、図29に示した駆動モータ289の駆動力によりワイヤ回転体286を逆方向、即ち時計回りに回転させる。そうすると、ワイヤ回転体286とワイヤ292との接続点であるワイヤ固定部283も、溝285の内部で時計回りに移動する。これにより、円環状のワイヤ292は縮径され、各々の回動遮蔽壁291は、同時に遮蔽装置290の主面に対して起立するように回動する。この結果、各々の回動遮蔽壁291は、送風機294を周囲から取り囲むように起立する閉状態となる。遮蔽装置290が閉状態となると、図2に示した各貯蔵室には送風されない。
上記した遮蔽装置290では、一本の環状のワイヤ292を拡径することで回動遮蔽壁291を開状態にすることができ、縮径することで回動遮蔽壁291を閉状態にすることができる。よって、簡素な構成で遮蔽装置290の開閉動作を実行することができる。また、遮蔽装置290は送風機294の直径方向に向かって開閉動作し、送風機294の軸方向、即ち冷蔵庫10の奥行方向に沿って構成部材が移動しない。よって、冷蔵庫10の奥行方向において、遮蔽装置290が占有する容積を小さくし、貯蔵室として用いられる有効容積を大きくすることができる。
ここで、上記した遮蔽装置290を、半開状態にすることもできる。具体的には、ここでは図示しない制御装置の指示に基づいて、図28(A)に示す全閉状態から、図28(B)に示す全開状態に遷移する際に、ステッピングモータである駆動モータ289を途中で停止させることで、回動遮蔽壁291を半開状態にすることができる。回動遮蔽壁291を半開状態にすることで、冷凍室17に送風される冷気の風量を精密に調整することができる。
また、図2を参照して、冷蔵室供給風路29にダンパ22を介装し、更に、図28(A)に示す上端部分の回動遮蔽壁291を省くことができる。更に、回動遮蔽壁291は、全閉状態、全開状態および半開状態をとることができる。このようにすることで、冷蔵室15および冷凍室17への送風の自由度を自在に調整することができる。
上記した第2形態から、以下のような発明を把握することができる。
本発明は、冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、送風機を半径方向外側から囲むように並設され、回動することで前記風路を開閉する複数の回動遮蔽壁と、前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を具備し、前記遮蔽壁駆動機構は、駆動源と、前記駆動源の動力を前記回動遮蔽壁に伝達する動力伝達機構と、を有することを特徴とする。これにより、本発明の遮蔽装置によれば、送風機を周囲から囲む回動遮蔽壁により風路を開閉することで、遮蔽装置全体の厚み方向に於ける寸法を小さくでき、装置全体の小型化を実現できる。また、駆動源から動力伝達機構を用いて回動遮蔽壁に動力を伝達することで、回動遮蔽壁の開閉動作を良好に行うことができる。
更に、本発明の遮蔽装置では、前記動力伝達機構は、隣り合う前記回動遮蔽壁間に配設されるギア機構であることを特徴とする。これにより、本発明の遮蔽装置によれば、ギア機構で動力を回動遮蔽壁に伝達することで、動力伝達機構で複数の回動遮蔽壁の開閉動作を司ることができる。
更に、本発明の遮蔽装置では、前記回動遮蔽壁は、前記送風機を囲むように略円環状に配置され、前記動力伝達機構は、前記回動遮蔽壁に挿通されたワイヤであり、前記ワイヤは、前記回動遮蔽壁に形成されたワイヤ挿通部に挿通されることを特徴とする。これにより、本発明の遮蔽装置によれば、ワイヤの直径を絞るように短くすることで回動遮蔽壁を起立状態にすることができ、逆にワイヤの直径が長くなるように繰り出すことで、回動遮蔽壁を横臥状態にすることができる。
また、本発明の冷蔵庫では、貯蔵室に前記風路を経由して供給される空気を冷却する冷凍サイクルの冷却器と、前記冷却器が配設されて前記貯蔵室につながる送風口が形成される冷却室と、前記送風口から供給される前記空気を前記貯蔵室に向けて送風する前記送風機と、前記風路を少なくとも部分的に塞ぐ前記遮蔽装置と、を具備することを特徴とする。これにより、本発明の冷蔵庫によれば、遮蔽装置全体の厚み方向に於ける寸法を小さくでき、各貯蔵室の有効容積を大きくすることができる。
[第3実施形態]
図31から図39を参照して、第3実施形態に係る遮蔽装置370を説明する。第3実施形態に係る遮蔽装置370の基本構成および冷蔵庫10への適用構成は第1実施形態と同様であるので、相違点を中心に説明する。本形態では、遮蔽装置370が個別の開閉駆動機構を有している。
図31から図39を参照して、第3実施形態に係る遮蔽装置370を説明する。第3実施形態に係る遮蔽装置370の基本構成および冷蔵庫10への適用構成は第1実施形態と同様であるので、相違点を中心に説明する。本形態では、遮蔽装置370が個別の開閉駆動機構を有している。
図31を参照して、遮蔽装置370の構成を説明する。図31(A)は遮蔽装置370の分解斜視図であり、図31(B)は遮蔽装置370の側方断面図である。
図31(A)および図31(B)を参照して、遮蔽装置370は、支持基体363と、回動遮蔽壁371と、遮蔽壁駆動機構360と、を具備している。遮蔽装置370は送風機47で送風された冷気の風路を遮蔽する装置である。遮蔽装置370を開状態とすることで冷却室26と各貯蔵室とをつなぐ風路を連通させ、遮蔽装置370を閉状態とすることで風路を遮断する。
送風機47は、ビスなどの締結手段を介して、支持基体363の中心部に配設されている。送風機47は、ここでは図示しないが、例えば、ターボファンなどの遠心ファンと、この遠心ファンを回転させる送風モータとを具備しており、半径方向外側に向かって冷気を送風する。
支持基体363は、一体成型された合成樹脂から成る部材である。支持基体363の後面側には、各々の回動遮蔽壁371が回動可能に配設されている。
支持基体363の周辺部には、側壁部358が形成されている。側壁部358は、支持基体363から後方に向かって伸びる部位である。側壁部358は、支持基体363の周方向に関して略等間隔に複数配置されている。側壁部358は、回動遮蔽壁371同士の間に配置されている。側壁部358の後端は、ビス等の締結手段を介して、図4(B)に示した仕切体66に締結されている。
回動遮蔽壁371は、矩形状の合成樹脂からなる板状部材であり、送風機47の外縁の接線に沿う長辺を有している。回動遮蔽壁371は、支持基体363の周縁部付近に、支持基体363の主面に平行な軸線回りに、後方に向かって回動可能に取り付けられている。更に、回動遮蔽壁371は、複数(本実施形態では5個)が配設されている。回動遮蔽壁371は、送風機47で送風される冷気が流通する経路に配置され、風路を遮蔽する。
遮蔽壁駆動機構360は、カム361と、回転プレート373と、回転プレート373を回転させる駆動モータ374と、を有する。ここでは、個々の回動遮蔽壁371に遮蔽壁駆動機構360が備えられている。即ち、5個の回動遮蔽壁371に対して、5個の遮蔽壁駆動機構360が配設されている。係る構成を採用することで、図示しない制御装置の指示に基づいて、各々の遮蔽壁駆動機構360が回動遮蔽壁371を回動させることで、回動遮蔽壁371の回動パターンのバリエーションを制限なく実現することができる。遮蔽壁駆動機構360の具体的な形状および機能は、後述する。
図32を参照して、上記した回動遮蔽壁371を駆動する遮蔽壁駆動機構360を説明する。図32(A)は遮蔽壁駆動機構360を示す分解斜視図であり、図32(B)はカム361を示す斜視図である。
図32(A)を参照して、遮蔽壁駆動機構360は、カム361と、カム361の移動軸376が係合する回転プレート373と、回転プレート373を回転させる駆動モータ374と、を備えている。
カム361は、合成樹脂から成る扁平な直方体形状の部材である。図32(B)に示すように、カム361の右方端にはピン355を挿通可能な孔部が形成される回動連結部348が形成されている。カム361は、図31(A)に示した支持基体363の前面を凹状に成形したカム収納部に、スライド可能な状態で収納される。
回転プレート373は、略舌片形状を呈する板状の部材であり、左方側の端部は駆動モータ374の回転軸に相対回転不能に接続されている。よって、駆動モータ374により回転プレート373は回転される。また、回転プレート373の右方側には、カム361の移動軸376を移動させるための移動軸スライド溝380が形成されている。移動軸スライド溝380は弓状に湾曲する形状を呈しており、移動軸スライド溝380にはカム361の移動軸376がスライド可能に係合する。
回動遮蔽壁371には、回動遮蔽壁371の基端部から傾斜して突出する回動連結部368が形成されている。回動連結部368には、ピン355を挿通することが可能な孔部が形成されている。回動遮蔽壁371の側辺の両端部付近には、回動連結部364が形成されている。回動連結部364には、ピン369を挿通することが可能な孔部が形成されている。
図32(B)に示すように、移動軸376は、カム361の前面から突出する円柱状の突起体である。移動軸376の直径は、回転プレート373に形成される移動軸スライド溝380の幅よりも若干短い程度である。移動軸376は、移動軸スライド溝380に、摺動可能に係合する。
図32(A)を再び参照して、カム361の回動連結部348の孔部と、回動遮蔽壁371の回動連結部368の孔部にピン355が挿通されることにより、カム361と回動遮蔽壁371とはピン355周りに回動可能に接続される。また、回動遮蔽壁371の回動連結部364に挿通されるピン369を介して、回動遮蔽壁371は、図31(A)に示した支持基体363に回動可能に連結される。
係る構成により、図32(A)を参照して、駆動モータ374により移動軸スライド溝380を回転させることで、回動遮蔽壁371の開閉動作を行うことができる。具体的には、駆動モータ374が回転プレート373を回転させると、移動軸スライド溝380に沿って移動軸376が左右方向に移動し、即ちカム361が左右方向に移動する。カム361の移動に伴い、カム361と回動可能に連結されている回動遮蔽壁371は、回動連結部364を回動中心として回動することで開閉する。
ここで、図4(B)示したように、遮蔽壁駆動機構360を構成する各部材は、冷気が流通する冷凍室供給風路31に露出しない。従って、冷気が遮蔽壁駆動機構360に吹き付けられないので、遮蔽壁駆動機構360が凍結することを防止することができる。
図33は本発明の実施形態に係る遮蔽装置370を示す図であり、図33(A)は遮蔽装置370の回動遮蔽壁3711等を後方から見て示す図であり、図33(B)は回転プレートの構成を前方から見て示す図である。
図33(A)を参照して、遮蔽装置370は、上記した回動遮蔽壁371として、回動遮蔽壁3711,3712,3713,3714,3715を有している。回動遮蔽壁3711ないし回動遮蔽壁3715は、図31(A)に示した送風機47の外縁の接線に対して略平行な長辺を有する長方形形状を呈している。また、回動遮蔽壁3711ないし回動遮蔽壁3715は、図31(A)に示した支持基体363の周縁部に回動可能に取り付けられている。
回動遮蔽壁3711の半径方向内側端部は、移動軸3761が形成されたカム3611に回動可能に接続されている。同様に、回動遮蔽壁3712の半径方向内側端部は、移動軸3762が形成されたカム3612に回動可能に接続されている。回動遮蔽壁3713の半径方向内側端部は、移動軸3763が形成されたカム3613に回動可能に連結されている。また、回動遮蔽壁3714の半径方向内側端部は、移動軸3764が形成されたカム3614に回動可能に連結されている。回動遮蔽壁3715の半径方向内側端部は、移動軸3765が形成されたカム3615に回動可能に連結されている。
カム3611ないしカム3615は、夫々、回動遮蔽壁3711ないし回動遮蔽壁3715の内側側辺に回動可能に連結されている。これにより、カム3611ないしカム3615が外側に配置されることで、回動遮蔽壁3711ないし回動遮蔽壁3715は起立状態となる。一方、カム3612ないしカム3615が内側に配置されることで、回動遮蔽壁3712ないし回動遮蔽壁3715は横臥状態となる。
図33(B)を参照して、回転プレート3731の移動軸スライド溝3801に、カム3611の移動軸3761がスライド可能に係合している。回転プレート3732の移動軸スライド溝3802に、カム3612の移動軸3762がスライド可能に係合している。回転プレート3733の移動軸スライド溝3803に、カム3613の移動軸3763がスライド可能に係合している。回転プレート3734の移動軸スライド溝3804に、カム3614の移動軸3764がスライド可能に係合している。回転プレート3735の移動軸スライド溝3805に、カム3615の移動軸3765がスライド可能に係合している。係る構成により、回転プレート3731ないし回転プレート3735を回転させることで、カム3611ないしカム3615を所定方向にスライドさせ、回動遮蔽壁3711ないし回動遮蔽壁3715を開閉することが出来る。
図34に全閉状態における遮蔽装置370の構成を示す。図34(A)は全閉状態の遮蔽装置370を後方から見た図であり、図34(B)は図34(A)の切断面線D-Dに於ける断面図であり、図34(C)は全閉状態における回転プレート373等を前方から見た図であり、図34(D)は図34(B)の要所拡大図である。ここで、全閉状態とは、送風機47の周囲を回動遮蔽壁371で遮蔽し、これにより図4に示した送風口27を閉鎖する状態である。また、この全閉状態では、送風機47は回転しない。
図34(A)を参照して、遮蔽装置370は、全閉状態では送風機47から外部への空気の流出を防止する。即ち、全閉状態では、全ての回動遮蔽壁371が起立状態であり、冷気を供給する風路との連通は遮断され、冷蔵室15および冷凍室17には冷気が供給されない。また、図2に示した冷却器45を除霜する除霜行程でも、遮蔽装置370が全閉状態となることで、暖気が冷却室26から冷蔵室15および冷凍室17に流入しない。
図34(B)を参照して、全閉状態では、回動遮蔽壁371は、支持基体363の主面に対して略垂直に起立する閉状態となっている。ここでは、遮蔽装置370が有する全ての回動遮蔽壁371が閉状態となる。この状態では、回動遮蔽壁371の後方端部は、図4に示す仕切体66に当接しているか、仕切体66の直近に配置されている。このようにすることで、回動遮蔽壁371で風路を閉鎖する際の気密性を向上することができる。
図34(C)を参照して、遮蔽装置370を全閉状態とする際には、先ず、駆動モータ374を駆動することで回転プレート373を回転させる。ここでは、回転プレート373を反時計回りに回転させることで、移動軸376を移動軸スライド溝380の内で摺動させ、移動軸スライド溝380の外側端部に移動軸376を配置する。この結果、図34(D)に示すように、カム361は、半径方向外側に向かって移動する。そして、カム361と回転可能に連結されている回動遮蔽壁371は、回動連結部368近傍を回動中心として回動し、支持基体363の主面に対して略直角に起立する閉状態となる。
図35に全開状態における遮蔽装置370の構成を示す。図35(A)は全開状態の遮蔽装置370を後方から見た図であり、図35(B)は図35(A)の切断面線E-Eに於ける断面図であり、図35(C)は全開状態における回転プレート373等を前方から見た図であり、図35(D)は図35(B)の要所拡大図である。ここで、全開状態とは、送風機47の周囲を回動遮蔽壁371で冷気を供給する風路との連通を遮蔽せず、これにより送風機47で送風される冷気が周囲に広がる状態である。
図35(A)を参照して、遮蔽装置370は、全開状態では送風機47から外部への空気の流れを妨げない。即ち、全開状態では、遮蔽装置370が送風機47から送風される冷気は、回動遮蔽壁371に干渉されることなく、冷蔵室15および冷凍室17に送風される。図35(A)に示すように、全開状態では、全ての回動遮蔽壁371は半径方向外側に向かって倒れた横臥状態となっている。
図35(B)を参照して、全開状態では、全ての回動遮蔽壁371は、支持基体363の主面に対して略平行な横臥状態となっている。遮蔽装置370が有する全ての回動遮蔽壁371が開状態となることで、送風機47から送風される風路に回動遮蔽壁371が存在せず、風路の流路抵抗を小さくし、送風機47の送風量を増大することができる。
図35(C)を参照して、遮蔽装置370を全開状態とする際には、駆動モータ374を駆動することで回転プレート373を時計回りに回転させ、移動軸376を移動軸スライド溝380の内部で摺動させる。これにより、移動軸376が移動軸スライド溝380の内側端部に移動する。そのようになると、図35(D)に示すとおり、カム361が、半径方向内側に向かって移動する。その結果、カム361の端部に回動可能に接続されている回動遮蔽壁371は、回動連結部368の近傍を回転中心として回動して倒れ、回動遮蔽壁371の主面が、支持基体363の主面に対して略平行な状態となる。
上記のように、本実施形態に係る遮蔽装置370は、駆動モータ3741ないし駆動モータ3745により、回転プレート3731ないし回転プレート3735を個別に回転させることで、図10(A)に示した回動遮蔽壁3711ないし回動遮蔽壁3715を個別に回動させて開閉することが出来る。よって、回動遮蔽壁3711ないし回動遮蔽壁3715の回動動作を自由に制御できることから、図3に示す冷蔵室15、冷凍室17および野菜室20の庫内温度等に応じて、冷気の送風量を精密に制御することができる。
更に、図3を参照して、遮蔽装置370が占有する容積を小さくすることができるので、遮蔽装置370の前方に形成される冷凍室17の庫内容積を大きくし、より多くの被冷凍物を冷凍室17に貯蔵することができる。
図36から図38を参照して、他の形態に係る遮蔽装置370を説明する。これらの図を参照して説明する遮蔽装置370の構成は、遮蔽壁駆動機構360の駆動源としてソレノイド381を備えている点が異なるので、この点を中心に説明する。
図36を参照して、他の形態に係る遮蔽装置370の構成を説明する。図36(A)は遮蔽装置370の分解斜視図であり、図36(B)は遮蔽壁駆動機構360を示す断面図である。
図36(A)を参照して、遮蔽装置370は、後方側から、送風機47、回動遮蔽壁371、支持基体363、遮蔽壁駆動機構360を有している。ここでは、遮蔽壁駆動機構360は、各回動遮蔽壁371に対応して配置されている。遮蔽壁駆動機構360の構成以外は、図31に示した遮蔽装置370と同様である。
図36(B)を参照して、遮蔽壁駆動機構360は、当接部382が形成されたカム361と、ソレノイド381と、を有している。
カム361は、一体成型された合成樹脂等からなり、カム361の上端は、回動遮蔽壁371と回動可能に連結されている。また、カム361の下方部分には前方に向かって突出する当接部382が形成されている。カム361と回動遮蔽壁371とが回動可能に連結される構成は、図32(A)に示した通りである。
ソレノイド381の下端から下方に向かって可動部387が形成されている。ソレノイド381の可動部387の下端は、カム361の当接部382に接続されている。ソレノイド381か通電されると可動部387は上方に配置され、ソレノイド381が通電されないと可動部387は下方に配置される。
係る構成の遮蔽壁駆動機構360により、ソレノイド381の通電または非通電を制御することで、カム361を移動させて回動遮蔽壁371を回動させ、回動遮蔽壁371を開閉することが出来る。
図37に全閉状態における遮蔽装置370の構成を示す。図37(A)は全閉状態の遮蔽装置370を後方から見た図であり、図37(B)は図37(A)の切断面線F-Fに於ける断面図であり、図37(C)は全閉状態におけるソレノイド381等を前方から見た図であり、図37(D)は図37(B)の要所拡大図である。
図37(A)および図37(B)を参照して、遮蔽装置370は、全閉状態では送風機47から外部への空気の流出を防止する。この全閉状態では、回動遮蔽壁371は、支持基体363の主面に対して略垂直に起立する閉状態となっている。ここでは、遮蔽装置370が有する全ての回動遮蔽壁371が閉状態となる。
図37(C)を参照して、遮蔽装置370を全閉状態とする際には、先ず、ソレノイド381を駆動することで、可動部387を半径方向外側に移動させる。この結果、図37(D)に示すように、当接部382を介してソレノイド381の可動部387と連結されているカム361は、半径方向外側に向かって移動する。紙面上に於いては、カム361は上方に向かって移動する。そして、カム361と回転可能に連結されている回動遮蔽壁371は、回動連結部368近傍を回動中心として回動し、支持基体363の主面に対して略直角に起立する閉状態となる。
図38に全開状態における遮蔽装置370の構成を示す。図38(A)は全開状態の遮蔽装置370を後方から見た図であり、図38(B)は図38(A)の切断面線G-Gに於ける断面図であり、図38(C)は全開状態におけるソレノイド381等を前方から見た図であり、図38(D)は図38(B)の要所拡大図である。
図38(A)および図38(B)を参照して、遮蔽装置370は、全開状態では送風機47から外部への空気の流れを妨げない。また、全開状態では、全ての回動遮蔽壁371は、支持基体363の主面に対して略平行な横臥状態となっている。
図38(C)を参照して、遮蔽装置370を全開状態とする際には、ソレノイド381を駆動して可動部387を突出させる。これにより、図38(D)に示すとおり、可動部387が当接部382を押圧し、カム361が半径方向内側に向かって移動する。その結果、カム361の端部に回動可能に接続されている回動遮蔽壁371は、回動連結部368の近傍を回転中心として回動して倒れ、回動遮蔽壁371の主面が、支持基体363の主面に対して略平行な状態となる。
上記のように、遮蔽壁駆動機構360の駆動源としてソレノイド381を有している場合であっても、遮蔽壁駆動機構360の駆動源として駆動モータ374を有している場合と同等の効果を奏することができる。即ち、各回動遮蔽壁371を個別に開閉制御することができ、風路の開閉制御の自由度を高め、貯蔵庫の庫内温度を精度良く調整することができる。
図39を参照して、更なる他の形態に係る遮蔽装置370の構成を説明する。上記した遮蔽装置370では、例えば図31(A)に示したように、各々の回動遮蔽壁371に対して遮蔽壁駆動機構360が配設されていた。一方、図39に示す遮蔽装置370では、回動遮蔽壁3711ないし回動遮蔽壁3714の開閉動作を、遮蔽壁駆動機構3601および遮蔽壁駆動機構3602で駆動している。即ち、4個の回動遮蔽壁3711ないし回動遮蔽壁3714の開閉動作を、2個の遮蔽壁駆動機構3601および遮蔽壁駆動機構3602で駆動している。ここで、回動遮蔽壁3711ないし回動遮蔽壁3714の内側側辺は、図38(A)等に示した支持基体363に対して回動可能に取り付けられている。
遮蔽壁駆動機構3601は、巻回部3851と、駆動モータ3741と、ワイヤ3861およびワイヤ3862を有する。駆動モータ3741は、略棒状の巻回部3851を、正転方向または逆転方向に回転させる。ワイヤ3861の一端は回動遮蔽壁3711に接続され、他端は巻回部3851に接続されている。ワイヤ3862の一端は回動遮蔽壁3712に接続され、他端は巻回部3851に接続されている。遮蔽壁駆動機構3601は、回動遮蔽壁3711および回動遮蔽壁3712の開閉動作を駆動している。
係る構成により、駆動モータ3741を正転方向に回転させることにより、巻回部3851が回転することでワイヤ3861およびワイヤ3862が巻回され、回動遮蔽壁3711および回動遮蔽壁3712が横臥状態から起立状態になり、上記した風路を塞ぐ閉状態になる。一方、駆動モータ3741を逆転方向に回転させることにより、巻回部3851が回転することでワイヤ3861およびワイヤ3862が繰り出され、回動遮蔽壁3711および回動遮蔽壁3712が起立状態から横臥状態になり、上記した風路を解放する開状態になる。
遮蔽壁駆動機構3602は、巻回部3852と、駆動モータ3742と、ワイヤ3863およびワイヤ3864を有する。駆動モータ3742は、略棒状の巻回部3852を、正転方向または逆転方向に回転させる。ワイヤ3863の一端は回動遮蔽壁3713に接続され、他端は巻回部3852に接続される。ワイヤ3864の一端は回動遮蔽壁3714に接続され、他端は巻回部3852に接続される。遮蔽壁駆動機構3602は、回動遮蔽壁3713および回動遮蔽壁3714の開閉動作を駆動している。
係る構成により、駆動モータ3742を正転方向に回転させることにより、巻回部3852が回転することでワイヤ3863およびワイヤ3864が巻回され、回動遮蔽壁3713および回動遮蔽壁3714が横臥状態から起立状態になり、上記した風路を塞ぐ閉状態になる。一方、駆動モータ3742を逆転方向に回転させることにより、巻回部3852が回転することでワイヤ3863およびワイヤ3864が繰り出され、回動遮蔽壁3713および回動遮蔽壁3714が起立状態から横臥状態になり、上記した風路を解放する開状態になる。
上記のように、遮蔽壁駆動機構3601および遮蔽壁駆動機構3602により、回動遮蔽壁3711ないし回動遮蔽壁3714の開閉動作を個別に駆動することで、回動遮蔽壁3711ないし回動遮蔽壁3714の開閉動作の自由度を確保しつつ、遮蔽装置370の構成を簡素化することかできる。
本発明は、上記実施形態に限定されるものではなく、その他、本発明の要旨を逸脱しない範囲で、種々の変更実施が可能である。
例えは、図32(A)を参照して、移動軸スライド溝380の中間部に移動軸376を配置することで、回動遮蔽壁371を半開状態とすることができる。このようにすることで、貯蔵室に送風される冷気の風量を細かく制御することができる。
上記した第3形態から、以下の発明を把握することができる。
本発明は、冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、送風機を半径方向外側から囲む複数の回動遮蔽壁と、前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を具備し、前記遮蔽壁駆動機構は、複数設けられることを特徴とする。これにより、本発明の遮蔽装置によれば、複数の遮蔽壁駆動機構を有することで、回動遮蔽壁を個別に動作させることができ、回動遮蔽壁全体としての開閉動作の自由度を向上することができる。
また、本発明の遮蔽装置では、前記遮蔽壁駆動機構は、各々の前記回動遮蔽壁毎に配設されることを特徴とする。これにより、本発明の遮蔽装置によれば、遮蔽壁駆動機構が各々の回動遮蔽壁に対応して配設されることで、回動遮蔽壁を個別に回動させることができ、回動遮蔽壁の開閉動作の自由度を更に高くすることができる。
また、本発明の遮蔽装置では、前記遮蔽壁駆動機構は、前記回動遮蔽壁と回動可能に接続されたカムと、前記カムをスライド移動させる溝が形成されて回転する回転プレートと、前記回転プレートを回転させる駆動モータと、を有することを特徴とする。これにより、本発明の遮蔽装置によれば、駆動モータを含む簡素な構成で回動遮蔽壁を開閉することが出来る。
また、本発明の遮蔽装置では、前記遮蔽壁駆動機構は、前記回動遮蔽壁と回動可能に接続されたカムと、前記カムを移動させるソレノイドと、を有することを特徴とする。これにより、本発明の遮蔽装置によれば、ソレノイドを含む簡素な構成で回動遮蔽壁を開閉することが出来る。
本発明の冷蔵庫は、貯蔵室に前記風路を経由して供給される空気を冷却する冷凍サイクルの冷却器と、前記冷却器が配設されて前記貯蔵室につながる送風口が形成される冷却室と、前記送風口から供給される前記空気を前記貯蔵室に向けて送風する前記送風機と、前記風路を少なくとも部分的に塞ぐ前記遮蔽装置と、を具備することを特徴とする。これにより、本発明の冷蔵庫によれば、遮蔽装置の回動遮蔽壁が複数の遮蔽壁駆動機構で駆動されるので、貯蔵室に対する冷気の供給を細かく設定し、貯蔵室の庫内温度を精度良く制御することができる。
[第4実施形態]
図40から図44を参照して、第4実施形態に係る遮蔽装置470を説明する。第4実施形態に係る遮蔽装置470の基本構成および冷蔵庫10への適用構成は第1実施形態と同様であるので、相違点を中心に説明する。本形態では、回動遮蔽壁471が半径方向内側に倒れることで、風路を開状態にしている。
図40から図44を参照して、第4実施形態に係る遮蔽装置470を説明する。第4実施形態に係る遮蔽装置470の基本構成および冷蔵庫10への適用構成は第1実施形態と同様であるので、相違点を中心に説明する。本形態では、回動遮蔽壁471が半径方向内側に倒れることで、風路を開状態にしている。
図40を参照して、遮蔽装置470の構成を説明する。図40(A)は遮蔽装置470の分解斜視図であり、図40(B)は遮蔽装置470の側方断面図である。
図40(A)および図40(B)を参照して、遮蔽装置470は、支持基体463と、回動遮蔽壁471と、遮蔽壁駆動機構460と、を具備している。遮蔽装置470は送風機47で送風された冷気の風路を遮蔽する装置である。遮蔽装置470を開状態とすることで冷却室26と各貯蔵室とをつなぐ風路を連通させ、遮蔽装置470を閉状態とすることで風路を遮断する。
送風機47は、ビスなどの締結手段を介して、支持基体463の前面中心部に配設されている。送風機47は、ここでは図示しないが、例えば、ターボファンなどの遠心ファンと、この遠心ファンを回転させる送風モータとを具備しており、半径方向外側に向かって冷気を送風する。
支持基体463は、一体成型された合成樹脂から成る部材である。支持基体463の後面側には、各々の回動遮蔽壁471が回動可能に配設されている。また、支持基体463の前面側には、カム461が収納されるカム収納部462が形成されている。カム収納部462は図41を参照して後述する。また、支持基体463の前面側には、回転プレート473が回転可能に取り付けられている。更に、支持基体463には、回動遮蔽壁471を回動するための駆動力を発生する駆動モータ474も取り付けられる。
支持基体463の周辺部には、側壁部458が形成されている。側壁部458は、支持基体463から後方に向かって伸びる部位である。側壁部458は、支持基体463の周方向に関して略等間隔に複数配置されている。側壁部458は、回動遮蔽壁471同士の間に配置されている。側壁部458の後端は、ビス等の締結手段を介して、図4(B)に示した仕切体66に締結されている。
回動遮蔽壁471は、矩形状の合成樹脂からなる板状部材であり、回転プレート473の外縁に沿う長辺を有している。回動遮蔽壁471は、支持基体463の周縁部付近に、支持基体463の主面に平行な軸線回りに、後方に向かって回動可能に取り付けられている。更に、回動遮蔽壁471は、支持基体463の周縁部付近に、複数(本実施形態では5)が配設されている。回動遮蔽壁471は、送風機47で送風される冷気が流通する経路に配置され、風路を遮蔽する。
回転プレート473は、前面視で略円盤形状の鋼板や合成樹脂板から成り、支持基体463の前方側に回転自在に配設されている。回転プレート473には、回動遮蔽壁471を回動させるための移動軸スライド溝480が形成されている。回転プレート473の周縁部にはトルクを伝達するためのギア部477が形成されている。後述するように、駆動モータ474を駆動し、ギア部477を介してトルクが伝達し、回転プレート473を回転させることで、回動遮蔽壁471が開閉動作する。
支持基体463の右方部分には、回転プレート473を回転駆動する駆動モータ474が取り付けられるフランジが形成される。回転プレート473のギア部477と、駆動モータ474との間には、ここでは図示しないギアが配置される。
図41を参照して、上記した回動遮蔽壁471を駆動する遮蔽壁駆動機構460を説明する。図41(A)は遮蔽装置470の左方部分を示す分解斜視図であり、図41(B)はカム461を示す斜視図である。
図41(A)を参照して、遮蔽壁駆動機構460は、カム461と、カム461の移動軸476が係合する回転プレート473と、回転プレート473を回転させる駆動モータ474(図40(A)参照)を備えている。
カム461は、合成樹脂から成る扁平な直方体形状の部材である。図41(B)に示すように、カム461の一方端にはピン455を挿通可能な孔部が形成される回動連結部448が形成されている。カム461は、支持基体463のカム収納部462に収納される。
移動軸476は、図41(B)に示すように、カム461の前面から突出する円柱状の突起体である。移動軸476の直径は、回転プレート473に形成される移動軸スライド溝480の幅よりも若干短い程度である。移動軸476は、移動軸スライド溝480に、摺動可能に係合する。
カム収納部462は、支持基体463に形成された空洞であり、支持基体463の半径方向に沿って細長く形成される。カム収納部462は、各々の回動遮蔽壁471に対応して形成され、支持基体463を前面から窪ませて形成されている。カム収納部462の大きさは、カム461を収容でき、且つ、カム461が半径方向に沿ってスライドできる程度である。
図41(A)に示すように、回動遮蔽壁471には、回動遮蔽壁471の基端部から傾斜して突出する回動連結部468が形成されている。回動連結部468には、ピン455を挿通することが可能な孔部が形成されている。また、回動遮蔽壁471の側辺の両端部付近には、回動連結部464が形成されている。回動連結部464には、ピン469を挿通することが可能な孔部が形成されている。
支持基体463の周縁部付近には、回動連結部454が形成されている。回動連結部454は、各々の回動遮蔽壁471の回動連結部464に対応して設けられている。回動連結部454には、ピン469を挿通することができる孔部が形成されている。
カム461の回動連結部448の孔部と、回動遮蔽壁471の回動連結部468の孔部にピン455が挿通されることにより、カム461と回動遮蔽壁471とはピン455周りに回動可能に接続される。また、支持基体463の回動連結部454の孔部と、回動遮蔽壁471の回動連結部464の孔部に、ピン469が挿通されることにより、支持基体463と回動遮蔽壁471とは回動可能に連結される。
遮蔽壁駆動機構460を上記のように構成することにより、駆動モータ474を駆動して回転プレート473を回転させ、移動軸476が移動軸スライド溝480内を摺動する。これによってカム461はカム収納部462内をスライド移動する。カム461をスライドさせることで、回動遮蔽壁471をピン455周りに回動させることが出来る。
具体的には、カム461を支持基体463の中心側にスライドさせると、回動遮蔽壁471は回動連結部464を回動中心として、起立状態となるように回動し、回動遮蔽壁471は支持基体463の主面に対して直交した状態となる。一方、カム461を支持基体463の周縁側にスライドさせると、回動遮蔽壁471は回動連結部464を回動中心として、横臥状態となるように回動し、回動遮蔽壁471は支持基体463の主面に対して略平行な状態となる。
したがって、移動軸スライド溝480を支持基体463の周縁部側に形成すれば、回動遮蔽壁471を開状態とすることができる。反対に移動軸スライド溝480を支持基体463の中心側に形成すれば、回動遮蔽壁471を閉状態とすることができる。この原理を利用して、各々の回動遮蔽壁471に対応する移動軸スライド溝480の形状を選択すれば、各々の回動遮蔽壁471の開閉状態を任意に設定することができる。これによって、複雑な構成を採用せずに、回動遮蔽壁471を全開状態としたり、全閉状態としたりすることもでき、また一部の回動遮蔽壁471が閉状態または開状態である状態とすることもできる。
ここで、図41(A)に示したように、遮蔽壁駆動機構460を構成する回転プレート473およびカム461は、支持基体463よりも前方側に配置される。よって、図4(B)を参照して、遮蔽壁駆動機構460を構成する各部材は、冷気が流通する冷凍室供給風路31に露出しない。従って、冷気が遮蔽壁駆動機構460に吹き付けられないので、遮蔽壁駆動機構460が凍結することを防止することができる。
図41(A)を参照して、回動遮蔽壁471を閉状態とすると、回動遮蔽壁471の長手方向の各端部は側壁部458に当接する。このように、回動遮蔽壁471の長手方向各端部に側壁部458を形成することで、回動遮蔽壁471が閉状態にあるときにおける気密性を向上することができるので、冷却時の冷気漏れや除霜時の暖気流入を確実に抑制することができる。
更に、側壁部458同士の間には、枠部441が形成されている。枠部441の大きさは回動遮蔽壁471と同等程度とされている。回動遮蔽壁471は、上記した起立状態となったとき、回動遮蔽壁471が内側から当接する。係る構成とすることで、回動遮蔽壁471の周辺部が枠部441に密着し、風路を更に気密性高く閉鎖することができる。
図42は本発明の実施形態に係る遮蔽装置470を示す図であり、図42(A)は遮蔽装置の回動遮蔽壁を後方から見て示す図であり、図42(B)は回転プレートの構成を後方から見て示す図である。
図42(A)を参照して、遮蔽装置470は、上記した回動遮蔽壁471として、回動遮蔽壁4711,4712,4713,4714,4715を有している。回動遮蔽壁4711ないし回動遮蔽壁4715は、回転プレート473の接線方向に対して略平行な長辺を有する長方形形状を呈している。また、回動遮蔽壁4711ないし回動遮蔽壁4715は、図40(A)に示した支持基体463の周縁部に回動可能に取り付けられている。
回動遮蔽壁4711の半径方向内側端部は、移動軸4761が形成されたカム4611に回動可能に接続されている。同様に、回動遮蔽壁4712の半径方向外側端部は、移動軸4762が形成されたカム4612に回動可能に接続されている。回動遮蔽壁4713の半径方向外側端部は、移動軸4763が形成されたカム4613に回動可能に連結されている。また、回動遮蔽壁4714の半径方向外側端部は、移動軸4764が形成されたカム4614に回動可能に連結されている。回動遮蔽壁4715の半径方向外側端部は、移動軸4765が形成されたカム4615に回動可能に連結されている。
ここで、カム4611は、回動遮蔽壁4711の内側辺に回動可能に連結されている。これにより、カム4611が外側に配置されることで回動遮蔽壁4711が起立状態になり、カム4611が内側に配置されることで回動遮蔽壁4711が横臥状態になる。
一方、カム4612ないしカム4615は、夫々、回動遮蔽壁4712ないし回動遮蔽壁4715の外側側辺に回動可能に連結されている。これにより、カム4612ないしカム4615が内側に配置されることで、回動遮蔽壁4712ないし回動遮蔽壁4715は起立状態となる。一方、カム4612ないしカム4615が外側に配置されることで、回動遮蔽壁4712ないし回動遮蔽壁4715は横臥状態となる。
図42(B)を参照して、回転プレート473は、略円板状に形成された鋼板であり、上記した回動遮蔽壁4711等の開閉動作を司るための移動軸スライド溝480が複数形成されている。また、回転プレート473の周縁部の一部分にはギア部477が形成されており、図40(A)に示した駆動モータ474とギア部477とが歯合することで、駆動モータ474のトルクで回転プレート473が回転する。
回転プレート473には、移動軸スライド溝480として、移動軸スライド溝4801,4802,4804,4805が形成されている。移動軸スライド溝4801ないし移動軸スライド溝4805は、回転プレート473の円周方向に沿って形成された、溝状部位である。移動軸スライド溝4801ないし移動軸スライド溝4805は、図42(A)に示したカム4611ないしカム4615を、半径方向に沿ってスライドさせるために、所定の曲折形状を呈している。
移動軸スライド溝4801ないし移動軸スライド溝4805には、図42(A)に示した移動軸4761ないし移動軸4765が係合する。具体的には、移動軸スライド溝4801には移動軸4761が係合し、移動軸スライド溝4802には移動軸4762および移動軸4763が係合し、移動軸スライド溝4804には移動軸4764が係合し、移動軸スライド溝4805には移動軸4765が係合する。
移動軸スライド溝4801は、溝部48011ないし溝部48013から構成されている。溝部48011は円周方向に沿って伸び、溝部48012は反時計回りに於いて半径方向内側に向かって傾斜し、溝部48013は円周方向に沿って伸びる。
移動軸スライド溝4802は、溝部48021ないし溝部48029から構成される。溝部48021は反時計回りに於いて半径方向内側に向かって傾斜し、溝部48022は円周方向に沿って伸び、溝部48023は反時計回りに於いて半径方向外側に向かって傾斜し、溝部48024は円周方向に沿って伸びる。また、溝部48025は反時計回りに於いて半径方向内側に向かって傾斜し、溝部48026は円周方向に沿って伸び、溝部48027は反時計回りに於いて半径方向外側に向かって傾斜する。更に、溝部48028は円周方向に沿って伸び、溝部48029は反時計回りに於いて半径方向内側に向かって傾斜する。
移動軸スライド溝4804は、溝部48041ないし溝部48044から構成される。溝部48041は円周方向に沿って伸び、溝部48042は反時計回りに於いて半径方向外側に向かって傾斜し、溝部48043は円周方向に沿って伸び、溝部48044は反時計回りに於いて半径方向内側に向かって傾斜する。
移動軸スライド溝4805は、溝部48051ないし溝部48056から構成される。溝部48051は反時計回りに於いて半径方向内側に向かって傾斜し、溝部48052は円周方向に沿って伸び、溝部48053は反時計回りに於いて半径方向外側に向かって傾斜し、溝部48054は円周方向に沿って伸びる。溝部48055は反時計回りに於いて半径方向内側に向かって傾斜し、溝部48056は円周方向に沿って伸びる。
また、回転プレート473の内側部分には、円周方向に沿って伸びる回転軸スライド溝479が形成されている。ここでは、回転軸スライド溝479は、等間隔に3個が形成されている。回転軸スライド溝479にスライド可能に係合する回転軸475(図43(C)参照)を介して、回転プレート473は支持基体463に保持される。
図43に全閉状態における遮蔽装置470の構成を示す。図43(A)は全閉状態の遮蔽装置470を後方から見た図であり、図43(B)は図43(A)の切断面線HーHに於ける断面図であり、図43(C)は全閉状態における回転プレート473等を後方から見た図であり、図43(D)は図43(B)の要所拡大図である。ここで、全閉状態とは、送風機47の周囲を回動遮蔽壁471で遮蔽し、これにより図4に示した送風口27を閉鎖する状態である。また、この全閉状態では、送風機47は回転しない。
図43(A)を参照して、遮蔽装置470は、全閉状態では送風機47から外部への空気の流出を防止する。即ち、全閉状態では、全ての回動遮蔽壁471、即ち、回動遮蔽壁4711ないし回動遮蔽壁4715が起立状態であり、冷気を供給する風路との連通は遮断され、冷蔵室15および冷凍室17には冷気が供給されない。また、図2に示した冷却器45を除霜する除霜行程でも、遮蔽装置470が全閉状態となることで、暖気が冷却室26から冷蔵室15および冷凍室17に流入しない。
図43(B)を参照して、全閉状態では、回動遮蔽壁4715および回動遮蔽壁4712は、支持基体463の主面に対して略垂直に起立する閉状態となっている。また、この状態では、回動遮蔽壁4715および回動遮蔽壁4712の後方端部は、図4に示す仕切体66に当接しているか、仕切体66の直近に配置されている。このようにすることで、回動遮蔽壁471で風路を閉鎖する際の気密性を向上することができる。
図43(C)を参照して、遮蔽装置470を全閉状態とする際には、先ず、駆動モータ474を駆動することでギア430を介して回転プレート473を回転させる。ここでは、回転プレート473を回転させることで、移動軸スライド溝4801の半径方向外側部分に移動軸4761を配置する。また、移動軸スライド溝4802の半径方向内側部分に移動軸4762および移動軸4763を配置する。また、移動軸スライド溝4804の半径方向内側部分に移動軸4764を配置し、移動軸スライド溝4805の半径方向内側部分に移動軸4765を配置する。
この結果、図43(D)に示すように、移動軸4765が半径方向内側部分に配置されることで、カム4615は、半径方向内側に向かって移動する。そして、カム4615と回転可能に連結されている回動遮蔽壁4715は、回動連結部468近傍を回動中心として半径方向外側に向かって回動し、支持基体463の主面に対して略直角に起立する閉状態となる。
図44に全開状態における遮蔽装置470の構成を示す。図44(A)は全開状態の遮蔽装置470を後方から見た図であり、図44(B)は図44(A)の切断面線IーIに於ける断面図であり、図44(C)は全開状態における回転プレート473等を後方から見た図であり、図44(D)は図44(B)の要所拡大図である。ここで、全開状態とは、送風機47の周囲を回動遮蔽壁471で冷気を供給する風路との連通を遮蔽せず、これにより送風機47で送風される冷気が周囲に広がる状態である。
図44(A)を参照して、遮蔽装置470は、全開状態では送風機47から外部への空気の流れを妨げない。即ち、全開状態では、遮蔽装置470が送風機47から送風される冷気は、回動遮蔽壁471、即ち回動遮蔽壁4711ないし回動遮蔽壁4715に干渉されることなく、冷蔵室15および冷凍室17に送風される。図44(A)に示すように、全開状態では、回動遮蔽壁4711は半径方向外側に向かって倒れた横臥状態となっており、回動遮蔽壁4712ないし回動遮蔽壁4715は半径方向内側に向かって倒れた横臥状態となっている。
図44(B)を参照して、全開状態では、回動遮蔽壁4715および回動遮蔽壁4712は、支持基体463の主面に対して略平行な横臥状態となっている。遮蔽装置470が有する全ての回動遮蔽壁471が開状態となることで、送風機47から送風される風路に回動遮蔽壁471が存在せず、風路の流路抵抗を小さくし、送風機47の送風量を増大することができる。
図44(C)を参照して、遮蔽装置470を全開状態とする際には、駆動モータ474を駆動することでギア430を介して回転プレート473を回転させ、各々の移動軸476を移動軸スライド溝480内で摺動させる。具体的には、移動軸スライド溝4801の半径方向内側部分に移動軸4761を配置する。また、移動軸スライド溝4802の半径方向外側部分に、移動軸4762および移動軸4763を配置する。また、移動軸スライド溝4804の半径方向外側部分に移動軸4764を配置し、移動軸スライド溝4805の半径方向外側部分に移動軸4765を配置する。この結果、図44(D)に示すように、移動軸4765が半径方向外側部分に配置されることで、カム4615は半径方向外側に向かって移動する。カム4615の上端部分に対して回動可能に接続されている回動遮蔽壁4715は、回動連結部468の近傍を回転中心として、半径方向内側に向かって回動して倒れ、回動遮蔽壁4715の主面が、カム収納部462の主面に対して略平行な状態となる。
上記のように、本実施形態に係る遮蔽装置470は、図40に示した回転プレート473を回転させることで、各々の回動遮蔽壁4711~4715の開閉状態を切換えることができる。よって、送風機47の軸方向、即ち冷蔵庫10の奥行方向に沿って部材が変位することがない。従って、遮蔽装置470が占有する厚み寸法を小さくすることができる。更に、図3を参照して、遮蔽装置470が占有する容積を小さくすることができるので、遮蔽装置470の前方に形成される冷凍室17の庫内容積を大きくし、より多くの被冷凍物を冷凍室17に貯蔵することができる。
本実施形態により、以下の発明を把握することができる。
本発明は、冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、送風機を半径方向外側から囲む回動遮蔽壁と、前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を有し、前記回動遮蔽壁は、半径方向内側に向かって倒れるように回動することで前記風路を解放し、半径方向外側に向かって起立するように回動することで前記風路を塞ぐことを特徴とする。これにより、本発明の遮蔽装置によれば、回動遮蔽壁が半径方向外側に向かって回動することにより風路を遮蔽することで、遮蔽時に回動遮蔽壁が回動する方向と、送風機が送風する方向とが略一致しているので、遮蔽時に於ける気密性を向上することができる。
また、本発明の遮蔽装置では、前記遮蔽壁駆動機構は、移動軸スライド溝が形成される円盤状の回転プレートと、前記移動軸スライド溝に係合する移動軸が形成され、前記回動遮蔽壁に回転可能に連結されたカムと、前記回転プレートを回転させる駆動モータと、を有し、前記回転プレートが回転することで、前記移動軸が前記移動軸スライド溝をスライドすることにより、前記カムが半径方向内側に移動したら、前記回動遮蔽壁は前記風路を塞ぎ、前記回転プレートが回転することで、前記移動軸が前記移動軸スライド溝をスライドすることにより、前記カムが半径方向外側に移動したら、前記回動遮蔽壁は前記風路を解放することを特徴とする。これにより、本発明の遮蔽装置によれば、回転プレートの回転動作で容易に回動遮蔽壁の開閉動作を駆動することができるので、遮蔽装置を構成する部材が奥行方向に移動する従来の遮蔽装置と比較して、遮蔽装置が占有する容積を小さくすることができ、庫内容積を圧迫することがない。
また、本発明の遮蔽装置では、前記回動遮蔽壁が回動可能に取り付けられ、カム収納部が形成される支持基体を更に有し、前記カムは、前記カム収納部に、半径方向に沿ってスライド可能な状態で収納されることを特徴とする。これにより、本発明の遮蔽装置によれば、支持基体のカム収納部の内部で、カムの移動方向を半径方向に規制することで、カムのスライド動作で回動遮蔽壁の開閉を好適に駆動することができる。
また、本発明の遮蔽装置では、前記送風機と前記回動遮蔽壁との間には、前記回動遮蔽壁が半径方向内側に向かって倒れることを許容する空間が形成されることを特徴とする。これにより、本発明の遮蔽装置によれば、回動遮蔽壁が開放状態の時には、回動遮蔽壁が倒れることができる空間を、送風機と前記回動遮蔽壁との間に確保することができる。一方、回動遮蔽壁が開放状態の際には、回動遮蔽壁と送風機との間に、冷気が流通できる空間を充分に確保できる。
本発明の冷蔵庫は、貯蔵室に前記風路を経由して供給される空気を冷却する冷凍サイクルの冷却器と、前記冷却器が配設されて前記貯蔵室につながる送風口が形成される冷却室と、前記送風口から供給される前記空気を前記貯蔵室に向けて送風する前記送風機と、前記風路を少なくとも部分的に塞ぐ前記遮蔽装置と、を具備することを特徴とする。これにより、本発明の冷蔵庫によれば、遮蔽装置が占有する庫内容積を低減することができるので、各貯蔵室の有効容積を大きく確保することができる。また、遮蔽装置の風路抵抗が小さいので、少ないエネルギで大きな送風量を得ることができ、貯蔵室を効果的に冷却することができる。
[第5実施形態]
図45から図50参照して、第5実施形態に係る遮蔽装置570を説明する。第5実施形態に係る遮蔽装置570の基本構成および冷蔵庫10への適用構成は第1実施形態と同様であるので、相違点を中心に説明する。本実施形態では、後述するように、回転プレート573のスライド溝580に、複数のカム561の移動軸576が係合している。
図45から図50参照して、第5実施形態に係る遮蔽装置570を説明する。第5実施形態に係る遮蔽装置570の基本構成および冷蔵庫10への適用構成は第1実施形態と同様であるので、相違点を中心に説明する。本実施形態では、後述するように、回転プレート573のスライド溝580に、複数のカム561の移動軸576が係合している。
図45を参照して、遮蔽装置570の構成を説明する。図45(A)は遮蔽装置570の分解斜視図であり、図45(B)はカム561を示す斜視図である。
図45(A)を参照して、遮蔽装置570は、支持基体563と、回転プレート573と、蓋部材57と、遮蔽壁駆動機構560と、を具備している。
遮蔽装置570は送風機47で送風された冷気の風路を遮蔽する装置である。遮蔽装置570を開状態とすることで冷却室26と各貯蔵室とをつなぐ風路を連通させ、遮蔽装置570を閉状態とすることで風路を遮断する。
送風機47は、ビスなどの締結手段を介して、支持基体563の後面中心部に配設されている。送風機47は、例えば、ターボファンなどの遠心ファンと、この遠心ファンを回転させる送風モータとを具備しており、半径方向外側に向かって冷気を送風する。
回動遮蔽壁571は、矩形状の合成樹脂からなる板状部材であり、回転プレート573の外縁の接線方向に沿う長辺を有している。回動遮蔽壁571は、支持基体563の周縁部付近に、後方に向かって回動可能に取り付けられている。回動遮蔽壁571は、複数(本実施形態では4個)が配設されている。回動遮蔽壁571は、送風機47で送風される冷気が流通する経路に配置され、風路を適宜遮蔽する。
回動遮蔽壁571の回動中心である基端部には、起立状態において回動遮蔽壁571を外囲する枠状部583が隣接されている。枠状部583は枠状に成形された合成樹脂から成り、送風機47を取り囲むように、支持基体563の後面に配置されている。枠状部583は各回動遮蔽壁571に対応して配置され、回動遮蔽壁571が枠状部583の開口を塞ぐことで、風路が閉鎖される。
回転プレート573は、後方から見て略円盤形状の形状を呈し、支持基体563の前面側に回転自在に配設されている。回転プレート573には、回動遮蔽壁571を回動させるためのスライド溝580が形成されている。スライド溝580は、回転プレート573の後面に、リブで囲まれる有底溝として形成されている。回転プレート573の周縁部にはトルクを伝達するためのギア溝549が形成されている。後述するように、駆動モータを駆動し、回転プレート573を回転させることで、回動遮蔽壁571が開閉動作する。
蓋部材57は、回転プレート573を前方から覆う板状の部材であり、回転プレート573よりも若干大きく形成され、前方から見て略円形を呈している。
上記した回動遮蔽壁571の開閉動作を行う遮蔽壁駆動機構560は、回転プレート573と、カム561と、回転プレート573を回転させる駆動モータ574(図48(A)参照)を有している。
図45(B)を参照して、カム561は、合成樹脂から成る扁平な直方体形状の部材である。カム561の左方端を後方に向かって突出させることで、回動連結部548が形成されている。回動連結部548には、後述するピン569が挿通可能な孔部が形成されている。また、カム561の右端側の前面から略円柱状に突出する移動軸576が形成されている。移動軸576は、上記した回転プレート573のスライド溝580に係合し、使用状況下に於いてスライド溝580と摺動する。この摺動を可能にするため、移動軸576の直径は、スライド溝580の半径方向の幅と同程度か若干短く設定されている。
図46を参照して、回動遮蔽壁571、支持基体563およびカム561の関連構成を説明する。図46(A)は、回動遮蔽壁571、支持基体563およびカム561を左側後方から見た分解斜視図であり、図46(B)は、回動連結部568およびカム561を左側前方から見た分解斜視図である。
図46(A)を参照して、回動遮蔽壁571は、回動遮蔽壁571の基端部から傾斜して突出する回動連結部568が形成されている。回動連結部568には、ピン569を挿通することが可能な孔部が形成されている。また、回動遮蔽壁571の上下両側面の前端部には、略円柱状に突出する回動連結部564が形成されている。回動連結部564は、枠状部583の内壁に形成された筒状の凹状部585に挿入される。係る構成により、回動遮蔽壁571は、回動可能な状態で支持基体563に備えられる。
支持基体563を矩形状に貫通することで貫通孔586が形成されている。貫通孔586には、後方から回動遮蔽壁571の回動連結部568が挿入される。カム561の回動連結部548も、前方から貫通孔586に挿入される。回動遮蔽壁571の回動連結部568の孔部、および、カム561の回動連結部548の孔部には、ピン569が挿入される。係る構成により、支持基体563を挟んで、回動遮蔽壁571とカム561とは回動可能に接続される。
図46(B)を参照して、支持基体563の前面には、カム収納部562が形成されている。カム収納部562はリブで囲まれた矩形状の領域であり、カム収納部562の内部に上記した貫通孔586が形成されている。カム561は、カム収納部562の内部に収納されてスライドする。カム収納部562の内部でカム561がスライドする方向は、ここでは左右方向であり、換言すると図45(A)に示した回転プレート573の半径方向である。
上記のように構成することで、駆動モータ574を駆動して回転プレート573を回転させることにより、移動軸576がスライド溝580内を摺動する。これによってカム561はカム収納部562内をスライドする。カム561をスライドさせることで、回動遮蔽壁571をピン569周りに回動させることが出来る。具体的には、カム561を回転プレート573の周縁部側にスライドさせると、回動遮蔽壁571は回動連結部564を回動中心として、起立状態となるように回動し、回動遮蔽壁571は支持基体563の主面に対して直交した状態となる。一方、カム561を回転プレート573の中心側にスライドさせると、回動遮蔽壁571は回動連結部564を回動中心として、横臥状態となるように回動し、回動遮蔽壁571は支持基体563の主面に対して略平行な状態となる。
したがって、スライド溝580を回転プレート573の周縁部側に形成すれば、回動遮蔽壁571を閉状態とすることができる。反対にスライド溝580を回転プレート573の中心側に形成すれば、回動遮蔽壁571を開状態とすることができる。この原理を利用して、スライド溝580の形状を選択すれば、回動遮蔽壁571の開閉状態を任意に設定することができる。これによって、複雑な構成を採用せずに、回動遮蔽壁571を全開状態としたり、全閉状態としたりできる。
図47(A)は遮蔽装置570の回動遮蔽壁5711等を後方から見て示す図である。遮蔽装置570は、上記した回動遮蔽壁571として、回動遮蔽壁5711ないし回動遮蔽壁5714を有している。回動遮蔽壁5711ないし回動遮蔽壁5714は、上記した回転プレート573の接線方向に対して略平行な長辺を有する長方形形状を呈している。また、回動遮蔽壁5711ないし回動遮蔽壁5714は、図45(A)に示した支持基体563の周縁部に回動可能に取り付けられている。
回動遮蔽壁5711の基端部は、移動軸5761が形成されたカム5611に回動可能に接続されている。同様に、回動遮蔽壁5712の半径方向内側端部は、移動軸5762が形成されたカム5612に回動可能に接続されている。回動遮蔽壁5713の半径方向内側端部は、移動軸5763が形成されたカム5613に回動可能に連結されている。また、回動遮蔽壁5714の半径方向内側端部は、移動軸5764が形成されたカム5614に回動可能に連結されている。
ここで、カム5611がスライドする方向は、回動遮蔽壁5711の長手方向に対して直交している。このようにすることで、回動遮蔽壁5711を開閉する際に、カム5611がスライドするべき距離を短く出来る。このような構成は、他の回動遮蔽壁5712等に関しても同様である。
図47(B)を参照して、回転プレート573は、略円板状に成型された鋼板または合成樹脂板であり、上記した回動遮蔽壁5711等の開閉動作を司るためのスライド溝580が形成されている。
回転プレート573の周縁部の大部分にはギア溝549が形成されており、図48(A)を参照して後述するギア30とギア溝549とが歯合することで、図48(A)に示す駆動モータ574のトルクで回転プレート573が回転する。また、ギア溝549は回転プレート573の全周に渡って形成されても良いが、ここでは、回転プレート573の外周の一部にはギア溝549は形成されていない。すなわちギア溝549は両端部を有している。ギア溝549が端部を有することで、後述するギア30がギア溝549の端部まで回転することで、回転プレート573の回転方向に於ける位置検出を容易に行うことができる。
スライド溝580は、回転プレート573の外周縁部近傍に略円環状に形成されている。更に、後方から回転プレート573を見た場合のスライド溝580の形状は、真円形状ではなく、回転プレート573の円周方向に沿って蛇行する蛇行形状を呈している。具体的には、スライド溝580は、時計回りに沿って、スライド溝5801,5802,5803,5804,5805,5806,5807,5808,58010,58011,58012から構成される。スライド溝5801は、時計回りに沿って半径方向外側に向かって湾曲している。スライド溝5802は、円周方向に対して略平行に延在している。スライド溝5803は、時計回りに沿って半径方向内側に向かって湾曲している。スライド溝5804は、時計回りに沿って半径方向外側に向かって湾曲している。スライド溝5805は、時計回りに沿って半径方向内側に向かって湾曲している。スライド溝5806は、時計回りに沿って半径方向外側に向かって湾曲している。スライド溝5807は、時計回りに沿って半径方向内側に向かって湾曲している。スライド溝5808は、時計回りに沿って半径方向外側に向かって湾曲している。スライド溝5809は、時計回りに沿って半径方向内側に向かって湾曲している。スライド溝58010は、時計回りに沿って半径方向外側に向かって湾曲している。スライド溝58011は、円周方向に対して略平行に延在している。スライド溝58012は、時計回りに沿って半径方向内側に向かって湾曲している。
スライド溝580では、溝の湾曲形状が変化する変化点が設定されている。具体的には、スライド溝5801とスライド溝5802との間に変化点5812が設定され、スライド溝5802とスライド溝5803との間に変化点5813が設定される。また、スライド溝5803とスライド溝5804との間に変化点5814が設定され、スライド溝5804とスライド溝5805との間に変化点5815が設定される。また、スライド溝5805とスライド溝5806との間に変化点5816が設定され、スライド溝5806とスライド溝5807との間に変化点5817が設定される。また、スライド溝5807とスライド溝5808との間に変化点5818が設定され、スライド溝5808とスライド溝5809との間に変化点5819が設定されている。また、スライド溝5809とスライド溝58010との間に変化点58110が設定され、スライド溝58010とスライド溝58011との間に変化点58111が設定されている。また、スライド溝58011とスライド溝58012との間に変化点58112が設定され、スライド溝58012とスライド溝5801との間に変化点5811が設定されている。
上記した、変化点5812、変化点5813、変化点5815、変化点5817、変化点5819、変化点58111および変化点5812は、回転プレート573の半径方向外側に配置される。一方、変化点5811、変化点5814、変化点5816、変化点5818および変化点58110は、回転プレート573の半径方向内側に配置される。
図48に全閉状態における遮蔽装置570の構成を示す。図48(A)は全閉状態の遮蔽装置570を後方から見た図であり、図48(B)は全閉状態における回転プレート573等を後方から見た図であり、図48(C)は全閉状態における遮蔽装置570の切断斜視図である。
図48(A)を参照して、遮蔽装置570は、全閉状態では送風機47から外部への空気の流出を防止する。即ち、全閉状態では、全ての遮蔽装置570である回動遮蔽壁5711ないし回動遮蔽壁5714が起立状態である。よって、冷気を供給する風路との連通は遮断され、上記した冷凍室17には冷気が供給されない。また、図1に示した冷却器45を除霜する除霜行程でも、遮蔽装置570が全閉状態となることで、暖気が冷却室26から冷蔵室15および冷凍室17に流入しない。
図48(B)を参照して、遮蔽装置570を全閉状態とする際には、先ず、図48(A)に示す駆動モータ574を駆動することでギア30を介して回転プレート573を回転させる。ここでは、回転プレート573を回転させることで、移動軸5761等をスライド溝580内で摺動させ、半径方向外側に移動する。具体的には、移動軸5761はスライド溝580の変化点5813に配置され、移動軸5762はスライド溝580の変化点5815に配置される。また、移動軸5763はスライド溝580の変化点5817に配置され、移動軸5764はスライド溝580の変化点5819に配置される。
図48(C)を参照して、この結果、カム5611は、半径方向外側に向かって移動する。そして、カム5611と回転可能に連結されている回動遮蔽壁5711は、回動連結部568近傍を回動中心として回動し、支持基体563の主面に対して略直角に起立する閉状態となる。この結果、枠状部583の開口は回動遮蔽壁5711で塞がれ、風路が遮蔽される。係る構成は、他の回動遮蔽壁5712等でも同様である。
図49に全開状態における遮蔽装置570の構成を示す。図49(A)は全開状態の遮蔽装置570を後方から見た図であり、図49(B)は全開状態における回転プレート573等を後方から見た図であり、図49(C)は全開状態における遮蔽装置570の切断斜視図である。
図49(A)を参照して、遮蔽装置570は、全開状態では送風機47から外部への空気の流れを妨げない。全開状態では、全ての回動遮蔽壁5711等は周囲に向かって開いた状態となっている。即ち、全開状態では、遮蔽装置570が送風機47から送風される冷気は、回動遮蔽壁571に干渉されることなく、冷蔵室15および冷凍室17に送風される。
図49(B)を参照して、遮蔽装置570を全開状態とする際には、先ず、図48(A)に示す駆動モータ574を駆動することでギア30を介して回転プレート573を回転させる。ここでは、回転プレート573を回転させることで、移動軸5761等をスライド溝580内で摺動させ、半径方向内側に移動する。具体的には、移動軸5761はスライド溝580の変化点5814に配置され、移動軸5762はスライド溝580の変化点5816に配置される。また、移動軸5763はスライド溝580の変化点5818に配置され、移動軸5764はスライド溝580の変化点58110に配置される。
図49(C)を参照して、この結果、カム5611は、半径方向内側に向かって移動する。そして、カム5611と回転可能に連結されている回動遮蔽壁5711は、回動連結部568近傍を回動中心として回動し、支持基体563の主面に対して略平行に倒れた開状態となる。この結果、枠状部583の開口は回動遮蔽壁5711で塞がれず、風路の流路抵抗を小さくし、送風機47の送風量を増大することができる。係る構成は、他の回動遮蔽壁5712等でも同様である。
本実施形態では、図45を参照して、回転プレート573の回転により、回動遮蔽壁571の開閉動作を行っているので、上記した背景技術と比較して、遮蔽装置570の薄型化を実現することができる。よって、図2を参照して、遮蔽装置570の前方に形成される冷凍室17の容積を増大させることができる。
更に、本実施形態によれば、図47(B)に示したように、遮蔽装置570にスライド溝580を略円環状に形成し、スライド溝580に複数の移動軸5762ないし移動軸5764を係合させている。そして、回転プレート573を回転させることで、移動軸5762ないし移動軸5764がスライド溝580を摺動し、回転プレート573の半径方向に沿ってスライドする。移動軸5762ないし移動軸5764がスライドすると、カム5611ないしカム5614もスライドし、この結果、回動遮蔽壁5711ないし回動遮蔽壁5714が開閉される。
よって、1つのスライド溝580に複数の移動軸5761ないし移動軸5764が係合して摺動することから、移動軸5761ないし移動軸5764がスライド可能なスライド溝580の距離を長くすることができる。従って、円周方向に沿ってスライド溝580を滑らかに曲折形成でき、移動軸5761ないし移動軸5764がスライド溝580を摺動する際に発生する圧力が小さくなり、回動遮蔽壁5711の開閉動作をスムーズに行うことができる。
更に、複数のカム5611等で、スライド溝580の摺動する範囲が重なり合っている。具体的には、図50を参照して、カム5611(第1カム)の移動軸5761がスライド溝580を摺動する範囲である第1摺動範囲と、カム5612(第2カム)の移動軸5762がスライド溝580を摺動する範囲である第2摺動範囲と、が円周方向に於いて重なり合っている。よって、スライド溝580の略全体が、第1摺動範囲であり且つ第2摺動範囲である。よって、スライド溝580の略全体を、複数のカム5611等で共用でき、遮蔽装置570の構成を簡素化できる。
上記した第5形態から、以下の発明を把握することができる。
本発明は、冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、送風機を半径方向外側から囲む複数の回動遮蔽壁と、前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を具備し、前記遮蔽壁駆動機構は、円周方向に沿ってスライド溝が形成された回転プレートと、前記スライド溝に係合する移動軸が形成されて前記回動遮蔽壁にそれぞれ回転可能に連結される複数のカムと、前記回転プレートを回転するモータと、を有し、一つの前記スライド溝に、複数の前記カムの前記移動軸が係合することを特徴とする。これにより、本発明の遮蔽装置によれば、回転プレートの回転でスライドするカムにより回動遮蔽壁が開閉するので、遮蔽装置が薄型となり、貯蔵室の庫内容積を大きく確保することができる。また、一つのスライド溝に、複数のカムの移動軸が係合することで、スライド溝の蛇行形状を滑らかにすることができる。よって、スライド溝と移動軸との摺動動作および回動遮蔽壁の回動動作をスムーズに行うことができる。更に、スライド溝の数を少なくでき、遮蔽装置の構成を簡略化できる。
また、本発明の遮蔽装置では、前記カムは、第1カムと、第2カムと、を有し、前記第1カムが前記スライド溝を摺動する第1摺動範囲と、前記第2カムが前記スライド溝を摺動する第2摺動範囲と、が重なり合っていることを特徴とする。これにより、本発明の遮蔽装置によれば、第1摺動範囲と第2摺動範囲とが重なり合っていることで、各カムの移動軸の摺動範囲を大きく確保でき、スライド溝と移動軸との摺動動作および回動遮蔽壁の回動動作を更にスムーズに行うことができる。
また、本発明の遮蔽装置では、前記スライド溝は、環状に形成されていることを特徴とする。これにより、本発明の遮蔽装置によれば、スライド溝が環状に形成されていることで、遮蔽壁駆動機構の構成を簡素化することができる。
また、本発明の遮蔽装置では、前記スライド溝は、不完全環状に形成されていることを特徴とする。これにより、本発明の遮蔽装置によれば、スライド溝の端部までカムの係合部を摺動させることで、容易に回転プレートの初期位置を検出することができる。
また、本発明の遮蔽装置では、前記スライド溝は、第1スライド溝と、半径方向に於いて前記第1スライド溝の内側に形成された第2スライド溝と、を有することを特徴とする。これにより、本発明の遮蔽装置によれば、第1スライド溝に係合部が係合するカムで回動する回動遮蔽壁と、第2スライド溝に係合部が係合するカムで回動する他の回動遮蔽壁とで、制御系統を異ならせ、回動遮蔽壁の制御方法を多様化することが出来る。
また、本発明の遮蔽装置では、前記モータは、前記回転プレートの周囲に形成されたギア溝に歯合するギアを介して、前記回転プレートを回転させ、前記回転プレートの周囲の一部分には前記ギア溝が形成されないことを特徴とする。これにより、本発明の遮蔽装置によれば、ギア溝の端部まで回転プレートを回転させることで、回転プレートの回転方向に於ける位置検出を容易に行うことができる。
また、本発明の冷蔵庫は、貯蔵室に前記風路を経由して供給される空気を冷却する冷凍サイクルの冷却器と、前記冷却器が配設されて前記貯蔵室につながる送風口が形成される冷却室と、前記送風口から供給される前記空気を前記貯蔵室に向けて送風する前記送風機と、前記風路を少なくとも部分的に塞ぐ、前記遮蔽装置と、を具備することを特徴とする。これにより、本発明の冷蔵庫によれば、送風機を半径方向外側から囲む複数の回動遮蔽壁を有する薄型の蔽壁送風機を備えることで、遮蔽装置が占有する容積を低減し、貯蔵室の庫内容積を増大することができる。更に、回動遮蔽壁がスムーズに開閉動作することで、各貯蔵室の送風切替作業もスムーズに行うことができる。
本発明は、上記実施形態に限定されるものではなく、その他、本発明の要旨を逸脱しない範囲で、種々の変更実施が可能である。
10 冷蔵庫
11 断熱箱体
12 外箱
13 内箱
14 断熱材
15 冷蔵室
17 冷凍室
18 上段冷凍室
19 下段冷凍室
20 野菜室
21 断熱扉
22 ダンパ
23 断熱扉
24 断熱扉
25 断熱扉
26 冷却室
27 送風口
28 戻り口
29 冷蔵室供給風路
30 ギア
31 冷凍室供給風路
32 リブ
33 吹出口
34 吹出口
37 野菜室帰還風路
38 戻り口
39 戻り口
42 断熱仕切壁
43 断熱仕切壁
44 圧縮機
45 冷却器
46 除霜ヒータ
47 送風機
48 回動連結部
49 ギア溝
50 風路区画壁
51 冷蔵室供給風路
52 上段冷凍室供給風路
53 下段冷凍室供給風路
54 回動連結部
55 ピン
56 風路区画壁
57 蓋部材
58 側壁部
59 開口部位
60 遮蔽壁駆動機構
61,611,612,613,614,615,616 カム
62 カム収納部
63 支持基体
64 回動連結部
65 仕切体
66 仕切体
67 前面カバー
68 回動連結部
69 ピン
70 遮蔽装置
71,711,712,713,714,715,716 回動遮蔽壁
73 回転プレート
74 駆動モータ
75 回転軸
76,761,762,763,764,765,766 移動軸
77 ギア部
79 回転軸スライド溝
80,801,802,803,804,805,806 移動軸スライド溝
8011,8012,8013溝部
8021,8022,8023,8024,8025,8026 溝部
8031,8032,8033,8034 溝部
8041,8042,8043,8044 溝部
8051,8052,8053,8054 溝部
8061,8062,8063,8064,8065,8066 溝部
235 被覆板
236 開口部
254 駆動シャフト
258 突出部
259 開口部位
260 遮蔽壁駆動機構
263 支持基体
264 回動連結部
270 遮蔽装置
271、2711、2712、2713、2714 回動遮蔽壁
274 駆動モータ
2811、2812、2813、2814、2815、2816、2817ギア
282 開口部
283、284ワイヤ固定部
285 溝
286 ワイヤ回転体
287 送風機取付部
288 ワイヤカバー
289 駆動モータ
290 遮蔽装置
291 回動遮蔽壁
292 ワイヤ
2921、2922 ワイヤ端部
293 回動連結部
294 送風機
295 ワイヤ挿通部
296 支持基体
297 蓋部
298 回動連結部
299 蓋部
348 回動連結部
355 ピン
358 側壁部
360、3601、3602 遮蔽壁駆動機構
361、3611、3612、3613、3614、3615カム
363 支持基体
364、368回動連結部
369 ピン
370 遮蔽装置
371、3711、3712、3713、3714、3715回動遮蔽壁
373、3731、3732、3733、3734、3735回転プレート
374、3741、3742、3743、3744、3745駆動モータ
376、3761、3762、3763、3764、3765移動軸
380、3801、3802、3803、3804、3805移動軸スライド溝
381 ソレノイド
382 当接部
3851、3852 巻回部
3861、3862、3863、3864 ワイヤ
387 可動部
430 ギア
441 枠部
448、454回動連結部
455 ピン
458 側壁部
460 遮蔽壁駆動機構
461、4611、4612、4613、4614、4615カム
462 カム収納部
463 支持基体
464、468回動連結部
469 ピン
470 遮蔽装置
471、4711、4712、4713、4714、4715回動遮蔽壁
473 回転プレート
474 駆動モータ
475 回転軸
476、4761、4762、4763、4764、4765移動軸
477 ギア部
479 回転軸スライド溝
480、4801、4802、4804、4805 移動軸スライド溝
48011、48012、48013、48021、48022、48023、48024、48025、48026、48027、48028、48029、48041、48042、48043、48044、48051、48052、48053、48054、48055、48056 溝部
548 回動連結部
549 ギア溝
560 遮蔽壁駆動機構
561、5611、5612、5613、5614、5615、5616 カム
562 カム収納部
563 支持基体
564、568回動連結部
569 ピン
570 遮蔽装置
571、5711、5712、5713、5714、5715回動遮蔽壁
573 回転プレート
574 駆動モータ
576、5761、5762、5763、5764、5765移動軸
580、5801、5802、5803、5804、5805、5806、5807、5808、5809、58010、58011、58012、58013、58014 スライド溝
5811、5812、5813、5814、5815、5816、5817、5818、5819、58110、58111、58112 変化点
583 枠状部
585 凹状部
586 貫通孔
1100 冷蔵庫
1101 冷蔵室
1102 冷凍室
1103 野菜室
1104 冷却室
1105 区画壁
1106 開口部
1107 送風ファン
1108 冷却器
1109 風路
1110 送風機カバー
1111 凹部
1113 開口部
1114 ダンパ
11 断熱箱体
12 外箱
13 内箱
14 断熱材
15 冷蔵室
17 冷凍室
18 上段冷凍室
19 下段冷凍室
20 野菜室
21 断熱扉
22 ダンパ
23 断熱扉
24 断熱扉
25 断熱扉
26 冷却室
27 送風口
28 戻り口
29 冷蔵室供給風路
30 ギア
31 冷凍室供給風路
32 リブ
33 吹出口
34 吹出口
37 野菜室帰還風路
38 戻り口
39 戻り口
42 断熱仕切壁
43 断熱仕切壁
44 圧縮機
45 冷却器
46 除霜ヒータ
47 送風機
48 回動連結部
49 ギア溝
50 風路区画壁
51 冷蔵室供給風路
52 上段冷凍室供給風路
53 下段冷凍室供給風路
54 回動連結部
55 ピン
56 風路区画壁
57 蓋部材
58 側壁部
59 開口部位
60 遮蔽壁駆動機構
61,611,612,613,614,615,616 カム
62 カム収納部
63 支持基体
64 回動連結部
65 仕切体
66 仕切体
67 前面カバー
68 回動連結部
69 ピン
70 遮蔽装置
71,711,712,713,714,715,716 回動遮蔽壁
73 回転プレート
74 駆動モータ
75 回転軸
76,761,762,763,764,765,766 移動軸
77 ギア部
79 回転軸スライド溝
80,801,802,803,804,805,806 移動軸スライド溝
8011,8012,8013溝部
8021,8022,8023,8024,8025,8026 溝部
8031,8032,8033,8034 溝部
8041,8042,8043,8044 溝部
8051,8052,8053,8054 溝部
8061,8062,8063,8064,8065,8066 溝部
235 被覆板
236 開口部
254 駆動シャフト
258 突出部
259 開口部位
260 遮蔽壁駆動機構
263 支持基体
264 回動連結部
270 遮蔽装置
271、2711、2712、2713、2714 回動遮蔽壁
274 駆動モータ
2811、2812、2813、2814、2815、2816、2817ギア
282 開口部
283、284ワイヤ固定部
285 溝
286 ワイヤ回転体
287 送風機取付部
288 ワイヤカバー
289 駆動モータ
290 遮蔽装置
291 回動遮蔽壁
292 ワイヤ
2921、2922 ワイヤ端部
293 回動連結部
294 送風機
295 ワイヤ挿通部
296 支持基体
297 蓋部
298 回動連結部
299 蓋部
348 回動連結部
355 ピン
358 側壁部
360、3601、3602 遮蔽壁駆動機構
361、3611、3612、3613、3614、3615カム
363 支持基体
364、368回動連結部
369 ピン
370 遮蔽装置
371、3711、3712、3713、3714、3715回動遮蔽壁
373、3731、3732、3733、3734、3735回転プレート
374、3741、3742、3743、3744、3745駆動モータ
376、3761、3762、3763、3764、3765移動軸
380、3801、3802、3803、3804、3805移動軸スライド溝
381 ソレノイド
382 当接部
3851、3852 巻回部
3861、3862、3863、3864 ワイヤ
387 可動部
430 ギア
441 枠部
448、454回動連結部
455 ピン
458 側壁部
460 遮蔽壁駆動機構
461、4611、4612、4613、4614、4615カム
462 カム収納部
463 支持基体
464、468回動連結部
469 ピン
470 遮蔽装置
471、4711、4712、4713、4714、4715回動遮蔽壁
473 回転プレート
474 駆動モータ
475 回転軸
476、4761、4762、4763、4764、4765移動軸
477 ギア部
479 回転軸スライド溝
480、4801、4802、4804、4805 移動軸スライド溝
48011、48012、48013、48021、48022、48023、48024、48025、48026、48027、48028、48029、48041、48042、48043、48044、48051、48052、48053、48054、48055、48056 溝部
548 回動連結部
549 ギア溝
560 遮蔽壁駆動機構
561、5611、5612、5613、5614、5615、5616 カム
562 カム収納部
563 支持基体
564、568回動連結部
569 ピン
570 遮蔽装置
571、5711、5712、5713、5714、5715回動遮蔽壁
573 回転プレート
574 駆動モータ
576、5761、5762、5763、5764、5765移動軸
580、5801、5802、5803、5804、5805、5806、5807、5808、5809、58010、58011、58012、58013、58014 スライド溝
5811、5812、5813、5814、5815、5816、5817、5818、5819、58110、58111、58112 変化点
583 枠状部
585 凹状部
586 貫通孔
1100 冷蔵庫
1101 冷蔵室
1102 冷凍室
1103 野菜室
1104 冷却室
1105 区画壁
1106 開口部
1107 送風ファン
1108 冷却器
1109 風路
1110 送風機カバー
1111 凹部
1113 開口部
1114 ダンパ
Claims (6)
- 冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、
送風機を半径方向外側から囲む回動遮蔽壁と、
前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を有し、
前記回動遮蔽壁は、前記風路内に配設され、
前記遮蔽壁駆動機構は、前記風路外の領域に配設されることを特徴とする遮蔽装置。 - 前記遮蔽壁駆動機構は、
移動軸スライド溝が形成される円盤状の回転プレートと、
前記移動軸スライド溝に係合する移動軸が形成され、前記回動遮蔽壁に回転可能に連結されたカムと、
前記回転プレートを回転させる駆動モータと、を有し、
前記カムは前記移動軸が前記移動軸スライド溝をスライドすることにより前記回動遮蔽壁を開閉動作させることを特徴とする請求項1に記載の遮蔽装置。 - 一つの前記移動軸スライド溝に、複数の前記カムの前記移動軸が係合することを特徴とする請求項2に記載の遮蔽装置。
- 冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、
送風機を半径方向外側から囲むように並設され、回動することで前記風路を開閉する複数の回動遮蔽壁と、
前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を具備し、
前記遮蔽壁駆動機構は、駆動源と、前記駆動源の動力を前記回動遮蔽壁に伝達する動力伝達機構と、を有することを特徴とする遮蔽装置。 - 冷蔵庫の内部で冷気が送風される風路を塞ぐ遮蔽装置であって、
送風機を半径方向外側から囲む複数の回動遮蔽壁と、
前記回動遮蔽壁を駆動する遮蔽壁駆動機構と、を具備し、
前記遮蔽壁駆動機構は、複数設けられることを特徴とする遮蔽装置。 - 貯蔵室に前記風路を経由して供給される空気を冷却する冷凍サイクルの冷却器と、
前記冷却器が配設されて前記貯蔵室につながる送風口が形成される冷却室と、
前記送風口から供給される前記空気を前記貯蔵室に向けて送風する前記送風機と、
前記風路を少なくとも部分的に塞ぐ、請求項1から請求項5の何れかに記載された前記遮蔽装置と、を具備することを特徴とする冷蔵庫。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980038972.0A CN112313462B (zh) | 2018-06-20 | 2019-06-11 | 遮蔽装置及具有该遮蔽装置的冰箱 |
JP2020525582A JPWO2019244709A1 (ja) | 2018-06-20 | 2019-06-11 | 遮蔽装置およびそれを備えた冷蔵庫 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-116795 | 2018-06-20 | ||
JP2018116795 | 2018-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019244709A1 true WO2019244709A1 (ja) | 2019-12-26 |
Family
ID=68982704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/023067 WO2019244709A1 (ja) | 2018-06-20 | 2019-06-11 | 遮蔽装置およびそれを備えた冷蔵庫 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2019244709A1 (ja) |
CN (1) | CN112313462B (ja) |
WO (1) | WO2019244709A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3978844A4 (en) * | 2019-05-24 | 2022-08-10 | Haier Smart Home Co., Ltd. | SHIELDING DEVICE AND RADIATOR EQUIPPED THEREOF |
US20230063487A1 (en) * | 2021-08-26 | 2023-03-02 | Haier Us Appliance Solutions, Inc. | Selective air flow system for a refrigerator appliance |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7291381B2 (ja) * | 2019-05-24 | 2023-06-15 | アクア株式会社 | 遮蔽装置およびそれを備えた冷蔵庫 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007120802A (ja) * | 2005-10-26 | 2007-05-17 | Matsushita Electric Ind Co Ltd | 冷蔵庫 |
JP2013204891A (ja) * | 2012-03-28 | 2013-10-07 | Haier Asia International Co Ltd | 冷蔵庫 |
WO2017036223A1 (zh) * | 2015-08-28 | 2017-03-09 | 青岛海尔股份有限公司 | 分路送风装置及具有该分路送风装置的冰箱 |
WO2017152530A1 (zh) * | 2016-03-09 | 2017-09-14 | 青岛海尔股份有限公司 | 冰箱及用于冰箱的分路送风装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112008001095B4 (de) * | 2007-04-26 | 2014-02-06 | Panasonic Corporation | Kühlschrank und elektrische Vorrichtung |
JP6344895B2 (ja) * | 2013-09-10 | 2018-06-20 | アクア株式会社 | 冷蔵庫 |
CN106286327B (zh) * | 2016-09-29 | 2018-12-14 | 青岛海尔特种制冷电器有限公司 | 离心风机 |
CN107014142B (zh) * | 2017-04-14 | 2019-10-01 | 青岛海尔股份有限公司 | 送风装置及具有该送风装置的冰箱 |
CN116336720A (zh) * | 2017-12-29 | 2023-06-27 | 青岛海尔电冰箱有限公司 | 冰箱 |
-
2019
- 2019-06-11 WO PCT/JP2019/023067 patent/WO2019244709A1/ja active Application Filing
- 2019-06-11 CN CN201980038972.0A patent/CN112313462B/zh active Active
- 2019-06-11 JP JP2020525582A patent/JPWO2019244709A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007120802A (ja) * | 2005-10-26 | 2007-05-17 | Matsushita Electric Ind Co Ltd | 冷蔵庫 |
JP2013204891A (ja) * | 2012-03-28 | 2013-10-07 | Haier Asia International Co Ltd | 冷蔵庫 |
WO2017036223A1 (zh) * | 2015-08-28 | 2017-03-09 | 青岛海尔股份有限公司 | 分路送风装置及具有该分路送风装置的冰箱 |
WO2017152530A1 (zh) * | 2016-03-09 | 2017-09-14 | 青岛海尔股份有限公司 | 冰箱及用于冰箱的分路送风装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3978844A4 (en) * | 2019-05-24 | 2022-08-10 | Haier Smart Home Co., Ltd. | SHIELDING DEVICE AND RADIATOR EQUIPPED THEREOF |
US20230063487A1 (en) * | 2021-08-26 | 2023-03-02 | Haier Us Appliance Solutions, Inc. | Selective air flow system for a refrigerator appliance |
US11874052B2 (en) * | 2021-08-26 | 2024-01-16 | Haier Us Appliance Solutions, Inc. | Selective air flow system for a refrigerator appliance |
Also Published As
Publication number | Publication date |
---|---|
CN112313462B (zh) | 2022-09-27 |
CN112313462A (zh) | 2021-02-02 |
JPWO2019244709A1 (ja) | 2021-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7372644B2 (ja) | 冷蔵庫 | |
WO2019244709A1 (ja) | 遮蔽装置およびそれを備えた冷蔵庫 | |
JP6710349B2 (ja) | 冷蔵庫 | |
JP7011299B2 (ja) | 遮蔽装置およびそれを備えた冷蔵庫 | |
JP6973788B2 (ja) | 冷蔵庫 | |
JP7513319B2 (ja) | 遮蔽装置 | |
JP6810958B2 (ja) | 冷蔵庫 | |
CN113906264B (zh) | 遮蔽装置及具有该遮蔽装置的冰箱 | |
JP7220897B2 (ja) | 遮蔽装置およびそれを備えた冷蔵庫 | |
JP7291382B2 (ja) | 遮蔽装置およびそれを備えた冷蔵庫 | |
JP7460205B2 (ja) | 遮蔽装置およびそれを備えた冷蔵庫 | |
JP7058861B2 (ja) | 遮蔽装置およびそれを備えた冷蔵庫 | |
JP7578972B2 (ja) | 冷蔵庫 | |
JP2019082286A (ja) | 冷蔵庫 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19823360 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020525582 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19823360 Country of ref document: EP Kind code of ref document: A1 |