WO2019244509A1 - 酸化物焼結体およびスパッタリングターゲット - Google Patents
酸化物焼結体およびスパッタリングターゲット Download PDFInfo
- Publication number
- WO2019244509A1 WO2019244509A1 PCT/JP2019/018992 JP2019018992W WO2019244509A1 WO 2019244509 A1 WO2019244509 A1 WO 2019244509A1 JP 2019018992 W JP2019018992 W JP 2019018992W WO 2019244509 A1 WO2019244509 A1 WO 2019244509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sintered body
- oxide sintered
- structure compound
- body according
- less
- Prior art date
Links
- 238000005477 sputtering target Methods 0.000 title claims description 31
- 150000001875 compounds Chemical class 0.000 claims abstract description 65
- 239000011701 zinc Substances 0.000 claims abstract description 48
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 33
- 239000011029 spinel Substances 0.000 claims abstract description 33
- 229910052738 indium Inorganic materials 0.000 claims abstract description 10
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 9
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000005452 bending Methods 0.000 claims description 11
- 230000014509 gene expression Effects 0.000 claims description 7
- 239000013077 target material Substances 0.000 claims 1
- 229910007486 ZnGa2O4 Inorganic materials 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 28
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 22
- 239000002245 particle Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 18
- 239000002994 raw material Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 239000011812 mixed powder Substances 0.000 description 14
- 238000004544 sputter deposition Methods 0.000 description 14
- 239000002002 slurry Substances 0.000 description 12
- 239000011787 zinc oxide Substances 0.000 description 11
- 239000002612 dispersion medium Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000010304 firing Methods 0.000 description 7
- 239000006259 organic additive Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000009694 cold isostatic pressing Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000003702 image correction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000007569 slipcasting Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
- C04B2235/763—Spinel structure AB2O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the disclosed embodiment relates to an oxide sintered body and a sputtering target.
- An oxide sintered body used for such a sputtering target includes a homologous structure compound represented by InGaO 3 (ZnO) m (m is an integer of 1 to 20) and a spinel structure compound represented by ZnGa 2 O 4. (For example, see Patent Document 1).
- the oxide sintered body used for the conventional sputtering target has a transverse rupture strength of about 50 MPa, when producing a sputtering target using such an oxide sintered body, or performing sputtering with such a sputtering target. When performing, there was a problem that the oxide sintered body was easily damaged.
- One embodiment of the present invention has been made in view of the above, and has as its object to provide an oxide sintered body and a sputtering target capable of suppressing damage.
- the oxide sintered body according to one embodiment of the embodiment is an oxide sintered body containing indium, gallium, and zinc, and a homologous structure compound represented by InGaZnO 4 or InGaZn 2 O 5 and ZnGa 2 O 4 And a bending strength of 180 MPa or more.
- damage to the oxide sintered body can be suppressed.
- FIG. 1 is an SEM image of the oxide sintered body in Example 1.
- the oxide sintered body of the embodiment contains indium (In), gallium (Ga), and zinc (Zn).
- the oxide sintered body of the embodiment includes indium, gallium, zinc, and oxygen (O), and can be used as a sputtering target.
- homologous structural compound represented by InGaO 3 (ZnO) m (m is an integer) if the homologous structural compound represented by m is 3 or more (for example, InGaZn 3 O 6 ), the homologous structural compound Mean diameter of the circle equivalent to the average area becomes large, and the bending strength tends to decrease. Therefore, among the homologous structure compounds represented by InGaO 3 (ZnO) m (m is an integer), it is preferable that the homologous structure compound represented by m not less than 3 is not included.
- the oxide sintered body of the embodiment preferably has a transverse rupture strength of 190 MPa or more, and more preferably 200 MPa or more.
- the upper limit of the transverse rupture strength is not particularly defined, but is usually 500 MPa or less.
- the atomic ratio of each element preferably satisfies the following formulas (1) to (3). 0.08 ⁇ In / (In + Ga + Zn) ⁇ 0.31 (1) 0.35 ⁇ Ga / (In + Ga + Zn) ⁇ 0.58 (2) 0.23 ⁇ Zn / (In + Ga + Zn) ⁇ 0.46 (3)
- the specific resistance of the oxide sintered body can be reduced. Therefore, according to the embodiment, when such an oxide sintered body is used as a sputtering target, sputtering can be performed using an inexpensive DC power supply, and the film formation rate can be improved.
- the atomic ratio of each element preferably satisfies the following formulas (4) to (6). 0.08 ⁇ In / (In + Ga + Zn) ⁇ 0.20 (4) 0.40 ⁇ Ga / (In + Ga + Zn) ⁇ 0.58 (5) 0.25 ⁇ Zn / (In + Ga + Zn) ⁇ 0.46 (6) More preferably, the atomic ratio of each element satisfies the following formulas (7) to (9), 0.13 ⁇ In / (In + Ga + Zn) ⁇ 0.19 (7) 0.40 ⁇ Ga / (In + Ga + Zn) ⁇ 0.55 (8) 0.27 ⁇ Zn / (In + Ga + Zn) ⁇ 0.46 (9) More preferably, the atomic ratio of each element satisfies the following formulas (10) to (12), 0.14 ⁇ In / (In + Ga + Zn) ⁇ 0.19 (10) 0.41 ⁇ Ga / (In + Ga + Zn) ⁇ 0.53 (11) 0.
- the oxide sintered body of the embodiment may contain unavoidable impurities derived from raw materials and the like.
- Inevitable impurities in the oxide sintered body of the embodiment include Fe, Cr, Ni, Si, W, Cu, Al and the like, and their contents are usually 100 ppm or less.
- the average equivalent circle diameter of the homologous structure compound is preferably 10 ⁇ m or less, and the average aspect ratio of the homologous structure compound is 2.0 or less. It is preferable that Thereby, since the crystal structure in the oxide sintered body can be refined, the transverse rupture strength of the oxide sintered body can be improved.
- the average equivalent circle diameter of the homologous structure compound is more preferably 8.0 ⁇ m or less, further preferably 7.0 ⁇ m or less, and more preferably 6.0 ⁇ m or less. More preferably, it is even more preferably 5.0 ⁇ m or less.
- the lower limit of the average area circle equivalent diameter of the homologous structure compound is not particularly limited, but is usually 2.0 ⁇ m or more.
- the average aspect ratio of the homologous structure compound is more preferably 1.9 or less, further preferably 1.8 or less, and more preferably 1.75 or less. More preferred.
- the lower limit of the average aspect ratio of the homologous structure compound is not particularly limited, but is usually 1.0 or more.
- the average area equivalent circle diameter of the spinel structure compound is preferably 5.0 ⁇ m or less, and the average aspect ratio of the spinel structure compound is 2. It is preferably 0 or less.
- the average equivalent circle diameter of the spinel structure compound is more preferably 4.5 ⁇ m or less, further preferably 4.0 ⁇ m or less, and more preferably 3.8 ⁇ m or less. Is more preferable.
- the lower limit value of the average area circle equivalent diameter of the spinel structure compound is not particularly limited, but is usually 2.0 ⁇ m or more.
- the average aspect ratio of the spinel structure compound is more preferably 1.8 or less, further preferably 1.7 or less, and more preferably 1.6 or less. More preferred.
- the lower limit of the average aspect ratio of the spinel structure compound is not particularly limited, but is usually 1.0 or more.
- the area ratio of the spinel structure compound is preferably 15% or more in the cross-sectional observation of the sintered body.
- the area ratio of the spinel structure compound is more preferably 25% or more, still more preferably 35% or more, even more preferably 40% or more. % Is still more preferred.
- the area ratio of the spinel structure compound is preferably 80% or less. Thereby, the specific resistance of the oxide sintered body can be reduced.
- the area ratio of the spinel structure compound is more preferably 70% or less, further preferably 65% or less, further preferably 60% or less, and 55% or less. % Is still more preferred.
- the oxide sintered body of the embodiment preferably has a relative density of 99.5% or more.
- the discharge state of DC sputtering can be stabilized.
- the relative density is 99.5% or more
- voids can be reduced in the sputtering target and gas components in the atmosphere can be easily prevented from being taken up. Also, during sputtering, abnormal discharge or cracking of the sputtering target or the like starting from the voids is less likely to occur.
- the oxide sintered body of the embodiment has a relative density of preferably 99.8% or more, more preferably 100.0% or more, and still more preferably 100.5% or more. And more preferably 101.0% or more.
- the upper limit of the relative density is not particularly defined, but is usually 105%.
- the oxide sintered body of the embodiment preferably has a specific resistance of 5.0 ⁇ 10 ⁇ 1 ⁇ ⁇ cm or less.
- the oxide sintered body of the embodiment preferably has a specific resistance of 5.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less, and a specific resistance of 4.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less. Is more preferably 3.5 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less. Although the lower limit of the specific resistance is not particularly defined, it is usually 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or more.
- the specific resistance of the oxide sintered body of the embodiment can be measured according to JIS K7194.
- the oxide sputtering target of the embodiment can be manufactured by, for example, a method as described below. First, raw material powders are mixed.
- the raw material powder is usually In 2 O 3 powder, Ga 2 O 3 powder and ZnO powder.
- the mixing ratio of each raw material powder is appropriately determined so as to obtain a desired constituent element ratio in the oxide sintered body.
- Each raw material powder may be dry-mixed in advance.
- the dry mixing method is not particularly limited, and for example, ball mill mixing in which each raw material powder and zirconia balls are put into a pot and mixed can be used.
- Examples of a method for producing a molded body from the mixed powder thus mixed include a slip casting method and a cold isostatic pressing (CIP) method. Subsequently, two types of methods will be described as specific examples of the molding method.
- a slurry containing a mixed powder and an organic additive is prepared using a dispersion medium, and the slurry is poured into a mold to remove the dispersion medium, thereby performing molding.
- Organic additives that can be used here include known binders and dispersants.
- the dispersion medium used in preparing the slurry is not particularly limited, and can be appropriately selected from water, alcohol, and the like according to the purpose.
- the method for preparing the slurry is not particularly limited. For example, ball mill mixing in which a mixed powder, an organic additive, and a dispersion medium are placed in a pot and mixed can be used. The slurry thus obtained is poured into a mold, and the dispersion medium is removed to produce a molded body.
- the molds that can be used here include a metal mold and a plaster mold, and a resin mold that removes the dispersion medium by applying pressure.
- CIP method In the CIP method described here, a slurry containing a mixed powder and an organic additive is prepared using a dispersion medium, and the slurry is spray-dried, and the resulting dry powder is filled in a mold and pressed. I do.
- Organic additives that can be used here include known binders and dispersants.
- the dispersion medium used in preparing the slurry is not particularly limited, and can be appropriately selected from water, alcohol, and the like according to the purpose.
- the method for preparing the slurry is not particularly limited. For example, ball mill mixing in which a mixed powder, an organic additive, and a dispersion medium are placed in a pot and mixed can be used.
- the slurry thus obtained is spray-dried to prepare a dry powder having a water content of 1% or less, and the dried powder is filled in a mold and subjected to pressure molding by a CIP method to produce a molded body. .
- the firing furnace for producing such a sintered body is not particularly limited, and a firing furnace that can be used for manufacturing a ceramic sintered body can be used. Such baking is preferably performed in an atmosphere in which oxygen is present.
- the firing temperature needs to be 1450 ° C. or higher, and is preferably 1480 ° C. or higher.
- the firing temperature is preferably 1600 ° C. or less, more preferably 1550 ° C. or less, from the viewpoint of preventing the structure of the sintered body from being enlarged and preventing cracking.
- the obtained sintered body is cut.
- Such cutting is performed using a surface grinder or the like.
- the surface roughness Ra after the cutting can be appropriately controlled by selecting the size of the abrasive grains of the grindstone used for the cutting.
- a sputtering target is produced by joining the cut sintered body to a substrate.
- the material of the base material stainless steel, copper, titanium or the like can be appropriately selected.
- a low melting point solder such as indium can be used as the bonding material.
- Example 1 Zirconia balls in a pot containing an In 2 O 3 powder having an average particle diameter of 0.6 ⁇ m, a Ga 2 O 3 powder having an average particle diameter of 1.5 ⁇ m, and a ZnO powder having an average particle diameter of 0.8 ⁇ m. And dry mixed with a ball mill to prepare a mixed powder.
- the average particle size of the raw material powder was measured using a particle size distribution analyzer HRA manufactured by Nikkiso Co., Ltd. In this measurement, water was used as a solvent, and the measurement was performed at a refractive index of the measured substance of 2.20. The same measurement conditions were used for the average particle size of the raw material powder described below.
- the average particle diameter of the raw material powder is the volume cumulative particle diameter D 50 in the cumulative volume 50% by volume by laser diffraction scattering particle size distribution measuring method.
- the prepared slurry was poured into a metal mold sandwiching a filter, and drained to obtain a molded body.
- this molded body was fired to produce a sintered body. This firing was performed in an atmosphere having an oxygen concentration of 20%, at a firing temperature of 1500 ° C., for a firing time of 8 hours, at a heating rate of 50 ° C./h, and at a cooling rate of 50 ° C./h.
- the obtained sintered body was cut to obtain an oxide sintered body having a width of 210 mm, a length of 710 mm and a thickness of 6 mm having a surface roughness Ra of 1.0 ⁇ m. Note that a # 170 grindstone was used for such cutting.
- Example 2 and 3 An oxide sintered body was obtained in the same manner as in Example 1. In Examples 2 and 3, when preparing the mixed powder, the raw material powders were blended so that the atomic ratio of the metal elements contained in all the raw material powders became the atomic ratio shown in Table 1.
- Comparative Examples 1 to 4 An oxide sintered body was obtained in the same manner as in Example 1. In Comparative Examples 1 to 4, when preparing the mixed powder, the raw material powders were blended so that the atomic ratios of the metal elements contained in all the raw material powders were as shown in Table 1.
- the mass in the air of the oxide sintered body is divided by the volume (mass in water of the sintered body / water specific gravity at the measurement temperature), and the value of the percentage relative to the theoretical density ⁇ (g / cm 3 ) is calculated as the relative density ( (Unit:%).
- the theoretical density ⁇ (g / cm 3 ) was calculated from the mass% and the density of the raw material powder used for manufacturing the oxide sintered body. Specifically, it was calculated by the following equation (7).
- ⁇ ⁇ (C 1/100 ) / ⁇ 1 + (C 2/100) / ⁇ 2 + (C 3/100) / ⁇ 3 ⁇ -1 ⁇ (7)
- C 1 to C 3 and ⁇ 1 to ⁇ 3 in the above formula have the following values, respectively.
- C 1 : mass% of In 2 O 3 powder used for manufacturing the oxide sintered body ⁇ 1 density of In 2 O 3 (7.18 g / cm 3 )
- C 3 mass% of ZnO powder used for producing the oxide sintered body ⁇ 3 : density of ZnO (5.60 g / cm 3 )
- a probe is applied to the surface of the processed oxide sintered body using Loresta (registered trademark) HP @ MCP-T410 (series four-probe probe @ TYPE @ ESP) manufactured by Mitsubishi Chemical Corporation, and AUTO @ RANGE Mode.
- the measurement was made at a total of five places near the center and four corners of the oxide sintered body, and the average value of the measured values was taken as the bulk resistance value of the sintered body.
- the flexural strength was measured by using a sample piece (length: 36 mm or more, width: 4.0 mm, thickness: 3.0 mm) cut out from the oxide sintered body by wire electric discharge machining, according to JIS-R-1601 (bending strength of fine ceramics). (Test method)).
- the cut surface obtained by cutting the oxide sintered body is polished stepwise using emery paper # 180, # 400, # 800, # 1000, and # 2000, and finally buffed. And finished to a mirror surface.
- etching solution nitric acid (60-61% aqueous solution, manufactured by Kanto Chemical Co., Ltd.)
- hydrochloric acid 35.0-37.0% aqueous solution, manufactured by Kanto Chemical Co., Ltd.
- pure water 40 ° C. and pure water are mixed at a volume ratio.
- HCl: H 2 O: HNO 3 1: 1: 0.08) for 2 minutes to perform etching.
- FIG. 1 is an SEM image of the oxide sintered body in Example 1.
- the light-colored crystal is a homologous structure compound
- the dark-colored crystal is a spinel structure compound.
- ImageJ 1.51k http://imageJ.nih.gov/ij/) provided by the National Institutes of Health (NIH) was used.
- the BSE-COMP image obtained above is drawn along the grain boundaries of the homologous structure compound, and after all drawing is completed, image correction (Image ⁇ Adjust ⁇ Threshold) is performed, and the spinel structure compound is drawn. Was removed. Noise remaining after image correction was removed (Process ⁇ Noise ⁇ Despeckle) as necessary.
- the BSE-COMP image obtained above is drawn along the grain boundaries of the spinel structure compound, and after all drawing is completed, image correction (Image ⁇ Adjust ⁇ Threshold) is performed to obtain a homologous structure. Compound was removed. Noise remaining after image correction was removed (Process ⁇ Noise ⁇ Despeckle) as necessary.
- the atomic ratio of each element contained in the mixed powder, the relative density of the oxide sintered body, the specific resistance (bulk resistance), and the bending resistance Table 1 shows the strength, constituent phases, average area circle equivalent diameter and average aspect ratio of the homologous structure compound (IGZO phase) and spinel structure compound (GZO phase), and the area ratio of the spinel structure compound (GZO phase). Show.
- the oxide sintered bodies of Examples 1 to 3 all have a specific resistance of 5.0 ⁇ 10 ⁇ 1 ⁇ cm or less. Therefore, according to the embodiment, when an oxide sintered body is used as a sputtering target, sputtering using an inexpensive DC power supply becomes possible, and the film formation rate can be improved.
- all of the oxide sintered bodies of Examples 1 to 3 have a bending strength of 180 MPa or more. Therefore, according to the embodiment, when manufacturing a sputtering target using such an oxide sintered body, or when performing sputtering with such a sputtering target, it is possible to prevent the oxide sintered body from being damaged. .
- the oxide sintered bodies of Examples 1 to 3 contain a homologous structure compound represented by InGaZnO 4 or InGaZn 2 O 5 and a spinel structure compound represented by ZnGa 2 O 4. . Therefore, according to the embodiment, an IGZO oxide sintered body having high bending strength can be realized.
- Examples 1 to 3 containing a homologous structure compound represented by InGaZnO 4 or InGaZn 2 O 5 and containing In, Ga, and Zn in the ranges shown in the above formulas (1) to (3), In comparison with Comparative Example 4 which does not contain In, Ga or Zn in such a range, the specific resistance is reduced to 5.0 ⁇ 10 -1 ⁇ cm or less by containing In, Ga and Zn in such a range. You can see that.
- the average equivalent circle of the homologous structure compound is 10 ⁇ m or less, and the average aspect ratio of the homologous structure compound is 2.0 or less. . Thereby, since the crystal structure in the oxide sintered body can be refined, the transverse rupture strength of the oxide sintered body can be improved.
- the average area equivalent circle diameter of the spinel structure compound is 5 ⁇ m or less, and the average aspect ratio of the spinel structure compound is 2.0 or less. . Thereby, since the crystal structure in the oxide sintered body can be refined, the transverse rupture strength of the oxide sintered body can be improved.
- the oxide sintered bodies of Examples 1 to 3 all have an area ratio of the spinel structure compound of 15% or more. Thereby, the bending strength of the oxide sintered body can be improved.
- the oxide sintered bodies of Comparative Examples 1 and 4 had high specific resistance and could not be subjected to DC sputtering.
- Example 1 in which the atomic ratio of each element satisfies Expressions (13) to (15) with Example 2 in which the atomic ratio of each element does not satisfy Expressions (13) to (15), It can be seen that the occurrence of arcing is further reduced by satisfying the atomic ratios of the expressions (13) to (15).
- the present invention is not limited to the above-described embodiments, and various changes can be made without departing from the gist of the present invention.
- the shape of the oxide sintered body is not limited to the plate shape, and may be any shape such as a cylindrical shape. It may be shaped.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Computer Hardware Design (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
0.08<In/(In+Ga+Zn)<0.31 ・・(1)
0.35<Ga/(In+Ga+Zn)<0.58 ・・(2)
0.23<Zn/(In+Ga+Zn)<0.46 ・・(3)
0.08<In/(In+Ga+Zn)≦0.20 ・・(4)
0.40≦Ga/(In+Ga+Zn)<0.58 ・・(5)
0.25≦Zn/(In+Ga+Zn)<0.46 ・・(6)
各元素の原子比の原子比が、以下の式(7)~(9)を満たすことがより好ましく、
0.13<In/(In+Ga+Zn)≦0.19 ・・(7)
0.40≦Ga/(In+Ga+Zn)≦0.55 ・・(8)
0.27≦Zn/(In+Ga+Zn)<0.46 ・・(9)
各元素の原子比の原子比が、以下の式(10)~(12)を満たすことがより好ましく、
0.14≦In/(In+Ga+Zn)≦0.19 ・・(10)
0.41≦Ga/(In+Ga+Zn)≦0.53 ・・(11)
0.30≦Zn/(In+Ga+Zn)≦0.45 ・・(12)
各元素の原子比の原子比が、以下の式(13)~(15)を満たすことがさらに好ましい。
0.14<In/(In+Ga+Zn)≦0.18 ・・(13)
0.41≦Ga/(In+Ga+Zn)≦0.52 ・・(14)
0.31≦Zn/(In+Ga+Zn)≦0.45 ・・(15)
実施形態の酸化物スパッタリングターゲットは、たとえば以下に示すような方法により製造することができる。まず、原料粉末を混合する。原料粉末としては、通常In2O3粉末、Ga2O3粉末およびZnO粉末である。
ここで説明するスリップキャスト法では、混合粉末と有機添加物とを含有するスラリーを、分散媒を用いて調製し、かかるスラリーを型に流し込んで分散媒を除去することにより成形を行う。ここで用いることができる有機添加物は、公知のバインダーや分散剤などである。
ここで説明するCIP法では、混合粉末と有機添加物とを含有するスラリーを、分散媒を用いて調製し、かかるスラリーを噴霧乾燥して得られた乾燥粉末を型に充填して加圧成形を行う。ここで用いることができる有機添加物は、公知のバインダーや分散剤などである。
平均粒径が0.6μmであるIn2O3粉末と、平均粒径が1.5μmであるGa2O3粉末と、平均粒径が0.8μmであるZnO粉末とをポット中でジルコニアボールによりボールミル乾式混合して、混合粉末を調製した。
実施例1と同様な方法を用いて、酸化物焼結体を得た。なお、実施例2、3では、混合粉末の調製の際、すべての原料粉末に含まれる金属元素の原子比が、表1に記載の原子比となるように各原料粉末を配合した。
実施例1と同様な方法を用いて、酸化物焼結体を得た。なお、比較例1~4では、混合粉末の調製の際、すべての原料粉末に含まれる金属元素の原子比が、表1に記載の原子比となるように各原料粉末を配合した。
ρ={(C1/100)/ρ1+(C2/100)/ρ2+(C3/100)/ρ3}-1 ・・(7)
・C1:酸化物焼結体の製造に用いたIn2O3粉末の質量%
・ρ1:In2O3の密度(7.18g/cm3)
・C2:酸化物焼結体の製造に用いたGa2O3粉末の質量%
・ρ2:Ga2O3の密度(5.95g/cm3)
・C3:酸化物焼結体の製造に用いたZnO粉末の質量%
・ρ3:ZnOの密度(5.60g/cm3)
・装置:SmartLab(株式会社リガク製、登録商標)
・線源:CuKα線
・管電圧:40kV
・管電流:30mA
・スキャン速度:5deg/min
・ステップ:0.02deg
・スキャン範囲:2θ=20度~80度
(スパッタリング条件)
装置:DCマグネトロンスパッタ装置、排気系クライオポンプ、ロータリーポンプ
到達真空度:3×10-6Pa
スパッタ圧力:0.4Pa
酸素分圧:1×10-3Pa
投入電力量時間:2W/cm2
時間:10時間
(アーキングカウンター)
型式:μArc Moniter MAM Genesis MAM データコレクター Ver.2.02
(LANDMARK TECHNOLOGY社製)
(アーキング評価)
A:20回以下
B:21~50回
C:51~100回
D:101回以上
Claims (16)
- インジウム、ガリウムおよび亜鉛を含む酸化物焼結体であって、
InGaZnO4またはInGaZn2O5で表されるホモロガス構造化合物と、ZnGa2O4で表されるスピネル構造化合物とを含み、
抗折強度が180MPa以上である酸化物焼結体。 - 各元素の原子比が下記式を満たす請求項1に記載の酸化物焼結体。
0.08<In/(In+Ga+Zn)<0.31
0.35<Ga/(In+Ga+Zn)<0.58
0.23<Zn/(In+Ga+Zn)<0.46 - 各元素の原子比が下記式を満たす請求項1または2に記載の酸化物焼結体。
0.08<In/(In+Ga+Zn)≦0.20
0.40≦Ga/(In+Ga+Zn)<0.58
0.25≦Zn/(In+Ga+Zn)<0.46 - 各元素の原子比が下記式を満たす請求項1~3のいずれか一つに記載の酸化物焼結体。
0.13<In/(In+Ga+Zn)≦0.19
0.40≦Ga/(In+Ga+Zn)≦0.55
0.27≦Zn/(In+Ga+Zn)<0.46 - 各元素の原子比が下記式を満たす請求項1~4のいずれか一つに記載の酸化物焼結体。
0.14≦In/(In+Ga+Zn)≦0.19
0.41≦Ga/(In+Ga+Zn)≦0.53
0.30≦Zn/(In+Ga+Zn)≦0.45 - 各元素の原子比が下記式を満たす請求項1~5のいずれか一つに記載の酸化物焼結体。
0.14<In/(In+Ga+Zn)≦0.18
0.41≦Ga/(In+Ga+Zn)≦0.52
0.31≦Zn/(In+Ga+Zn)≦0.45 - 前記ホモロガス構造化合物の平均面積円相当径が10μm以下である
請求項1~6のいずれか一つに記載の酸化物焼結体。 - 前記ホモロガス構造化合物の平均アスペクト比が2.0以下である
請求項1~7のいずれか一つに記載の酸化物焼結体。 - 前記スピネル構造化合物の平均面積円相当径が5μm以下である
請求項1~8のいずれか一つに記載の酸化物焼結体。 - 前記スピネル構造化合物の平均アスペクト比が2.0以下である
請求項1~9のいずれか一つに記載の酸化物焼結体。 - 前記スピネル構造化合物の面積率が15%以上である
請求項1~10のいずれか一つに記載の酸化物焼結体。 - 前記スピネル構造化合物の面積率が80%以下である
請求項1~11のいずれか一つに記載の酸化物焼結体。 - 相対密度が99.5%以上である
請求項1~12のいずれか一つに記載の酸化物焼結体。 - 比抵抗が5.0×10-1Ωcm以下である
請求項1~13のいずれか一つに記載の酸化物焼結体。 - InGaZnO4またはInGaZn2O5で表されるホモロガス構造化合物と、ZnGa2O4で表されるスピネル構造化合物からなる請求項1~14のいずれか一つに記載の酸化物焼結体。
- 請求項1~15のいずれか一つに記載の酸化物焼結体をターゲット材として用いる
スパッタリングターゲット。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020525347A JP7282766B2 (ja) | 2018-06-19 | 2019-05-13 | 酸化物焼結体およびスパッタリングターゲット |
CN201980039424.XA CN112262114B (zh) | 2018-06-19 | 2019-05-13 | 氧化物烧结体和溅射靶 |
KR1020207035420A KR102563627B1 (ko) | 2018-06-19 | 2019-05-13 | 산화물 소결체 및 스퍼터링 타깃 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018116291 | 2018-06-19 | ||
JP2018-116291 | 2018-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019244509A1 true WO2019244509A1 (ja) | 2019-12-26 |
Family
ID=68983588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/018992 WO2019244509A1 (ja) | 2018-06-19 | 2019-05-13 | 酸化物焼結体およびスパッタリングターゲット |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7282766B2 (ja) |
KR (1) | KR102563627B1 (ja) |
CN (1) | CN112262114B (ja) |
TW (1) | TWI804628B (ja) |
WO (1) | WO2019244509A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008163441A (ja) * | 2007-01-05 | 2008-07-17 | Idemitsu Kosan Co Ltd | スパッタリングターゲット及びその製造方法 |
JP2009275272A (ja) * | 2008-05-16 | 2009-11-26 | Idemitsu Kosan Co Ltd | インジウム、ガリウム及び亜鉛を含む酸化物 |
JP2011003856A (ja) * | 2009-06-22 | 2011-01-06 | Fujifilm Corp | 薄膜トランジスタ及び薄膜トランジスタの製造方法 |
WO2014021334A1 (ja) * | 2012-07-30 | 2014-02-06 | 東ソー株式会社 | 酸化物焼結体、及びスパッタリングターゲット |
WO2015068564A1 (ja) * | 2013-11-06 | 2015-05-14 | 三井金属鉱業株式会社 | スパッタリングターゲット |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2669402A1 (en) * | 2006-12-13 | 2013-12-04 | Idemitsu Kosan Co., Ltd. | Sputtering target and oxide semiconductor film |
KR20110027805A (ko) * | 2008-06-27 | 2011-03-16 | 이데미쓰 고산 가부시키가이샤 | InGaO3(ZnO) 결정상을 포함하는 산화물 반도체용 스퍼터링 타겟 및 그의 제조 방법 |
US8641932B2 (en) | 2008-12-15 | 2014-02-04 | Idemitsu Kosan Co., Ltd. | Sintered complex oxide and sputtering target comprising same |
JP2010238770A (ja) | 2009-03-30 | 2010-10-21 | Nippon Mining & Metals Co Ltd | 酸化物薄膜及びその製造方法 |
JP5501306B2 (ja) | 2011-08-18 | 2014-05-21 | 出光興産株式会社 | In−Ga−Zn−O系スパッタリングターゲット |
JP5677341B2 (ja) | 2012-03-01 | 2015-02-25 | 三菱電機株式会社 | 光電変換装置とその製造方法、および光電変換モジュール |
JP2013239531A (ja) | 2012-05-14 | 2013-11-28 | Fujifilm Corp | 薄膜トランジスタ及びその製造方法、表示装置、イメージセンサー、x線センサー並びにx線デジタル撮影装置 |
JP5654648B2 (ja) | 2012-08-10 | 2015-01-14 | 株式会社半導体エネルギー研究所 | 金属酸化物膜 |
JP5883367B2 (ja) * | 2012-09-14 | 2016-03-15 | 株式会社コベルコ科研 | 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 |
JP2014111818A (ja) * | 2012-11-09 | 2014-06-19 | Idemitsu Kosan Co Ltd | スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 |
JP2014105124A (ja) | 2012-11-27 | 2014-06-09 | Sumitomo Electric Ind Ltd | 導電性酸化物ならびに半導体酸化物膜およびその製造方法 |
CN110770191B (zh) * | 2018-04-18 | 2022-05-13 | 三井金属矿业株式会社 | 氧化物烧结体、溅射靶和氧化物薄膜的制造方法 |
-
2019
- 2019-05-13 WO PCT/JP2019/018992 patent/WO2019244509A1/ja active Application Filing
- 2019-05-13 KR KR1020207035420A patent/KR102563627B1/ko active IP Right Grant
- 2019-05-13 JP JP2020525347A patent/JP7282766B2/ja active Active
- 2019-05-13 CN CN201980039424.XA patent/CN112262114B/zh active Active
- 2019-05-27 TW TW108118255A patent/TWI804628B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008163441A (ja) * | 2007-01-05 | 2008-07-17 | Idemitsu Kosan Co Ltd | スパッタリングターゲット及びその製造方法 |
JP2009275272A (ja) * | 2008-05-16 | 2009-11-26 | Idemitsu Kosan Co Ltd | インジウム、ガリウム及び亜鉛を含む酸化物 |
JP2011003856A (ja) * | 2009-06-22 | 2011-01-06 | Fujifilm Corp | 薄膜トランジスタ及び薄膜トランジスタの製造方法 |
WO2014021334A1 (ja) * | 2012-07-30 | 2014-02-06 | 東ソー株式会社 | 酸化物焼結体、及びスパッタリングターゲット |
WO2015068564A1 (ja) * | 2013-11-06 | 2015-05-14 | 三井金属鉱業株式会社 | スパッタリングターゲット |
Also Published As
Publication number | Publication date |
---|---|
KR102563627B1 (ko) | 2023-08-07 |
CN112262114B (zh) | 2022-06-28 |
JPWO2019244509A1 (ja) | 2021-06-24 |
TW202000951A (zh) | 2020-01-01 |
JP7282766B2 (ja) | 2023-05-29 |
KR20210005731A (ko) | 2021-01-14 |
TWI804628B (zh) | 2023-06-11 |
CN112262114A (zh) | 2021-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5883368B2 (ja) | 酸化物焼結体およびスパッタリングターゲット | |
WO2014021334A1 (ja) | 酸化物焼結体、及びスパッタリングターゲット | |
JP5292130B2 (ja) | スパッタリングターゲット | |
TWI669283B (zh) | 氧化物燒結體及濺鍍靶材以及它們的製造方法 | |
JP5998712B2 (ja) | Igzo焼結体、及びスパッタリングターゲット並びに酸化物膜 | |
JP6511209B1 (ja) | 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜の製造方法 | |
JP6392776B2 (ja) | スパッタリングターゲット | |
JP7282766B2 (ja) | 酸化物焼結体およびスパッタリングターゲット | |
CN109072417B (zh) | 溅镀靶及其制造方法 | |
JP6661041B2 (ja) | 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜の製造方法 | |
WO2013065785A1 (ja) | 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 | |
CN111448336B (zh) | 氧化物烧结体、溅射靶及氧化物薄膜 | |
JP6883431B2 (ja) | LiCoO2焼結体およびその製造方法 | |
WO2015068535A1 (ja) | スパッタリングターゲットおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19823357 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020525347 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207035420 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19823357 Country of ref document: EP Kind code of ref document: A1 |