WO2019244776A1 - Pneumatic tyre - Google Patents
Pneumatic tyre Download PDFInfo
- Publication number
- WO2019244776A1 WO2019244776A1 PCT/JP2019/023525 JP2019023525W WO2019244776A1 WO 2019244776 A1 WO2019244776 A1 WO 2019244776A1 JP 2019023525 W JP2019023525 W JP 2019023525W WO 2019244776 A1 WO2019244776 A1 WO 2019244776A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- belt
- resin
- tire
- width direction
- tire width
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C9/22—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
Definitions
- the present disclosure relates to a pneumatic tire provided with a belt including a cord wound in a spiral shape.
- the tire is inclined outward in the tire radial direction of the carcass with respect to the tire circumferential direction.
- a structure including a belt composed of two or more inclined belt plies including a cord and a plurality of layers including a reinforcing layer and the like disposed outside the inclined belt plies in the tire radial direction is generally used.
- Japanese Patent Application Laid-Open No. 2018-0665426 discloses a tire having a belt formed by spirally winding a resin-coated cord formed by coating a reinforcing cord with a resin in the tire circumferential direction on the outer periphery of a tire frame member. Is disclosed.
- the pneumatic tires disclosed in JP-A-2013-244930 and JP-A-2013-220743 are provided with two or more inclined belt plies and a reinforcing layer, and thus are necessary for reinforcing the carcass crown. Although it is possible to secure in-plane shear rigidity and the like, it is difficult to reduce the weight of the tire due to the large number of plies and reinforcing layers.
- the present disclosure aims to provide a pneumatic tire that can ensure the durability of a belt when a belt is formed by covering a reinforcing cord with a resin.
- the pneumatic tire of the present disclosure is configured to include a carcass straddling from one bead portion to the other bead portion, at least a tire case in which an outer portion in the tire width direction of the carcass is covered with a rubber material, and a tire circumferential direction. And a belt joined to the outer peripheral side of the tire case, wherein the reinforcing cord is wound around the belt, and is joined to an outer peripheral side of the tire case. Are greater at the end in the tire width direction than at the center in the tire width direction.
- the pneumatic tire belt according to the present disclosure includes a reinforcing cord covered with a resin.
- the number of reinforcing cords per unit width in the cross section in the tire width direction of the belt is larger at the end portion in the tire width direction where the tension in the tire circumferential direction acting on the belt is larger, so that the tension borne by one reinforcing cord is equalized. can do. Thereby, the durability of the belt including the reinforcing cord can be secured.
- the durability of the belt when forming a belt by covering a reinforcing cord with a resin, the durability of the belt can be ensured.
- FIG. 1 is a cross-sectional view along a tire rotation axis showing a pneumatic tire according to a first embodiment. It is an expanded sectional view showing the neighborhood of the shoulder of the pneumatic tire concerning a 1st embodiment. It is a sectional view of a belt of a pneumatic tire concerning a 1st embodiment. It is a sectional perspective view showing a process of winding a resin coating cord on a belt forming drum.
- FIG. 7 is a cross-sectional view (a cross-sectional view taken along line 5-5 in FIG. 6) of the belt of the pneumatic tire according to the second embodiment. It is a top view of a belt of a pneumatic tire concerning a 2nd embodiment.
- the pneumatic tire 10 of the present embodiment is, for example, a so-called radial tire used for a passenger car, includes a pair of bead portions 20 in which a bead core 12 is embedded, and one bead portion 20 and the other bead portion.
- a carcass 16 composed of one carcass ply 14 straddles the bead portion 20.
- FIG. 1 shows the shape of the pneumatic tire 10 in a natural state before air filling.
- the carcass 16 is an example of a tire case.
- the carcass ply 14 is formed by coating a plurality of cords (not shown) extending in the radial direction of the pneumatic tire 10 with a coating rubber (not shown). That is, the pneumatic tire 10 of the present embodiment is a so-called radial tire.
- the cord material of the carcass ply 14 is, for example, PET, but may be another known material.
- the end portion of the carcass ply 14 in the tire width direction has the bead core 12 folded back in the tire radial direction.
- a portion extending from one bead core 12 to the other bead core 12 is referred to as a main body portion 14A, and a portion folded from the bead core 12 is referred to as a folded portion 14B.
- Bead fillers 18 whose thickness gradually decreases from the bead core 12 to the outside in the tire radial direction are disposed between the main body portion 14A and the folded portion 14B of the carcass ply 14.
- a portion of the bead filler 18 from the tire radial outer end 18 ⁇ / b> A to the tire radial direction inside is a bead portion 20.
- An inner liner 22 made of rubber is arranged inside the tire of the carcass 16, and a side rubber layer 24 made of the first rubber material is arranged outside the carcass 16 in the tire width direction.
- the tire case 25 is constituted by the bead core 12, the carcass 16, the bead filler 18, the inner liner 22, and the side rubber layer 24.
- the tire case 25 is, in other words, a tire frame member that forms the frame of the pneumatic tire 10.
- a belt 26 is arranged outside the crown portion of the carcass 16, in other words, outside the carcass 16 in the tire radial direction, and the belt 26 is in close contact with the outer peripheral surface of the carcass 16.
- the belt 26 is formed by winding a resin-coated cord 34 in which a plurality of reinforcing cords 30 are covered with a resin 32 in the tire circumferential direction. The method of manufacturing the belt 26 will be described later.
- the number of the reinforcing cords 30 that are covered with the resin 32 is set such that the belt 26 is larger at the end in the tire width direction than at the center in the tire width direction.
- the end of the belt 26 in the tire width direction refers to a predetermined range from the end of the belt 26 in the tire width direction, and is preferably a region of 15 to 30% of the width BW of the belt 26.
- the central portion of the belt 26 in the tire width direction refers to a predetermined range around the tire equatorial plane CL, and is preferably 40 to 70% of the width BW of the belt 26 sandwiched between the end portions in the tire width direction. Area.
- the width BW of the belt 26 refers to a range from one tire width direction end of the belt 26 to the other tire width direction end.
- the resin-coated cords 34 at the end portions of the belt 26 in the tire width direction each have three reinforcements.
- the cords 30 are covered with the resin 32, and the resin-coated cords 34 at the center portion of the belt 26 in the tire width direction (the sixth and subsequent cords from both ends in the tire width direction) are each formed of two reinforcing cords 30 with the resin 32.
- the range in which the number of the reinforcing cords 30 to be covered is larger than the central portion in the tire width direction is a range of 1/4 of the width BW of the belt 26 from the end in the tire width direction of the belt 26.
- the groove 37 be described below and be in a range outside the groove 37 at the end in the tire width direction.
- the reinforcing cord 30 of the belt 26 is thicker than the cord of the carcass ply 14 and has high strength (tensile strength).
- the reinforcing cord 30 of the belt 26 can be composed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (stranded wire) obtained by twisting these fibers.
- the reinforcing cord 30 of the present embodiment is a steel cord.
- a “1 ⁇ 5” steel cord having a diameter of 0.225 mm can be used, but a steel cord having another conventionally known structure can also be used.
- thermoplastic resin having elasticity a thermoplastic elastomer (TPE), a thermosetting resin, or the like can be used. Considering the elasticity during running and the moldability during manufacturing, it is desirable to use a thermoplastic elastomer.
- thermoplastic elastomer examples include polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), and polyester-based thermoplastic elastomer (TPC). And dynamically crosslinked thermoplastic elastomers (TPV).
- TPO polyolefin-based thermoplastic elastomer
- TPS polystyrene-based thermoplastic elastomer
- TPA polyamide-based thermoplastic elastomer
- TPU polyurethane-based thermoplastic elastomer
- TPC polyester-based thermoplastic elastomer
- TEV dynamically crosslinked thermoplastic elastomers
- thermoplastic resin examples include a polyurethane resin, a polyolefin resin, a vinyl chloride resin, and a polyamide resin.
- the deflection temperature under load (under a load of 0.45 MPa) specified in ISO75-2 or ASTM D648 is 78 ° C. or more
- the tensile yield strength specified in JIS K7113 is 10 MPa.
- a material having a tensile elongation at break specified in JIS K 7113 of 50% or more and a Vicat softening temperature (A method) specified in JIS K 7206 of 130 ° C. or more can be used.
- the tensile modulus of elasticity of the resin 32 that covers the reinforcing cord 30 (defined by JIS K7113: 1995) is preferably 100 MPa or more.
- the upper limit of the tensile modulus of the resin 32 covering the reinforcing cord 30 is preferably 1000 MPa or less.
- the tensile modulus of the resin 32 covering the reinforcing cord 30 is particularly preferably in the range of 200 to 700 MPa.
- the thickness t of the belt 26 of the present embodiment is larger than the diameter of the reinforcing cord 30. In other words, it is preferable that the reinforcing cord 30 is completely embedded in the resin 32.
- the thickness t of the belt 26 is preferably set to 0.70 mm or more.
- a tread 36 made of a second rubber material is disposed outside the belt 26 in the tire radial direction.
- a generally known material is used as the second rubber material used for the tread 36.
- a groove 37 for drainage is formed in the tread 36.
- the tread 36 has a conventionally known pattern.
- the width BW of the belt 26 measured along the tire width direction is 75% or more with respect to the contact width TW of the tread 36 measured along the tire width direction.
- the upper limit of the width BW of the belt 26 be 110% with respect to the contact width TW.
- the contact width TW of the tread 36 means that the pneumatic tire 10 is mounted on a standard rim stipulated in JATMA YEAR BOOK (2018 edition, Japan Automobile Tire Association Standard) and the applicable size in JATMA YEAR BOOK. Fills with 100% internal pressure of the air pressure (maximum air pressure) corresponding to the maximum load capacity (the bold load in the internal pressure-load capacity correspondence table) in the ply rating, and the rotation axis is parallel to the horizontal flat plate in a stationary state And a mass corresponding to the maximum load capacity is added.
- the TRA standard and the ETRTO standard are applied at the place of use or the place of manufacture, the respective standards are followed.
- the in-plane shear rigidity of the belt 26 is preferably equal to or greater than that of the belt formed by rubber coating.
- an inner liner 22 made of a rubber material, a bead core 12, a bead filler 18 made of a rubber material, a carcass ply 14 having a cord covered with a rubber material, and a side rubber layer 24 are provided on the outer periphery of a known tire forming drum (not shown).
- An unvulcanized tire case 25 is formed.
- the manufacturing method up to here is the same as the conventional one.
- the resin-coated cord 34 (shown by a two-dot chain line in FIGS. 2 and 3) is formed by covering two or three reinforcing cords 30 with the resin 32 for covering.
- the resin-coated cord 34 first, the three reinforcing cords 30 are covered with the resin 32 to a length wound by 1 / of the width BW of the belt 26. Then, the reinforcing cord 30 at the center in the width direction among the three is cut, and the two reinforcing cords 30 are covered with the resin 32 until the reinforcing cord 30 reaches a length wound by ⁇ of the width BW of the belt 26. After one reinforcing cord 30 is inserted again between the two reinforcing cords 30, the three reinforcing cords 30 reach a length wound by 1 / of the width BW of the belt 26. Up to the resin 32.
- the cross-sectional shape of the resin-coated cord 34 is a rectangle (a rectangle that is long in the tire width direction).
- the belt 26 is formed by spirally winding a resin-coated cord 34.
- the cord supply device 42, the heating device 50, the pressing roller 60, and the cooling roller 70 are movably disposed near the belt forming drum 40.
- the cord supply device 42 guides the reel 43 around which the resin-coated cord 34 in which the reinforcing cord 30 is coated with the coating resin 32 and the resin-coated cord 34 unwound from the reel 43 to the outer periphery of the belt forming drum 40.
- a guide member 44 for performing the operation The guide member 44 has a cylindrical shape, and the resin-coated cord 34 passes through the inside thereof. Further, the resin-coated cord 34 is sent out from the mouth 46 of the guide member 44 toward the outer peripheral surface of the belt forming drum 40.
- the heating device 50 blows hot air onto the resin-coated cord 34 to heat and melt the blown portion.
- air heated by a heating wire (not shown) is blown out from the outlet 52 by an airflow generated by a fan (not shown), and the blown hot air is blown against the resin-coated cord 34.
- the configuration of the heating device 50 is not limited to the above configuration, and may be any configuration as long as the thermoplastic resin can be heated and melted.
- a hot iron may be brought into contact with the side surface of the resin-coated cord 34 to heat and melt the side surface, may be heated and melted by radiant heat, or may be heated and melted by irradiating infrared rays.
- the pressing roller 60 is for pressing a resin-coated cord 34 described later against the outer peripheral surface of the belt forming drum 40, and is capable of adjusting the pressing force F. Further, the roller surface of the pressing roller 60 is processed to prevent the resin material in a molten state from adhering.
- the pressing roller 60 is rotatable. When the resin-coated cord 34 is pressed against the outer periphery of the belt forming drum 40, the pressing roller 60 is driven to rotate in the rotation direction (the direction of the arrow A) of the belt forming drum 40. It has become.
- the cooling roller 70 is disposed downstream of the pressing roller 60 in the rotation direction of the belt forming drum 40, and cools the resin coating cord 34 while pressing the resin coating cord 34 against the outer peripheral surface of the belt forming drum 40. is there.
- the cooling roller 70 is capable of adjusting the pressing force, and has been subjected to processing for preventing adhesion of a molten resin material to the roller surface.
- the cooling roller 70 is rotatable similarly to the pressing roller 60, and when the resin-coated cord 34 is pressed against the outer peripheral surface of the belt forming drum 40, the rotation direction of the belt forming drum 40 (arrow A) Direction).
- the cooling roller 70 is configured such that a liquid (for example, water) flows through the inside of the roller, and a member (the resin-coated cord 34 in the present embodiment) that comes into contact with the roller surface by heat exchange of the liquid. Can be cooled. When the resin material in the molten state is naturally cooled, the cooling roller 70 may be omitted.
- a liquid for example, water
- a member the resin-coated cord 34 in the present embodiment
- the belt forming drum 40 is rotated in the direction of arrow A, and the resin-coated cord 34 is sent out from the mouth 46 of the cord supply device 42 toward the outer peripheral surface of the belt forming drum 40.
- the resin-coated cord 34 is attached to the belt forming drum 40 while Is pressed against the outer peripheral surface of the belt forming drum 40 by the pressing roller 60.
- the resin-coated cord 34 is deformed (deformed by crushing) so that the side portion swells in the tire width direction by the pressing roller 60, and the side surfaces of the resin 32 adjacent to each other in the tire width direction come into contact with each other and weld. .
- the molten portion of the resin 32 contacts the cooling roller 70 and is solidified, and the welding of the adjacent resin-coated cords 34 is completed.
- the resin-coated cord 34 is spirally wound around the outer peripheral surface of the belt forming drum 40 and pressed against the outer peripheral surface, whereby the belt 26 is formed on the outer peripheral surface of the belt forming drum 40.
- the position of the mouth 46 of the cord supply device 42 is moved in the tire width direction with the rotation of the tire case 17, or the tire case 17 is moved in the tire width direction. You can move it.
- the belt 26 in which the resin 32 has been solidified is removed from the belt forming drum 40, and disposed outside the tire case of the tire forming drum in the radial direction, and the tire case is expanded to expand the outer peripheral surface of the tire case, in other words, the outer periphery of the carcass 16. The surface is pressed against the inner peripheral surface of the belt 26.
- an unvulcanized tread 36 is attached to the outer peripheral surface of the belt 26 in the same manner as a general pneumatic tire, and a green tire is completed.
- the green tire thus manufactured is vulcanized and molded by a vulcanization mold in the same manner as a general pneumatic tire, and the pneumatic tire 10 is completed.
- the crown portion of the carcass 16 is reinforced by the belt 26 covered with the resin 32 on the reinforcing cord 30 wound in a spiral shape. Compared to a belt composed of a plurality of layers composed of a belt ply, it is lighter in weight and easier to manufacture.
- the tensile modulus of the resin 32 covering the reinforcing cord 30 is set to 50 MPa or more and the thickness is secured to 0.7 mm or more, so that the in-plane shearing of the belt 26 in the tire width direction is performed.
- the rigidity can be sufficiently secured.
- the belt 26 having a high in-plane shear rigidity is used, and the width BW of the belt 26 is set to be 75% or more of the contact width TW of the tread 36, so that the rigidity near the shoulder 39 is obtained. Can be increased.
- the belt 26 since the belt 26 has a one-layer structure, the thickness of the belt 26 can be reduced as compared with a conventional case where two or more belt plies are used, and the tread 36 The thickness can be increased, and the depth of the groove 37 can be increased. As a result, the life of the pneumatic tire 10 can be extended.
- the reinforcing cord 30 is spirally wound, and there is no portion where the reinforcing cord 30 overlaps in the tire radial direction on the circumference, and the thickness is uniform in the tire circumferential direction.
- the pneumatic tire 10 is excellent in uniformity.
- the belt is formed so as to have a slightly smaller diameter at the end side in the tire width direction than at the center side in the tire width direction according to the shape of the tire case. Therefore, when the pneumatic tire rolls, the belt receives the force in the tire expanding direction at the end in the tire width direction, that is, the tension in the tire circumferential direction, and the tire contracts at the center in the tire width direction.
- Directional force that is, a compressive force in the tire circumferential direction.
- the tension in the tire circumferential direction acting on the belt is the same as in a conventional inclined belt ply. Cannot be supported by multiple codes skewed. Therefore, in the resin belt, the tension in the tire circumferential direction has a structure in which the reinforcing cords extending in the tire circumferential direction are independently supported. On the other hand, the tension in the tire circumferential direction acting on the belt increases toward the end in the tire width direction, so that the tension borne by one reinforcing cord increases toward the end in the tire width direction. Therefore, in the case where the conventional belt is simply replaced with a resin belt in the pneumatic tire, the load on the reinforcing cord at the end portion in the tire width direction becomes large, so that it is difficult to improve the durability.
- the number of the reinforcing cords 30 covered with the resin 32 in the resin-coated cords 34 is greater at the end in the tire width direction than at the center in the tire width direction. It is set as follows. That is, in the belt 26 of the present embodiment, the number of the reinforcing cords 30 per unit width in the tire width direction cross section is larger at the tire width direction end side where the tension is larger, so that the tension borne by one reinforcing cord 30 is smaller. Can be equalized. Thereby, the durability of the belt 26 including the reinforcing cord 30 can be ensured.
- the belt 26 of the present embodiment is configured by winding a resin-coated cord 34 in which a plurality of reinforcing cords 30 are covered with a resin 32, and changes the number of the reinforcing cords 30 arranged on the resin-coated cord 34. By doing so, the number of reinforcing cords 30 per unit width is changed. Therefore, the number of reinforcing cords 30 at the end portion in the tire width direction can be increased without changing the winding method of the resin-coated cord 34, and the durability of the belt 26 can be improved without increasing the number of man-hours for manufacturing the belt 26. Can be secured.
- the number of the reinforcing cords 30 is increased in a range of 1/4 of the width BW of the belt 26 from the end in the tire width direction. This range is a range outside the groove 37 at the end in the tire width direction among the grooves 37. According to the present embodiment, by increasing the number of the reinforcing cords 30 outside the groove 37, the tension load near the shoulder 39 can be reduced.
- the belt 26 of the present embodiment is formed by winding a resin-coated cord 34 in which one reinforcing cord 30 is covered with a resin 32 in the tire circumferential direction.
- the number of reinforcing cords 30 per unit width is changed by changing the feed speed in the tire width direction when winding the resin-coated cords 34, in other words, by changing the interval between adjacent resin-coated cords 34.
- the resin forming the filling portion 33 be the same material as the resin 32 forming the resin-coated cord 34.
- the range in which the interval between the adjacent resin-coated cords 34 is narrower than the central portion in the tire width direction is preferably set to a range of 1 / of the width BW of the belt 26 from the end in the tire width direction.
- the belt 26 can be formed without increasing the man-hour for manufacturing the resin-coated cords 34. Durability can be ensured.
- the belt 26 is formed by winding the resin-coated cord 34.
- the present invention is not limited to this, and the belt 26 may be formed of a single cylindrical body made of resin.
- the reinforcing cord 30 is wound around the outer periphery of a resin ring formed in a cylindrical shape in advance so that the number of end portions in the tire width direction is larger than that in the central portion in the tire width direction. Is further covered with a resin 32.
- the resin-made cylindrical ring can be formed by cutting a resin cylinder formed by injection molding or extrusion molding into a predetermined length.
- the belt 26 composed of one cylindrical body as described above also has the same function and effect as the first embodiment.
- the belt may be divided in the width direction due to poor welding, but the belt 26 has an interface in the tire width direction. Therefore, there is no fear that the belt 26 is separated in the tire width direction due to poor welding, and the durability can be improved. Further, as compared with the case where the belt is formed by welding the resin-coated cord, the number of steps is reduced, so that the productivity is improved and the cost can be reduced.
- the resin-coated cord 34 used when manufacturing the belt 26 is formed by covering two or three reinforcing cords 30 with the resin 32, but the present invention is not limited to this. That is, if the number of reinforcing cords 30 per unit width in the cross section of the belt 26 in the tire width direction is larger at the end in the tire width direction than at the center in the tire width direction, three or more reinforcing cords 30 are covered. There may be.
- the cross section of the resin-coated cord 34 of the above embodiment is rectangular, and as shown in FIG. 2, an inner peripheral surface 34A on the carcass 16 side (lower side in the drawing) and an outer peripheral surface 34B on the tread 36 side (upper side in the drawing).
- the cross section of the resin-coated cord 34 is not limited to a rectangle, and the inner peripheral surface 34A on the carcass side (the lower side in the drawing) and the outer peripheral surface on the tread side (the upper side in the drawing).
- 34B may be displaced in the belt width direction.
- the resin-coated cord 34 may have a parallelogram cross section.
- the belt 26 of the present embodiment is not limited to a general pneumatic tire, and may be used for a run flat tire whose side portions are reinforced with reinforcing rubber.
- the side surfaces in the tire width direction of the resin-coated cords 34 adjacent in the belt width direction are joined by welding, but may be joined by using an adhesive.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
This pneumatic tire is provided with a tire case which is configured to include a carcass extending from one bead portion to another bead portion, and in which at least an outside portion, in the width direction of the tire, of the carcass is covered by a rubber material, and a belt which is configured by coating reinforcing cords, wound in the circumferential direction of the tire, with resin, and which is joined to an outer circumferential side of the carcass, wherein, in a cross section through the belt in the width direction of the tire, the number of reinforcing cords per unit width of the belt is greater in end portions in the width direction of the tire than in a central portion in the width direction of the tire.
Description
本開示は、螺旋状に巻回したコードを含んで構成されたベルトを備えた空気入りタイヤに関する。
The present disclosure relates to a pneumatic tire provided with a belt including a cord wound in a spiral shape.
自動車に装着する空気入りタイヤとしては、例えば、特開2013-244930号公報、及び特開2013-220741号公報に開示されるように、カーカスのタイヤ径方向外側にタイヤ周方向に対して傾斜したコードを含んで構成された2枚以上の傾斜ベルトプライと、傾斜ベルトプライのタイヤ径方向外側に配置された補強層等を備えた複数層からなるベルトを備えた構造が一般的である。
As a pneumatic tire to be mounted on an automobile, for example, as disclosed in JP-A-2013-244930 and JP-A-2013-220743, the tire is inclined outward in the tire radial direction of the carcass with respect to the tire circumferential direction. Generally, a structure including a belt composed of two or more inclined belt plies including a cord and a plurality of layers including a reinforcing layer and the like disposed outside the inclined belt plies in the tire radial direction is generally used.
一方、特開2018-065426号公報には、補強コードを樹脂で被覆して構成された樹脂被覆コードがタイヤ骨格部材の外周においてタイヤ周方向に螺旋状に巻かれて構成されたベルトを有するタイヤが開示されている。
On the other hand, Japanese Patent Application Laid-Open No. 2018-0665426 discloses a tire having a belt formed by spirally winding a resin-coated cord formed by coating a reinforcing cord with a resin in the tire circumferential direction on the outer periphery of a tire frame member. Is disclosed.
特開2013-244930号公報、及び特開2013-220741号公報に開示の空気入りタイヤは、2枚以上の傾斜ベルトプライと、補強層を備えているため、カーカスのクラウン部の補強として必要な面内剪断剛性等を確保することは可能であるが、プライや補強層の層数が多いためタイヤの軽量化は困難となっている。
The pneumatic tires disclosed in JP-A-2013-244930 and JP-A-2013-220743 are provided with two or more inclined belt plies and a reinforcing layer, and thus are necessary for reinforcing the carcass crown. Although it is possible to secure in-plane shear rigidity and the like, it is difficult to reduce the weight of the tire due to the large number of plies and reinforcing layers.
そこで、傾斜ベルトプライと補強層からなるベルトに代えて、特開2018-065426号公報に開示の樹脂製ベルトを備えた空気入りタイヤを形成することで軽量化を図ることができる。しかしこの場合、ベルトに働くタイヤ周方向の張力は、従来の傾斜ベルトプライのように斜行する複数のコードで支持することはできず、タイヤ周方向に延びる補強コードがそれぞれ単独で支持する構造となる。一方、ベルトに働くタイヤ周方向の張力はタイヤ幅方向端部に向かって大きくなるため、タイヤ幅方向端部ほど1本の補強コードが負担する張力が大きい。そのため、空気入りタイヤにおいて単に従来のベルトを樹脂製のベルトに置き換えた場合は耐久性の向上が難しい。
Therefore, it is possible to reduce the weight by forming a pneumatic tire provided with a resin belt disclosed in Japanese Patent Application Laid-Open No. 2018-065426 instead of the belt including the inclined belt ply and the reinforcing layer. However, in this case, the tension in the circumferential direction of the tire acting on the belt cannot be supported by a plurality of skewed cords as in the conventional inclined belt ply, and the reinforcing cords extending in the circumferential direction of the tire independently support each other. It becomes. On the other hand, the tension in the tire circumferential direction acting on the belt increases toward the end in the tire width direction, so that the tension borne by one reinforcing cord increases toward the end in the tire width direction. Therefore, when the conventional belt is simply replaced with a resin belt in the pneumatic tire, it is difficult to improve the durability.
本開示は、補強コードを樹脂で被覆してベルトを形成する場合において、ベルトの耐久性を確保することができる空気入りタイヤの提供を目的とする。
The present disclosure aims to provide a pneumatic tire that can ensure the durability of a belt when a belt is formed by covering a reinforcing cord with a resin.
本開示の空気入りタイヤは、一方のビード部から他方のビード部に跨るカーカスを含んで構成され、少なくとも前記カーカスのタイヤ幅方向の外側部がゴム材料で被覆されたタイヤケースと、タイヤ周方向に巻かれる補強コードを樹脂で被覆して構成され、かつ前記タイヤケースの外周側に接合されるベルトと、を備え、前記ベルトのタイヤ幅方向断面において、前記補強コードの前記ベルトの単位幅当たりの本数は、タイヤ幅方向中央部よりもタイヤ幅方向端部の方が多い。
The pneumatic tire of the present disclosure is configured to include a carcass straddling from one bead portion to the other bead portion, at least a tire case in which an outer portion in the tire width direction of the carcass is covered with a rubber material, and a tire circumferential direction. And a belt joined to the outer peripheral side of the tire case, wherein the reinforcing cord is wound around the belt, and is joined to an outer peripheral side of the tire case. Are greater at the end in the tire width direction than at the center in the tire width direction.
本開示の空気入りタイヤのベルトは、樹脂に被覆された補強コードを含んで構成されている。このベルトのタイヤ幅方向断面における補強コードの単位幅当たりの本数は、ベルトに働くタイヤ周方向の張力の大きいタイヤ幅方向端部側ほど多いため、1本の補強コードが負担する張力を均等化することができる。これにより、補強コードを含むベルトの耐久性を確保することができる。
ベ ル ト The pneumatic tire belt according to the present disclosure includes a reinforcing cord covered with a resin. The number of reinforcing cords per unit width in the cross section in the tire width direction of the belt is larger at the end portion in the tire width direction where the tension in the tire circumferential direction acting on the belt is larger, so that the tension borne by one reinforcing cord is equalized. can do. Thereby, the durability of the belt including the reinforcing cord can be secured.
本開示の空気入りタイヤによれば、補強コードを樹脂で被覆してベルトを形成する場合において、ベルトの耐久性を確保することができる。
According to the pneumatic tire of the present disclosure, when forming a belt by covering a reinforcing cord with a resin, the durability of the belt can be ensured.
[第1の実施形態]
図1~図3を用いて、本開示の一実施形態に係る空気入りタイヤ10について説明する。 [First Embodiment]
Apneumatic tire 10 according to an embodiment of the present disclosure will be described with reference to FIGS.
図1~図3を用いて、本開示の一実施形態に係る空気入りタイヤ10について説明する。 [First Embodiment]
A
図1に示すように、本実施形態の空気入りタイヤ10は、例えば、乗用車に用いられる所謂ラジアルタイヤであり、ビードコア12が埋設された一対のビード部20を備え、一方のビード部20と他方のビード部20との間に、1枚のカーカスプライ14からなるカーカス16が跨っている。なお、図1は、空気入りタイヤ10の空気充填前の自然状態の形状を示している。カーカス16は、タイヤケースの一例である。
As shown in FIG. 1, the pneumatic tire 10 of the present embodiment is, for example, a so-called radial tire used for a passenger car, includes a pair of bead portions 20 in which a bead core 12 is embedded, and one bead portion 20 and the other bead portion. A carcass 16 composed of one carcass ply 14 straddles the bead portion 20. FIG. 1 shows the shape of the pneumatic tire 10 in a natural state before air filling. The carcass 16 is an example of a tire case.
カーカスプライ14は、空気入りタイヤ10のラジアル方向に延びる複数本のコード(図示せず)をコーティングゴム(図示せず)で被覆して形成されている。即ち、本実施形態の空気入りタイヤ10は、所謂ラジアルタイヤである。カーカスプライ14のコードの材料は、例えば、PETであるが、従来公知の他の材料であっても良い。
The carcass ply 14 is formed by coating a plurality of cords (not shown) extending in the radial direction of the pneumatic tire 10 with a coating rubber (not shown). That is, the pneumatic tire 10 of the present embodiment is a so-called radial tire. The cord material of the carcass ply 14 is, for example, PET, but may be another known material.
カーカスプライ14は、タイヤ幅方向(タイヤ軸方向)の端部分がビードコア12をタイヤ径方向外側に折り返されている。カーカスプライ14は、一方のビードコア12から他方のビードコア12に跨る部分が本体部14Aと呼ばれ、ビードコア12から折り返されている部分が折り返し部14Bと呼ばれる。
The end portion of the carcass ply 14 in the tire width direction (tire axial direction) has the bead core 12 folded back in the tire radial direction. In the carcass ply 14, a portion extending from one bead core 12 to the other bead core 12 is referred to as a main body portion 14A, and a portion folded from the bead core 12 is referred to as a folded portion 14B.
カーカスプライ14の本体部14Aと折返し部14Bとの間には、ビードコア12からタイヤ径方向外側に向けて厚さが漸減するビードフィラー18が配置されている。なお、空気入りタイヤ10において、ビードフィラー18のタイヤ径方向外側端18Aからタイヤ径方向内側の部分がビード部20とされている。
Bead fillers 18 whose thickness gradually decreases from the bead core 12 to the outside in the tire radial direction are disposed between the main body portion 14A and the folded portion 14B of the carcass ply 14. In the pneumatic tire 10, a portion of the bead filler 18 from the tire radial outer end 18 </ b> A to the tire radial direction inside is a bead portion 20.
カーカス16のタイヤ内側にはゴムからなるインナーライナー22が配置されており、カーカス16のタイヤ幅方向外側には、第1のゴム材料からなるサイドゴム層24が配置されている。
An inner liner 22 made of rubber is arranged inside the tire of the carcass 16, and a side rubber layer 24 made of the first rubber material is arranged outside the carcass 16 in the tire width direction.
なお、本実施形態では、ビードコア12、カーカス16、ビードフィラー18、インナーライナー22、及びサイドゴム層24によってタイヤケース25が構成されている。タイヤケース25は、言い換えれば、空気入りタイヤ10の骨格を成すタイヤ骨格部材のことである。
In the present embodiment, the tire case 25 is constituted by the bead core 12, the carcass 16, the bead filler 18, the inner liner 22, and the side rubber layer 24. The tire case 25 is, in other words, a tire frame member that forms the frame of the pneumatic tire 10.
(ベルト)
カーカス16のクラウン部の外側、言い換えればカーカス16のタイヤ径方向外側には、ベルト26が配置されており、ベルト26はカーカス16の外周面に密着している。図2に示すように、ベルト26は、複数本の補強コード30を樹脂32で被覆した樹脂被覆コード34をタイヤ周方向に巻回することで形成されている。なお、ベルト26の製法方法は後述する。 (belt)
Abelt 26 is arranged outside the crown portion of the carcass 16, in other words, outside the carcass 16 in the tire radial direction, and the belt 26 is in close contact with the outer peripheral surface of the carcass 16. As shown in FIG. 2, the belt 26 is formed by winding a resin-coated cord 34 in which a plurality of reinforcing cords 30 are covered with a resin 32 in the tire circumferential direction. The method of manufacturing the belt 26 will be described later.
カーカス16のクラウン部の外側、言い換えればカーカス16のタイヤ径方向外側には、ベルト26が配置されており、ベルト26はカーカス16の外周面に密着している。図2に示すように、ベルト26は、複数本の補強コード30を樹脂32で被覆した樹脂被覆コード34をタイヤ周方向に巻回することで形成されている。なお、ベルト26の製法方法は後述する。 (belt)
A
ここで、本実施形態の樹脂被覆コード34において樹脂32に被覆される補強コード30の本数は、ベルト26のタイヤ幅方向中央部よりもタイヤ幅方向端部の方が多くなるように設定されている。ベルト26のタイヤ幅方向端部とは、ベルト26のタイヤ幅方向端から所定の範囲をいい、好適には、ベルト26の幅BWの15~30%の領域である。また、ベルト26のタイヤ幅方向中央部とは、タイヤ赤道面CLを中心に所定の範囲をいい、好適には、タイヤ幅方向端部に挟まれた、ベルト26の幅BWの40~70%の領域である。なお、ベルト26の幅BWは、ベルト26における一方のタイヤ幅方向端から他方のタイヤ幅方向端までに範囲をいう。
Here, in the resin-coated cord 34 of the present embodiment, the number of the reinforcing cords 30 that are covered with the resin 32 is set such that the belt 26 is larger at the end in the tire width direction than at the center in the tire width direction. I have. The end of the belt 26 in the tire width direction refers to a predetermined range from the end of the belt 26 in the tire width direction, and is preferably a region of 15 to 30% of the width BW of the belt 26. The central portion of the belt 26 in the tire width direction refers to a predetermined range around the tire equatorial plane CL, and is preferably 40 to 70% of the width BW of the belt 26 sandwiched between the end portions in the tire width direction. Area. The width BW of the belt 26 refers to a range from one tire width direction end of the belt 26 to the other tire width direction end.
本実施形態では、図3に示すように、タイヤ幅方向の断面において、ベルト26のタイヤ幅方向端部側((タイヤ幅方向両側の5本)の樹脂被覆コード34では、それぞれ3本の補強コード30が樹脂32により被覆されている、また、ベルト26のタイヤ幅方向中央部側(タイヤ幅方向両端から6本目以降)の樹脂被覆コード34では、それぞれ2本の補強コード30が樹脂32により被覆されている。ここで、ベルト26において、補強コード30の被覆本数をタイヤ幅方向中央部よりも増やす範囲は、ベルト26のタイヤ幅方向端からベルト26の幅BWの1/4の範囲とするのが望ましい。特に、後述する溝37のうちタイヤ幅方向最端の溝37よりも外側の範囲であるのが望ましい。
In the present embodiment, as shown in FIG. 3, in the cross section in the tire width direction, the resin-coated cords 34 at the end portions of the belt 26 in the tire width direction (five on both sides in the tire width direction) each have three reinforcements. The cords 30 are covered with the resin 32, and the resin-coated cords 34 at the center portion of the belt 26 in the tire width direction (the sixth and subsequent cords from both ends in the tire width direction) are each formed of two reinforcing cords 30 with the resin 32. Here, in the belt 26, the range in which the number of the reinforcing cords 30 to be covered is larger than the central portion in the tire width direction is a range of 1/4 of the width BW of the belt 26 from the end in the tire width direction of the belt 26. In particular, it is desirable that the groove 37 be described below and be in a range outside the groove 37 at the end in the tire width direction.
ベルト26の補強コード30は、カーカスプライ14のコードよりも太く、かつ、強力(引張強度)が大きいものを用いることが好ましい。ベルト26の補強コード30は、金属繊維や有機繊維等のモノフィラメント(単線)、又はこれらの繊維を撚ったマルチフィラメント(撚り線)で構成することができる。本実施形態の補強コード30は、スチールコードである。補強コード30としては、例えば、直径が0.225mmの“1×5”のスチールコードを用いることができるが、従来公知の他の構造のスチールコードを用いることもできる。
It is preferable that the reinforcing cord 30 of the belt 26 is thicker than the cord of the carcass ply 14 and has high strength (tensile strength). The reinforcing cord 30 of the belt 26 can be composed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (stranded wire) obtained by twisting these fibers. The reinforcing cord 30 of the present embodiment is a steel cord. As the reinforcing cord 30, for example, a “1 × 5” steel cord having a diameter of 0.225 mm can be used, but a steel cord having another conventionally known structure can also be used.
補強コード30を被覆する樹脂32には、サイドゴム層24を構成するゴム、及び後述するトレッド36を構成する第2のゴム材料よりも引張弾性率の高い樹脂材料が用いられている。補強コード30を被覆する樹脂32としては、弾性を有する熱可塑性樹脂、熱可塑性エラストマー(TPE)、及び熱硬化性樹脂等を用いることができる。走行時の弾性と製造時の成形性を考慮すると、熱可塑性エラストマーを用いることが望ましい。
(4) As the resin 32 for covering the reinforcing cord 30, a rubber material forming the side rubber layer 24 and a resin material having a higher tensile modulus than a second rubber material forming a tread 36 described later are used. As the resin 32 that covers the reinforcing cord 30, a thermoplastic resin having elasticity, a thermoplastic elastomer (TPE), a thermosetting resin, or the like can be used. Considering the elasticity during running and the moldability during manufacturing, it is desirable to use a thermoplastic elastomer.
熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)等が挙げられる。
Examples of the thermoplastic elastomer include polyolefin-based thermoplastic elastomer (TPO), polystyrene-based thermoplastic elastomer (TPS), polyamide-based thermoplastic elastomer (TPA), polyurethane-based thermoplastic elastomer (TPU), and polyester-based thermoplastic elastomer (TPC). And dynamically crosslinked thermoplastic elastomers (TPV).
また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂材料としては、例えば、ISO75-2又はASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、JIS K7113に規定される引張降伏強さが10MPa以上、同じくJIS K7113に規定される引張破壊伸びが50%以上、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。
Further, examples of the thermoplastic resin include a polyurethane resin, a polyolefin resin, a vinyl chloride resin, and a polyamide resin. Further, as the thermoplastic resin material, for example, the deflection temperature under load (under a load of 0.45 MPa) specified in ISO75-2 or ASTM D648 is 78 ° C. or more, and the tensile yield strength specified in JIS K7113 is 10 MPa. As described above, a material having a tensile elongation at break specified in JIS K 7113 of 50% or more and a Vicat softening temperature (A method) specified in JIS K 7206 of 130 ° C. or more can be used.
補強コード30を被覆する樹脂32の引張弾性率(JIS K7113:1995に規定される)は、100MPa以上が好ましい。また、補強コード30を被覆する樹脂32の引張弾性率の上限は、1000MPa以下とすることが好ましい。なお、補強コード30を被覆する樹脂32の引張弾性率は、200~700MPaの範囲内が特に好ましい。
引 張 The tensile modulus of elasticity of the resin 32 that covers the reinforcing cord 30 (defined by JIS K7113: 1995) is preferably 100 MPa or more. The upper limit of the tensile modulus of the resin 32 covering the reinforcing cord 30 is preferably 1000 MPa or less. The tensile modulus of the resin 32 covering the reinforcing cord 30 is particularly preferably in the range of 200 to 700 MPa.
本実施形態のベルト26の厚さ寸法tは、補強コード30の直径寸法よりも大きくすることが好ましい、言い換えれば、補強コード30が完全に樹脂32に埋設されていることが好ましい。ベルト26の厚さ寸法tは、空気入りタイヤ10が乗用車用の場合、具体的には、0.70mm以上とすることが好ましい。
It is preferable that the thickness t of the belt 26 of the present embodiment is larger than the diameter of the reinforcing cord 30. In other words, it is preferable that the reinforcing cord 30 is completely embedded in the resin 32. When the pneumatic tire 10 is for a passenger car, the thickness t of the belt 26 is preferably set to 0.70 mm or more.
図1に示すように、ベルト26のタイヤ径方向外側には、第2のゴム材料からなるトレッド36が配置されている。トレッド36に用いる第2のゴム材料は、従来一般公知のものが用いられる。トレッド36には、排水用の溝37が形成されている。また、トレッド36のパターンも従来一般公知のものが用いられる。
As shown in FIG. 1, a tread 36 made of a second rubber material is disposed outside the belt 26 in the tire radial direction. As the second rubber material used for the tread 36, a generally known material is used. A groove 37 for drainage is formed in the tread 36. Further, the tread 36 has a conventionally known pattern.
タイヤ幅方向に沿って計測するベルト26の幅BWは、タイヤ幅方向に沿って計測するトレッド36の接地幅TWに対して75%以上とすることが好ましい。なお、ベルト26の幅BWの上限は、接地幅TWに対して110%とすることが好ましい。
幅 It is preferable that the width BW of the belt 26 measured along the tire width direction is 75% or more with respect to the contact width TW of the tread 36 measured along the tire width direction. In addition, it is preferable that the upper limit of the width BW of the belt 26 be 110% with respect to the contact width TW.
ここで、トレッド36の接地幅TWとは、空気入りタイヤ10をJATMA YEAR BOOK(2018年度版、日本自動車タイヤ協会規格)に規定されている標準リムに装着し、JATMA YEAR BOOKでの適用サイズ・プライレーティングにおける最大負荷能力(内圧-負荷能力対応表の太字荷重)に対応する空気圧(最大空気圧)の100%の内圧を充填し、静止した状態で水平な平板に対して回転軸が平行となるように配置し、最大の負荷能力に対応する質量を加えたときのものである。なお、使用地又は製造地において、TRA規格、ETRTO規格が適用される場合は各々の規格に従う。
Here, the contact width TW of the tread 36 means that the pneumatic tire 10 is mounted on a standard rim stipulated in JATMA YEAR BOOK (2018 edition, Japan Automobile Tire Association Standard) and the applicable size in JATMA YEAR BOOK. Fills with 100% internal pressure of the air pressure (maximum air pressure) corresponding to the maximum load capacity (the bold load in the internal pressure-load capacity correspondence table) in the ply rating, and the rotation axis is parallel to the horizontal flat plate in a stationary state And a mass corresponding to the maximum load capacity is added. When the TRA standard and the ETRTO standard are applied at the place of use or the place of manufacture, the respective standards are followed.
また、ベルト26の面内剪断剛性は、ゴム被覆で形成されたベルト以上であることが好ましい。
ベ ル ト In addition, the in-plane shear rigidity of the belt 26 is preferably equal to or greater than that of the belt formed by rubber coating.
(空気入りタイヤの製造方法)
次に、本実施形態の空気入りタイヤ10の製造方法の一例を説明する。 (Method of manufacturing pneumatic tires)
Next, an example of a method for manufacturing thepneumatic tire 10 of the present embodiment will be described.
次に、本実施形態の空気入りタイヤ10の製造方法の一例を説明する。 (Method of manufacturing pneumatic tires)
Next, an example of a method for manufacturing the
まず、公知のタイヤ成形ドラム(不図示)の外周に、ゴム材料からなるインナーライナー22、ビードコア12、ゴム材料からなるビードフィラー18、コードをゴム材料で被覆したカーカスプライ14、及びサイドゴム層24からなる未加硫のタイヤケース25を形成する。ここまでの製造方法は、従来通りである。
First, an inner liner 22 made of a rubber material, a bead core 12, a bead filler 18 made of a rubber material, a carcass ply 14 having a cord covered with a rubber material, and a side rubber layer 24 are provided on the outer periphery of a known tire forming drum (not shown). An unvulcanized tire case 25 is formed. The manufacturing method up to here is the same as the conventional one.
一方、樹脂被覆コード34(図2及び図3において、2点鎖線で図示。)は、2本又は3本の補強コード30を被覆用の樹脂32で被覆して形成される。例えば、樹脂被覆コード34を形成する際、最初は3本の補強コード30がベルト26の幅BWの1/4分巻回する長さに至るまで樹脂32で被覆される。そして、3本のうち幅方向中央の補強コード30が切断され、2本の補強コード30がベルト26の幅BWの1/2分巻回する長さに至るまで樹脂32で被覆される。そして、2本の補強コード30の間に再び1本の補強コード30が挿入された上で、この3本の補強コード30がベルト26の幅BWの1/4分巻回する長さに至るまで樹脂32で被覆される。
On the other hand, the resin-coated cord 34 (shown by a two-dot chain line in FIGS. 2 and 3) is formed by covering two or three reinforcing cords 30 with the resin 32 for covering. For example, when forming the resin-coated cord 34, first, the three reinforcing cords 30 are covered with the resin 32 to a length wound by 1 / of the width BW of the belt 26. Then, the reinforcing cord 30 at the center in the width direction among the three is cut, and the two reinforcing cords 30 are covered with the resin 32 until the reinforcing cord 30 reaches a length wound by 分 of the width BW of the belt 26. After one reinforcing cord 30 is inserted again between the two reinforcing cords 30, the three reinforcing cords 30 reach a length wound by 1 / of the width BW of the belt 26. Up to the resin 32.
以上のように形成された本実施形態では、樹脂被覆コード34の断面形状は矩形(タイヤ幅方向に長い長方形)である。
ベルト26は、樹脂被覆コード34を螺旋状に巻回して形成される。 In the present embodiment formed as described above, the cross-sectional shape of the resin-coatedcord 34 is a rectangle (a rectangle that is long in the tire width direction).
Thebelt 26 is formed by spirally winding a resin-coated cord 34.
ベルト26は、樹脂被覆コード34を螺旋状に巻回して形成される。 In the present embodiment formed as described above, the cross-sectional shape of the resin-coated
The
以下に、ベルト26の製造工程の一例を図4にしたがって説明する。
まず、ベルト成形ドラム40の近傍にコード供給装置42、加熱装置50、押付ローラ60、及び冷却ローラ70を移動可能に配置する。 Hereinafter, an example of a manufacturing process of thebelt 26 will be described with reference to FIG.
First, thecord supply device 42, the heating device 50, the pressing roller 60, and the cooling roller 70 are movably disposed near the belt forming drum 40.
まず、ベルト成形ドラム40の近傍にコード供給装置42、加熱装置50、押付ローラ60、及び冷却ローラ70を移動可能に配置する。 Hereinafter, an example of a manufacturing process of the
First, the
コード供給装置42は、補強コード30を被覆用の樹脂32で被覆した樹脂被覆コード34を巻き付けたリール43と、このリール43から巻き出された樹脂被覆コード34をベルト成形ドラム40の外周に案内するためのガイド部材44とを含んで構成されている。このガイド部材44は、筒状とされ、内部を樹脂被覆コード34が通過するようになっている。また、ガイド部材44の口部46からは、ベルト成形ドラム40の外周面に向かって樹脂被覆コード34が送り出される。
The cord supply device 42 guides the reel 43 around which the resin-coated cord 34 in which the reinforcing cord 30 is coated with the coating resin 32 and the resin-coated cord 34 unwound from the reel 43 to the outer periphery of the belt forming drum 40. And a guide member 44 for performing the operation. The guide member 44 has a cylindrical shape, and the resin-coated cord 34 passes through the inside thereof. Further, the resin-coated cord 34 is sent out from the mouth 46 of the guide member 44 toward the outer peripheral surface of the belt forming drum 40.
加熱装置50は、熱風を樹脂被覆コード34に吹き当てて、吹き当てた部分を加熱し溶融させるものである。なお、本実施形態では、電熱線(不図示)で加熱した空気をファン(不図示)で発生させた気流で吹出し口52から吹き出し、この吹き出した熱風を樹脂被覆コード34に吹き当てるようになっている。なお、加熱装置50の構成は、上記構成に限定されず、熱可塑性樹脂を加熱溶融できれば、どのような構成であってもよい。例えば、樹脂被覆コード34の側面に熱鏝を接触させて側面を加熱溶融させてもよく、輻射熱で加熱溶融させてもよく、赤外線を照射して加熱溶融させてもよい。
The heating device 50 blows hot air onto the resin-coated cord 34 to heat and melt the blown portion. In the present embodiment, air heated by a heating wire (not shown) is blown out from the outlet 52 by an airflow generated by a fan (not shown), and the blown hot air is blown against the resin-coated cord 34. ing. The configuration of the heating device 50 is not limited to the above configuration, and may be any configuration as long as the thermoplastic resin can be heated and melted. For example, a hot iron may be brought into contact with the side surface of the resin-coated cord 34 to heat and melt the side surface, may be heated and melted by radiant heat, or may be heated and melted by irradiating infrared rays.
押付ローラ60は、後述する樹脂被覆コード34をベルト成形ドラム40外周面に押し付けるものであり、押付力Fを調整できるようになっている。また、押付ローラ60のローラ表面には、溶融状態の樹脂材料の付着を防ぐための加工が施されている。そして、押付ローラ60は、回転自在となっており、樹脂被覆コード34をベルト成形ドラム40の外周に押し付けている状態では、ベルト成形ドラム40の回転方向(矢印A方向)に対して従動回転するようになっている。
The pressing roller 60 is for pressing a resin-coated cord 34 described later against the outer peripheral surface of the belt forming drum 40, and is capable of adjusting the pressing force F. Further, the roller surface of the pressing roller 60 is processed to prevent the resin material in a molten state from adhering. The pressing roller 60 is rotatable. When the resin-coated cord 34 is pressed against the outer periphery of the belt forming drum 40, the pressing roller 60 is driven to rotate in the rotation direction (the direction of the arrow A) of the belt forming drum 40. It has become.
また、冷却ローラ70は、押付ローラ60よりもベルト成形ドラム40の回転方向下流側に配置され、樹脂被覆コード34をベルト成形ドラム40の外周面に押し付けつつ、樹脂被覆コード34を冷却するものである。この冷却ローラ70は、押付ローラ60と同様に、押付力を調整でき、かつ、ローラ表面に溶融状態の樹脂材料の付着を防ぐための加工が施されている。さらに、冷却ローラ70は、押付ローラ60と同様に、回転自在となっており、樹脂被覆コード34をベルト成形ドラム40の外周面に押し付けている状態では、ベルト成形ドラム40の回転方向(矢印A方向)に対して従動回転するようになっている。また、冷却ローラ70は、ローラ内部を液体(例えば、水など)が流通するようになっており、この液体の熱交換によりローラ表面に接触した部材(本実施形態では、樹脂被覆コード34)などを冷却することができる。なお、溶融状態の樹脂材料を自然冷却させる場合には、冷却ローラ70を省略してもよい。
The cooling roller 70 is disposed downstream of the pressing roller 60 in the rotation direction of the belt forming drum 40, and cools the resin coating cord 34 while pressing the resin coating cord 34 against the outer peripheral surface of the belt forming drum 40. is there. Like the pressing roller 60, the cooling roller 70 is capable of adjusting the pressing force, and has been subjected to processing for preventing adhesion of a molten resin material to the roller surface. Further, the cooling roller 70 is rotatable similarly to the pressing roller 60, and when the resin-coated cord 34 is pressed against the outer peripheral surface of the belt forming drum 40, the rotation direction of the belt forming drum 40 (arrow A) Direction). The cooling roller 70 is configured such that a liquid (for example, water) flows through the inside of the roller, and a member (the resin-coated cord 34 in the present embodiment) that comes into contact with the roller surface by heat exchange of the liquid. Can be cooled. When the resin material in the molten state is naturally cooled, the cooling roller 70 may be omitted.
次に、ベルト成形ドラム40を矢印A方向に回転させると共にコード供給装置42の口部46から樹脂被覆コード34をベルト成形ドラム40の外周面に向けて送り出す。
Next, the belt forming drum 40 is rotated in the direction of arrow A, and the resin-coated cord 34 is sent out from the mouth 46 of the cord supply device 42 toward the outer peripheral surface of the belt forming drum 40.
そして、加熱装置50の吹出し口52から樹脂被覆コード34に向かって熱風を吹き出して加熱し樹脂32の表面を溶融させながら、樹脂被覆コード34をベルト成形ドラム40に付着させつつ、樹脂被覆コード34を押付ローラ60でベルト成形ドラム40の外周面に押し付ける。この押付ローラ60によって樹脂被覆コード34は、側部がタイヤ幅方向に膨出するように変形(押し潰しによる変形)して、樹脂32のタイヤ幅方向に隣接する側面同士が接触して溶着する。
その後、樹脂32の溶融部分は、冷却ローラ70に接触して固化され、隣接する樹脂被覆コード34同士の溶着が完了する。 Then, while the hot air is blown out from theoutlet 52 of the heating device 50 toward the resin-coated cord 34 and heated to melt the surface of the resin 32, the resin-coated cord 34 is attached to the belt forming drum 40 while Is pressed against the outer peripheral surface of the belt forming drum 40 by the pressing roller 60. The resin-coated cord 34 is deformed (deformed by crushing) so that the side portion swells in the tire width direction by the pressing roller 60, and the side surfaces of the resin 32 adjacent to each other in the tire width direction come into contact with each other and weld. .
Thereafter, the molten portion of theresin 32 contacts the cooling roller 70 and is solidified, and the welding of the adjacent resin-coated cords 34 is completed.
その後、樹脂32の溶融部分は、冷却ローラ70に接触して固化され、隣接する樹脂被覆コード34同士の溶着が完了する。 Then, while the hot air is blown out from the
Thereafter, the molten portion of the
このようにして、樹脂被覆コード34をベルト成形ドラム40の外周面に螺旋状に巻き付けると共に該外周面に押し付けていくことで、ベルト成形ドラム40の外周面にベルト26が形成される。なお、樹脂被覆コード34を螺旋状に巻き付けるには、コード供給装置42の口部46の位置を、タイヤケース17の回転に伴ってタイヤ幅方向に移動させたり、タイヤケース17をタイヤ幅方向に移動させたりすればよい。
In this manner, the resin-coated cord 34 is spirally wound around the outer peripheral surface of the belt forming drum 40 and pressed against the outer peripheral surface, whereby the belt 26 is formed on the outer peripheral surface of the belt forming drum 40. In order to spirally wind the resin-coated cord 34, the position of the mouth 46 of the cord supply device 42 is moved in the tire width direction with the rotation of the tire case 17, or the tire case 17 is moved in the tire width direction. You can move it.
次に、樹脂32が固化したベルト26をベルト成形ドラム40から取り外し、タイヤ成形ドラムのタイヤケースの径方向外側に配置し、タイヤケースを拡張してタイヤケースの外周面、言い換えればカーカス16の外周面をベルト26の内周面に圧着する。
Next, the belt 26 in which the resin 32 has been solidified is removed from the belt forming drum 40, and disposed outside the tire case of the tire forming drum in the radial direction, and the tire case is expanded to expand the outer peripheral surface of the tire case, in other words, the outer periphery of the carcass 16. The surface is pressed against the inner peripheral surface of the belt 26.
最後に、ベルト26の外周面に、一般の空気入りタイヤと同様に未加硫のトレッド36を貼り付け、生タイヤが完成する。
Finally, an unvulcanized tread 36 is attached to the outer peripheral surface of the belt 26 in the same manner as a general pneumatic tire, and a green tire is completed.
このようにして製造された生タイヤは、一般の空気入りタイヤと同様に加硫成形モールドで加硫成形され、空気入りタイヤ10が完成する。
The green tire thus manufactured is vulcanized and molded by a vulcanization mold in the same manner as a general pneumatic tire, and the pneumatic tire 10 is completed.
(作用、効果)
次に、本実施形態の空気入りタイヤ10の作用、効果を説明する。 (Action, effect)
Next, the operation and effect of thepneumatic tire 10 of the present embodiment will be described.
次に、本実施形態の空気入りタイヤ10の作用、効果を説明する。 (Action, effect)
Next, the operation and effect of the
本実施形態の空気入りタイヤ10では、カーカス16のクラウン部が、螺旋状に巻回された補強コード30が樹脂32で被覆されたベルト26で補強されているため、従来タイヤの2枚以上のベルトプライから構成された複数層からなるベルトに比較して軽量となり、製造も簡単になる。
In the pneumatic tire 10 of the present embodiment, the crown portion of the carcass 16 is reinforced by the belt 26 covered with the resin 32 on the reinforcing cord 30 wound in a spiral shape. Compared to a belt composed of a plurality of layers composed of a belt ply, it is lighter in weight and easier to manufacture.
本実施形態のベルト26は、補強コード30を被覆している樹脂32の引張弾性率が50MPa以上とされ、厚みも0.7mm以上確保されているので、ベルト26のタイヤ幅方向の面内剪断剛性を十分に確保することができる。
In the belt 26 of the present embodiment, the tensile modulus of the resin 32 covering the reinforcing cord 30 is set to 50 MPa or more and the thickness is secured to 0.7 mm or more, so that the in-plane shearing of the belt 26 in the tire width direction is performed. The rigidity can be sufficiently secured.
ベルト26の面内剪断剛性が確保されることで、空気入りタイヤ10にスリップ角を付与した場合の横力を十分に発生させることができ、操縦安定性を確保することができ、また、応答性も向上させることができる。
By ensuring the in-plane shear stiffness of the belt 26, lateral force can be sufficiently generated when the pneumatic tire 10 is given a slip angle, steering stability can be ensured, and the response can be improved. Performance can also be improved.
また、ベルト26の面外曲げ剛性が確保されることで、空気入りタイヤ10に大きな横力が入力した際、トレッド36のバックリング(トレッド36の表面が波打って、一部が路面から離間する現象)を抑制することができる。
In addition, by securing the out-of-plane bending rigidity of the belt 26, when a large lateral force is input to the pneumatic tire 10, the buckling of the tread 36 (the surface of the tread 36 undulates and a part of the tread 36 is separated from the road surface) Phenomenon).
さらに、本実施形態の空気入りタイヤ10では、面内剪断剛性が高いベルト26を用いており、ベルト26の幅BWをトレッド36の接地幅TWの75%以上としているので、ショルダー39付近の剛性を高めることができる。
Further, in the pneumatic tire 10 of the present embodiment, the belt 26 having a high in-plane shear rigidity is used, and the width BW of the belt 26 is set to be 75% or more of the contact width TW of the tread 36, so that the rigidity near the shoulder 39 is obtained. Can be increased.
本実施形態の空気入りタイヤ10では、ベルト26が1層構造であるため、従来の2枚以上のベルトプライで構成した場合に比較して、ベルト26の厚みを薄くでき、その分トレッド36の厚みを厚くすることができ、かつ溝37の深さを深くすることができる。これにより、空気入りタイヤ10の寿命を延ばすことも可能となる。
In the pneumatic tire 10 of the present embodiment, since the belt 26 has a one-layer structure, the thickness of the belt 26 can be reduced as compared with a conventional case where two or more belt plies are used, and the tread 36 The thickness can be increased, and the depth of the groove 37 can be increased. As a result, the life of the pneumatic tire 10 can be extended.
空気入りタイヤ10におけるベルト26は、補強コード30が螺旋状に巻回され、周上で補強コード30がタイヤ径方向に重なる部分が無く、タイヤ周方向に厚さが均一となっているので、空気入りタイヤ10はユニフォミティーに優れたものとなる。
In the belt 26 of the pneumatic tire 10, the reinforcing cord 30 is spirally wound, and there is no portion where the reinforcing cord 30 overlaps in the tire radial direction on the circumference, and the thickness is uniform in the tire circumferential direction. The pneumatic tire 10 is excellent in uniformity.
ところで、空気入りタイヤでは、ベルトはタイヤケースの形状に合わせて、タイヤ幅方向中央側に比べてタイヤ幅方向端側が僅かに小径となるように形成されている。そのため、空気入りタイヤが転動する際、ベルトはタイヤ幅方向端部においてはタイヤが拡径する方向の力、つまりタイヤ周方向の張力を受け、タイヤ幅方向中央部においてはタイヤが縮径する方向の力、つまりタイヤ周方向の圧縮力を受けている。
By the way, in the pneumatic tire, the belt is formed so as to have a slightly smaller diameter at the end side in the tire width direction than at the center side in the tire width direction according to the shape of the tire case. Therefore, when the pneumatic tire rolls, the belt receives the force in the tire expanding direction at the end in the tire width direction, that is, the tension in the tire circumferential direction, and the tire contracts at the center in the tire width direction. Directional force, that is, a compressive force in the tire circumferential direction.
ここで、補強コードを樹脂で被覆した樹脂被覆コードを形成し、この樹脂被覆コードを螺旋状に巻いてベルトを構成する場合、ベルトに働くタイヤ周方向の張力は、従来の傾斜ベルトプライのように斜行する複数のコードで支持することができない。そのため、樹脂製のベルトでは、タイヤ周方向の張力は、タイヤ周方向に延びる補強コードがそれぞれ単独で支持する構造となる。一方、ベルトに働くタイヤ周方向の張力はタイヤ幅方向端部に向かって大きくなるため、タイヤ幅方向端部ほど1本の補強コードが負担する張力が大きい。したがって、空気入りタイヤにおいて単に従来のベルトを樹脂製のベルトに置き換えた場合は、タイヤ幅方向端部側の補強コードに係る負担が大きくなるため耐久性の向上が難しい。
Here, when a resin-coated cord in which a reinforcing cord is coated with a resin is formed, and the resin-coated cord is spirally wound to form a belt, the tension in the tire circumferential direction acting on the belt is the same as in a conventional inclined belt ply. Cannot be supported by multiple codes skewed. Therefore, in the resin belt, the tension in the tire circumferential direction has a structure in which the reinforcing cords extending in the tire circumferential direction are independently supported. On the other hand, the tension in the tire circumferential direction acting on the belt increases toward the end in the tire width direction, so that the tension borne by one reinforcing cord increases toward the end in the tire width direction. Therefore, in the case where the conventional belt is simply replaced with a resin belt in the pneumatic tire, the load on the reinforcing cord at the end portion in the tire width direction becomes large, so that it is difficult to improve the durability.
これに対して、本実施形態のベルト26によれば、樹脂被覆コード34において樹脂32に被覆される補強コード30の本数は、タイヤ幅方向中央部よりもタイヤ幅方向端部の方が多くなるように設定されている。つまり、本実施形態のベルト26では、タイヤ幅方向断面における補強コード30の単位幅当たりの本数は、張力の大きいタイヤ幅方向端部側ほど多いため、1本の補強コード30が負担する張力を均等化することができる。これにより、補強コード30を含むベルト26の耐久性を確保することができる。
On the other hand, according to the belt 26 of the present embodiment, the number of the reinforcing cords 30 covered with the resin 32 in the resin-coated cords 34 is greater at the end in the tire width direction than at the center in the tire width direction. It is set as follows. That is, in the belt 26 of the present embodiment, the number of the reinforcing cords 30 per unit width in the tire width direction cross section is larger at the tire width direction end side where the tension is larger, so that the tension borne by one reinforcing cord 30 is smaller. Can be equalized. Thereby, the durability of the belt 26 including the reinforcing cord 30 can be ensured.
本実施形態のベルト26は、複数本の補強コード30を樹脂32で被覆した樹脂被覆コード34を巻回することにより構成されており、樹脂被覆コード34に配置される補強コード30の本数を変化させることで補強コード30の単位幅当たりの本数を変化させている。そのため、樹脂被覆コード34の巻き方を変えることなくタイヤ幅方向端部側の補強コード30の本数を増やすことができるため、ベルト26を製造する際の工数を増やすことなくベルト26の耐久性を確保することができる。
The belt 26 of the present embodiment is configured by winding a resin-coated cord 34 in which a plurality of reinforcing cords 30 are covered with a resin 32, and changes the number of the reinforcing cords 30 arranged on the resin-coated cord 34. By doing so, the number of reinforcing cords 30 per unit width is changed. Therefore, the number of reinforcing cords 30 at the end portion in the tire width direction can be increased without changing the winding method of the resin-coated cord 34, and the durability of the belt 26 can be improved without increasing the number of man-hours for manufacturing the belt 26. Can be secured.
本実施形態のベルト26では、タイヤ幅方向端からベルト26の幅BWの1/4の範囲において補強コード30の本数を増やしている。この範囲は、溝37のうちタイヤ幅方向最端の溝37よりも外側の範囲である。本実施形態によれば、溝37よりも外側における補強コード30の本数を増やすことにより、ショルダー39付近における張力負担を軽減することができる。
ベ ル ト In the belt 26 of the present embodiment, the number of the reinforcing cords 30 is increased in a range of 1/4 of the width BW of the belt 26 from the end in the tire width direction. This range is a range outside the groove 37 at the end in the tire width direction among the grooves 37. According to the present embodiment, by increasing the number of the reinforcing cords 30 outside the groove 37, the tension load near the shoulder 39 can be reduced.
[第2の実施形態]
次に、本開示の第2の実施形態に係る空気入りタイヤ10を説明する。なお、第1の実施形態と同一構成には同一符号を付し、その説明は省略する。 [Second embodiment]
Next, apneumatic tire 10 according to a second embodiment of the present disclosure will be described. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
次に、本開示の第2の実施形態に係る空気入りタイヤ10を説明する。なお、第1の実施形態と同一構成には同一符号を付し、その説明は省略する。 [Second embodiment]
Next, a
図5に示すように、本実施形態のベルト26は、1本の補強コード30を樹脂32で被覆した樹脂被覆コード34をタイヤ周方向に巻回することで形成されている。本実施形態では、樹脂被覆コード34を巻回する際のタイヤ幅方向への送り速度、換言すると隣接する樹脂被覆コード34同士の間隔を変えることで、単位幅当たりの補強コード30の本数を変化させている。
As shown in FIG. 5, the belt 26 of the present embodiment is formed by winding a resin-coated cord 34 in which one reinforcing cord 30 is covered with a resin 32 in the tire circumferential direction. In the present embodiment, the number of reinforcing cords 30 per unit width is changed by changing the feed speed in the tire width direction when winding the resin-coated cords 34, in other words, by changing the interval between adjacent resin-coated cords 34. Let me.
図6に示すように、タイヤ幅方向端から9巻目までの樹脂被覆コード34では、タイヤ幅方向に互いに隣接する部分である樹脂32の側面同士が溶着により直接接合されている。また、10巻目以降の樹脂被覆コード34では、巻回する際のタイヤ幅方向への送り速度が増加している。そのため、隣接する樹脂被覆コード34同士の間には隙間が形成されており、本実施形態では当該隙間に樹脂を埋めることで充填部33が形成されている。つまり、隣接する樹脂被覆コード34は充填部33において樹脂を介して接合されている。
樹脂 As shown in FIG. 6, in the resin-coated cords 34 from the end in the tire width direction to the ninth winding, the side surfaces of the resins 32 that are adjacent to each other in the tire width direction are directly joined by welding. Further, in the resin-coated cord 34 of the tenth and subsequent turns, the feeding speed in the tire width direction at the time of winding is increased. Therefore, a gap is formed between adjacent resin-coated cords 34, and in the present embodiment, the filling portion 33 is formed by filling the gap with a resin. That is, the adjacent resin-coated cords 34 are joined at the filling portion 33 via the resin.
なお、充填部33を構成する樹脂は、樹脂被覆コード34を構成する樹脂32と同じ素材であることが望ましい。
It is desirable that the resin forming the filling portion 33 be the same material as the resin 32 forming the resin-coated cord 34.
本実施形態において、隣接する樹脂被覆コード34同士の間隔をタイヤ幅方向中央部よりも狭める範囲は、タイヤ幅方向端からベルト26の幅BWの1/4の範囲とするのが望ましい。特に、後述する溝37のうちタイヤ幅方向最端の溝37よりも外側の範囲であるのが望ましい。
In the present embodiment, the range in which the interval between the adjacent resin-coated cords 34 is narrower than the central portion in the tire width direction is preferably set to a range of 1 / of the width BW of the belt 26 from the end in the tire width direction. In particular, it is desirable to be a range outside the groove 37 at the end in the tire width direction among grooves 37 described later.
本実施形態においても、第1の実施形態と同様の作用効果を奏する。また、本実施形態によれば、長さ方向において補強コード30の本数を変えた樹脂被覆コード34を形成する必要がないため、樹脂被覆コード34を製造する際の工数を増やすことなくベルト26の耐久性を確保することができる。
に お い て In this embodiment, the same operation and effect as those of the first embodiment can be obtained. Further, according to the present embodiment, since it is not necessary to form the resin-coated cords 34 in which the number of the reinforcing cords 30 is changed in the length direction, the belt 26 can be formed without increasing the man-hour for manufacturing the resin-coated cords 34. Durability can be ensured.
[その他の実施形態]
以上、本開示の実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。また、各実施形態の特徴をそれぞれ組み合わせてもよい。 [Other embodiments]
Although the embodiments of the present disclosure have been described above, the present invention is not limited to the above, and it goes without saying that the present invention can be variously modified and implemented without departing from the gist thereof. is there. Further, the features of each embodiment may be combined.
以上、本開示の実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。また、各実施形態の特徴をそれぞれ組み合わせてもよい。 [Other embodiments]
Although the embodiments of the present disclosure have been described above, the present invention is not limited to the above, and it goes without saying that the present invention can be variously modified and implemented without departing from the gist thereof. is there. Further, the features of each embodiment may be combined.
第一の実施形態では、樹脂被覆コード34を巻回することによりベルト26を形成しているが、この限りではなく樹脂製の一の円筒体によりベルト26を形成してもよい。例えば、予め円筒状に形成された樹脂製のリングの外周に、タイヤ幅方向中央部よりもタイヤ幅方向端部の本数が多くなるように補強コード30を巻回し、巻回された補強コード30の外周をさらに樹脂32で被覆する。ここで、樹脂製で円筒状のリングは、インジェクション成形や、押出し成形した樹脂円筒を所定の長さに切断して形成することができる。
In the first embodiment, the belt 26 is formed by winding the resin-coated cord 34. However, the present invention is not limited to this, and the belt 26 may be formed of a single cylindrical body made of resin. For example, the reinforcing cord 30 is wound around the outer periphery of a resin ring formed in a cylindrical shape in advance so that the number of end portions in the tire width direction is larger than that in the central portion in the tire width direction. Is further covered with a resin 32. Here, the resin-made cylindrical ring can be formed by cutting a resin cylinder formed by injection molding or extrusion molding into a predetermined length.
上記のように一の円筒体から構成されたベルト26においても、第1の実施形態と同様の作用効果を奏する。また、樹脂被覆コードを巻回し、隣接する部分同士を接合した形成したベルトの場合、溶着不良によりベルトが幅方向に分断される可能性があるが、このベルト26はタイヤ幅方向に界面を有していないため、溶着不良によりベルト26がタイヤ幅方向に分断される懸念が無く、耐久性を向上させることができる。また、樹脂被覆コードを溶着してベルトを形成する場合に比べて、工数が減るため生産性が向上すると共に、コストの低減を図ることができる。
ベ ル ト The belt 26 composed of one cylindrical body as described above also has the same function and effect as the first embodiment. In the case of a belt formed by winding a resin-coated cord and joining adjacent portions together, the belt may be divided in the width direction due to poor welding, but the belt 26 has an interface in the tire width direction. Therefore, there is no fear that the belt 26 is separated in the tire width direction due to poor welding, and the durability can be improved. Further, as compared with the case where the belt is formed by welding the resin-coated cord, the number of steps is reduced, so that the productivity is improved and the cost can be reduced.
また、第1の実施形態では、ベルト26を製造する際に用いた樹脂被覆コード34が、2本又は3本の補強コード30を樹脂32で被覆したものであったが、この限りではない。すなわち、ベルト26のタイヤ幅方向断面における補強コード30の単位幅当たりの本数が、タイヤ幅方向中央部よりもタイヤ幅方向端部の方が多ければ、被覆される補強コード30は3本以上であってもよい。
Also, in the first embodiment, the resin-coated cord 34 used when manufacturing the belt 26 is formed by covering two or three reinforcing cords 30 with the resin 32, but the present invention is not limited to this. That is, if the number of reinforcing cords 30 per unit width in the cross section of the belt 26 in the tire width direction is larger at the end in the tire width direction than at the center in the tire width direction, three or more reinforcing cords 30 are covered. There may be.
上記実施形態の樹脂被覆コード34は断面形状が矩形であり、図2に示すように、カーカス16側(図面下方側)の内周面34Aと、トレッド36側(図面上方側)の外周面34Bとが、ベルト幅方向に変位していないが、樹脂被覆コード34は断面形状は矩形に限らず、カーカス側(図面下方側)の内周面34Aと、トレッド側(図面上方側)の外周面34Bとが、ベルト幅方向に変位していてもよい。例えば、樹脂被覆コード34は断面形状が平行四辺形状であってもよい。
The cross section of the resin-coated cord 34 of the above embodiment is rectangular, and as shown in FIG. 2, an inner peripheral surface 34A on the carcass 16 side (lower side in the drawing) and an outer peripheral surface 34B on the tread 36 side (upper side in the drawing). Are not displaced in the belt width direction, but the cross section of the resin-coated cord 34 is not limited to a rectangle, and the inner peripheral surface 34A on the carcass side (the lower side in the drawing) and the outer peripheral surface on the tread side (the upper side in the drawing). 34B may be displaced in the belt width direction. For example, the resin-coated cord 34 may have a parallelogram cross section.
本実施形態のベルト26は、一般的な空気入りタイヤに限らず、サイド部を補強ゴムで補強したランフラットタイヤに用いることもできる。
The belt 26 of the present embodiment is not limited to a general pneumatic tire, and may be used for a run flat tire whose side portions are reinforced with reinforcing rubber.
上記実施形態のベルト26では、ベルト幅方向に隣接する樹脂被覆コード34のタイヤ幅方向の側面同士が溶着により接合されていたが、接着剤を用いて接合されていてもよい。
In the belt 26 of the above embodiment, the side surfaces in the tire width direction of the resin-coated cords 34 adjacent in the belt width direction are joined by welding, but may be joined by using an adhesive.
2018年6月21日に出願された日本国特許出願2018-117979号の開示は、その全体が参照により本明細書に取り込まれる。
本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2018-117979 filed on June 21, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2018-117979 filed on June 21, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
Claims (4)
- 一方のビード部から他方のビード部に跨るカーカスを含んで構成され、少なくとも前記カーカスのタイヤ幅方向の外側部がゴム材料で被覆されたタイヤケースと、
タイヤ周方向に巻かれる補強コードを樹脂で被覆して構成され、かつ前記タイヤケースの外周側に接合されるベルトと、を備え、
前記ベルトのタイヤ幅方向断面において、前記補強コードの前記ベルトの単位幅当たりの本数は、タイヤ幅方向中央部よりもタイヤ幅方向端部の方が多い空気入りタイヤ。 A tire case configured to include a carcass straddling from one bead portion to the other bead portion, and at least an outer portion in the tire width direction of the carcass is covered with a rubber material,
A belt that is configured by covering a reinforcing cord wound in the tire circumferential direction with a resin, and that is joined to an outer peripheral side of the tire case,
In a cross section of the belt in the tire width direction, the number of the reinforcing cords per unit width of the belt at the end portion in the tire width direction is larger than that at the center portion in the tire width direction. - 前記ベルトは、
複数本の前記補強コードを樹脂で被覆して構成された樹脂被覆コードが螺旋状に巻かれる共に、前記樹脂被覆コードにおけるタイヤ幅方向に互いに隣接する部分同士が接合されており、
前記樹脂被覆コードにおける前記補強コードの本数は、タイヤ幅方向中央部よりもタイヤ幅方向端部の方が多い請求項1に記載の空気入りタイヤ。 The belt is
The resin-coated cord formed by coating the plurality of the reinforcing cords with a resin is spirally wound, and portions of the resin-coated cord adjacent to each other in the tire width direction are joined,
The pneumatic tire according to claim 1, wherein the number of the reinforcing cords in the resin-coated cord is greater at a tire width direction end portion than at a tire width direction center portion. - 前記ベルトは、
1本の前記補強コードを樹脂で被覆して構成された樹脂被覆コードが螺旋状に巻かれる共に、前記樹脂被覆コードにおけるタイヤ幅方向に互いに隣接する部分同士は、直接又は樹脂を介して接合されており、
隣接する前記樹脂被覆コード同士の間隔は、タイヤ幅方向中央部よりもタイヤ幅方向端部の方が狭い請求項1に記載の空気入りタイヤ。 The belt is
A resin-coated cord formed by coating one reinforcing cord with a resin is spirally wound, and portions of the resin-coated cord adjacent to each other in the tire width direction are joined directly or via a resin. And
The pneumatic tire according to claim 1, wherein an interval between the adjacent resin-coated cords is smaller at a tire width direction end portion than at a tire width direction central portion. - 前記補強コードの前記ベルトの単位幅当たりの本数は、タイヤ幅方向端から前記ベルトの幅の1/4の範囲においてタイヤ幅方向中央部よりも多い請求項1~3のいずれか1項に記載の空気入りタイヤ。 The belt according to any one of claims 1 to 3, wherein the number of the reinforcing cords per unit width of the belt is larger than the central portion in the tire width direction in a range of 1/4 of the width of the belt from the end in the tire width direction. Pneumatic tires.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018117979A JP2019217957A (en) | 2018-06-21 | 2018-06-21 | Pneumatic tire |
JP2018-117979 | 2018-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019244776A1 true WO2019244776A1 (en) | 2019-12-26 |
Family
ID=68983871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/023525 WO2019244776A1 (en) | 2018-06-21 | 2019-06-13 | Pneumatic tyre |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019217957A (en) |
WO (1) | WO2019244776A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7482673B2 (en) * | 2020-04-13 | 2024-05-14 | 株式会社ブリヂストン | Pneumatic tires |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03157204A (en) * | 1989-11-14 | 1991-07-05 | Bridgestone Corp | Pneumatic radial tire |
JP2005125815A (en) * | 2003-10-21 | 2005-05-19 | Bridgestone Corp | Pneumatic tire |
JP2007069745A (en) * | 2005-09-07 | 2007-03-22 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
JP2012035500A (en) * | 2010-08-06 | 2012-02-23 | Bridgestone Corp | Method of manufacturing tire and tire |
JP2014210487A (en) * | 2013-04-18 | 2014-11-13 | 株式会社ブリヂストン | Tire and tire manufacturing method |
WO2016017556A1 (en) * | 2014-07-30 | 2016-02-04 | 株式会社ブリヂストン | Tire |
JP2016097945A (en) * | 2014-11-26 | 2016-05-30 | 株式会社ブリヂストン | tire |
WO2017099127A1 (en) * | 2015-12-07 | 2017-06-15 | 株式会社ブリヂストン | Tire |
JP2017206210A (en) * | 2016-05-20 | 2017-11-24 | 株式会社ブリヂストン | tire |
WO2017203765A1 (en) * | 2016-05-26 | 2017-11-30 | 株式会社ブリヂストン | Tire |
WO2018074196A1 (en) * | 2016-10-18 | 2018-04-26 | 株式会社ブリヂストン | Tire |
WO2018101175A1 (en) * | 2016-12-02 | 2018-06-07 | 株式会社ブリヂストン | Tire |
-
2018
- 2018-06-21 JP JP2018117979A patent/JP2019217957A/en active Pending
-
2019
- 2019-06-13 WO PCT/JP2019/023525 patent/WO2019244776A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03157204A (en) * | 1989-11-14 | 1991-07-05 | Bridgestone Corp | Pneumatic radial tire |
JP2005125815A (en) * | 2003-10-21 | 2005-05-19 | Bridgestone Corp | Pneumatic tire |
JP2007069745A (en) * | 2005-09-07 | 2007-03-22 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
JP2012035500A (en) * | 2010-08-06 | 2012-02-23 | Bridgestone Corp | Method of manufacturing tire and tire |
JP2014210487A (en) * | 2013-04-18 | 2014-11-13 | 株式会社ブリヂストン | Tire and tire manufacturing method |
WO2016017556A1 (en) * | 2014-07-30 | 2016-02-04 | 株式会社ブリヂストン | Tire |
JP2016097945A (en) * | 2014-11-26 | 2016-05-30 | 株式会社ブリヂストン | tire |
WO2017099127A1 (en) * | 2015-12-07 | 2017-06-15 | 株式会社ブリヂストン | Tire |
JP2017206210A (en) * | 2016-05-20 | 2017-11-24 | 株式会社ブリヂストン | tire |
WO2017203765A1 (en) * | 2016-05-26 | 2017-11-30 | 株式会社ブリヂストン | Tire |
WO2018074196A1 (en) * | 2016-10-18 | 2018-04-26 | 株式会社ブリヂストン | Tire |
WO2018101175A1 (en) * | 2016-12-02 | 2018-06-07 | 株式会社ブリヂストン | Tire |
Also Published As
Publication number | Publication date |
---|---|
JP2019217957A (en) | 2019-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018207617A1 (en) | Pneumatic tire | |
EP3225424B1 (en) | Tire | |
JP6845086B2 (en) | Pneumatic tires | |
EP3459763B1 (en) | Tire | |
WO2018235621A1 (en) | Pneumatic tire | |
WO2019225374A1 (en) | Pneumatic tire | |
US20200101794A1 (en) | Tire | |
WO2019244776A1 (en) | Pneumatic tyre | |
WO2019244720A1 (en) | Tire | |
WO2020004064A1 (en) | Pneumatic tire | |
WO2019244775A1 (en) | Pneumatic tire | |
WO2019244789A1 (en) | Tire | |
WO2019244788A1 (en) | Tire | |
WO2019244721A1 (en) | Pneumatic tire | |
WO2019239898A1 (en) | Pneumatic tire | |
WO2021112049A1 (en) | Fiber, method for manufacturing resin-coated cord, method for manufacturing pneumatic tire | |
JP2021091356A (en) | Pneumatic tire | |
CN112334329A (en) | Tyre for vehicle wheels | |
CN112313088B (en) | Pneumatic tire | |
JP2021095036A (en) | Pneumatic tire | |
JP6930943B2 (en) | Pneumatic tires | |
WO2020004045A1 (en) | Tire and tire manufacturing method | |
WO2019230761A1 (en) | Pneumatic tire | |
US20210245549A1 (en) | Tire and method of manufacturing belt layer constituent member | |
WO2019230767A1 (en) | Pneumatic tire and method for manufacturing pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19822983 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19822983 Country of ref document: EP Kind code of ref document: A1 |